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A new cohomology class on the moduli space of curves

PAUL NORBURY

We define a collection‚g;n 2H 4g�4C2n.Mg;n;Q/ for 2g�2Cn>0 of cohomology
classes that restrict naturally to boundary divisors. We prove that the intersection
numbers

R
Mg;n

‚g;n

Qn
iD1  

mi
i can be recursively calculated. We conjecture that

a generating function for these intersection numbers is a tau function of the KdV
hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a
generating function for the intersection numbers

R
Mg;n

Qn
iD1  

mi
i is a tau function

of the KdV hierarchy.
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1 Introduction

Let Mg;n be the moduli space of genus g stable curves — curves with only nodal
singularities and finite automorphism group — with n labelled points disjoint from
nodes. Define  i D c1.Li/ 2 H 2.Mg;n;Q/ to be the first Chern class of the line
bundle Li !Mg;n with fibre above Œ.C;p1; : : : ;pn/� given by T �pi

C. Consider the
natural maps given by the forgetful map which forgets the last point,

(1) Mg;nC1
�
�!Mg;n;
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2696 Paul Norbury

and the gluing maps which glue the last two points,

(2)
Mg�1;nC2

�irr
��!Mg;n;

Mh;jI jC1 �Mg�h;jJ jC1
�h;I
��!Mg;n; I tJ D f1; : : : ; ng:

In this paper we construct cohomology classes ‚g;n 2H�.Mg;n;Q/ for g � 0, n� 0

and 2g� 2C n> 0 such that

(i) ‚g;n 2H�.Mg;n;Q/ is of pure degree,

(ii) ��irr‚g;n D‚g�1;nC2 and ��
h;I
‚g;n D �

�
1
‚h;jI jC1 ��

�
2
‚g�h;jJ jC1,

(iii) ‚g;nC1 D  nC1 ��
�‚g;n,

(iv) ‚1;1 ¤ 0,

where �i is projection onto the i th factor of Mh;jI jC1�Mg�h;jJ jC1. We prove below
that properties (i)–(iv) uniquely define intersection numbers of the classes ‚g;n with
the classes  i and more generally with classes in the tautological ring RH�.Mg;n/�

H 2�.Mg;n;Q/.

Remark 1.1 One can replace (ii) by the equivalent property

���‚g;n D‚�

for any stable graph � , defined in Section 3, of genus g with n external edges. Here

�� WM� D

Y
v2V .�/

Mg.v/;n.v/!Mg;n; ‚� D
Y

v2V .�/

��v‚g.v/;n.v/ 2H�.M� ;Q/;

where �v is projection onto the factor Mg.v/;n.v/. This generalises (ii) from 1–edge
stable graphs given by ��irr D �irr and ��h;I

D �h;I .

Remark 1.2 The sequence of classes ‚g;n satisfies many properties of a cohomologi-
cal field theory (CohFT). It is essentially a 1–dimensional CohFT with vanishing genus
zero classes, not to be confused with Hodge classes which are trivial in genus zero but
do not vanish there. The trivial cohomology class 1 2H 0.Mg;n;Q/, which is a trivial
example of a CohFT known as a topological field theory, satisfies conditions (i)–(ii),
while the forgetful map property (iii) is replaced by ‚g;nC1 D �

�‚g;n.

Theorem 1.3 There exists a class ‚g;n satisfying (i)–(iv) and , furthermore , any such
class satisfies the following properties:

(I) ‚g;n 2H 4g�4C2n.Mg;n;Q/.

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2697

(II) ‚0;n D 0 for all n and ��
�
‚g;n D 0 for any � with a genus 0 vertex.

(III) ‚g;n 2H�.Mg;n;Q/Sn , ie it is symmetric under the Sn action.

(IV) ‚1;1 D 3 1.

(V) For any � 2 RH g�1.Mg;n/, the intersection number
R
Mg;n

‚g;n� 2 Q is
uniquely determined by (i)–(iii) and (IV).

The main content of Theorem 1.3 is the existence of‚g;n, the rigidity property (IV) and
the uniqueness property (V). The existence of ‚g;n is constructed via the pushforward
of a class over the moduli space of spin curves in Section 2. The rigidity property (IV)
is proven in Section 3 by starting with ‚1;1 D � 1 and determining constraints on �
to arrive at �D 3, which does occur due to the construction of ‚g;n. The uniqueness
result (V) involving classes in the tautological ring RH�.Mg;n/ is nonconstructive
since it relies on the existence of nonexplicit tautological relations. The proofs of
properties (I)–(III) are straightforward and presented in Section 3. Section 4 describes
how the classes ‚g;n naturally combine with any cohomological field theory.

Remark 1.4 Properties (i)–(iv) uniquely define the classes ‚g;n for g � 4 and all n,
but it is not known if they uniquely define the classes ‚g;n in general. Uniqueness
would follow from injectivity of the pullback map to the boundary

RH 2g�2.Mg/!RH 2g�2.@Mg/;

which holds for g D 2, 3 and 4. It would show that ‚g 2RH 2g�2.Mg/ is uniquely
determined from its restriction, and consequently ‚g;n would coincide with the classes
constructed in Section 2 for all n� 0.

The following conjecture allows one to recursively calculate all intersection numbersR
Mg;n

‚g;n

Qn
iD1  

mi

i via relations coming out of the KdV hierarchy. Such a recursive
calculation would strengthen property (V) since intersections of ‚g;n with  classes
determine all tautological intersections with ‚g;n algorithmically.

Conjecture 1.5 The function

Z‚.„; t0; t1; : : : /D exp
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj

is the Brézin–Gross–Witten tau function of the KdV hierarchy.

Geometry & Topology, Volume 27 (2023)



2698 Paul Norbury

The Brézin–Gross–Witten KdV tau function ZBGW was defined in [6; 30]. Conjecture
1.5 has been verified up to g D 7, ie the coefficients of the expansion of the logarithm
of the Brézin–Gross–Witten tau function are given by intersection numbers of the
classes ‚g;n for g � 7 and all n. Progress towards Conjecture 1.5, including a purely
combinatorial formulation that can be stated without reference to the moduli space of
stable curves or the KdV hierarchy, is discussed in Section 6.

Acknowledgements I would like to thank Dimitri Zvonkine for his ongoing interest
in this work, which benefited immensely from many conversations together. I would
also like to thank Vincent Bouchard, Alessandro Chiodo, Alessandro Giacchetto, Oliver
Leigh, Danilo Lewanksi, Rahul Pandharipande, Johannes Schmitt, Mehdi Tavakol,
Ran Tessler, Ravi Vakil and Edward Witten for useful conversations, the referee for
comments which improved the paper, and the Institut Henri Poincaré, where part of
this work was carried out.

2 Existence

The existence of a cohomology class‚g;n 2H�.Mg;n;Q/ satisfying (i)–(iv) is proven
here using the moduli space of stable twisted spin curves Mspin

g;n , which consists of
pairs .†; �/ given by a twisted stable curve † equipped with an orbifold line bundle �
together with an isomorphism �˝2 Š !

log
†

. See precise definitions below. We first
construct a cohomology class on Mspin

g;n and then push it forward to a cohomology class
on Mg;n.

A stable twisted curve, with group Z2, is a 1–dimensional orbifold, or stack, C such
that generic points of C have trivial isotropy group and nontrivial orbifold points have
isotropy group Z2. A stable twisted curve is equipped with a map which forgets the
orbifold structure � W C ! C, where C is a stable curve known as the coarse curve
of C. We say that C is smooth if its coarse curve C is smooth. Each nodal point of C
(corresponding to a nodal point of C ) has nontrivial isotropy group, the local picture at
each node is fxy D 0g=Z2 with Z2 action given by .�1/ � .x;y/D .�x;�y/, and all
other points of C with nontrivial isotropy group are labelled points of C.

A line bundle L over C is a locally equivariant bundle over the local charts such
that, at each nodal point, there is an equivariant isomorphism of fibres. Hence, each
orbifold point p associates a representation of Z2 on Ljp acting by multiplication
by exp.2� i�p/ for �p D 0 or 1

2
. One says L is banded at p by �p. The equivariant

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2699

isomorphism at nodes guarantees that the representations agree on each local irreducible
component at the node.

The canonical bundle !C of C is generated by dz for any local coordinate z. At
an orbifold point x D z2, the canonical bundle !C is generated by dz; hence, it is
banded by 1

2
, ie dz 7! �dz under z 7! �z. Over the coarse curve, !C is generated

by dx D 2z dz. In other words, ��!C © !C; however, !C Š ��!C . Moreover,
deg!C D 2g� 2 and

deg!C D 2g� 2C 1
2
n:

For !log
C D !C.p1; : : : ;pn/, locally dx=x D 2 dz=z, so ��!log

C
Š !

log
C and deg!log

C
D

2g� 2C nD deg!log
C .

Following [1], define the moduli space of stable twisted spin curves by

Mspin
g;n D f.C; �;p1; : : : ;pn; �/ j � W �

2 Š�! !
log
C g:

Here !log
C and � are line bundles over the stable twisted curve C with labelled orbifold

points pj and deg � D g�1C 1
2
n. The pair .�; �/ is a spin structure on C. The relation

�2 Š�! !
log
C is possible because the representation associated to !log

C at pi is trivial:
dz=z! dz=z, z 7!�z. The equivariant isomorphism of fibres over nodal points forces
the balanced condition �pC D �p� for p˙ corresponding to p on each irreducible
component.

We can now define a vector bundle over Mspin
g;n using the dual bundle �_ on each stable

twisted curve. Denote by E the universal spin structure on the universal stable twisted
spin curve over Mspin

g;n . Given a map S !Mspin
g;n , E pulls back to � , giving a family

.C; �;p1; : : : ;pn; �/, where � W C! S has stable twisted curve fibres, pi W S ! C are
sections with orbifold isotropy Z2, and � W �2 Š�!!

log
C=S D!C=S .p1; : : : ;pn/. Consider

the pushforward sheaf ��E_ over Mspin
g;n . We have

deg �_ D 1�g� 1
2
n< 0:

Furthermore, for any irreducible component C0 i
�! C, the pole structure on sections of

the log canonical bundle at nodes yields i�!
log
C=S D!

log
C0=S . Hence, �0 W .� jC0/2 Š�!!

log
C0=S ,

where �0 D i� ı �jC0 . Since the irreducible component C0 is stable, its log canonical
bundle has negative degree and

deg �_jC0 < 0:

The negative degree of �_ restricted to any irreducible component implies R0��E_D 0

and the following definition makes sense:

Geometry & Topology, Volume 27 (2023)
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Definition 2.1 Define a bundle Eg;n D�R��E_ over Mspin
g;n with fibre H 1.C; �_/.

Represent the band of � at the labelled points by E� D .�1; : : : ; �n/ 2 f0; 1g
n so that,

at each labelled point pi , the representation of Z2 on � jpi
is given by multiplication

by exp.2� i�pi
/ for �pi

D
1
2
�i 2

˚
0; 1

2

	
. The number of pi with �pi

D 0 is even due
to evenness of the degree of the pushforward sheaf j� j WD ��OC.�/ on the coarse
curve C [33]. In the smooth case, the boundary type of a spin structure is determined
by an associated quadratic form, applied to each of the n boundary classes, which
vanishes since it is a homological invariant, again implying that the number of pi with
�pi
D 0 is even. The moduli space of stable twisted spin curves decomposes into

components determined by the band E� ,

Mspin
g;n D

G
�

Mspin
g;n;E�

;

where Mspin
g;n;E� consists of those spin curves with � banded by E� , and the union is

over the 2n�1 functions E� satisfying jE� jC nD
Pn

iD1.�i C 1/ 2 2Z. Each component
Mspin

g;n;E� is connected except when jE� j D n, in which case there are two connected
components determined by their Arf invariant, known as even and odd spin structures.
This follows from the case of smooth spin curves proven in [42].

Restricted to Mspin
g;n;E�

, the bundle Eg;n has rank

(3) rank Eg;n D 2g� 2C 1
2
.nCjE� j/

by the following Riemann–Roch calculation. Orbifold Riemann–Roch takes into
account the representation information

h0.C; �_/� h1.C; �_/D 1�gC deg �_�
nX

iD1

�pi
D 1�gC 1�g� 1

2
n� 1

2
jE� j

D 2� 2g� 1
2
.nCjE� j/:

Alternatively, one can use the usual Riemann–Roch calculation on the pushforward
of � to the underlying coarse curve C as follows. The sheaf of local sections OC.L/

of any line bundle L on C pushes forward to a sheaf jLj WD ��OC.L/ on C, which
can be identified with the local sections of L invariant under the Z2 action. Away
from nodal points, jLj is locally free, and hence a line bundle. At nodal points, the
pushforward jLj is locally free when L is banded by the trivial representation, and
jLj is a torsion-free sheaf that is not locally free when L is banded by the nontrivial
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representation; see [25]. The pullback bundle is given by

��.j�_j/D �_˝
O
i2I

O.��ipi/

since locally invariant sections must vanish when the representation is nontrivial. Hence,
deg j�_j D deg �_� 1

2
jE� j. Hence, Riemann–Roch on the coarse curve yields the same

result as above: h0.C; j�_j/� h1.C; j�_j/D 2� 2g� 1
2
.nCjE� j/. It is proven in [25]

that H i.C; �_/DH i.C; j�_j/, so the calculations agree.

We have h0.C; �_/D 0 since deg �_D 1�g� 1
2
n< 0, and the restriction of �_ to any

irreducible component C 0, say of type .g0; n0/, also has negative degree, deg �_jC 0 D
1� g0 � 1

2
n0 < 0. Hence, h1.C; �_/ D 2g � 2C 1

2
.nC jE� j/. Thus, H 1.C; �_/ gives

fibres of a rank 2g� 2C 1
2
.nCjE� j/ vector bundle.

The analogue of the boundary maps �irr and �h;I defined in (2) are multivalued maps
defined as follows. Consider a node p 2 C for .C; �;p1; : : : ;pn; �/ 2Mspin

g;n . Denote
the normalisation by � W zC! C with points p˙ 2 zC that map to the node, p D �.p˙/.
When zC is not connected, the spin structure ��� decomposes into two spin structures
�1 and �2. Any two spin structures �1 and �2 with bands at pC and p� that agree can
glue, but not uniquely, to give a spin structure on C. This gives rise to a multivalued
map, as described in [26, page 27], which uses the fibre product

.Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n
//

��

Mspin
g;n

��

Mh;jI jC1 �Mg�h;jJ jC1
//Mg;n

and is given by

.Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n

O�

tt

�h;I

((

Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

//Mspin
g;n

where I t J D f1; : : : ; ng. The map O� is given by the pullback of the spin structure
obtained from Mspin

g;n to the normalisation defined by the points of Mh;jI jC1 and
Mg�h;jJ jC1. The broken arrow Ü represents the multiply defined map �h;I ı O�

�1.
The multivalued map �h;I ı O�

�1 naturally restricts to components

Mspin
h;jI jC1;�1

�Mspin
g�h;jJ jC1;�2

Ü Mspin
g;n;E�

;

Geometry & Topology, Volume 27 (2023)
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where E� and I uniquely determine �1 and �2, since � must be banded by �p D 0 at an
even number of orbifold points, which uniquely determines the band �pC D �p� at the
separating node.

When zC is connected, a spin structure � on C pulls back to a spin structure Q� D ��� on zC.
As above, any spin structure Q� with bands at pC and p� that agree glues nonuniquely,
to give a spin structure on C, and defines a multiply defined map which uses the fibre
product

Mg�1;nC2 �Mg;n
Mspin

g;n
//

��

Mspin
g;n

��

Mg�1;nC2
//Mg;n

and is given by

Mg�1;nC2 �Mg;n
Mspin

g;n

O�

vv

�irr

''

Mspin
g�1;nC2

//Mspin
g;n

Again, �irr ı O�
�1 naturally restricts to components Mspin

g�1;nC2;E� 0
Ü Mspin

g;n;E�
, but,

unlike the case of �h;I ı O�
�1 above, E� does not uniquely determine E� 0. The map O�

now depends on � and there are two cases, corresponding to the decomposition of
the fibre product Mg�1;nC2�Mg;n

Mspin
g;n;E�

into two components which depend on the
behaviour of � at the nodal point p˙. Either � is banded by �p˙ D

1
2

, or it is banded
by �p˙ D 0, corresponding to E� 0 D .E�; 1; 1/ and E� 0 D .E�; 0; 0/, respectively.

The bundle Eg;n behaves naturally with respect to the boundary divisors.

Lemma 2.2 On components where � is banded by �p˙ D
1
2

, at the node ,

��irrEg;n Š O�
�Eg�1;nC2; ��h;I Eg;n Š O�

�.��1 Eh;jI jC1˚�
�
2 Eg�h;jJ jC1/;

where �i is projection from Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

onto the i th factor for i D 1; 2.

Proof A spin structure Q� on a connected normalisation zC has

deg Q�_ D 1� .g� 1/� 1
2
.nC 2/ < 0

and also negative degree on all irreducible components; hence, H 0.zC; Q�_/ D 0. By
Riemann–Roch,

h0.zC; Q�_/� h1.zC; Q�_/D 1� .g� 1/C deg Q�_� 1
2
.nC 2/D 2� 2g� n:
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Hence, dim H 1.zC; Q�_/D dim H 1.C; �_/ and the natural map

0!H 1.C; �_/!H 1.zC; Q�_/

is an isomorphism. In other words, ��irrEg;n Š �
�Eg�1;nC2.

The argument is analogous when zC is not connected and �p˙ D
1
2

. Again deg �_i < 0,
and it has negative degree on all irreducible components; hence, H 0.C; �_i /D 0 for
i D 1; 2. By Riemann–Roch,

dim H 1.C; �_1 /C dim H 1.C; �_2 /D dim H 1.C; �_/;

so the natural map

0!H 1.C; �_/!H 1.zC1; �
_
1 /˚H 1.zC2; �

_
2 /

is an isomorphism. In other words, ��
h;I

Eg;n Š O�
�.��

1
Eh;jI jC1˚�

�
2

Eg�h;jJ jC1/.

