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The combinatorial formula for open gravitational descendents

RAN J TESSLER

Pandharipande, Solomon and Tessler (2014) defined descendent integrals on the
moduli space of Riemann surfaces with boundary, and conjectured that the generating
function of these integrals satisfies the open KdV equations. We prove a formula for
these integrals in terms of sums of Feynman diagrams. This formula is a generalization
of the combinatorial formula of Kontsevich (1992) to the open setting. In order to
overcome the main challenges of the open setting, which are orientation questions and
the existence of boundary and boundary conditions, new techniques are developed.
These techniques, which are interesting in their own right, include a characterization
of graded spin structure in terms of open and nodal Kasteleyn orientations, and a new
formula for the angular form of S2n�1–bundles.

Buryak and Tessler (2017) proved the conjecture of Pandharipande, Solomon and
Tessler based on the work presented here.
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1 Introduction

The study of the intersection theory on the moduli space of open Riemann surfaces
was initiated by Pandharipande, Solomon and Tessler in [31]. The authors constructed
a descendent theory in genus 0 and obtained a complete description of it. In all genera,
they conjectured that the generating series of the descendent integrals satisfies the
open KdV equations. This conjecture can be considered as an open analog of Witten’s
famous conjecture in [38].

The construction of the positive-genus analog will be carried out in joint work with
Solomon [35], and is reviewed here. A physical interpretation of these constructions
can be found in Dijkgraaf and Witten [15].

In this paper, after recalling the constructions of [31; 35], we prove a formula for all the
descendent integrals as sums over amplitudes of special Feynman diagrams, which we
call odd critical nodal ribbon graphs. With this formula one can effectively calculate
all the open descendents.

Based on this formula, the conjecture of [31] is proved in Buryak and Tessler [10], and
a calculation of finer invariants is performed in Alexandrov, Buryak and Tessler [2].

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2499

1.1 Witten’s conjecture

1.1.1 Intersection numbers Denote by Mg;l the moduli space of compact connected
Riemann surfaces with l distinct marked points. P Deligne and D Mumford [13] defined
a natural compactification of it via stable curves. Given g and l , a stable curve is a
compact connected complex curve with l distinct marked points and finitely many
singularities, all of which are simple nodes. We require the automorphism group of the
surface to be finite, and the marked points and nodes are all distinct. The moduli space
of stable curves of fixed g and l is denoted by Mg;l . It is known that this space is a
nonsingular complex orbifold of complex dimension 3g� 3C l . For the basic theory
the reader is referred to Deligne and Mumford [13] and Harris and Morrison [17].

In his seminal paper [38], E Witten, motivated by theories of 2–dimensional quantum
gravity, initiated new directions in the study of Mg;l . For each marking index i he
considered the tautological line bundles

Li !Mg;l

whose fiber over a point
Œ†; z1; : : : ; zl � 2Mg;l

is the complex cotangent space T �zi† of † at zi . Let

 i 2H
2.Mg;l ;Q/

denote the first Chern class of Li , and write

(1) h�a1�a2 � � � �al i
c
g WD

Z
Mg;l

 
a1
1  

a2
2 � � � 

al
l
:

The integral on the right-hand side of (1) is well defined when the stability condition

2g� 2C l > 0

is satisfied, all the ai are nonnegative integers, and the dimension constraint

3g� 3C l D
X
i

ai

holds. In all other cases,
˝Ql

iD1 �ai
˛c
g

is defined to be zero. The intersection products (1)
are often called descendent integrals or intersection numbers.

Let ti (for i � 0) and u be formal variables, and put


 WD

1X
iD0

ti�i :

Geometry & Topology, Volume 27 (2023)



2500 Ran J Tessler

Let

F cg .t0; t1; : : :/ WD

1X
nD0

h
nicg

nŠ

be the generating function of the genus g descendent integrals (1). The bracket h
nicg
is defined by the monomial expansion and the multilinearity in the variables ti . The
generating series

(2) F c WD

1X
gD0

u2g�2F cg

is called the (closed) free energy. The exponent �c WD exp.F c/ is called the (closed)
partition function.

1.1.2 KdV equations Set

hh�a1�a2 � � � �al ii
c
WD

@lF c

@ta1@ta2 � � � @tal
:

Witten’s conjecture [38] says that the closed partition function �c becomes a tau
function of the KdV hierarchy after the change of variables tn D .2nC 1/ŠŠ T2nC1. In
particular, it implies that the closed free energy F c satisfies the following system of
partial differential equations for n� 1:

.2nC 1/u�2hh�n�
2
0 ii

c
D hh�n�1�0ii

c
hh�30 ii

c
C 2hh�n�1�

2
0 ii

c
hh�20 ii

c
C
1
4
hh�n�1�

4
0 ii

c :

These equations are known in mathematical physics as the KdV equations. Witten [38]
proved that the intersection numbers (1) satisfy the string equation�

�0

lY
iD1

�ai

�c
g

D

lX
jD1

�
�aj�1

Y
i¤j

�ai

�c
g

for 2g� 2C l > 0:

Witten has shown that the KdV equations, together with the string equation, determine
the closed free energy F c completely. R Dijkgraaf, E Verlinde and H Verlinde [14]
reformulated an alternative description to Witten’s conjecture in terms of the Virasoro
algebra, and they have shown that the two descriptions are equivalent.

1.2 Kontsevich’s proof

Witten’s conjecture was proved by M Kontsevich [25]. The proof of [25] consisted
of two parts. The first part was to prove a combinatorial formula for the gravitational
descendents. Let Rg;n be the set of isomorphism classes of trivalent ribbon graphs of

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2501

genus g with n marked faces. Denote by V.G/ the set of vertices of a graph G 2Rg;n.
Introduce formal variables �i , with i 2 Œn�. For an edge e 2E.G/, let

�.e/ WD
1

�i C�j
;

where i and j are the numbers of faces adjacent to e. The following formula holds:

(3)
X

a1;:::;an�0

� nY
iD1

�ai

�c
g

nY
iD1

.2ai � 1/ŠŠ

�
2aiC1
i

D

X
G2Rg;n

2jE.G/j�jV.G/j

jAut.G/j

Y
e2E.G/

�.e/:

The second step of Kontsevich’s proof was to translate the combinatorial formula into
a matrix integral. Then, by using nontrivial analytical tools and the theory of the KdV
hierarchy, he was able to prove that F c satisfies the KdV equations of Section 1.1.2.
Other proofs for Witten’s conjecture were given, for example, in Mirzakhani [29] and
Okounkov and Pandharipande [30].

1.3 Open intersection numbers and the open KdV equations

1.3.1 Open intersection numbers In [31], R Pandharipande, J Solomon and the
author constructed an intersection theory on the moduli space of stable marked disks.
Let M0;k;l be the moduli space of stable marked disks with k boundary marked points
and l internal marked points. This space carries a natural structure of a compact smooth
oriented manifold with corners. One can easily define the tautological line bundles Li
for an internal marking i , as in the closed case.

In order to define gravitational descendents, we must specify boundary conditions. The
main construction in [31] is a construction of boundary conditions for Li !M0;k;l .
In [31], vector spaces Si D Si;0;k;l of multisections of Li ! @M0;k;l , which satisfy
the following requirements, were defined. Suppose a1; : : : ; al are nonnegative integers
with 2

P
i ai D dimR M0;k;l D kC 2l � 3. Then:

(a) For any generic choice of multisections sij 2 Si for 1� j � ai , the multisection

s D
M
i2Œl�

1�j�ai

sij

vanishes nowhere on @M0;k;l .

(b) For any two such choices s and s0 we haveZ
M0;k;l

e.E; s/D

Z
M0;k;l

e.E; s0/;

where E D
L
i Laii and e.E; s/ is the relative Euler class.

Geometry & Topology, Volume 27 (2023)



2502 Ran J Tessler

The multisections sij , as above, are called canonical. With this construction the open
gravitational descendents in genus 0 are defined by

(4) h�a1�a2 � � � �al�
k
i
o
0 WD 2

� 1
2
.k�1/

Z
M0;k;l

e.E; s/;

where E is as above and s is canonical.

In a forthcoming paper [35], J Solomon and the author define a generalization for all
genera. Suppose g, k and l are such that

(5) 2g� 2C kC 2l > 0 with 2 jgC k� 1:

In [35] a moduli space Mg;k;l , which classifies stable surfaces with boundaries and
some extra structure, is constructed; see Section 2.3 for a precise definition. The moduli
space Mg;k;l is a smooth oriented compact orbifold with corners, of real dimension

3g� 3C kC 2l:(6)

Note that naively, without adding an extra structure, the moduli of real stable curves of
positive genus is nonorientable.

Again, on Mg;k;l one defines vector spaces Si D Si;g;k;l for i 2 Œl �, for which the
genus g analogs of requirements (a) and (b) from above hold. Write

(7) h�a1�a2 � � � �al�
k
i
o
g WD 2

� 1
2
.gCk�1/

Z
Mg;k;l

e.E; s/

for the corresponding higher-genus descendents. Introduce one more formal variable s.
The open free energy is the generating function

(8) F o.s; t0; t1; : : : Iu/ WD

1X
gD0

ug�1
1X
lD0

h
 lıkiog

nŠ kŠ
;

where 
 WD
P
i�0 ti�i and ı WD s� , and again we use the monomial expansion and the

multilinearity in the variables ti and s.

The descriptions of Mg;k;l and its construction, and of the boundary conditions and
their construction, are given in Section 2. Throughout this article we shall write h� � �i
for h� � �iog , as closed descendents will not be considered, and the genus can be read
from the numbers k; l; a1; : : : ; al .

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2503

1.3.2 Open KdV The initial condition

F ojt�1D0 D u
�1 s

3

6
Cu�1t0s(9)

follows easily from the definitions [31]. In [31] the authors conjectured the equations

@F o

@t0
D

1X
iD0

tiC1
@F o

@ti
Cu�1s;(10)

@F o

@t1
D

1X
iD0

2iC1

3
ti
@F o

@ti
C
2

3
s
@F o

@s
C
1

2
:(11)

They were called the open string and the open dilaton equation, correspondingly. These
equations were geometrically proved in [31] for g D 0, and for all genera in [35].

Put
hh�a1�a2 � � � �al�

k
ii
o
WD

@lCkF o

@ta1@ta2 � � � @tal@s
k
:

The main conjecture in [31] was:

Conjecture 1 (open KdV conjecture) The system of equations

(12) .2nC 1/u�1hh�niio

D uhh�n�1�0ii
c
hh�0ii

o
�
1
2
uhh�n�1�

2
0 ii

c
C 2hh�n�1ii

o
hh�iioC 2hh�n�1�ii

o;

with n� 1, is satisfied.

In [31], the equations (12) were called the open KdV equations. It is easy to see that F o

is fully determined by the open KdV equations (12), the initial condition (9) and the
closed free energy F c . They also made a Virasoro-type conjecture, which also fully
describes the open descendents. Both conjectures were proved in [31] for gD 0. In [5],
Buryak proved the equivalence of the two conjectures. Based on the work presented
here, the conjecture was proven for all genus in [10]; see Section 1.5 below for more
details.

1.4 The open combinatorial formula

Here and below the genus of a Riemann surface with boundary †, smooth or nodal,
is defined as the usual genus of the doubled surface obtained from gluing two copies
of † along the common boundary @†.

Geometry & Topology, Volume 27 (2023)
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Definition 1.1 Let g; k; l be nonnegative integers which satisfy conditions (5), and
let B; I be sets with jBj D k; jIj D l . Let .†; fxigi2B; fzigi2I/ be a genus g surface
with boundary, whose set of boundary markings is B, and set of internal markings is I.
A .g;B; I/–smooth trivalent ribbon graph is an embedding � WG!† of a connected
graph G into .†; fxigi2B; fzigi2I/, such that:

(a) fxigi2B � �.V .G//, where V.G/ is the set of vertices of G. We henceforth
consider fxig as vertices.

(b) The degree of every xi is 2.

(c) The degree of any vertex v 2 V.G/ n fxigi2B is 3.

(d) @†� �.G/.

(e) If l � 1, then

† n �.G/D
a
i2I

Di ;

where each Di is a topological open disk, with zi 2Di . We call the disk Di the
face marked i .

(f) If l D 0, then �.G/D @† and k D 3. Such a component is called trivalent ghost.

The genus g.G/ of the graph G is the genus of †. The number of the boundary
components of G or † is denoted by b.G/, and V I .G/ stands for the set of internal
vertices. Denote by B.G/ the set of boundary marked points fxigi2B, and by I.G/' I
the set of faces.

Definition 1.2 An odd critical nodal ribbon graph is G D
�`

i Gi
�
=N , where:

(a) The �i WGi !†i are smooth trivalent ribbon graphs.

(b) N �
�S

i V.Gi /
�
�
�S

i V.Gi /
�

is a set of ordered pairs of boundary marked
points .v1; v2/ of the Gi , which we identify. After the identification of the
vertices v1 and v2, the corresponding point in the graph is called a node. The
vertex v1 is called the legal side of the node and the vertex v2 is called the illegal
side of the node.

(c) Ghost components do not contain the illegal sides of nodes.

(d) For any component Gi , any boundary component of it contains an odd number
of points which are either marked points or legal sides of nodes.

Geometry & Topology, Volume 27 (2023)
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1 2

1

3

4� C
5 6

2 3

4
5

C

�

Figure 1: A nodal ribbon graph.

We require that elements of N be disjoint as sets (without ordering).

The set of edges E.G/ is composed of the internal edges of the Gi and of the boundary
edges. The boundary edges are the boundary segments between successive vertices
which are not the illegal sides of nodes. For any boundary edge e, we denote by m.e/
the number of the illegal sides of nodes lying on it. The boundary marked points of G
are the boundary marked points of the Gi which are not nodes. The set of boundary
marked points of G will be denoted by B.G/, the set of faces by I.G/.

An odd critical nodal ribbon graph is naturally embedded into the nodal surface †D�`
i †i

�
=N . The genus of the graph is defined as the genus of †. A .g; k; l/–odd

critical nodal ribbon graph is a connected odd critical nodal ribbon graph, together
with a pair of bijections, mB W B.G/! Œk� and mI W I.G/! Œl �, called markings.

Two marked odd critical nodal ribbon graphs � WG!† and �0 WG0!†0 are isomorphic if
there is an orientation-preserving homeomorphismˆ W .†; fzig; fxig/! .†0; fz0ig; fx

0
ig/

of marked surfaces, and an isomorphism of graphs � WG!G0, such that

(a) �0 ı� Dˆ ı �, and

(b) the maps preserve the markings.

Figure 1 depicts a nodal graph of genus 0, with 5 boundary marked points, 6 internal
marked points, three components, one of which is a ghost, and two nodes, where a plus
sign indicates the legal side of a node and a minus sign indicates the illegal side.

Notation 1.3 Denote by ORm
g;k;l

the set of isomorphism classes of odd .g; k; l/–
critical nodal ribbon graphs with m legal nodes.

Remark 1.4 In Section 4 we have to consider more general ribbon graphs, and the
notions of this subsection are defined in a different but equivalent way.

Geometry & Topology, Volume 27 (2023)
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The goal of this paper is to prove the following theorem.

Theorem 1.5 Fix g; k; l � 0 which satisfy conditions (5). Let �1; : : : ; �l be formal
variables. Then we have

(13) 2
1
2
.gCk�1/

X
a1;:::;al�0

h�a1�a2 � � � �al�
k
i
o
g

lY
iD1

2ai .2ai � 1/ŠŠ

�
2aiC1
i

D

X
m�0

X
GD.

`
i Gi/=N2ORm

g;k;l

Q
i 2
jV I .Gi /jCg.Gi /Cb.Gi /�1

jAut.G/j

Y
e2E.G/

�.e/;

where

�.e/ WD

8̂̂̂̂
<̂
ˆ̂̂:

1

�iC�j
if e is an internal edge between faces i and j ;

1

mC1

�2m
m

�
��2m�1i if e is a boundary edge of face i and m.e/Dm;

1 if e is a boundary edge of a ghost:

Remark 1.6 The invariants of [31; 35] are defined as integrals of relative Euler classes,
relative to canonical boundary conditions, over the moduli of graded surfaces, which
are oriented orbifolds with corners. Theorem 1.5 is proven based on these definitions;
more precisely, it assumes that the moduli spaces of graded surfaces are oriented
orbifolds with corners, that the orientations satisfy some compatibility properties along
nodal strata, and that (special) canonical multisections can be found. Since [35], which
proves these assumptions in the positive genus case, has not appeared yet, in addition
to defining everything we use, we also review the arguments.

First, the fact that the moduli of graded surfaces are smooth orbifolds with corners
is a technical result, whose proof imitates of the proof of Theorem 2 of [41], and is
provided in Section 2.3.6. Second, the construction of special canonical boundary
conditions is similar to the proof of Lemma 3.53(a) in [31], and appears in Section 2.5.

On the other hand, proving that the high genus moduli is orientable, constructing the
orientations and showing their properties is more involved, and is based on the discovery
of the open Arf invariant in Solomon and Tessler [34]. However, in Sections 5 and 6.2,
we provide completely different proofs for the orientability and the orientation properties
we need, using the stratification of the moduli and properties of Kasteleyn orientations.

It is also worth mentioning that one of the main results of [31; 35] is the independence
of the open intersection numbers on choices. This fact is also a byproduct of the
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(a) 1 2

1

1 2

1

2
1 2

1

1 2C 1 2

1
1

1 2C
1

1 2
1

(b)
1

1C
1

(c) 1 1

C
1

C

1 1

Figure 2: Examples of contributing graphs.

proof of Theorem 1.5, which uses just the defining properties of canonical boundary
conditions and not a specific canonical multisection.

1.4.1 Examples h�1�0�i0 D 1. Thus, for g D 0, k D 1 and l D 2 the left-hand side
of equation (13) with �1 D � and �2 D � is

2

��3
C

2

��3
:

The right-hand side receives contributions from several graphs; see Figure 2(a). The
two nonnodal contributions in the first line are

1

�.�C�/�2
C

1

�.�C�/�2
:
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The two nonnodal contributions in the second line are

2

2�3.�C�/
C

2

2�3.�C�/
:

The nodal ones sum to
1

��3
C

1

��3
:

And the two sides agree.

The second example is of h�1i1 D 1
2

. Consider case (b) in Figure 2. The left-hand side
is 1=�3. Nonnodal terms do not contribute, as the single relevant graph — the leftmost
graph of (b) — is not odd. The nodal contribution is exactly 1=�3.

The last example, Figure 2(c), is of h�2�5i D 8. The left-hand side gives 384=�5.
Then 24 nonnodal diagrams — one for each cyclic order of the boundary points —
contribute 24=�5. There are 120 diagrams with a single node, one for each order;
each contributes 1=�5. There are 120 diagrams with two nodes; each contributes 2=�5,
where 2 comes from the Catalan term.

1.5 Proof of the conjecture and related works

Some recent developments, related works and open questions are summarized below.

(i) Proof of the open KdV conjecture Based on the combinatorial formula presented
here, the conjecture of [31] has been proven in [10]: first, the combinatorial formula
was transformed to a formula of matrix integrals, and then, by analytical tools and ideas
from the theory of integrable hierarchies, the integral was shown to satisfy the open
Virasoro constraints, which are equivalent to the open KdV equations by Buryak [5].

(ii) Boundary descendents Buryak [6] showed that the string solution of the open
KdV equation is closely related to the wave function of the KdV hierarchy. In [5] a
more general generating function, which is a tau function of the Burgers–KdV system,
was introduced. It was conjectured that this function should correspond to an open
intersection theory which includes descendents of boundary marked points. Such
a theory can be constructed, extending the construction of [35], and, based on the
combinatorial construction in this paper and on Buryak and Tessler [10], this theory
can be shown to satisfy the Burgers–KdV hierarchy. The definition of the extended
theory, its calculation and the proof of its relation with the Burgers–KdV hierarchy will
appear soon.
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(iii) Kontsevich–Penner matrix model, Refined open intersection numbers An
alternative description of the solution of the Burgers–KdV equations in terms of
matrix integrals was found algebraically by A Alexandrov [1] in terms of the N D 1
specification of the Kontsevich–Penner tau function.

Open problem 1 Is there a direct geometric way to derive Alexandrov’s solution of
the open KdV equations from the geometric construction of [31; 35]?

The combinatorial construction presented here was used in Alexandrov, Buryak and
Tessler [2] to write a formula for more refined open intersection numbers. The main
conjecture of [2], which is a strengthening of a conjecture of Safnuk [33], is that
the generating series of the refined open numbers equals the Kontsevich–Penner tau
function.

(iv) Open r–spin In recent work of Buryak, Clader and Tessler [8; 7], a far-reaching
generalization of [31] to an intersection theory over the moduli of r–spin disks has
appeared. The potential of the genus 0 open r–spin integrals was shown to be closely
related to the wave function of the rKdV hierarchy, and an all-genus generalization
was conjectured. Work in progress with Gross and Kelly generalizes this construction
to open FJRW theory, and the genus 0 intersection numbers are explained using mirror
symmetry.

Open problem 2 Generalize the formula presented in this work to the case of open
r–spin intersection numbers.

(v) Other interpretations of the theory There were several related works in the
physics literature; we mention two. In [15], Dijkgraaf and Witten provide a physical in-
terpretation to the open intersection theory of [31; 35]. In [3], Bawane, Muraki and Rim
describe a solution for the open KdV equations in terms of minimal gravity on the disk.

In [32], Safnuk gives an interpretation of the N D 1 specification of the Kontsevich–
Penner tau function — which is, as explained above, a solution of the Burgers–KdV
hierarchy — in terms of combinatorially defined volumes of moduli spaces.

(vi) Similar formulas for other OGW invariants There are two newer works
which present formulas for open GW invariants in terms of summation over graphs
with boundary nodes and are of the same flavor as the formula given here, and the
refined formula of [2]. Zernik [40] presents an equivariant localization calculation of
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OGW disk invariants for the pair .CP2n;RP2n/. Buryak, Zernik, Pandharipande and
Tessler [11] construct the stationary OGW theory of .CP1;RP1/, derive a localization
formula for all intersection numbers, including descendents, and in [9] use it to prove a
correspondence with open Hurwitz theory. Both formulas contain corner contributions,
in addition to the naive contributions, in resemblance to (13). To the best knowledge of
the author, such formulas have not appeared in literature before. Formulas for open GW
invariants have appeared in the past, usually in the context of equivariant localization;
see the calculations of Katz and Liu [24] as a prototypical example. In the older
formulas which involved graph summation, the graphs were dual to topological stable
marked surfaces with boundaries (which parametrized fixed-point loci). These surfaces
included disk components which were connected by internal nodes to the closed part.
There were no boundary nodes. The amplitudes of such graphs were usually similar
to the analogous amplitudes in the closed case (and the disk contribution was usually
more or less the square root of the sphere contribution). In the formulas of this work
and of [2; 11; 40], the boundary nodes contribute an additional factor to the amplitudes.
It would be interesting to gain a general understanding of this new type of expression,
to understand when are they expected to appear, and to analyze them.

1.6 Plan of the paper

In Section 2 the constructions of [31] and [35] are reviewed. In particular, graded spin
surfaces are defined, as well as their moduli space Mg;k;l , tautological line bundles
and special canonical boundary conditions. With these in hand, the open intersection
numbers are then defined.

In Section 3 the notions of sphere bundles and angular forms are recalled. We explain
how to calculate the integral of the relative Euler class, relative to nowhere-vanishing
boundary conditions. The main result of this section is an explicit formula for a
representative of the angular form of a sphere bundle. This formula is the starting point
of the paper.

Section 4 is devoted to constructing an open analog of Strebel’s stratification. Symmetric
stable Jenkins–Strebel differentials are defined, and used to stratify the moduli space
of open surfaces and then the moduli of graded surfaces. In addition, combinatorial
sphere bundles are constructed. It is then shown that special canonical multisections are
pulled back from the combinatorial moduli. The main result of this section is that the
open descendent integrals can be calculated as integrals over the combinatorial moduli.
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Section 5 describes in more detail the cells in the stratification which will eventually
contribute to the open descendents. Extended Kasteleyn orientations are defined, and
their equivalence classes are shown to be equivalent to the data of a graded spin
structure. The Kasteleyn orientations are used to provide a more explicit description of
the contributing cells, of the boundary conditions and of the orientation of the moduli.
As a byproduct, an alternative proof that the moduli Mg;k;l is canonically oriented is
given. The analysis of orientations is an important ingredient in the proof.

The last section, Section 6, proves the combinatorial formula, Theorem 1.5. With the
aid of the explicit angular form constructed in Section 3, an integral representation
of the open gravitational descendent is given. The integral depends explicitly on the
boundary conditions. The properties of special canonical multisections are then used
to iteratively integrate by parts, until an integrated form of the combinatorial formula,
Theorem 6.10, is obtained. Finally, by performing a detailed study of the Kasteleyn
orientations and the multiplicative constants they contribute,1 we are able to apply the
Laplace transform to the integrated formula and obtain the main theorem, Theorem 1.5.
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2 The moduli, bundles and intersection numbers

This section briefly summarizes the required definitions and results from [31; 35].

1This study also applies to the closed case, and gives a conceptual calculation in terms of discrete spin
structures of a constant appearing in Kontsevich’s work [25, Appendix C], which was the subject of several
other works.
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2.1 General conventions and notation

For l 2N we write Œl �D f1; 2; : : : ; lg. The set Œ0� will denote the empty set.

Throughout this article, a map m W A! Z from an arbitrary set A, which is injective
away from m�1.0/, will be called a marking or a marking of A. Given a marking, we
shall identify elements of m�1.Z n f0g/ with their images.

In what follows, the markings will be used to mark points in surfaces, half-edges in
dual graphs and vertices in ribbon graphs. The reason we allow noninjective marking
functions is that we will have to perform many graph or surface operations that will
create new marked points. There will be no natural way to mark these new points, and
therefore we will mark them all by 0.

We will encounter many types of graphs in the next sections. Dual graphs, to be defined
in Section 2, will be denoted by capital Greek letters. Ribbon graphs, to be defined in
Sections 4 and 5, will be denoted by capital Roman letters.

Many of the objects in this paper, such as surfaces or graphs, will have natural notions
of genus, boundary labels and internal labels. A .g; B; I /–object is an object whose
genus is g, set of boundary labels is B , and set of internal labels is I . Similarly, in the
closed setting, a .g; I /–object is an object whose genus is g and set of internal labels
is I .

Given a permutation � on a set S , we write s=� for the �–cycle of s 2 S . For a 2 S=� ,
we write ��1.a/ for the elements which belong to the cycle a.

We shall sometimes use the shorthand notation y to denote a sequence fyigi2Œr�, if the
sequence we are referring to is understood from context.

