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In 2002, Polterovich established that on closed aspherical symplectic manifolds,
Hamiltonian diffeomorphisms of finite order, also called Hamiltonian torsion, must
be trivial. We prove the first higher-dimensional Hamiltonian no-torsion theorems
beyond that of Polterovich, by considering the dynamical aspects of the problem.
Our results are threefold.

First, we show that closed symplectic Calabi–Yau and negative monotone symplectic
manifolds admit no Hamiltonian torsion. A key role is played by a new notion of a
Hamiltonian diffeomorphism with nonisolated fixed points.

Second, going beyond topological constraints by means of Smith theory in filtered
Floer homology, barcodes and quantum Steenrod powers, we prove that every closed
positive monotone symplectic manifold admitting Hamiltonian torsion is geomet-
rically uniruled by pseudoholomorphic spheres. In fact, we produce nontrivial
homological counts of such curves, answering a close variant of Problem 24 from
the introductory monograph of McDuff and Salamon. This provides additional
no-torsion results and obstructions to Hamiltonian actions of compact Lie groups,
related to a celebrated result of McDuff from 2009, and lattices such as SL.k;Z/
for k � 2. We also prove that there is no Hamiltonian torsion diffeomorphism with
noncontractible orbits.

Third, by defining a new invariant of a Hamiltonian diffeomorphism, we prove a
first nontrivial symplectic analogue of Newman’s 1931 theorem on finite groups
of transformations. Namely, for each monotone symplectic manifold there exists a
neighborhood of the identity in the Hamiltonian group endowed with Hofer’s metric
or Viterbo’s spectral metric that contains no finite subgroups.
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2834 Marcelo S Atallah and Egor Shelukhin

1 Introduction and main results

1.1 Introduction

The question of the existence of finite group actions on manifolds has been of interest
in topology for a long time. It was in order to study this question that P A Smith [99]
developed in the 1930s what is now called Smith theory for cohomology with Fp

coefficients in the context of continuous actions of finite p-groups. We refer the reader
to Borel [4], Bredon [5], Floyd [25] and Hsiang [45] for references on Smith theory.

Quite a lot of progress regarding this question has been obtained in low-dimensional
topology (see for example Morgan [62]) and in smooth topology in arbitrary dimension
(see for example Mundet i Riera [78]). As a first easy example, we remark that it is not
hard to classify finite group actions on closed surfaces. Further progress was made in
low-dimensional symplectic topology (Chen and Kwasik [10]) ruling out symplectic
finite group actions acting trivially on homology on certain symplectic Calabi–Yau
4–manifolds (see also Wu and Liu [109]) by means of tools such as Seiberg–Witten
theory, which are available only in dimension four.

In higher-dimensional symplectic topology,1 while the existence of general symplectic
finite group actions has to the best of our knowledge not been ruled out in any given set-
ting,2 it was shown by Polterovich [72] that nontrivial Hamiltonian finite group actions,
which we refer to as Hamiltonian torsion, on symplectically aspherical manifolds do not
exist. Essentially, the only other constraints on symplectic and Hamiltonian finite group
actions in higher dimensions were obtained by Mundet i Riera [77], showing, roughly
speaking, that finite groups acting in a Hamiltonian way (or symplectically in the simply
connected case) must be approximately abelian: specifically, they satisfy the Jordan
property. In turn, abelian Hamiltonian finite group actions do exist on closed symplectic
manifolds such as toric varieties, which tend to have a lot of pseudoholomorphic curves.
These developments, as well as further results that we describe below, have motivated
Problem 24 from the list of problems that are “appealing in their own right and central
to symplectic topology” in the monograph [59] of McDuff and Salamon. This problem
seeks obstructions to the existence of Hamiltonian torsion related to the scarcity of
pseudoholomorphic curves in the manifold. One of the goals of this paper is to produce
a solution to a close version of Problem 24, proving a result which is, in a way, stronger.

1That is, in dimension 2n� 6.
2See Section 1.2.4, however.
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Another goal is to study the metric rigidity properties of Hamiltonian torsion, also
alluded to in the presentation of this problem. Finally, we prove a topological rigidity
result: all periodic orbits of a Hamiltonian isotopy whose time-one map is torsion must
be contractible.

To motivate Problem 24 further, and to introduce a few important notions, we add that
Hamiltonian actions of cyclic groups on rational ruled symplectic 4–manifolds — that is,
symplectic S2–bundles over S2 — were recently shown to be induced by S1–actions;
see Chen [9] and Chiang and Kessler [11]. However, this is false for general symplectic
4–manifolds; see Remark 7. The strongest restriction to date on manifolds admitting
nontrivial Hamiltonian S1–actions was obtained by McDuff [57], who showed that
all such manifolds must be uniruled, in the sense that at least one genus-zero k–point
Gromov–Witten invariant for k � 3 involving the point class must not vanish. Of
course, rational ruled symplectic 4–manifolds satisfy this condition, with k D 3: they
are strongly uniruled. Either condition implies that these manifolds are geometrically
uniruled: for each !–compatible almost complex structure J and each point p 2M ,
there is a J–holomorphic sphere3 passing through p. Finally, in Shelukhin [93] a new
notion of uniruledness, Fp–Steenrod uniruledness, was introduced for p D 2, and was
generalized to odd primes p > 2 by work in progress of Shelukhin and Wilkins [97];
the quantum Steenrod pth power of the cohomology class Poincaré dual to the point
class is defined and deformed in the sense of not coinciding with the classical Steenrod
pth power. This notion similarly implies geometric uniruledness. It is currently not
known whether it implies uniruledness in the sense of McDuff, but it is expected to
do so; see Seidel [91] and Seidel and Wilkins [92] for first steps in this direction.

This paper proves the first higher-dimensional Hamiltonian no-torsion results since that
of Polterovich, which hold beyond the symplectically aspherical case. Firstly, we prove
that, in addition to symplectically aspherical manifolds, symplectically Calabi–Yau
and negative monotone symplectic manifolds do not admit Hamiltonian torsion. An
elementary argument then shows that if a closed symplectic manifold M admits Hamil-
tonian torsion, then it has a spherical homology class A such that hc1.TM /;Ai> 0

and hŒ!�;Ai > 0; see Corollary 2. Our results have a similar flavor to the result of
McDuff for S1–actions: indeed, negative monotone and Calabi–Yau manifolds are not
geometrically uniruled, and neither are the symplectically aspherical ones.

3This is a smooth map u WCP1
!M satisfying Du ı j D J ıDu for the standard complex structure j

on CP1. Such spheres and their significance in symplectic topology were discovered by Gromov [38]. We
refer to McDuff and Salamon [58] for a detailed modern description of this notion.
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Going far beyond topological restrictions, we further study restrictions on Hamiltonian
torsion in the (positive) monotone case. Using recently discovered techniques, we show
that in this case the existence of nontrivial Hamiltonian torsion implies Fp–Steenrod
uniruledness for certain primes p, and hence geometric uniruledness. This again fits
well with the result of McDuff and in fact provides a partial solution to Problem 24
from the monograph [59] of McDuff and Salamon. Studying the properties of the
quantum Steenrod operations and their relation to Gromov–Witten invariants further —
see Seidel and Wilkins [92] and Wilkins [106; 107] for first inroads in this direction —
might show that our solution is in fact quite complete. Furthermore, we are tempted to
conjecture the following analogue of the result of McDuff.

Conjecture 1 Each closed symplectic manifold with nontrivial Hamiltonian torsion
must be uniruled.

Before addressing further results on the metric properties of Hamiltonian torsion
diffeomorphisms when they exist in the monotone case, we comment on our methods
of proof. The main general idea of the paper is to treat such a diffeomorphism as a
Hamiltonian dynamical system, despite the fact that it exhibits very simple periodic
dynamics. Indeed, quite paradoxically, studying its asymptotic behavior for large
iterations is effective, as it yields new topological and Floer-theoretical properties of
such diffeomorphisms.

Curiously enough, on a more technical level, our arguments involve a recently discov-
ered analogue of Smith theory in filtered Hamiltonian Floer homology (see Seidel [90],
Shelukhin [95] and Shelukhin and Zhao [98]), and related notions of quantum Steenrod
powers (see Shelukhin and Wilkins [97] and Wilkins [106; 107]). Previously these
methods were applied to questions of existence of infinitely many periodic points
(see again Shelukhin and Wilkins [97] and Shelukhin [95]) and, more restrictively, of
obstructions on manifolds to admit Hamiltonian pseudorotations (see Shelukhin [93; 94]
and Çineli, Ginzburg and Gürel [7]). In fact, a more precise general theme of this paper
is that a Hamiltonian diffeomorphism of finite order behaves in many senses like a
counterexample to the Conley conjecture. For instance, the statement of Corollary 2 is
analogous to that of [36, Theorem 1.1] that provides the most general setting wherein
the Conley conjecture is known to hold.

Our third and last series of results studies the metric rigidity of Hamiltonian torsion and
related maps. We start by proving that the spectral norm (see Oh [65], Schwarz [86]
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and Viterbo [104]) of a Hamiltonian torsion element � of order k on a closed rational
symplectic manifold (ie a manifold for which hŒ!�; �2.M /iD � �Z with �> 0) satisfies
 .�/� �=k, and as an immediate consequence, the same estimate applies for the Hofer
norm (see Hofer [40] and Lalonde and McDuff [51]).

More importantly, in our final main result, we prove that in the monotone case, given
� 2 Ham.M; !/ n fidg of order k, ie with �k D id, there exists m 2 Z=kZ such that

(1)  .�m/�
�

3
:

This last result should be considered a Hamiltonian analogue of the celebrated result
of Newman [63] (see also Dress [16] and Smith [100]), the C 0–distance having been
replaced by the spectral distance. Moreover we prove the stronger statement that if
k is prime, then  .�m/� �bk=2c=k for a certain m 2 Z=kZ, and provide a similar
statement in the context of Hamiltonian pseudorotations.

The bound (1) can further be seen to imply Newman’s result in a special case, as
follows. By Shelukhin [96, Theorem C] (see also Kawamoto [47]), when M DCPn

is the complex projective space with the standard symplectic form normalized so that
CP1 has area 1, there is a constant cn, depending only on the dimension, such that for
all � 2 Ham.M; !/, the usual C 0–distance of � to the identity satisfies

dC 0.�; id/� cn .�/:

Hence, if � is of finite order, then by (1) there exists m 2 Z such that

dC 0.�m; id/�
cn

3
:

It would be very interesting to see if the results of this paper can be extended to
the case of Hamiltonian homeomorphisms, as defined in Buhovsky, Humilière and
Seyfaddini [6]. This generalization does not seem to be straightforward because we use
the properties of the linearization of the Hamiltonian diffeomorphism at its fixed points,
as well as Smith theory in filtered Floer homology, which is not in general stable in the
C 0–topology.

We close the introduction by noting that we expect that our results in the monotone
case should extend to the semipositive case, once the relevant results of [95] and [97]
have been generalized to the requisite setting. Since these generalizations would not
considerably differ, in a conceptual way, from the arguments presented in this paper,
but would necessitate more lengthy technical proofs, we defer their investigation to
further publications.

Geometry & Topology, Volume 27 (2023)
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1.2 Main results

We start with the following theorem of Polterovich [72], originally stated in the case
where �2.M /D 0. For the reader’s convenience we include its proof in Section 5.4.

Theorem A (Polterovich) Let .M; !/ be a closed symplectically aspherical sym-
plectic manifold. If G is a finite group , then each homomorphism G! Ham.M; !/ is
trivial.

In this paper we prove a number of additional “no-torsion” theorems of this kind,
going beyond the symplectically aspherical case, and study the metric properties of
Hamiltonian diffeomorphisms of finite order when such obstructions do not hold. Our
conditions on the manifold that imply the absence of Hamiltonian torsion are of two
kinds: the first is purely topological, and the second, perhaps more surprisingly, is in
terms of pseudoholomorphic curves.

1.2.1 Topological conditions The first set of results of this paper is as follows.

Theorem B Let .M; !/ be a closed negative monotone or closed symplectically
Calabi–Yau symplectic manifold. If G is a finite group , then each homomorphism
G! Ham.M; !/ is trivial.

A simple exercise in linear algebra shows that the class of manifolds, which we call
symplectically nonpositive, covered by Theorems A and B can be described concisely
as those closed symplectic manifolds .M; !/ for which

hŒ!�;Ai � hc1.TM /;Ai � 0 for all A 2 �2.M /:

In other words, the following holds.

Corollary 2 If a closed symplectic manifold .M; !/ admits a nontrivial homomor-
phism G!Ham.M; !/ from a finite group , then there exists an A 2 �2.M / such that
hŒ!�;Ai> 0 and hc1.TM /;Ai> 0.

For details of this implication see [36, Proof of Theorem 4.1].

Theorem B follows directly from Theorems C and D below. These two steps essentially
generalize the notion of a perfect Hamiltonian diffeomorphism, ie one that has a finite
number of contractible periodic points of all periods, to the case of compact path-
connected isolated sets of fixed points. We call such an isolated set of fixed points
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of � 2 Ham.M; !/ a generalized fixed point of �. Recall that a fixed point x of a
Hamiltonian diffeomorphism � D �1

H
is called contractible whenever the homotopy

class ˛.x; �/ of the path ˛.x;H / D f�t
H
.x/g for a Hamiltonian H generating � is

trivial. This class does not depend on the choice of Hamiltonian, by a classical argument
in Floer theory. We call a generalized fixed point F of � contractible if all fixed points
x 2 F are contractible. We denote by F the generalized periodic orbit, consisting
of all ˛.x;H / for x 2 F , corresponding to the generalized fixed point F . This is
a subset of the free loop space LM of M . If F is contractible, we show that there
exists a capping xF of F , which is a lift of F to a suitable cover of the connected
component LptM of the loop space consisting of contractible loops. Finally, and
crucially, we introduce the following notion: we call a generalized fixed point F

index-constant if the mean-index �.H; xx/ for xx 2 xF is constant as a function of xx 2 xF
(which is in turn determined by x 2 F and the capping xF ). We refer to Section 2.1.3
for the definition of the mean-index.

We call � 2 Ham.M; !/ a generalized perfect Hamiltonian diffeomorphism if there
exists a sequence kj !1 of iterations satisfying the following two properties: first,
it contains a subsequence li D kji

with li j liC1 for all i ; second, for all j 2 Z>0 the
diffeomorphism �kj has only a finite set, which does not depend on j , of contractible
generalized fixed points, which are all index-constant.

Finally, we call a diffeomorphism � with a finite number of (contractible) generalized
fixed points weakly nondegenerate if for each (contractible) fixed point x of �, the
spectrum of the differential D.�/x at x contains points different from 12C. Using the
existence of !–compatible almost complex structures invariant under a Hamiltonian
diffeomorphism of finite order, we prove the following structural result.

Theorem C Let .M; !/ be a closed symplectic manifold. Then a torsion Hamiltonian
diffeomorphism � 2Ham.M; !/ is a weakly nondegenerate generalized perfect Hamil-
tonian diffeomorphism. In fact , it is Floer–Morse–Bott and its generalized fixed points
are symplectic submanifolds.

While we do not require this for Theorem C, for most of our applications it is sufficient
to assume that � is p–torsion for a prime p, that is, �p D id.

Following the index arguments of Salamon and Zehnder [84], and their generalization
due to Ginzburg and Gürel [34], we prove the following obstruction to the existence of
weakly nondegenerate generalized perfect Hamiltonian diffeomorphisms.

Geometry & Topology, Volume 27 (2023)
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Theorem D Let a closed symplectic manifold .M; !/ be negative monotone or sym-
plectically Calabi–Yau. Then .M; !/ does not admit weakly nondegenerate generalized
perfect Hamiltonian diffeomorphisms.

Together with Theorem C, Theorem D immediately implies Theorem B. In fact, in view
of Cauchy’s theorem for finite groups, to rule out all Hamiltonian finite group actions it
is sufficient to rule out all Hamiltonian torsion of prime order. One can say that, almost
paradoxically, we use the large-time asymptotic behavior of our Hamiltonian system to
study its periodic dynamics! This is the main general idea of this paper.

As easy examples show, generalized perfect Hamiltonian diffeomorphisms do indeed
exist on the manifolds of Theorem D if one drops the weak nondegeneracy assumption.
For example, one can take T 2 D S1 �S1, where S1 DR=Z, to be the standard torus
with .x;y/ denoting a general point, and !st D dx ^ dy the standard symplectic form,
and pick � 2 Ham.T 2; !st/ given by � D �t

H
for t > 0, with H 2 C1.T 2;R/ given

by H.x;y/D cos.2�y/. It is easy to see that the set of contractible periodic points
of � consists precisely of the two isolated sets fy D 0g and

˚
y D 1

2

	
.