The pullback of Eg;n to boundary divisors with trivial isotropy at the node is described
in the following lemma:

Lemma 2.3 On components where � is banded by �p˙ D 0, at the node ,

(4) 0!OXh;I
! ��h;I Eg;n! O�

�.��1 Eh;jI jC1˚�
�
2 Eg�h;jJ jC1/! 0

for Xh;I D .Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n and

(5) 0!OXirr ! ��irrEg;n! O�
�Eg�1;nC2! 0

for Xirr DMg�1;nC2 �Mg;n
Mspin

g;n .

Proof When the bundle � is banded by �p˙ D 0, the map between sheaves of local
holomorphic sections

�.U; �/! �.��1U; ���/

is not surjective whenever U 3p. The image consists of local sections that agree, under
an identification of fibres, at pC and p�. Hence we have an exact sequence

(6) 0! �_! ���
��_! ���

��_jp! 0;

where the quotient sends a local section s 2 �.��1U; ���_/ to s.pC/� s.p�/. Note
that this difference of sections over different points makes sense since Xh;I and Xirr

come with a choice of isomorphism between the fibres over pC and p�. The exact
sequence (6) splits as follows. We can choose a representative � upstairs of any element

Geometry & Topology, Volume 27 (2023)
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from the quotient space so that �.pC/D 0, ie �.U; �_/ corresponds to elements of
�.��1U; ���_/ that vanish at pC. This is achieved by adding the appropriate multiple
of s.pC/� s.p�/ to a given � 2 �.��1U; ���_/. (Note that �.p�/ is arbitrary. One
could instead arrange �.p�/D 0 with �.pC/ arbitrary.) In other words, we can identify
�_ with ���_.�pC/ in the complex

0! ���_.�pC/! ���_! ���_jpC ! 0:

In a family � W C ! S , R0��.�
��_/D 0DR0��.�

��_.�pC// since deg ���_ < 0,
and it has negative degree on all irreducible components. Also R1��.�

��_jpC/D 0

since pC has relative dimension 0. Thus,

(7) 0!R0��.�
��_jpC/!R1��.�

��_.�pC//!R1��.�
��_/! 0:

We can identify the sequence (7) with the sequences (4) and (5) as follows. For the first
term of (7), ���_jpC ŠC canonically, since !log

C jpC ŠC canonically by the residue
map; hence, R0��.�

��_jpC/ŠWS . The second and third terms of (7) are identified with
the corresponding terms of (4) by O��.��

1
Eh;jI jC1˚�

�
2

Eg�h;jJ jC1/DR1��.�
��_/

and ��
h;I

Eg;nDR1��.�
��_.�pC//, and similarly with those of (5) by O��Eg�1;nC2D

R1��.�
��_/ and ��irrEg;n DR1��.�

��_.�pC//.

Remark 2.4 In Lemma 2.2, the nodal band is �p˙ D
1
2

and so �pCC�p� D 1. We see
from Lemma 2.3 that �p˙D0 really wants one of �p˙ to be 1 to preserve �pCC�p�D1.

Definition 2.5 For 2g� 2C n> 0, define the Chern class

�g;n WD c2g�2Cn.Eg;n/ 2H 4g�4C2n.Mspin
g;n ;Q/:

On the component Mspin
g;n;E�

of Mspin
g;n for jE� j D n, this defines the top Chern class, or

Euler class. The Chern class vanishes on all other components because, by (3), the rank
of Eg;n D 2g � 2C 1

2
.jE� j C n/ < 2g � 2C n when jE� j < n. Note that �0;n D 0 for

n� 3 because rank.E0;n/D n� 2 is greater than dimMspin
0;n
D n� 3, so its top Chern

class vanishes.

The cohomology classes �g;n behave well with respect to inclusion of strata.

Lemma 2.6 We have

��irr�g;n D O�
��g�1;nC2; ��h;I�g;n D O�

�.��1�h;jI jC1 ��
�
2�g�h;jJ jC1/:
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Proof When jE� j D n and � is banded by 1
2

at the nodal point, this is an immediate
application of Lemma 2.2 and the naturality of c2g�2Cn D ctop: we have

��irrctop.Eg;n/D O�
�ctop.Eg�1;nC2/;

��h;I ctop.Eg;n/D O�
�.��1 ctop.Eh;jI jC1/ ��

�
2 ctop.Eg�h;jJ jC1//:

When jE� j D n and � is banded by 0 at the nodal point, the nodal point is neces-
sarily nonseparating and we must consider the restriction of �g;n to the component
Mspin

g�1;nC2;E� 0
of Mspin

g�1;nC2
with jE� 0j D n. On this component, we have the exact

sequence of Lemma 2.3,

0!Eg�1;nC2! ��irrEg;n!OMspin
g�1;nC2;E�0

! 0;

which implies ��irrc2g�2Cn.Eg;n/ D c2g�3Cn.Eg�1;nC2;E� 0/ � c1.OMspin
g�1;nC2;E�0

/ D 0.
This vanishing result is a special case of the pullback by ��irr since �g�1;nC2 vanishes
on Mspin

g�1;nC2;E� 0
for jE� 0j D n.

Finally, when jE� j< n, this is simply because the pullback of the trivial class is trivial,
since in each case the restriction to an irreducible component has at least one labelled
point with band equal to 0, so that the right-hand side vanishes.

The cohomology classes �g;n also behave well with respect to the forgetful map

� WMspin
g;nC1

!Mspin
g;n

which is defined on components with � banded by 1
2

at pnC1 as follows. Define

�.C; �;p1; : : : ;pnC1; �/D .�.C/; ���;p1; : : : ;pn; ���/;

where �.C/ forgets the orbifold structure at pnC1. The pushforward sheaf ��� consists
of local sections invariant under the Z2 action. Since the representation at pnC1 is
given by multiplication by �1, any invariant local section must vanish at pnC1. In
terms of a local orbifold coordinate x D z2, an invariant section is of the form zf .x/s

for s a generator of � and its square

.zf .x/s/2 D z2f .x/2s2
D xf .x/2

dx

x
D f .x/2 dx

has no pole. In other words, its square is a section of !log
C with no pole at pnC1

and hence a section of !log
�.C/ D !�.C/.p1 C p2 C � � � C pn/. Furthermore, we have

��� D ��f�.�pnC1/g, ����� D �.�pnC1/ and deg ��� D deg � � 1
2

. The forgetful
map � is used to denote any family � W C!S since Mspin

g;nC1
is essentially the universal

curve of Mspin
g;n .
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Tautological line bundles Lpi
!Mspin

g;n for iD1; : : : ; n are defined analogously to those
defined over Mg;n as follows. Consider a family � W C! S with sections pi W S ! C
for i D 1; : : : ; n, and define

Lpi
WD p�i .!C=S /;  i D c1.Lpi

/ 2H�.Mspin
g;n ;Q/:

Lemma 2.7 �g;nC1 D� pnC1
����g;n:

Proof Over a family � W C! S, where S !Mspin
g;nC1

and � ! C is the universal spin
structure (also denoted by E), tensor the exact sequence of sheaves

0!OC.�pnC1/!OC!OCjpnC1
! 0

with �_.pnC1/ to get

0! �_! �_.pnC1/! �_.pnC1/jpnC1
! 0:

This induces a long exact sequence, which simplifies to the short exact sequence

0!R0��.�
_.pnC1/jpnC1

/!R1���
_
!R1��.�

_.pnC1//! 0

due to the vanishing R0��.�
_.pnC1// D 0 D R1��.�

_.pnC1/jpnC1
/. The first of

these vanishing results uses the identification �_.pnC1/ D ���_ described below
together with the vanishing R0���

_D 0 due to the negative degree on each irreducible
component described earlier. The second of these vanishing results uses the simple
dimension argument that R1�� vanishes on the image of pnC1, which has relative
dimension 0.

Recall that the forgetful map .C; �;p1; : : : ;pnC1; �/ 7! .�.C/; ���;p1; : : : ;pn; ���/

pushes forward � via � which forgets the orbifold structure at pnC1. As described
earlier, ����� D �.�pnC1/ since the pushforward gives the sheaf of locally invariant
sections, which necessarily vanish as the isotropy group acts by multiplication by �1.
Hence, �_.pnC1/ D ���_, which is used to calculate R0 above, and also to give
R1��.�

_.pnC1//D R1��.�
��_/D ��R1��.�

_/. Thus, the last two terms of the
short exact sequence become Eg;nC1! ��Eg;n.

For the first term of the short exact sequence, the residue map produces a canonical
isomorphism

��!
log
C=S jpnC1

DOS :

Thus, ��.� jpnC1
/ and ��.�_jpnC1

/ define line bundles over S with square OS and
hence trivial Chern class c.��.� jpnC1

//D 1D c.��.�
_jpnC1

//. The first term of the
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short exact sequence R0��.�
_.pnC1/jpnC1

/ defines a line bundle �! S with Chern
class

c.�/D c
�
R0��.OC.pnC1/jpnC1

/
�

that fits into the short exact sequence

0! �!Eg;nC1! ��Eg;n! 0:

The triviality of ��.!
log
C=S jpnC1

/ implies

LpnC1
DR0��.!C=S jpnC1

/D�R0��.OC.pnC1/jpnC1
/I

hence,
c.�/D

1

c.LpnC1
/
D 1� pnC1

:

The short exact sequence then gives c2g�2CnC1.Eg;nC1/D� pnC1
���c2g�2Cn.Eg;n/,

as required.

Definition 2.8 For p WMspin
g;n !Mg;n, define

‚g;n D .�1/n2g�1Cnp��g;n 2H 4g�4C2n.Mg;n;Q/:

Lemma 2.7 and the relation
 nC1 D

1
2
p� nC1

proven in [26, Proposition 2.4.1], together with the factor of 2n in the definition of�g;n,
immediately gives property (iii) of ‚g;n,

‚g;nC1 D  nC1 ��
�‚g;n:

Property (iv) of ‚g;n is given by the following calculation:

Proposition 2.9 ‚1;1 D 3 1 2H 2.M1;1;Q/:

Proof A one-pointed twisted elliptic curve .E ;p/ is a one-pointed elliptic curve .E;p/
such that p has isotropy Z2. The degree of the divisor p in E is 1

2
and the degree of

every other point in E is 1. If dz is a holomorphic differential on E (where E DC=ƒ

and z is the identity function on the universal cover C), then, locally near p, we have
z D t2, so dz D 2t dt vanishes at p. In particular, the canonical divisor .!E/D p has
degree 1

2
and .!log

E /D .!E.p//D 2p has degree 1.

A spin structure on E is a degree 1
2

line bundle L satisfying L2 D !
log
E . Line bundles

on E correspond to divisors on E up to linear equivalence. Note that meromorphic
functions on E are exactly the meromorphic functions on E. The four spin structures
on E are given by the divisors �0 D p and �i D qi �p for i D 1; 2; 3, where qi is a
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nontrivial order 2 element in the group E with identity p. Clearly, �2
0
D 2pD!

log
E . For

i D 1; 2; 3, �2
i D 2qi � 2p � 2p since there is a meromorphic function }.z/�}.qi/

on E with a double pole at p and a double zero at qi . Its divisor on E is 2qi � 4p,
since p has isotropy Z2; hence, 2qi � 2p � 2p.

Since H 2.M1;1;Q/ is generated by  1, it is enough to calculate
R
M1;1

‚1;1. The
Chern character of the pushforward bundle E1;1 is calculated via the Grothendieck–
Riemann–Roch theorem:

ch.R��E_/D ��.ch.E_/Td.!_� //:

In fact we need to use the orbifold Grothendieck–Riemann–Roch theorem [53]. The
calculation we need is a variant of the calculation in [26, Theorem 6.3.3] which applies
to E such that E2 D !

log
C instead of E_. Importantly, this means that the Todd class has

been worked out, and it remains to adjust the ch.E_/ term. We getZ
M1;1

p�c1.E1;1/D�ch.R��E_/

D�2

Z
M1;1

�
11
24
�1C

1
24
 1C

1
2

�
�

1
24
C

1
12

�
.i�/�.1/

�
D�2

�
11
242 C

1
242 C

1
2
�

1
24
�

1
2

�
D�

1
16
;

which agrees with

�

Z
M1;1

3
2
 1 D�

3
2
�

1
24
D�

1
16
:

Hence, p�c1.E1;1/D�
3
2
 1 and‚1;1D�2p�c1.E1;1/D 3 1. One can also calculate

this using Chiodo’s formula [10], given by (41) in Section 5.

Proposition 2.10 The classes ‚g;n 2H 4g�4C2n.Mg;n;Q/ satisfy property (ii).

Proof The two properties (ii) of ‚g;n follow from the analogous properties for �g;n.
This uses the relationship between compositions of pullbacks and pushforwards in the
diagrams

Mspin
g�1;nC2

�irrıO�
�1

//

p

��

Mspin
g;n

p

��

Mg�1;nC2

�irr
//Mg;n

Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

�h;IıO�
�1

//

p

��

Mspin
g;n

p

��

Mh;jI jC1 �Mg�h;jJ jC1

�h;I
//Mg;n

where the broken arrows signify multiply defined maps which are defined above using
fibre products.
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On cohomology, we have ��irrp� D 2p� O���
�
irr and ��

h;I
p� D 2p� O���

�
h;I

, where the
factor of 2 is due to the degree of O� ramification of p and the isotropy of the orbifold
divisor; see [33, (39)]. Hence,

��irr‚g;n D �
�
irrp�.�1/n2g�1Cn�g;n D 2p� O���

�
irr.�1/n2g�1Cn�g;n

D p�.�1/nC22gCn�g�1;nC2 D‚g�1;nC2

and, similarly, ��
h;I
‚g;n D �

�
1
‚h;jI jC1 ��

�
2
‚g�h;jJ jC1, which uses

2 � .�1/n2g�1Cn
D .�1/n2gCn

D .�1/jI jC12h�1CjI jC1.�1/jJ jC12g�h�1CjJ jC1:

Remark 2.11 The construction of �g;n should also follow from the cosection con-
struction in [7] using the moduli space of spin curves with fields

Mg;n.Z2/
p
D f.C; �; �/ j .C; �/ 2Mspin

g;n ; � 2H 0.C; �/g:

A cosection of the pullback of Eg;n to Mg;n.Z2/
p is given by ��3 since it pairs well

with H 1.C; �/: we have ��3 2H 0.C; .�_/3/ while H 1.C; �/ŠH 0.C; !˝ �_/_ D
H 0.C; .�_/3/_. Using the cosection ��3, a virtual fundamental class is constructed
in [7] that likely gives rise to �g;n 2H 4g�4C2n.Mspin

g;n ;Q/. The virtual fundamental
class is constructed away from the zero set of �.

3 Uniqueness

The degree property (I) of Theorem 1.3, ‚g;n 2H 4g�4C2n.Mg;n;Q/, proven below,
implies the initial value

‚1;1 D � ; � 2Q:

It leads to uniqueness of intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i

QN
jD1 � j̀ via a

reduction argument, and consequently property (V) of Theorem 1.3. The proofs in this
section of properties (II), (III) and (V) apply for any �¤ 0. We finish the section with
a rigidity result given by Theorem 3.6, proving that necessarily �D 3.

We first prove the following lemma, which will be needed later:

Lemma 3.1 Properties (i)–(iv) imply that ‚g;n ¤ 0 for g > 0 and all n.

Proof We have ‚1;1 D a or ‚1;1 D a 1 for a ¤ 0 by (i) and (iv). Using the
pullback property (iii) together with the equality  n i D  n�

� i for i < n, we have
‚1;nD a 2 � � � n or ‚1;nD a 1 2 � � � n; hence, .1C 1/‚1;nD a 1 2 � � � n andR
Mg;n

.1C 1/‚1;n D
1

24
a.n� 1/!, proving ‚1;n ¤ 0.
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Now we proceed by induction on g. For the base case of g D 1, we have ‚1;n ¤ 0 for
all n > 0. Assume ‚h;n ¤ 0 for 0 < h < g and all n. For g > 1, let � be the stable
graph consisting of a genus g� 1 vertex attached by a single edge to a genus 1 vertex
with n labelled leaves (called ordinary leaves in Section 5.0.1). Then, by (ii),

���‚g;n D‚g�1;1˝‚1;nC1;

which is nonzero since ‚g�1;1 ¤ 0 by the inductive hypothesis and ‚1;nC1 ¤ 0 by
the calculation above.

Proof of (I) Write
d.g; n/D degree.‚g;n/;

which exists by (i). Note that the degree here is half the cohomological degree, so
‚g;n 2H 2d.g;n/.Mg;n;Q/. Using (ii), ��irr‚g;n D‚g�1;nC2 implies that

d.g; n/D d.g� 1; nC 2/

since ‚g�1;nC2 ¤ 0 by Lemma 3.1. Hence, d.g; n/ D f .2g � 2C n/ is a function
of 2g� 2C n. Similarly, using (ii), ��

h;I
‚g;n D‚h;jI jC1˝‚g�h;jJ jC1 implies that

f .aC b/ D f .a/C f .b/ D .aC b/f .1/ since ‚h;jI jC1 ¤ 0 and ‚g�h;jJ jC1 ¤ 0,
again by Lemma 3.1. Hence,

d.g; n/D .2g� 2C n/k

for an integer k. But d.g; n/ � 3g � 3C n implies k � 1. When k D 0, this gives
deg‚g;n D 0, which contradicts (iii) together with Lemma 3.1; hence, k D 1 and
deg‚g;n D 2g� 2C n.

Proof of (II) This is an immediate consequence of (I) since

deg‚0;n D n� 2> n� 3D dimM0;n

and hence ‚0;n D 0. For any stable graph � with a genus 0 vertex, Remark 1.1 gives
��
�
‚g;n D ‚� D

Q
v2V .�/ �

�
v‚g.v/;n.v/ D 0 since the genus 0 vertex contributes a

factor of 0 to the product.