2.2 Open surfaces and their moduli space

2.2.1 Stable open surfaces We recall the notion of a stable marked open surface.

Definition 2.1 We define a smooth pointed surface to be a triple

.†;x; z/D .†; fxigi2B; fzigi2I/;

consisting of

(a) a Riemann surface †, possibly with boundary;

(b) an injection B! @†, with i 7! xi , where B is a finite set;

(c) an injection I! V†, with i 7! zi , where I is a finite set.
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In the case @† ¤ ∅, we say that † is an open surface. Otherwise it is closed. We
sometimes omit the marked points from our notation. Given a smooth pointed surface†,
we write B.†/ for the set B, and sometimes also for the set fzigi2B. We similarly
define I.†/.

A smooth closed pointed surface † is called stable if

2g.†/CjI.†/j> 2:

A smooth open pointed surface † is called stable if

2g.†/CjB.†/jC 2jI.†/j> 2:

Remark 2.2 † is canonically oriented, as a Riemann surface. In the case that @†¤∅,
it is endowed with a canonical induced orientation.

Definition 2.3 For a pointed Riemann surface .†; fxigi2B; fzigi2I/, where in the case
that † is closed B D ∅, we denote by .†; fxigi2B; fNzigi2I/ the same surface with
opposite complex structure. The doubling of an open † is

†C D†q@††;

the surface obtained by the Schwarz reflection principle along the boundary @†. For
an open connected † we define the genus g.†/ to be the genus of †C . For † closed
and connected the genus is just the usual genus. In the case that † is disconnected, its
genus is defined as the sum of the genera of its connected components.

Remark 2.4 For open surfaces the topological type is determined by two numbers,
the doubled genus g and the number of boundary components h, and not only by the
genus. The number h is constrained by

hD gC 1 .mod 2/; with 0� h� gC 1;

and for any .g; h/ satisfying these constraints there is a topological type of open surface.

Definition 2.5 A prestable surface is a tuple

†D .f†˛g˛2O[C;�;CB/;

where:

(a) O and C are finite sets. For ˛ 2 O, †˛ is an open smooth pointed surface; for
˛ 2 S, †˛ is a closed smooth pointed surface.
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(b) �D�B [�I , where �B is an equivalence relation on
S
˛ B.†˛/ with equiva-

lence classes of size at most 2, and �I is an equivalence relation on
S
˛ I.†˛/

with equivalence classes of size at most 2. We write B.†/ and I.†/ for the
equivalence classes of size 1 of �B and �I , respectively.

(c) CB.†/ is a subset of I.†/.

Elements of B.†/ are called boundary marked points. Elements of I.†/ nCB.†/ are
called internal marked points. The �B (resp. �I ) equivalence classes of size 2 are
called boundary (resp. interior) nodes, and elements which belong to these equivalence
classes are called half-nodes. Elements of CB are called contracted boundaries. The
equivalence classes of � (resp. �B , �I ) are collectively called special (resp. special
boundary, special internal) points of †.

We also write † D
`
˛2O[C †˛=�. If O is empty and CB is empty, † is called a

prestable closed surface. Otherwise it is called a prestable open surface.

A prestable surface is marked, if it is also endowed with markings mB W B.†/!Z and
mI W I.†/ nCB! Z. Write mD mI [ mB. Recall that a marking is injective outside of
the preimage of 0.

A prestable marked surface is called a stable marked surface if each of its constituent
smooth surfaces †˛ is stable.

The doubled surface †C of a stable open surface is defined as

†C D

� a
˛2O

.†˛/C
a
˛2C

†˛
a

†˛

�.
�C;

where
�CD .�B [�I [�xI [�CB/

is defined as follows: �xI identifies internal marked points of f†˛g˛2C if and only
if �I identifies the corresponding marked points in f†˛g˛2C , and �CB identifies
zi 2†˛ and Nzi 2†˛ whenever i 2 CB.†/. †C is endowed with an involution %, with
Nzi D %.zi /, whose fixed-point set is @†[CB.†/, and is such that †'†C=%. Write
D.†/D .†C; %/.

† is connected if the underlying space
`
˛2D[S †˛=� is. † is smooth if CB.†/D∅

and � has only equivalence classes of size 1.

The normalization Norm.†/ of the stable marked surface † is defined to be the surface
.f†˛g˛2O[C;�

0;CB0; m0/ where �0 has only size 1 equivalence classes, CB0 is empty,
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and the marking m0 agrees with m whenever is defined, and otherwise m0I D 0, m0B D 0.
For a marked point marked i ¤ 0, write †i for the component of Norm.†/ which
contains marked point zi .

A topological stable marked surface, open or closed, is defined in the same way, only
with the †˛ being topological surfaces rather than Riemann surfaces.

In what follows, our default choice of marking function m is a bijection mI W I.†/! Œn�

if † is closed, and if † is open we usually take bijections mI W I.†/ nCB.†/! Œl �

and mB W B.†/! Œk�. Therefore whenever a surface is written as .†; z1; : : : ; zn/ or
.†; x1; : : : ; xk; z1; : : : ; zl/, we implicitly mean that it is marked, and that the indices
of the marked points represent the markings.

See Figure 3 for examples of prestable surfaces and their normalizations.

We sometimes identify D.†/ and †C .

Definition 2.6 An isomorphism between two prestable marked surfaces

†D .f†˛g˛2O[C;�;CB; m/ and †0 D .f†0˛g˛2O0[C0 ;�
0;CB0; m0/

is a tuple f D .f O; f C; ff ˛g˛2O[C/ such that:

(a) The maps f O WO!O0 and f C W C! C0 are bijections between the sets which
index the components of the surfaces.

(b) For ˛ 2O, f ˛ W†˛!†0
f O.˛/

is a biholomorphism, which induces a bijection
on the sets of special points. For ˛ 2 C, f ˛ W†˛!†0

f C.˛/
is a biholomorphism,

which induces a bijection on the sets of special points.

(c) For x 2†˛ and y 2†ˇ , x � y if and only if f ˛.x/�0 f ˇ .y/.

(d) For any special point x 2†˛, m0.f ˛.x//D m.x/.

(e)
S
˛ f

˛.CB/D CB0.

We denote by Aut.†/ the group of automorphisms of †.

An isomorphism between stable topological surfaces is similarly defined, only with the
maps f ˛ required to be homeomorphisms rather than biholomorphisms.

2.2.2 Stable graphs It is useful to encode some of the combinatorial data of stable
marked surfaces in graphs.
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1

1
0

0

1

0
0

1

1 5 1 5

0

7

3 3

0

0

7

1

0 0 0 0

1

Figure 3: In this diagram in every row the leftmost picture is a prestable
surface, and on the right side of the same row is the normalization. In the top
row there is a prestable marked surface with boundary, and its normalization
into two stable marked disks and a prestable marked sphere. In the second
row there is a stable sphere with an (unmarked) contracted boundary. Its
normalization is a stable sphere with three markings. In the third row there is
a stable surface with boundary which is normalized into a disk and a torus.
The last row contains a stable surface whose normalization is the union of a
cylinder and a genus 3 surface with boundary.

Definition 2.7 A (not necessarily connected) prestable dual graph � is a tuple

.V D V O [V C ; H DHB
[H I ; �0; �D�B [�I ; g; H

CB; mD mB [ mI /;

where:

(a) V O and V C are finite sets, called the open and closed vertices, respectively.

(b) HB and H I are finite sets of boundary and internal half-edges.

(c) �0 WH ! V associates any half-edge to its vertex.
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(d) �B is an equivalence relation on HB with equivalence classes of sizes 1 or 2,
and �I is an equivalence relation on H I with equivalence classes of sizes 1
or 2. Denote by T B the equivalence classes of size 1 of �B , and by T I the
equivalence classes of size 1 of �I .

(e) HCB � T I .

(f) g W V ! Z�0 is a genus assignment.

(g) mB W T B ! Z and mI W T I nHCB! Z are markings.

We call T B boundary tails, HCB contracted boundaries, and T I nHCB internal tails.
Set T DT I[T B. Now,�B induces a fixed-point-free involution onHBnT B. Similarly,
�I induces a fixed-point-free involution on H I n T I . We denote this involution on
H n T by �1. We set EB D .HB n T B/=�B , the set of boundary edges. We define
EI D .H I nT I /=�I [H

CB. We put E DEI [EB, the set of edges. We denote by
�B0 the restriction of �0 to HB ; in a similar fashion we define �I0 .

We require that for all h 2HB, �0.h/ 2 V O.

We say that � is connected if its underlying graph .V;E/ is connected.

For a vertex v we set k.v/D j.�B0 /
�1.v/j. It is defined to be 0 if v is closed. We set

l.v/ D j.�I0 /
�1.v/j. Write CB.v/ for the number of contracted boundaries of v. A

dual graph is closed if V O DHCB D∅, and otherwise it is open.

The genus of a stable connected closed dual graph � is defined by

g.�/D
X
v2V C

g.v/CjEI j � jV C jC 1:

The genus of a stable connected open dual graph � is defined by

g.�/D
X
v2VO

g.v/C 2
X
v2V C

g.v/CjEB jC 2jEI j � jHCB
j � jV O j � 2jV C jC 1:

A closed vertex v 2 V C is stable if

2g.v/C l.v/ > 2:

An open vertex v 2 V O is stable if

2g.v/C k.v/C 2l.v/ > 2:

A dual graph � is stable if all its vertices are.

Geometry & Topology, Volume 27 (2023)



2518 Ran J Tessler

The normalization Norm.�/ of the graph � is defined to be the unique stable graph
.V 0;H 0; � 00;�

0; g0;H
0CB; m0/ with V 0 D V , H 0 D H , � 00 D �0, g0 D g, H

0CB D ∅,
and �0 has only classes of size 1. The map m0 agrees with m whenever m is defined.
Otherwise m0 D 0.

For i 2 Image.mI / n f0g, we denote by vi .�/ the connected component of Norm.�/
which contains the tail marked i .

It is easy to see that the genus is always nonnegative. Figure 4 illustrates several dual
graphs and their normalizations. Note that open vertices without boundary half-edges
are allowed.

Definition 2.8 An isomorphism between graphs

� D .V;H; �0;�; g;H
CB; m/ and � 0 D .V 0;H 0; � 00;�

0; g0;H
0CB; m0/

is a pair f D .f V ; f H / such that

(a) f V W V ! V 0 and f H WH !H 0 are bijections,

(b) g0 ıf D g,

(c) h1 � h2 if and only if f .h1/�0 f .h2/,

(d) � 00 D f ı �0,

(e) m0 ıf D m,

(f) f .HCB/DH
0CB.

We denote by Aut.�/ the group of automorphisms of � .

To each stable marked surface† we associate an isomorphism class of connected stable
graphs as follows. We set

V O DO; V C D C; HB
D

[
˛

B.†˛/; H I
D

[
˛

I.†˛/; HCB
D CB.†/:

The definitions of g, �, �0 and m are straightforward. In particular, a tail marked a is
associated to a marked point labeled a. An edge between two vertices corresponds
to a node between their corresponding components. See Figure 4 for the dual graphs
which correspond to the surfaces of Figure 3. Note that this correspondence is at the
level of isomorphism classes of topological stable surfaces, and that a surface is closed
precisely if its corresponding graph is closed.
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g D 0

g D 0

1

1

g D 0 g D 0

0
0

1
g D 0

0 0

1

g D 0

g D 0

1 5

g D 0

1 5

g D 1

g D 0

7

3
g D 0

0
3

g D 1
7

0

g D 3 g D 1 g D 3

0
0 0

0

g D 1

Figure 4: This diagram presents the dual graphs which correspond to the
surfaces from Figure 3, under the correspondence of Definition 2.9. Again
the right-hand side of each row is the normalization of the left-hand side.
Black vertices correspond to closed components, and empty vertices to open.
The genus of the vertex is written next to it. Boundary edges or half-edges
are drawn as dashed lines, and the other edges or half-edges are internal (the
case of contracted boundary is included). The label of a tail is written next to
it. The genus of the dual graphs in the left-hand side are, going from top to
bottom, 0; 0; 2; 5.

Definition 2.9 The graph associated to a stable surface † is denoted by �.†/. The
genus of a stable surface † is defined as the genus of �.†/.

Observe that the genus of a stable closed surface agrees with the standard definition,
while the genus of a stable open surface equals the standard genus of its doubled
surface. The genus of a stable surface equals the genus of the surface obtained by
smoothing its nodes, including the contracted boundaries which are smoothed to
boundary components. Observe also that Norm.�.†//D �.Norm.†//, and that for
any internal marked point which is marked i ¤ 0, we have vi .�.†//D �.†i /, where
†i is the component of † which contains marked point zi .

Throughout this paper we will sometimes write “graph” instead of “dual graph” when
the meaning is clear from the context. Dual graphs will be denoted by capital Greek
letters, to help us distinguish them from another kind of graphs we shall meet below,
ribbon graphs, which will be denoted by capital Roman letters.
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We denote by GR
g;k;l

the set of isomorphism classes of all stable graphs of genus g with
k boundary tails, l internal tails, and for which

Image.mB/D Œk� and Image.mI /D Œl �:

We write GR for the set of isomorphism classes of all stable graphs. Note that the
cases kD 0 or l D 0 are not excluded, as surfaces without boundary or internal marked
points will be considered in what follows.

Notation 2.10 Given nonnegative integers k; l with 2gCkC2l > 2, denote by �R
g;k;l

the stable graph with V O D f�g and V C D∅, with

g.�/D g; T B DHB
' Œk�; T I DH I

' Œl �;

where the equivalences with Œk� and Œl � are obtained using mB and mI , respectively.
We similarly define �g;n as the closed graph with a single vertex of genus g, and
T I DH I ' Œn�.

Definition 2.11 A stable dual graph is effective if

(a) any internal half-edge is a tail or a contracted boundary,

(b) any vertex without internal tails has exactly three boundary half-edges and
genus 0, and

(c) different vertices without internal half-edges are not adjacent.

A surface is called effective if it is associated to an effective graph.

The notion of effectiveness will be important later on, when we construct the com-
binatorial moduli space using Jenkins–Strebel differentials. On moduli strata which
correspond to effective dual graphs, the map to the combinatorial moduli is a homeo-
morphism. This fact will turn out to be useful when we come to translate the geometric
intersection numbers to combinatorial expressions.

In the leftmost column of Figure 3, only the sphere from the second row is effective:
the surface from the first row has an internal node, and in addition it is not stable;
the surface from the third row also has an internal node as well; the surface from the
lowest row has a component without internal markings, which is not a disk with three
boundary markings. Equivalently, in the leftmost column of Figure 4 only the second
graph is effective. Additional examples of effective and noneffective surfaces and
graphs are illustrated in Figure 5.
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2

3
g D 0

1

3 2
1

3 2

1

54
g D 0

5 4

1
23

g D 0

g D 0
1 2

3 5
1

3 2
5

Figure 5: Every row in this diagram illustrates a dual graph and the corre-
sponding surface. Only the first row represent an effective graph/surface.
Note that the cyclic order of boundary markings on boundaries cannot be read
from the dual graph data.

2.2.3 Some graph operations For the purpose of the next definition, for a vertex v
in a dual graph � , write ".v/D 1 if v is open, and ".v/D 2 otherwise. For an edge e
set ".e/D 0 unless e is an internal edge connecting two open vertices, in which case
put ".e/D 1.

Definition 2.12 Consider a stable graph � . The smoothing of � at f 2E is the stable
graph

df � D �
0
D .V 0;H 0;�0; s00; g

0; m0/;

defined as follows. Suppose f …HCB.�/ is the �–equivalence class fh1; h2g. Write
�0.h1/D v1 and �0.h2/D v2. The vertex set is given by

V 0 D .V n fv1; v2g/[fvg:

The new vertex v is closed if and only if both v1 and v2 are closed. We have that

H 0 DH n fh1; h2g;

and �0 is the restriction of � to H 0. For h 2 ��10 .fv1; v2g/, we define � 00.h/ D v;
otherwise, � 00.h/D �0.h/. For any tail t , m0.t/D m.t/. We set

g0.v/D

8<:
g.v1/C 1C ".f / if v1 D v2;
g.v1/Cg.v2/C ".f / if v1 ¤ v2 and ".v1/D ".v2/;
".v1/g.v1/C ".v2/g.v2/ otherwise.
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When f 2HCB, a contracted boundary of vertex v, then

V 0 D V; H 0 DH n ff g; H 0CB
DHCB

n ff g:

We update �0, � 00 and m0 as above. We put g0.w/ D g.w/ for w ¤ v, and we put
g0.v/D g.v/C1 if v is open, otherwise we set g0.v/D 2g.v/ and declare v to be open.

Observe that there is a natural proper injection H 0 ,!H , so we may identify H 0 with a
subset of H . This identification induces identifications of tails and of edges. Using the
identifications, we extend the definition of smoothing in the following manner. Given
a set S D ff1; : : : ; fng �E.�/, define the smoothing at S as

dS� D dfn.� � � df2.df1�/ � � � /:

Observe that dS� does not depend on the order of smoothings performed.

Definition 2.13 A stable topological surface †0 is a smoothing of a topological stable
marked surface † at an internal node z� � z� if there exists a simple closed path

 ,!†0, and a map ' W†0!† which takes 
 to the node and restricts to an orientation-
preserving homeomorphism ' W †0 n 
 ' † n fz�; z�g. In this case we say that 
 is
contracted to the node. We say that 
 degenerates to z� when this time 
 is an oriented
simple closed path in †0, if 
 is contracted to the node, and the '–preimage of a small
enough neighborhood of z� lies to the left of 
 . The definitions of smoothing in a
boundary node or degeneration to a boundary half-node are analogous, only with a
simple arc that connects two boundary points.

A topological stable surface †0 is the smoothing of a topological stable surface †
at a contracted boundary z� if there exists a boundary component @†0� , and a map
' W†0!† such that '.@†0�/D z� and ' W†0 n @†0� '† n z� .

If e is the edge of �.†/ which corresponds to the node z� � z� in †, then �.†0/D
de�.†/, where †0 is the smoothing of † in that node; similarly for smoothing in
contracted boundaries.

If � D dS� 0, then H 0 is canonically a subset of H , and we have a natural identification
between E.�/ and E.� 0/ nS .

We can now define boundary maps

@Š W GR
! 2G

R
and @ W GR

! 2G
R
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by putting

@Š� D f� 0 j � D dS�
0 for some S �E.� 0/g and @� D @Š� n f�g:

These maps naturally extend to maps 2G
R
! 2G

R
.

2.2.4 Moduli of open surfaces In this paper we consider orbifolds with corners; we
follow the definitions of [41, Section 3], which build on the works [22; 21].

Notation 2.14 For � 2 GR, denote by MR
� the set of isomorphism classes of stable

marked genus g surfaces with associated graph � .

Define
MR
� D

a
� 02@Š�

MR
� 0 :

We abbreviate
MR
g;k;l DMR

�R
g;k;l

and MR
g;k;l DMR

�R
g;k;l

:

We similarly define Mg;n and Mg;n, which are just the usual Deligne–Mumford
moduli spaces of stable and smooth curves respectively.

For i 2 Image.mI / n f0g, write Mvi .�/ for the moduli of the graph vi .�/, and denote
by vi WM� !Mvi .�/ the natural map which on the level of objects sends †!†i .

The space MR
g;k;l

is a compact smooth orbifold with corners of real dimension

dimR MR
g;k;l D kC 2l C 3g� 3:

We attribute this result to Amitai Netser Zernik [41, Section 2]. His setting is slightly
different. He considers open stable genus 0 maps to homogeneous varieties, and he
proves that the moduli space of these maps is an orbifold with corners. In our case
the target space is a point, but the genus is arbitrary. This change does not affect his
results or techniques, since they only rely on convexity of the corresponding closed
moduli problem, that is, on the fact that the moduli space of (complex) stable maps is
a smooth orbifold, which clearly holds for Mg;n. We review the argument. Consider
the sequence

(14) MR
g;k;l

.4/
,�! eMR

g;k;2l

.3/
�! eRMg;k;2l

.2/
�!RMg;k;2l

.1/
�!Mg;kC2l :

We define the moduli spaces and maps appearing in (14) as follows.
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Step 1 First, RMg;k;2l is the fixed locus of the involution on Mg;kC2l defined by

.C I z1; : : : ; zkC2l/ 7! .C I z1; : : : ; zk; zkClC1; : : : ; zkC2l ; zkC1; : : : ; zkCl/;

where C is the same smooth curve C , but with the conjugate complex structure. This is
a compact smooth real orbifold, as it is the fixed locus of an antiholomorphic involution
over a smooth complex orbifold. More details on the fixed-point functor on stacks can
be found in [41, Section 2.5]. This orbifold parametrizes isomorphism types of stable
marked curves with a conjugation.

Step 2 The next step is to cut RMg;k;2l along strata which parametrize surfaces with
at least one real node. These strata form a real normal crossing divisor, as they are the
fixed-point loci of the previous involution, applied to the normal crossing divisor of
nodal strata in Mg;kC2l . The cutting procedure is via the real hyperplane blowup of
[41, Section 3.3], and it is proven there that the result of this blowup is an orbifold with
corners which we denote by eRMg;k;2l .

Step 3 eRMg;k;2l is made of several connected component. Consider those compo-
nents whose generic point is a real curve C with a conjugation % such that C nC %

is disconnected. Then eMR
g;k;2l

is the disconnected two-to-one cover of the union of
those connected components, given, at the level of objects .C; %/, by the choice of
a distinguished half, a connected component of C nC %. Thanks to the real blowup
procedure, this choice extends naturally to the boundary strata. The resulting space is
still a compact orbifold with corners, as a degree 2 cover of such a space.

Step 4 MR
g;k;l

is the submoduli of eMR
g;k;2l

made of connected components such that
the marked points wkC1; : : : ; wkCl lie in the distinguished half. This final space is a
compact orbifold with corners, as it is the union of connected components of a compact
orbifold with corners.

Set-theoretically MR
g;k;l

is naturally identified with the moduli space of stable marked
open .g; k; l/–surfaces, and therefore we identify this moduli with MR

g;k;l
. The con-

struction endows the moduli space MR
g;k;l

with topology and an orbifold with corners
structure. For the dimension, see, for example, [27, Theorem 1.2].

In general the space MR
g;k;l

is nonorientable and disconnected. A stable marked surface
with b boundary nodes or contracted boundaries belongs to a corner of the moduli
space MR

g;k;l
of codimension b. For further reading about the nodal strata of the real

and open moduli spaces we refer the reader to [27, Section 3].
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Notation 2.15 Denote by D WMR
g;k;l

!Mg;kC2l the moduli-level doubling map
†!†C , which is the composition of the maps of (14).

2.3 Graded surfaces and their moduli space

We present here the extra structure needed for the definition of intersection theory for
open Riemann surfaces, following [35; 34].

2.3.1 Smooth graded surfaces Let † be a smooth closed genus g surface. A spin
structure twisted in fzigi2I1 , where I1 � I, is a complex line bundle L!† together
with an isomorphism

b W L˝2 ' !†
�
�

X
i2I1

zi

�
;

where !†
�
�
P
i2I1 zi

�
is the canonical bundle twisted in fzigi2I1 .

Let † be a smooth genus g open surface. A real spin structure twisted in fxigi2B1
and fzigi2I1 , where B1 � B and I1 � I, is a triple .L; b; z%/, where .L; b/ is a spin
structure on the doubled surface D.†/D .†C; %/ twisted in fxigi2B1 and fzi ; Nzigi2I1 ,
ie L!†C is a line bundle and

b W L˝2 ' !†C

�
�

X
i2B1

xi �
X
i2I1

.zi C Nzi /

�
is an isomorphism, where !†C

�
�
P
i2B1 xi �

P
i2I1.zi C Nzi /

�
is the canonical bundle

twisted in fxigi2B1 and fzi ; Nzigi2I1 . The map z% WL!L, is an involution which lifts d%,
the induced involution on !†C .

The maps z% and d% restrict to conjugations on the fibers of

L!†
%
C ' @†; !†C

�
�

X
i2B1

xi

�
!†

%
C ' @†:

These conjugations give rise to a %–invariant real subbundle. The real line bundle

!†C

�
�

X
i2B1

xi

�%
!†

%
C

is oriented: take any nowhere-vanishing section � 2 �.T†%C ! †
%
C/ which points

in the direction of the orientation on †%C , induced from its identification with @†.
The orientation of !%†C

j†%Cni2B1
is defined by a section y� which satisfies y�.�/ > 0.
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Such a section is said to be positive. Thus, using b, it is seen that for any connected
component of †%C n fxigi2B1 , either y� or �y� has a root in Lz%. In the case that for each
connected component of †%C n A, where A � fxigi2B1 is a finite set of points, the
positive sections have roots in Lz%, we say that .L; z%/ is compatible away from A. In
the case AD fxigi2B1 , we say that the structure is compatible.

Proposition 2.16 If B1 ¤∅ then there are no compatible real twisted spin structures.

Proof Suppose i 2 B1. Let U be a contractible %–invariant neighborhood of xi which
contains no other marked points. One can find a %–invariant section s 2 �.L! U/

which vanishes nowhere in U, possibly after replacing U by a smaller neighborhood. In
%–anti-invariant local coordinates around xi , the real section z dz generates !†C .U /.
Write f .z/ D z dz=b.s˝2/; this is a nowhere-vanishing holomorphic function in U.
Moreover, f is conjugation invariant, and hence real on U %. In particular, it does
not change sign there. But this is impossible for a compatible structure since z dz is
positive on exactly one component of U % n fxig.

Given a compatible real spin structure, a lifting of the spin structure is a choice of a
section in

�.S0.Lz%/!†
%
C n fxigi2B/;

where S0 stands for the rank 0 sphere bundle. We say that the lifting alternates
in xj , and that xj is a legal point, if this choice cannot be extended to �.S0.Lz%/!
†
%
C n fxigi2Bnfj g/. Otherwise the lifting does not alternate in xj , and xj is an illegal

point.

Definition 2.17 A twisted closed smooth spin surface is a closed smooth surface
.†; fzigi2I/, together with a twisted spin structure twisted in fzigi2I1 . In the case
I1 D∅, we call it a closed smooth spin surface.

A twisted open smooth spin surface is a smooth open surface .†; fxigi2B; fzigi2I/,
together with a compatible twisted real spin structure twisted in fzigi2I1 . In the case that
I1 D∅, we call it an open smooth spin surface. A (twisted) smooth spin surface with a
lifting is a (twisted) open spin surface, together with a lifting. A lifting with all boundary
points legal is called a grading. A surface with a nontwisted spin structure (that is,
I1 D B1 D∅) and a grading is called a graded surface. An isomorphism of twisted
spin surfaces is an isomorphism of the underlying surfaces and of the line bundles

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2527

which respects the twists, commutes with the maps between the canonical lines in the
expected sense and, in the open case, also with the involutions. An isomorphism of
twisted spin surfaces with a lifting is an isomorphism of the twisted spin surfaces which
takes the lifting to the lifting in the target, and respects the alternations.

We will see below in Proposition 2.32 that the only obstruction to the existence of a
graded spin structure is the parity of gC k: in a graded spin structure, gC k must be
odd.

2.3.2 Stable graded surfaces We follow the terminology of [19]. Let †D f†˛g˛2C
be a stable closed surface. A spin structure twisted in fzigi2I1 , where I1 � I, is a rank
1 torsion-free sheaf L over † together with a map

b W L˝2! !†

�
�

X
i2I1

zi

�
;

where !†
�
�
P
i2I1 zi

�
is the dualizing sheaf, twisted in fzigi2I1 .