1.2.2 Conditions in terms of pseudoholomorphic curves Our second set of results
deals with the class of monotone symplectic manifolds. It is evident that far more than
topological conditions is necessary to rule out Hamiltonian torsion in this case, since
each Hamiltonian S1–manifold, such as CPn for example, admits Hamiltonian torsion.
We formulate our restriction on the existence of Hamiltonian torsion geometrically
as follows. For an !–compatible almost complex structure J on a closed symplectic
manifold .M; !/, we say that the manifold is geometrically uniruled if for each point
p 2M , there exists a nonconstant J–holomorphic sphere u W CP1

!M such that
p 2 im.u/.

Theorem E Let .M; !/ be a closed monotone symplectic manifold that is not geo-
metrically uniruled for some !–compatible almost complex structure J . Then each
homomorphism G! Ham.M; !/, where G is a finite group , is trivial.

This is a corollary of the following more precise result involving the quantum Steenrod
power operations.

Theorem F Let .M; !/ be a closed monotone symplectic manifold that admits a
Hamiltonian diffeomorphism of order d > 1. Then the pth quantum Steenrod power of
the cohomology class � 2H 2n.M IFp/ Poincaré dual to the point class is deformed
for all primes p coprime to d .

Geometry & Topology, Volume 27 (2023)
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Theorem F follows directly from Theorems G and I below.

Theorems E and F provide an obstruction to the existence of Hamiltonian diffeomor-
phisms of finite order in terms of pseudoholomorphic curves. The existence of an
obstruction of this type was conjectured by McDuff and Salamon, and publicized as
Problem 24 in their introductory monograph [59]. Therefore we provide a solution to a
reasonable variant of this problem. Indeed, further investigations into the enumerative
nature of quantum Steenrod operations might prove that our solution is in fact complete
in the framework of monotone symplectic manifolds. Such investigations were initiated
in Seidel and Wilkins [92] and Wilkins [106; 107].

In particular, in the special case where .M; !/ has minimal Chern number N DnC1, we
deduce from Theorem F and the work of Seidel and Wilkins [92], as in Shelukhin [93],
that nontrivial Hamiltonian torsion implies that the quantum product Œpt�� Œpt� does not
vanish. This means that the manifold is strongly rationally connected: it implies strong
uniruledness, and moreover that for each pair of distinct points p1;p2 in M , and each
!–compatible almost complex structure J , there exists a J–holomorphic sphere in M

passing through p1 and p2.

As mentioned above, the proof of Theorem F relies on two steps: Theorems G and I.
These steps are aimed at showing that torsion Hamiltonian diffeomorphisms of closed
monotone symplectic manifolds, which by Theorem C are generalized perfect and
weakly nondegenerate, are moreover homologically minimal in the following sense.
To formulate it precisely, we first discuss a useful technical notion.

Let K be a coefficient field. For a generalized fixed point F of a Hamiltonian diffeo-
morphism  , we define a generalized version HFloc. ;F/ of local Floer homology.
Such notions date back to the original work of Floer [24; 23] and have been revisited a
number of times: for example by Pozniak in [76]. It is naturally Z=2Z–graded.4

We call a Hamiltonian diffeomorphism a generalized K pseudorotation with the se-
quence kj if it is generalized perfect with the sequence kj and, further, HFloc. ;F/¤ 0

for all F 2 �0.Fix. // and the homological count

N. ;K/ WD
X

F2�0.Fix. //

dimK HFloc. ;F/

of generalized fixed points of  D �kj satisfies

N. ;K/D dimK H�.M IK/ for all j 2 Z>0:

4We also define a Z–graded version for a capped generalized 1–periodic point xF lifting F .

Geometry & Topology, Volume 27 (2023)



2842 Marcelo S Atallah and Egor Shelukhin

We recall that usually an Fp pseudorotation is defined analogously, with the sequence
kj D pj�1, and with the additional hypothesis that each F 2 �0.Fix. // for  D �kj

consists of a single point. Unless otherwise stated, a generalized Fp pseudorotation
will be considered with the sequence kj D pj�1.

In view of the discussion in Shelukhin [95; 96], this homological minimality for a
Hamiltonian diffeomorphism  with a finite number of generalized fixed points is
equivalent to the absence of finite bars in the barcode B. / of  , a notion of recent
interest in symplectic topology; see eg Kislev and Shelukhin [48], Polterovich and
Shelukhin [74], Polterovich, Shelukhin and Stojisavljević [75] and Shelukhin [95; 96].
It also implies the equality

Specess.F IK/D Specvis.F IK/

between two homologically defined subsets of the spectrum associated to a Hamiltonian
F 2H generating  . Recall that the spectrum Spec.F / of F is the set of critical values
of the action functional of F . For a coefficient field K, there is a nested sequence of
subsets

Specess.F IK/� Specvis.F IK/� Spec.F /:

Here the essential spectrum Specess.F IK/ is the set of values of all spectral invariants
associated to F , in other words the set of starting points of infinite bars in the barcode
of F . The visible spectrum Specvis.F IK/ is the set of action values of capped (gener-
alized) periodic orbits of F that have nonzero local Floer homology, in other words
the set of endpoints of all bars in the barcode. It is not hard to modify the definitions
of the two homological spectra to include multiplicities, in which case their equality
would be equivalent to homological minimality.

The first step in the proof of Theorem F, which is nontrivial and uses Smith theory in
filtered Floer homology (cf [95; 98]), is the following reduction.

Theorem G Let .M; !/ be a closed monotone symplectic manifold. Suppose that
� 2 Ham.M; !/ is a Hamiltonian diffeomorphism of prime order q � 2. Then:

(i) For each prime p different from q, the q–torsion diffeomorphism � is a weakly
nondegenerate generalized pseudorotation over Fp, with the sequence kj given
by the monotone increasing ordering of the set

fk 2 Z>0 j k ¤ 0 (mod q)g:
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(ii) Moreover , for each Hamiltonian H generating �, and each coefficient field K of
characteristic p coprime to q, we have

Specess.H IK/D Specvis.H IK/;

and for all k coprime to q, we have

Specess.H .k/
IQ/D k �Specess.H IQ/C � �Z:

(iii) Finally, part (i) holds also for p D q, and in part (ii), equalities

Specess.H IK/D Specvis.H IK/;

Specess.H .k/
IK/D k �Specess.H IK/C � �Z

hold with arbitrary coefficient field K, and moreover ,

Specvis.H IK/D Spec.H /:

The proof of Theorem G appears in Section 5.9. For the moment, we briefly explain
the approach used to prove Theorem G(i). Following the main theme of the proof
of Theorem C, we use information about large iterations of H to study the periodic
Hamiltonian diffeomorphism �D�1

H
that it generates. More precisely, let D �k with

k coprime to q. Combining the theory of barcodes of Hamiltonian diffeomorphisms
(see Proposition 23), and Smith-type inequalities in filtered Floer homology (see
Theorem N), we observe that for the bar-lengths

ˇ1. ;Fp/� � � � � ˇK. ;Fp/. ;Fp/

of  , we have the following inequality. Set

ˇtot. ;Fp/D ˇ1. ;Fp/C � � �CˇK. ;Fp/. ;Fp/

to be the total bar-length of  . Then

ˇtot. 
pm

;Fp/� pm
�ˇtot. ;Fp/:

However, ˇtot. 
pm

;Fp/ is bounded, since it can take at most q�1 values. This implies

ˇtot. ;Fp/D 0;

which in turn implies part (i), by the theory of barcodes; see Proposition 23.

Remark 3 We separate part (iii) of Theorem G because it requires a different proof, re-
lying on Proposition 5 below. The first statement of part (iii) is obtained via Proposition 5
by classical Smith theory combined with the classical homological Arnol’d conjecture,
outlined in Chiang and Kessler [11, Remark 7.1] with details for p D 2. One could
also obtain this statement by a suitable generalization of Theorem N on Smith theory
in filtered Floer homology, which is, however, out of the scope of this paper.
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Remark 4 When the order q is not prime, a version of Theorem G still holds. We leave
its somewhat lengthier formulation to the interested reader, since we do not require it
for our arguments, only observing that part (i) holds under the assumption that p does
not divide q, and the sequence of iterations is given by fk 2 Z>0 j gcd.k; q/D 1g and
part (ii) holds as stated.

The following statement is a key component of the proof of Theorem G(iii). It relies
on the generalization of the Morse–Bott theory of Pozniak [76, Theorem 3.4.11] to the
situation with signs and orientations, as in for example Schmaschke [85, Chapter 9],
Fukaya, Oh, Ohta and Ono [28, Chapter 8], or Wehrheim and Woodward [105]. How-
ever, it is not entirely straightforward, because as classical examples show, it is false
in the general Floer–Morse–Bott situation, while in our case it holds because of the
existence of special !–compatible almost complex structures adapted to the situation.

Proposition 5 Let .M; !/ be a closed symplectic manifold , and � 2 Ham.M; !/

a Hamiltonian diffeomorphism of finite order d � 2. Let F be a path-connected
component of the fixed-point set of �. Finally , let R be a commutative unital ring.
Then the local Floer homology of � at F with coefficients in R satisfies

HFloc.�;F/ŠH.F IR/:

The proof of Theorem G has the following by-product, which is a new analogue, for
Hamiltonian torsion, of the classical consequence of Floer theory, whereby the map
�1.Ham.M; !//! �1.M / is trivial.

Theorem H Let .M; !/ be a closed monotone symplectic manifold , and let � in
Ham.M; !/ be a Hamiltonian diffeomorphism of finite order. Then all the fixed points
of � are contractible.

The second step in the argument proving Theorem F is the following statement. It
essentially follows the arguments of Shelukhin [94] and Shelukhin and Wilkins [97].

Theorem I Let .M; !/ be a closed monotone symplectic manifold that admits a
weakly nondegenerate generalized Fp pseudorotation for a prime p � 2. Then the
pth quantum Steenrod power of the cohomology class � 2H 2n.M IFp/ Poincaré dual
to the point class is deformed.

Theorems G and I immediately imply Theorem F and therefore, by a Gromov compact-
ness argument, Theorem E.
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1.2.3 Applications to actions of Lie groups and lattices To conclude the discussion
of our first two sets of results, we discuss their implications to the question of existence
of Hamiltonian actions of possibly disconnected Lie groups, and lattices in Lie groups,
on closed symplectic manifolds.

A well-known result of Delzant [15] (see [73] for an alternative argument) implies
that a simple Lie group can only act nontrivially on a closed symplectic manifold if
it is compact. A compact zero-dimensional Lie group is finite, whence Theorems B
and E provide topological and geometrical obstructions to their actions. The identity
component K0 of a compact Lie group K of positive dimension is a compact connected
Lie group of positive dimension, and as such admits a maximal torus T Š .S1/k

of positive dimension, whose conjugates cover the whole group K0. Therefore, the
absence of Hamiltonian torsion, as in Theorems A, B, E and F, implies that a nontrivial
K–action yields a nontrivial K0–action, since otherwise it would factor through K=K0,
which is finite. This in turn yields a nontrivial T –action and a fortiori a nontrivial
S1–action. A celebrated result of McDuff [57] then shows that nontrivial S1–actions
imply uniruledness in the sense of k–point genus-zero Gromov–Witten invariants, and
hence geometric uniruledness. We therefore obtain the following result.

Corollary 6 Let .M; !/ be a closed positive monotone symplectic manifold that
is not geometrically uniruled , or a negative monotone or symplectically Calabi–Yau
symplectic manifold. Then each homomorphism K! Ham.M; !/ for a compact Lie
group K must be trivial.

Moreover, by a simple continuity argument, a nontrivial continuous S1–action implies
a nontrivial Z=pZ–action for each prime p. Therefore Theorems B and E imply the
above corollary for symplectically aspherical, symplectically Calabi–Yau, negative
monotone, or monotone symplectic manifolds directly, without relying on the result
of McDuff. Moreover, Theorem F also implies that if a positive monotone symplectic
manifold admits a nontrivial Hamiltonian S1–action, it must be Fp–Steenrod uniruled
for all primes p. It is seen from examples due to Seidel and Wilkins [92] that there exist
closed monotone symplectic manifolds that are uniruled in the sense of Gromov–Witten
invariants, and yet not Fp–Steenrod uniruled for certain primes p. More precisely, the
monotone blowup M of CP2 at 6 points is not F2–Steenrod uniruled, but is evidently
uniruled in the Gromov–Witten sense.

The following discussion shows that for a certain nonmonotone 6–point blowup of
CP2 there exists a Hamiltonian involution that cannot be inscribed into an S1–action.
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Note that [92, Example 1.7] and Theorem F imply that the monotone blowup M admits
no Hamiltonian torsion of order other than 2. It would be interesting to construct a
nontrivial Hamiltonian involution of M or prove that it does not exist.

Remark 7 In [12], Chiang and Kessler gave an example of a symplectic involution,
ie � 2 Symp.M0/ such that �2 D id, of a certain nonmonotone 6–point blowup M0

of the standard CP2, with blowup sizes 1
2
; 1

4
; 1

4
; 1

4
; 3

16
; 1

8
. This involution belongs

to the symplectic Torelli group Symph.M0/ of symplectomorphisms acting trivially
on homology, and has the property that it does not belong to any S1–subgroup of
Ham.M0/. Li, Li and Wu [53] showed in particular that the mapping-class group
�0 Symph.M0/ is isomorphic to the quotient G6 D P6.S

2/=Z of the spherical pure
braid group P6.S

2/ on 6 strands by its center ZŠZ=2Z. It is well known that G6 has
no torsion; see González-Meneses [37] for a beautiful account of related subjects. This
implies that � 2 Symp0.M0/DHam.M0/, showing that � is a Hamiltonian involution
that does not belong to any S1–subgroup.

We note that McDuff’s theorem was proven by showing that certain loops of Hamiltonian
diffeomorphisms in a blow-up of the manifold are nontrivial, and detectable by Seidel’s
representation [87]. It would be interesting to investigate the existence of nontrivial
Hamiltonian loops associated to Hamiltonian diffeomorphisms of finite order. For a
Hamiltonian H generating � 2Ham.M; !/ of order d , the Hamiltonian H .d/ generates
a loop homotopic to f.�t

H
/dg. The noncontractibility of this loop is not obvious since

for a rotation �2�=3 of S2 by angle 2�=3 about the z–axis, the loop f�3
t �2�=3

g is not
contractible in Ham.S2; !st/, while the loop f�3

�t �4�=3
g is contractible therein, yet

��4�=3 D �2�=3.

Finally we can argue, following the work of Polterovich [72] on the Hamiltonian
Zimmer conjecture, that SL.k;Z/ for k � 2 has no nontrivial Hamiltonian actions on
symplectically aspherical, symplectically Calabi–Yau, negative monotone, or monotone
and not geometrically uniruled closed symplectic manifolds. Indeed, it is well known
that SL.k;Z/ for k � 2 is generated by elements of finite order. We remark, however,
that the case of finite-index subgroups of SL.k;Z/ with k � 3 is much more difficult
and seems to be currently out of reach of our methods.

1.2.4 Symplectic actions It makes sense to study finite group actions by more general
symplectic diffeomorphisms than Hamiltonian ones. In particular, a classical statement
in the topology of hyperbolic surfaces is that diffeomorphisms of finite order cannot be
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isotopic to the identity. Further progress in this direction was made in low-dimensional
symplectic topology; see Chen [9], Chen and Kwasik [10] and Wu and Liu [109]. In
this section we collect remarks and results in the higher-dimensional setting.

Let us denote by Symp.M; !/ the group of diffeomorphisms preserving the symplec-
tic form, and by Symp0.M; !/ its identity component. Of course Ham.M; !/ is a
subgroup of Symp0.M; !/.