Proof of (III) Property (iii) implies that

‚g;n D

nY
iD1

 i ��
�‚g;
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where � WMg;n!Mg is the forgetful map. Since ��! 2 H�.Mg;n;Q/Sn for any
class ! 2 H�.Mg;Q/ and clearly

Qn
iD1  i 2 H�.Mg;n;Q/Sn , we have ‚g;n 2

H�.Mg;n;Q/Sn , as required.

The proof of (V) follows from the special case of the intersection of ‚g;n with a
polynomial in � and  classes.

Proposition 3.2 For any ‚g;n satisfying properties (i)–(iii), the intersection numbers

(8)
Z
Mg;n

‚g;n

nY
iD1

 
mi

i

NY
jD1

�
j̀

are uniquely determined from the initial condition ‚1;1 D � 1 for � 2Q.

Proof For n>0, we will push forward the integral (8) via the forgetful map � WMg;n!

Mg;n�1 as follows. Consider first the case when there are no � classes. The presence
of  n in ‚g;n D  n ��

�‚g;n�1 gives

‚g;n k D‚g;n�
� k ; k < n;

since  n k D  n�
� k for k < n. Hence,Z

Mg;n

‚g;n

nY
iD1

 
mi

i D

Z
Mg;n

��
�
‚g;n�1

n�1Y
iD1

 
mi

i

�
 mnC1

n

D

Z
Mg;n�1

��

�
��
�
‚g;n�1

n�1Y
iD1

 
mi

i

�
 mnC1

n

�

D

Z
Mg;n�1

‚g;n�1

n�1Y
iD1

 
mi

i �mn
;

so we have reduced an intersection number over Mg;n to an intersection number
over Mg;n�1. In the presence of � classes, replace �

j̀
by �

j̀
D ���

j̀
C j̀

n and
repeat the pushforward as above on all summands. By induction, we see that, for g> 1,Z

Mg;n

‚g;n

nY
iD1

 
mi

i

NY
jD1

�
j̀
D

Z
Mg

‚g �p.�1; �2; : : : ; �3g�3/;

ie the intersection number (8) reduces to an intersection number over Mg of ‚g times
a polynomial in the � classes. When gD 1, the right-hand side is instead

R
M1;1

‚1;1 �p

for p 2Q a constant.
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For g > 1, by (I), deg‚g D 2g�2, so we may assume the polynomial p consists only
of terms of homogeneous degree g� 1 (where deg �r D r ). But, by a result of Faber
and Pandharipande [24, Proposition 2], which strengthens Looijenga’s theorem [38],
a homogeneous degree g � 1 monomial in the � classes is equal in the tautological
ring to the sum of boundary terms, ie the sum of pushforwards of polynomials in  
and � classes by the maps .��/�. Such relations arise from Pixton’s relations and are
described algorithmically in [11]. Now, property (ii) of ‚g shows that the pullback
of ‚g to these boundary terms is ‚g0;n0 for g0 < g, so we have expressed (8) as a sum
of integrals of ‚g0;n0 against  and � classes. By induction, one can reduce to the
integral

R
M1;1

‚1;1 D
1

24
� and the proposition is proven.

A consequence of Proposition 3.2 is property (V) of Theorem 1.3, stated as Corollary 3.3
below. Let us first recall the definition of tautological classes in H�.Mg;n;Q/. Dual to
any point .C;p1; : : : ;pn/2Mg;n is its stable graph � with vertices V .�/ representing
irreducible components of C, internal edges representing nodal singularities and a
(labelled) external edge for each pi . Each vertex is labelled by a genus g.v/ and has
valency n.v/. The genus of a stable graph is g.�/D b1.�/C

P
v2V .�/ g.v/.

The strata algebra Sg;n is a finite-dimensional vector space over Q with basis given
by isomorphism classes of pairs .�; !/ for � a stable graph of genus g with n external
edges and ! 2H�.M� ;Q/ a product of � and  classes in each Mg.v/;n.v/ for each
vertex v 2 V .�/. There is a natural map

q W Sg;n!H�.Mg;n;Q/

defined by the pushforward q.�; !/D ��
�
.!/ 2H�.Mg;n;Q/. The map q allows one

to define a multiplication on Sg;n, essentially coming from intersection theory in Mg;n,
which can be described purely graphically. The image q.Sg;n/ � H�.Mg;n;Q/ is
the tautological ring RH�.Mg;n/ and an element of the kernel of q is a tautological
relation. See [47, Section 0.3] for a detailed description of Sg;n.

Corollary 3.3 For all � 2RH�.Mg;n/,
R
Mg;n

‚g;n� 2Q is uniquely determined by
properties (i)–(iii) and (IV).

Proof The tautological ring RH�.Mg;n/ consists of polynomials in the classes �i ,
 i and boundary classes, which are pushforwards under .��/� of polynomials in �i

and  i . By the natural restriction property (ii) satisfied by ‚g;n, given a monomial
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in � and  classes ! 2H�.M� ;Q/,Z
Mg;n

‚g;n � .��/�.!/D

Z
M�

���.‚g;n/ �! D

Z
M�

‚� �! D
1

jAut�j

Y
v2�

w.v/:

The final term is a product over the vertices of � of intersections ‚ classes with
monomials in � and classesw.v/D

R
Mg.v/;n.v/

‚g.v/;n.v/�
Qn.v/

iD1
Pv.f i ; �j g/, which,

by Proposition 3.2, are uniquely determined by (i)–(iii) and (IV).

Remark 3.4 The intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i

QN
jD1 � j̀ can be cal-

culated algorithmically from the intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i with no
� classes. This essentially reverses the reduction shown in the proof of Proposition 3.2.
Explicitly, for � WMg;nCN !Mg;n and mD .m1; : : : ;mN /, define a polynomial in
� classes by

Rm.�1; �2; : : : /D ��. 
m1C1
nC1

� � � 
mNC1
nCN

/;

so, for example, R.m1;m2/ D �m1
�m1
C �m1Cm2

. Then

(9) ‚g;n �Rm D‚g;n ���. 
m1C1
nC1

� � � 
mNC1
nCN

/

D ��.�
�‚g;n � 

m1C1
nC1

� � � 
mNC1
nCN

/

D ��.‚g;nCN � 
m1

nC1
� � � 

mN

nCN
/:

The polynomials Rm.�1; �2; : : : / generate all polynomials in the �i , so (9) can be used
to remove any � class.

The following example demonstrates Proposition 3.2 with an explicit genus 2 relation:

Example 3.5 A genus two relation proven by Mumford [41, (8.5)], relating �1 and
the divisors defined by the double covers M1;1 �M1;1!M�1

and M1;2!M�2

in M2 labelled by stable graphs �i , is given by

�1�
7
5
ŒM�1

�� 1
5
ŒM�2

�D 0;

which induces the relation

‚2 � �1�
7
5
‚2 � ŒM�1

�� 1
5
‚2 � ŒM�2

�D 0:

Property (ii) of ‚g;n yieldsZ
M2

‚2 � ŒM�1
�D

Z
M�1

���1
‚2 D

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
;Z

M2

‚2 � ŒM�2
�D

Z
M�2

���2
‚2 D

Z
M1;2

‚1;2 �
1

jAut.�2/j
I
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hence, the relation on the level of intersection numbers is given byZ
M2

‚2 ��1�
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
�

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j
D 0:

We have
R
M1;1

‚1;1 D
1

24
�D

R
M1;2

‚1;2 from (iii), and jAut.�1/j D 2D jAut.�2/j.
Hence,Z

M2

‚2 � �1 D
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
C

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j

D
7
5
�
�

1
24
�
�2
�

1
2
C

1
5
�

1
24
� � 1

2
D

1
5760

.7�2
C 24�/:

Until now, ‚1;1 D � 1 for any nonzero � 2 Q. The following theorem proves the
rigidity condition (IV) that �D 3. The proof of the theorem relies on the fact that, for
low genus and small n, the cohomology is tautological. This allows us to work in the
tautological ring in order to construct ‚g;n from properties (i)–(iv).

Theorem 3.6 Let ‚g;n 2H�.Mg;n;Q/ satisfy (i)–(iv) and set the initial condition to
be ‚1;1 D � 1 ¤ 0. Then �D 3.

Proof The existence proof in Section 2 shows that �D 3 is possible but it does not
exclude other values. The strategy of proof of this theorem is to attempt to construct
classes, beginning with the initial condition ‚1;1 D � 1. Importantly, condition (iii)
determines ‚g;n for all n > 0 uniquely from ‚g, so the main calculation occurs
over Mg. We consider classes in RH 2g�2.Mg/ since, for small values of g, it is
known that H 2�.Mg;Q/ D RH�.Mg/. The essential idea is as follows. A class
‚g 2H 2g�2.Mg;Q/ pulls back under boundary maps to ‚g�1;2 and ‚g�1;1˝‚1;1.
The relationship

‚g�1;2 D  2�
�‚g�1;1

constrains the class ‚g. We find that ‚2 exists (and hence also ‚2;n exists for all n)
for all � 2Q, but that ‚3 (and ‚3;n) exists only for �D 3 or �D�11

15
. The existence

of ‚4 constrains � further, allowing only �D 3.

g D 1 From ‚1;1 D � 1, condition (iii) yields

‚1;n D � 1 2 � � � n

since  n j D  n�
� j for any j < n.
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g D2 The cohomology group H 4.M2;Q/ has basis f�2
1
; �2g. Set‚2Da11�

2
1
Ca2�2

and deduce a11 and a2 from restriction to M�i
� M2 for i D 1; 2, defined in

Example 3.5. Since �2 �M�1
D 0, we deduce that a11 D

1
2
�2 and restriction to M�2

then uniquely determines

‚2 D
1
2
�2�2

1 C
�
�� 3

2
�2
�
�2:

Commutativity of the boundary maps with the forgetful map shown in the diagrams

Mg�1;nC2

�irr
//

�

��

Mg;n

�

��

Mg�1;2

�irr
//Mg

Mh;jI jC1 �Mg�h;jJ jC1

�h;I
//

�

��

Mg;n

�

��

Mh;1 �Mg�h;1

�h
//Mg

implies that the classes ‚2;n D  1 � � � n�
�‚2 restrict consistently to the boundary to

give the correct genus 1 classes ‚1;n0 for all � 2Q.

g D 3 In genus 3, H 2�.M3;Q/DRH�.M3/ due to the calculation of the cohomol-
ogy H�.M3;Q/, for example by using the calculation of H�.M3;1;Q/ in [28] together
with the calculation of the tautological ring RH�.M3/ via Pixton’s relations [47]
implemented using the Sage package admcycles [12]. We have dim RH 4.M3/D 7

and we write ‚3 as a general linear combination of basis vectors in RH 4.M3/,

‚3 D a1111�
4
1 C a112�

2
1�2C a13�1�3C a22�

2
2 C a4�4C b1B1C b2B2;

where Bi 2RH 4.M3/ are given by

B1 D 1 2

�1 �2

and B2 D 1 2

�3

:

The pullback map

RH 4.M3/!RH 4.M2;2/˚RH 3.M2;1/˝RH 1.M1;1/

is injective (which implies that the map from RH 4.M3/ to the boundary is injective).
The restriction map

RH 4.M3/!RH 4.M2;2/

has 2–dimensional kernel and is surjective onto the S2–invariant part of RH 4.M2;2/.
Hence, the condition

��irr‚3 D‚2;2 D  1 2�
�‚2
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determines ‚3 up to parameters s; t 2Q:

a1111 D s;

a112 D
11
10
�C 17

15
�2
� 18sC 4

3
t;

a13 D�12�� 12�2
C 104s� 13t;

a22 D�
33
10
�� 29

10
�2
C 27s� 5t;

a4 D
376

5
�C 1933

30
�2
� 426sC 250

3
t;

b1 D t;

b2 D
2
5
�.3��/:

The pullback map

RH 4.M3/!RH 3.M2;1/˝RH 1.M1;1/

has 3–dimensional image, and the condition

���‚3 D‚2;1˝‚1;1 D . 1�
�‚2/˝ .� 1/

is a linear system which cannot be satisfied for a general choice of the two parameters
s and t defining ‚3 for general �, forcing � to satisfy a polynomial relation. We find
that

a1111 D
5

24
�3
�

19
120
�2
�

11
40
�;

a112 D
5
4
�3
�

147
20
�2
�

99
20
�;

a13 D
403
24
�3
�

209
12
�2
�

239
8
�D a13�

3108
53

b1;

a22 D�
3867
212

�3
C

99 471
2120

�2
C

22 143
530

�D a22C 12b1;

a4 D�
115

2
�3
C

1221
20
�2
C

618
5
�;

b1 D
1

40
�.�� 3/.15�C 11/;

b2 D
2
5
�.3��/:

The expressions for a13 and a22 are consistent only when b1 D 0; hence,

�.�� 3/.15�C 11/D 0:

g D 4 In genus 4, H 2�.M4;Q/DRH�.M4/ is due to the calculation by Bergström
and Tommasi [4] of the Hodge polynomial of M4 together with the calculation of the
tautological ring RH�.M4/ via Pixton’s relations using admcycles [12]. We choose
a general element ‚4 2 RH 6.M4/ which is a linear combination of basis vectors
for the 32–dimensional space RH 6.M4/. The pullback map of RH 6.M4/ to the
boundary can be shown to be injective using admcycles.
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The main purpose of the g D 4 calculation is to prove that �D�11
15

is impossible, so
we substitute �D�11

15
into ‚3 above to get

‚3 D
2783

81 000
�4

1 �
11 011
13 500

�2
1�2C

59 939
10 125

�1�3C
16 093
9000

�2
2 �

474 287
13 500

�4�
1232
1125

B2:

As in the g D 3 case above, we consider the pullback map

RH 6.M4/!RH 6.M3;2/;

which has a 6–dimensional kernel. The S2–invariant part of H 12.M3;2;Q/ is proven
in [3] to be 31–dimensional, and using admcycles it can be shown to be tautological.
The condition ��irr‚4 D‚3;2 D  1 2�

�‚3 produces a system of 31 equations in 32
unknowns. Using admcycles, we find that ‚3;2 lies in the image of the pullback map,
and constrains ‚4 to depend linearly on six parameters. The pullback map composed
with projection

RH 6.M4/!RH 5.M3;1/˝RH 1.M1;1/

uniquely determines the six parameters, and finally the resulting class ‚4 is shown
under the pullback map composed with projection

RH 6.M4/!RH 3.M2;1/˝RH 3.M2;1/

to disagree with‚2;1˝‚2;1. We conclude that �D�11
15

is impossible, leaving �D3.

4 Cohomological field theories

The class ‚g;n combines with known enumerative invariants, such as Gromov–Witten
invariants, to give rise to new invariants. More generally, ‚g;n pairs with any co-
homological field theory, which is fundamentally related to the moduli space of
curves Mg;n, retaining many of the properties of the cohomological field theory,
and is in particular often calculable.

A cohomological field theory is a pair .H; �/ composed of a finite-dimensional complex
vector space H equipped with a symmetric, bilinear, nondegenerate form, or metric, �,
and a sequence of Sn–equivariant maps. Many CohFTs are naturally defined on H

defined over Q; nevertheless, we use C in order to relate them to Frobenius manifolds,
and to use normalised canonical coordinates, defined later,

�g;n WH
˝n
!H�.Mg;n;C/
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that satisfy compatibility conditions, from the inclusions of strata

�irr WMg�1;nC2!Mg;n;

�h;I WMh;jI jC1 �Mg�h;jJ jC1!Mg;n; I tJ D f1; : : : ; ng;

given by

��irr�g;n.v1˝ � � �˝ vn/D�g�1;nC2.v1˝ � � �˝ vn˝�/;(10)

��h;I�g;n.v1˝ � � �˝ vn/D�h;jI jC1˝�g�h;jJ jC1

�O
i2I

vi ˝�˝
O
j2J

vj

�
;(11)

where � 2H ˝H is dual to � 2H�˝H�. When nD 0, �g WD�g;0 2H�.Mg;C/.
There exists a unit vector 1 2H which satisfies

�0;3.1˝ v1˝ v2/D �.v1; v2/:

The CohFT has flat unit if 1 2H is compatible with the forgetful map � WMg;nC1!

Mg;n by

(12) �g;nC1.1˝ v1˝ � � �˝ vn/D �
��g;n.v1˝ � � �˝ vn/

for 2g� 2C n> 0.

For a 1–dimensional CohFT, ie dim H D 1, identify �g;n with the image �g;n.1˝n/,
so we write �g;n 2 H�.Mg;n;C/. A trivial example of a CohFT is �g;n D 1 2

H 0.Mg;n;C/, which is a topological field theory, as we now describe.

A 2–dimensional topological field theory (TFT) is a vector space H and a sequence of
symmetric linear maps

�0
g;n WH

˝n
!C

for integers g � 0 and n> 0 satisfying the following conditions. The map �0
0;2
D �

defines a symmetric, bilinear, nondegenerate form �, and together with �0
0;3

it defines
a product � on H via

(13) �.v1 � v2; v3/D�
0
0;3.v1; v2; v3/

with identity element 1 given by the dual of �0
0;1
D 1� D �.1; � /. It satisfies

�0
g;nC1.1˝ v1˝ � � �˝ vn/D�

0
g;n.v1˝ � � �˝ vn/

and the gluing conditions

�0
g;n.v1˝ � � �˝ vn/D�

0
g�1;nC2.v1˝ � � �˝ vn˝�/;

�0
g;n.v1˝ � � �˝ vn/D�

0
g1;jI jC1˝�

0
g2;jJ jC1

�O
i2I

vi ˝�˝
O
j2J

vj

�
for g D g1Cg2 and I tJ D f1; : : : ; ng.
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Consider the natural isomorphism H 0.Mg;n;C/ŠC. The degree zero part of a CohFT
�g;n is a TFT

�0
g;n WH

˝n �g;n
��!H�.Mg;n;C/!H 0.Mg;n;C/:

We often write �0;3 D�
0
0;3

interchangeably. Associated to �g;n is the product (13)
built from � and �0;3.