We require that

(a) deg.L/D 1
2
.deg.!†/� jI1j/,

(b) b is an isomorphism on the locus where L is locally free, and

(c) for any point p where L is not free, the length of coker.bp/ is 1.

In particular, b is an isomorphism away from nodes. Nodes where b is not an isomor-
phism are called Neveu–Schwarz (NS); at these nodes the last requirement says exactly
that b vanishes in order 2. The other nodes are called Ramond.

Let †D f†˛g˛2C[O be a stable open .g; k; l/–surface. A real spin structure twisted in
fxigi2B1 and fzigi2I1 , with I1 � I and B1 � B, is a triple .L; b; z%/, where .L; b/ is a
spin structure over the doubled surfaceD.†/D .†C; %/, and z% WL!L is an involution
which lifts d%, the induced involution on !†C . Thus, in particular, b is a map

b W L˝2! !†C

�
�

X
i2B1

xi �
X
i2I1

.zi C Nzi /

�
;

where !†C

�
�
P
i2B1 xi �

P
i2I1.zi C Nzi /

�
is the dualizing sheaf, twisted in fxigi2B1

and fzi ; Nzigi2I1 , and

deg.L/D 1
2

�
deg.!†C /� 2jI1j � jB1j

�
:
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Remark 2.18 Suppose that † is a nodal curve, open or closed, and z is a node with
preimages z� ; z� 2 Norm.†/. Then there are natural residue maps

res� W .Norm�!†/z� 'C:

These induce an isomorphism a W .Norm�!†/z� ' .Norm�!†/z� , by

res.v/C res.a.v//D 0:

In the Ramond case, we also have an isomorphism za W .Norm�L/z� ! .Norm�L/z� ,
and res.b.v˝2//C res.b.za.v/˝2//D 0. For more details see [19].

When z 2†�†C is a contracted boundary which is Ramond, d% and z% lift to complex
antilinear isomorphisms between the fibers of Norm�!†C and Norm�L in z˙, where
zC is the preimage of z in Norm.†/, and z� is the preimage of z in Norm.x†/. By
composing with a and za we get antilinear involutions on the fibers at zC. This defines
real lines, which we denote by .!%†/zC and .Lz%/zC , together with maps

res W .!%†/zC '
p
�1R;

where
p
�1 is the root of �1 in the upper half-plane, and

b2 W .Lz%/zC ! .!
%
†/zC ;

defined by b2.v/D b.v˝2/.

We say that the real spin structure is compatible in a contracted boundary z if z is
a Ramond node of †C and the image of b2 is in the positive imaginary half-line
res�1.

p
�1R�0/.

The real spin structure is compatible if it is compatible in contracted boundaries and
away from special boundary points. Compatibility away from special points is defined
as in the smooth case.

A lifting of a compatible real spin structure is a choice of a section

s 2 �

�
S0.Lz%/!†

%
C n

� [
˛2O

B.†˛/

��
;

where S0 stands for the rank 0 sphere bundle. The notions of alternations and of legal
marked point or a legal half-node are as in the smooth case.

The definition of the lifting includes, for any contracted boundary node z, a choice of
a lifting for the contracted boundary, ie with the above notation and identifications, a
choice of direction in .Lz%/zC which is mapped by res ı b2 to the ray

p
�1R�0.
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Proposition 2.19 (a) A real spin structure on a stable surface , twisted or not ,
induces a real spin structure , possibly twisted , on any open component of the
normalization , and a possibly twisted spin structure on any closed component
of it. For any node of †, the induced structure is either twisted in both of its
preimages in the normalization , or not twisted in both. The former case is the
Ramond case , the latter is Neveu–Schwarz. If there are no Ramond nodes then
the spin structures on the closed components of the normalization , together with
the real spin structures on its open components , determine the real spin structure
on †.

(b) If the real spin structure is compatible , then so is the induced structure on any
open component of the normalization. In this case , in particular , there are no
twists in boundary marked points , and no boundary Ramond nodes. In the case
that there are no Ramond internal nodes but there may be contracted boundaries ,
compatible spin structures on the normalization determine the compatible spin
structure on †.

(c) A lifting on † induces a lifting on the normalization. A lifting on the normal-
ization , together with a choice of a direction in .res ı b2/�1.

p
�1R�0/ for the

preimage zC of any contracted boundary, induces a lifting on †.

Proof The fact that the twisted spin structure induces one on the normalization by
pullback, and is induced by one, when there are no Ramond nodes is already true in the
closed case; see for example [19]. Moreover, it is shown there that given the structures
on the normalization and the identifications of the stalks in preimages of nodes — see
Remark 2.18 — the twisted spin structure on the surface is determined. The involution
extends uniquely by continuity.

The second claim follows from the fact that one can examine compatibility away from
special points. Ramond boundary nodes cannot appear by Proposition 2.16. If z is a
contracted boundary, there is a single, up to sign, possible identification map za, as in
Remark 2.18. Now, if za makes the contracted boundary compatible, with respect to
the involution, �za will make it not compatible, and vice versa. The last statement is
evident.

Definition 2.20 A closed stable surface .†; fzigi2I/, together with a spin structure
twisted in fzigi2I1 , is called a twisted closed stable spin surface. In the case that
I1 D ∅, we call it a stable closed spin surface. A twisted open stable spin surface
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is a stable open surface .†; fxigi2B; fzigi2I/, together with a compatible real spin
structure twisted in fzigi2I1 . In the case that I1 D ∅, we call it a stable open spin
surface. A (twisted) stable spin surface with a lifting is a (twisted) open spin surface,
together with a lifting such that for any boundary node, exactly one half-node is legal.
If all the boundary marked points are legal, the lifting is called a grading. A (twisted)
stable spin surface with a grading is effective if the underlying surface is, and, for any
component of the normalization of genus zero with 3 special boundary points and
no special internal points, its special points are legal. A stable graded surface is a
(nontwisted) stable spin surface with a grading. The isomorphism notions are as in the
smooth case.

The legality condition on the nodes may seem peculiar at first glance. However this is
the condition which allows smoothing of the stable graded surface at a boundary node.
The closed analog of it is that the twists at the two half-nodes of the same node must
agree. In a nutshell, as we will see in the next subsection, in a twisted spin surface
any closed path which does not pass through special points has a well-defined notion
of parity. By pinching the surface in that path, a node is formed, and this node is NS
or Ramond according to the parity of the pinched path. Similarly, any oriented arc
between boundary points which avoids special points also has a well-defined notion
of parity. We will see in Proposition 2.31 that this parity changes if the orientation
of the arc changes. By pinching the arc one obtains a surface with a new boundary
node. The boundary node is NS, but the legality of its half-nodes is determined by
the parity of the corresponding oriented arcs. See Lemma 2.39 for an exact statement.
Interestingly, when the node is separating the legality can be determined from the parity
considerations of Proposition 2.32. Since in gD 0 all nodes are separating, the genus 0
theory could have been defined without referring to the graded spin structure. These
points will be discussed more in [34].

Notation 2.21 Denote by Spin.†/ the set of isomorphism classes of graded spin
structures on a stable open surface †.

The definition of graded surfaces, together with Proposition 2.19, yields a corollary.

Corollary 2.22 If † has no internal nodes , there is a bijection between Spin.†/ and

(a) isomorphism types of spin structures with a lifting on Norm.†/, twisted precisely
at preimages of contracted boundaries , such that any boundary marked point
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C � � C

C C C

C

�C

C

C

Figure 6: In this figure we consider three stable graded spin surfaces. In
these cases the underlying surfaces are effective. The symbol C near a
boundary marking or a boundary half-node indicates a legal point, while �
indicates an illegal point. We omit the labels. The graded surface on the left is
noneffective, since in the normalization the middle component has one legal
boundary marking, two illegal boundary markings and no internal markings.
On the other hand, the remaining two graded surface are effective.

of † is legal as a point of Norm.†/, and for any node of † exactly one half-node
in Norm.†/ is legal ;

(b) a choice of a direction in .res ı b2/�1.
p
�1R�0/ for the preimage zC of any

contracted boundary.

2.3.3 An alternative definition for the smooth case In this subsection we provide
an alternative definition for smooth spin surfaces with a lifting. This definition will be
easier to work with. Let .†; fxigi2B; fzj gj2I/ be a smooth, open or closed, pointed
Riemann surface. Choose any Riemannian metric on it.

Notation 2.23 Denote by T 1† the S1–bundle of T†. For a simple smooth arc or a
simple smooth closed path 
 �†, we denote the S0–bundle of T 
 by T 1
 .

When the arc or path 
 is oriented, T 1
 will stand for the unit-length oriented tangent
vector field to 
 . In particular, we shall use the notation T 1@† for the branch of T 1@†
which covers the direction of the induced orientation on the boundary.

We consider T 1† as the S1–subbundle of unit-length vectors of T†; similarly for T 1
 .
We also consider T 1
 as a S0–subbundle of T 1†j
 . In what follows we use these
identifications without mentioning a choice of metric. Different metrics will give rise
to equivalent structures, and in fact, one can make these definitions metric independent
by considering the S0– and S1–bundles as subquotients of the corresponding vector
bundles.

For a point p 2†, a vector w 2 Tp† and an angle � 2R=2�R, let r�w D r� .p/w be
the operator of rotation by � in the counterclockwise direction. We shall omit p from
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the notation when it is clear from context. The operator r� .p/ is induced on T 1p†, and
we shall use the same notation.

If u and w are two tangent vectors at p, denote the counterclockwise angle from u

to w by ].u;w/.

For a smooth arc 
 W Œ0; 1�!†, there exists a canonical trivialization

& W Œ0; 1��S1! T 1†j


defined by

&.t; �/D .
.t/; ei�vt /; where vt D .T 1/
.t/
:

This trivialization defines a continuous family of maps

fp.
/ts W T
1

.s/†! T 1
.t/†g0�s;t�1;

uniquely determined by the condition

p2
�
&�1.
.s/; v/

�
D p2

�
&�1.
.t/; p.
/tsv/

�
;

where p2 is the projection on the second coordinate. One can extend the trivialization
to the piecewise smooth context by approximation. In the case that s D 0 and t D 1,
we omit them from the notation and write p.
/. One can easily verify, in the piecewise
smooth case, that if 
 is composed of smooth subarcs 
i W Œai ; aiC1� ! †, where
a0 D 0 < a1 < � � �< an D 1, and �iC1 is ]. P
i j
iC1.aiC1/; P
i j
i .aiC1//, then

p.
/D p.
n�1/r�n�1p.
n�2/ � � � r�1p.
0/:

We shall denote such 
 by 
1! 
2!� � �! 
n. For a closed piecewise smooth path 
 ,
we slightly change the definition of p to be

p.
/D r�0p.
n�1/r�n�1p.
n�2/ � � � r�1p.
0/;

and note that this is in fact the identity map. We shall denote such 
 by 
1! 
2!

� � � ! 
n! 
1.

Definition 2.24 A twisted spin structure S!† n fzj gj2I on a smooth marked † is
an S1–bundle on † n fzj gj2I together with a degree 2 cover bundle map

� D �S
W S! T 1†j†nfzj gj2I :
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For a point p 2†, a vector w 2 Sp and an angle � 2R=4�Z, let R�w DR� .p/w be
the operator of rotation by � in the counterclockwise direction. We shall omit p from
the notation when it is clear from context.

The parallel transport along 
 W Œ0; 1�!† is the unique continuous family of maps

fP.
/ts W S
.s/! S
.t/g0�s;t�1

which covers fp.
/tsg. We shall sometimes call P.
/10v the parallel transport of v
along 
 , and write it as P.
/v.

Remark 2.25 R covers r in the sense that if �.s/D v for s 2 Sp and v 2 T 1p†, then

�.R� .p/s/D r� .p/v D r�.mod 2�/.p/v:

Observe that R˛Rˇ DR˛Cˇ . In addition, P and R commute:

R� .
.t//P.
/
t
sv D P.
/

t
sR� .
s/v:

Definition 2.26 A (twisted) spin structure S is associated with a function

q D qS
WH1.† n fzj gj2I ;Z2/! Z2

defined as follows. For x 2H1.† n fzj gj2I ;Z2/, take a piecewise smooth connected
representative 
 . Then p.
/ is the identity. Hence P.
/ is either the identity or minus
the identity. We define q.x/D q.
/ to be 1 in the former case, and 0 otherwise.

For any internal marked point zj , take a small disk Dj which surrounds it and contains
no other marked points in its closure. We define the twist in zj to be q.@Dj /.

The following well-known theorem was proven by Johnson [20]. It states that q is a
quadratic enhancement of the Poincaré pairing h˛; ˇi.

Theorem 2.27 The function q is well defined on H1.† n fzj gj2I ;Z2/. For ˛; ˇ 2
H1.† n fzj gj2I ;Z2/, we have

q.˛Cˇ/D q.˛/C q.ˇ/Ch˛; ˇi:

Proposition 2.28 If 
 W Œ0; 1�!†nfzj gj2I is a piecewise smooth closed curve which
bounds a contractible domain , then P.
/10 DR2� . Moreover , suppose † is a disk with
a piecewise smooth boundary 
 . Let S!T 1†j
 be a double cover by an S1–bundle S.
Then S can be extended to a nontwisted spin structure on† if and only if P.
/10DR2� .
In this case the extension is unique. In particular , the spin structure can be extended to
a marked point zi if and only if its twist is 0, in which case the extension is unique.
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The first part follows from Theorem 2.27 by taking ˛ D ˇ D Œ
�. The other parts are
also simple and will be omitted.

Definition 2.29 Let .†;S/ be an open marked Riemann surface together with a
(twisted) spin structure. Suppose @†¤∅. A lifting is a choice of a section

s W @† n fxigi2B! Sj@†nfxi gi2B

which covers the oriented T 1.@† n fxigi2B/.

For j 2 B, suppose i W
�
�
1
2
; 1
2

�
! @† is a smooth orientation-preserving embedding

with i.0/D xj and xb … i
�
�
1
2
; 1
2

�
for b ¤ j . In the case that

lim
x!0�

s.x/¤ lim
x!0C

s.x/;

we say that the structure alternates in xj , and that xj is a legal point. Otherwise xj
is illegal and the structure does not alternate. We extend the definition of s to the
boundary marked points by s.x/D limx!0C s.x/.

A smooth spin surface with a lifting .†; fxigi2B; fzigi2I ;S; s/ is a smooth open Rie-
mann surface together with a spin structure and a lifting. A smooth graded surface is a
smooth spin surface with a lifting, such that all boundary marked points are legal.

The notion of alternation can be generalized in the following manner.

Definition 2.30 A bridge is a piecewise smooth simple arc which meets the boundary
only at its two distinct endpoints x; y 2 @† n fxigi2B. Suppose we orient the bridge
and parametrize it as


 W Œ0; 1�!†; with 
.0/D x; 
.1/D y:

Define Q.
/ 2 Z2 by the equation

(15) R2��˛y .y/P.
/R˛x .x/s.x/DR2�Q.
/.y/s.y/;

where
˛x D]..T 1/x@†; .T 1/x
/ 2 Œ0; ��;

˛y D]..T 1/y@†; .T 1/y
/ 2 Œ�; 2��:

Q.
/ depends on the orientation but not on the parametrization. An oriented bridge
with QD 1 is called a legal side of the bridge, otherwise it is called an illegal side.
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Proposition 2.31 Let † be a smooth open spin surface with a lifting. Let 
 be a bridge
and denote by x
 the same bridge with opposite orientation. Then Q.
/CQ.x
/D 1.
Thus , any bridge has exactly one legal side and exactly one illegal side.

Proof Work with the notation of Definition 2.30. For w 2 fx; yg; ˛0w is defined by
˛0w D ]..T 1/w@†; .T 1/w x
/. Observe that ˛0x D ˛x C � and ˛0y D ˛y � � . Apply
R2�Q.x
/.y/ to the left-hand side of (15). By Remark 2.25, the left-hand side becomes

R2�Q.x
/.y/R2��˛y .y/P.
/R˛x .x/s.x/DR2��˛y .y/P.
/R˛x .x/R2�Q.x
/.x/s.x/:

Using equation (15) for x
 , Remark 2.25 again, and the relations between pairs ˛x; ˛0x
and ˛y ; ˛0y , the last expression simplifies toR�P.x
/R�P.
/s.y/. By Proposition 2.28
applied to the piecewise smooth closed curve 
 ! x
 ! 
 , this is just R2�.y/s.y/.

ApplyingR2�Q.x
/.y/ to the right-hand side of (15), we obtainR2�.Q.
/CQ.x
//.y/s.y/.
Thus,

R2�.y/s.y/DR2�.Q.
/CQ.x
//.y/s.y/;

and the claim follows.

Proposition 2.32 (a) Suppose .†; fzigi2I ;S/ is a genus g closed spin surface.
Suppose that exactly l1 marked points have twist 1. Then l1 is even. For any
closed Riemann surface .†; fzigi2I/, there exist 22g distinct nontwisted spin
structures on †.

(b) Suppose .†; fxigi2B; fzigi2I ;S; s/ is a genus g open spin surface with a lifting.
Suppose that exactly kC of the boundary marked points are legal , and l1 internal
marked points have twist 1. Then

l1 D gC 1C kC .mod 2/:

For any .†; fxigi2B; fzigi2I/ 2MR
g;k;l

with 2 j gC kC 1, there exist exactly
2g graded structures on †.

Proof For the first claim, let fCig be a family of nonintersecting circles around
each marked point. Then

P
Ci is homologous to 0. By Theorem 2.27, q

�P
Ci
�
DP

q.Ci /D 0. For the number of spin structures, see for example [19].

Regarding the second claim, let Ci be as above, and for any boundary component @†b ,
let Cb be a curve surrounding this boundary, disjoint from it, but isotopic to it in † n z.
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By the definitions of q and Q one easily sees that q.Cb/ is 1 plus the number of legal
marked points of @†b . AgainX

q.Ci /C
X

q.Cb/D 0 .mod 2/;

but this sum equals l1C kCC b .mod 2/, where b is the number of boundaries. It is
easy to see that b D gC 1 .mod 2/. For the number of graded structures; see [34]. We
will also obtain it as a byproduct in Section 5.1; see the end of Example 5.18.

Lemma 2.33 The definitions given in this subsection of smooth spin surfaces with a
lifting , twisted or not , and graded or not , are equivalent to the analogous ones given in
Section 2.3.1.

Starting with a real spin structure L in the sense of Section 2.3.1, S is just the S1�
bundle of L�, and the lifting is the reduction of the lifting to that bundle. See [34] for
more details, and for the rather straightforward proof of equivalence.

2.3.4 A comment about the alternative definition in the stable case In the stable
case, by Proposition 2.19, the sheaf L and the grading data determine the spin structures
and liftings on the normalization, hence by Lemma 2.33 determine the data of S and s
for each component. However, it is determined by it, again, using the same lemma and
proposition, only when there are no Ramond nodes. Even when there are such nodes,
the data of S and s for each component determine L and the grading data up to a finite
choice of identification maps between stalks of half-nodes and liftings at the preimages
of the contracted boundaries, as explained in the proof of Proposition 2.19. Therefore,
since working with the S1–bundle and its lifting is more convenient, throughout this
paper we shall usually write .†;S; s/ to indicate a spin structure with a lifting, and
leave L implicit. We shall sometimes even leave S and s implicit.

2.3.5 Spin graphs It is useful to encode some of the combinatorial data of spin
surfaces with a lifting in graphs.

Definition 2.34 A (pre)stable spin graph � with a lifting is a (pre)stable graph

� D .V;H;�D�B [�I /;

together with a twist map tw WH I ! Z2 and an alternation map alt WHB ! Z2. We
require that

(a) tw.h/D tw.�1.h// for any h 2H I nT I ,
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g D 0

1 5; twD 1

twD 1

g D 1

g D 0

7

C 3 g D 3

C �

C �
g D 1

Figure 7: Three examples of graded dual graphs. The numbers stand for the
markings, and all twists are 0 unless “twD 1” is written next to an element
of H I . In order to avoid confusion, legal half-edges, the elements h 2HB

with alt.h/D 1, are decorated byC signs.

(b) alt.h/C alt.�1.h//D 1 for any h 2HB nT B,

(c) tw.h/D 1 for all h 2HCB,

(d)
P
h2.�B0 /

�1.v/ alt.h/C
P
h2.�I0 /

�1.v/ tw.h/D g.v/C 1 .mod 2/ for v 2 V O,

(e)
P
h2��10 .v/ tw.h/D 0 for v 2 V C.

A boundary half-edge h, and in particular a tail with alt.h/D 0, is said to be illegal,
otherwise it is legal.

We say that the graph is stable if � is stable. We call � a graded graph if alt.t/D 1
for all t 2 T B and tw.t/D 0 for all t 2 T I nHCB.

� is effective if its underlying graph is effective, alt.t/D 1 for all t 2 T B, and for any
v 2 V O without internal half-edges, its three boundary half-edges have altD 1.

The normalization Norm.�/ is just the normalization of the underlying graph � , with
the maps tw and alt defined on the tails of Norm.�/ by their values on the corresponding
half-edges of � . As in the spinless case, whenever an internal tail of � is marked
i ¤ 0, the graph vi .�/ is the component of Norm.�/ which contains tails i , but with
the additional data of tw and alt.

When it is clear from the context that the dual graph under consideration is a spin graph
with a lifting, we sometimes omit the maps tw and alt from the notation.

Definition 2.35 An isomorphism between spin graphs with a lifting .�; tw; alt/ and
.� 0; tw0; alt0/ is a tuple

f D .f V ; f H /

such that

(a) f W �! � 0 is an isomorphism of stable graphs,

(b) tw0 D tw ıf H and alt0 D alt ıf H jHB .

We denote by Aut.�/ the group of the automorphisms of � D .�; tw; alt/.

Geometry & Topology, Volume 27 (2023)



2538 Ran J Tessler

We denote by G the set of isomorphism classes of all spin graphs with a lifting. We
have a natural forgetful mapfforspin W G! GR; where fforspin.�; tw; alt/D �:

Write forspin for its restriction to graded graphs. We denote by Gg;k;l the set of isomor-
phism classes of graded graphs with Image.mB/ D Œk� and Image.mI / D Œl �. Define
�g;k;l as the unique connected graded dual graph with a single open vertex of genus g,
exactly k boundary tails marked by Œk�, exactly l internal tails marked by Œl �, HCBD∅,
and no further half-edges.

To each graded stable marked surface † we associate a graded stable graph .�; tw; alt/
as follows. First, � D �.†/. Let w 2†˛ be any special point of this component. It
corresponds to some half-edge h. If h 2H I, then tw.h/ is defined to be the twist in w.
If h 2HB, then alt.h/D 1 if and only if h is legal. For brevity we denote the graded
stable graph corresponding to † by �.†/, omitting tw and alt from the notation. Note
that Norm.�.†//D �.Norm.†//, and whenever an i ¤ 0 marks an internal marked
point, then vi .�.†//D �.†i /.

We can also extend the graph operations to the graded case. The smoothing of a stable
spin graph with a lifting .�; alt; tw/, at f 2E is the stable graph

df � D .�
0; alt0; tw0/

such that df .�/D � 0. Recall that we may identify H 0 as a subset of H . We define
tw0 and alt0 as the restrictions of tw and alt with respect to this identification. Given a
set S D ff1; : : : ; fng �E.�/, define the smoothing at S as

dS� D dfn.� � � df2.df1�/ � � � /:

Note that again in the case � D dS� 0, H 0 is canonically identified as a subset of H ,
and alt and tw respect this identification.

Again we define @Š W G! 2G and @ W G! 2G by

@Š� D f� 0 j � D dS�
0 for some S �E.� 0/g and @� D @Š� n f�g:

And again these maps naturally extend to maps 2G! 2G .

2.3.6 Mg;k;l

Notation 2.36 For � 2 G, denote by M� the set of isomorphism classes of marked
stable spin surfaces with a lifting, associated to graph � .
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Define
M� D

a
� 02@Š�

M� 0 :

Define Mg;k;l DM�g;k;l . Similarly define Mg;k;l as the subspace parametrizing
smooth surfaces.

For a marking i , denote by vi WM�!Mvi .�/ the canonical map Œ†�! Œ†i �. Observe
that in order to define this map we have used Proposition 2.19. If † has a contracted
boundary, then †i has a marked Ramond point which corresponds to it. The passage
from † to †i forgets the lifting at contracted boundaries.

Theorem 2.37 [35] The space Mg;k;l is a compact smooth orbifold with corners of
real dimension 3g� 3C kC 2l . It is endowed with a canonical orientation.

We note that Mg;k;l is in general disconnected. Different connected components
correspond to different topologies with the same doubled genus, to different partitions
of the boundary points between boundary components, and sometimes also to different
connected components of graded spin structures.

The main difficulty in this theorem is the proof of orientability. The properties of
the canonical orientation will be detailed in Theorem 2.53 below. In Theorem 5.32,
Proposition 5.48 and Corollary 5.49 below we will provide a different proof for the
orientability and for the properties of the canonical orientations. We now briefly review
the proof that Mg;k;l is a compact smooth orbifold with corners. As in the spinless
case, we rely on [41]. We also refer the reader to [8, Lemma 3.5], where a similar
procedure, also based on [41], is applied to the moduli of r–spin disks.

Our starting point is the fact that in the closed setting the moduli space M1=2
g;n of twisted

spin curves is a smooth orbifold; see, for example [18]. Consider the sequence

(16) Mg;k;l
.5/
�! bMg;k;l

.4/
,�! eMg;k;l

.3/
�! eRMg;k;l

.2/
�!RM1=2

g;kC2l
.1/
�!M01=2

g;kC2l
:

As in the spinless case, we explain the notation throughout the steps below.

Step 1 First, M01=2
g;kC2l

is the suborbifold of M1=2

g;kC2l
, the moduli of stable marked

2–spin curves, given by the condition that all the markings have twist 0. Inside this
space, RM1=2

g;kC2l
is the fixed locus of the involution defined by

.C Iw1; : : : ;wkC2l ;S/ 7! .C Iw1; : : : ;wk;wkClC1; : : : ;wkC2l ;wkC1; : : : ;wkCl ;S/;

where C and S are the same as C and S but with the conjugate complex structure. Here
k is required to satisfy 2 −gC k. As the fixed locus of an antiholomorphic involution,
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RM1=2
g;kC2l

is a smooth compact real orbifold. It parametrizes isomorphism types of
marked spin curves with an involution z% covering the conjugation % on C , and 0 twists.

Step 2 The next step is to cut RM1=2

g;kC2l along the real simple normal crossings
divisor consisting of curves with at least one real node, via the real hyperplane blowup
of [41]. As in the spinless case, this yields an orbifold with corners eRMg;k;l .

Step 3 Consider the subset of eRM1=2

g;kC2l
whose generic point is a smooth marked

real spin curve with nonempty real locus. Then eMg;k;l is the disconnected 2-to-1 cover
of this subset given, as in the spinless case, by the choice of a distinguished half †,
a connected component of C nC %. Note that C DD.†/.