We first make the observation that if Ham.M; !/ and Symp0.M; !/ coincide, Hamil-
tonian no-torsion theorems yield no-torsion theorems for elements of Symp0.M; !/.
Let �! �H 1.M;R/ be the well-known flux group, defined as the image of the map
Flux W�1.Symp.M; !//!H 1.M;R/ given by integrating ! over the two-cycle traced
by a loop of symplectomorphisms applied to one-cycles. It is a finitely generated
abelian group. The exact sequence

1! Ham.M; !/! Symp0.M; !/!H 1.M;R/=�!! 1

therefore implies that Ham.M; !/ D Symp0.M; !/ if and only if H 1.M;R/ D 0.
Second, following Polterovich [72, Example 1.3.C], by the same exact sequence we
note that whenever �! D 0, all torsion elements in Symp0.M; !/ must in fact be
Hamiltonian. By a result of McDuff [56, Theorem 1], this happens for homologically
monotone and negative monotone symplectic manifolds, ie when Œ!� D � � c1.TM /

for some � ¤ 0 as elements of H 2.M;R/. By a result of Kędra [49], this also holds
for closed symplectically aspherical manifolds .M; !/, ie when Œ!� D 0 on �2.M /,
of nonvanishing Euler characteristic or when the center of �1.M / is trivial; see also
Kędra, Kotschick and Morita [50].

We expect that the methods developed in this paper will yield new results on torsion in
symplectomorphism groups and plan to investigate this in a further publication.

1.2.5 Metric properties Our third and final set of results studies the metric properties
of Hamiltonian torsion diffeomorphisms, in cases that are not ruled out by our previous
arguments, for example on CPn.

Recall that the spectral pseudonorm of a Hamiltonian H 2C1.S1�M;R/ on a closed
symplectic manifold .M; !/ is defined in terms of Hamiltonian spectral invariants as

 .H /D c.ŒM �;H /C c.ŒM �;H /;

and the spectral norm of � 2 Ham.M; !/ is set as

 .�/D inf
�1

H
D�

 .H /:
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We refer to Section 2 for a more in-depth discussion of this interesting notion, remarking
for now that this is a conjugation-invariant and nondegenerate norm on Ham.M; !/,
yielding a bi-invariant metric

d .f;g/D  .gf
�1/:

This was shown in large generality in Oh [65], Schwarz [86] and Viterbo [104].

Furthermore, whenever defined,  .�/ provides a lower bound on the celebrated Hofer
distance dHofer.�; id/, defined as

dHofer.�; id/D inf
�1

H
D�

Z 1

0

max
M

H.t;�/�min
M

H.t;�/ dt I

see Hofer [40] and Lalonde and McDuff [51]. Finally in Buhovsky, Humilière and
Seyfaddini [6], Kawamoto [47] and Shelukhin [96] it was shown, in various degrees of
generality, that  .�/ is bounded by the C 0–distance dC 0.�; id/ of � to the identity, at
least in a small dC 0–neighborhood of the identity.

These and numerous other recent results show that the spectral norm  is an important
measure of a Hamiltonian diffeomorphism. Here, we provide lower bounds on  .�/,
under the assumption that � is of finite order. Our first result is relatively general
and quite straightforward, and follows essentially from the homogeneity of the action
functional under iteration. However, it underlines the fact that the finite order condition
implies certain metric rigidity.

Theorem J Let .M; !/ be a closed rational symplectic manifold , with rationality
constant � > 0, ie hŒ!�; �2.M /i D � �Z. Suppose that � 2 Ham.M; !/ is a nontrivial
Hamiltonian diffeomorphism of order d , ie �d D id. Then  .�/� �=d .

As a further consequence of Theorem G, which requires considerably more complex
methods, we obtain the following analogue of Newman’s theorem for the spectral
norm of Hamiltonian torsion elements. This result is the first nontrivial result of
its kind in symplectic topology, and is implicitly conjectured in the formulation of
[59, Problem 24].

Theorem K Let .M; !/ be a closed monotone symplectic manifold of rationality
constant � > 0. Consider a Hamiltonian diffeomorphism � 2 Ham.M; !/ of order
d > 1. Then there exists m 2 Z=dZ such that

 .�m/�
�

3
:
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Here the coefficients are in an arbitrary field K. In fact , if d D p is prime , we prove
the stronger statement that there exists m 2 Z=pZ such that

 .�m/�
� � bp=2c

p
:

The key notion in the proof of this result is a new invariant of a Hamiltonian diffeomor-
phism � 2Ham.M; !/, which we call the spectral length l.�;K/ of � with coefficients
in a field K. It is defined as the minimal diameter of Specess.H IK/\ I over intervals
I D .a� �; a��R of length �, where H is a Hamiltonian with �1

H
D �. In particular,

we show that this minimum does not depend on the choice of the Hamiltonian H . We
show the key property that l.�;K/�  .�;K/ and that, in our case, the spectral length
behaves in a controlled way with respect to iterations. By a combinatorial analysis of
our situation we consequently deduce Theorem K. We expect l.�;K/ to have additional
applications in quantitative symplectic topology, which we plan to investigate.

Theorem K is generally speaking sharp, as can be seen from the rotation � of S2 by
2�=3 about the z–axis. In this case �3 D id and  .�/ D  .�2/ D  .��1/ D �=3,
where � is the area of the sphere. Observe moreover that the lower bound in Theorem K
does not depend on the order of �. In particular if d D 2, then Theorem J gives the
stronger lower bound  .�/� �=2, which is again sharp for the �–rotation of S2 about
the z–axis. We recall that Newman’s theorem is a directly analogous assertion, but for
the C 0–distance to the identity, in the setting of homeomorphisms of smooth manifolds.
In contrast to our result, the constant in Newman’s theorem is not explicit.

Finally, we remark that analogous statements hold for generalized Fp pseudorotations �
with sufficiently large admissible sequences. For example, for the sequence kj Dpj�1,
we get the lower bound  .�kj / � �=.pC 1/ for some j 2 Z>0, which is saturated
by the rotation of S2 by 2�=.pC 1/ about the z–axis. For the sequence kj D j , we
obtain the following lower bound, which is saturated by any 2��–rotation on S2 about
the z–axis, where � 62Q.

Theorem L Let � 2 Ham.M; !/ be a generalized K pseudorotation with sequence
kj D j on a closed monotone symplectic manifold .M; !/ with rationality constant �.
Then

sup
j2Z>0

 .�kj /�
�

2
;

the coefficients being taken in K.
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This result is new in this generality even for strongly nondegenerate pseudorotations.
Moreover, Theorem L applies to irrational elements of effective Hamiltonian S1–
actions, and Theorem K applies to rational elements. In particular, by considering
the element

�
1
2

�
2 S1 DR=Z, we obtain that the Hofer length of such a Hamiltonian

S1–action is at least �. In the case of semifree S1–actions, this lower bound can be
deduced from McDuff and Slimowitz [60], where it is also proven that the S1–action
is Hofer length-minimizing among Hamiltonian loops in the same free homotopy class.
Our results do not prove such homotopical minimality. However, they do apply in the
case where the action is not semifree, where no such results are known. In fact such
Hamiltonian loops may well be nullhomotopic; see also Karshon and Pearl [46] for
more general shortening results in this case. Finally, we observe that in the special
case where .M; !/ is a complex projective space, a similar result to Theorem L can be
obtained in a different way by following the methods of Ginzburg and Gürel [35].

2 Preliminary material

2.1 Basic setup

In this section, we recall established aspects of the theory of Hamiltonian diffeo-
morphisms on symplectic manifolds. Throughout the article, .M; !/ denotes a 2n–
dimensional closed symplectic manifold.

Definition 8 (monotone, negative monotone and symplectically Calabi–Yau) Suppose
that the cohomology class of the symplectic form ! is proportional to the first Chern
class, ie

Œ!�D � � c1.TM /

for some � ¤ 0, on the image H S
2
.M IZ/ of the Hurewicz map �2.M /!H2.M IZ/.

If � < 0 we call .M; !/ negative monotone, and if � > 0 we call it (positive) monotone.
If the first Chern class c1.TM / vanishes on the image of the Hurewicz map, we say
that .M; !/ is symplectically Calabi–Yau.

The symplectic manifold .M; !/ is called rational whenever P! D hŒ!�;H S
2
.M IZ/i

is a discrete subgroup of R. If P! ¤ 0, then P! D � �Z for � > 0, which we call the
rationality constant of .M; !/. If P! D 0 we call .M; !/ symplectically aspherical.5

5In the literature the additional condition hc1.TM /;H S
2
.M IZ/i D 0, which we do not require, is often

imposed. This condition allows one to introduce a Z–grading on the Floer complex, which we do not
require once P! D 0.
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Finally we recall that the minimal Chern number of .M; !/ is the index

N DNM D ŒZ W I �

in Z of the subgroup I D im
�
c1.TM / W �2.M /! Z

�
. Namely, ŒZ W I �D jZ=I j is the

cardinality of the quotient group Z=I .

2.1.1 Hamiltonian isotopies and diffeomorphisms We next consider normalized
1–periodic Hamiltonian functions H 2 H � C1.S1 �M;R/, where H is the space
of Hamiltonians normalized so that H.t;�/ has zero !n–mean for all t 2 Œ0; 1�. For
each H 2H we have the corresponding time-dependent vector field X t

H
defined by

the relation !.X t
H
; � / D �dHt . In particular, to each Hamiltonian function we can

associate a Hamiltonian isotopy f�t
H
g induced by X t

H
and its time-one map �H D �

1
H

.
We omit the H from this notation whenever it is clear from context. Such maps �H are
called Hamiltonian diffeomorphisms and they form a group denoted by Ham.M; !/.

For a Hamiltonian diffeomorphism � 2Ham.M; !/, we denote the set of its contractible
fixed points by Fix.�/. Contractible means the homotopy class ˛.x; �/ of the path
˛.x;H /D f�t

H
.x/g for a Hamiltonian H 2H generating � is trivial. This class does

not depend on the choice of Hamiltonian, by a classical argument in Floer theory. We
write x.k/ for the image of x 2 Fix.�/ under the inclusion Fix.�/� Fix.�k/.

We denote by H .k/ 2 C1.S1 �M;R/ the k th iteration of a Hamiltonian function H ,
given by H .k/.t;x/D kH.kt;x/. Note that �H .k/ D �k

H
. There is a bijective corre-

spondence between Fix.�H / and contractible 1–periodic orbits of the isotopy f�t
H
g,

thus for x 2 Fix.�H /, we denote by x.t/ the 1–periodic orbit given by x.t/D �t
H
.x/

and, similarly, by x.k/.t/ the 1–periodic orbit given by x.k/.t/D �t
H .k/.x.k//.

2.1.2 The Hamiltonian action functional Let x W S1!M be a contractible loop. It
is then possible to extend this map to a capping of x, namely, a map xx W D2!M such
that xxjS1 D x. Let LptM denote the space of contractible loops in M and consider the
equivalence relation on capped loops given by

.x; xx/� .y; xy/ () x D y and xx # .�xy/ 2 ker.Œ!�/\ ker.c1/;

where xx # .�xy/ stands for gluing the disks along their boundaries with the orienta-
tion of xy reversed. Here ker.Œ!�/ and ker.c1/ denote the kernels of the homomor-
phisms H S

2
.M IZ/ ! R induced by Œ!� and c1.TM /. The quotient space zLptM

of capped loops by the above equivalence relation is a covering of LptM with the
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group of deck transformations isomorphic to � D H S
2
.M IZ/=

�
ker.Œ!�/\ ker.c1/

�
.

Note that if .M; !/ is positive or negative monotone or symplectically Calabi–Yau,
then ker.Œ!�/\ ker.c1/D ker.Œ!�/, whence � DH S

2
.M IZ/= ker.Œ!�/. Note also that

� Š �2.M /=
�
ker.Œ!�0/ \ ker.c0

1
/
�
, where the maps Œ!�0; c0

1
W �2.M / ! R are the

compositions of Œ!� and c1 with the Hurewicz homomorphism �2.M /!H S
2
.M IZ/.

We write .x; xx/, or simply xx, for the equivalence class of the capped loop. With this
notation, to each A 2 � we associate the deck transformation sending a capped loop xx
to xx #A. We define the Hamiltonian action functional AH W zLptM !R of a 1–periodic
Hamiltonian H by

AH .xx/D

Z 1

0

H.t;x.t// dt �

Z
xx

!:

Observe that the critical points of the Hamiltonian action functional are exactly .x; xx/
for x a contractible 1–periodic orbit satisfying the equation x0.t/ D X t

H
.x.t//. We

denote by O.H / the set of such orbits, and by zO.H / the set of critical points of AH . The
action spectrum of H is defined as Spec.H /DAH . zO.H //. We remark, following [86],
that in the rational case the action spectrum is a closed nowhere-dense subset of R. In
addition, if A 2 � then

AH .xx # A/DAH .xx/�

Z
A

!;

and for xx.k/, the k th iteration of xx with the naturally inherited capping, we have

AH .k/.xx.k//D kAH .xx/:

Definition 9 (nondegenerate and weakly nondegenerate orbits) A 1–periodic orbit x

of H is called nondegenerate if 1 is not an eigenvalue of the linearized time-one map
D.�1

H
/x.0/ at x.0/. We call x weakly nondegenerate if there exists at least one eigen-

value of D.�1
H
/x.0/ different from 1. We say that a Hamiltonian H is nondegenerate

(resp. weakly nondegenerate) if all its 1–periodic orbits are nondegenerate (resp. weakly
nondegenerate).

The nondegeneracy of an orbit x of H is equivalent to

graph.�H /D f.x; �H .x// j x 2M g

intersecting the diagonal �M �M �M transversely at .x.0/;x.0//. Following [84],
for any Hamiltonian H and � > 0, there exists a nondegenerate Hamiltonian H 0

satisfying kH �H 0kC 2 <�. This fact is key in the definition of filtered Floer homology
of degenerate Hamiltonians and for local Floer homology.
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2.1.3 Mean-index and the Conley–Zehnder index Following [84; 34], the mean-
index �.H; xx/ of a capped orbit xx of a possibly degenerate Hamiltonian H is a real
number measuring the sum of the angles swept by certain eigenvalues of fD.�t

H
/x.t/g

lying on the unit circle. Here a trivialization induced by the capping is used in order
to view fD.�t

H
/x.t/g as a path in Sp.2n;R/. One can show that for the time-one

map � D �H generated by the Hamiltonian H , the mean-index depends only on the
class �z of f�t

H
gt2Œ0;1� in the universal cover eHam.M; !/, making the notation �.�z; xx/

suitable. In addition, the mean-index depends continuously on �z in the C 1–topology
and on the capped orbit, and it behaves well with iterations,

�.�zk ; xx.k//D k ��.�z; xx/:

Meanwhile, the Conley–Zehnder index CZ.H; xx/ of a nondegenerate capped 1–periodic
orbit xx is integer-valued, and roughly measures the winding number of the abovemen-
tioned eigenvalues. Once again, the index only depends on �z, so we can also write
CZ.H; xx/ D CZ.�z; xx/. We shall use the same normalization as in [34], namely,
CZ.H; xx/D n if x is a nondegenerate maximum of an autonomous Hamiltonian H

with small Hessian and xx is the constant capping. We shall omit the H or �z in the
notation when it is clear from the context. We remark that for an element A 2 � ,

�.xx # A/D�.xx/� 2hc1.TM /;Ai and CZ.xx # A/D CZ.xx/� 2hc1.TM /;Ai:

Also, in the case that xx is nondegenerate, we have

(2) j�.xx/�CZ.xx/j< n:

Following [79; 73; 18], we observe that a version of the Conley–Zehnder index can
be defined even in the case where the capped orbit is degenerate. It is called the
Robbin–Salamon index, and it coincides with the usual Conley–Zehnder index in the
nondegenerate case. Furthermore, we note that the mean-index can be equivalently
defined by

(3) �.�zH ; xx/D lim
k!1

1

k
CZ.�zkH ; xx

.k//;

where we are slightly abusing notation in the sense that CZ here means the Robbin–
Salamon index so as to include the degenerate case. The limit in (3) exists, as the
Robbin–Salamon index is a quasimorphism CZ W eSp.2n;R/ ! R; see eg [14] and
[18, Section 3.3.4]. In particular, as can be seen directly from its definition in [84],
the mean-index is induced by a homogeneous quasimorphism � W eSp.2n;R/!R.
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Moreover, this map is continuous, and satisfies the additivity property

�.ˆ‰/D�.ˆ/C�.‰/

for all ˆ 2 �1.Sp.2n;R//� eSp.2n;R/ and all ‰ 2 eSp.2n;R/.

2.2 Floer theory

Floer theory was first introduced by A Floer [21; 22; 23] as a generalization of the Morse–
Novikov homology for the Hamiltonian action functional defined above. We refer
to [67] for details on the constructions described in this subsection, and to [1; 88; 110]
for a discussion of canonical orientations.