Remark 4.1 The classes ‚g;n satisfy properties (10) and (11) of a 1–dimensional
CohFT. In place of property (12), they satisfy

‚g;nC1.1˝ v1˝ � � �˝ vn/D  nC1 ��
�‚g;n.v1˝ � � �˝ vn/

and ‚0;3 D 0.

The product defined in (13) is semisimple if it is diagonal H Š C˚C˚ � � �˚C, ie
there is a canonical basis fu1; : : : ;uN g �H such that ui � uj D ıij ui . The metric is
then necessarily diagonal with respect to the same basis, �.ui ;uj /D ıij�i for some
�i 2C n f0g for i D 1; : : : ;N. The Givental–Teleman theorem described in Section 5
gives a construction of semisimple CohFTs.

4.1 Cohomological field theories coupled to ‚g;n

Definition 4.2 For any CohFT � defined on .H; �/, define �‚ D f�‚g;ng to be the
sequence of Sn–equivariant maps �‚g;n WH

˝n!H�.Mg;n;C/ given by

�‚g;n.v1˝ � � �˝ vn/ WD‚g;n ��g;n.v1˝ � � �˝ vn/:

This is essentially the tensor product of CohFTs, albeit involving ‚g;n. The tensor
products of CohFTs is obtained as above by cup product on H�.Mg;n;C/, generalising
Gromov–Witten invariants of target products and the Künneth formula H�.X1�X2/Š

H�X1˝H�X2.

Generalising Remark 4.1, �‚g;n satisfies properties (10) and (11) of a CohFT on .H; �/.
In place of property (12), it satisfies

�‚g;nC1.1˝ v1˝ � � �˝ vn/D  nC1 ��
��‚g;n.v1˝ � � �˝ vn/

and �‚
0;3
D 0.
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Given a CohFT�Df�g;ng, or a more general collection of classes such as�Df�‚g;ng,
and a basis fe1; : : : ; eN g of H, the partition function of � is defined by

(14) Z�.„; ft
˛
k g/D exp

X
g;n; Ek

„g�1

n!

Z
Mg;n

�g;n.e˛1
˝ � � �˝ e˛n

/ �

nY
jD1

 
kj
j

Y
t j̨

kj

for ˛i 2 f1; : : : ;N g and kj 2 N. For dim H D 1 and �g;n D 1 2 H�.Mg;n;C/, its
partition function is Z�.„; ftkg/DZKW.„; ftkg/, which is defined in Section 5.1.

For �g;n D ‚g;n 2 H�.Mg;n;C/, Z�.„; ftkg/ D Z‚.„; ftkg/ gives its partition
function. Property (iii) is realised by the homogeneity property

(15) @

@t0
Z‚.„; t0; t1; : : : /D

1X
iD0

.2iC1/ti
@

@ti
Z‚.„; t0; t1; : : : /C

1
8
Z‚.„; t0; t1; : : : /;

proven in the following proposition:

Proposition 4.3 The function Z‚.„; t0; t1; : : : / is homogeneous of degree �1
8

with
respect to fq D 1 � t0; t1; t2; : : : g with deg q D 1 and deg ti D 2i C 1 for i > 0.
Equivalently, it satisfies the dilaton equation (15).

Proof We haveZ
Mg;nC1

‚g;nC1 �

nY
jD1

 
kj
j D

Z
Mg;nC1

��‚g;n � nC1 �

nY
jD1

 
kj
j

D

Z
Mg;nC1

��‚g;n � nC1 �

nY
jD1

�� 
kj
j

D

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j ��� nC1

D .2g� 2C n/

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j ;

which uses nC1� j D nC1��
� j for j D1; : : : ; n and ��.��! � nC1/D! ��� nC1.

In terms of the partition function Z‚.„; t0; t1; : : : /, this is realised by (15).

4.1.1 Gromov–Witten invariants Let X be a projective algebraic variety and con-
sider .C;x1; : : : ;xn/ a connected smooth curve of genus g with n distinct marked
points. For ˇ 2H2.X;Z/, the moduli space of stable maps Mg;n.X; ˇ/ is defined by

Mg;n.X; ˇ/D f.C;x1; : : : ;xn/
�
�!X j ��ŒC �D ˇg=�;
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where � is a morphism from a connected nodal curve C containing distinct points
fx1; : : : ;xng that avoid the nodes. Any genus zero irreducible component of C with
fewer than three distinguished points (nodal or marked), or genus one irreducible
component of C with no distinguished point, must not be collapsed to a point. We
quotient by isomorphisms of the domain C that fix each xi . The moduli space of stable
maps has irreducible components of different dimensions but it has a virtual class of
dimension

(16) dimŒMg;n.X; ˇ/�
virt
D .dim X � 3/.1�g/Chc1.X /; ˇiC n:

For i D 1; : : : ; n, there exist evaluation maps

(17) evi WMg;n.X; ˇ/!X; evi.�/D �.xi/;

and classes 
 2H�.X;Z/ pull back to classes in H�.Mg;n.X; ˇ/;C/ via

(18) ev�i WH
�.X;Z/!H�.Mg;n.X; ˇ/;C/:

The forgetful map p WMg;n.X; ˇ/!Mg;n maps a stable map to its domain curve
followed by contraction of unstable components. The pushforward map p� on coho-
mology defines a CohFT �X on the even part of the cohomology H DH even.X;C/

(and a generalisation of a CohFT on H�.X;C/) equipped with the symmetric, bilinear,
nondegenerate form

�.˛; ˇ/D

Z
X

˛^ˇ:

We have .�X /g;n WH
even.X;C/˝n!H�.Mg;n;C/ defined by

.�X /g;n.˛1; : : : ; ˛n/D
X
ˇ

p�

� nY
iD1

ev�i .˛i/\ ŒMg;n.X; ˇ/�
virt
�
2H�.Mg;n;C/:

Note that it is the dependence of pD p.g; n; ˇ/ on ˇ (which is suppressed) that allows
.�X /g;n.˛1; : : : ; ˛n/ to be composed of different-degree terms. The partition function
of the CohFT �X with respect to a chosen basis e˛ of H even.X IC/ is

Z�X
.„; ft˛k g/

D exp
X

g;n; Ek
Ę;ˇ

„g�1

n!

Z
Mg;n

p�

� nY
iD1

ev�i .e˛i
/\ ŒMg;n.X; ˇ/�

virt
� nY

jD1

 
kj
j

Y
t j̨

kj
:

It stores ancestor invariants. These are different from descendant invariants, which
use, in place of  j D c1.Lj /, ‰j D c1.Lj / for line bundles Lj !Mg;n.X; ˇ/ defined
similarly as the cotangent bundle over the i th marked point on the domain curve.
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Following Definition 4.2, we define �‚
X

by

.�‚X /g;n.˛1; : : : ; ˛n/D‚g;n �

X
ˇ

p�

� nY
iD1

ev�i .˛i/

�
2H�.Mg;n;C/

and

Z‚
�X
.„; ft˛k g/D exp

X
g;n; Ek
Ę;ˇ

„g�1

n!

Z
Mg;n

‚g;n �p�

� nY
iD1

ev�i .e˛i
/

�
�

nY
jD1

 
kj
j

Y
t j̨

kj
:

Let ‚PD
g;n � Ag�1.Mg;n;C/ be the .g�1/–dimensional Chow class given by the

pushforward of the top Chern class of the bundle Eg;n defined in Definition 2.1. The
virtual dimension of the pullback of ‚PD

g;n is

(19) dimfŒMg;n.X;d/�
virt
\p�1.‚PD

g;n/g D .dim X � 1/.1�g/Chc1.X /; ˇi:

Comparing the dimension formulas (16) and (19), we see that elliptic curves now
take the place of Calabi–Yau 3–folds to give virtual dimension zero moduli spaces,
independent of genus and degree. The invariants of a target curve X are trivial when
the genus of X is greater than 1 and computable when X D P1 [44], producing
results analogous to the usual Gromov–Witten invariants in [46]. For c1.X /D 0 and
dim X > 1, the invariants vanish for g > 1, while for g D 1 it seems to predict an
invariant associated to maps of elliptic curves to X.

4.1.2 Weil–Petersson volumes A fundamental example of a 1–dimensional CohFT
is given by

�g;n D exp.2�2�1/ 2H�.Mg;n;R/:

Its partition function stores Weil–Petersson volumes

Vg;n D
.2�2/3g�3Cn

.3g� 3C n/!

Z
Mg;n

�
3g�3Cn
1

and deformed Weil–Petersson volumes studied by Mirzakhani [39]. Weil–Petersson
volumes of the subvariety of Mg;n dual to ‚g;n make sense even before we find such
a subvariety. They are given by

V ‚
g;n D

.2�2/g�1

.g� 1/!

Z
Mg;n

‚g;n � �
g�1
1

;

which are calculable since they are given by a translation of ZBGW. If we include
 classes, we get polynomials V ‚

g;n.L1; : : : ;Ln/ which give the deformed volumes
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analogous to Mirzakhani’s volumes. In [43; 51], the polynomials V ‚
g;n.L1; : : : ;Ln/

are related to the volume of the moduli space of super-Riemann surfaces.

4.1.3 ELSV formula Another example of a 1–dimensional CohFT is given by

�g;n D c.E_/D 1��1C � � �C .�1/g�g 2H�.Mg;n;C/;

where �i D ci.E/ is the i th Chern class of the Hodge bundle E!Mg;n defined to
have fibres H 0.C; !C / over a nodal curve C.

Hurwitz [31] studied the problem of connected curves † of genus g covering P1,
branched over r C 1 fixed points fp1;p2; : : : ;pr ;prC1g with arbitrary profile � D
.�1; : : : ; �n/ over prC1. Over the other r branch points, one specifies simple rami-
fication, ie the partition .2; 1; 1; : : : /. The Riemann–Hurwitz formula determines the
number r of simple branch points via 2� 2g� nD j�j � r .

Definition 4.4 Define the simple Hurwitz number Hg;� to be the weighted count
of genus g connected covers of P1 with ramification �D .�1; : : : ; �n/ over1 and
simple ramification elsewhere. Each cover � is counted with weight 1=jAut.�/j.

Coefficients of the partition function of the CohFT �g;n D c.E_/ appear naturally in
the ELSV formula [20], which relates the Hurwitz numbers Hg;� to the Hodge classes.
The ELSV formula is

Hg;� D
r.g; �/!

jAut�j

nY
iD1

�
�i

i

�i !

Z
Mg;n

1��1C � � �C .�1/g�g

.1��1 1/ � � � .1��n n/
;

where �D .�1; : : : ; �n/ and r.g; �/D 2g� 2C nCj�j.

Using �‚g;n D‚ � c.E
_/, we can define an analogue of the ELSV formula,

H‚
g;� D

.2g� 2C nCj�j/!

jAut�j

nY
iD1

�
�i

i

�i !

Z
Mg;n

‚g;n �
1��1C � � �C .�1/g�1�g�1

.1��1 1/ � � � .1��n n/
:

It may be that H‚
g;� has an interpretation of enumerating a new type of Hurwitz covers.

Note that it makes sense to set all �i D 0, and, in particular, there are nontrivial primary
invariants over Mg, unlike for simple Hurwitz numbers. An example calculation:Z

M2

‚2�1 D
1
5
�

1
8
�

1
8
�

1
2
C

1
10
�

1
8
�

1
2
D

1
128

D)�1 D
1

10
.2ı1;1C ıirr/:
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4.1.4 The versal deformation space of the A2 singularity The A2 singularity has a
2–dimensional versal deformation space M ŠC2D f.t1; t2/g parametrising the family

Wt .z/D z3
� t2zC t1

that admits a semisimple Frobenius manifold structure. Dubrovin [15] associated a
family of linear systems, defined in (20) below, depending on the canonical coordinates
.u1; : : : ;uN / of any semisimple Frobenius manifold M. This produces a CohFT �A2

defined on C2 from the A2 singularity using Definition 5.2. More generally, to any
point of a Frobenius manifold one can associate a cohomological field theory and,
conversely, the genus zero part of a cohomological field theory defines a Frobenius
manifold [15].

Recall that a Frobenius manifold is a complex manifold M equipped with an associative
product on its tangent bundle compatible with a flat metric — a nondegenerate symmetric
bilinear form — on the manifold. It is encoded by a single function F.t1; : : : ; tN /,
known as the prepotential, which satisfies a nonlinear partial differential equation,
known as the Witten–Dijkgraaf–Verlinde–Verlinde equation,

Fijm�
mnFk`n D Fi`m�

mnFjkn; �ij D F1ij

where �ik�kj D ıij , Fi D @=@tiF, @=@t1 D 1 corresponds to the flat unit vector
field for the product, and ft1; : : : ; tN g are (flat) local coordinates on M. The Frobenius
manifold is conformal if it comes equipped with an Euler vector field E which describes
symmetries of the Frobenius manifold, neatly encoded by

E �F.t1; : : : ; tN /D c �F.t1; : : : ; tN /C quadratic polynomial; c 2C:

For a semisimple conformal Frobenius manifold, multiplication by the Euler vector
field E produces an endomorphism U with eigenvalues fu1; : : : ;uN g known as canon-
ical coordinates on M. They give rise to vector fields @=@ui with respect to which the
metric �, product � and Euler vector field E are diagonal:

@

@ui

�
@

@uj
D ıij

@

@ui
; �

�
@

@ui
;
@

@uj

�
D ıij�i ; E D

X
ui

@

@ui
:

At any point of the Frobenius manifold, the endomorphism U, defined by multi-
plication by the Euler vector field E, and the endomorphism V D Œ�;U �, where
�ij D @ui

�j=2
p
�i�j for i ¤ j are the so-called rotation coefficients of the metric �

in the normalised canonical basis, produce the differential equation

(20)
�

d

dz
�U �

V

z

�
Y D 0:
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Choose a solution of (20) of the form Y DR.z�1/ezU and substitute z 7! z�1 to get

0D

�
d

dz
C

U

z2
C

V

z

�
R.z/eU=z

D

�
d

dz
R.z/C

1

z2
ŒU;R.z/�C

1

z
VR.z/

�
eU=z :

This associates an element R.z/D
P

Rkzk to each point of the Frobenius manifold.
Teleman [52] defined the endomorphisms Rk of H D TpM recursively from R0 D I

by

(21) ŒRkC1;U �D .kCV /Rk ; k D 0; 1; : : : :

It is useful to consider three natural bases of the tangent space H D TpM Š CN at
any point p of a semisimple Frobenius manifold: the flat basis f@=@tig, which gives a
constant metric �; the canonical basis f@=@uig, which gives a trivial product �; and the
normalised canonical basis fvig for viD�

�1=2
i @=@ui , which gives a trivial metric �. (A

different choice of square root of�i would simply give a different choice of normalised
canonical basis.) The transition matrix ‰ from flat coordinates to normalised canonical
coordinates sends the metric � to the dot product, ie ‰T‰ D �. The topological field
theory structure on H induced from � and � is diagonal in the normalised canonical
basis. It is given by

�g;n.v
˝n
i /D�

1�g�1=2n
i

and vanishes on mixed products of vi and vj for i ¤ j. In the normalised canonical
basis, the unit vector is given by

1D .�1=2
1
; : : : ; �

1=2
N
/I

hence, it uniquely determines the topological field theory. We find the normalised canon-
ical basis most useful for comparisons with topological recursion; see Section 5.2.1.

The Frobenius manifold structure on the versal deformation space M of the A2 sin-
gularity was constructed in [15; 48]. The product on tangent spaces of the family
Wt .z/D z3� t2zC t1 is induced from the isomorphism

TtM ŠCŒz�=W 0t .z/

given by @=@tk 7! @Wt=@tk D .�z/k�1, producing

@

@t1
�
@

@t1
D

@

@t1
;

@

@t1
�
@

@t2
D

@

@t2
;

@

@t2
�
@

@t2
D

1
3
t2
@

@t1
:

The metric is given by

�.p.z/; q.z//D�3 Res1
p.z/q.z/ dz

W 0t .z/
:
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With respect to the basis f@=@t1; @=@t2g, it is constant and hence flat:

�D

�
0 1

1 0

�
:

The Frobenius manifold structure on M is conformal. The unit and Euler vector fields
are 1 D @=@t1 and E D t1 @=@t1 C

2
3
t2 @=@t2, which correspond respectively to the

images of 1 and Wt .z/ in CŒz�=W 0t .z/.

The prepotential is produced via �ij D F1ij and �.@=@ti � @=@tj ; @=@tk/D Fijk ,

F.t1; t2/D
1
2
t2
1 t2C

1
72

t4
2 ;

and satisfies E �F.t1; t2/D
8
3
F.t1; t2/. The canonical coordinates are

u1 D t1C
2

3
p

3
t
3=2
2
; u2 D t1�

2

3
p

3
t
3=2
2
:

In the normalised canonical basis, the rotation coefficients �12 D�i
p

3
8

t
�3=2
2

D �21

give rise to V D Œ�;U �D i
p

3
2

t
�3=2
2

�
0 �1
1 0

�
. In canonical coordinates we have

(22) U D

�
u1 0

0 u2

�
; V D

2i

3.u1�u2/

�
0 1

�1 0

�
:

The metric � applied to the vector fields @=@ui D
1
2
.@=@t1� .�1/i.3=t2/

1=2 @=@t2/ is
�.@=@ui ; @=@uj /D ıij�i , where �1 D

p
3

2
t
�1=2
2

D��2. Restrict to the point of M

with coordinates .u1;u2/ D .2;�2/ or, equivalently, .t1; t2/ D .0; 3/. Then �1 D

1
2
D��2 determines the TFT and

U D

�
2 0

0 �2

�
; V D

1

6

�
0 i

�i 0

�
determines R.z/ 2L.2/GL.2;C/ and T .z/ 2 z2C2ŒŒz�� via (21) to get

(23)

R.z/D
X
m

.6m/!