Step 4 Inside eMg;k;l , we denote by bMg;k;l the union of connected components
such that the marked points wkC1; : : : ; wkCl lie in the distinguished half, and the spin
structure is compatible. The generic point in this orbifold has isotropy Z2, coming, at
the level of objects, from scaling the fibers of S by �1.

Step 5 Finally, Mg;k;l is the degree 2 cover of bMg;k;l given by a choice of grading.
The choice of the grading cancels the global Z2 isotropy, since the �1 map is no
longer an automorphism, as it does not preserve the grading. As a cover, Mg;k;l is
also endowed by an orbifold with corners structure.

For any � 2 Gg;k;l , M� is a suborbifold with corners which is the closure of M� .
The map Forspin is an orbifold branched cover. A graded surface with b boundary
nodes and contracted boundaries belongs to a corner of the moduli space Mg;k;l of
codimension b. Thus @Mg;k;l consists of graded stable surfaces with at least one
boundary node or contracted boundary. For details see [35]. We should note that the
same argument applies for the more general setting of the moduli space of twisted spin
surfaces with a lifting. These more general moduli spaces are also smooth orbifolds
with corners, but in general they are not orientable.

Remark 2.38 By Proposition 2.32, the degree of the map Forspin is 2g . The automor-
phism group of the underlying surface acts on the set of spin structures. When the
surface is smooth this group is generically trivial, but when it is not, it may happen
that the fiber of Forspin is of cardinality smaller than 2g . Still, even in this case its
weighted cardinality, which takes into account the isotropies, is 2g , so that the orbifold
degree in the smooth case is constant. When the topology becomes nodal the number
of graded spin structures on a given underlying surface may change. But still, for any
graded dual graph � the degree of Forspin restricted to M� is generically constant, and
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when isotropy groups are taken into account, it is always constant. This constant is a
power of 2 which can be calculated from the graph structure of � using, for example,
Proposition 2.19 and the first paragraph in its proof, which relate spin structures on a
stable surface and twisted spin structures on its normalization.

The universal curve Cg;k;l !Mg;k;l is the space whose fiber over Œ†� 2Mg;k;l is †.
Its topology can be defined as in the closed case.

The following simple lemma is useful for understanding the geometry of Mg;k;l ; see
[34; 35] for details.

Lemma 2.39 (a) The maps q and Q are isotopy invariants , in the sense that if
.†s/0�s�1 is a path in Mg;k;l , and .
t;s/0�s;t�1 is a continuous family of
simple paths 
 � ;s � †s ,! Cg;k;l which miss the special points and which are
either all bridges or all closed. If they are all bridges then Q.
 � ;s/ is fixed for
any continuous choice of orientations on 
 � ;s , and if they are all closed , then
q.
 � ;s/ is fixed.

(b) Suppose now that .†s/0�s�1 is a path in Mg;k;l and .
t;s/0�s;t�1 is a con-
tinuous family of paths 
 � ;s � †s ,! Cg;k;l which for s < 1 are simple and
miss the special points and are either all bridges or all closed. Assume 
 � ;1 is a
constant path mapped to a node or a contracted boundary. If 
 � ;s are all closed ,
then the node is internal or a contracted boundary and for any s < 1, its twist is
q.
 � ;s/. If 
 � ;s are all open , then the node is a boundary node. In this case , the
illegal sides of the bridges degenerate to the illegal half-node , in the sense of
Definition 2.13.

In particular , by Proposition 2.31, exactly one of the half-nodes of each boundary
node is legal.

(c) Two graded spin structures on † without a Ramond node which give rise to the
same pair .q;Q/ are isomorphic.

Remark 2.40 A classification of all pairs .q;Q/ is given in [34].

Notation 2.41 We denote by fForspin the canonical mapfForspin WM� !MR
forspin.�/

defined by forgetting the twisted spin structure and the lifting. Write Forspin for the
restriction to graded moduli. The definitions of fForspin; Forspin make sense also when
� is closed (and then the lifting is trivial).
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We end this subsection with a brief illustration of the phenomenon underlying the
branched cover property of the map Forspin. The branching phenomenon occurs along
strata which parametrize surfaces with internal nodes, and therefore happens, from the
same geometric reasoning, also in the setting of the closed 2–spin intersection theory.
We shall explain it in this setting, for simplicity of notation.

Let †0 be a curve with a single nonseparating node, and let †1 be its smoothing,
so that †0 is obtained from †1 by pinching at some simple smooth closed path 
 .
Let .†t /t2Œ0;1� be a path in the moduli of curves, interpolating between †1 and †0.
This path induces an identification of H1.†t ;Z2/ for t > 0, which in the limit t ! 0

corresponds to the surjection obtained by taking the quotient Œ
t � D 0, where Œ
t �
is the generator of H1.†t ;Z2/ which corresponds to Œ
� 2 H1.†1;Z2/ under this
isomorphism. Let ˛ be any element of H 1.†1;Z2/ satisfying h˛; 
i D 1. Denote
by ˛0 the element in H 1.†0;Z2/ which corresponds to ˛ after the pinching, via the
aforementioned surjection. Let B1 be an ordered basis of H1.†1;Z2/ whose first two
elements are Œ
� and Œ˛�, and whose remaining basis elements do not intersect Œ
�.
For t > 0, define Bt as the image of B1 under the isomorphism, and extend to t D 0
via the mentioned surjection. Now choose any spin structure of †0 which gives all
markings twist 0 and makes the node NS. Recall that spin structures on smooth curves
are determined by the map q of Definition 2.26, using the rule of Theorem 2.27, and
any map which satisfies this rule gives rise to such a spin structure. Recall also that
spin structures on †0 which give all markings twist 0 and make the node NS are in
bijection with spin structures on the normalization of †0 giving all of its special points
twist 0. Assign a number q.ˇ/ to any element ˇ 2 B1 n f
g, and put q.
/D 0. Recall
Lemma 2.39. The identifications between the different Bt with t > 0 define a spin
structure St on †t for any t > 0. It extends to a spin structure on †0 with an NS
node. We can also define spin structures S0t for t > 0, whose restrictions to Bt are the
same except for the elements which correspond to ˛, on which they are opposite. Both
.†t ;St /t2Œ0;1� and .†t ;S0t /t2Œ0;1� are paths in the moduli of 2–spin curves which have
the same limit point .†0;S0/D .†0;S00/, and which cover the same path .†t /t2Œ0;1�
in the moduli of curves. The existence of the paths is due to the fact that q.˛0/ is
undefined, and this data loss is the reason for the appearance of the branched cover
phenomenon.

In the case of a separating NS node, this argument no longer works, however in this
case the automorphism group of the spin structure becomes larger: scaling the fibers of
the spin bundle by �1 on each one of the two components is an automorphism. This
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growth of the automorphism group implies that the orbifold degree of the restriction of
Forspin to such strata decreases.

2.4 The line bundles Li

Definition 2.42 Let � be a stable graph with an internal tail marked i ¤ 0. The
line bundle Li !MR

� is the line bundle whose fiber at .†; fxj gj2B; fzj gj2I/ 2MR
�

is T �zi†. This bundle can also be defined by pulling back the corresponding relative
cotangent line over the closed moduli space, via the doubling map.

Let � be a spin graph with a lifting and an internal tail marked i ¤ 0. The line bundle
Li !M� is the line bundle whose fiber at .†; fxj gj2B; fzj gj2I/ 2M� is T �zi†.
Equivalently, this bundle can be defined as the pullback of Li !MReforspin.�/

by the

map fForspin.

2.5 Boundary conditions and intersection numbers

We begin with a simple observation.

Observation 2.43 Let .†;S; s/ be a smooth marked surface with a spin structure and
a lifting , †0 the marked surface obtained by forgetting points fxbgb2B0 , where B0 is
a subset of illegal boundary marked points. Then S is canonically a (twisted ) spin
structure for †0, and s canonically extends to a lifting on †0. In particular , a marked
point is legal for .†0;S; s/ if and only if it is legal for .†;S; s/.

Definition 2.44 Consider � 2 Gg;k;l and i 2 Œl �, and let v D i=�0 be the vertex of �
which contains the tail marked i . Define a graph v�i .�/ as follows; it will be called the
abstract vertex of i in � , or just the abstract vertex for short.

(a) V.v�i .�//D f�g, a singleton. It is open if and only if v is.

(b) T I .v�i .�// D .�
I
0 /
�1.v/. Any internal tail of v�i .�/ which corresponds to a

tail marked by j 2 Œl � is marked j , otherwise it is marked 0. The twist of any
tail of v�i .�/ is the same as the twist of the corresponding half-edge of v. Also,
HCB D∅.

(c) T B.v�i .�//D fh 2 .�
B
0 /
�1.v/ j alt.h/D 1g, and all of these boundary tails are

marked 0.

(d) g.v�i .�//D g.v/ and E.v�i .�//D∅.
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Figure 8: In this figure, to the right side of each dual graded spin graph
its corresponding abstract vertices are shown. Again, half-edges h with
alt.h/D 1 are decorated with the symbolC.

Let forillegal W G! G be the map which forgets all tails t 2 T B with alt.t/D 0. As a
consequence of Observation 2.43, it induces a map at the level of moduli spaces, which
will be denoted by Forillegal.

Writeˆ�;i DForillegalıvi WM�!Mv�
i
.�/. This map extends to a map M�!Mv�

i
.�/,

and we also denote the extension by ˆ�;i .

At the level of surfaces, ˆ�;i .†/ for † 2M� is the graded smooth surface obtained
from † by normalizing the nodes which correspond to the edges of � , taking the
component of zi , forgetting all illegal half-nodes which were formed, renaming all
remaining special points by 0, and forgetting the lifting at preimages of contracted
boundaries; see Figure 9.

Observation 2.45 For � as above , the two orbifold line bundles Li !M� and
ˆ��;i .Li !Mv�

i
.�// are canonically isomorphic.

For a proof, see [31]; it is proven there for the g D 0 case, but the same argument
works in general.

In order to define the open intersection numbers we need to define special canonical
multisections, following [31; 35]. We first recall what multisections are, and refer the
reader to [7, Appendix A] for more details and references.

Definition 2.46 Let E ! M be an orbibundle over an orbifold with corners, and
identify E with its total space. A multisection is a function � WE!Q�0 which satisfies
the following properties. For any p 2M , let .F !U/=G be a local model for E!M
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Figure 9: In this figure, the graded surface on the right of each row is the
image (as a moduli point) of ˆ�;1.†/, where † is the corresponding surface
to the left of the same row, and � is the dual graph which corresponds to †.

in a neighborhood of p, where U 'Rm �Rn�m
�0 , p is identified with 0, F ' U �Rh,

the map � W F !U is the projection, and G is a finite group acting linearly on the pair,
commuting with � . Denote by y� the pullback of � to a G–invariant function on F .
Then:

(a) For all y 2 U , X
v2��1.y/

y�.v/D 1:

(b) We can find sections s1; : : : ; sN W U ! F , perhaps after replacing U with a
smaller neighborhood of 0, and nonnegative rational numbers �1; : : : ; �N , such
that for all y 2 U and v 2 ��1.y/,

y�.v/D
X

i jsi .y/Dv

�i :

The sections s1; : : : ; sN are called local branches and the numbers �1; : : : ; �N are
their weights. The locus where � ¤ 0, which is locally the union of its local branches,
is called the support of the multisection. The elements in the support of � which lie in
the fiber Ep of E over p form the set of values of the multisection at p.

Although the support does not, in general, capture all the information of the multisection,
we usually refer to the multisection � by its support s, and write s.x/ for the values
of the multisection at x. If N D 1 for all p 2M , then the multisection is just a usual
section. The multisection is smooth (piecewise smooth) if all its local branches are
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smooth (piecewise smooth). Many of the natural operations and properties of sections
of vector bundles generalize to multisections of orbibundles in a natural way. These
include addition of multisections, multiplication by functions f WM !R, and most
transversality statements. We say that the multisection is nowhere vanishing if none
of its branches vanishes, or equivalently �.x; 0/D 0 for all x 2M . The multisection
is transverse to zero if all its branches are transverse to the zero section, and it has
isolated zeroes, if all its local branches have isolated zeroes. A point x is a zero of the
multisection if �.x; 0/¤ 0, that is, at least one of the local branches at x vanishes at x.
The zero locus of a multisection is the set of its zeroes.

Definition 2.47 SupposeA�Gg;k;l is a collection of graphs with at least one boundary
edge. A piecewise smooth multisection s of Li!

S
�2AM� is called special canonical

on
S
�2AM� if, for all ƒ 2 @Š� ,

sjMƒ
Dˆ�ƒ;is

v�
i
.ƒ/

for some piecewise smooth multisection sv
�
i
.ƒ/ of Li !Mv�

i
.ƒ/.

In the case that A � Gg;k;l is the collection of all graphs with at least one boundary
edge, we say that s as above is special canonical.

A multisection sD
L
i2Œl�;j2Œai �

sij of
L
i L
˚aj
i is special canonical if each component

sij is special canonical.

Intuitively, being special canonical means that the multisection depends only on the
irreducible component of zi in the normalization, after forgetting the locations of the
illegal boundary half-nodes and the liftings at contracted boundaries.

Still following [7, Appendix A], let p 2M be an internal point, and let s be a multisec-
tion with isolated zeroes. We assume that E and M are oriented and rk.E/D dim.M/.
Take a local model .F ! U/=G for the neighborhood of p as in Definition 2.46.
Choose a metric on U, a metric on the fibers Rh, and let � 0 W F !Rh be the projection
on the Rh component. Let B be a small ball around 0 (which is identified with p)
which contains no zero of s except possibly 0. Denote by S the unit sphere in Rh. We
use the orientations of M and E to endow S and @B with the induced orientations as
the boundaries of oriented balls. We define degp.si /, the local degree of si at p, as the
degree of the map t W @B! S , where

t .x/D
� 0.si .x//

j� 0.si .x//j
:
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This definition is independent of choices. The weight of p in the zero locus of s is
defined as

(17) �p D
1

jGj

NX
iD1

�i degp.si /:

If s has a finite zero locus fp1; : : : ; ptg, then the weighted signed zero count of s isPt
iD1 �pi .s/ 2Q.

Let s be a piecewise smooth multisection of E! @M , where E!M is an oriented
orbibundle over a compact oriented orbifold with corners. Suppose s vanishes nowhere.
For any piecewise smooth multisection zs extending s to the interior of M with isolated
zeroes, the weighted signed zero count of zs is the same. This follows from standard
cobordism arguments — see for example [16, Section 3] for the case @M D ∅; the
addition of boundary does not complicate the argument2 — and it is also a consequence
of Proposition 3.3, whose proof is sketched below. We denote this number by

R
M e.E; s/

and call it the integral of the relative Euler class of E relative to s.

Remark 2.48 The relative Euler class e.E; s/ 2Hn.M; @M;Q/, where E!M is
an oriented orbibundle over a compact oriented orbifold with corners with rk.E/D
dim.M/D n, is defined whenever s is a nowhere-vanishing boundary condition for
E ! M . Integrating, or capping with the fundamental class, gives by Poincaré–
Lefschetz duality an element of H0.M;Q/'Q. This element is precisely what we
defined as the integral of the relative Euler class. For our needs the definition of the
relative Euler class itself is not required. See the appendix in [7] for more details and
references.

The integral relative Euler class can be defined for orbifold sphere bundles rather than
orbifold vector bundles, for example by using an embedding of the sphere bundle into
the vector bundle using a choice of a metric for the vector bundle, and inducing the
boundary conditions by this embedding. The resulting integrals are the same when
working with a vector bundle E or with its associated sphere bundle. We shall use
these two notions interchangeably throughout the paper.

Observation 2.49 Suppose that E !M is an oriented orbibundle over a compact
oriented piecewise smooth orbifold with corners with rk.E/D dim.M/D n, and that

2In [16] the definition of multisections is slightly different, as a section to the symmetric product of the
orbifold vector bundle. However, a multisection in our terminology induces in a natural way a multisection
in the terminology of that paper, and the definitions of the zero counts agree.
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s is a nowhere-vanishing multisection of E ! @M . Let f W N !M be a surjection
between compact oriented piecewise smooth orbifolds with corners of dimension n,
which maps @N onto @M . Suppose that f is generically of degree one , meaning that
outside of a subspace K �M which is a union of finitely many compact suborbifolds
of M of real codimension one , f is injective. ThenZ

N

e.f �E; f �s/D

Z
N

e.E; s/:

Indeed, standard transversality arguments show that a generic piecewise extension of s
to M will have no zeroes in K. Using the pullback to N of such a generic extension
proves the claim.

The following theorem has appeared in [31] in the genus 0 case, and will appear in [35]
for all genera.

Theorem 2.50 Suppose a1; : : : ; al � 0 are integers which sum to 1
2
.kC 2lC 3g� 3/.

Then one can choose multisections fsij gi2Œl�;j2Œai � such that

(a) For all i and j , sij is a special canonical multisection of Li ! @Mg;k;l .

(b) The multisection s D
L
i;j sij vanishes nowhere.

Moreover , for any two choices fsij g and fs0ij g which satisfy the above requirements ,
we have Z

Mg;k;l

e

�M
i

L
˚aj
i ; s

�
D

Z
Mg;k;l

e

�M
i

L
˚aj
i ; s0

�
;

where s0 D
L
i;j s
0
ij .

For completeness, and since [35] is yet to appear, we will shortly review the proof of
first claim in the theorem. We will not review the “Moreover” part, since it will be a
consequence of our main theorem, Theorem 1.5, which calculates the integral of the
relative Euler class, and obtains an answer which does not involve the special canonical
multisection, without relying on the assumption that the integral is independent of the
multisection.

The proof that nowhere-vanishing special canonical boundary conditions exist has two
steps. The first step shows that for any boundary point p 2 @Mg;k;l there exists a
special canonical multisection none of whose branches vanishes at p. This step is the
heart of the argument; it is similar but not identical to [31, Proposition 3.49(a)] and we
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will review it in the next paragraph. The second step uses the multisections constructed
in the first step to construct nowhere-vanishing boundary conditions: Using the first
step and compactness, one can find finitely many canonical multisections s1; : : : ; sN of
E D

L
i2Œl�;j2Œai �

L˚aii such that for any boundary point p 2 @Mg;k;l and any choice
of local branches s0i of si at p, the vectors .s0i /p for i 2 ŒN � span the fiber EN . Then,
by a standard transversality argument, a generic linear combination of s1; : : : ; sN will
be a nowhere-vanishing canonical multisection. By generic we mean that the subset of
linear combinations of s1; : : : ; sN with this property is residual in the set of all possible
linear combinations. The proof of this step is identical to [31, Lemma 3.53(a)], and we
refer the interested reader there.

We turn to explain the first step. Fix p 2 @Mg;k;l and i 2 Œl �. Suppose p belongs
to the stratum M� for some graded spin dual graph � corresponding to the graded
surface †. Let u 2 .Li /p be an arbitrary nonzero vector. Finally, let Œ†0� be the image
of p D Œ†� under the map ˆ�;i , and write G D Aut.†/. The action of G lifts to an
action on the cotangent of the i th marking, that is, on .Li /Œ†0�, the fiber of Li at Œ†0�.
By Observation 2.45, the fibers of Li at Œ†0� and Œ†� are isomorphic, canonically up to
the action of G on .Li /Œ†0�. Thus, the G–action lifts also to .Li /Œ†�. Write

uD fu1; : : : ; umg D fg �u j g 2Gg:

We will construct a special canonical multisection of Li whose branches at p have
values u, with equal weights. Set

Vg;k;l D fv
�
i .ƒ/ jƒ 2 @

Š�g;k;lg;

ie Vg;k;l is the collection of abstract vertices v�i .ƒ/ for any graded spin graph ƒ that
corresponds to a stratum of Mg;k;l . We will construct for any v 2 Vg;k;l a special
canonical multisection sv for Li ! Mv. These multisections are required to be
compatible in the following sense. Let v 2 Vg;k;l , and let ƒ 2 @v be a graph which
corresponds to a boundary stratum of Mv. Let v0 D v�i .ƒ/. It is easy to see that
v0 2 Vg;k;l . We require, for all such v and ƒ, that

(18) svjMƒ
Dˆ�ƒ;is

v0 :

These constraints for differentƒ are compatible. See the explanation at the beginning of
the proof of [31, Proposition 3.49], which extends to our setting. This construction will
provide, in particular, a construction of a special canonical multisection for v�i .�g;k;l/,
which is the same graded dual graph as �g;k;l except that the boundary tails are marked 0.
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The pullback of this section by the canonical map

M�g;k;l !Mv�
i
.�g;k;l /

which changes the boundary markings to 0 will be the required multisection.

Write v� D v�i .�/ and aD dim.Mv�/, where � is the dual graph which corresponds
to †. The construction of multisections sv for v 2 Vg;k;l will be by induction on
d D dimMv. The basis is d D �1, which holds trivially since there are no such
vertices. Suppose we have constructed multisections with the required properties for
all v0 with dimMv0<d . Consider v2Vg;k;l with d DdimMv . Note that v need not be
an open vertex, and may even have internal tails with twD 1. Write ‡ D

`
ƒ2@vMƒ.

Define first svj‡ according to (18), where the right-hand side of the compatibility
equations is already defined by induction. We now extend sv to the whole moduli
space Mv. Here we separate into cases. If v ¤ v�, we extend arbitrarily. If v D v�

we extend arbitrarily, but under the requirement that sv
�

Œ†0�
D u, meaning that each ui

appears in some branches of sv
�

, and with the same total weight. This can be done
for example in the following way. Let � WMv� ! Œ0; 1� be a smooth function which
is 1 near Œ†0� and 0 near ‡ . Let s0 be an arbitrary extension of the already defined
sv
�

j‡ to Mv� , and s00 an arbitrary multisection of Li !Mv� which has the required
values Œ†0�. Then one can take

sv
�

D �s00C .1� �/s0:

The induction follows,3 and thus also the proof.

For the benefit of the reader we now explain the difference between this proof and the
proof of [31, Proposition 3.49(a)], and the intuitive reason for why canonical boundary
conditions should give rise to well-defined intersection numbers. In [31] there were
no contracted boundaries and all boundary nodes were separating. In this case the
definition of canonical boundary conditions can be given without spin structure, by
using only parity considerations: for each node, precisely one half-node is forgotten, and
the forgotten half-nodes are chosen in the unique way which leaves on each connected
component of genus s of the normalized surface a total number of unforgotten special
boundary points whose parity is sC 1 (mod 2). This numerical reasoning cannot work

3In the proof of the corresponding claim in [31], the multisections were also required to satisfy some
invariance under symmetry groups. In our case, since we work with orbifolds and orbibundles, this
invariance is part of the definition of being a multisection; see the appendix of [7]. In [31], the orbifoldness
was implicit, and was a result of forgetting the boundary markings. In higher genus, even the moduli with
injective markings is an orbifold.
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when there are nonseparating nodes. However, as it turns out, this parity notion neatly
generalizes to the notion of a graded spin structure, and the forgotten half-nodes are
precisely the illegal ones. The importance of this scheme is that it forces the boundary
conditions to be pulled back from a real codimension-two space rather than from a
codimension-one space (the codimension is with respect to the dimension of the whole
moduli space).

This idea cannot work in the case of moduli strata which parametrize surfaces with
a contracted boundary component. However, for such surfaces, for any contracted
boundary component there are two possible choices of liftings. Moreover, by the
“Moreover” part of Theorem 2.53 below, the boundary strata of the moduli which
correspond to the different choices of liftings come with opposite orientations. Since, in
the definition of the base, the lifting in such points is forgotten, the boundary conditions
should be the same for these two boundary strata.4

These two properties are strong enough to guarantee that the integrals are well defined:
The dimension reduction, together with a standard transversality argument, enables one
to construct a homotopy between any two choices of canonical boundary conditions s
and s0 which does not vanish on boundary strata which correspond to surfaces with
a boundary node. It may vanish on boundary strata which correspond to surfaces
with contracted boundaries, but these vanishings cancel in pairs, which differ in the
liftings of these contracted boundaries. This homotopy argument thus shows that s
and s0 determine the same integral. In the course of the proof of Theorem 1.5 this
independence will become manifest.

Based on Theorem 2.50 we can now define open intersection numbers.

Definition 2.51 With the notation of Theorem 2.50, define the open intersection
number

h�a1 � � � �al�
k
ig WD 2

� 1
2
.gCk�1/

Z
Mg;k;l

e

�M
i

L
˚aj
i ; s

�
;

where s is a nowhere-vanishing special canonical multisection.

4Essentially this discussion says that such codimension-one boundaries can be glued, and that the integrals
can be calculated with respect to the glued moduli space. In an earlier version of this manuscript we chose
this path, but we believe that this gluing is less elegant than the equivalent choice of unglued boundaries
we make here. The cost of this choice is that there are now additional boundary conditions to impose and
to analyze.

Geometry & Topology, Volume 27 (2023)



2552 Ran J Tessler

The power of 2 is a normalization factor chosen in [31], which makes some initial
conditions nicer but has no geometric or algebraic importance.

Since we define the intersection numbers to be 0 unless the numerical condition of
Theorem 2.50 holds, the genus is determined from knowing k, l and a1; : : : ; al , and for
this reason we will usually omit it from the notation and simply write h�a1 � � � �al�

ki

for h�a1 � � � �al�
kig .

2.6 The orientation of Mg;k;l

As mentioned above, the spaces Mg;k;l were proved to be orientable, and moreover
were given canonical orientations. In order to state properties of these orientations that
will be required for later, we need the following definition.

Definition 2.52 Let M be an oriented orbifold with corners. Then @M is also ori-
entable. The induced orientation on @M is defined by the exact sequence

0!N ! TM j@M ! T @M ! 0;

where N , the dimension-one normal bundle of @M in M, is oriented by taking the
outward normal as a positive direction and the orientation on TM as the given one.

For the benefit of the reader, we recall the construction of the induced orientation also
in terms of local coordinates. Let p be a boundary point which is not a corner. A
local neighborhood of p is diffeomorphic to .R�0�Rn�1/=G for some finite group G
which acts on Rn, and under the diffeomorphism, p is mapped to the origin. By
the orientability assumption G acts in an orientation-preserving manner, and we may
assume that the orientation induced on Rn by the diffeomorphism is the standard
one. Since p is a boundary point, f0g �Rn�1 is preserved by G, and since G acts
on R�0 � Rn�1, by definition R�0 � Rn�1 is preserved. Take an oriented frame
.v1; v2; : : : ; vn/ for Rn which is in the class of the standard orientation, so that v1 has
negative first coordinate and the remaining vectors of the frame have first coordinate 0.
Then .v2; : : : ; vn/ is a frame for f0g �Rn�1. For g 2 G, .gv1; : : : ; gvn/ is in the
same orientation class as the original frame. Since R�0 �Rn�1 is preserved under G,
gv1 has a negative first coordinate. Since f0g �Rn�1 is preserved under G, the first
coordinate of each gvi for i � 2 is 0, and we obtain that

.gv2; : : : ; gvn/ and .v2; : : : ; vn/
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are in the same orientation class. This class is defined as the orientation frame, which
defines the local orientation at p. We extend the orientation to the whole boundary by
continuity.