2.2.1 Filtered and total Floer homology We review the construction of filtered
Floer homology in order to recall some basic properties and set notation.

Let H be a nondegenerate 1–periodic Hamiltonian on a rational symplectic manifold
.M; !/ and K a fixed base field. For a 2 RnSpec.H / and fJt 2 J .M; !/gt2S1 a
generic loop of !–compatible almost complex structures, set

CFk.H IJ /
<a
D

nX
�xx � xx

ˇ̌
xx 2 zO.H /; CZ.xx/D k; �xx 2K; AH .xx/ < a

o
;

where #f�xx ¤ 0 j AH .xx/ > cg < 1 for every c 2 R. Intuitively, it is the vector
space over K generated by the critical points of the Hamiltonian action functional
of filtration level < a. The graded K–vector space CF�.H;J /<a is endowed with
the Floer differential dH IJ , which is defined as the signed count of isolated solutions
(quotiented out by the R–action) of the asymptotic boundary value problem on maps
u WR� S1!M defined by the negative gradient of AH ; see [83; 84]. In other words,
the boundary operator counts the finite-energy solutions to the Floer equation,

@u

@s
CJt .u/

�
@u

@t
�X t

H .u/

�
D 0 such that E.u/D

Z
R

Z
S1

@u@s
2

dt ds <1;

which converge as s tends to ˙1 to periodic orbits x� and xC such that the capping
xx� # u is equivalent to xxC and CZ.xx�/�CZ.xxC/D 1. In this case the Floer trajectory
u satisfies E.u/ D AH .xx�/ � AH .xxC/. We thus obtain the filtered Floer chain
complex .CF�.H IJ /<a; dH IJ /, which is a subcomplex of the total Floer chain complex
(corresponding to aDC1). Furthermore, for an interval I D .a; b/ with a< b and
a; b 2 .RnSpec.H //[f˙1g, we define the Floer complex in the action window I as
the quotient complex

CF�.H IJ /I D CF�.H IJ /<b=CF�.H IJ /<a;
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where CF�.H IJ /<�1 D 0. The resulting homology of this complex HF�.H /I is the
Floer homology of H in the action window I and it is independent of the generic choice
of almost complex structure J . So the (total) Floer homology of H can be obtained
by setting aD�1 and b DC1. We note that in the positive and negative monotone
case CF�.H IJ / is naturally a module over the Novikov field ƒK DKŒŒq�1; q� with q

a variable of degree 2N . Indeed we define q�1 � xx D xx # A0 for A0 the generator of �
with hc1.TM /;A0i D N , and extend it to a module structure in the natural way. In
the Calabi–Yau case, CF�.H IJ / is a module over the Novikov field

ƒK;! D

nX
aiT

�i
ˇ̌
ai 2K; �i 2 P! ; �i!1

o
:

While we shall not use it in the paper, we remark that in the general case, it is a module
over the Novikov field

ƒK;!;c1
D

nX
aiT

Ai
ˇ̌
ai 2K; Ai 2 �; !.Ai/!1

o
:

Observe that by interpolating between distinct Hamiltonians through generic families
and writing the Floer continuation map, where the Hamiltonian perturbation term
and the almost complex structure depend on the R–coordinate, one can show that
HF�.H / does not depend on the Hamiltonian, and HF�.H /I depends only on the
homotopy class of f�t

H
gt2Œ0;1� in the universal cover eHam.M; !/ of the Hamiltonian

group Ham.M; !/. Also, when M is rational the above construction extends by a
standard continuity argument to degenerate Hamiltonians.

Remark 10 Theorems B, D and J partially deal with negative monotone or general
spherically rational symplectic manifolds. It is important to emphasize that for our
arguments to apply to this case in full generality, we must make use of the machinery
of virtual cycles to guarantee that the Floer differential is well defined. In this case,
the ground field K should be of characteristic zero. Our arguments are not sensitive
to the specific approach to questions of transversality. We refer to [33; 55; 28; 80]
for early works on the subject, subsequently augmented in [32, Chapters 15–20; 31,
Section 9; 30, Section 8; 29, Section 19]. We refer to [32, Chapter 1.4] for an overview
of other approaches to virtual fundamental cycles. This includes the theory of polyfolds
initiated in [42; 43; 44]; see [20] for a recent survey. We also note that [69] provides
foundations of Hamiltonian Floer theory in full generality. Furthermore, we mention
the following cases where classical transversality techniques are applicable. First, if
.M; !/ is a semipositive6 symplectic manifold — that is, if .M; !/ is symplectically

6The terminology “weakly monotone” also appears in the literature for the same notion.
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aspherical, symplectically Calabi–Yau, positive monotone, or if the minimal Chern
number of .M; !/ is N � n�2 — then classical transversality applies by [41]. Second,
if the manifold is homologically rational, ie the symplectic form can be scaled so that
all of its periods are integers, then classical transversality applies by [8] following [13].

2.2.2 The irrational case In this paper we also consider the case in which the
manifold M is symplectically Calabi–Yau, which includes the possibility of it being
irrational. In this case we have to work a little harder if H is degenerate since the
continuation argument above does not work as before, as nonspectral a; b for H do
not necessarily remain nonspectral even for arbitrarily small perturbations H1 of H .
Moreover, the resulting homology groups depend on the choice of nondegenerate
perturbation H1. We shall follow [39] to work around this issue.

For a fixed Hamiltonian H and action window I D .a; b/ with a < b, where a; b 2

.R n Spec.H //[ f˙1g, consider the set of nondegenerate perturbations zH whose
action spectra do not include a and b and H � zH , ie H.t;x/� zH .t;x/ for all x 2M

and t 2 S1. Note that such perturbations zH of a mean-normalized H will in general
not be mean-normalized. However, this does not present an issue for our purposes.
Observe that � induces a partial order in the set of perturbations. In addition, by
considering a monotone decreasing homotopy zH s from zH 0 to zH 1, one obtains an
induced homomorphism between the Floer homology groups. These give rise to
continuation maps HF�.H 0/I ! HF�.H 00/I whenever H 00 �H 0. Therefore, we can
define the filtered Floer homology of H by taking the direct limit

HF�.H /I D lim
��!

HF�.H 0/I

over the homology groups of the perturbations satisfying the aforementioned conditions.
We remark that in the case where H is nondegenerate or M is rational, this definition
coincides with the usual filtered Floer homology groups.

2.2.3 Local Floer homology In this section we shall follow [34] in order to briefly
review the construction of the local Floer homology of a Hamiltonian H at a capping xx
of an isolated 1–periodic orbit x.

Since xx is isolated we can find an isolating neighborhood U of x in the extended
phase-space S1 �M whose closure does not intersect the image f.t;y.t//gt2Œ0;1� of
any other orbit y of H . For a sufficiently C 2–small nondegenerate perturbation H 0

of H , the orbit x splits into finitely many 1–periodic orbits O.H 0;x/ of H 0, which
are contained in U and whose cappings are inherited from xx. We denote by O.H 0; xx/
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the capped 1–periodic orbits xx splits into. Moreover, we can also guarantee that any
Floer trajectory and any broken trajectory between capped orbits in O.H 0; xx/ are
contained in U . For a base field K we consider the vector space CF�.H; xx/ generated
by O.H 0; xx/, which by the above observation naturally inherits a Floer differential
and a grading by the Conley–Zehnder index. The homology of this chain complex
is independent of the choice of the perturbation H 0 once it is close enough to H ,
and it is called the local Floer homology of H at xx; it is denoted by HFloc

� .H; xx/.
This group depends only on the class �z of f�t

H
g in the universal cover eHam.M; !/,

and the capped orbit xx. Namely, homotopic paths have choices of cappings of orbits
corresponding to a fixed point x 2 Fix.�/ in bijection, and the corresponding groups
are canonically isomorphic. Hence we write HFloc

� .H; xx/D HFloc
� .�
z; xx/. If we ignore

the Z–grading, then the group depends only on � D �1
H

and x 2 Fix.�/. In this case,
we write HFloc.�;x/ for the corresponding local homology group, which is naturally
only Z=.2/–graded.

Let xx be a capped 1–periodic orbit of a Hamiltonian H . We define the support
of HFloc

� .H; xx/ to be the collection of integers k such that HFloc
k
.H; xx/ ¤ 0. By

the continuity of the mean-index and by equation (2), it follows that HFloc
� .H; xx/ is

supported in the interval Œ�.xx/ � n; �.xx/C n�. One can show that if x is weakly
nondegenerate then HFloc

� .H; xx/ is actually supported in .�.xx/� n; �.xx/C n/. We
shall explore the idea behind the proof of this second fact later as we use the same
argument to prove a similar claim in slightly greater generality. Namely, we extend it
to an isolated compact path-connected family of contractible fixed points.

2.3 Quantum homology and PSS isomorphism

In the present section we describe the quantum homology of a symplectic manifold. It
might be helpful to think of it as the Hamiltonian Floer homology in the case where
the Hamiltonian is a C 2–small time-independent Morse function. Alternatively, one
may consider it as the cascade approach [26] to Morse homology for the unperturbed
symplectic area functional on the space zLptM . For a more detailed exposition of these
subjects we refer to [52; 67; 89].

2.3.1 Quantum homology Fix a ground field K. Consider the Novikov field ƒD
ƒKDKŒŒq�1; q� of .M; !/ in the positive and negative monotone cases, where deg.q/D
2N and ƒDƒK;! in the Calabi–Yau case. We set

QH.M /DQH.M;K/DH�.M Iƒ/
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as a ƒ–module. This module has the structure of a graded-commutative unital algebra
over ƒK whose product, denoted by �, is defined in terms of 3–point genus-zero
Gromov–Witten invariants [54; 58; 81; 82; 108]. It can be thought of as a deformation
of the usual intersection product on homology. As in the classical homology algebra,
the unit for this quantum product is the fundamental class ŒM � of M .

2.3.2 Piunikhin–Salamon–Schwarz isomorphism Under our conventions for the
Conley–Zehnder index, one obtains a map

PSS WQH�.M /! HF��n.H /

by counting (for generic auxiliary data) certain isolated configurations. More precisely,
the configurations considered consist of negative gradient trajectories  W .�1; 0�!M

of a generic Morse–Smale pair7 incident at  .0/ with the asymptotic lims!�1 u.s; � /

of a map u WR�S1!M of finite energy, satisfying the Floer equation

@u

@s
CJt .u/

�
@u

@t
�X t

K .u/

�
D 0

for .s; t/ 2R� S1 and K.s; t/ 2 C1.M;R/ a small perturbation of ˇ.s/Ht such that
K.s; t/Dˇ.s/Ht for s��1 and for s�C1. Here ˇ WR! Œ0; 1� is a smooth function
satisfying ˇ.s/ D 0 for s � �1 and ˇ.s/ D 1 for s � C1. This map produces an
isomorphism of ƒK–modules, which intertwines the quantum product on QH.M /

with the pair-of-pants product on Hamiltonian Floer homology. This map is called the
Piunikhin–Salamon–Schwarz isomorphism.

2.4 Spectral invariants in Floer theory

We review the theory of spectral invariants following the works of [73; 34; 67], which
contain a more exhaustive list of properties and finer details of the construction.

Let .M; !/ be a closed symplectic manifold, H a generic Hamiltonian and fJtgt2S1 a
loop of !–compatible almost complex structures. For a 2R nSpec.H /, the inclusion
of the filtered Floer complex into the total complex induces a homomorphism

ia W HF.H /<a
! HF.H /:

7That is, a Morse function f 2 C1.M;R/ and Riemannian metric g on M , satisfying the Morse–Smale
condition.
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For each ˛M 2QH�.M / n f0g, using the PSS isomorphism QH�.M /Š HF��n.H /

we then define
c.˛M ;H /D inffa 2R j PSS.˛M / 2 im.ia/g:

It is not hard to see that the spectral invariants do not depend on the choice of an almost
complex structure. In addition, for H 2 H the spectral invariant c.˛M ;H / depends
only on the class �zH of f�t

H
g in the universal cover eHam.M; !/; consequently, we

also denote it by c.˛M ; �zH /D c.˛M ;H /.

Definition 11 (non-Archimedean valuation) Let ƒ be a field. A non-Archimedean
valuation on ƒ is a function � Wƒ!R[fC1g such that

(i) �.x/DC1 if and only if x D 0,

(ii) �.xy/D �.x/C �.y/ for all x;y 2ƒ,

(iii) �.xCy/�minf�.x/; �.y/g for all x;y 2ƒ.

The Novikov field ƒK DKŒŒq�1; q� possesses a non-Archimedean valuation

� WƒK!R[fC1g

given by setting �.0/DC1 and

(4) �
�X

aj qj
�
D�maxfj j aj ¤ 0g:

Spectral invariants enjoy a wealth of useful properties, established by Schwarz [86],
Viterbo [104], Oh [58; 64; 66] and generalized by Usher [101; 102], all of which
hold for closed rational symplectic manifolds, using the machinery of virtual cycles as
discussed in Remark 10 if necessary. We summarize some of the relevant properties
for our purposes:

(i) Spectrality For each ˛M 2QH.M / n f0g and H 2H,

c.˛M ; �zH / 2 Spec.H /:

(ii) Stability For any H;G 2H and ˛M 2QH.M / n f0g,Z 1

0

min
M
.Ht �Gt / dt � c.˛M ; �zH /� c.˛M ; �zG/�

Z 1

0

max
M
.Ht �Gt / dt:

(iii) Triangle inequality For any H;G 2H and ˛M ; ˛0
M
2QH.M / n f0g,

c.˛M �˛
0
M ; �zH�zG/ � c.˛M ; �zH /C c.˛0M ; �zG/:
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(iv) Value at identity For every ˛M 2QH.M / n f0g,

c.˛M ;eid/D�� � �.˛M /;

where � is the rationality constant of .M; !/ and � is as in (4).

(v) Novikov action For all H 2H, ˛M 2QH.M / and � 2ƒK,

c.�˛M ;H /D c.˛M ;H /� � � �.�/:

(vi) Non-Archimedean property For all ˛M ; ˛0
M
2QH.M /,

c.˛M C˛
0
M ;H /�maxfc.˛M ;H /; c.˛0M ;H /g:

By the continuity property, the spectral invariants are defined for all H 2 H, and
all the above listed properties apply in this generality. Further, we observe that for
˛M 2 QH.M / satisfying ˛M � ˛M D ˛M , the triangle inequality for the spectral
invariants implies

c.˛M ; �zH .k//D c.˛M ; �zkH /� k � c.˛M ; �zH /:

2.4.1 Spectral norm For a Hamiltonian H 2H, we define its spectral pseudonorm by

(5)  .H /D c.ŒM �; �zH /C c.ŒM �; �zH /;

where H is the Hamiltonian function H .t;x/D�H.1�t;x/. A result of [65; 86; 104]
shows that

 .�/D inf
�1

H
D�

 .H /

defines a nondegenerate norm  WHam.M; !/!R�0 and yields a bi-invariant distance
 .�; �0/D  .�0��1/. We call  .�/ the spectral norm of � and  .�; �0/ the spectral
distance between � and �0.

2.4.2 Carrier of the spectral invariant In this section we review the definition of
carriers of the spectral invariant, mainly following [34]. We observe that while we
are going to introduce the notion of carriers specifically for the fundamental class
ŒM � 2QH.M /, it can be done so for any nontrivial quantum homology class �.

First, we fix ˛M D ŒM � and write c.H /D c.�zH /D c.ŒM �; �zH /. Observe that in the
case of a nondegenerate Hamiltonian H , we have

c.�zH /D inffAH .�/ j � 2 CFn.H /; PSS.ŒM �/D Œ� �g;

where AH .�/D maxfAH .xx/ j �xx ¤ 0g for � D
P
�xxxx. That is, it is the maximum

action of a capped orbit xx entering � 2CFn.H /. By the spectrality property of spectral
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invariants, the infimum is obtained. Consequently, there exists a cycle � satisfying
Œ� �D PSS.ŒM �/ such that AH .xx/D c.�zH / for an orbit xx entering � . We call xx the
carrier of the spectral invariant and observe that in order to guarantee its uniqueness,
all the 1–periodic orbits of H need to have distinct action values. In order to generalize
the notion of carriers to the case where H is degenerate and has isolated orbits, we first
recall that for each C 2–small nondegenerate perturbation H 0, every capped 1–periodic
orbit xx splits into several nondegenerate 1–periodic orbits O.H 0; xx/, with their capping
inherited from xx.