.6m� 1/.3m/!.2m/!

�
�1 .�1/m6mi

�6mi .�1/m�1

��
1

1728
z
�m
;

T .z/D z.1�R�1.z/.1//; where 1D 1
p

2

�
1

i

�
:

The triple .R.z/;T .z/; 1/ 2 L.2/GL.N;C/ � z2CN ŒŒz�� �CN in (23) produces the
cohomological field theory �A2 associated to the A2 singularity at the point .t1; t2/D
.0; 3/ via Definition 5.2 in the next section.
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Remark 4.5 The matrix R.z/ defined in (23) — which uses the normalised canonical
basis for H, so that � is the dot product — is related to the matrix R.z/ in [47] by
conjugation by the transition matrix ‰ from flat coordinates to normalised canonical
coordinates

R.z/D‰
X
m

.6m/!

.3m/!.2m/!

�
.1C 6m/=.1� 6m/ 0

0 1

��
0 1

1 0

�m�
1

1728
z
�m
‰�1

for
‰ D

1
p

2

�
1 1

i �i

�
:

5 Givental construction of cohomological field theories

Givental produced a construction of partition functions of cohomological field theories
in [29]. He defined an action of the twisted loop group, and elements of z2CN ŒŒz��

known as translations, on partition functions of cohomological field theories and used
this to build partition functions of semisimple cohomological field theories out of
the basic building block ZKW.„; t0; t1; : : : / combined with the vector 1 2CN which
represents the topological field theory. This action was interpreted as an action on the
actual cohomology classes in H�.Mg;n;C/, independently, by Katzarkov, Kontsevich
and Pantev, and Kazarian and Teleman; see [47; 49].

The Givental action is defined on more general sequences of cohomology classes in
H�.Mg;n;C/ such as the collection of classes ‚g;n or �‚g;n defined from any CohFT
�g;n in Definition 4.2. If �g;n is semisimple, the classes �‚g;n can be obtained by
applying Givental’s action to the collection ‚g;n.

5.0.1 The twisted loop group action The loop group LGL.N;C/ is the group of
formal series

R.z/D

1X
kD0

Rkzk ;

where Rk are N �N matrices and R0 2 GL.N;C/. Define the twisted loop group
L.2/GL.N;C/�LGL.N;C/ to be the subgroup of elements satisfying R0 D I and

R.z/R.�z/T D I:

Elements of L.2/GL.N;C/ naturally arise out of solutions to the linear system (20)
given by .d=dz �U �V =z/Y D 0, where Y .z/ 2 CN, U D diag.u1; : : : ;uN / for ui
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distinct, and V is skew-symmetric. One can choose a solution of (20) which behaves
asymptotically for z!1 as

Y .z/DR.z�1/ezU ; R.z/D I CR1zCR2z2
C � � � :

This defines a power series R.z/ with coefficients given by N �N matrices, which is
easily shown to satisfy R.z/RT .�z/D I; hence, R.z/ 2L.2/GL.N;C/.

Givental [29] constructed an action on CohFTs using a triple

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN

as follows. For a given stable graph � of genus g and with n external edges, we have

�� WM� D

Y
v2V .�/

Mg.v/;n.v/!Mg;n:

Given .R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN, Givental’s action is defined
via weighted sums over stable graphs. For R.z/ 2L.2/GL.N;C/, define

E.z; w/D I �R�1.z/R�1.w/T

zCw
D

X
i;j�0

Eijw
izj ;

which has the power series expansion on the right since R�1.z/ is also an element of
the twisted loop group, so the numerator I �R�1.z/R�1.w/T vanishes at w D�z.

Definition 5.1 For a stable graph � denote by

V .�/; E.�/; H.�/; L.�/DL�.�/tL�.�/

its sets of vertices, edges, half-edges and leaves. The disjoint splitting of L.�/ into
ordinary leaves L� and dilaton leaves L� is part of the structure on � . The set of half-
edges consists of leaves and oriented edges, so there is an injective map L.�/!H.�/

and a multiply defined map E.�/!H.�/ denoted by E.�/ 3 e 7! feC; e�g �H.�/.
The map sending a half-edge to its vertex is given by v WH.�/! V .�/. Decorate �
by functions

g W V .�/!N; ˛ W V .�/! f1; : : : ;N g;

k WH.�/!N p WL�.�/ Š�! f1; 2; : : : ; ng;

such that kjL�.�/> 1 and nD jL�.�/j. We write gv D g.v/, ˛v D ˛.v/, ˛`D ˛.v.`//,
p` D p.`/ and k` D k.`/. The genus of � is g.�/D b1.�/C

P
v2V .�/ g.v/. We say

� is stable if any vertex labelled by g D 0 is of valency � 3 and there are no isolated

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2729

vertices labelled by g D 1. We write nv for the valency of the vertex v. Define Gg;n

to be the finite set of all stable, connected, genus g, decorated graphs with n ordinary
leaves and at most 3g� 3C n dilaton leaves.

Definition 5.2 [47; 49] Given a CohFT �0 D f�0g;ng and

.R.z/;T .z// 2L.2/GL.N;C/� z2CN ŒŒz��;

define R �T ��0 D�D f�g;ng by a weighted sum over stable graphs,

(24) �g;n WD

X
�2Gg;n

1

jAut.�/j
.��/���

Y
v2V .�/

w.v/
Y

e2E.�/

w.e/
Y

`2L.�/

w.`/

2H�.Mg;n;C/;

where � is the map that forgets dilaton leaves. Weights are defined as follows:

(i) Vertex weight w.v/D�0
g.v/;nv

at each vertex v.

(ii) Edge weight w.e/D E. 0e;  00e / at each edge e.

(iii) Leaf weight w.`/D

�
R�1. p.`// at each ordinary leaf ` 2L�;

T . p.`// at each dilaton leaf ` 2L�:

We consider only the even part of H�.Mg;n;C/, so (24) is independent of the order
in which we take the product of cohomology classes. If f�g;ng is a CohFT defined
on .C; �/ for H Š CN, then the classes f�g;ng in (24) satisfy the same restriction
conditions and hence define a CohFT on .C; �/with the same degree zero, or topological
field theory, terms as those of �0. If we choose T .z/� 0, then the sum in (24), which
is over stable graphs without dilaton leaves, defines the action of the twisted loop
group on CohFTs. If we choose R.z/� I, then (24) is a graphical realisation of the
translation action of T .z/ 2 z2H ŒŒz�� on a CohFT �0g;n defined by

.T ��0/g;n.v1˝ � � �˝ vn/

D

X
m�0

1

m!
���

0
g;nCm.v1˝ � � �˝ vn˝T . nC1/˝ � � �˝T . nCm//;

where � WMg;nCm !Mg;n is the forgetful map. The sum over m 2 N defining
.T ��0/g;n is finite since T .z/ 2 z2H ŒŒz��, so dimMg;nCm D 3g� 3C nCm grows
more slowly in m than the degree 2m coming from T, resulting in at most 3g� 3C n

terms. We can relax this condition and allow T .z/ 2 zH ŒŒz�� if we control the growth
of the degrees of all terms of �0g;n in n to ensure T .z/ produces a finite sum. In
particular, ‚g;n, and more generally �0‚g;n for any CohFT �0g;n, is annihilated by terms
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of degree > g� 1; hence, the sum defining .T�0/g;n consists of at most g� 1 terms
when T .z/ 2 zH ŒŒz��.

The tensor product � 7! �‚ given in Definition 4.2 commutes with the action of
R and commutes with the action of T up to rescaling. For a CohFT �, and R.z/ 2

L.2/GL.N;C/ and T .z/ 2 zCN ŒŒz��,

(25) .R ��/‚ DR ��‚; .zT / ��‚ D T ��‚:

The first relation in (25) uses the restriction properties (ii) of ‚g;n and the second of
these uses the forgetful property (iii) of ‚g;n to see

���
‚
g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/

�
D ���g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/‚g;nCm

�

D‚g;n���g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/

mY
iD1

 nCi

�

D‚g;n���g;nCm

� nO
iD1

vi ˝

mO
iD1

 nCiT . nCi/

�
and sum over m to get T ��‚ D .zT / ��‚.

The Givental–Teleman theorem [29; 52] proves that the action defined in Definition 5.2
is transitive on semisimple CohFTs. In particular, a semisimple CohFT defined on a
vector space of dimension N can be constructed via the Givental action on N copies
of the trivial CohFT. Given a semisimple CohFT �, there exists

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN

such that �g;n is defined by the weighted sum over graphs (24) using R.z/, T .z/

and�0g;n given by the topological field theory underlying�g;n. Note that a semisimple
topological field theory of dimension N is equivalent to 1 2CN which gives the unit
vector in terms of a basis in which the product is diagonal and the metric � is the dot
product, known as a normalised canonical basis.

On the level of partition functions, the construction of a semisimple CohFT from the
trivial CohFT is realised via an action of quantised differential operators yR and yT on
products of ZKW.„; t0; t1; : : : /, a KdV tau function defined in the next section.
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Definition 5.3 Define, for R.z/ D exp
�P

`>0 r`z
`
�
2 L.2/GL.N;C/ and T .z/ DP

k>0 T ˛
k

zk 2 zCN ŒŒz��,

yR WD exp
� 1X
`D1

X
˛;ˇ

� 1X
kD0

.rk/
˛
ˇt
ˇ

k

@

@t˛
kC`

C
1
2
„

`�1X
mD0

.�1/mC1.r`/
˛
ˇ

@2

@t˛m@t
ˇ

`�m�1

��
;

yT WD exp
� mX
˛D1

X
k>0

T ˛
k

@

@t˛
k

�
:

The partition function of (24) is given in [19; 29; 49] by

(26) Z�.„; ft
˛
k g/

D yR � yT � O1 �ZKW.„; ft1
k g/ � � �Z

KW.„; ftN
k g/

D exp
�X

g;n

„
g�1

X
�2Gg;n

1

jAut.�/j

Y
v2V .�/

yw.v/
Y

e2E.�/

yw.e/
Y

`2L.�/

yw.`/

�
:

The operator O1 rescales the variables y��ZKW.„; ft˛
k
g/DZKW..1˛/2„; f1˛t˛

k
g/. Vertex

weights yw.v/ store products of ZKW corresponding to the partition function of a
topological field theory, edge weights yw.e/ store coefficients of the series E.w; z/, and
leaf weights yw.`/ store the variables t˛

k
in a series weighted by coefficients of the series

R�1.�z/. We do not give explicit formulas for the weights — see [19; 29; 49] — and
instead use an equivalent elegant formulation given by topological recursion, defined
in Section 5.2.

A consequence of the relations (25) is the following proposition, which modifies the
construction of a semisimple CohFT � to produce �‚:

Proposition 5.4 Given a semisimple CohFT � defined via (24) using

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN ;

the collection of classes �‚ is defined via (24) using�
R.z/;

1

z
T .z/; 1

�
2L.2/GL.N;C/� zCN ŒŒz���CN

and
�0g;n D‚g;n˝�

.0/
g;n WH

˝n
!H 4g�4C2n.Mg;n;C/

for �.0/g;n the degree 0 part of �g;n determined by the vector 1 2 CN. Its partition
function Z�‚.„; ft

˛
k
g/ is obtained by replacing each copy of ZKW.„; ftkg/ in (26) by

a copy of Z‚.„; ftkg/ and shifting the operator yT.
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5.1 KdV tau functions

The KdV hierarchy is a sequence of partial differential equations beginning with the
KdV equation,

(27) Ut1
D U Ut0

C
1

12
„Ut0t0t0

; U.t0; 0; 0; : : : /D f .t0/:

A tau function Z.t0; t1; : : : / of the KdV hierarchy (equivalently the KP hierarchy in
odd times p2mC1 D tm=.2mC 1/!!) gives rise to a solution U D „ @2.log Z/=@t2

0
of

the KdV hierarchy. The first equation in the hierarchy is the KdV equation (27), and
later equations Utk

D Pk.U;Ut0
;Ut0t0

; : : : / for k > 1 determine U uniquely from
U.t0; 0; 0; : : : /. See [40] for the full definition.

The Kontsevich–Witten tau function ZKW is defined by the initial condition

U KW.t0; 0; 0; : : : /D t0

for U KW D „@2.log ZKW/=@t2
0

. The low-genus terms of log ZKW are

log ZKW.„; t0; t1; : : : /D „
�1
�

1
3!

t3
0 C

1
3!

t3
0 t1C

1
4!

t4
0 t2C � � �

�
C

1
24

t1C � � � :

Theorem 5.5 (Witten and Kontsevich [36; 54])

ZKW.„; t0; t1; : : : /D exp
X
g;n

„
g�1 1

n!

X
Ek2Nn

Z
Mg;n

nY
iD1

 
mi

i tmi

is a tau function of the KdV hierarchy.

The Brézin–Gross–Witten solution U BGWD„@2.log ZBGW/=@t2
0

of the KdV hierarchy
arises out of a unitary matrix model studied in [6; 30]. It is defined by the initial
condition

U BGW.t0; 0; 0; : : : /D
„

8.1� t0/2
:

The low-genus g terms (= coefficient of „g�1) of log ZBGW are

(28) log ZBGW
D�

1
8

log.1� t0/C„ �
3

128

t1

.1� t0/3
C„ �

2 15
1024
�

t2

.1� t0/5

C„
2
�

63
1024
�

t2
1

.1� t0/6
CO.„3/

D
1
8
t0C

1
16

t2
0 C � � �C„

�
3

128
t1C

9
128

t0t1C � � �
�

C„
2
�

15
1024

t2C
63

1024
t2
1 C � � �

�
:
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It satisfies the homogeneity property

@

@t0
ZBGW.„; t0; t1; : : : /

D

1X
iD0

.2i C 1/ti
@

@ti
ZBGW.„; t0; t1; : : : /C

1
8
ZBGW.„; t0; t1; : : : /;

which coincides with (15), satisfied by Z‚.„; t0; t1; : : : /. A proof of this homogeneity
property for ZBGW can be found in [2; 14].

The tau function ZBGW.„; t0; t1; : : : / shares many properties of the famous Kontsevich-
Witten tau function ZKW.„; t0; t1; : : : / introduced in [54]. An analogue of Theorem 5.5
is given by Conjecture 1.5, which postulates that the function

Z‚.„; t0; t1; : : : /D exp
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj

coincides with ZBGW.„; t0; t1; : : : /. The tau function ZBGW appears in a generalisation
of Givental’s decomposition of CohFTs in [9].

Definition 5.6 Given a semisimple CohFT � with partition function Z�.„; ft
˛
k
g/

constructed as a graphical sum, via (26),

Z�.„; ft
˛
k g/D

yR � yT � O1 �ZKW.„; ft1
k g/ � � �Z

KW.„; ftN
k g/;

define

ZBGW
� .„; ft˛k g/D

yR � yT0 � O1 �Z
BGW.„; ft1

k g/ � � �Z
BGW.„; ftN

k g/;

where T0 D T=z.z/.

The same shift T0 D
1
z
T .z/ is used by ZBGW.„; ftkg/ and Z‚.„; ftkg/ due to their

common homogeneity property (15). One can also replace only some copies of
ZKW.„; ftkg/ in (26) by copies of ZBGW.„; ftkg/ and shift components of yT. For
example, in [13], the enumeration of bipartite dessins d’enfant is shown to have
partition function

(29) Z.„; ft˛k g/D
yR � yT �ZBGW�

�
1
2
„; i

˚
1p
2
t1
k

	�
ZKW.32„; f4

p
2t2

k g/

for R and T determined by the curve xy2CxyC 1D 0 as described in Section 5.2.
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R.z/ 2L.2/GL.N;C/
T .z/ 2 z2CN ŒŒz��;1 2CN

Givental construction
Z�.„; ft

˛
k
g/

S D .C;x;y;B/ ZS .„; ft˛
k
g/

topological recursion

Figure 1: Constructions of CohFT partition functions.

5.2 Topological recursion

Figure 1 summarises the contents of this section. The upper horizontal arrow in the
figure represents Givental’s construction of a partition function defined in (26) and
Definition 5.2. Topological recursion is defined in Section 5.2 — it produces a partition
function from a spectral curve S D .C;x;y;B/ consisting of a Riemann surface C

equipped with meromorphic functions x and y and a bidifferential B. We begin with a
description of the left vertical arrow, which represents the construction of an element
R.z/ 2 L.2/GL.N;C/ from .C;x;B/ in (30) and T .z/ and 1 from .C;x;y/ in (36)
and (35). We then define topological recursion in Section 5.2.1 and state the result
of [18], that topological recursion encodes the graphical construction in (26) and gives
equality of partition functions, represented by the right vertical arrow.

An element of the twisted loop group R.z/ 2 L.2/GL.N;C/ can be naturally con-
structed from a Riemann surface † equipped with a bidifferential B.p1;p2/ on †�†
and a meromorphic function x W †! C for N the number of zeros of dx. A basic
example is the function x D z2 on †D C, which gives rise to the constant element
R.z/ D 1 2 GL.1;C/. More generally, any function x that looks like this example
locally, ie x D s2C c for s a local coordinate around a zero of dx and c 2 C, gives
R.z/ D I CR1z C � � � 2 L.2/GL.N;C/, which is in some sense a deformation of
I 2 GL.N;C/, or N copies of the basic example.