The next theorem, proven in [35], describes some useful properties of the canonical
orientations of Mg;k;l , properties that characterize these orientations uniquely.

Theorem 2.53 There is a unique choice of orientations o� for any graded graph �
all of whose connected components contain a single vertex, satisfying the following
requirements:

(a) The zero-dimensional spaces M� for � 2 f�0;1;1; �0;3;0g are oriented positively.

(b) If � D f�1; : : : ; �rg, where the �i are the connected components , then

o� D
r

�
iD1

o�i :

(c) Let � be a graded stable graph with a single boundary edge e, and put ƒD de� .
Denote by � 0 the graph obtained by detaching that edge into two tails t and t 0,
with alt.t/ D 1 and alt.t 0/ D 1, and forgetting the tail t . Note that we have a
fibration M� !M� 0 whose fiber over the graded surface † 2M� 0 is naturally
identified with @† n fxigi2B.� 0/. Then the induced orientation on M� as a
codimension-one boundary of Mƒ agrees with the orientation on M� induced
by the fibration M� !M� 0 , where the base is given the orientation o� 0 and the
fiber over † gets the orientation of @†.

Moreover , these orientations have the following additional property. For � as above ,
let C be a connected component of M� which parametrizes surfaces with at least one
boundary component containing no boundary markings. Let C 0 be another connected
component which parametrizes surfaces that differ from those of C only at the grading
in that boundary component , which is opposite. There is a natural map ‰ W C ! C 0

which maps a stable graded marked surface to the same surface but with the opposite
grading at this boundary component. Let C� and C 0� be the boundary strata of C
and C 0, respectively, which parametrize surfaces in which this boundary component
is contracted , and let oC� and oC 0� be the respective orientations induced on these
subspaces. Then ‰ maps C� bijectively onto C 0�, and

oC 0� D�‰�oC� :
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The difficulty in this theorem lies in the existence and the “Moreover” parts, which will
be proven by other means below. Given the existence, the uniqueness follows easily
using induction on dimension. In [35] the behavior of the orientations with respect to
strata with internal nodes is also explained, but it is not needed here.

3 Sphere bundles and relative Euler class

Given a rank n complex vector bundle � WE!M and a metric on it, one can define
the sphere bundle � W S D S.E/D S2n�1.E/!M whose fiber Sp at p 2M is the set
of unit-length vectors in Ep , the fiber of E at p, with the induced orientation. Given a
sphere bundle S !M , its linearization is the space

S �R�0=�;

where .v; r/ � .v0; r 0/ if either r D r 0 D 0, or v D v0 and r D r 0. This space can
be endowed with a natural linear structure, a metric and a projection to M. When
S D S.E/, the linearization of S recovers E. The sphere bundle of E can be defined
also without referring to a metric, by removing the zero section and taking the quotient
by the RC action. Different metrics give rise to isomorphic sphere bundles.

Definition 3.1 An angular form for E (or for S) is a .2n�1/–form ˆ on S which
satisfies the following two requirements:

(a)
R
Sp
ˆD 1 for all p 2M .

(b) dˆD����, where � is some 2n–form on M.

The form � is a local representative of the top Chern form of E !M, and will be
called the Euler form which corresponds to ˆ. Denote by ˆ also the form on E nM,
where we identify E and its total space, defined by P �ˆ, where P WE nM ! S.E/ is
the map

.p; v/!
�
p;

v

jvj

�
for p 2M and v 2E nM:

It is straightforward that:

Observation 3.2 The form jvjˆ extends to a form on all the total space of E.

We will use the following claim.
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Proposition 3.3 Let E !M be a real oriented rank 2n vector bundle on a smooth
oriented manifold with boundary M of real dimension 2n. Let ˆ be an angular
form , and let � be its corresponding Euler form. Given a nowhere-vanishing section
s 2�.E! @M/, one can define the integral of the relative Euler class , and it holds thatZ

M

e.E; s/D

Z
M

�C

Z
@M

s�ˆ:

Moreover , the statement also holds if E !M is an orbifold vector bundle over an
orbifold with corners and s is a nowhere-vanishing multisection over the boundary.

This claim is well known, in the case of manifolds, and the extension to orbifolds is
straightforward. We briefly recall the proof of the claim for manifolds, referring the
reader to [4, Chapter 11] for further details, then we explain the changes required for
handling the orbifold case. As usual we are interested in the integral of the relative
Euler class, rather than the class itself.

We wish to calculate
R
M e.E; s/, the weighted number of zeroes of an extension of s

to M to a section with isolated zeroes. Let Ns be such an extension, and let p1; : : : ; pm
be its zeroes. By choosing diffeomorphisms from neighborhood of p1; : : : ; pm to open
sets in Rn, for small enough r we can define Mr DM n

Sm
iD1Br.pi /, where Br.p/

is the ball around p, and sections sr which are the restrictions of Ns to @Mr . By taking
r to be even smaller we may assume that the balls are disjoint. By Stokes’ theorem,
Ns being a global section over Mr , and the definition of the angular form, we getZ

M

�D lim
r!0

Z
Mr

�D lim
r!0

Z
Mr

Ns����

D� lim
r!0

Z
Mr

Ns�dˆD� lim
r!0

Z
@Mr

s�rˆ

D�

Z
@M

s�ˆC

mX
iD1

lim
r!0

Z
@Br .pi /

s�rˆ:

For each i D 1; : : : ; m and small enough r ,
R
@Br .pi /

s�rˆ is the order of vanishing of
Ns at pi ; see [4, Theorem 11.16]. Thus, the right-hand side of the previous equation
equals

R
M e.E; s/�

R
@M s�ˆ, as needed.

The argument works also in the orbifold case. One first shows that Stokes’ theorem
generalizes to the case of orbifolds with corners and multisections of the vector bundle
ƒ�.T �M/ instead of sections of this bundle (differential forms). For differential forms
over orbifolds with corners this is shown, for example, in [36]. The extension to
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multisections is proven similarly. Then the integral around pi becomes, in the local
model and notation of Definition 2.46,

NX
iD1

�i

Z
@B.0/

Ns�i ˆ;

with B � U a small ball around 0, and Nsi and �i the local branches and weights. But
this is precisely the weight (17) in the definition of

R
M e.E; s/, so again the result

follows.

Suppose now that E D
Ln
iD1Li is the sum of n complex line bundles Li . Choose a

metric for E for which the line bundles Li are pairwise orthogonal. Write ˛i for an
angular form for Si D S.Li /, and !i for the corresponding Euler form, ie the curvature
of Li . Define the functions

ri WE!R

to be the length of the projection of .p; v/ 2 E to Li . The sphere bundle can be
described as the set of vectors which satisfy

P
r2i D 1. For convenience, denote by !i

and ri˛i the pullbacks of !i and ri˛i to the total space of E and of S.E/, where for
the latter form we use Observation 3.2.

As far as we know, the following theorem has not appeared in the literature before.

Theorem 3.4 The form

(19) ˆD

n�1X
kD0

2kkŠ
X
i2Œn�

r2i ˛i ^
X

I�Œn�nfig
jI jDk

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h

is an angular form for E, whose corresponding Euler form is
Vn
iD1!i .

Proof We first need to show that the integration on a fiber gives 1. Since the !i are
pulled back from the base for all i , the only term in ˆ that may have a nonzero integral
over a fiber is the term

ˆtop
D 2n�1.n� 1/Š

X
i2Œn�

r2i ˛i ^
V
j¤i

.rj drj ^ j̨ /:

We wish to show that for an arbitrary p 2 M , we have
R
S.Ep/

ˆtop D 1. We first
integrate all the ˛i terms. By using that ˛i is an angular form for Li the integral of ˛i
is 1, and we are left with calculatingZ

P
r2
i
D1

2n�1.n� 1/Š
X
i2Œn�

r2i ^
V
j¤i

rj drj :

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2557

By changing the variables to ti D r2i with dti D 2ri dri , the integral becomes

.n� 1/Š

Z P
tiD1

t1;:::;tn�0

nX
iD1

ti ^
V
j¤i

dtj D nŠ

Z
Pn�1
iD1 ti�1

t1;:::;tn�1�0

�
1�

n�1X
iD1

ti

�
^

V
1�j�n�1

dtj

D nŠ

ZPn
iD1 ti�1

t1;:::;tn�0

V
1�j�n

dtj ;

where in the first equality we have used the symmetric role of the variables ti and then
eliminated tn, and in the second equality we have used that

1�
X
i�n�1

ti D

Z
0�s�1�

P
i�n�1 ti

ds:

The left-hand side is just nŠ times the Euclidean volume of the n–simplex

ft1C � � �C tn � 1 j t1; : : : ; tn � 0g:

It is well known that this volume is 1=nŠ, and the first property of the angular form
follows.

For the second property, we will now show that when calculating dˆ, one gets a
telescopic sum which turns out to be equal to

V
!i . Write

SI;i WD 2
kkŠ r2i ˛i ^

V
j2I

.rjdrj ^ j̨ /^
V

h…I[fig

!h

for the contribution for given I with i … I , where k D jI j. Taking the derivative, as !i
and ri dri are closed, only r2i or j̨ may contribute. We obtain

dSI;i D d1SI;i C d2SI;i C
X
l2I

d3;lSI;i ;

where

d1SI;i WD 2
kC1kŠ ri dri ^˛i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

d2SI;i WD �2
kkŠ r2i !i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

d3;lSI;i WD �2
kkŠ r2i ˛i ^ rl drl ^!l ^

V
j2Inflg

.rj drj ^ j̨ /
V

h…I[fig

!h for l 2 I:

The third contribution appears only when I ¤∅.

Now, fixing I , one hasX
i2I

d1SInfig;i D k2
k.k� 1/Š

V
j2I

.rj drj ^ j̨ /^
V
h…I

!h;(20)
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X
i…I

d2SI;i D�
X
i…I

2kkŠ r2i
V
j2I

.rj drj ^ j̨ /^
V
h…I

!h(21)

D�

�
1�

X
i2I

r2i

�
2kkŠ

V
j2I

.rj drj ^ j̨ /^
V
h…I

!h

D�2kkŠ

� V
j2I

.rj drj ^ j̨ /^
V
h…I

!h

�

X
i2I

r3i dri ^˛i ^
V

j2Infig
.rj drj ^ j̨ /^

V
h…I

!h

�
;

where we have used
P
r2i D 1 in the second equality. And, fixing I and i … I ,

(22)
X

l…I[fig

d3;lSI[flg;i

D�

X
l…I[fig

2kC1.kC 1/Š r2i ˛i ^ rl drl ^!l ^
V
j2I

.rj drj ^ j̨ /^
V

h…I[fi;lg

!h

D�2kC1.kC 1/Š
X

l2I[fig

rl drl ^ r
2
i ˛i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h

D�2kC1.kC 1/Š r3i dri ^˛i ^
V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

where the identity
P
ri dri D 0 was used for the second equality. The last passage

follows from noting that except for the l D i term, for all other l 2 I we will get a
monomial with two drl terms.

Summing equations (20), (21) and (22) over all possibilities for I , and in (22) also for
i … I , we see that:

� (20) vanishes if I D ∅. For I ¤ ∅, the contribution of (20) cancels with the
first term on the right-hand side of (21) for the same I .

� For a given J ¤∅, the sum of (22) over all pairs .I; i/ with i 2J and I D I nfig
cancels with the second term of (21) with I D J .

� For I D∅, the second term of (21) vanishes.

Thus, the only term which is left uncanceled is
V
!i , coming from the first term of (21)

with I D∅. Hence, as needed,

dˆD
X
I;i

dSI;i D�
V
!i :
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Remark 3.5 In what follows we will sometimes use forms on S.E/ which are defined
similarly to ˆ, but depend a subset of its arguments. For this reason it will be useful to
extend ˆ and similar expressions to multilinear functions in the variables ri , dri , ˛i
and !i for i D 1; : : : ; n, without imposing

P
r2i D 1 and

P
ri dri D 0.

Without these constraints the right-hand side of (21) gets a correction of

2kkŠ

�
1�

X
h2Œn�

r2h

�� V
j2I

rj drj ^ j̨

�
^
V
h…I

!j ;

while the right-hand side of (22) gets a correction of

2kC1.kC 1/Š

� X
l2Œn�

rl drl

�
^ r2i ˛i ^

� V
j2I

rj drj ^ j̨

�
^

V
h2Œn�n.I[fig/

!h:

Summing the first correction over all I , and adding the sum of the second correction
over all I with i … I , we obtain

Z D

�
1�

X
h2Œn�

r2h

�
^

X
m�0

2mmŠ
X
jI jDm
I�Œn�

� V
j2I

rj drj ^ j̨

�
^

V
j2Œn�nI

!j

C

� X
h2Œn�

rh drh

�
^

X
i2Œn�nfhg

r2i ˛i ^
X
m�0

2.mC1/.mC 1/Š

^

X
jI jDm

I�Œn�nfi;hg

� V
j2I

rj drj ^ j̨

�
^

V
j2Œn�n.I[fig/

!j :

Therefore, without imposing
P
r2i D 1 and

P
ri dri D 0 we have

dˆDZ �
nV
iD1

!i :

Clearly Z vanishes if we do make these assumptions.

Construction–Notation 1 Suppose that S1; : : : ; Sl !M are piecewise smooth S1–
bundles over a piecewise smooth orbifold with corners. Denote by S.S1; : : : ; Sl/!M

the .2l�1/–sphere bundle on M whose fibers are

S.S1; : : : ; Sl/x D
n
.r1; P1; r2; P2; : : : ; rl ; Pl/

ˇ̌
Pi 2 .Si /x; ri � 0;

X
r2i D 1

oı
�;

where � is the equivalence relation generated by

.r1; P1; : : : ; 0; Pi ; : : : ; rl ; Pl/� .r1; P1; : : : ; 0; P
0
i ; : : : ; rl ; Pl/;

equipped with the natural topology.
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4 Symmetric Jenkins–Strebel stratification

In the remainder of the article all open spin surfaces we will encounter, twisted or
not, will have a lifting. Similarly, we will encounter several types of graphs: the dual
graphs we have defined above, ribbon graphs and nodal graphs. These graphs will also
be classified as open or closed and will sometimes carry spin structures, twisted or
not. All the open spin graphs we shall meet will have a lifting. For this reason we
will sometimes slightly abuse notation and omit the suffix “with a lifting” from the
terminology. We will also usually omit the addition “twisted”. It will be clear from the
context if we mean a closed or open object, twisted or not, etc.

4.1 JS stratification for the closed moduli

4.1.1 JS differential and the induced graph In this subsection we briefly describe
the stratification of moduli of closed stable curves, following [25; 42; 28].

Let† be a nodal Riemann surface with 2g�2Cn� 0. A meromorphic section 
 of the
tensor square of the cotangent bundle defined on each component of the normalization
of † can be written in a local coordinate z as f .z/ dz2. If 
 has a double pole at
w 2†, the residue of 
 at w is the coefficient of dz2=.z�w/2 in the expansion of 

around w. The residue is independent of the choice of the local coordinate. A quadratic
differential 
 is such a section which has at most double poles, all the poles are located
either at the marked points or at the nodes, and for any node, the residues of 
 at its
two branches are the same.

Let 
 be a quadratic differential, and w 2† a point which is neither a zero nor a pole.
In a neighborhood U we can take its unique (up to sign) square root

p

 . This is a

1–form, hence can be integrated along a path. This defines a map

g W U !C; g.z/D

Z z

w

p

;

where the integral is taken along any path in U.

A horizontal trajectory is the preimage of R�C, and it is a smooth path containing w
in its interior. It turns out that the notion of horizontal trajectories can be defined also
in the case where w is a zero of order d � �1, where as usual a zero of order �m is a
pole of order m. In this case there are exactly d C 2 horizontal rays leaving w. When
w is a pole of order 2, if its residue is �.p=2�/2 for some p 2RC, there is a family
of nonintersecting horizontal trajectories surrounding it whose union is a topological
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open disk, punctured at w. Moreover, with respect to the metric defined by j
p

 j, the

perimeter of each of these trajectories is p.

Example 4.1 Let † be the Riemann sphere. For all p > 0,


p D�

�
p

2�

�2�dz
z

�2
is a quadratic differential, whose only poles are at 0 and1 and whose horizontal lines
are the sets jzj D r for r > 0, whose lengths are indeed p. Their union is an open
punctured disk. It should be noted that actually this is the only quadratic differential on
the sphere, up to scaling, which is invariant under the reflection in the equator whose
only poles are at 0 and1.

Definition 4.2 Let .†; z1; : : : ; zn; znC1; : : : ; znCn0/ be a marked genus g nodal Rie-
mann surface with 2g� 2Cn� 0, where the subscript of zi indicates its marking. Let
p1; : : : ; pn be positive reals, and pi D 0 for i > n. A marked component is a smooth
component of the curve with at least one marked point zi , with i 2 Œn�. The other
components are called unmarked. A Jenkins–Strebel differential, or a JS–differential
for short, is a quadratic differential 
 such that:

(a) 
 is holomorphic outside of special points. At nodes it has at most simple poles,
and at the i th marked point it has a double pole with residue �.pi=2�/2. In
particular, if pi D 0 there is at most a simple pole at that point.

(b) 
 vanishes identically on unmarked components.

(c) Let †0 be any marked component of †. When pi ¤ 0, if Di is the punctured
disk which is the union of horizontal trajectories surrounding zi 2†0, then[

i2Œn�

Di D†
0:

The following theorem was proved in [37] for the smooth case; the nodal case was
treated in [28; 42].

Theorem 4.3 Given a stable marked surface .†; z1; : : : ; znCn0/ with n > 0 and
p D .p1; : : : ; pnCn0/ 2 Rn

C
� .0; : : : ; 0/ as above , the JS differential exists and is

unique.
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Given .†; z/ and p as above, define the decorated surface z† and the map Kn0 W†! z†
as follows. z† is obtained from † by contracting any unmarked component to a point,
and decorating any such point by its genus defect and marking defect. The genus defect
is the genus of the preimage of the point in †, and if that preimage is a single point,
it is defined to be 0. The marking defect is the set of marked points in this preimage,
which is labeled by a subset of ŒnCn0� n Œn�. We should stress that 
 need not vanish
on a preimage of a node in the normalization, but it can have at most a simple pole
there. Thus, from the discussion about horizontal trajectories, each node or unmarked
component and in particular any point zi for i > n must be mapped to a point which
touches at least one horizontal trajectory. Note also that an unmarked component
always touches a node (unless nD 0 and then the whole surface is unmarked).

The JS differential 
 induces a metric graph on z† whose vertices are zeroes of order
d � �15 of 
 , including the images of unmarked components, and whose edges are
the horizontal trajectories, with their intrinsic length. These embedded graphs can be
fully described.

Definition 4.4 A graph G D .V;H; s0; s1; g; f /, where

(a) V is the set of vertices, H is the set of half-edges,

(b) s0 is a permutation of the half-edges emanating from each vertex,

(c) s1 is a fixed-point-free involution of H ,

(d) g is a map g W V ! Z�0, called the genus defect, and

(e) f is a map f W ŒnCn0� n Œn�! V ,

is called a .g; .n; n0//–stable closed ribbon graph. The faces of the graph are s2–
equivalence class of half-edges, where s2 D s�10 s1. We write F DH=s2. The edges
are E DH=s1. The genus of G can be defined as follows. Glue disks along the faces
to obtain a surface z†. The genus of G is the (arithmetic) genus of z† plus the sum of
genus defects in vertices. The marking defect of a vertex v is defined as f �1.v/. We
require that:

(a) For a vertex v of degree 1 or of degree 2, but such that the assigned permutation
is a transposition,

g.v/Cjf �1.v/j � 1:

5We consider a simple pole as a zero of order �1, and a point which is neither a zero nor a pole to be a
zero of order 0.
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(b) The genus of the graph is g.

(c) The number of faces is n.

A stable metric ribbon graph is a stable ribbon graph together with a metric

` WE!RC:

We usually write `e instead of `.e/.

A graph is smooth if all the vertices’ permutations s0 are cyclic, all genus defects are 0,
and all marking defects are of size at most 1. The ribbon graph is connected if the
underlying graph is. We define isomorphisms and automorphisms in the expected way.
Write Aut.G/ for the automorphism group of G.

Note that case (a) above occurs when v is either the image of a contracted unmarked
component, or the image of one of the points pi for some i > n.

Remark 4.5 To a stable metric ribbon graph one can associate in a natural way a
decorated metric space made of a disjoint union of closed intervals, one for each
e 2 E, modulo the identification of endpoints dictated by the graph structure. The
vertices, which are the equivalence classes of endpoints of intervals, are endowed
with genus and marking defects, and the closed interval which corresponds to the
edge e is associated to a metric structure which makes it isometric to the interval
Œ0; `e��R. The associated decorated metric space is unique up to the expected notion
of isomorphism. Stable metric ribbon graphs which arise from a JS differential (we
will see in Theorem 4.8 below that all stable metric ribbon graphs arise this way) are
endowed with this additional structure of isometries between the embedded edges and
intervals of R. This will be used below, when we give coordinates to the combinatorial
S1–bundles. For more details we refer the reader to [42].

Notation 4.6 Throughout this article, given a ribbon graph, possibly with extra struc-
ture such as a graded ribbon graph, or a nodal graph, which will be defined later, we
shall write Œh� for the class of the half-edge or the edge h under the action of the
automorphism group. We similarly write ŒA� for a subset of edges or half-edges.

Remark 4.7 If Norm W Norm.†/ ! † is the normalization of †, and 
 is the JS
differential on † with prescribed perimeters, then Norm�
 is a JS differential, hence
the unique JS differential, on Norm.†/, with the same perimeters, and such that marked
points which are preimages of nodes have 0–perimeter.
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4.1.2 Combinatorial moduli For a closed stable ribbon graph G, write MG for
the set of all metrics on G, write MG.p/ for the set of all such metrics where the
i th face has perimeter pi . We have that MG 'RE.G/

C
=Aut.G/ canonically, and this

identification endows it with a smooth structure.

For e 2 E.G/, the edge between vertices v1 and v2, define the graph @eG, the edge
contraction, as follows. Write h1; h2 for the two half-edges of e. Set V.@eG/ D
V.G/ n fv1; v2g [ fv1v2g and H.@eG/ D H.G/ n fh1; h2g. The maps s01, g0 and f 0

are just s1, g and f when restricted to vertices and half-edges of G. For the new
vertex vD v1v2, set f 0.v/D f .v1/[f .v2/, and set g0.v/D g.v1/Cg.v2/ whenever
v1 ¤ v2, otherwise it is g.v1/C ı, where ı D 1 if h1 and h2 belong to different
s0–cycles, and otherwise ı D 0. For any half-edge h, with h=s1 ¤ e, define s02.h/ to
be the first half-edge among s2.h/; s22.h/; : : : which is not a half-edge of e. We then
put s00 D s

0
1.s
0
2/
�1.

Edge contractions commute with each other, and allow us to define a cell complex
MG D

`
G0MG0 , where the union is over all graphs obtained from G by edge

contractions, and we glue the cell MG0 of G0 D @e1;:::;erG to the cell MG along
`e1 D � � � D `er D 0. We similarly define MG.p/.

Write Mcomb
g;.n;n0/

D
`

MG , where the union is taken over smooth closed .g; .n; n0//
ribbon graphs. Write Mcomb

g;.n;n0/
D
`

MG=�D
`

MG , where the union is taken over
all closed stable .g; .n; n0// ribbon graphs, and � is induced by edge contractions.
Define Mcomb

g;.n;n0/
.p/ and Mcomb

g;.n;n0/
.p/ by constraining the perimeters to be pi . In all

cases we define the cell attachment using edge contractions, and the resulting spaces
are piecewise smooth Hausdorff orbifolds; see [28; 42] for details.

Set combD combn0 as the canonical maps

comb WMg;nCn0 �RnC!Mcomb
g;.n;n0/

and combp WMg;nCn0 !Mcomb
g;.n;n0/

.p/;

which send a stable curve and a set of perimeters to the corresponding graph.

We have, from [25; 28; 42]:

Theorem 4.8 Suppose n > 0. The maps comb and combp are continuous surjections
of topological orbifolds. The map combp takes the fundamental class to a fundamental
class. Moreover , the cell complex topology described above is the finest topology with
respect to which comb is continuous. The maps are isomorphisms onto their images
when restricted to Mg;nCn0 �Rn

C
and Mg;nCn0 .
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More generally , suppose � is a closed dual graph with the property that any vertex
without a tail marked by Œn� is of genus zero , and has exactly three half-edges , and
any two such vertices are not adjacent. Then , with the same proofs , comb and combp

restricted to M� �Rn
C

and M� are isomorphisms onto their image.

4.1.3 Tautological line bundles and associated forms

Definition 4.9 Suppose pi > 0. Define the space

Fi .p/!Mcomb
g;n .p/

as the collection of pairs .G; `; q/, where .G; `/ 2Mcomb
g;n .p/ and q is a boundary

point of the i th face. These spaces glue together to the bundle Fi !Mcomb
g;n . Define

�j to be the distance from q to the j th vertex, taken along the arc from q in the
counterclockwise direction, so that 0 < �1 < �2 < � � � < �N < pi , where N is the
number of edges in the i th face, counted with multiplicities, and the distances are
measured using the identifications of the edges with subintervals of R; see Remark 4.5.
Write j̀ D �jC1��j . Orient the fibers with the clockwise orientation.

Define the following one-form and two-form on each cell of Mcomb
g;.n;n0/

.p/:

(23) ˛i D

NX
jD1

j̀

pi
d

�
�j

pi

�
and !i D�d˛i D

X
1�a<b�N

d

�
`a

pi

�
^ d

�
`b

pi

�
:

Later we will integrate forms which are made out of ˛i and !i , and we will perform
Laplace transform over p. For this reason it will be convenient to define the scaled
versions of ˛i and !i , which do not contain pi in their denominators. We thus put

x̨i D p
2
i ˛i ; x!i D p

2
i !i ; x! D

X
i

x!i :

The bundles Fi carry natural piecewise smooth structures. Moreover, [25] says the
following; see also [42, Theorem 5].

Theorem 4.10 (a) For i 2 Œn�, we have comb�Fi ' S1.Li / canonically.

(b) The forms ˛i and !i are a piecewise smooth angular one-form and Euler two-
form for Fi .

Remark 4.11 In [25], Fi was given the opposite orientation and the equivalence
was hence with the bundle S1.L�i /, which is canonically S1.Li / with the opposite
orientation.
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Thus, combined with Theorem 4.8, we see that all descendents may be calculated
combinatorially on Mcomb

g;n . In fact, all descendents can be calculated as integrals over
the highest-dimensional cells of Mcomb

g;n . These are parametrized by trivalent ribbon
graphs.