Definition 12 (carrier of degenerate H with isolated orbits) A capped 1–periodic
orbit xx is said to be a carrier of the spectral invariant if there exists a sequence fH 0

k
g

of nondegenerate perturbations C 2–converging to H such that for each k, one of the
orbits in O.H 0

k
; xx/ is a carrier of the spectral invariant for H 0

k
. A uncapped orbit is

said to be a carrier if it becomes one for a suitable capping.

As in the nondegenerate case, the uniqueness of the carrier follows from all the
1–periodic orbits having distinct action values. In this case, the carrier becomes
independent of the choice of sequence fH 0

k
g. In addition, the definition of a carrier and

the continuity of the action functional and of the mean-index readily yield

c.�zH /DAH .xx/ and 0��.�zH ; xx/� 2n;

where the inequalities can be made strict in the case where the orbit x is weakly
nondegenerate. In [34] the following result was obtained.

Lemma 13 Suppose H only has isolated 1–periodic orbits , and let xx be a carrier of
the spectral invariant of the fundamental class. Then HFloc

n .H; xx/¤ 0.

In Section 3.1.2 below, we generalize this statement to the case of isolated path-
connected sets of periodic orbits, and also to arbitrary quantum homology classes.

3 Isolated connected sets of periodic points

3.1 Generalized perfect Hamiltonians

Recall that a Hamiltonian H is called perfect if it has a finite number of contractible
periodic points of all periods. We consider the more general condition where H has
finitely many isolated path-connected families of periodic orbits, which in turn implies
that Fix.�H / is composed of finitely many isolated path-connected sets.
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Definition 14 A Hamiltonian diffeomorphism � 2 Ham.M; !/ is generalized perfect
whenever the following conditions are met:

(i) Fix.�/ has finitely many isolated compact path-connected components.

(ii) There exists a sequence of integers ki ! 1 which contains a subsequence
li D kji

with li j liC1 for all i , and for which Fix.�ki /D Fix.�/ for all i .

(iii) For each isolated path-connected component F of Fix.�/, and for all i , the
mean-index �.H .ki /; xx.ki //, where x 2 F and xx 2 xF , is a constant function of
x 2 F . We denote this constant by �.H .ki /; xF .ki //.

An isolated path-connected component F � Fix.�/ can be thought of as, and is indeed
called in this paper, a generalized fixed point. In this section we slightly generalize
some of the theory discussed in Section 2, allowing us to treat generalized perfect
Hamiltonians. We observe that the third condition in Definition 14 is not vacuous:
indeed, one can construct an example of a generalized fixed point F where the mean-
index is not a constant function of x 2 F , by means of the Hamiltonian suspension
construction [71, Section 3.1] applied to an appropriate contractible Hamiltonian loop
of S2. However, as stated in Theorem C, a p–torsion Hamiltonian diffeomorphism is
weakly nondegenerate generalized perfect: in particular, the mean-index is constant on
each generalized fixed point.

3.1.1 Lifts of generalized 1–periodic orbits Let .M; !/ be a closed symplectic
manifold and H a Hamiltonian function generating a Hamiltonian diffeomorphism �H

on M whose set of contractible fixed points consists of a finite number of path-connected
components. Denote the path-connected components of Fix.�H / by F1; : : : ;Fm. For
each j and each x 2Fj , there is a corresponding contractible loop x.t/D �t

H
.x/, thus

to each isolated fixed-point set Fj we can associate a subset Fj of the space LptM of
all contractible loops in M . It is natural to ask whether the generalized orbits Fj lift to
the �–cover zLptM in a suitable manner, namely, if the preimage under the projection
Pr W zLptM ! LptM is composed of isolated path-connected “copies” of Fj . We show
that the lift exists, and we denote by xFj a particular lift of Fj . This is analogous to a
capping of an orbit in the case of a usual Hamiltonian.

Consider the set F � LptM associated to F 2 �0.Fix.�H // and let i WF ! LptM be
the natural inclusion map. Formally, we are asking when, given a loop x0 2F and
xx0 2 Pr�1.fx0g/, a lift of i exists: namely, a unique map f W F ! zLptM such that
f .x0/D xx0 and Pr ı f D i . From the theory of covering spaces, the existence of the
lift is equivalent to i�.�1.F ;x0//� Pr�.�1. zLptM; xx0//.
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Proposition 15 Let .M; !/ be a symplectic manifold in one of the three classes
considered in this paper , and �H a generalized perfect Hamiltonian diffeomorphism.
Then each generalized orbit F can be lifted to xF in a unique manner specified by a
loop x0 2F and an element in its fiber xx0 2 Pr�1.x0/.

Proof Let  be a loop in F such that 0 D x0. We show that we can find a loop z in
zLptM such that i ı  D Pr ı z , which implies the claim of the theorem. We build z in
a natural way by defining the capping at s to be given by gluing the “cylinder” given
by traversing the loop  from 0 to s to the capping xx0. To see that the capped orbits z0

and z1 are equivalent in zLptM , we show that

(6)
Z

T2

 �! D 0

for every loop  in F . We can then guarantee the existence of a lift. Equation (6) follows
from the continuity of AH and the fact that Spec.H / has zero measure in R. Indeed,
AH .zs/DAH .z0/ for every s, otherwise, the fact that zs is a critical point for each s

would imply that AH

�S
0�t�s zt

�
is a positive measure subset of Spec.H /. Finally,

AH .z1/DAH .z0/ amounts to fulfilling the sufficient condition given by equation (6).
Therefore for the three classes we consider, the proof is complete since in this case
� Š �2.M /= ker.Œ!�/ and hence it is only necessary to verify (6). Alternatively, one
can prove that hŒT 2�;  �.c1/iD 0 directly, by replacing  with a map 1 WS

2!M with
hŒT 2�;  �.c1/i D hŒS

2�;  �
1
.c1/i, which vanishes by our assumption on the manifold

and (6).

3.1.2 Generalized local Floer homology In this section, we define a version of
local Floer homology for a generalized capped orbit xF � zLptM of a 1–periodic
Hamiltonian H in a way that is closely related to what was done in [61; 34]. The only
differences are that we are beyond the symplectically aspherical case and we are dealing
with path-connected components of Fix.�H / instead of isolated points. The proofs
of [61] used to define the local Floer homology are valid in this case with nearly no
modifications. The notion of local Floer homology in a more general setting goes back to
the original work of Floer [24; 23] and has been revisited a number of times, for example
in the work of Pozniak [76]. The main ingredients of the construction are as follows.

For each F 2 �0.Fix.�H //, we can find an isolating neighborhood UF of the corre-
sponding generalized 1–periodic orbit F in the extended phase-space S1 �M , ie

f.t; �t
H .x// j t 2 S1; x 2 Fg � UF :
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Moreover, we can choose this collection of neighborhoods to be pairwise disjoint: UF is
disjoint from UF 0 for each pair of distinct generalized fixed points F and F 0. Such an
open set UF in the extended phase-space can be constructed, using the isotopy �t

H
,

from an open neighborhood of F in M . Hence by a slight abuse of notation we think
of UF as a neighborhood of F in M .

Now there exists an � > 0 small enough that for any nondegenerate Hamiltonian
perturbation H 0 satisfying kH �H 0kC 2 < �, the set of orbits O.H 0;F / which F

splits into is contained in UF , and so is every (broken) Floer trajectory connecting
any such two orbits; see Lemma 21. We can now consider the complex CF�.H 0; xF /
over a ground field K generated by the capped 1–periodic orbits O.H 0; xF / which xF
splits into, where the cappings are naturally produced from the specific lift xF . One can
see that this complex is graded by the Conley–Zehnder index and has a well-defined
differential. By a standard continuation argument, one can show that the homology of
this complex is independent of the nondegenerate perturbation (once it is small enough)
and of the choice of almost complex structure. We refer to the resulting homology as
the local Floer homology of H at xF , and denote it by HFloc

� .H; xF /. Write

�min.H;F /D min
xx2 xF

�.H; xx/ and �max.H;F /Dmax
xx2 xF

�.H; xx/

for the minimum and maximum of the mean-indices �.H; xx/ for xx 2 xF .

We claim that if F is a family of weakly nondegenerate orbits, then the support of
HFloc
� .H; xF / satisfies

(7) Supp.HFloc
� .H; xF //� .�

min.H; xF /� n; �max.H; xF /C n/:

In fact, by a simple argument following from the continuity of the mean-index and
inequality (2), one obtains that Supp.HFloc

� .H; xF // satisfies the nonstrict version
of (7). In order to obtain the strict inequalities, we use the assumption that F is weakly
nondegenerate, and its compactness, to argue as in [84]. In the situation where the
Hamiltonian is generalized perfect, we obtain the following.

Lemma 16 Suppose H is a weakly nondegenerate generalized perfect Hamiltonian
and let xF be a generalized capped orbit of H . Then HFloc

� .H; xF / is supported in the
open interval .�.H; xF /� n; �.H; xF /C n/.

Furthermore, the notion of action carriers discussed in Section 2.4 remains valid in
this generalized setting by altering isolated fixed points to generalized fixed points in
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Definition 12. Thus, the spectral invariant c.ŒM �;H / is carried by a capped generalized
periodic orbit xF of H . In this case, we have the following generalization of Lemma 13,
whose proof, once Lemma 21 below is taken into account, follows just as in [34].

Lemma 17 Suppose H has only a finite number of generalized fixed points , and
let xF be a carrier of the spectral invariant of the fundamental class. In this case
HFloc

n .H; xF /¤ 0:

Remark 18 Consider F 2 �0.Fix.�// and F � LptM the associated generalized
1–periodic orbit. We remark that different choices of lifts xF result in isomorphic local
Floer homology groups, with a shift in index given by an integer multiple of 2N . In
particular, if A 2 � , then

HFloc
� .H; xF # A/Š HFloc

�C2hc1.TM /;Ai.H;
xF /;

where xF # A denotes the unique choice of lift containing the capped orbit xx # A for
x 2 F and xx 2 xF . From this discussion, we conclude that dimK HFloc

� .H; xF / does
not depend on the capping of F . Hence, the notation dimK HFloc

� .H;F/ is justified
in this case. Furthermore, when .M; !/ is symplectically Calabi–Yau the local Floer
homology does not depend on the choice of lift, thus we denote it by HFloc

� .H;F/.
This is analogous to the effect of recapping on local Floer homology in the case of
isolated fixed points.

We shall require a slightly more general statement about carriers of quantum homology
classes. The definition of a carrier xF of a quantum homology class ˛M 2QH.M / is
the same as for the fundamental class, with ŒM � replaced by ˛M . We then have the
following result.

Lemma 19 Let ˛M 2QHk.M /nf0g be a homogeneous element of degree k. Suppose
H has only finitely many (contractible) generalized fixed points and let xF be a carrier
of the spectral invariant of ˛M . Then HFloc

k�n
.H; xF /¤ 0.

In fact a stronger result is true, of which this statement is a direct consequence. It
was proven as [93, Theorem D] in the context of �1

H
with isolated fixed points, but its

proof adapts essentially immediately to the context of a finite number of (contractible)
generalized fixed points. Indeed, our case differs from the one in [93] by replacing
fixed points by generalized fixed points everywhere, hence the only technical difference
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consists in establishing Lemma 21. We recall that the proof relies on homological
perturbation techniques, starting from the decomposition of Section 3.1.4. It constitutes
a Novikov-field version of the canonical ƒ0–complexes from [95]. The goal of these
arguments is to introduce a new complex which calculates the same total homology
but replaces each local Floer complex CFloc

� .H; xF /, which depends on a sufficiently
C 2–small perturbation H1 of H , by its homology HFloc

� .H; xF /. This is the local
Floer homology of H at xF , which does not depend on H1. Note that since we work
over a field, CFloc

� .H; xF / is chain-homotopy equivalent to HFloc
� .H; xF / with the zero

differential. The complex obtained from the Floer complex of H1 in this way computes
the same total homology, as desired, but is also strict in the sense of strictly decreasing
a natural filtration. Furthermore, it allows us to compute directly the filtered Floer
homology of H .

Theorem M Let .M; !/ be a closed symplectic manifold which is positive or negative
monotone. Consider the class �z 2 eHam.M; !/ of the Hamiltonian flow f�t

H
gt2Œ0;1� of

H 2H, with Fix.�1
H
/ consisting of a finite number of generalized fixed points. Let K

be a ground field which is arbitrary in the positive monotone case and of characteristic
zero in the negative monotone case. Then there is a filtered homotopy-canonical
complex .C.H /; dH / over the Novikov field ƒK on the action-completion ofM

HFloc
� .�
z; xF /;

the sum running over all capped generalized 1–periodic orbits xF 2 zO.H /. Specif-
ically, C.H / consists of infinite sums x D

P
yi where yi 2 HFloc

� .�
z; xF i/ with

AH . xF i/
i!1
���! �1. The complex .C.H /; dH / is free and graded over ƒK, and is

strict , ie AH .dH .y//<AH .y/ for all y 2C.H /, with respect to the non-Archimedean
action-filtration AH on C.H /, defined by

(8) AH

�X
�j yj

�
Dmaxf��.�j /CAH .yj /g; AH .yj /DAH . xF i.j//:

Here fyj g is a ƒK–basis of C.H / that is determined by fyj j i.j /D ig being a basis
of HFloc

� .�
z; xF i/, where Fix.�/ D fFig and for each i , xF i is a choice of a lift of the

generalized 1–periodic orbit Fi corresponding to Fi to a capped generalized periodic
orbit in zO.H /. Furthermore , for all a 2RnSpec.H /, the filtered homology HF.H /<a

is given by HF.C.H /<a/, where C.H /<a D .AH /
�1 .�1; a/. In particular ,

HF.H /DH.C.H /; dH /ŠQH.M IƒK/:

Moreover , for all a � b with a; b 2 .R n Spec.H // [ f1g, the comparison map
HF.H /<a! HF.H /<b is induced by the inclusion C.H /<a! C.H /<b .
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Definition 20 (visible spectrum) We define the visible spectrum of a Hamiltonian
function H as

Specvis.H /D fAH . xF / j HFloc
� .H; xF /¤ 0g;

where AH . xF / denotes the action of any capped orbit xx 2 xF for a lift xF associ-
ated to a generalized fixed point F � Fix.�H /. Indeed, an argument similar to the
proof of Proposition 15 shows that the restriction AH j xF is constant. It is clear that
Specvis.H / � Spec.H /. In the context of barcodes (see Section 3.1.5), the visible
spectrum corresponds to the endpoints of all bars of the barcode B.H / associated to
the filtered Floer homology of H .

3.1.3 Crossing energy We show that for a C 2–small perturbation H 0 of a generalized
perfect Hamiltonian H on a closed symplectic manifold .M; !/, every Floer trajectory u

connecting orbits of H 0 contained in distinct isolating neighborhoods has energy
bounded below by a constant independent of the perturbation. This is an important
technical step.

Lemma 21 There exist ı > 0 and � > 0 such that for every nondegenerate perturbation
H 0 of H satisfying kH �H 0kC 2 < �, every orbit in O.H 0;Fj / is contained in UFj for
j D 1; : : : ;m, every Floer trajectory u connecting capped orbits in distinct isolating
neighborhoods satisfies E.u/ > ı, and every Floer trajectory connecting capped orbits
in the same O.H 0; xFj / is contained in UFj . Finally, if .M; !/ is rational , every Floer
trajectory u connecting capped orbits in O.H 0; xFj /, O.H 0; xF 0j /, for different cappings
xFj ; xF

0
j of the same Fj , has energy E.u/� �=2.

Proof Suppose there exists a sequence of nondegenerate Hamiltonians fH 0
k
g that

C 2–converges to H , and a sequence of Floer trajectories uk of H 0
k

connecting orbits
in distinct isolating neighborhoods such that E.uk/! 0. Since H has finitely many
generalized fixed points, we may suppose without loss of generality that all the Floer
trajectories uk connect orbits in UF to orbits in UF 0 , where F ;F 0 2 �0.Fix.�H // are
distinct.

By a compactness result of [19], and arguing as in [61], we obtain the existence of a
Floer trajectory u of H connecting an orbit in UF to an orbit in UF 0 such that E.u/D 0.
Thus,

@u

@s
D 0 and

@u

@t
DX t

H ;

which, in turn, implies that for each s, the loop us D u.s; � / is a 1–periodic orbit of H .
This contradicts the fact that the generalized fixed points of H are isolated.
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Note that in the above argument, if for each k, uk connects orbits in the same UFj but is
not contained in UFj , then for k sufficiently large, E.uk/ > ı again. Indeed, otherwise
we would again reach a contradiction by a compactness argument. However, if now
uk connects orbits in the same O.H 0

k
; xFj /, then its energy, given by the difference of

actions of its two asymptotic capped orbits, tends to zero as k!1. We conclude that
uk must be contained in UFj for all k sufficiently large.