Definition 5.7 On any compact Riemann surface .†; fAigiD1;:::;g/ with a choice of
A–cycles, define a fundamental normalised bidifferential of the second kind B.p;p0/

to be a symmetric tensor product of differentials on †�†, uniquely defined by the
properties that it has a double pole on the diagonal of zero residue, double residue equal
to 1, no further singularities and normalised by

R
p2Ai

B.p;p0/D0 for iD1; : : : ;g [27].
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On a rational curve, which is sufficient for the examples in this paper, B is the Cauchy
kernel

B.z1; z2/D
dz1 dz2

.z1� z2/2
:

The bidifferential B.p;p0/ acts as a kernel for producing meromorphic differentials on
the Riemann surface † via !.p/D

R
ƒ �.p

0/B.p;p0/, where � is a function defined
along the contour ƒ�†. Depending on the choice of .ƒ; �/, ! can be a differential
of the 1st kind (holomorphic), 2nd kind (zero residues) or 3rd kind (simple poles).

Definition 5.8 For .†;x/ a Riemann surface equipped with a meromorphic function,
define evaluation of any meromorphic differential ! at a simple zero P of dx by

!.P/ WD RespDP
!.p/p

2.x.p/�x.P//
;

where we choose a branch of
p

x.p/�x.P/ once and for all at P to remove the ˙1

ambiguity.

A fundamental example of Definition 5.8 required here is B.P;p/, which is a nor-
malised (trivial A–periods) differential of the second kind holomorphic on †nP with a
double pole at the simple zero P of dx.

In order to produce an element of the twisted loop group, Shramchenko [50] constructed
a solution Y .z/ of the linear system (20) using V D ŒB;U � for B˛ˇDB.P˛;Pˇ/ (defined
for ˛ ¤ ˇ) given by

Y .z/˛ˇ D�

p
z

p
2�

Z
�̌

B.P˛;p/ � e�x.p/=z :

The proof in [50] is indirect, showing that Y .z/ij satisfies an associated set of PDEs
in ui and using the Rauch variational formula to calculate @uk

B.P˛;p/. Instead, here
we work directly with the associated element R.z/ of the twisted loop group.

Definition 5.9 Define the asymptotic series in the limit z! 0 by

(30) R�1.z/˛ˇ D�

p
z

p
2�

Z
�̌

B.P˛;p/ � e.x.Pˇ/�x.p//=z;

where �̌ is a path of steepest descent for �x.p/=z containing x.Pˇ/.

Note that the asymptotic expansion of the contour integral (30) for z! 0 depends only
the intersection of �̌ with a neighbourhood of pDPˇ . When ˛D ˇ, the integrand has
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zero residue at pDPˇ , so we deform �̌ to go around Pˇ to get a well-defined integral.
Locally, this is the same as defining

R
R s�2 exp.�s2/ ds D�2

p
� by integrating the

analytic function z�2 exp.�z2/ along the real line in C deformed to avoid 0.

Lemma 5.10 [50] The asymptotic series R.z/ defined in (30) satisfies the twisted
loop group condition

(31) R.z/RT .�z/D Id:

Proof The proof here is taken from [16]. We have

(32)
NX
˛D1

ResqDP˛
B.p; q/B.p0; q/

dx.q/

D�ResqDp
B.p; q/B.p0; q/

dx.q/
�ResqDp0

B.p; q/B.p0; q/

dx.q/

D�dp

�
B.p;p0/

dx.p/

�
� dp0

�
B.p;p0/

dx.p0/

�
;

where the first equality uses the fact that the only poles of the integrand occur at
fp;p0;P˛ j ˛ D 1; : : : ;N g, and the second equality uses the Cauchy formula satisfied
by the Bergman kernel. Define the Laplace transform of the Bergman kernel by

LB˛;ˇ.z1; z2/D
ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

B.p;p0/e�x.p/=z1�x.p0/=z2 :

The Laplace transform of the left-hand side of (32) is

ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

e�x.p/=z1�x.p0/=z2

NX

D1

ResqDP

B.p; q/B.p0; q/

dx.q/

D

NX

D1

ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

e�x.p/=z1B.p;P
 /
Z
�̌

e�x.p0/=z2B.p0;P
 /

D

NX

D1

ŒR�1.z1/�


˛ ŒR
�1.z2/�




ˇ

z1z2

:

Since the Laplace transform satisfiesZ
�̨

d

�
!.p/

dx.p/

�
e�x.p/=z

D
1

z

Z
�̨

!.p/e�x.p/=z
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for any differential !.p/ by integration by parts, the Laplace transform of the right-hand
side of (32) is

�
ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

e�x.p/=z1�x.p0/=z2

�
dp

�
B.p;p0/

dx.p/

�
Cdp0

�
B.p;p0/

dx.p0/

��
D�

�
1

z1
C

1

z2

�
LB˛;ˇ.z1; z2/:

Putting the two sides together yields the result, due to Eynard [21],

(33) LB˛;ˇ.z1; z2/D�

PN

D1ŒR

�1.z1/�


˛ ŒR
�1.z2/�

k
ˇ

z1C z2

:

Equation (31) is an immediate consequence of (33) and the finiteness of LB˛;ˇ.z1; z2/

at z2 D�z1.

5.2.1 Topological recursion Topological recursion is a procedure which takes as
input a spectral curve, defined below, and produces a collection of symmetric tensor
products of meromorphic 1–forms !g;n on C n. The correlators store enumerative
information in different ways. Periods of the correlators store top intersection numbers
of tautological classes in the moduli space of stable curves Mg;n and local expansions
of the correlators can serve as generating functions for enumerative problems.

A spectral curve S D .C;x;y;B/ is a Riemann surface C equipped with two mero-
morphic functions x;y WC!C and a bidifferential B.p1;p2/ defined in Definition 5.7,
which is the Cauchy kernel in this paper. Topological recursion, as developed by
Chekhov, Eynard and Orantin [8; 22], is a procedure that produces from a spectral
curve S D .C;x;y;B/ a symmetric tensor product of meromorphic 1–forms !g;n

on C n for integers g � 0 and n� 1, which we refer to as correlation differentials or
correlators. The correlation differentials !g;n are defined by

!0;1.p1/D�y.p1/ dx.p1/ and !0;2.p1;p2/D B.p1;p2/

and, for 2g� 2C n> 0, they are defined recursively via

!g;n.p1;pL/

D

X
dx.˛/D0

RespD˛ K.p1;p/

�

�
!g�1;nC1.p; Op;pL/C

ıX
g1Cg2Dg
ItJDL

!g1;jI jC1.p;pI /!g2;jJ jC1. Op;pJ /

�
:
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Here, we use the notation L D f2; 3; : : : ; ng and pI D fpi1
;pi2

; : : : ;pik
g for I D

fi1; i2; : : : ; ikg. The outer summation is over the zeroes ˛ of dx and p 7! Op is the
involution defined locally near ˛ satisfying x. Op/D x.p/ and Op ¤ p. The symbol ı
over the inner summation means that we exclude any term that involves !0;1. Finally,
the recursion kernel is given by

K.p1;p/D�
1

2
�

R p

Op
!0;2.p1; � /

Œy.p/�y. Op/� dx.p/
:

which is well defined in the vicinity of each zero of dx. It acts on differentials in p and
produces differentials in p1 since the quotient of a differential in p by the differential
dx.p/ is a meromorphic function. For 2g � 2C n > 0, each !g;n is a symmetric
tensor product of meromorphic 1–forms on C n with residueless poles at the zeros
of dx and holomorphic elsewhere. A zero ˛ of dx is regular if y is regular at ˛,
and irregular if y has a simple pole at ˛. A spectral curve is irregular if it contains
an irregular zero of dx. The order of the pole in each variable of !g;n at a regular
(resp. irregular) zero of dx is 6g� 4C 2n (resp. 2g). Define ˆ.p/ up to an additive
constant by dˆ.p/D y.p/ dx.p/. For 2g�2Cn> 0, the invariants satisfy the dilaton
equation [22]X

˛

RespD˛ ˆ.p/!g;nC1.p;p1; : : : ;pn/D .2g� 2C n/!g;n.p1; : : : ;pn/;

where the sum is over the zeros ˛ of dx. This enables the definition of the so-called
symplectic invariants

Fg D

X
˛

RespD˛ ˆ.p/!g;1.p/:

The correlators !g;n are normalised differentials of the second kind in each variable
since they have zero A–periods, and poles only at the zeros P˛ of dx of zero residue.
Their principal parts are skew-invariant under the local involution p 7! Op. A basis of
such normalised differentials of the second kind is constructed from x and B in the
following definition:

Definition 5.11 For a Riemann surface C equipped with a meromorphic function
x W C ! C and bidifferential B.p1;p2/ define the auxiliary differentials on C as
follows. For each zero P˛ of dx, define

(34) V ˛
0 .p/D B.P˛;p/; V ˛

kC1.p/D�d

�
V ˛

k
.p/

dx.p/

�
for ˛ D 1; : : : ;N and k D 0; 1; 2; : : : , where evaluation B.P˛;p/ at P˛ is given in
Definition 5.8.
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The correlators !g;n are polynomials in the auxiliary differentials V ˛
k
.p/. To any

spectral curve S, one can define a partition function ZS by assembling the polynomials
built out of the correlators !g;n [18; 21; 45].

Definition 5.12 ZS .„; fu˛kg/ WD exp
X
g;n

„g�1

n!
!S

g;n

ˇ̌̌̌
V ˛

k
.pi /Du˛

k

:

As usual, define Fg to be the contribution from !g;n,

log ZS .„; fu˛kg/D
X
g�0

„
g�1FS

g .fu
˛
kg/:

5.2.2 From topological recursion to Givental’s construction The input data for
Givental’s construction is a triple .R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN.
Its output is a CohFT�, and its partition function Z�.„; ft

˛
k
g/. The input data for topo-

logical recursion is a spectral curve S D .C;x;y;B/. Its output is the correlators !g;n,
which can be assembled into a partition function ZS .„; ft˛

k
g/.

From a compact spectral curve define a triple

S D .C;x;y;B/! .R.z/;T .z/;1/ 2L.2/GL.N;C/� zCN ŒŒz���CN

by

.C;x;B/ 7!R.z/ 2L.2/GL.N;C/

via (30),

(35) 1i
D

�
dy.P˛/ if P˛ is regular;
.y dx/.P˛/ if P˛ is irregular;

which is the unit in normalised canonical coordinates, and

(36) T .z/˛ D

8̂<̂
:

z
�
1˛ � 1

p
2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z
�

if P˛ is regular;

1˛ � 1
p

2�z

Z
�̨

y.p/ dx.p/ � e.x.P˛/�x.p//=z if P˛ is irregular:

Note that

lim
z!0

1
p

2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z
D

�
dy.P˛/ if P˛ is regular;
.y dx/.P˛/ if P˛ is irregular;

which defines 1; hence, the right-hand side of (36) lives in z2CN ŒŒz�� (resp. zCN ŒŒz��)
when P˛ is regular (resp. irregular). If � is a CohFT with flat unit — see (12)
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in Section 4 — given by 1 2 CN, then 1 determines the translation via T .z/ D

z.1�R�1.z/1/ 2 z2CN ŒŒz��. In this special case, y satisfies

(37) .R�1.z/1/˛ D
NX

kD1

R�1.z/˛k ��
1=2

k
D

1
p

2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z;

which uniquely determines y from its first-order data fdy.P˛/g at each P˛.

The map .C;x;y;B/ 7! .R.z/;T .z/; 1/ produces the left vertical arrow in Figure 1
and its generalisation to irregular spectral curves, ie a correspondence between the
input data, and via the graphical construction (26) this produces the same output
Z�.„; ft

˛
k
g/DZS .„; ft˛

k
g/, which is the main result of [18], stated in the following

theorem:

Theorem 5.13 [18] Given a CohFT � built from

R.z/ 2L.2/GL.N;C/; T .z/ 2 z2CN ŒŒz��; 1 2CN

via Definition 5.2, there exists a local spectral curve

S D .C;x;y;B/ 7! .R.z/;T .z/; 1/

on which x and B correspond to R.z/ via Definition 5.9 and y corresponds to T .z/

and 1 via (36) and (35), giving the partition function of the CohFT

Z�.„; ft
˛
k g/DZS .„; ft˛k g/:

In general, the spectral curve S in Theorem 5.13 is a local spectral curve which is a
collection of disk neighbourhoods of zeros of dx on which B and y are defined locally,
although we only consider compact spectral curves S in this paper. Theorem 5.13 was
proven only in the case T .z/D z.1�R�1.z/1/ in [18] but it has been generalised to
allow any T .z/ 2 z2CN ŒŒz��; see [9; 37]. We will use the converse of Theorem 5.13,
proven in [16], beginning instead from S. Theorem 5.13 was also generalised in [9]
to show that the operators y‰, yR and yT acting on copies of ZBGW analogous to (26)
arises by applying topological recursion to an irregular spectral curve. Equivalently,
periods of the correlators of an irregular spectral curve store linear combinations of
coefficients of log ZBGW. The appearance of ZBGW is due to its relationship with
topological recursion applied to the curve x D 1

2
z2, y D 1=z [14].

5.2.3 Spectral curve examples We demonstrate Theorem 5.13 with four key exam-
ples of rational spectral curves equipped with the bidifferential B.p1;p2/ given by
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the Cauchy kernel. The spectral curves in Examples 5.14 and 5.15, denoted by SAiry

and SBes, have partition functions ZKW and ZBGW, respectively. Any spectral curve
at regular (resp. irregular) zeros of dx is locally isomorphic to SAiry (resp. SBes). A
consequence is that the tau functions ZKW and ZBGW are fundamental to the correlators
produced from topological recursion. Moreover, the topological recursion partition
function ZS is constructed via (26), using a product of copies of ZKW and copies
of ZBGW, as in (29), where R and T are obtained from the spectral curve as described
in Section 5.2.2. The third example, given by Theorem 5.16, brings together ZKW and
Z‚ and conjecturally ZBGW in the limit. Proposition 5.4, which gives the relationship
between the Givental construction of a semisimple CohFT � and its associated �BGW,
has an elegant consequence for spectral curves. This is demonstrated explicitly in
the fourth example, which shows the relationship between the spectral curves of a
CohFT �A2 associated to the A2 singularity and .�A2/BGW.

Examples 5.14 and 5.15 below use the differentials

�m.z/D .2mC 1/!!z�.2mC2/ dz

defined by (34) for x D 1
2
z2 with respect to a global rational parameter z for the curve

C ŠC.

Example 5.14 Topological recursion applied to the Airy curve

SAiry D

�
C; x D 1

2
z2; y D z; B D

dz dz0

.z� z0/2

�
produces correlators which are proven in [23] to store intersection numbers

!
Airy
g;n D

X
Em2Zn

C

Z
Mg;n

nY
iD1

 
mi

i .2mi C 1/!!
dzi

z
2miC2
i

and the coefficient is nonzero only for
Pn

iD1 mi D 3g� 3C n. Hence,

ZKW.„; t0; t1; : : : /DZSAiry.„; t0; t1; : : : /D exp
X
g;n

„g�1

n!
!

Airy
g;n

ˇ̌̌̌
�m.zi /Dtm

D exp
X

g;n; Em

„g�1

n!

Z
Mg;n

nY
iD1

. 
mi

i tmi
/:

Example 5.15 Topological recursion applied to the Bessel curve

SBes D

�
C; x D 1

2
z2; y D

1

z
; B D

dz dz0

.z� z0/2

�
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produces correlators

!Bes
g;n D

X
Ek2Zn
C

bg.m1; : : : ;mn/

nY
iD1

.2mi C 1/!!
dzi

z
2miC2
i

;

where bg.m1; : : : ;mn/¤ 0 only for
Pn

iD1 mi D g� 1. It is proven in [14] that

ZBGW.„; t0; t1; : : : /DZSBes.„; t0; t1; : : : /D exp
X
g;n

„g�1

n!
!Bes

g;n

ˇ̌̌̌
�m.zi /Dtm

:

For the next example, define differentials �˛m.z; t/, using x D 1
2
z2� t � log z, by

(38)

�0
�1.z; t/D t�1=2z dz;

�1
�1.z; t/D dz;

�˛mC1.z; t/D�d

�
��m.z; t/

dx.z/

�
; � D 0; 1; mD�1; 0; 1; 2; : : : :

For m� 0, these are linear combinations of the V i
m.p/ defined in (34). The following

theorem uses the Chern polynomial

c.E E�g;n; t/D 1C t � c1.E
E�
g;n/C t2

� c2.E
E�
g;n/C � � � 2H�.Mspin

g;n;E�
;Q/; E� 2 f0; 1gn:

Theorem 5.16 [37] Topological recursion applied to the spectral curve

(39) x D 1
2
z2
� t � log z; y D z�1; B D

dz dz0

.z� z0/2

produces correlators !g;n satisfying

(40) !g;n.t; z1; : : : ; zn/

D

X
E�; Em

.�1/nt2g�2Cn21�g

Z
Mg;n

p�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/:

Proof Theorem 5.16 is a specialisation of a theorem in [37] which applies to a
generalisation of the moduli space of spin curves to the moduli space of r–spin curves

M1=r
g;n D f.C; �;p1; : : : ;pn; �/ j � W �

r Š�! !
log
C g:

For any s 2 Z, there is a line bundle E on the universal r–spin curve over M1=r
g;n

with fibres given by the universal r th root of .!log
C /s . Its derived pushforward R���E

defines a virtual bundle over M1=r
g;n . For example, when s D 1 and r D 1, �R���E
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is the Hodge bundle, and, when s D �1 and r D 2, �R���E D Eg;n coincides
with Definition 2.1 (where E_ has now become E due to s D �1.) Note that [37]
considers r th roots of .!log

C
/s
�
�
Pn

iD1 �ipi

�
for C the underlying coarse curve of C

with forgetful map � W C ! C. The r th roots in [37] coincide with the pushforward
j� j D ��� , which is the locally free sheaf of Z2–invariant sections of the pushforward
sheaf of � , and the isotropy representation at pi determines �i as described in Section 2.
For r D 2, ie �2 Š !

log
C , at any point pi banded by 1

2
the pushforward locally satisfies

j� j2 D !C .2pi/D !
log
C
.pi/; hence, .j� j_/2 D .!log

C
/�1.�pi/, which corresponds to

�i D 1. At any point pi banded by 0, the pushforward does not change local degree
and corresponds to �i D 0.