4.2 JS stratification for the open moduli

4.2.1 Symmetric JS differentials The next definition is motivated by Definition 4.2
and Example 4.1.

Definition 4.12 Let .†; fzigi2I[P0 ; fxigi2B/ be a stable open marked Riemann sur-
face, and let p D .pi /i2I[P0 2RI

C
� .0; : : : ; 0/. A symmetric JS differential on † is

the restriction to † of the unique JS differential of D.†/ whose residues at zi and Nzi
are �.pi=2�/2, which are 0 for i 2 P0. We extend the definition to the case g D 0,
I D Œ1� and P0 D B D∅, where the differential is defined to be the restriction of the
section 
p1 of Example 4.1.

Existence and uniqueness follow from Theorem 4.3 and the discussion in Example 4.1.

As before, the symmetric JS differential defines a cell decomposition of D.†/ in the
smooth case, and in general a metric graph embedded in AD.†/, the surface obtained
from D.†/ by contracting components with no zi or Nzi with i 2 I, whose complement
is a disjoint union of disks. Note that AD.†/ inherits the conjugation from D.†/, which
we also denote by %. The uniqueness forces the decomposition to be %–invariant.

Lemma 4.13 The %–fixed locus of AD.†/ is a union of (possibly closed ) horizontal
trajectories and isolated vertices. Any %–fixed point is a zero the differential of an even
order , possibly 0.

Proof The case gD0, ID Œ1�, P0DBD∅ follows from the discussion in Example 4.1.
In other cases, take an arbitrary point in AD.†/%. It cannot belong to the disk cell of
any zj , since otherwise it would have belonged to the cell of Nzj as well. Thus, AD.†/%
is contained in the one-skeleton of the decomposition. Consider p 2 AD.†/%. If p
is an isolated vertex in the %–fixed locus, then by connectivity it must be incident to
some non-%–fixed horizontal trajectory which, without loss of generality, lies in the
image of †o in AD.†/. Suppose it touches r such trajectories. Then it also touches their
%–conjugate trajectories, which lie in the image of †o in AD.†/. Thus, 2r horizontal
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trajectories emanate from p, for r � 1, hence p is a zero of order 2r�2� 0. The second
case is that p is not isolated, so it lies in the image of @† in AD.†/, which, as explained,
is contained in the 1–skeleton. In this case, at least two horizontal trajectories which
are contained in the image of @† emanate out of p, one to its left and one to its right.
In addition, there are also r � 0 such trajectories in the image of †o, and because
of symmetry there are also r such trajectories in the image of †o. In total, there are
2r C 2 horizontal trajectories emanating from p, which means that it is a zero of order
2r � 0.

Lemma 4.13 has the following corollary.

Corollary 4.14 Suppose † and p are as above , and 
 is the associated symmetric
JS differential. Assume that for some i 2 B, forgetting xi makes no component of †
unstable. Denote by †0 the resulting surface , and let � W †0 ! † be the natural map
between the surfaces. Then if 
 and 
 0 are the unique JS differentials for † and †0,
respectively, with the prescribed perimeters , then


 0 D ��
:

Indeed, both 
 and 
 0 are JS differentials on †0, since there is no pole in xi . Hence
they must be equal.

Remark 4.7 has the following consequence.

Corollary 4.15 If Norm W Norm.†/! † is the normalization of †, and 
 is the JS
differential on † with prescribed perimeters , then Norm�
 is the unique JS differential
on Norm.†/with the same perimeters and such that marked points which are preimages
of nodes have perimeter zero.

Remark 4.16 Although throughout the article we will be mainly interested in internal
markings with positive perimeters, markings of perimeter zero occur naturally when
one considers normalizations; see Proposition 4.34. In the open intersection theory the
normalizations are crucial for the definition of intersection numbers, Definition 2.47, and
therefore considering markings with zero perimeters is unavoidable. In addition, since
boundary markings carry no descendents, we to not lose from fixing their perimeters to
be zero, and it simplifies calculations. For these reasons, throughout this section we
shall allow marked points to have perimeter zero, at the cost of making the notation
somehow more cumbersome.
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4.2.2 Open ribbon graphs

Notation 4.17 Let I and B be finite sets. Let IT .g; I; B/ denote the set of isotopy
types of open connected genus g smooth oriented marked surfaces, with I being the
set of internal marked points and B being the set of boundary marked points. Write
IT .g; I / for the set of isotopy types of closed connected genus g smooth oriented
marked surfaces, which is just a singleton.

Definition 4.18 An open ribbon graph is a tuple

G D .V DV I [V B ;HDH I
[HB ; s0; s1; f Df

I
[f B [f P0 ; g; d/;

where:

(a) V I is the set of internal vertices, V B the set of boundary vertices.

(b) HB is the set of boundary half-edges, H I is the set of internal half-edges; s1 is
a fixed-point-free involution on H whose equivalence classes are the edges, E.
EB is the set of edges which contain a boundary half-edge.

(c) s0 is a permutation assigned to each vertex, and should be thought of as a cyclic
order of the half-edges issuing from each vertex. We write s0 also for the product
of all these permutations.

We denote by zV the set of cycles of s0. Write zV I for cycles which do not contain
boundary half-edges. Set zV B D zV n zV I . Denote by N W zV ! V the map which takes a
cycle to the vertex which contains its half-edges, and letNP0 andNB be the restrictions
to zV I and zV B, respectively.

(d) f B W B! V B is a map from a finite set B.

(e) f P0 W P0! V is a map from a finite set P0.

(f) f I W I ,!H=s2 is an injection, where s2 WD s�10 s1.

(g) g W V ! Z�0 is a map called the genus defect.

(h) For any v 2 V B, we have an element

d.v/ 2 IT
�
g.v/; .f P0/�1.v/[ .NP0/�1.v/; .f B/�1.v/[ .NB/�1.v/

�
:

For any v 2 V I , the element d.v/ is the unique element in

IT
�
g.v/; .f P0/�1.v/[ .NP0/�1.v/

�
:

This d is called the topological defect of v.
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Write deg.v/ for the degree of the vertex v. A closed contracted component is a vertex
v 2 V I with

2g.v/Cj.f P0/�1.v/jC jN�1.v/j> 2:

Denote their collection by ContC .G/. An open contracted component is a vertex
v 2 V B with

2.g.v/Cj.f P0/�1.v/jC j.NP0/�1.v/j/Cj.f B/�1.v/jC j.NB/�1.v/j> 2:

Denote their collection by ContO.G/.

We have the following requirements.

(a) Any half-edge appears in the permutation s0 of exactly one vertex. We define
a graph whose vertices are the elements of V and whose half-edges are the
elements of H . A half-edge is connected to a vertex if and only if it appears in
the vertex’s permutation s0.

(b) N. zV B/� V B.

(c) If h 2HB, then s1h …HB.

(d) s2 preserves the partition H DH I [HB. The image of f I is exactly H I=s2.

(e) For v2V I , if deg.v/D1, or deg.v/D2 but jN�1.v/jD1, then j.f P0/�1.v/jC
g.v/� 1.

(f) For v 2 V B, if v has at least one boundary edge and deg.v/D 2 then

j.f P0/�1.v/jC j.f B/�1.v/jCg.v/� 1:

(g) Any vertex of degree 0 is a contracted component.

We call the elements ofHB=s2 boundary components, and the elements of F DH I=s2

faces. The number of boundary components is b.G/D jHB=s2j. The marking defect
of v 2 V is defined as .f P0/�1.v/[ .f B/�1.v/. The sets I, P0 and B are called the
sets of internal markings, internal markings of perimeter zero, and boundary markings,
respectively. The set B is also denoted by B.G/; define I.G/ and P0.G/ similarly. An
internal node is either a contracted component with at least one edge and no boundary
edges, or an internal vertex whose assigned permutation is not transitive. A boundary
vertex v without boundary half-edges, with an empty marking defect and such that
g.v/D 0 and jN�1.v/j D 1 is called a contracted boundary. We denote the collection
of those boundary vertices by CB.G/. A boundary vertex v which is either a contracted
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component with at least one boundary edge, or whose assigned permutation is not
transitive, is called a boundary node. A boundary marked point is an image of f B

which is not a node. An internal marked point of perimeter zero is an image of f P0

which is not a node. A boundary half-node is an .NB/�1–preimage of a node. Denote
their collection by HN.G/. A vertex which is either a node or a contracted component,
or the f –image of a unique element in P0[B, is called a special point.

We write i.h/D h=s2 and Hi D fh 2H j i.h/D ig.

An open metric ribbon graph is an open ribbon graph together with a positive metric
` WE!RC. We sometimes write `h, with h 2H , instead of `h=s1 .

Markings of an open ribbon graph are markings

mI W I [P0! Z and mB W B! Z

such that mI .P0/D 0 and mI .I/� Z¤0. A graph together with a marking is called a
marked graph.

An isomorphism of marked graphs and an automorphism of a marked graph are the
expected notions. Aut.G/ denotes the group of automorphisms of G. A metric is
generic if .G; `/ has no automorphisms.

A ribbon graph is said to be closed if V B D 0, and it is said to be connected if the
underlying graph is connected.

The maps f B and f P0 should be thought of as the respective associations of the
boundary marked points and the internal marked points of perimeter zero to the vertices
of the graph formed by the symmetric JS differential. Requirements (e) and (f) in this
definition are the open counterparts of requirement (a) of Definition 4.4. Note that a
half-edge h is canonically oriented away from its basepoint h=s0. Throughout the paper
we identify boundary marked points, which are vertices, with their (unique) preimages
in B.G/D B.

Remark 4.19 Here, unlike in the closed case, the genus defect is not enough to
classify surfaces with contracted components. In particular, there are several topologies
for a given genus, as mentioned in Remark 2.4, and the set of topologies grows as
we add boundary marked points, which may be divided between different boundary
components.

Figure 10 shows some examples of ribbon graphs.
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Figure 10: Examples of ribbon graphs. Internal edges are drawn as strips.
Top left is a ribbon graph with one boundary marking and four internal
markings (the name of a half-edge appears next to the vertex from which it
emanates). Its underlying surface is a disk, and the boundary edges are s1f ,
s1g, s1h, s1i , s1j . The cyclic orders in the internal vertices are s1a; s1b; e
and s1b; s1d; c. Face 1, for example, is the s2–cyclic order a; b; c; f . Bottom
right is a ribbon graph on a cylinder. It has one face, the s2–cycle a; c; s1a; b
and two boundary components, each made of a single boundary edge, s1b
and s1c. The ribbon graph at top right has one boundary node u, which is
also an open contracted component, and an internal node v, which is also a
contracted component. The permutation of half-edges at u is .ab/.cd/. The
contracted component is open, of genus defect 3, has an internal marking
of perimeter zero, and four special boundary points: the markings 1; 2 and
the half-nodes .ab/; .cd/. The topological defect can be any topology which
corresponds to doubled genus 3, one internal marking and four boundary
markings. The node v has genus defect 2 and two perimeter-zero internal
markings. The center bottom picture has an open contracted component
at v, it is a contracted disk with two boundary markings 2; 3 and a boundary
half-node and no special internal points. Contracted components which are
disks with three boundary markings and no internal markings will play an
important role in what follows. We shall therefore draw such components as
disks cut by parallel lines, as in the bottom right picture.
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Notation 4.20 By gluing disks along the faces, any open ribbon graph gives rise to
a topological open oriented surface †G . This surface is a union of smooth surfaces,
identified in a finite number of points. One can easily define its double, D.†G/ D
.†G/C , as in the nontopological case.

Definition 4.21 The genus of the open graph G is defined by

g.G/ WD g..†G/C/C
X
v2V B

g.v/C 2
X
v2V I

g.v/:

The graph is stable if 2g� 2CjBjC 2.jIjC jP0j/ > 0.

For a stable open surface .†; fzigi2I[P0 ; fxigi2B/, define the marked components
to be components with at least one zi , for some i 2 I. The other components are
unmarked. Define the decorated surface z†DKB;P0.†/, and the map KB;P0 W†!

z†

to be the surface obtained by contracting unmarked components to points, and KB;P0
is the quotient map. We decorate any point p in z† by its genus defect, marking defect
and the topological defect, which can be defined by the genus, boundary markings and
topological type of the surface obtained by smoothing the nodes in K�1B;P0.p/.

Remark 4.22 This definition agrees with the one given for closed surfaces, in the sense
that one can also define the doubling D of z† in a natural way, and then D.z†/'AD.†/.

Definition 4.23 A ghost is a ribbon graph without half-edges. A smooth open ribbon
graph is a stable open ribbon graph such that none of its connected components contains
a node or a contracted boundary.

A stable ribbon graph, open or closed, is effective if

(a) any genus defect is 0,

(b) there are no internal nodes, and

(c) contracted components or ghost components v must have

.NP0/�1.v/D∅ and j.NB/�1.v/jC j.f B/�1.v/j D 3:

The graph is trivalent if

(a) it is effective,

(b) P0 D∅,

(c) it has no contracted boundaries,
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(d) all vertices which are not special boundary points are trivalent, and

(e) for every special boundary point, all the s0–cycles are of length 2.

A boundary marked point or a boundary half-node in a trivalent graph G which is not
a ghost is said to belong to a face i if its unique internal half-edge belongs to that face.

In Figure 10 the diagrams on the left represent smooth graphs, and all but the top right
are effective.

Remark 4.24 The only nonzero open intersection number which does not involve in-
ternal markings is the genus 0 intersection number with three boundary markings, h�3io0.
The graph which corresponds to this picture is precisely the trivalent ghost.

The following proposition is a consequence of Lemma 4.13, and the closed theory; the
proof is in the appendix.

Proposition 4.25 Let † be a stable open marked Riemann surface. The unique
symmetric JS differential of † defines a unique metric graph .G; `/ embedded in
KB;P0.†/. This graph is an open ribbon graph , whose vertices are KB;P0–images of
zeroes of the differential , and whose edges are KB;P0–images of horizontal trajectories.
The boundary edges , if there are any, are embedded in the boundary and cover it , and
the defects of vertices agree with the defects of their image in KB;P0.†/; in particular ,
boundary nodes go to boundary nodes. Under this embedding the orientation of any
half-edge h 2 s1HB agrees with the orientation induced on @KB;P0.†/. Topologically,
KB;P0.†/'†G .

Moreover , any stable .g;B; I[P0/–metric graph is the graph associated to some stable
open .g;B; I [P0/–surface and a set of perimeters p. This surface is unique if the
graph is smooth or effective.

We sometimes identify the graph with its image under the embedding. In particular,
throughout this article we shall consider an edge as a trajectory in the surface, and a
half-edge h as a trajectory oriented outward from h=s0.

Notation 4.26 With the notation of the above observation, denote by combR
p the map

between surfaces and open metric ribbon graphs defined by .G; `/D combR
p .†/. Write

also .G; `/D combR.†;p/.
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Definition 4.27 The normalization Norm.G/ of a stable connected open ribbon
graph G is the unique smooth, not necessarily connected, open ribbon graph, defined
in the following way. If G is smooth, Norm.G/ D G. Otherwise the vertex set is
zV I [ zV B [ContC .G/[ContO.G/, contracted components are isolated vertices in the
graph, and the half-edges are H I [HB. The genus and topological defects of vertices
in zV I [ zV B are 0.

For a contracted component v, the genus and topological defects are given by

gNorm.G/.v/D g.v/ and dNorm.G/.v/D d.v/:

The marking defect and the maps f P0;v and f B;v are derived from dNorm.G/.v/. In
particular, B.v/D .NB/�1.v/[.f B/�1.v/. The permutations sv0 and sv1 are the trivial
permutations, and I.v/D∅.

For any connected component C of Norm.G/ not in ContC .G/[ContO.G/, define
s0 D s

C
0 , s1 D sC1 and f I D f I;C as those induced from G. Let P0.C / be the union

of the set of elements of P0 which map to vertices whose unique N –preimage is in C ,
and the set of preimages of internal nodes of C , ie internal vertices v of C such that
jN�1.N.v//j>1. In other words, we can write P0.C /D .P0.C /\P0/[.P0.C /nP0/.
We define f P0 D f P0;C W P0.C / ! V I .C / as follows. On P0.C / \ P0 we put
f P0;C .pi /DN

�1.f P0.pi //, where f P0 of the right-hand side is the function from
the definition ofG, while on P0.C /nP0, the preimages of nodes, we set f P0;C .v/D v.
Define B.C/ and f B D f B;C W B.C/! V B.C / similarly.

The normalization Norm.G/ of a marked graph is the marked graph whose underlying
graph is the normalization of the underlying graph of G, and new marked points are
marked 0.

Write Norm W Norm.G/!G for the evident normalization map.

Observe that the normalization of a trivalent graph is trivalent, and that if v is a contracted
component which touches at least one edge in G, then jNorm�1.v/j D jN�1.v/jC 1.

Figure 11 shows the normalizations of the graphs in the right column of Figure 10.

Notation 4.28 There is a canonical injection B.G/ ,! B.Norm.G//. There is a
fixed-point-free involution on B.Norm.G//nB.G/, which we also denote by s1, which
on preimages of a node that is not a contracted component just interchanges its two
preimages. If v is a contracted component, its new boundary markings correspond
to elements u 2 .NB/�1.v/. Any such u corresponds also to a unique marking w in
another noncontracted component. Write s1uD w and s1w D u.
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Figure 11: The normalizations of the graphs in the right column of Figure 10.
The upper normalization has four components; two are contracted compo-
nents. The one which corresponds to v has three internal points of perimeter 0:
the original two and the node. The one which corresponds to u has four
boundary markings: the original two and two that corresponds to half-nodes.
The lower normalization is made of two components. New special points in
both normalizations are labeled 0.

4.2.3 Moduli of open metric graphs For a stable open ribbon graph G, denote by
MR
G the set of all metrics on G, and write MR

G.p/ for the set of all such metrics where
the i th face has perimeter pi . Note that MR

G DRE.G/
C

=Aut.G/ canonically.

Construction–Notation 2 For e 2E.G/ the edge between vertices v1 and v2, one can
define the graph @eG as the graph obtained by contracting e to a point, identifying its
vertices to give a new vertex v1v2 and updating the permutations and marking defects
as in the closed case. When v1 and v2 are internal, then so is v1v2. The genus defect
is updated as in the closed case, and this determines the whole defect. Suppose v1
is a boundary vertex. Then so is v1v2. If v2 ¤ v1, then g.v1v2/D g.v1/C g.v2/ if
v2 2V

B, and otherwise g.v1v2/Dg.v1/C2g.v2/. When v1D v2, let h1 and h2 be the
half-edges of e. Let zhi 2N�1.v1/ be the s0–cycle of hi . Then g.v1v2/D g.v1/C ı,
where

ı D

8<:
0 if zh1 D zh2;
1 if zh1 ¤ zh2;
2 otherwise.

where zh1; zh2 2 zV B ;

We have
d.v1v2/ 2 IT D IT .g.v1v2/; Iv1v2 ; Bv1v2/
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or

d.v1v2/ 2 IT D IT .g.v1v2/; Iv1v2/;

where
Bv1v2 D .f

B/�1.v1v2/[ .N
B/�1.v1v2/;

Iv1v2 D .f
P0/�1.v1v2/[ .N

P0/�1.v1v2/:

These two sets are already known from what we have constructed so far. In particular,
whenever IT is trivial — which is always the case for internal vertices, and for boundary
vertices it happens when 2g.v1v2/C 2jIv1v2 jC jBv1v2 j � 2— we know d.v1v2/. For
brevity we will not describe the general update of the topological defect. We do describe
a special case of particular importance. Suppose that e 2 EB and that v1 ¤ v2 are
boundary vertices with d.vi / 2 IT .0;∅; Bi /, where jBi j D 2. This is the case when
each vi is a marked point or a boundary node which is not a contracted component.
Write Bi D fzhi ; aig, where zhi is as above. Suppose h2 2HB, that is, its orientation
disagrees with the orientation of the boundary. Then d.v1v2/ 2 IT .0;∅; fa; a1; a2g/,
where a is the new cycle of s0h2 obtained from concatenating zh1 and zh2 after erasing
h1 and h2, and d.v1v2/ is the element which corresponds to cyclic order a! a1! a2.

Suppose E 0Dfe1; : : : ; erg�E. Then there is an identification between E.G/nE 0 and
E.@e1;:::;erG/. Throughout this paper we shall use this identification without further
comment.

Figure 12 illustrates several examples of edge contractions.

For a stable open ribbon graph G, we define the orbifold cell complex MR
G as the cell

complex whose cells are MR
G0 for all graphs G0 obtained from G by edge contractions.

The cell MR
G which corresponds to contracting the empty subset of E.G/ is included.

If G0 and G00 are two such cells, and G00 is obtained from G0 by contracting the edges
fe1; : : : ; erg, then the corresponding cell MR

G00 is the boundary of the cell MR
G0 glued

to it along `e1 D � � � D `er D 0. In this case we say that MR
G00 is a face of MR

G0 . Write
MRcomb

g;k;l D
`

MR
G=� D

`
MR
G , where the union is over all open .g; k; l/–ribbon

graphs, and � is induced by the canonical injections MR
G0 ,!MR

G over pairs .G;G0/
where G0 is obtained from G by edge contractions. Write MRcomb

g;k;l for the locus which
is the union over smooth graphs. Define MR

G.p/, M
Rcomb
g;k;l.p/ and MRcomb

g;k;l.p/ by
restricting perimeters to be pi . In these cases we also define the cell attachments using
edge contractions.
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Figure 12: Examples of edge contractions. Contracting the internal edges b
and f of the smooth graph on the top left gives rise to the nodal graph on the
top right. The vertex v1v2 corresponds to the permutation .ae/.cd/. By further
contracting the boundary edge g between the boundary node and the marked
point 2, we obtain the graph on the left in the middle row. The boundary node
there corresponds to a contracted component which contains two nodes and the
marking 2. The graph on the right-hand side of the same row is equivalent to the
left one, only that the ghost is illustrated and there the cyclic order of half-nodes
is seen. At bottom left a genus 1 ribbon graph is drawn. After contracting the
edge a we obtain a nodal graph. Further contracting c, we obtain the graph on
its right, which contains an open contracted component. The genus defect of the
contracted component is 1 and its topological defect is that of a cylinder with
one special boundary point: the node.

The pointwise maps combR induce moduli maps

combR
WMR

g;k;l �RlC!MRcomb
g;k;l and combR

p WM
R
g;k;l !MRcomb

g;k;l.p/;

which send a stable open surface and a set of perimeters to the corresponding graph.
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Lemma 4.29 MRcomb
g;k;l with the cell structure defined above is a piecewise smooth

Hausdorff orbifold with corners. This is the finest topology on the moduli of .g; k; l/–
graphs such that the map combR is continuous. MRcomb

g;k;l.p/ is compact for any p. We
have combR

WMR
g;k;l
�Rl
C
'MRcomb

. Moreover , the analogous claims remain true
if we declare some , but not all , of the internal marked points to have zero perimeter.
In fact , for any effective dual graph � , the map combR restricted to MR

� �Rl
C

is an
isomorphism onto its image.

The proof is similar to the closed case; see [42; 28] for a proof of the analogous
theorem.

4.3 JS stratification for the graded moduli

4.3.1 Graded ribbon graphs For a metric, open or closed ribbon graph, .G; `/, write

zZG;` D �0.fFor�1spin..combR/�1.G; `// and ZG;` D �0.For�1spin..combR/�1.G; `//;

where the maps fForspin and Forspin are defined in Notation 2.41. For any two generic
metrics ` and `0, the sets ZG;` and ZG;`0 are isomorphic; see Remark 2.38. When G
has nontrivial automorphisms the sets are noncanonically isomorphic. For any G, let
ZG be the set ZG;` for a fixed generic `. Define zZG similarly.

Definition 4.30 A metric spin ribbon graph with a lifting .G; z; `/ is a metric ribbon
graph together with an element z 2 zZG;`. The graph is called graded when z 2ZG;`.
A graded graph is a pair .G; z/; z 2ZG . Similarly, in the closed setting, a metric spin
ribbon graph .G; z; `/ is a metric ribbon graph together with z 2 zZG;`.

The normalization Norm.G; z; `/ of .G; z; `/ is the smooth, not necessarily connected
graph

`
.Gi ; `i ; zi /, where the .Gi ; `i / are the components of Norm.G; `/, and the

zi 2 zZGi ;`i are induced from z by Proposition 2.19. A half-node is legal if it is legal
as a marked point in the graded structure of Norm.G; z/.

By Proposition 4.25, a graded surface, together with perimeters fpigi2I , defines a
unique graded metric graph .G; z; `/, where .G; `/ is embedded in KB;P0.Forspin.†//,
as in Proposition 4.25, and z is the class of graded spin structures which contains the
graded structure of†. When .G; `/ is generic and effective, all possible automorphisms
of .G; `/ leave all half-edges in place, and may only act nontrivially on isolated
contracted components, which are of genus 0. Thus, the action of this automorphism
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group on ZG DZG;` is trivial, and hence, in this case, ZG is isomorphic to Spin.†/,
and any element z of it corresponds to a unique graded structure.

Moreover, by Corollary 2.22, if in addition G has no contracted boundaries, then ZG is
in one-to-one correspondence with isomorphism classes of tuples .S1; : : : ;Sr/, where
each Si is a spin structure with a lifting on the i th component of Norm.†/ such that
all original boundary marked points are legal and for any boundary node of † exactly
one half is legal.

Definition 4.31 A spin ribbon graph with a lifting .G; z/, with or without a metric `,
is called effective if G is effective, and z is a spin structure with a lifting in which
for every contracted component v 2 V.G/, all boundary marked points of the isolated
component in Norm�1.v/ are legal. In the case that v is not isolated, it is equivalent to
all half-nodes in .NB/�1.v/ being illegal. An effective graded graph .G; z/ is trivalent
if G is trivalent. The graph is smooth if its underlying graph is. These definitions
extend to the closed case, without the assumptions on boundary nodes.

Denote by SR0 the set of isomorphism classes of graded smooth trivalent ribbon
graphs, and write R0 for the set of their underlying open ribbon graphs. Denote by
SR0

g;k;l
� SR0 the subset whose faces are marked Œl � and whose boundary points are

marked by Œk�. Define R0
g;k;l

similarly.

Let OSR0
g;k;l

be the collection of all graphs in SR0
g;k;l

with an odd number of boundary
marked points on each boundary component. Define OR0

g;k;l
similarly.

Note that in a trivalent graph, by definition if v is a contracted component, the unique
ghost component in Norm�1.v/ has all marked points legal.

Recall that smooth graded surfaces have no internal markings of twist 1 or illegal
boundary markings. Therefore an immediate corollary of Proposition 2.32, which can
be taken as an alternative definition of R0

g;k;l
, is:

Corollary 4.32 R0
g;k;l
¤∅ precisely when 2 jgCk�1. Every trivalent smooth graph

satisfying this constraint belongs to R0
g;k;l

.

Notation 4.33 We define the map comb between graded surfaces and graded metric
ribbon graphs by

comb.†;S; s;p/D .G; z; `/;

where .G; `/D combR.†;p/ and z 2ZG;` is the corresponding class. Write combpD

comb.�;�;�;p/. Write Forcomb
spin .G; z; `/D .G; `/.
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Proposition 4.34 Suppose comb.†;p/D .G; z; `/.