Finally, we remark that if uk connects orbits in O.H 0
k
; xFj / and in O.H 0

k
; xF 0j /, where

xFj and xF 0j are different cappings of Fj , then, if the symplectic manifold is rational,
E.uk/� �� o.1/ as k!1.

3.1.4 Decomposition of Floer differential An important feature related to local
Floer homology concerns the decomposition of the full differential defined on the
complex CF�.H 0/ into the sum of local differentials of complexes CFloc

� .H; xF /—
for all the different lifts of the finitely many generalized fixed points — and into
an additional component we shall call D. Note that here, H 0 is a nondegenerate
Hamiltonian C 2–close enough to H in the aforementioned sense. Namely, for each
chain � 2 CF�.H 0/, we have

(9) @� D
X
z@ xF� CD�;

where z@ xF represents an extension of the local differential of the complex CFloc
� .H; xF /

obtained by setting z@ xF xx D 0 for every capped orbit which does not belong O.H 0; xF /.
Loosely speaking, D only “counts” Floer trajectories connecting orbits contained in
disjoint isolating open sets UF .

Remark 22 Suppose that � is a chain in the complex CF�.H 0/ and xz is an orbit
entering D� . Naturally, there exists 0 � k � m such that xz 2 CF�.H; xFk/ for a
particular lift of Fk , and a Floer trajectory u connecting an orbit xy 2 CF�.H; xF l/ to
xz for l ¤ k (and a particular lift of Fl ). We then obtain

(10) AH 0.xz/DAH 0.xy/�E.u/ <A0H .xy/� ı;
where the first equality comes from the fact that the energy of a Floer trajectory
connecting two capped orbits is equal to their action difference, and the ı comes from
the uniform lower bound for the crossing energy from Lemma 21. In other words,

AH 0.Dx/ <AH 0.x/� ı

for all x ¤ 0 in CF�.H 0/.

3.1.5 Barcodes of Hamiltonian diffeomorphisms The proof of Theorem G uses
notions and results regarding barcodes of Hamiltonian diffeomorphisms, in the case
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where they have a finite number of contractible generalized fixed points. Hitherto, this
theory was developed mostly for the case where the generalized fixed points are in fact
points, yet given Lemma 21, all relevant results generalize to our situation. In the next
section we describe the main Smith-type inequality regarding the behavior of barcodes
under iteration.

We will summarize the properties necessary for us, and refer to [74; 75; 103; 48; 96; 95]
for further discussion of this notion, in the context of continuity in the Hofer distance
and the spectral distance in particular. For convenience, we work in the setting of
monotone symplectic manifolds, yet natural analogues of various statements exist in
the semipositive, rational and general settings.

Proposition 23 Let .M; !/ be a monotone symplectic manifold with P! D � �Z, and
consider � 2 Ham.M; !/ with Fix.�/ consisting of a finite number of generalized
fixed points. Let K be a coefficient field. Let H be a Hamiltonian generating �. Then
Spec.H /�R is a discrete subset , and there exists a countable collection

B.H /D B.H IK/D f.Ii ;mi/gi2I ;

called the barcode of H with coefficients in K, of intervals Ii in R of the form
Ii D .ai ; bi � or Ii D .ai ;1/, called bars with multiplicities mi 2 Z>0, such that the
following properties hold :

(i) The group � �Z acts on B.H / in the sense that for all k 2 Z and all .I;m/ 2 B,
we have .I C �k;m/ 2 B.

(ii) For each window J D .a; b/ in R with a; b 62 Spec.H /, only a finite number of
intervals I with .I;m/ 2 B have endpoints in J . Furthermore ,

dimK HF.H /J D
X

(I;m/2B.H /
#@I\JD1

m;

where for an interval I D .a; b�, we set @I D fa; bg, and for I D .a;1/, we set
@I D fag.

(iii) For a2 Spec.H / and � > 0 sufficiently small that .a��; aC�/\Spec.H /Dfag,
we have

dimK HF.H /.a��;aC�/ D
X

(I;m/2B.H /
a2@I

m;

dimK HF.H /.a��;aC�/ D
X

A. xF /Da

dimK HFloc.H; xF /:
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(iv) There are K.�;K/ orbits of finite bars counted with multiplicity, and B.K/

orbits of infinite bars counted with multiplicity, under the � �Z action on B.H /.
These numbers satisfy

B.K/D dimK H�.M IK/ and N.�;K/D 2K.�;K/CB.K/;

where

N.�;K/D
X

dimK HFloc.�;F/

is the homological count of the fixed points of �, the sum running over all the
set �0.Fix.�// of its generalized fixed points.

(v) To each orbit Œ.I;m/�, with I D .a; b�, of finite bars , there corresponds a bar-
length jI j D b � a, counted with multiplicity m. There are hence K.�;K/

bar-lengths corresponding to the orbits of finite bars ,

0< ˇ1.�;K/� � � � � ˇK.�;K/.�;K/;

which depend only on �. We call

ˇ.�;K/D ˇK.�;K/.�;K/

the boundary-depth of �, and

ˇtot.�;K/D
X

1�j�K.�;K/

ǰ .�;K/

its total bar-length.

(vi) Each spectral invariant c.˛;H / 2 Spec.H / for ˛ 2QH�.M / n f0g is a starting
point of an infinite bar in B.H /, and each such starting point is given by a
spectral invariant.8

(vii) If H 0 is another Hamiltonian generating �, then B.H 0/D B.H /Œc� for a certain
constant c 2R, where B.H /Œc�D f.Ii � c;mi/gi2I .

(viii) If K is a field extension of F and H is a Hamiltonian , then B.H IK/DB.H IF/.
In particular , B.H IK/D B.H IFp/ if char.K/D p, and B.H IK/D B.H IQ/
if char.K/D 0.

8In fact, representatives for the set of orbits of infinite bars counting with multiplicity, can be obtained
as spectral invariants of an orthogonal basis of QH�.M / over the Novikov field ƒK, with respect to the
non-Archimedean filtration lH .�/D c.�;H /. As we shall not require this stronger statement, we refer to
[95; 96] for a discussion of the relevant notions.
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3.1.6 Smith theory in filtered Floer homology One of the fundamental results
of [95] is the following Smith-type inequality, that readily adapts to our setting by
Lemma 21 and its generalization to the situation of branched covers of the cylinder as
in [98, Proposition 9]. We refer to [95, Theorem D] for a detailed argument in the case
of isolated fixed points, and observe that our generalization below is formulated in such
a way that the same proof applies verbatim, by replacing fixed points by generalized
fixed points everywhere.

Theorem N Let .M; !/ be a monotone symplectic manifold , p a prime number ,
and � 2 Ham.M; !/ with Fix.�/ and Fix.�p/ each consisting of a finite number of
generalized fixed points , and such that the natural inclusion Fix.�/! Fix.�p/ restricts
to a homeomorphism from each generalized fixed point F of � to a generalized fixed
point of �p, which we denote by F .p/. Then

ˇtot.�
p;Fp/� p �ˇtot.�;Fp/:

This inequality will be the key component in the proof of Theorem G.

A somewhat simpler statement than Theorem N is the Smith inequality in generalized
local Floer homology, whose proof is precisely as in [98] together with the crossing
energy argument of Lemma 21.

Proposition 24 Let .M; !/ be a closed symplectic manifold , p a prime number and
� 2 Ham.M; !/. Suppose that Fix.�/ and Fix.�p/ each consist of a finite number of
generalized fixed points. Let F be a generalized fixed point of �, such that the natural
inclusion Fix.�/! Fix.�p/ restricted to F is a homeomorphism onto F .p/. Then

dimFp
HFloc.�;F/� dimFp

HFloc.�p;F .p//:

3.1.7 Quantum Steenrod operations Quantum Steenrod operations are remarkable
algebraic maps

QStp WQH�.M IFp/!QH�.M IFp/ŒŒu��h�i

for p a prime number, u a formal variable of degree 2, and � a formal variable of
degree 1. As is the usual quantum product, QStp is essentially defined by certain
counts of configurations consisting of holomorphic curves in M incident with negative
gradient trajectories of Morse functions in M . The main difference is that QStp uses
p input and 1 output trajectories, and the counts are carried out in families parametrized
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by the classifying space B.Z=pZ/ of Z=pZ. The investigation of the enumerative
significance of these counts, in terms of various Gromov–Witten invariants, and its
implications for mirror symmetry was started in [91; 92].

These operations were first proposed by Fukaya [27], and were formally introduced
for p D 2 by Wilkins in [106]. They were then studied in [107] in relation to the
equivariant pair-of-pants product of Seidel [90]. For a definition for p > 2 odd, see
[91; 97]. The significance of quantum Steenrod operations in Hamiltonian dynamics
was first observed in [93], and was further investigated in [7; 94; 97]. While for the
moment these operations are defined in the setting of monotone symplectic manifolds,
it is expected that they will be generalized to the semipositive (also called weakly
monotone) setting.

One particular property of quantum Steenrod operations that we use in this paper, which
was first observed in [93] for p D 2, and proved in [97] for p > 2, is that whenever

(11) QStp.�/¤ u.p�1/n�;

where � 2H 2n.M IFp/ is the cohomology class Poincaré dual to the point class, the
symplectic manifold .M; !/ is geometrically uniruled: for each !–compatible almost
complex structure J on M , and each point x 2 M , there exists a J–holomorphic
sphere u W CP1

!M such that x 2 im.u/. Hence, we call a (monotone) symplectic
manifold Fp–Steenrod uniruled if condition (11) holds. The algebraic significance of
this condition is that u.p�1/n�D Stp.�/, where Stp is the (slightly reformulated) total
Steenrod pth power of the class �, and in general,

QStp D StpCO.q/;

where O.q/ is a collection of terms involving the quantum variable q to power at least 1.
These terms correspond to configurations involving J–holomorphic spheres of positive
symplectic area, hence condition (11) means that the quantum Steenrod power of the
point cohomology class is deformed by holomorphic spheres.

3.2 Floer cohomology

At times it shall be convenient to work with Floer cohomology and quantum cohomology
of closed symplectic manifolds, instead of homology. All the preliminary results above
adapt naturally to this setting. In fact, we may define

CF�.H;J /D CFn��.H ;J /;
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where H .t;x/D�H.1� t;x/, J t .x/D J1�t .x/. The usual action functional AH on
the left-hand side takes the form .�AH / on the right-hand side. Note that hereby the
cohomological differential increases the filtration, the triangle inequality for spectral
invariants has the opposite inequality, and infinite bars in the barcode are of the form
.�1; b/. Local Floer cohomology is defined in the same way as for homology. Action
carriers, and contribution to local Floer cohomology hold similarly: c.�;H / for
� 2 QH 2n.M / is carried by a capped generalized periodic orbit xF of H if, in the
same sense as for homology, xF is a lowest action term in a highest minimal action
representative of the image PSSH .�/ of � under the PSS isomorphism [70] from the
quantum cohomology QH�.M /! HF��n.H / to the filtered Floer cohomology of
the Hamiltonian H . For .M; !/ rational, in particular monotone, for each nonzero
class �2QH�.M /, and for H 2H with #�0.Fix.�1

H
// <1, we have that c.�;H / is

carried by at least one generalized capped 1–periodic orbit xF of H . Furthermore, if �
is a homogeneous class of degree k, and xF carries c.�;H /, then HFk�n

loc .H; xF /¤ 0.

We refer to [52] for further discussion of the comparison between Floer homology and
Floer cohomology.

4 Cluster structure of the essential spectrum

Definition 25 (essential spectrum) We define the essential spectrum of a Hamiltonian
function H as

Specess.H /D fc.˛;H / j ˛ 2QH�.M / n f0gg:

Observe that the spectrality property of the spectral invariants is equivalent to the
inclusion Specess.H / � Spec.H /. In fact, Lemma 19 implies that Specess.H / �

Specvis.H / for Hamiltonian diffeomorphisms with a finite number of (contractible)
generalized fixed points. In the context of barcodes (see Section 3.1.5), the essential
spectrum corresponds to the endpoints of infinite bars of the barcode B.H / associated
to the filtered Floer homology of H .

We next show that whenever  .H / < �, the essential spectrum has a cluster structure
determined by the subset produced by quantum homology classes of valuation 0.

Proposition 26 Suppose M is a monotone symplectic manifold and H a Hamiltonian
function on M . Then

0� c.ŒM �; �zH /� c.˛; �zH /�  .H /

for all ˛ 2QH.M / such that �.˛/D 0, including all ˛ 2H�.M /�QH.M /.
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Proof By the triangle inequality and the value at identity properties of the spectral
invariant,

c.˛; �zH /D c.˛ � ŒM �;eid�zH /� c.˛;eid/C c.ŒM �; �zH /D c.ŒM �; �zH /

for all ˛ 2QH.M / such that �.˛/D 0. In addition,

0D c.˛;eid/D c.˛ � ŒM �; �zH�zH /� c.˛; �zH /C c.ŒM �; �zH /:

Combining both inequalities we obtain

0� c.ŒM �; �zH /� c.˛; �zH /� c.ŒM �; �zH /C c.ŒM �; �zH /D  .H /;

which concludes the proof of the proposition.

Proposition 27 Let M be a monotone symplectic manifold with rationality constant
� > 0, let H be a Hamiltonian function on M with  .H / < � and let ˛ 2QH.M /.
Then

c.ŒM �; �zH /� � < c.˛; �zH /� c.ŒM �; �zH /

if , and only if , �.˛/D 0.

Proof If �.˛/D 0, then Proposition 26 and the hypothesis that  .H / < � imply that

c.ŒM �; �zH /� � < c.˛; �zH /� c.ŒM �; �zH /:

Conversely, let x1; : : : ;xB be a homogeneous basis of H�.M /�QH.M / and write
c D c.ŒM �; �zH /. Then, by Proposition 26, we have c.xk ; �zH / 2 .c � �; c� for all
1� k � B. Also, for qj 2ƒK, the equality c.qj xk ; �zH /D c.xk ; �zH /C j� implies
that c.qj xk ; �zH / 62 .c � �; c� for all j ¤ 0. Thus, if c.˛; �zH / 2 .c � �; c� for

˛ D �xk D

X
aj qj xk ;

where � 2ƒ, the non-Archimedean property of the spectral invariant imposes that

˛ D a0xk C

X
j<0

aj qj xk ;

which in turn implies �.˛/D 0. In general, ˛ 2QH.M / is of the form
P
�kxk , where

�k D
P

a
.k/
j qj . Consequently, if c.˛; �zH / 2 .c � �; c�, we may argue as before to

conclude

(12) ˛ D
X

k

�
a
.k/
0

xk C

X
j<0

a
.k/
j qj xk

�
:

Thus, �.˛/D 0, which concludes the proof of the claim.
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Remark 28 The above propositions are valid, albeit with minor modifications to the
proofs, in the more general case where M is only assumed to be rational. If M is
negative monotone, then the base field K is required to be of characteristic zero; see
Remark 10.

Let � 2 Ham.M; !/, and suppose  .�/ < �. We can, therefore, find a Hamiltonian
function H generating � such that  .H / < �. Our goal is to extract information from
the cluster structure of H in order to bound  .�/ from below. First we set notation.
Put S1

�DR=� �Z and, for a2R, let Œa�2 S1
� be its equivalence class. For � 2 S1

�, define

�� D f.a� �; a� j a 2R; Œa�D �g:

Note that the intervals in �� are disjoint and their union covers the real line. In addition,
observe that, modulo � � Z, the set Specess.H / \ I does not depend on the interval
I 2 �� .

Definition 29 (spectral length) We define the �–parsed spectral length of H as

l.H; �� /D diam.Specess.H /\ I/D supfja� bj j a; b 2 Specess.H /\ Ig;

where I 2 �� is arbitrary. For �H D �Œc.ŒM �;H /� we call l.H; �H / the fundamental
length of H . Finally, we define the spectral length of � 2 Ham.M; !/ as

(13) l.�/D inffl.H; �� / j � 2 S1
�g;

where H is any Hamiltonian function generating �. The right-hand side of (13) does not
depend on the choice of Hamiltonian: indeed, if H 0 is another Hamiltonian generating �,
then Specess.H 0/D Specess.H /Cc for a certain c 2R by Proposition 23(vii). (Another
proof using Seidel elements is also possible.)