The Chern character of the virtual bundle �R���E is given by Chiodo’s general-
isation of Mumford’s formula for the Chern character of the Hodge bundle. For
� 2 f0; 1; : : : ; r � 1g, let j� W Sing� !M1=r

g;n be the map from the singular set of the
universal spin curve banded by �=r , where now the local isotropy is Zn. Let Bm.x/

be the mth Bernoulli polynomial. Chiodo [10] proved

(41) ch.R���E/D
X
m�0

�
BmC1.s=r/

.mC 1/!
�m�

nX
iD1

BmC1.mi=r/

.mC 1/!
 m

i

C
1
2
r

r�1X
�D0

BmC1.�=r/

.mC 1/!
.j� /�

 m
C C .�1/m�1 m

�

 CC �

�
:

The total Chern class of a virtual bundle c.E �F / WD c.E/=c.F / can be calculated
from its Chern character and in this case is given by

c.�R���E/D exp
� 1X

mD1

.�1/m.m� 1/! chm.R
���E/

�
:

The components of M1=r
g;n are given by M1=r

g;n;E�
for E� 2 Zn

r . The pushforward of the
restriction of c.�R���E/ to a component is known as the Chiodo class

Cg;n.r; sI E�/ WD p�c.�R���EjM1=r

g;n;E�

/ 2H�.Mg;n;Q/:

The sum of this pushforward over all components of M1=r
g;n is expressed as a weighted

sum over stable graphs in [32] which encodes a twisted loop group action as described
in Section 5, with edge and vertex weights proven in [37, Theorem 4.5] to exactly
match the edge and vertex weights arising from the spectral curve

Ox D zr
� log z; Oy D

r1Cs=r

s
zs; B D

dz dz0

.z� z0/2
:
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In particular, the term exp
�
�
P

m.BmC1.s=r/=m.mC 1//�m

�
which arises from theP

m.BmC1.s=r/=.mC 1/!/�m terms in Chiodo’s formula exactly matches the local
expansion of dy. More precisely, by [37, Lemma 4.1],

(42) 1
p

2�„

Z
�̨

dy.p/ � e.x.P˛/�x.p//=„
� dy.P˛/ exp

�
�

X
m

BmC1.s=r/

m.mC 1/
.�„/m

�
;

where � means the asymptotic expansion in the limit „! 0.

Hence, topological recursion applied to this spectral curve produces correlators with
expansion in terms of the local coordinate e� Oxi D e� Ox.zi / D zie

�zr
i around zi D 0,

(43) y!g;n.z1; : : : ; zn/

�

X
Ek2Zn
C

nY
iD1

c.ki/r
.ki /r =r d.e�ki Oxi /

Z
Mg;n

Cg;n.r; sI .�Ek/r /Qn
iD1.1� .ki=r/ i/

;

where � means expansion in a local coordinate, .�Ek/r 2 f0; : : : ; r � 1gn the residue
class of �Ek modulo r , and

c.k/D
kbk=rc

bk=rc!
:

We have used Ox D zr � log z and y D .r1Cs=r=s/zs here, rather than Ox D�zr C log z

and y D zs as used in [37], because the convention for the kernel K.p1;p/ used here
differs by sign from [37], and also to remove a factor of .r1Cs=r=s/2�2g�n from the
correlators. Chiodo’s formula and the asymptotic expansion (42) are true for any s 2Z;
hence, (43) holds for any s 2 Z, although it is stated only for s � 0 in [37].

In [37], .�Ek/r 2 f1; : : : ; rgn; however, replacing ki D r by ki D 0 leaves the Chiodo
class invariant since it does not change the component, but rather it twists the universal
bundle E over the component, resulting in adding a direct summand of a trivial bundle to
the virtual bundle �R���E which does not affect the total Chern class. The invariance
of the total Chern class, or equivalently the positive-degree terms of the Chern character,
can also be seen in Chiodo’s formula via properties of the Bernoulli polynomials.

We will use (43) in the case r D 2. Define

O�0
�1D 2z dz; O�1

�1D dz; O��m.z/D�d

�
O��
m�1

.z/

d Ox.z/

�
; � 2 f0; 1g; m2 f0; 1; 2; : : : g;

which have local expansion at z D 0 given by

O��m.z/�
X

k2ZC
k��.mod 2/

kmc.k/d.e�k Ox/:
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Each  i in the denominator of the right-hand side of (43) produces monomials�
1
2
ki i

�mi ; hence, (43) with r D 2 becomes

y!g;n.z1; : : : ; zn/D
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

 
mi

i
O��i
mi
.zi/2

�=2i�mi :

Change . Ox; Oy/ 7! .x;y/ by

x D t Ox
�

z
p

2t

�
�

1
2
t log.2t/D 1

2
z2
� t � log z; y D 1

2
st s=2

Oy
�

z
p

2t

�
D zs:

The differentials defined in (38) using x are given by

��m.z; t/D t�m�1=22�=2 O��m

�
z
p

2t

�
:

Hence,

!g;n.t; z1; : : : ; zn/

D
�

1
2
st s=2C1

�2�2g�n
y!g;n

�
z1
p

2t
; : : : ;

zn
p

2t

�
D
�

1
2
st s=2C1

�2�2g�n
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

 
mi

i
O��i
mi

�
zi
p

2t

�
2�=2i�mi

D
�

1
2
st s=2C1

�2�2g�n
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

tmiC1=2 
mi

i ��i
mi
.zi/2

�mi

D
�

1
2
st s=2C1

�2�2g�n
tn=2

X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

�
1
2
t
�mi 

mi

i ��i
mi
.zi/

D

X
E�; Em

t .1�s/.2g�2Cn/=221�gs2�2g�n

Z
Mg;n

Cg;n

�
2; sI E�;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/;

where the last equality uses
�

1
2
t
�Pmi

D
�

1
2
t
�3g�3Cn�deg for the degree operator

deg ck.E
E�
g;n/D k then

�
1
2
t
�� deg is absorbed into the Chern polynomial. Set s D�1 to

get the desired result.

The classes ‚g;n arise in the limit

lim
t!0

!g;n.t; z1; : : : ; zn/D
X
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/

for �m.z/ D .2mC 1/!!z�.2mC2/ dz. We explain the relationship of this limit with
Conjecture 1.5 in Proposition 6.1.
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5.2.4 A2 singularity In this section we calculate the spectral curves of the CohFT
�A2 and .�A2/‚. We begin with a general result relating the spectral curve of any
semisimple CohFT � with the spectral curve of �BGW.

Proposition 5.17 Given a semisimple CohFT � with partition function Z�.„; ft
˛
k
g/

encoded by the spectral curve

S D .C;x;y;B/

via Theorem 5.13, ZBGW
�

.„; ft˛
k
g/ is encoded by the spectral curve

yS D
�
C;x; Oy D

dy

dx
;B
�
:

Proof Note that the spectral curves S and yS share the same .C;x;B/ and hence
produce the same operator yR.z/ used in the construction of both Z� and ZBGW

�
.

Proposition 5.4 shows that a shift in the translation operator T .z/ 7! T .z/=z combined
with replacing each copy of ZKW.„; ftkg/ in (26) by a copy of Z‚.„; ftkg/ produces
the partition function of �‚. It relied upon the homogeneity property (15) satisfied
by Z‚.„; ftkg/. But ZBGW.„; ftkg/ also satisfies (15); hence, an identical argument to
that in Proposition 4.3 proves that, for a semisimple CohFT �, the partition function
ZBGW
�

.„; ft˛
k
g/ is obtained by replacing each copy of ZKW.„; ftkg/ in (26) by a copy

of ZBGW.„; ftkg/ and replacing the translation operator by T .z/ 7! T .z/=z.

Given an irregular spectral curve, it is proven in [9] that its partition function is
obtained from (26) with translation operator given by (36). Given a semisimple CohFT
� encoded by the regular spectral curve S D .C;x;y;B/, define Oy D dy=dx. Then,
since dy D Oy dx, the translation operator shifts by T .z/˛ 7! T .z/˛=z, which proves
that �BGW is encoded by the spectral curve yS D .C;x; Oy D dy=dx;B/.

Define the spectral curves

(44)
SA2
D

�
C; x D z3

� 3z; y D z
p
�3; B D

dz dz0

.z� z0/2

�
;

SBGW
A2

D

�
C; x D z3

� 3z; Oy D

p
�3

3z2� 3
; B D

dz dz0

.z� z0/2

�
:

The partition functions associated to S D SA2
defined in 4.1.4 and S D S‚

A2
are built

out of correlators !S
g;n by

ZS .„; ft˛k g/D exp
X
g;n

„g�1

n!
!S

g;n

ˇ̌̌̌
�˛

k
.zi /Dt˛

k
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using the differentials �˛
k
.z/ defined on C by

(45) �˛0 D
dz

.1� z/2
�
.�1/˛dz

.1C z/2
; �˛kC1.p/D d

�
�˛

k
.p/

dx.p/

�
; ˛ 2 f1; 2g; k 2N:

These are linear combinations of the V i
k
.p/ defined in (34) with x D z3 � 3z. The

V i
k
.p/ correspond to normalised canonical coordinates while the �˛

k
.p/ correspond to

flat coordinates. We have

Z�A2 DZSA2 ; Z.�A2 /‚ DZ
S‚

A2 :

The equality ZA2
DZSA2 was proven in [17]; hence, Z.�A2 /‚ DZ

S‚
A2 by Proposition

5.17. We verify this by giving the local expansions of B and Oy for SA2
, which helps to

deal with different normalisations in the references. Choose a local coordinate t around
z D�1D P1 so that x.t/D 1

2
t2C 2. Then

B.P1; t/D
�i
p

6

dz

.zC 1/2
D dt

�
t�2
�

1
144
C

35
41 472

t2
C � � �C odd terms

�
;

B.P2; t/D
1
p

6

dz

.z� 1/2
D dt

�
�

i
24
C

35i
3456

t2
C � � �C odd terms

�
:

Around z D 1D P2, the local expansions of B.P˛; z/ are the same as those above, up
to sign. The odd terms are annihilated by the Laplace transform, and we get

R�1.z/˛˛ D�

p
z

p
2�

Z
�̨

B.P˛; t/ � e.�t2=2/=z
D 1� .�1/˛ 1

144
z� 35

41 472
z2
C � � � ;

R�1.z/˛3�˛ D�

p
z

p
2�

Z
�̨

B.P3�˛; t/ � e
.�t2=2/=z

D
i

24
zC .�1/˛ 35i

3456
z2
C � � � :

Hence, R�1.z/D I �R1zC .R2
1
�R2/z

2C � � � D I �RT
1

zCRT
2

z2C � � � gives

R1 D
1

144

�
�1 �6i

�6i 1

�
; R2 D

35

41 472

�
�1 12i

�12i �1

�
;

which determines all other Rk via (21) and agrees with (23) for �A2 .

The topological field theory is defined by fdy.P˛/g for i D 1; 2. The translation
operator T .z/ is determined by the (Laplace transform of the) local expansion of y

given by (36). Moreover, �A2 has flat unit, so in this case the odd expansions of dy is
determined by R�1.z/1 via (37), and hence uniquely determined by the terms dy.P˛/
for ˛ D 1; 2. This is visible on the spectral curve by the fact that the poles of dy are
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dominated by the poles of dx, ie dy=dx has poles only at the zeros P1 and P2 of dx,
and hence, by the Cauchy formula, dy satisfies

(46) d
�

dy

dx
.p/
�
D�

NX
˛D1

Resp0DP˛
dy

dx
.p0/B.p0;p/;

which is proven in [17] to imply (37). Thus, it remains to show that y defines the correct
topological field theory, representing 1 in normalised canonical coordinates. The local
expansion of dy D

p
�3 dz around P1 D�1 in the local coordinate x.t/D 1

2
t2C 2 is

dy D
p
�3 dz D

�
1
p

2
�

5

144
p

2
t2
C

385

124 416
p

2
t4
C � � �C odd terms

�
dt

and around P2 D 1 replace t by i t . Hence, the Laplace transform is�
1

p
2�z

Z
�̨

dy.p/ � e..x.Pk/�x.p///=z

�
DR�1.z/1

D
1
p

2

�
1

i

�
C

5

144
p

2

�
�1

i

�
zC

385

41 472
p

2

�
1

i

�
z2
C � � � :

Note that dy.P1/D
1p
2
D
p

11 and dy.P2/D
ip
2
D
p

12 gives the unit 1, and hence
the TFT. Thus, SA2

7! .R.z/;T .z/; 1/ for �A2 as required.

6 Progress towards a proof of Conjecture 1.5

A consequence of the homogeneity property (15) satisfied by both partition functions
Z‚.„; t0; t1; : : : / and ZBGW.„; t0; t1; : : : / is that, for g > 1, the coefficient of „g�1 of
the logarithm of the partition function, ie its genus g part, is a finite sum of rational
functions. They are both of the form

log Z.„; t0; t1; : : : /D�
1
8

log.1� t0/C

1X
gD2

„
g�1

X
�`g�1

c�t�

.1� t0/2g�2Cn
;

where t� WD
Q

t�i
for a partition � D .�1; : : : ; �n/. Hence, for each g, one needs

only match the finite set of coefficients c�, parametrised by partitions � of g� 1, of
log Z‚.„; t0; t1; : : : / with those of log ZBGW.„; t0; t1; : : : /, to determine equality.

The initial value of
R
M1;1

‚1;1 D
1
8

together with (15) produces all genus 1 terms
of log Z‚, and the calculation

R
M2;1

‚2;1 �  1 D
3

128
from Example 3.5 together
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with (15) produces all genus 2 terms, giving

log Z‚
D�

1
8

log.1� t0/C„ �
3

128
�

t1

.1� t0/3
CO.„2/:

Further calculations, such as the genus 3 calculation in the appendix and calculations
up to g D 7 and nD 6 using admcycles [12], prove

(47) log Z‚.„; t0; t1; : : : /D log ZBGW.„; t0; t1; : : : /CO.„8/:

Conjecture 1.5 is reduced to a purely combinatorial or analytic problem in the following
proposition. Recall the spectral curve (39) given by

x D 1
2
z2
� t � log z; y D z�1; B D

dz dz0

.z� z0/2

with correlators !g;n.t; z1; : : : ; zn/.

Proposition 6.1 Conjecture 1.5 is equivalent to

(48) lim
t!0

!g;n.t; z1; : : : ; zn/D !
Bes
g;n.z1; : : : ; zn/:

Proof By Theorem 5.16,

!g;n.t; z1; : : : ; zn/D
X
E�; Em

.�1/nt2g�2Cn21�g

Z
Mg;n

p�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/;

which is regular in t since

rank E E�g;n D 2g� 2C 1
2
.nCjE� j/;

so the Chern polynomial has degree at most 2g� 2C n in t�1. Hence, for jE� j D n,

lim
t!0

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

�
D .�1/n2g�1Cnp�c2g�2Cn.E

E�
g;n/D‚g;n;

while, for jE� j< n, rank E E�g;n < 2g� 2C n, so

lim
t!0

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

�
D 0:

Thus, the t ! 0 limit exists to give

lim
t!0

X
E�; Em

Z
Mg;n

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi

D

X
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/
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for
�m.z/D lim

t!0
�1

m.z; t/D .2mC 1/!!z�.2mC2/ dz:

Also, limt!0 �
0
m.z; t/D 0 for m� 0. The t ! 0 limit of the spectral curve (39) gives

the Bessel spectral curve of Example 5.15 with correlators proven in [14] to be given
by

!Bes
g;n.z1; : : : ; zn/D

X
Em

@nFBGW.„; ftkg/

@tm1
� � � @tmn

nY
iD1

�mi
.z/:

Hence, the conjectured limit (48) yieldsX
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/D

X
Em

@nFBGW.„; ftkg/

@tm1
� � � @tmn

nY
iD1

�mi
.z/;

which is equivalent to Conjecture 1.5.

The subtlety of the limit (48), which is known up to g D 7 for all n by the verification
of Conjecture 1.5 in these cases, can be seen as follows. The correlators are regular
in t ; for example,

!0;3.t; z1; z2; z3/DO.t/ D) lim
t!0

!0;3.t; z1; z2; z3/D 0:

However, the coefficients in the recursion can be irregular in t , ie blow up as t ! 0.
For example, we next introduce the parameter a to keep track of the contribution of
!0;3.t; z1; z2; z3/ and can set aD 1 at the end in this calculation of !1;2.t; z1; z2/:

!1;2.t; z1; z2/

D

X
dx.˛/D0

ReszD˛ K.z1; z/
�
a �!0;3.t; z; �˛.z/; z2/C!0;2.z; z2/!1;1.t; �˛.z//

C!0;2.�˛.z/; z2/!1;1.t; z/
�
;

lim
t!0

!1;2.t; z1; z2/D
1

1080
.74aC 61/

dz1 dz2

z2
1
z2

2

:

This gives the expected limit of !Bes
1;2
.z1; z2/ when aD 1, and shows the dependence of

limt!0 !1;2.t; z1; z2/ on !0;3.t; z1; z2; z3/ due to coefficients in the recursion which
are irregular in t .

6.1 Pixton relations

A collection of relations in the tautological ring RH�.Mg;n/was conjectured by Pixton
and proven in [47] using the CohFT �A2 . Such tautological relations can be used to
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produce topological recursion relations for CohFTs such as Gromov–Witten invariants.
Similarly, the intersections of‚g;n with Pixton’s relations produce topological recursion
relations satisfied by the intersection numbers

R
Mg;n

‚g;n

Qn
iD1  

mi

i .