(a) Then comb.Norm.†/;p/DNorm.G; z; `/, where preimages of nodes in † will
be internal markings of perimeter zero.

(b) Suppose †0 is obtained from † by forgetting an illegal marked point x� whose
removal makes no component unstable. Suppose that x� is mapped to vertex v
of G. Write .G0; z0; `0/D comb.†0;p/. Then .G0; `0/ is obtained from .G; z; `/

by the following procedure. If deg.v/D 2, and v has a zero genus defect and
marking defect f�g, remove v from the graph , unite its two edges e1 and e2
to one edge e, define `0.e/D `.e1/C `.e2/ and for the other edges put `0 D `.
Otherwise the graph and metric do not change , but the marking � is removed
from the marking defect of v. The point z0 is the image of z under the natural
map ZG;`!ZG0;`0 obtained from Observation 2.43 with B0 D f�g.

Proof The first item is a consequence of Corollary 4.15. The second follows from
Corollary 4.14 and Observation 2.43.

4.3.2 Combinatorial moduli for graded surfaces, bundles and forms Denote by
Mcomb
g;k;l

the set of metric graded .g; k; l/–ribbon graphs. Write Mcomb
g;k;l

.p/ for the
subspace of graphs with fixed perimeters p. Define Mcomb

g;k;l
as the subspace of smooth

graphs. Define similarly Mcomb
g;k;l

.p/. The pointwise maps comb induce moduli maps

comb WMg;k;l �RlC!Mcomb
g;k;l and combD combp WMg;k;l !Mcomb

g;k;l.p/;

which send a stable graded surface and a set of perimeters to the corresponding graph.
Endow these spaces with the finest topology such that comb is continuous.

We now study the cell structure of Mcomb
g;k;l

. Recall that a metric ` is generic if the metric
graph has no automorphisms. In particular, in the open and connected setting, metrics
which give all edges different lengths are generic. For a generic ` 2MR

G , choose z 2
ZG DZG;`, and define M.G;z/ to be the connected component of .Forcomb

spin /
�1.MR

G/

which contains .G; z; `/.

The map Forcomb
spin is continuous. Moreover, by the same reasoning as in the noncombi-

natorial case (see the discussion in the end of Section 2.3.6), it is an orbifold branched
cover, and over any MR

G it is an orbifold cover.

Thus, .Forcomb
spin /

�1.MR
G/ is an orbibundle over MR

G , with a generic fiber ZG . Since

MR
G DRE.G/C =Aut.G/;
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such a bundle must be of the form

.Forcomb
spin /

�1.MR
G/' .R

E.G/
C

�ZG/=Aut.G/

for some action of Aut.G/ which we now explain.

Let C �MR
G be the locus of generic metrics, and C � RE.G/ its preimage under

the quotient by Aut.G/. Except from some borderline cases, which can be treated
separately, its complement is of real codimension at least 3. Over C the fiber of the
bundle is always of size jZG j. Denote this fiber bundle by E, and let E! C be its
pullback to C . Now �1.C / is trivial, as RE.G/ nC is of codimension at least 3. Thus
E must be trivial, and is hence isomorphic to C �ZG .

Let x̀ 2 C be any point, and let ` be its image in C . Recall that, as an orbispace,
Aut.G/' �1.C=Aut.G/; `/, and this isomorphism can be made explicit as follows:
for g 2Aut.G/, choose any path x
g W Œ0; 1�! C with x
g0 D x̀2RE.G/

C
and x
g1 D g � x̀,

and set 
g to be its x
g to C .

Parallel transport z D z0 along 
g to get z1. This can be done as the fiber is zero-
dimensional. Define g � .x̀; z/D .g � x̀; z1/. This action is independent of choices, and
can be defined continuously over all E. This gives us the orbibundle structure over C .
Again by continuity, it can be uniquely extended to an action on RE.G/

C
�ZG .

In particular, we have defined an action of Aut.G/ on ZG . Define the group Aut.G; z/
as the subgroup of Aut.G/ which leaves z invariant. Then M.G;z/'RE.G/

C
=Aut.G; z/.

Define M.G;z/.p/ as the subspace where the perimeters are p.

For e 2E.G/, define the edge contraction to be @e.G; z/D .@eG; @ez/, where @ez 2
Z@eG using the cell structure of MR

G and the topology of Mcomb
g;k;l

. Explicitly, fix p and
take an arbitrary continuous path .Œ†t �/t2Œ0;1� �Mg;k;l so that comb.Œ†t �/ 2M.G;z/

for t > 0 and Forspin.comb.Œ†0�// 2MR
@eG

. Suppose that comb.Œ†0�/ 2M.@eG;z0/.
Then z0 D @ez, and this definition is easily seen to be independent of choices.

An explicit combinatorial description for the special case of trivalent graphs appears in
Section 5.1.2.

As in the spinless case M.G;z/, the closure of M.G;z/ in Mcomb
g;k;l

, is the union of
cells M.G0;z0/ where .G0; z0/ is obtained from .G; z/ by edge contractions, and the
attachment of the cells is also defined via the edge contractions, ie M.G0;z0/ is glued
to M.G;z/ along `e1 D � � � D `er D 0, where e1; : : : ; er are the edges of G which
are contracted to obtain G0. In this case we say that M.G0;z0/ is a face of M.G;z/.
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We similarly define M.G;z/.p/. Again as in the spinless case we can now define the
orbifold cell complex structure on Mcomb

g;k;l
, as

Mcomb
g;k;l D

a
M.G;z/=�D

a
M.G;z/;

where the union is over all connected components which correspond to graded .g; k; l/–
ribbon graphs, and � is induced by edge contractions. We similarly define the orbifold
cell complex structure on Mcomb

g;k;l
.p/. In both cases the cell structure agrees with the

topology. Denote the quotient-by-� map by „.

A graph .G; z/ corresponds to a boundary stratum of Mcomb
g;k;l

, that is M.G;z/ �

comb.@Mg;k;l �Rl
C
/ if and only if it has at least one boundary node or contracted

boundary. In this case we call it a boundary graph. All of the above constructions
extend to the setting of spin ribbon graphs with a lifting, and to (closed) spin ribbon
graphs.

Lemma 4.35 Suppose 2 j g C k � 1. Then Mcomb
g;k;l

and Mcomb
g;k;l

.p/ are piecewise
smooth Hausdorff orbifolds with corners , and the latter is compact.

The maps comb and combp are isomorphisms onto their images when restricted to the
open dense subsets Mg;k;l �Rl

C
and Mg;k;l .

The map combp induces an orientation on Mcomb
g;k;l

, and deg.combp/ D 1 with this
orientation.

Analogous claims are true if we declare some , but not all , of the internal marked points
to have perimeter zero. Analogous claims are also true if we allow some internal
markings to be Ramond or if we consider the case of closed (twisted ) spin surfaces. In
addition , for an effective dual spin graph with a lifting � , the maps comb and combp

restricted to M� �Rl
C

and M� are isomorphisms onto their images.

The proof is similar to the closed case and will be omitted. The orientation on Mcomb
g;k;l

will be constructed explicitly later.

The combinatorial S1–bundles Fi for i 2 Œl � are defined as in Definition 4.9. Again
these carry a natural piecewise smooth structure, compatible with the natural piecewise
smooth structures on Mcomb

g;k;l
. The forms ˛i , !i , x̨i , x!i and x! are defined as in

Definition 4.9 and equation (23).
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Definition 4.36 Let S �N be a finite set. An .S; l/–set L is a function L W S ! Œl �.
We write S D Dom.L/. In the case that S D Œd �, we simply write it as .d; l/–set. We
say that L is an l–set if the set S is understood from the context.

Given two l–sets L and L0, we write

L0 � L;

and say that L0 is a subset of L, writing L0 � L, if

Dom.L0/� Dom.L/ and LjDom.S 0/ D L
0:

In this case we define the l–set L nL0 by

L nL0 W Dom.L/ nDom.L0/! Œl �; .L nL0/.s/D L.s/:

In the case that j 2 Dom.L/, we write j 2 L. For i 2 Œl � we put

Li D L
�1.i/:

The .S; l/–sets will be used to encode direct sums of tautological lines as follows.

Notation 4.37 Recall Construction–Notation 1. To any .S; l/–set L we associate a
vector bundle EL and a sphere bundle SL given by

EL D
X
i2S

LL.i/!Mg;k;l and SL D S..FL.i//i2S /:

We will also consider the sphere bundle S.EL/ associated to EL.

Define an angular form ˆL for SL by formula (19), and using Kontsevich’s forms for
the copy FL.i/ of the L.i/th S1–bundle. Explicitly,

ˆL.frigi2S ; fy̨igi2S ; f y!igi2S /

D

jS j�1X
kD0

2kkŠ
X
i2S

r2i y̨i
X

I�Snfig
jI jDk

V
j2I

.rj drj ^ y̨j /^
V

h…I[fig

y!h;

where y!i is Kontsevich’s two-form !L.i/ and y̨i is a copy of Kontsevich’s one-form
˛L.i/. We refer to it as a copy since, for i1; i2 2 Lj , both y̨i1 and y̨i2 are given by the
same formula of the angular 1–form of Fj , but with different � variables. Write

!L D�dˆL D
V
i2S

!L.i/; p2L D
Y
i2S

p2L.i/; x!L D p2L!L; x̂
L D p2LˆL:
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When S ¤ Œd � we will sometimes omit the assumption that
P
i2S r

2
i D 1, and then

�dˆL gets a correction; see Remark 3.5.

When it is not clear from context, we write ˛Gj to indicate the specific graph G. The
same remark goes for the other forms.

Exactly as in the closed case, we have:

Lemma 4.38 (a) For i 2 Œl �, there is a canonical isomorphism comb�Fi ' S1.Li /.
As a result , comb�SL ' S.EL/ canonically.

(b) The forms ˛i and !i are a piecewise smooth angular one-form and Euler two-
form for S1.Li /. ˆL is an angular form of SL, and !L is its Euler form.

(c) For .G; z/ 2 SR0
g;k;l

, there is a canonical identification

.Fi !M.G;z//'„
�.Fi !Mcomb

g;k;l/:

Similarly for the bundles SL.

Notation 4.39 Recall Proposition 4.34. Let .G; z; `/ be a metric spin ribbon graph with
a lifting. Define the graph zB.G; z; `/D .zBG; zBz; zB`/ by first taking the normalization
of .G; z; `/, and then forgetting isolated components, the lifting data in contracted
boundaries, and the new illegal marked points. Let zB WM.G;z/ !M.zBG;zBz/ be the
induced map on the moduli.

Observation 4.40 For any spin ribbon graph with a lifting .G; z/, and face marked i ,
we have Fi !M.G;z/ '

zB�.Fi !MzB.G;z// canonically, and a similar claim holds
for SL.

The observation follows from the natural identification of the boundary of the i th faces
in G and zBG.

Proposition 4.41 A special canonical multisection s of S.EL/ is a pullback of a
multisection s0 of SL.

Proof Take M� � @Mg;k;l and let i1; : : : ; ir be labels of internal tails, one for each
vertex of � . Now

comb.M� �RlC/D
a
.G;z/

M.G;z/;
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where the union is taken over some graded graphs .G; z/. Consider one of them; denote
it by .G; z/. Write

ˆ� D

rY
jD1

ˆ�;i :

The diagram

(24)

comb�1M.G;z/

ˆ�
//

comb
��

comb�1M.zBG;zBz/

comb
��

M.G;z/

zB
//M.zBG;zBz/

commutes, by Proposition 4.34. Now .zBG; zBz/ is smooth, hence the right vertical arrow
is an isomorphism, by Lemma 4.35. A special canonical multisection over M��Rl

C
is

pulled back via ˆ� , from S.EL/!
Qr
jD1Mv�

i
.�/ �Rl

C
. Let s be special canonical;

we now construct s0 with sD comb�s0. Write sjcomb�1M.G;z/
Dˆ��.comb�.s00//, where

s00 is a multisection of SL!M.zBG;zBz/. Define s0jM.G;z/
D zB�s00. These multisections

for different strata evidently glue.

Definition 4.42 A special canonical multisection of SL!Mcomb
g;k;l

is a multisection s
with comb�s special canonical. A special canonical multisection of SL !M.G;z/

is a „–pullback of a special canonical multisection on Mcomb
g;k;l

. Write s.G;z/ for the
restriction of s to M.G;z/.

The proof of the proposition yields the following immediate corollary.

Corollary 4.43 Suppose .G; z/ is a boundary .g; k; l/–graded ribbon graph , and s is a
special canonical multisection of SL, where L is a .d; l/–set , restricted to the boundary
cell M.G;z/. Then s D zB�s0, where s0 is a multisection of SL!MzB.G;z/.

The main result of this section is that the descendents can be calculated over the
combinatorial moduli.

Lemma 4.44 Let s be a special canonical multisection for S.EL/. Denote by s0 the
multisection on SL with s D comb�s0. ThenZ

Mg;k;l

e.S.EL/; s/D

Z
Mcomb
g;k;l

.p/

e.SL; s
0/:(25)

The orientations are those induced on the combinatorial moduli by comb�.

The proof is an immediate consequence of Lemmas 4.35 and 4.38 and Observation 2.49.
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c
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Figure 13: Bridges and their contractions. On the left, three compatible
bridges are drawn, a, b and c. In the center, b and c are contracted, and
on the right, the normalization is presented. If hb is the boundary half-edge
which corresponds to b, then @bh corresponds to the half-node in the ghost
component of the normalization. If h1 and h2 are the half-edges of c, then
@ch1 and @ch2 are the two half-nodes in the normalization of the node which
corresponds to c.

4.3.3 Intersection numbers as integrals over the combinatorial moduli We can
now use the natural piecewise linear structure on Mcomb

g;k;l
and the associated bundles to

write an explicit integral formula for them.

Definition 4.45 A boundary loop in a graded graph .G; z/ is a boundary edge which
is a loop. We denote the collection of these elements by Loop.G/. A bridge in a graded
graph .G; z/ is either a boundary edge between two distinct special legal boundary
points or an internal edge between two boundary vertices; see Figure 13 and the left-
hand sides of Figure 14 rows four and five. Denote by Br.G; z/ the set of bridges
of .G; z/. Usually we shall omit z from the notation and write Br.G/ instead. A
compatible sequence of bridges fe1; : : : ; erg is a sequence of bridges such that eiC1 is
a bridge in @e1;:::;eiG for all i .

Suppose e is a bridge and h 2 H I satisfies h=s1 D e. Set h0 D s2h. We define
@eh 2 HN.@eG/ (recall HN was defined in Definition 4.18) to be the unique vertex
v 2 V.Norm.@eG// with h0=s0 D v, where we consider h0 as an edge of Norm.@eG/,
using the canonical identification; see Figure 13 and the right-hand sides of the fourth
and fifth rows of Figure 14. When there is h2HB with h=s1D e, contracting e creates
a contracted component v, which is identified with a ghost component of Norm.G/; see
Figure 13 and row four of Figure 14 again. We denote by @eh2B.v/ the marking which
is the s0–cycle of s2.s1h/ in .NB/�1.v/. This is equivalent to writing @ehD s1@e.s1h/,
recalling Notation 4.28.
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e
e

e

e

e e

e
�

e C �

Figure 14: Edge contractions and Feynman moves. In rows four and five,
bridge contractions are presented. In the bottom row, a boundary contraction
is shown. In the first three rows it is shown how the other types of contracted
edges can be obtained as the result of two different contractions.

The following observation is immediate.

Observation 4.46 (a) We have that dimM.G;z/.p/D dimMg;k;l if and only if
.G; z/ 2 SR0

g;k;l
.

(b) In addition , .G; z/ is a boundary graph if and only if it can be represented as
@e1;:::;er .G

0; z0/, where .G0; z0/ 2 SR0
g;k;l

and at least one ei is a bridge or
a loop. The only boundary graphs .G; z/ whose moduli is of full dimension
dimMg;k;l�1 are those which can be written as @e.G0; z0/ for .G0; z0/2SR0

g;k;l

and e 2 Br.G0/[Loop.G0/.

(c) If fe1; : : : ; erg is a compatible sequence of bridges in a trivalent graph .G; z/,
then @e1;:::;er .G; z/ is trivalent. Any trivalent graph can be written in the form
@e1;:::;er .G; z/, where .G; z/ is smooth trivalent and fe1; : : : ; erg is a compatible
sequence of bridges. This representation is unique up to reordering the bridges
in the sequence.

See rows four and five of Figure 14 for examples.
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Recall Definition 2.51. Using Observation 4.46, Lemma 4.44 and Proposition 3.3, we
immediately get:

Lemma 4.47 Let L be a .d; l/–set , where d D 1
2
.3g � 3C kC 2l/, and let s be a

special canonical multisection for SL. Then

2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;z/2SR0

g;k;l

Z
M.G;z/.p/

!LC
X

(G;z/2SR0
g;k;l

Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;z/.p/

s�ˆL:

Equivalently,

p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;z/2SR0

g;k;l

Z
M.G;z/.p/

x!LC
X

(G;z/2SR0
g;k;l

Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;z/.p/

s� x̂L:

The orientations are those induced on the combinatorial moduli by comb�.

Remark 4.48 The formalism of piecewise linear forms and their integration is treated,
for instance, in [42].

Construction–Notation 3 For later purposes we now define Feynman moves in edges.
Suppose that G is a trivalent graph, and let e 2 E nBr.G/. If e is a boundary edge,
we require that least one of its vertices is not a special point. If e is a boundary loop,
define the graph Ge WDG. Otherwise, define Ge as the graph obtained from G by first
contracting e and then reopening it in the unique different possible way; see the first
three rows of Figure 14.

Let .G; z/ be a graded trivalent graph. For a boundary loop e define the graded structure
ze 2 ZG as the graded structure which is identical to z except that the lifting on the
boundary component e is opposite. For an edge e … Br.G/[Loop.G/, write ze 2ZGe
for the graded structure on Ge, defined by the following proposition.

Proposition 4.49 For .G; z/ and e as above , there is a unique graded structure ze such
that if G is smooth , M.Ge;ze/ is the unique codimension-zero cell of Mcomb

g;k;l
adjacent

to M.G;z/ along M@e.G;z/. For nonsmooth G, write .G; z/D @e1;:::;er .H;w/, where
e1; : : : ; er 2E.H/, with .H;w/ trivalent and smooth. Then

.Ge; ze/D @e1;:::;er .He; we/:
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Proof For a smooth trivalent G and an edge e, @eM.G;z/ is a codimension-one face;
hence, since Mcomb

g;k;l
is an orbifold with corners, this face must be adjacent to at most

one additional codimension-zero cell. Since e is neither a boundary loop nor a bridge,
this face is not contained in the boundary of the moduli; hence it is adjacent to two
codimension-zero cells. Since Forcomb

spin is continuous, this cell must be of the form
M.G;ze/ for some graded structure ze 2ZGnz, or of the form M.Ge;ze/ for ze 2Z.Ge/.
The map Mcomb

g;k;l
'Mg;k;l !MR

g;k;l
'MR;comb

g;k;l
, when restricted to the open dense

set of generic metrics, is a (nonbranched) covering map, as there are no automorphisms
to the objects, and since the neighboring cell in MR;comb

g;k;l
to MR

G along @eMR
G is MR

Ge
,

the neighboring cell of M.G;z/ along the boundary @eM.G;z/ must be M.Ge;ze/. The
rest of the claim follows from the cell structure and Observation 4.46(c).

The operations G!Ge and .G; z/! .Ge; ze/ are called Feynman moves.

5 Trivalent and critical nodal graphs

It follows from Lemma 4.47 that all intersection numbers can be calculated as integrals
over the highest-dimensional cells of Mcomb

g;k;l
, and of @Mcomb

g;k;l
. In the next section we

will describe an iterative integration formula for the integrals. We will see that the
cells that contribute to this iterative process are those which correspond to trivalent
graded ribbon graphs. Analyzing their contribution is done by using a new type of
graph, which we define below and name critical nodal graphs. It turns out that both for
trivalent graded graphs, and for critical nodal graphs, the extra data of the graded spin
structure can be described in an explicit combinatorial manner. In this section we shall
provide this combinatorial interpretation, use it to describe the boundary conditions
and to write an explicit expression for the canonical orientations.

5.1 Kasteleyn orientations

From here until the end of this subsection fix a graph G 2R0
g;k;l

, where R0
g;k;l

was
defined in Definition 4.31.

Definition 5.1 Consider the set A of all assignments H I ! Z2. A vertex flip is the
involution fv W A! A defined as follows. For A 2 A, fvA is the assignment which
satisfies the following condition: fvA.h/ ¤ A.h/ if and only if exactly one of the
vertices of h, h=s0 and s1.h/=s0 is v.
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A Kasteleyn orientation on G is an assignment K 2 A which satisfies the following
conditions:

(a) If h belongs to a boundary edge, that is, s1h 2HB, then

K.h/D 1:

(b) For other half-edges h,

K.h/CK.s1.h//D 1:

(c) For every face i , X
h2Hi

K.h/D 1:

For convenience extend K to HB by 0, so that property (b) holds for any half-edge.
K.G/ will stand for the set of all Kasteleyn orientations of G. Vertex flips act on
the set K.G/. Two Kasteleyn orientations are equivalent if they differ by vertex flips.
Write ŒK.G/� for the set of equivalence classes of Kasteleyn orientations, and ŒK� for
the equivalence class of K.

Observation 5.2 Equivalent assignments give the same value to any half-edge of a
bridge.

Definition 5.3 The legal side of a bridge e is the half-edge h 2 s�11 .e/ with K.h/D 0.
The other side is illegal.

The main goal of this subsection is to show that there is a natural bijection between
SR0

g;k;l
and f.G; ŒK�/ jG 2R0

g;k;l
; ŒK� 2 ŒK.G/�=Aut.G/g.

We first show how a graded structure induces an element in ŒK.G/�. Take a graded
surface .†;S; s/ whose corresponding embedded ribbon graph, defined by the JS
differential, is G.

Definition 5.4 Let v 2 V I , and let fhigiD1;2;3 be its three half-edges, ordered so that
s0hi D hiC1. A choice of lifting for v is a choice of lifts lhi 2 Sv for the oriented T 1v hi
(see Notation 2.23) such that

(26) lhiC1 DR�iC2� lhi for i D 1; 2;

where �i D].Tvhi ; TvhiC1/.
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Let @†b be a boundary component. Write Hb D fhigmiD1, where the hi 2H I are the
half-edges which are embedded in @†b , ordered so that hiC1 D s1.s�12 .s1.hi ///. Put
vi D hi=s0. A lifting for @†b is the unique choice of lifts lh 2 Svi of T 1vih, for any i
and any h 2Hvi , satisfying the following requirements:

(a) For hD hi 2 s1Hb , we have lh D s.vi /.

(b) If vi is not a marked point, let f D s0hi and put � D].hi ; f /. Then

lf DR�C2� lhi and ls�10 hi
DR� lhi :

(c) If vi is a marked point, ls�10 hi
DR3� lhi .

A choice of lifting is a choice of lifting for any vertex, and a lifting for any boundary
component of the graph.

Note that given a choice of lifting in a vertex v, (26) holds also for i D 3, since
composing (26) for i D 1; 2; 3 yields

R
6�C

P3
iD1 �i

lh1 DR8� lh1 D lh1 ;

where the first equality follows from
P
�i D 2� , and the last equality uses that R4� is

the identity map. This also shows that a choice of a lifting for an internal vertex does
not depend on the choice of which half-edge is taken to be h1. In addition, note that a
lifting of a boundary does not depend on choices.

Figure 15 illustrates the three types of liftings described above.

A consequence of the definition of the graded boundary conditions is the following.

Observation 5.5 Consider a lifting for the boundary @†b . With the above notation , if
vi is a marked point , then lhi D R2�P.hi�1/lhi�1 . If vi is a boundary vertex which
is not a marked point , then lhi D P.hi�1/lhi�1 . In both cases , R�P.hi�1/lhi�1 D
ls1.hi�1/ D ls�10 hi

.

Remark 5.6 Iterating Observation 5.5 over all boundary vertices, we are led to the
single constraint lhi DR2kb� lhi , where kb is the number of boundary marked points
of the boundary component @†b . By unwinding the alternations in boundary marked
points, we see that q.
/D kbC 1 for 
 a simple closed path isotopic to @†b .
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h1

h2

h3

v l 0
h1

lh1

l 0
h2

lh2
l 0
h3

lh3

.s0/�1h

f

h
v

lf

lh

l.s0/�1h

.s0/�1h
v

h

l.s0/�1h

lh

Figure 15: In this figure the three types of liftings from Definition 5.4 are
illustrated. The left column represents the local picture at the surface, while the
right column represents the corresponding picture at the level of the spin fiber.
Each vector on the left-hand side has two preimages on the right-hand side
(where the angles between consecutive vectors on the right are half of those
from the left). In the top row an internal trivalent vertex v is drawn. For v there
are two possible lifts: flh1 ; lh2 ; lh3g and fl 0

h1
; l 0
h2
; l 0
h3
g. In the middle row, v

is a trivalent boundary vertex and in the bottom row v is a boundary marked
point. In both of these cases the horizontal line in the left column represents
the boundary, and in both cases lh is determined from the data of the grading,
so there is no choice in the liftings, and they are as in the figure.

A choice of a lifting induces an assignment K 2A as follows. K.h/D 1 if s1h 2HB.
For an internal half-edge h, considered as an arc from u to v, we have lifts lh and ls1.h/
of T 1u h and T 1v s1h, respectively. Now, R�P.h/lh also covers T 1v s1h, hence it equals
either ls1.h/ or R2� ls1.h/. In the first case we define K.h/D 1, otherwise K.h/D 0.
Write K.†;S; s/ for the set of all assignments of G induced by choices of liftings.

Definition 5.7 A vertex lift flip in a vertex v 2V I is the involution of the set of choices
of lifts which takes one choice to the choice that differs exactly in the lift at v.

Lemma 5.8 If C and C 0 are two choices of lift which differ by a vertex lift flip in v,
the corresponding assignments K and K 0 differ by a vertex flip fv . The vertex flips act
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commutatively freely transitively on K.†;S; s/. The correspondence between choices
of lift and K.†;S; s/ is a bijection. As a conclusion , jK.†;S; s/j D 2jV

I .G/j.

Proof The first assertion as well as the commutativity and transitivity of the action are
straightforward. The rest will follow from proving that the action is free. In order to
show this, note that we can think ofK.†;S; s/ as subset of ZH

I

2 . This is a vector space,
and a vertex flip fv is just an addition of an element zfv 2 ZH

I

2 which is s1–invariant
and zero everywhere except for edges with exactly one of their ends being v. Thus,
we can also think of zfv as a function from E to Z2 which vanishes identically on
boundary edges. In other words, zfv is canonically a 1–cochain with coefficients in Z2
relative to boundary. In fact, if ı is the coboundary operator on the relative cochain
complex defined on † by the 1–skeleton G, then zfv D ıev , where ev is the 0–cochain
which is 1 only at v. If the action of vertex flips were not free, there would be a subset
A� V I such that X

v2A

zfv D 0;

or equivalently
ı
X
v2A

ev D 0;

so
P
v2A ev would be ı–closed in H 0.†; @†/ ' H2.†/

�, by Poincaré–Lefschetz
duality. But H2.†/D 0, which means AD∅.