Remark 30 The following alternative definition of l.�/ helps calculate it in examples.
Set � WR! S1

� for the natural projection: �.a/D Œa�. The image �.Specess.H //� S1
�

is then a finite set. Hence its complement consists of a finite number of open intervals
fKj g

m
jD1

. In terms of these intervals,

l.�/D ��max
j
jKj j;

where for an interval K in S1
� we denote by jKj the length of K with respect to the

standard metric. Yet again, we may reformulate l.�/ more intuitively as the smallest
length of an interval containing �.Specess.H //, that is,

l.�/D inffjLj jL� �.Specess.H //g;

the infimum running over intervals L in S1
�.
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Remark 31 We can also define an a priori larger invariant l 0.�/� l.�/ of � by

l 0.�/D inf
�1

H
D�

l.H; �H /:

However, we find l.�/ more convenient for this paper.

Lemma 32 The fundamental length of a Hamiltonian H satisfies

l.H; �H /�  .H /:

If , in addition ,  .H / < �, then we have equality, ie

l.H; �H /D  .H /:

Proof By definition the �–parsed spectral length of H is bounded above by � for
any choice of � 2 S1; in particular, l.H; �H /� �. Thus, we need only to consider the
case where  .H / < �. Equation (12) in the proof of Proposition 27, or alternatively
Proposition 23(vi), implies that #fSpecess.H /\ Ig<1 for I2�H and hence for I2��
for any � 2 S1

�. Thus by Proposition 27 the fundamental length of H is given by

l.H; �H /D c.ŒM �;H /� c.˛min;H ;H /;

where ˛min;H 2QH.M / has zero valuation. Consequently, Proposition 26 implies that
l.H; �H /�  .H /. To prove equality, we observe that by the Poincaré duality property
of spectral invariants (see [68; 17]) and the fact that the set Specess.H /\ I is finite,
there exists ˇ 2QH.M / n f0g such that c.ˇ;H /D�c.ŒM �;H /. By adding  .H / to
both sides of the equality we obtain c.ˇ;H /C  .H /D c.ŒM �;H /, which implies

c.ŒM �;H /� � < c.ˇ;H /� c.ŒM �;H /:

Therefore,  .H /� l.H; �H /, which gives us the claimed equality.

Lemma 33 Let � be a Hamiltonian diffeomorphism. Then , l.�/�  .�/.

Proof Let H be any Hamiltonian function that generates �. By definition l.H; �� /<�

for every � 2 S1
�; in particular, we have l.�/ < �. Hence, if  .�/ � �, the desired

inequality holds trivially. Therefore, we may suppose that  .�/ < �, in which case we
may take H such that  .H / < �. Consequently, Lemma 32 implies l.H; �H /D  .H /;
in particular, we have that l.�/ �  .H /. If H 0 is any other Hamiltonian function
generating �, with  .H 0/ �  .H /, the same argument implies l.�/ �  .H 0/. Thus,
we conclude that l.�/�  .�/.

Geometry & Topology, Volume 27 (2023)



Hamiltonian no-torsion 2877

Remark 34 Lemma 32 immediately implies that if  .�/ < �, then l 0.�/D  .�/. It
is not clear that the same holds for l.�/. However, we can prove that if  .�/ < �=2,
then l.�/ D  .�/. Indeed, if  .H / <  .�/ C � < �=2, by Lemma 32 we have
l.H; �H / D  .H / < �=2. However, this implies that for arbitrary � 2 S1

�, either
l.H; �� / D l.H; �H /, if the partitions of Specess.H / into clusters corresponding to
�H and �� coincide, or l.H; �� / � �� l.H; �H / > �=2 > l.H; �H /, if they do not.
Hence, by taking the infima, l.�/D  .�/.

Lemma 35 Let � be a generalized Hamiltonian K pseudorotation with sequence
kj D j and take a Hamiltonian H generating �. Suppose that all the distances between
pairs of points in Specess.H / are rational multiples of �. Then there exists a positive
integer m such that  .�m/� �.

Proof Fix the base coefficient field K for all homological notions in the proof. We can
suppose  .�/ < �, otherwise the implication of the theorem would be true for mD 1.
Furthermore, we note that the hypothesis of the theorem is independent of the choice
of Hamiltonian function; thus, we may suppose that  .H / < �, which by Lemma 32,
implies l.H; �H /D  .H /. Hence, we have a cluster structure determined by finitely
many values of the essential spectrum of H belonging to the interval

IH D .c.ŒM �;H /� �; c.ŒM �;H /�:

Thus, setting
Specess.H /\ IH D fc1; : : : ; cBg;

by the hypothesis of the proposition we have

ci � cj D
aij

bij
� 2 � �Q\ .��; �/

for all i ¤ j . Note that any pair of points ˛; ˇ 2Specess.H / are of the form ˛D ciCk�

and ˇ D cj C l� for integers l and k. Thus their difference is of the form

(14) ˛�ˇ D

�
aij

bij
C .k � l/

�
�:

Now, let m be the integer given by
Q

i<j bij . The facts that

Fix.�m/D Fix.�/; Specess.H /D Specvis.H / and HFloc.�kj ;F .kj //¤ 0

for all generalized fixed points F of � imply

(15) Specess.H .m//Dm �Specess.H /C � �Z:
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As a consequence of equations (14) and (15) and the definition of m, we have that
Specess.H .m// D � � ZC c for a suitable constant c 2 R. Hence, l.F; �� / D 0 for
any Hamiltonian F generating �m and � 2 S1

�. If  .F / < �, then by Lemma 32
 .F / D l.F; �F / D 0, which is absurd since this would imply �m D id. Hence
 .�m/� �.

5 Proofs

5.1 Proof of Theorem C

Let .M; !/ be a closed symplectic manifold and consider a nontrivial � 2Ham.M; !/

such that �p D id for an integer9 p. We can construct a Riemannian metric h � ; � i
which is invariant under the action of the group

G D fid; �; : : : ; �p�1
g;

a fact that is true for any compact Lie group G. In other words, � is an isometry with
respect to this metric. We first show that Fix.�/ is composed of finitely many isolated
path-connected components.

Let x2F�Fix.�/, where F is the path-connected component of x. We claim that there
exists a neighborhood of x which does not intersect any other connected component
of Fix.�/. Suppose the contrary. Then x would be a limit point of Fix.�/ n F . In
particular, if B�.x/ is a normal ball of radius � around x, then there exists a point
y 2 B�.x/ \ .Fix.�/ n F/ and we can consider the unique minimizing geodesic 
given by the exponential map, satisfying  .0/D x and  .1/D y. However, � is an
isometry so we have that z D � ı  is also a minimizing geodesic satisfying z .0/D x

and z .1/D y, hence by uniqueness we must have Image. /� Fix.F/, contradicting
the fact that y was in a distinct path-connected component. Since F is compact we can
choose the radius � of the normal ball uniformly so that F is in fact isolated, which
by the compactness of M implies that there are only finitely many path-connected
components.

Furthermore, if k is coprime to p then we have Fix.�k/D Fix.�/. In fact, since p and
k are relatively prime there exist integers ak and bk such that akkC bkp D 1. Thus,

� D �akkCbkp
D �akk�bkp

D �akk :

9While we do not use it in this proof, it might help the reader to first assume that p is a prime.
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So if x is a fixed point of �k then the above equality shows that x is also a fixed
point of �. Conversely, if x is a fixed point of � it is clearly a fixed point for any
of its iterations. Finally, the same argument shows that if x is contractible as a fixed
point of �k it is also contractible as a fixed point of �, and vice versa. Therefore
Fix.�k/D Fix.�/.

To show that � is weakly nondegenerate we utilize the fact if M is connected and
f 2 Iso.M; h � ; � i/ is such that f .x/ D x and D.f /x D idTxM for a point x 2M ,
then f D idM . This can be proven by considering the nonempty closed set

S D fy 2M j f .y/D y;D.f /y D idTyM g;

and noting that the existence of normal balls implies that S is also open. Applied to
our context, we must then show that for every x 2 Fix.�/, D.�/x must have at least
one eigenvalue different from 1, otherwise � would have to be trivial. One way to see
this is by noting that as D.�/x 2 Sp2n.TxM / is an element of finite order, its Jordan
form is diagonal, hence it is trivial if and only if all its eigenvalues are equal to 1.

A slight modification of the above arguments, which amounts to the slice theorem
[2, Theorem I.2.1], shows first that each connected component F of the fixed-point set
of � is a closed connected submanifold of M (and hence is path-connected). Moreover,
for each F and x 2F , ker.D.�/x� idTxM /DTxF , which is to say that the graph of �
intersects the diagonal ��M �M� cleanly. In other words, � is a Floer–Morse–Bott
Hamiltonian diffeomorphism.

Finally, to prove that for a generalized fixed point F of �, and capping xF of its
corresponding generalized periodic orbit F , the mean-index �.H; xx/ is constant as
a function of x 2 F , we argue as follows. We shall prove that for a fixed x0 2 F ,
the function f W F ! R, given by f .x/ D �.H; xx/��.H; xx0/, has integer values.
By continuity of the mean-index this implies that f is identically constant, and as
f .x0/D 0, it is identically zero. This shows the required statement.

First we prove that f has integer values. Similarly to the case of a Riemannian metric,
by [59, Proposition 2.5.6] we can find an !–compatible almost complex structure J

on M that is preserved by �. This allows us to consider D.�/x 2 Sp2n.TxM / for
all x 2 F a unitary matrix, which has diagonal Jordan form, and is determined up to
conjugation by its spectrum with geometric multiplicities. Furthermore its spectrum lies
in the finite set �p �C of pth roots of unity. Therefore by continuity of the spectrum in
the operator norm, which holds for normal and hence for unitary matrices in particular,
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the spectrum of D.�/x does not depend on x 2 F , and all D.�/x for x 2 F are
conjugate by appropriate unitary isomorphisms. Therefore D.�/x and D.�/x0

can be
connected to the identity by conjugate paths, which therefore have equal mean-indices.
Now, as the paths obtained from D.�t

H
/x and D.�t

H
/x0

by means of the cappings
differ from these conjugate paths by suitable loops ˆ and ˆ0 in the symplectic group,
we obtain that f .x/D�.H; xx/��.H; xx0/D�.ˆ/��.ˆ0/ 2 Z.

Finally, observe that with D.�/x being .!x;Jx/–unitary, TxF is Jx–invariant, and
the tangent space TxM splits as a symplectic direct sum TxF ˚Nx , where Nx is
the normal bundle to F at x (in fact this splitting can be obtained by taking Nx to
be the Hermitian orthogonal complement of TxF). In particular, F is a symplectic
submanifold of .M; !/.

Hence, the above discussion shows that � is generalized perfect with sequence kj being
the monotone-increasing ordering of the set

fk 2 Z>0 j gcd.k;p/D 1g:

Remark 36 We have just seen that a p–torsion Hamiltonian diffeomorphism � is
weakly nondegenerate generalized perfect. In our setting it is enough to consider the
case where � has prime order. In fact, if � has order d � 2 and l is a prime that
divides d , ie there is an integer m such that d D lm, we consider the Hamiltonian
diffeomorphism  D �m, which, in turn, has prime order. Equivalently, by Cauchy’s
theorem, if G is a finite group then for every prime p dividing its order there exists an
element of order p.

5.2 Proof of Proposition 5

We first observe that by the universal coefficient formula, it is sufficient to prove the
statement for RD Z.

Now from [85, Chapter 9 and the proof of Theorem 2.3.2] as well as the translation of
[76, Theorem 3.4.11] from the setting of Lagrangian clean intersections to the Floer–
Morse–Bott Hamiltonian setting [3, Theorem 5.2.2] by means of the graph construction,
it is direct to see that there is an isomorphism

HFloc.�;F/ŠH.F IO�˙1 Z/

of the local Floer homology and the homology of F with coefficients in a Z–local
system O�˙1 Z, with structure group f˙1g Š Z=2Z, associated to a double cover O
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of F that we describe below. It is the goal of the proof to show that in our case this
local system is trivial.

The local system O is defined as follows. For x;y 2 F , consider the space Px;y.F/ of
smooth maps  WR! F such that

lim
s!�1

 .s/D x and lim
s!1

 .s/D y

for which the convergence is exponential with derivatives. Let u W R � S1 ! M

denote the cylinder u .s; t/D �
t
H
. .s//. Look at the bundle E !R�S1 given by

E D .u /
�TM . Now for each sufficiently small positive number � 2 .0; �0/, where

�0 depends only on H and F , consider real Cauchy–Riemann differential operators

D WW
1;p;�.E /!Lp;�.E /

between Sobolev spaces of sections of E with �–exponential decay as jsj ! 1,
that over .�1;�C / and .C;1/, for a large C > 0, coincide with real Cauchy–
Riemann operators determined by a choice of an!–compatible almost complex structure
fJtg 2 JM and connections whose parallel transport over the curve f.s; t/gt2Œ0;1� (with
s fixed) is determined by the linearization of �t

H
at  .s/. For � > 0 sufficiently small,

all these operators are Fredholm. Moreover, with the auxiliary data of connections and
complex structures forming a contractible space, all these operators are furthermore
homotopic to each other in the space of Fredholm operators. It is shown in [85] and
[28, Chapter 8] that for ;  0 2 Px;y.F/, the orientation torsors jD j and jD 0 j of
the determinant spaces det.D / and det.D 0/ are canonically isomorphic.10 We can
therefore fix x 2F , and set our local system O!F to be induced from the sets jD j for
 2Px;y.F/ with y 2F , with the natural identifications provided by this isomorphism.

Now we prove that O is trivial in our case. Suppose  2 Px;y.F/. It is sufficient to
show that det.D / is canonically oriented. Now, as in the proof of Theorem C, in our
case there exists an !–compatible almost complex structure J on M which is invariant
under �. In particular, D.�/x W TxM ! TxM is .Jx; !x/–unitary for all x 2 F .
This, together with the fact that the universal cover eSp.2n;R/ deformation-retracts
to the universal cover zU .n/ of its unitary subgroup, implies that D is homotopic in
the space of Fredholm operators, canonically up to a contractible choice of auxiliary

10Recall that the determinant line of a Fredholm operator D is the real vector space of dimension one
defined as det.D/D det.coker.D//_˝ det.ker.D//, where for a real finite-dimensional vector space V

of dimension d , det.V /Dƒd .V /, and for a real vector space l of dimension one, its orientation torsor
over the group˙1 is jl j D .l n f0g/=.R>0/.
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data, to a real Cauchy–Riemann operator D WW 1;p;�.E /!Lp;�.E / corresponding
to a J–unitary connection. Call the homotopy11 fDr gr2Œ0;1�, where D0 D D and
D1 DD. But such operators D are in fact complex Cauchy–Riemann operators, their
kernels and cokernels are complex vector spaces, and hence their determinants are
canonically oriented. Hence jDj and jD j admit canonical elements o and o . By a
similar argument, following the definition of the isomorphisms  ; 0 W jD j

�
�! jD 0 j

from [85; 28, Chapter 8], with the key point being that orientation gluing is natural
with respect to homotopies [85, Lemma 9.4.1], we see that  ; 0.o /D o 0 . Therefore
O admits a continuous section, and hence is trivial. This finishes the proof.

5.3 Proof of Theorem J

Consider � 2Ham.M; !/nfidg such that �d D id, and let H be a Hamiltonian function
generating �. Then  .H / > 0 by the nondegeneracy of the spectral norm. Since � has
finite order d we have that f�t

H .d/gt2Œ0;1� is a Hamiltonian loop, which, in addition to
the fact that M has rationality constant � > 0, implies that Spec.H .d//D aC� �Z for
a real constant a. One can show by a quick calculation that Spec.H .d//D�aC � �Z.

Furthermore, observe that Spec.H / � Spec.H .d//=d . In fact, if c 2 Spec.H / then
there exists a 1–periodic capped orbit xx 2 zO.H / such that AH .xx/D c. Consequently,
AH .d/.xx.d//D d �AH .xx/D d � c, which implies the claim when added to the fact that
xxd is a critical point of AH .d/ .

Finally, the above observations imply that  .H / 2 .�=d/ �Z. In particular, the fact
 .H /� 0 implies  .H /� �=d . Since H was an arbitrary Hamiltonian generating �,
it is clear that  .�/� �=d .