The key idea behind the proof of Pixton’s relations in [47] is a degree bound on the
cohomology classes

deg�A2
g;n �

1
3
.g� 1C n/ < 3g� 3C n

combined with Givental’s construction of �A2
g;n in Definition 5.2 from the triple

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN obtained from the Frobenius man-
ifold structure on the versal deformation space of the A2 singularity; see Section 4.1.4.
Givental’s construction produces �A2

g;n, although it does not know about the degree
bound and produces classes in the degrees where �A2

g;n vanishes. This leads to sums
of tautological classes representing the zero class, ie relations given by the degree
d > 1

3
.g� 1C n/ part of the sum over stable graphs in (24) of the form

�A2
g;n D

X
�2Gg;n

1

jAut.�/j
.��/�!

R;T;1
�

:

Since �A2 has flat unit, the pushforward classes in (24) produce � polynomials; hence,
only graphs without dilaton leaves in the sum are required and the classes !R;T;1

�

consist of products of  and � classes associated to each vertex of � . The main
result of [47] is the construction of elements Rd

g;A
2 Sg;n for AD .a1; : : : ; an/ with

a˛ 2 f0; 1g satisfying q.Rd
g;A
/ D 0 which push forward to tautological relations in

H 2d .Mg;n;Q/. They are defined by Rd
g;A

, the degree d part of �A2
g;n.vA/ for a basis

fv0; v1g. The element R1
2
2H 2.M2;Q/ is given in Example 3.5.

When n � g � 1 and g > 1, we have d D g � 1 > 1
3
.g � 1C n/; hence, there exist

nontrivial relations R
g�1
g;A

. This produces the sum over graphs

‚g;n �R
g�1
g;A
D 0;

which defines a relation for each A between intersection numbers of classes with‚g;n,
ie coefficients of Z‚.„; ftkg/. This uses ‚g;n � .��/� D .��/�‚� together with
Remark 3.4 to replace � classes by  classes. We saw this in Example 3.5, arising
from the genus two Pixton relation

(49)
Z
M2;1

‚2;1 � 1�
7

10
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1�
1

10
�

Z
M1;2

‚1;2 D 0;
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which determines
R
M2;1

‚2 �  
2
1

from
R
M1;1

‚1;1 and
R
M1;2

‚1;2. Similarly, the
appendix uses genus three relations to deduce

R
M3;2

‚3;2 � 
2
1

and
R
M3;2

‚3;2 � 1 2

from lower-genus coefficients of Z‚.„; t0; t1; : : : /.

The following theorem proves that the coefficients of ZBGW.„; t0; t1; : : : / also sat-
isfy (49), and more generally an infinite set of relations satisfied by coefficients of
Z‚.„; t0; t1; : : : / arising from Pixton relations:

Theorem 6.2 Pixton relations produce infinitely many nontrivial relations satisfied by
the coefficients of both Z‚.„; t0; t1; : : : / and ZBGW.„; t0; t1; : : : /.

Proof For each g > 1, n and
�

1
2
.nC 1/

˘
possible A 2 f0; 1gn (due to symmetry and

vanishing of half for parity reasons), R
g�1
g;A
D 0 defines a nontrivial Pixton relation.

For each of these choices of g, n and A, due to the restriction and pullback properties
of ‚g;n as explained above, ‚g;n �R

g�1
g;A
D 0 defines a relation between coefficients of

Z‚.„; ftkg/, such as (49).

The main goal is to prove that the corresponding coefficients of ZBGW.„; ftkg/ also
satisfy this infinite set of relations. To do this, we study the partition function ZBGW

�A2
,

defined in Definition 5.6 via the spectral curve SBGW
A2

defined in (44). The relations
between coefficients of ZBGW.„; ftkg/ will be stored in the spectral curve. This
will produce identical relations satisfied by both the coefficients of ZBGW and Z‚.
To summarise, we have vanishing of certain coefficients of Z‚

A2
.„; ft˛

k
g/ due to the

cohomological viewpoint shown in the upper row in Figure 1, and vanishing of corre-
sponding coefficients of ZBGW

�A2
.„; ft˛

k
g/ due to Givental’s construction neatly encoded

by topological recursion shown in the lower row in Figure 1.

Pixton relations induce relations between intersection numbers of  and � classes
or  classes alone, ie coefficients of ZKW.„; ftkg/. These relations are realised by
unexpected vanishing of coefficients of the partition function ZA2

.„; ft˛
k
g/. Similarly,

unexpected vanishing of coefficients of the partition function ZBGW
A2

.„; ft˛
k
g/ correspond

to relations between coefficients of ZBGW.„; ftkg/.

The coefficients of log ZBGW
A2

.„; ft˛
k
g/ are obtained from the correlators !BGW;A2

g;n

of SBGW
A2

by

(50)
@n

@t
˛1

k1
� � � @t

˛n

kn

.FBGW
A2

/g.ft
˛
k g/

ˇ̌̌̌
t˛
k
D0

D Resz1D1 � � �ResznD1

nY
iD1

p˛i ;ki
.zi/!

BGW;A2
g;n .z1; : : : ; zn/
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for polynomials p˛;k.z/D
p
�3..�1/˛=˛/z3kC˛C lower-order terms for ˛ 2 f1; 2g

and k 2N chosen so that the residues are dual to the differentials �˛
k

defined in (45).
The lower-order terms (and the top coefficient) will not be important here because
we will only consider vanishing of (50) arising from high-enough-order vanishing of
!

A2
g;n.z1; : : : ; zn/ at zi D1, so that the integrand in (50) is holomorphic at zi D1.

Equation (50) is a special case of the more general phenomena, proven in [16], that
periods of !g;n are dual to insertions of vectors in a CohFT. Thus, we have shown
that relations between coefficients of ZBGW.„; ftkg/ induced from Pixton relations are
detected by high-order vanishing of !BGW;A2

g;n .z1; : : : ; zn/ at zi D1. The same is true
for high-order vanishing !A2

g;n.z1; : : : ; zn/ at zi D1, which is shown by

!
A2

2;1
.z/D 35

243
�
z.11z4C 14z2C 2/

.z2� 1/10
dz

D) ReszD1 zm!
A2

2;1
.z/D 0; m 2 f0; 1; : : : ; 12g:

Hence, (50) vanishes for k1 D 0; 1; 2; 3 and ˛1 � k1 mod 2, which gives the relations
between intersection numbers, or coefficients of ZKW.„; ftkg/,

(51)
Z
M2;1

Rd

2; Nd
 4�d

1 D 0; d D 1; 2; 3; 4;

where Rd

2; Nd
is a nontrivial Pixton relation, for Nd � d mod 2, between cohomology

classes in H 2d .M2;1;Q/ proven in [47], such as R2
2;0
D  2

1
C boundary termsD 0.

Lemma 6.3 We have
nX

iD1

ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/� 2g� 2;

where ordzD1 �.z/ is the order of vanishing of the differential at z D1.

Proof We can make the rational differential

!A2
g;n.z1; : : : ; zn/D

pg;n.z1; : : : ; zn/Qn
iD1.z

2
i � 1/2g

dz1 � � � dzn

homogeneous by applying topological recursion to x.z/ D z3 � 3Q2z and y D
p
�3=x0.z/ which are homogeneous in z and Q. Then !A2

g;n.Q; z1; : : : ; zn/ is ho-
mogeneous in z and Q of degree 2� 2g� n:

!A2
g;n.Q; z1; : : : ; zn/D �

2�2g�n!A2
g;n.�Q; �z1; : : : ; �zn/:

The degree of homogeneity uses the fact that

.z;Q/ 7! .�z; �Q/ D) y dx 7! �y dx D) !g;n 7! �2�2g�n!g;n
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because y dx appears in the kernel K.p1;p/ with homogeneous degree �1, which
easily leads to degree 2� 2g� n for !g;n. The degree 2� 2g� n homogeneity of

!A2
g;n.Q; z1; : : : ; zn/D

pg;n.Q; z1; : : : ; zn/Qn
iD1.z

2
i �Q2/2g

dz1 � � � dzn

implies that deg pg;n.Q; z1; : : : ; zn/ D 4gn � n C 2 � 2g � n. But we also know
that !A2

g;n.Q; z1; : : : ; zn/ is well defined as Q! 0 — the limit becomes !g;n of the
spectral curve x.z/D z3 and y D

p
�3=x0.z/ using the topological recursion defined

by Bouchard and Eynard [5] — so deg pg;n.z1; : : : ; zn/� 4gn�nC 2� 2g�n. Note
that dzi is homogeneous of degree 1 but has a pole of order 2 at zi D1; hence,

nX
iD1

ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/D 4gn� deg pg;n.z1; : : : ; zn/� 2n� 2g� 2:

Primary invariants of a partition function are those coefficients of
Qn

iD1 t
˛i

ki
with all

ki D 0. They correspond to intersections in Mg;n with no  classes. The primary
invariants of Z‚

A2
.„; ft˛

k
g/ vanish for n< 2g� 2. This uses deg�A2

g;n �
1
3
.g� 1C n/,

so deg�A2
g;n �‚g;n �

1
3
.g�1Cn/C2g�2Cn< 3g�3Cn when n< 2g�2. These

vanishing coefficients correspond to the relations ‚g;n �R
g�1
g;A
D 0, which, as discussed

above, give relations between coefficients of Z‚.„; ftkg/.

The primary coefficients of ZBGW
A2

.„; ft˛
k
g/ correspond to

Resz1D1 � � �ResznD1

nY
iD1

z
�i

i !
A2
g;n.z1; : : : ; zn/

for �i D 1 or 2. Different choices of �i give different relations (except half which vanish
for parity reasons). By Lemma 6.3,

Pn
iD1 ordziD1 !

BGW;A2
g;n .z1; : : : ; zn/� 2g�2, so,

for n< 2g� 2, there exists an i such that ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/� 2. Hence,

z
�i

i !
A2
g;n.z1; : : : ; zn/ is holomorphic at zi D1, so

ResziD1 z
�i

i !
A2
g;n.z1; : : : ; zn/D 0

and we have

(52) n< 2g� 2 D) Resz1D1 � � �ResznD1

nY
iD1

z
�i

i !
A2
g;n.z1; : : : ; zn/D 0:

Hence, the primary coefficients of ZBGW
A2

.„; ft˛
k
g/ vanish for n < 2g � 2, yielding a

common set of relations satisfied by both the coefficients of Z‚.„; t0; t1; : : : / and
ZBGW.„; t0; t1; : : : /.
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An example of a genus 2 relation produced by Theorem 6.2 is

!
BGW;A2

2;1
.z/D

�5z2� 1

16
p
�3.z� 1/4.zC 1/4

dz:

It immediately follows that ReszD1

p
�3
2

z � !2;1.z/ D 0, which signifies a relation
between coefficients of ZBGW.„; t0; t1; : : : /. We will write the relations using ‚g;n;
however, the relations are between coefficients of ZBGW.„; t0; t1; : : : / and what we are
showing here is that these coefficients satisfy the same relations as intersection num-
bers involving ‚g;n, or, equivalently, coefficients of Z‚.„; t0; t1; : : : /. The graphical
expansion encoded by both Givental’s construction and topological recursion is given by

2 2 1 1 1

(plus graphs containing genus 0 vertices on which ‚2;1 vanishes), which contributes

22
�

60
1728
�

Z
M2;1

‚2;1 � 1C 22
�
�60
1728
�

Z
M2;1

‚2;1 � �1

C 22
�

84
1728
�

Z
M1;2

‚1;2 �

Z
M1;1

‚1;1C
2
2
�

84�60
1728

�

Z
M1;3

‚1;3;

which agrees with the expansion in weighted graphs of ReszD1

p
�3
2

z �!2;1.z/D 0

given by
5

1536
�

15
1536
C

7
2304
C

1
288
D 0:

Appendix Calculations

Here we show explicitly the equality ZBGWDZ‚ up to genus 3. The coefficients of the
Brézin–Gross–Witten tau function are calculated recursively since it is a tau function
of the KdV hierarchy. It has low genus g (= coefficient of „g�1) terms given by

log ZBGW
D�

1
8

log.1� t0/C„ �
3

128
�

t1

.1� t0/3
C„

2
�

15
1024
�

t2

.1� t0/5

C„
2
�

63
1024
�

t2
1

.1� t0/6
CO.„3/

D
1
8
t0C

1
16

t2
0C� � �C„

�
3

128
t1C

9
128

t0t1C� � �
�
C„

2
�

15
1024

t2C
63

1024
t2
1C� � �

�
:

The intersection numbers of ‚g;n stored in

log Z‚.„; t0; t1; : : : /D
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj
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are calculated recursively via relations among tautological classes in H�.Mg;n;Q/.
The calculation of these intersection numbers up to genus 2 can be found throughout the
text. We assemble them here for convenience, then present the genus 3 calculations.

g D 0 Theorem 1.3(II) gives ‚0;nD 0, which agrees with the vanishing of all genus 0
terms in ZBGW.

g D 1 Proposition 2.9 gives‚1;1D3 1; hence,
R
M1;1

‚1;1D
1
8

. We use this together
with the dilaton equation to get

R
M1;n

‚1;nD
1
8
.n�1/!. This agrees with�1

8
log.1�t0/

in log ZBGW.

g D 2 Using Mumford’s relation [41], �1 is the sum of boundary terms in M2, which
coincides with a genus 2 Pixton relation; Example 3.5 produced the genus 2 intersection
numbers from the genus 1 intersection numbers:Z

M2

‚2 � �1 D
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
C

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j

D
7
5
�

1
8
�

1
8
�

1
2
C

1
5
�

1
8
�

1
2
D

3
128
:

Note that
R
M2;1

‚2;1 � 1D
R
M2;1

��‚2 � 
2
1
D
R
M2

‚2 ��1. Using the dilaton equation,
we then get

R
M2;n

‚2;n � 1 D
3

256
.nC 1/!, which agrees with the „ � 3

128
t1=.1� t0/

3

term in log ZBGW.

g D 3 There are two independent genus 3 Pixton relations expressing �2 and �2
1

as
sums of boundary terms in M3. The relations correspond to sums over stable graphs
in M3; hence, they contain many terms. In place of these, we use the equivalent
relations discovered earlier in [34; 35], which push forward to relations in M3. In
M3;1, we can write  3

1
as a sum of boundary terms, which yieldsZ

M3;1

‚3;1 � 
2
1

D

Z
M3;1

��‚3 � 
3
1

D
41
21
�

Z
M2;1

‚2;1 � 1 �

Z
M1;1

‚1;1C
5

42
�

Z
M2;2

‚2;2 � 1

�
1

105
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �
1

jAutj
C

11
70
�

Z
M1;2

‚1;2 �

Z
M1;2

‚1;2 �
1

jAutj

�
4

35
�

Z
M1;1

‚1;1 �

Z
M1;2

‚1;2 �

Z
M1;1

‚1;1�
1

105
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �
1

jAutj

�
1

1260
�

Z
M1;4

‚1;4 �
1

jAutj
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D
41
21
�

3
128
�
1
8
C

5
42
�

9
128
�

1
105
�
1
8
�
2
8
�
1
2
C

11
70
�
1
8
�
1
8
�
1
2
�

4
35
�
1
8
�
1
8
�
1
8
�

1
105
�
1
8
�
2
8
�
1
2
�

1
1260
�
6
8
�
1
4

D
15

1024
:

In M3;2, we can write  2
1
 2� 1 

2
2

as a sum of boundary terms, which yields

7

Z
M3;2

‚3;2 �. 
2
1 � 1 2/

D 7

Z
M3;2

��‚3;1 �. 
2
1 2� 1 

2
2 /

D�
16
3
�

Z
M2;2

‚2;2 � 2 �

Z
M1;1

‚1;1�5

Z
M2;2

‚2;2 � 1 �

Z
M1;1

‚1;1

�
40
3
�

Z
M2;1

‚2;1 � 1 �

Z
M1;2

‚1;2�
1
6
�

Z
M2;3

‚2;3 � 1�

Z
M2;3

‚2;3 � 1 �
1

jAutj

�
1

15
�

Z
M1;1

‚1;1 �

Z
M1;4

‚1;4 �
1

jAutj
�

9
10
�

Z
M1;3

‚1;3 �

Z
M1;2

‚1;2

�
1

15
�

Z
M1;1

‚1;1 �

Z
M1;4

‚1;4 �
1

jAutj
C

4
15
�

Z
M1;2

‚1;2 �

Z
M1;3

‚1;3 �
1

jAutj

�
4
5
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �

Z
M1;1

‚1;1

C
16
5
�

Z
M1;1

‚1;1 �

Z
M1;2

‚1;2 �

Z
M1;2

‚1;2�
1

180
�

Z
M1;5

‚1;5 �
1

jAutj

D �
16
3
�

9
128
�

1
8
�5 9

128
�

1
8
�

40
3
�

3
128
�

1
8
�

1
6
�

36
128
�

36
128
�

1
2

�
1

15
�
1
8
�
6
8
�
1
2
�

9
10
�
2
8
�
1
8
�

1
15
�
1
8
�
6
8
�
1
2
C

4
15
�
1
8
�
2
8
�
1
2
�

4
5
�
1
8
�
2
8
�
1
8
C

16
5
�
1
8
�
1
8
�
1
8
�

1
180
�
24
8
�
1
4

D�
357

1024
:

Hence, Z
M3;2

‚3;2 � 1 2 D

Z
M3;2

‚3;2 � 
2
1 C

1
7

357
1024
D

75
1024
C

51
1024
D

63
512
;

where
R
M3;2

‚3;2 � 
2
1
D

75
1024

is obtained from
R
M3;1

‚3;1 � 
2
1
D

15
1024

via the dilaton
equation. The dilaton equation then yieldsZ

M3;n

‚3;n � 
2
1 D

75
1024
�

1
5!
.nC 3/! and

Z
M3;n

‚3;n � 1 2 D
63

512
�

1
5!
.nC 3/!;

which agree with the terms „2 �
15

1024
t2=.1� t0/

5C„2 �
63

1024
t2
1
=.1� t0/

6 in log ZBGW.
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