5.4 Proof of Theorem A

Similarly to the case of Theorem J, �d D id implies, in the symplectically aspherical
setting, that for a Hamiltonian H generating �, we have Spec.H .d// D fag and
Spec.H .d// D f�ag for a constant a 2 R, so Spec.H / � Spec.H .d//=d D fa=dg

consists of at most one point. Since Spec.H / contains c.ŒM �;H /, we obtain that

11In fact we apply a homotopy depending smoothly on x0 2 F from the symplectic connections on
x�.TM /! S1 for x.t/D �t

H .x0/ given by the linearized flow of �t
H

to unitary connections, while at all
times preserving their monodromies D.�1

H
/x0

over S1 for all x0 2 F . This means in particular that the
kernels of the asymptotic operators for fixed x0 do not depend on the homotopy parameter r , up to natural
identification. This and the compactness of F imply that the � > 0 above can be chosen sufficiently small
that all the operators Dr along the homotopy are indeed Fredholm as operators W 1;p;�.E /!Lp;�.E /.
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c.ŒM �;H / D a=d . Similarly, c.ŒM �;H / D �a=d . This means that  .H / D 0 and
hence  .�/D 0, which implies by nondegeneracy of  that � D id. This finishes the
proof.

5.5 Proof of Theorem K

Consider � 2 Ham.M; !/ n fidg such that �p D id for a prime number p. Fix a
coefficient field K. We show that there exists a positive integer m such that

(16)  .�m/�
bp=2c

p
� �;

where bp=2c denotes the floor of p=2. We may suppose p � 3, since the case pD 2 is
settled by Theorem J for mD 1. In this case, note that bp=2c D .p� 1/=2. Supposing
that  .�/ < �.p � 1/=2p, we can find a Hamiltonian H generating � satisfying
 .H / < �.p�1/=2p. In the proof of Theorem J we saw that  .H / must be a positive
integer multiple of �=p. Therefore, by Lemma 32 we can find a positive integer
r � .p� 3/=2 such that

(17) l.H; �H /D  .H /D
r�

p
:

In particular, we have that 2r < p, which combined with the fact that p > 2 implies
that there exist integers a; b such that a.2r/C bp D 1. Observe that b must be an
odd integer, since a.2r/ is even while p and 1 are odd. Let k be the integer such that
�b D 2kC 1. Furthermore, note that a¤ 0, and set mD jaj. There are two cases to
be considered, depending on the sign of the integer a:

� If a> 0, we have that m.2r/� .2kC 1/p D 1, which implies

(18)
mr

p
�

pC 1

2p
D k;

where .p C 1/=2 D dp=2e. Furthermore, since m and p are coprime, Theorem G
implies that

(19) Specess.H .m//Dm �Specess.H /C �Z:

Combining (17), (18) and (19) we obtain that there exist c0; c1 2 Specess.H / such that

mc1�mc0 D
mr�

p
D
.pC 1/�

2p
C k�:
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In addition, mc1 C j� and mc0 C j� belong to the essential spectrum of H .m/ for
every integer j . We conclude that for each � 2 S1

� and I 2 �� , there exists an integer l

such that either

mc1C l�;mc0C .kC l/� 2 I or mc1C l�;mc0C .kC l C 1/� 2 I:

Consequently,

l.H .m/; �� /�minfmc1�mc0� k�; mc0�mc1C .kC 1/�g

Dmin
�
.pC 1/�

2p
;
.p� 1/�

2p

�
D
.p� 1/�

2p
:

Since � was arbitrary, we conclude

(20) l.�m/�
bp=2c

p
� �:

� If a< 0, an analogous argument can be made to show that once again (20) is valid.

Hence, by Lemma 33 we obtain the inequality (16).

5.6 Proof of Theorem L

Consider a generalized pseudorotation � as in Lemma 35. As a consequence of this
lemma, we may suppose that there exist c1; c22Specess.H / such that c1�c22��.RnQ/,
otherwise  .�m/ � � for some positive integer m. Since the orbit of any irrational
rotation in S1 is dense, for every � > 0 there exists an integer m� such that

�

2
� � < dS1

�
.Œc1�; Œm� � c2�/�

�

2
;

where for x 2R we denote by Œx� 2 S1
� DR=�Z its equivalence class, and dS1

�
is the

distance function on S1
� coming from the standard flat metric on R. Therefore, arguing

as in the proof of Theorem K we conclude

sup
k2Z>0

 .�k/�
�

2
:

The proofs of Theorems D and I rely on the following observations regarding the mean-
index. First, let �z be a lift of � to the universal cover eHam.M; !/ of Ham.M; !/. As
our path-connected isolated fixed-point sets are weakly nondegenerate, if the capping
xF of the generalized 1–periodic orbit F corresponding to an isolated fixed-point set
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F � Fix.�/ carries a cohomology class � of Conley–Zehnder index n in HFn.�z/Š

QH 2n.M; ƒK/, for a coefficient field K, then its mean-index �D�.�z; xF / satisfies
�� n< n<�C n. Hence,

(21) �.�z; xF / 2 .0; 2n/:

Similarly, if xF carries a homology class u 2 HFn.�z/ Š QH2n.M; ƒK/, then (21)
holds. Both of these implications follow from Lemma 19, equation (7) and Section 3.2.
We will specifically use the case uD ŒM �, which follows from Lemma 17.

5.7 Proof of Theorem D

We first treat the negative monotone case. Choose H 2H so that the path f�t
H
gt2Œ0;1�

represents the class �z lifting �. Let ki be the sequence associated to � as a generalized
perfect Hamiltonian diffeomorphism. By the pigeonhole principle applied to the
subsequence li with li j liC1 for all i , there exists an isolated fixed-point set F � Fix.�/,
and an increasing subsequence of ki , which we renumber and denote by ri , such that
c.ŒM �;H .ri // is carried by a capping xG i of the isolated set of 1–periodic orbits of the
ri–iterated Hamiltonian H .ri / corresponding to F .ri /. Set xG D xG 1. Since r1 divides
all ri , by taking a power of � we can assume that r1 D 1.

Write xG i as a recapped iteration of xG , ie

(22) xG i D xG
.ri / # Ai :

We claim that for ri large, !.Ai/ � 0 and c1.Ai/ > 0, contradicting negative mono-
tonicity. Indeed, write Ai for the action functional of H .ri /, and A WD A1. Then by
(22) and the triangle inequality for spectral invariants,

(23) riA. xG /�!.Ai/DAi. xG i/D c.ŒM �;H .ri //� ric.ŒM �;H /D riA. xG /:

Hence,
!.Ai/� 0:

However, as xG i carries c.ŒM �;H .ri //, by (21) we have �.H .ri /; xG i/2 .0; 2n/ and also
�.H; xG / 2 .0; 2n/. Hence ri�.H; xG / > 2n for ri large enough, and

(24) 2n>�.H .ri /; xG i/D ri�.H; xG /� 2c1.Ai/:

Therefore
c1.Ai/ > 0;

which finishes the proof.
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We now prove the symplectic Calabi–Yau case of the theorem. In this case, the mean-
index of each capped fixed-point set xF does not depend on the capping. Hence we
write �.H;F/ for each generalized fixed point F for this mean-index. Then for each
positive sequence ki!1 of iterations with �ki having a fixed finite number of weakly
nondegenerate generalized fixed points, we argue as follows. For each F 2 �0.Fix.�//,

�.H .ki /;F .ki //D .ki=k1/�.H
.k1/;F .k1//:

Hence, if �.H .k1/;F .k1// > 0 then �.H .ki /;F .ki // > 2n for all ki sufficiently large,
and if �.H .k1/;F .k1// � 0 then �.H .ki /;F .ki // � 0 for all ki . Now, as each F
is weakly nondegenerate, we obtain by the same argument as for the proof of the
support property of local Floer homology, Lemma 16, that for all ki sufficiently large,
H .ki / admits a C 2–small nondegenerate Hamiltonian perturbation Hi without capped
periodic orbits of Conley–Zehnder index n. However, this is in contradiction to the
existence of the PSS isomorphism. Specifically, in this case HFn.Hi/D 0 by definition
of Floer homology, and by the PSS isomorphism HFn.Hi/ŠQH2n.M /¤ 0. Indeed
ŒM � 2QH2n.M / is nonzero.

The following result was first proven in [93] in the setting of a pseudorotation assuming
that the quantum Steenrod square of the point cohomology class is undeformed, or
in other words that .M; !/ is not F2–Steenrod uniruled. We observe that the same
statement holds for generalized pseudorotations, with essentially the same proof, and
with a small modification following [97], for all primes p. Here � 2QH 2n.M; ƒFp

/

denotes the cohomology class Poincaré dual to the point.

Theorem O Let  be a generalized Fp pseudorotation with sequence kj D pj�1 of a
closed monotone symplectic manifold .M; !/ that is not Fp–Steenrod uniruled. Then

(25) c.�; z p/� p � c.�; z /

for each z 2 eHam.M; !/ covering  .

We proceed to the proof of Theorem I.

5.8 Proof of Theorem I

Choose H 2 H so that the path f�t
H
gt2Œ0;1� represents the class �z lifting �. By

the pigeonhole principle, there exists an isolated fixed-point set F � Fix.�/, and an
increasing sequence ki such that c.�;H .ri // for ri D pki is carried by a capping xG i of
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the isolated set of 1–periodic orbits of the ri–iterated Hamiltonian H .ri / corresponding
to F .ri /. By taking a power of �, we can assume that r1 D 1, and set xG D xG 1. Write
xG i as a recapped iteration of xG , ie

(26) xG i D xG
.ri / # Ai :

We claim that for ri large, we get !.Ai/�0 and c1.Ai/>0, contradicting monotonicity.
Indeed, write Ai for the action functional of H .ri /, and set A WDA1. Then by (26) and
Theorem O,

riA. xG /�!.Ai/DAi. xG i/D c.�;H .ri //� ric.�;H /D riA. xG /:

Hence,
!.Ai/� 0:

However, as xG i carries c.�;H .ri //, by (21) we have �.H .ri /; xG i/ 2 .0; 2n/ and also
�.H; xG / 2 .0; 2n/. Hence ri�.H; xG / > 2n for ri large enough, and

2n>�.H .ri /; xG i/D ri�.H; xG /� 2c1.Ai/:

Therefore,
c1.Ai/ > 0:

5.9 Proof of Theorem G

Suppose that � 2 Ham.M; !/ n fidg is of prime order q � 2. Let p � 2 be a prime
different from q. In particular, �j �pk

¤ id for all k 2 Z and 1� j � q� 1.

Write
B.�;Fp/D max

1�j�q�1
ˇtot.�

j ;Fp/:

By Theorem N we obtain for 1� j � q� 1 that

B.�;Fp/� ˇtot.�
j �pk

;Fp/� pkˇtot.�
j ;Fp/:

Choosing a sufficiently large positive k, this implies that for all 1� j � q� 1,

ˇtot.�
j ;Fp/D 0;

whence by Proposition 23 all such �j are generalized Fp pseudorotations. They are
weakly nondegenerate by Theorem C. In other words, the equality

Specvis.H IFp/D Specess.H IFp/

follows directly from the fact that ˇtot.�;Fp/D 0. This finishes the proof of part (i).

Geometry & Topology, Volume 27 (2023)



2888 Marcelo S Atallah and Egor Shelukhin

Let us prove that Specvis.H .k/IQ/D k �Specvis.H IQ/C � �Z for all k 2 Z coprime
with q. By the universal coefficient formula in local Floer homology, it is sufficient to
prove the identity Specvis.H .k/IFp/D k �Specvis.H IFp/C� �Z for coefficients in Fp

for an infinite sequence of primes p. Consider the primes p for which p D a .mod q/,
where a 2 .Fq/

� is a cyclic generator of the multiplicative group .Fq/
� D GL.1;Fq/

of Fq . In this case the set f�pj j j 2 Z�0g coincides with

f�k
j 1� k � q� 1g D f�k

j k ¤ 0 .mod q/g:

Let xF be a capped generalized periodic orbit of H . It is enough to prove that

dimFp
HFloc.H .pj /; xF .pj //D dimFp

HFloc.H; xF /

for all j 2Z�0. Indeed, as explained above, each capped generalized fixed point of �k

is a recapping of a pj –iterated capped generalized fixed point of �.

We know by the Smith inequality in generalized local Floer homology, Proposition 24,
that dimFp

HFloc.H .pj /; xF .pj // is an increasing function of j . However, by the finite-
order condition it takes only a finite number of values. Therefore it must be identically
constant. This finishes the proof of part (ii).

Now we prove part (iii) relying on Proposition 5. First let p D q. Then for  D �k ,
with k coprime to p,

(27) N. ;Fp/D
X

dimFp
HFloc. ;F/D

X
dimFp

H.F IFp/;

the sum running over all contractible generalized fixed points F of  , since by
Proposition 5,

HFloc. ;F/ŠH.F IFp/

for all generalized fixed points F . We remark that H.F IFp/¤ 0. By Proposition 23,
we know that

N. ;Fp/� dimFp
H.M IFp/:

On the other hand, by the classical Smith inequality [99; 25; 4], we have

(28)
X

dimFp
H.F IFp/� dimFp

H.M IFp/;

the sum running over all the generalized fixed points of  . This yields

N. ;Fp/D dimFp
H.M IFp/:

This finishes the proof of the first statement of part (iii).
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To prove the second statement of part (iii), we first note that for char.K/D p,

Specess.H;K/D Specess.H;Fp/ and Specvis.H;K/D Specvis.H;Fp/

by Proposition 23, and the equality

Specess.H;Fp/D Specvis.H;Fp/

follows by the first statement of part (iii) and Proposition 23. For the last part, we note
that by Proposition 5, Specvis.H;K/D Spec.H / because

dim HFloc.H; xF /D dim HFloc.�;F/D dim H.F IK/ > 0

for all capped contractible generalized 1–periodic orbits xF of H . Now for k coprime
to q, Spec.H .k// D fAH .k/. xF .k/ # A/g, where the set runs over all A 2 � , and xF
runs over all capped contractible generalized 1–periodic orbits xF of H . Indeed, all the
contractible generalized fixed points of �k are of the form F .k/ for F a contractible gen-
eralized fixed point of �, and the identity quickly follows. Now using the homogeneity
and the recapping properties of the action functional, we obtain

Spec.H .k//D k �Spec.H /C � �Z:

Combined with the identities Specess.H .k/IK/D Specvis.H .k/IK/D Spec.H .k// and
Specess.H IK/D Specvis.H IK/D Spec.H /, this finishes the proof.

5.10 Proof of Theorem H

First assume that  is of prime order p. Then the proof follows from equations (27)
and (28). Indeed, the upper bound holds for all the generalized fixed points of  , and
the lower bound N. ;Fp/ � dimFp

H.M IFp/ takes into account only contractible
generalized fixed points. If  had a noncontractible generalized fixed point, it would
contribute dimFp

H.F IFp/ > 0 to the sum, making the equality impossible. Alter-
natively, one can argue by means of a suitable generalization of Theorem N with
p ¤ q.

Now suppose that  is of order pk , with k � 1. As in Section 5.9, by Proposition 5

HFloc. ;F/ŠH.F IFp/

for all generalized fixed points F ; and

(29) N. ;Fp/D
X

dimFp
HFloc. ;F/D

X
dimFp

H.F IFp/;
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the sum running over all contractible generalized fixed points F of  . Moreover, by
Proposition 23, we have

N. ;Fp/� dimFp
H.M IFp/:

Finally, by the Smith inequality for finite p–groups [99; 25; 4] we again have

(30)
X

dimFp
H.F IFp/� dimFp

H.M IFp/;

the sum running over all the generalized fixed points of  . Now, as in the case
of order p, if  had a noncontractible generalized fixed point, it would contribute
dimFp

H.F IFp/ > 0 to the sum, making it impossible for (30) and (29) to hold
simultaneously.

For  of arbitrary integer order d D p
k1

1
� � �p

km
m , we proceed by induction. We have

already shown the base of induction. Now we suppose that the result is true for all
orders having at most m� 1 distinct prime divisors, and prove it for  of order d as
above. Then  1 D  

p
k1
1 is of order d=p

k1

1
, which has exactly m� 1 prime divisors,

and hence by induction all the fixed points of  1 are contractible. This implies that
the order of the homotopy class of each fixed point of  divides p

k1

1
. In the same way,

we obtain that this order also divides p
kj
j for all 1 � j �m, and therefore it divides

gcd.pk1

1
; : : : ;p

km
m /D 1. Therefore each fixed point of  is contractible. This finishes

the proof.
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