We now study K.†;S; s/ more carefully.

Proposition 5.9 Fix K 2K.†;S; s/.

For h 2H I, put v D h=s0, uD .s1h/=s0, f D s�10 s1h and , if u is not a marked point ,
f 0 D s0s1h. Write � D].P.h/T 1v h; T 1u f / 2 .��; �/ and ˛ D].f 0; f / 2 .0; 2�/ if
u is not a marked point. Let lh and lf denote the lifts of T 1v h and T 1u f , respectively,
induced by K, and when u is not a marked point , let lf 0 be the lift of T 1u f

0. Finally,
let "DK.h/. Then we have the following equalities:

(a) lf DR2�"C�P.h/lh.

(b) If u is not a marked point , lf 0 DR2�.1C"/C��˛P.h/lh and � �˛ 2 .��; �/.

For h 2HB from v to u, write f D s2h. If u is a marked point , then R2�P.h/lh D lf .
If u is not a marked point , write f 0 D s0s1h and � D ].P.h/T 1v h; T 1u f 0/ 2 .��; 0/.
Then P.h/lh D lf and R�C2� lh D lf 0 .
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Proof We prove it for h2H I; the proof for boundary half-edges is similar and follows
from Observation 5.5. We have

K.h/D " () R�P.h/lh DR.1C"/2� ls1.h/

() R�P.h/lh DR.1C"/2�.R2�C��� lf /

() R�P.h/lh DR"2� lf ;

where the equivalence in the second line follows from the definition of a choice of lift
in a vertex, while the equivalence in the last line is a consequence of Remark 2.25. The
second claim follows from lf 0 DR�2��˛lf and the cyclic order of the half-edges.

We now prove:

Lemma 5.10 If K 2K.†;S; s/, then K is a Kasteleyn orientation.

Proof Property (a) of Kasteleyn orientations is just Observation 5.5. Property (b) is
reduced, thanks to Remark 2.25 and the construction of K, to

R�P.s1.h//R�P.h/DR2� ;

but this follows from Proposition 2.28 applied to the piecewise smooth closed curve
h! xh! h, where xh is h with the opposite orientation.

To show property (c), let h1; : : : hm be an ordering of Hi such that s2.hj / D hjC1.
Set vj D hj =s0. Let lhj be the lift of T 1vj hj determined by K, using Lemma 5.8.
Proposition 2.28 applied to the piecewise smooth curve 
i Dh1!h2!� � �hm!h1 is
equivalent to P.
i /lh1 DR2� lh1 . Put �jC1D]

�
P.hj /T

1
vj
hj ; T

1
vjC1

hjC1
�
2 .��; �/.

Now, by Proposition 5.9,

R�jC1P.hj /lhj DR"j2� lhjC1 ; with "j 2 Z2;

where "j DK.hj /. Iterating this equation for j D 1; : : : ; m, we get

lh1 DR2�"mC�1P.hm/R2�"m�1C�mP.hm�1/ � � �R2�"1C�2P.h1/lh1

DR2�
Pm
iD1 "i

R�1P.hm/R�mP.hm�1/ � � �R�2P.h1/lh1 :

On the other hand, R�1P.hm/R�mP.hm�1/ � � �R�2P.h1/DR2�.1Cq.
i // by the def-
inition of q. But q.
i / D 0, since 
i is trivial in the homology of †. So the sumPm
iD1 "i D

Pm
iD1K.hi / must be odd.

Theorem 5.11 Let G and † be as above. There is a bijection between Spin.†/, the
set of isomorphism classes of graded spin structures on †, and ŒK.G/�.
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Proof Given a graded spin structure .S; s/ on †, we have constructed an equiva-
lence class of Kasteleyn orientations, and this equivalence class depends only on the
isomorphism type of .S; s/, so that we get a map

ŒK� W Spin.†/! ŒK.G/�:

We shall construct a map Spin in the other direction.

Fix K 2K.G/. We first construct the restriction of the spin bundle to G, the 1–skeleton
of †. For any vertex v, write

Nv D
[
i

fh0ig;

where h0i are the open half-edges emanating from v, after removing their second
endpoint. We define Spin.K/jNv as the trivial spin cover of T 1†jNv . On any fiber of
Spin.K/ there is an action of R=4�Z; denote it by R� .

For a vertex v, choose sections lhi W h
0
i ! Spin.K/jh0

i
which cover T 1v hi so that for any

hi …H
B,

R2�C�i .v/lhi .v/D ls0.hi /.v/;

where �i D].T 1v hi ; T 1v s0.hi //.

The transition map ge0;s1.e/0 W Spin.K/je0 ! Spin.K/js1.e/0 is given by identifying
R2K.e/��� lh and ls1h, and extending using the R=4�Z–action.

It follows from construction and from property (c) of Kasteleyn orientations that for
each i 2 Œl �, the spin structure on the boundary of face i of G, which is a topological
disk, satisfies Proposition 2.28, and hence can be extended uniquely to the face. Thus,
we have constructed a spin structure on †. The section flhgh2s1HB is evidently a
grading. Call this graded spin structure Spin.K/. It can be verified easily that equivalent
Kasteleyn orientations give rise to isomorphic graded spin structure, and that the maps
ŒK� and Spin are inverse to each other.

Knowing now that the data of an equivalence class of Kasteleyn orientations is equivalent
to the data of a graded spin structure, we may try to calculate q and Q using K.

Definition 5.12 Let 
 D .h1! � � � ! hm.! h1// be an open (closed) directed path
in G 2R0

g;k;l
without backtracking; that is, the directed edge s1h cannot follow h in

the path. Put vi D hi=s0. We say that 
 makes a bad turn at vi if either

(a) hi�1 2H
I and hi ¤ s2hi�1, or

(b) hi�1 2H
B and hi D s0s1hi�1,
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Figure 16: Good and bad turns. In this figure a line with an arrow represents
a half-edge in a directed path, and the orientation is always counterclockwise.
In the top row an internal vertex is drawn; the left shows a good turn, the
right a bad turn. In the middle row the horizontal line is the boundary, and
the surface lies above it. The oriented half-edges in the boundary belong to
s1H

B. Only the leftmost image represents a bad turn. In the bottom row the
oriented half-edges in the boundary component are boundary half-edges. The
image on the left is a good turn, while the other two are bad.

where i � 1 is taken modulo m in the closed case. Otherwise it makes a good turn.
BT.
/ is the number of bad turns.

See Figure 16 for illustrations of good and bad turns.

Proposition 5.13 Fix ŒK�. With the conventions of the previous definition:

(a) For 
 closed , q.
/D qK.
/ WD 1C
P
i K.hi /CBT.
/ for any K 2 ŒK�.

(b) For 
 open , with h1; hm 2 s1HB, let z
 be the subarc obtained from 
 after
removing small neighborhoods of its endpoints. Then Q.z
/ D QK.
/ WD

1C
P
i K.hi /CBT.
/ for any K 2 ŒK�.

We defined z
 in order to avoid marked points as endpoints.

Proof FixK 2 ŒK�. Recall the correspondence between Kasteleyn orientations and lifts
(Lemma 5.8), and take the corresponding lift l . Put �jC1D].P.hj /T 1hj ; T 1hjC1/2
.��; �/, write "j DK.hj /, and define btjC1 2Z2 to be 1 if and only if 
 makes a bad
turn in vjC1, and otherwise 0. Proposition 5.9 is equivalent, in this notation, to

(27) R�jC1P.hj /lhj DR."jCbtjC1/2� lhjC1 :
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When 
 is closed, iterating (27) for j D 1; : : : ; m we get that

lh1DR2�."mCbt1/C�1P.hm/R2�."m�1Cbtm/C�mP.hm�1/ � � �R2�."1Cbt2/C�2P.h1/lh1

DR2�
Pm
iD1 "iCbtiR�1P.hm/R�mP.hm�1/ � � �R�2P.h1/lh1

DR2�.BT.
/C
Pm
iD1 "i/

R.1Cq.
//2� lh1

DR2�.q.
/C1CBT.
/C
Pm
iD1 "i/

lh1 ;

where the final equality uses the definition of q, Definition 2.26.

Similarly, when 
 is open, iterating (27) over j D 1; : : : ; m� 1 and applying the same
reasoning, this time using Definition 2.30, we obtain, as needed,

lhm DR2�.BT.
/C
Pm�1
iD1 "iCQ.
//

lh1 DR2�.1CBT.
/C
Pm
iD1 "iCQ.
//

lh1 ;

where we used "m DK.hm/D 1.

Remark 5.14 The first case of the proposition appeared before in [12]. Although the
formula depends on the orientation of 
 , the result is orientation-independent in the
closed case. Indeed, flipping the orientation changes each K.h/ to K.s1h/DK.h/C1
and interchanges the sets of good turns and of bad turns. Thus, the total change is
the number of edges plus the number of vertices of 
 , that is, a change by 2m D 0.
A similar argument shows that in the open case the result changes by 1 when the
orientation is flipped.

Definition 5.15 An automorphism � W G ! G defines an action �� on K.G/ and
ŒK.G/� by

.��K/.h/DK.�
�1.h//:

An automorphism � of .G; ŒK�/ is an automorphism � of G for which ��ŒK�D ŒK�.
We write Aut.G; ŒK�/ for the group of these automorphisms.

Proposition 5.16 For any G 2 SR0
g;k;l

, the mapa
z2ZG=Aut.G/

M.G;z/!

a
ŒK�2ŒK.G/�=Aut.G/

RE.G/
C

=Aut.G; ŒK�/

which takes a metric graded graph .G; z; `/ to .ŒK�; `/, where ŒK� is the Kasteleyn
orientation associated to the graded spin structure of comb�1.G; z; `/, is a homeomor-
phism.
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Proof It is enough to show that along a path .†t /0�t�1 in comb�1.M.G;z//, the
equivalence classes ŒKt � D ŒKt .†t ;St ; st /� 2 ŒK.G/� are the same. Take K0 2
ŒK.†0;S0; s0/�. This determines the maps Q0 and q0, by Proposition 5.13 and the
fact that any piecewise smooth path may be isotoped to a nonbacktracking one on the
1–skeleton G ,!†0. Now, varying .†t ;St ; st / is equivalent to varying the metric `t
on G in the component M.G;z/ continuously. But then it is evident that the maps Qt

and qt determined by K0 on the paths in the resulting embedded graph do not change.
By Lemma 2.39 we see that ŒKt �D ŒK0�.

In light of Proposition 5.16, we can redefine SR0 and the related combinatorial moduli
spaces.

Notation 5.17 From now on we write

SR0g;k;l D f.G; ŒK�/ jG 2R
0
g;k;l ; ŒK� 2 ŒK.G/�=Aut.G/g:

Define M.G;ŒK�/ DRE.G/
C

=Aut.G; ŒK�/, the moduli of metrics on G together with a
fixed equivalence class of Kasteleyn orientations. We have that M.G;ŒK�/ ,!M.G;z/

for a unique z 2 ZG , as in Proposition 5.16. We therefore set M.G;ŒK�/ DM.G;z/.
Define analogously M.G;ŒK�/.p/ and M.G;ŒK�/.p/.

Example 5.18 Fix a connected componentC of MR
g;k;l

. Suppose that smooth surfaces
in C have b boundary components and write gsD 1

2
.g�bC1/. Let kj for j D 1; : : : ; b

be the number of boundary marked points on boundary component j , for some locally
defined numbering of the boundary components. One ribbon graph which corresponds
to surfaces in C is the graph G 2R0

g;k;l
with

V D

fv�j;jC1gjD2;:::;b[fv
C
j;jC1gj2Œb�1�[fpj;igj2Œb�;i2Œkj �[fv

˙
i giD2;:::;l[fu

˙
i ; w

˙
i gi2Œgs�:

See also Figure 17. Only the v�i are internal vertices, while the vertices pj;i , vCj;jC1
and v�j�1;j belong to the j th boundary component. The other boundary vertices belong
to the first boundary. So

H I
D

[
i2Œb�

Hbdry;i [Hbridges[Hgenus[Hinternal marked;

where:

(a) Hbdry;j D fej;ig0�i�kjC.1�ıjb/ for j ¤ 1 are the boundary edges of boundary
component j and of face 1, and ej;i=s0 D pj;i for 1 � i � kj . In addition,
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a1
b1

c1

d1

a2

b2

c2

d2g2

f2

g1

f1

b1;2

e1;k1

e1;1

e1;0
x1

y1

h1

x3
y3

x2
y2

h3

h2
dgs

ggs fgs

cgs
bgs

ags bb�1;b�2

eb�1;kb�1

eb�1;1

eb�1;0

bb�1;b

eb;kb

eb;2

eb;1

eb;0

eb�1;kb�1C1

Figure 17

ej;0=s0 D v
C
j;jC1 and .s1ej;0/=s0 D pj;1. For j ¤ b; 1, the edge ej;kj connects

pj;kj to v�j�1;j , and we have ej;kjC1=s0D v
�
j�1;j and s1.ej;kjC1/=s0D v

C
j;jC1.

For j D b, we have ej;kj =s0 D v
�
b�1;b

. They are ordered so that ej;iC1 D s02ej;i ,
where s02.e/ WD s1.s

�1
2 .s1.e/// for e 2 s1HB.

(b) Hbdry;1Da1; b1; c1; d1; a2; : : : ; dgs ; h2; : : : ; hl ; e10; e1;1; : : : ; e1;k1 is the set of
boundary edges of the first boundary, which all belong to face 1, ordered by s02
order. The boundary vertices, in counterclockwise order starting from vC1;2, the
vertex of the bridge, are

vC1;2; u
C
1 ; w

C
1 ; u

�
1 ; w

�
1 ; u

C
2 ; : : : ; w

�
gs
; vC2 ; : : : ; v

C

l
; p1;1; : : : ; p1;k1 :

The adjacency relation is thus a1=s0 D vC1;2. For i > 1, we have

ai=s0 D w
�
i�1; bi=s0 D u

C
i ; c1=s0 D w

C
i ; d1=s0 D u

�
i :

Next, h2=s0 D w�gs , and hi=s0 D vCi�1 for i > 1. Finally, e1;0=s0 D vCl , and
e1;i=s0 D p1;i for i > 0.

(c) Hbridges D fbj;jC1; xbj;jC1gj2Œb�1� is the set of bridges between consecutive
boundaries. We have

bj;jC1=s0 D v
C
j;jC1;

xbj;jC1 D s1bj;jC1; xbj;jC1=s0 D v
�
j;jC1:

(d) Hgenus D ffi ; xfi ; gi ; xgigi2gs is a set of internal half-edges of face 1 such that fi
goes from uCi to u�i and satisfies xfi D s1fi , and gi goes from wCi to w�i and
satisfies xgi D s1gi .
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(e) Hinternal markedDfxi ; xxi ; yi ; xyigiD2;:::;l is the following set: yi is the unique edge
of face i satisfying yi=s0 D v�i , and xyi D s1yi . The third half-edge of v�i is xi ,
and xxi D s1xi , while xxi=s0 D vCi .

We now describe K.G/. First of all, K.h/ D 1 if s1h 2HB or h D yi . There is no
constraint on K.xi /, but different values are equivalent by flips in v�i . Since there are
no more internal vertices, for all other edges there are no constraints and no relations.
Thus there is a total of 22gsCb�1 D 2g different graded spin structures in this case.
Since this is a topological invariant, for any generic open genus g surface in C there
are 2g graded structures. Thus, for any generic open genus g surface which satisfies
condition (5) there are 2g graded structures.

Remark 5.19 In [34] a notion of parity is defined for smooth graded surfaces with
an odd number of boundary points for each component. It is defined as follows.
Given such a graded surface .†;S; s/, choose a symplectic basis f˛i ; ˇigi2Œgs� to
H1.†;Z2/=H0.@†;Z2/. The quadratic form q factors through this quotient. Define
Arf.†/D

P
q.˛i /q.ˇi / (mod 2). This is an isotopy invariant. A spin structure is said

to be even if the Arf is 0, otherwise it is odd. This notion is generalized, also in [34],
to give the open Arf invariant, which is defined for any graded surface, and specializes
to the parity if there is an odd number of markings on each boundary.

For example, with the notation of Example 5.18, suppose that each kj is odd. A possible
choice for the symplectic basis is

˛i D bi ! ci ! xfi ! bi ; ˇi D ci ! di ! xgi ! ci :

Now, by Proposition 5.13,

q.˛i /D 1CK.bi /CK.ci /CK. xfi /CBT.˛i /DK. xfi /;

since there is one bad turn. Similarly, q.ˇi /DK.xgi /. Therefore,

Arf.†/D
X
i2Œgs�

K. xfi /K.xgi /:

A simple calculation now shows that the difference between even and odd spin gradings
in this case is 2gsCb�1 D 2

1
2
.gCb�1/.

Remark 5.20 Kasteleyn orientations are named after W Kasteleyn, who used them
to analyze dimer statistics; see for example [23]. The connection between Kasteleyn
orientations and spin structures on closed surfaces is established in [26; 12].
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a

b c

d

e

h

a

b c

d

e0 h0

Figure 18: G; @eG and Ge . The middle graph is @eG. We draw an half-edge
inside the face which contains it.

5.1.1 Adjacent Kasteleyn orientations Recall Construction–Notation 3. In the
cell structure of Mcomb

g;k;l
, the cell .G; ŒK�/ is adjacent to cells of the form .Ge; ŒKe�/

for edges e … Br.G/[Loop.G/ with ŒKe� 2 ŒK.Ge/�, by Proposition 4.49. We now
describe ŒKe� explicitly in terms of ŒK�.

Fix a Kasteleyn orientation K 2 ŒK�. Write h for the unique half-edge such that
K.h/D 1 and h=s1 D e. Write

aD s0.h/; b D s20.h/; c D s1.s0.s1.h///; d D s1.s
2
0.s1.h///I

see Figure 18. For brevity write Nx for s1.x/. Apart from some borderline cases, which
may be treated separately, we may assume all these vertices and half-edges are distinct,
and then, using vertex flips if needed, we may also restrict ourselves to the case where
K. Nd/ D 1. Note that E.G/ n e D E.Ge/ n e0 canonically for some e0 2 E.Ge/. We
therefore identify these sets, and also identify H.G/ n fh; s1hg and H.Ge/ n s�11 e0.
In Ge, let v01 be the vertex from which a and xd issue, and let v02 be the vertex from
which b and xc issue. We may take the half-edge h0 to be the third half-edge from v01.
Define the assignment K 0 WH I .G/! Z2 by

K 0.h0/D 1; K 0.xh0/D 0; K 0.d/DK.d/C 1D 1; K 0. xd/DK. xd/C 1D 0;

and K 0.f /DK.f / for any other half-edge f .

For later purposes, define, for a boundary loop e and a Kasteleyn orientation K 2 ŒK�,
an assignment K 0 by K 0.h/DK.h/ for any h with h=s1 ¤ f , where f is the unique
edge which shares a vertex with e, and otherwise K 0.h/DK.h/C 1.

Lemma 5.21 In both cases , K 0 2 ŒK.Ge/�, and moreover , K 0 2 ŒKe�.
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Proof The claim is straightforward when e is a boundary loop. Suppose that e …
Br.G/[Loop.G/. The first assertion is simple; we focus the second one. Write C.G/
and C.G0/ for the set of closed paths without backtracking in G and G0, respectively.
Write O.G/ and O.G0/ for the set of open directed paths without backtracking in G
and G0, respectively, which connect boundary vertices which are not marked points.
We have bijections fC W C.G/! C.G0/ and fO WO.G/!O.G0/, defined as follows.
For a path .e1! e2!� � �! em/2C.G/, the path fC .e1! e2!� � �! em/2C.G

0/

is defined by erasing any appearance of e in the sequence and adding e0 any time we
have a move f ! f 0 where the third edge of the vertex between f and f 0 is e. The
inverse map is defined similarly, but changing the roles of e and e0. The map fO is
defined in the same way.

Using Proposition 5.13 it is straightforward to verify that qK.
/D qK0.fC .
// for any

 2 C.G/, and QK.
/DQK0.fC .
// for any 
 2O.G/.

Now, let .†t ;St ; st /t2Œ0;1� be a continuous path in Mcomb
g;k;l

, with

.†t ;St ; st / 2 comb�1.M.Gt ;zt //; where Gt D

8<:
G if t < 1

2
;

@eG if t D 1
2
;

G0 if t > 1
2
;

and where the graded structure z02ZG corresponds to the Kasteleyn orientation ŒK�. In
light of Lemma 2.39, Proposition 5.16 and isotopy arguments, the Kasteleyn orientation
on G0 defined by .†t ;St ; st /t2. 12 ;1/ is the unique class of Kasteleyn orientations for
which q.
t / or Q.
t / is constant for any continuous family .
t �†t / of closed paths
or bridges. By performing an isotopy, we may assume that 
t is in fact a path in
the graph Gt . It is easy to see that for " small enough, fC .
 12�"/ D 
 12C" if the 
t
are closed, or fO.
 1

2
�"/ D 
 1

2
C" if they are open. In the first case, qŒK�.
 1

2
�"/ D

qŒK0�.
 1
2
C"/, while in the second the same equation holds for Q. By Lemma 2.39(c)

and Theorem 5.11, the graded structure zt for t > 1
2

must correspond to ŒK 0�.

5.1.2 Trivalent graphs

Definition 5.22 Recall Definition 4.23. Let G be a trivalent graph. Recall that a
half-node is an .NB/�1–preimage of a node, and that their collection is denoted by
HN.G/. An extended Kasteleyn orientation on G is a map K WH.G/[HN.G/! Z2
such that:

(a) For any h 2HB, K.h/D 0.
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(b) For any h 2H , K.h/CK.s1h/D 1.

(c) For any node v, if jN�1.v/j D 3, then KjN�1.v/ D 1. Otherwise K.vi;1/C
K.vi;2/D 1, where N�1.v/D fvi;1; vi;2g.

(d) For any face f ,
P
K.x/ D 1, where the variable x is taken from the set of

half-edges with x=s2 D f , together with the set of half-nodes which belong
to f .

Two extended Kasteleyn orientations are equivalent if they differ by the action of
internal vertex flips. Write ŒK� for the equivalence class of K. Define K.G/ and
ŒK.G/� as the sets of extended Kasteleyn orientations and the set of equivalence classes
of extended Kasteleyn orientations. Write Aut.G; ŒK�/ for the automorphism subgroup
of G which preserves ŒK�.

Item (c) above deals with the case that v is a contracted component whose normalization
contains at least three half-nodes. In the trivalent case, this can only happen if the
unique contracted component in Norm�1.v/ is a ghost, and its three marked points are
legal. Therefore there are exactly three corresponding half-nodes in the noncontracted
parts, and they are illegal.

With the exact same techniques as for Section 5.1, together with Corollary 2.22, we
obtain:

Lemma 5.23 For a trivalent G and a metric `, there is a natural bijection between
ŒK.G/� and Spin..combR/�1.G; `//. The induced mapa

z2ZG=Aut.G/

M.G;z/!

a
ŒK�2ŒK.G/�=Aut.G/

RE.G/
C

=Aut.G; ŒK�/

is a homeomorphism. In particular , ZG ' ŒK.G/� canonically. A half-node v in .G; z/
is illegal if and only if K.v/D 1 for any K 2 ŒK� which corresponds to z.

From now on we denote trivalent graphs .G; z/ by .G; ŒK�/, for the corresponding
ŒK� 2 ŒK.G/�.

Definition 5.24 Define M.G;ŒK�/ WD RE.G/
C

=Aut.G; ŒK�/, the moduli of metrics
on MG , together with a fixed equivalence class of Kasteleyn orientations. Define
M.G;ŒK�/ WDM.G;z/, for the unique z which corresponds to ŒK� by the above lemma.
For f1; : : : ; fs 2 E.G/, set @f1;:::;fsM.G;ŒK�/ to be the face of M.G;ŒK�/ defined by
setting the coordinates f̀1 ; : : : ; f̀s to 0. For p1; : : : ; pl > 0, define M.G;ŒK�/.p/ and
M.G;ŒK�/.p/ by setting the perimeters to these values.
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Suppose G is a trivalent graph K 2K.G/, and let e 2 Br.G/. In the case that e is a
boundary edge, let h1 be its internal half-edge, h1=s1 D e, with h1 2H I . In the case
that e is an internal edge, write s�11 .e/D fh1; h2g, where K.hi /D i (mod 2). Define
@eK to be the unique map @eK WH.@eG/[HN.@eG/! Z2 which agrees with K on
any half-edge h0 … s�11 e, and such that @eK.@ehi /D i (mod 2). In a similar way, one
can define @e1;:::;erK for a compatible sequence of bridges.

Observation 5.25 For any trivalent .G; ŒK�/, and bridge e, the graph .@eG; Œ@eK�/
is a well-defined trivalent graph , in particular @eK 2 ŒK.@eG/�. Moreover , the map
@e W ŒK.G/�! ŒK.@eG/� is a bijection.

In addition , for any trivalent connected graph .G; ŒK�/, there is a unique smooth trivalent
graph .G0; ŒK 0�/ and a unique (up to order) compatible sequence of bridges e1; : : : ; er
with .G; ŒK�/D @e1;:::;er .G

0; ŒK 0�/.

With the same techniques as in the proof of Lemma 5.21, one obtains:

Lemma 5.26 Let G be a trivalent graph , and let e1; : : : ; er be a compatible sequence
of bridges. Under the identification of Lemma 5.23 between ZH and ŒK.H/�, for
H DG; @erG; : : : ; @e1;:::;erG, we have that

M@e1;:::;er .G;ŒK�/
' @e1;:::;esM@esC1;:::;er .G;ŒK�/

canonically.

In what follows we shall identify M.G;z/ and the corresponding M.G;ŒK�/ without
further notice.

5.2 Orientation

In this subsection we construct an orientation to Mcomb
g;k;l

. We do it by writing an
explicit formula for the orientation of each highest-dimensional cell of Mcomb

g;k;l
.p/—

that is, for cells M.G;ŒK�/.p/ whereG 2R0; ŒK�2 ŒK.G/�— and then showing that on
codimension-one faces between two such cells, the induced orientations disagree. We
also discuss the induced orientation on the boundary, and prove that these orientations
are the ones induced from Mg;k;l by comb�.

For G 2R0
g;k;l

, we have a map

(28) AG WR
E.G/
C

!RF.G/ DRŒl�;
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which takes as input a collection of edge lengths and outputs the face perimeters, and

M.G;ŒK�/.p/D A
�1
G .p/=Aut.G; ŒK�/:

In particular, orienting M.G;ŒK�/ is equivalent to orienting ker.AG/=Aut.G; ŒK�/. Us-
ing the exact sequence

(29) 0! ker.AG/!RE.G/!RF.G/ DRŒl�! 0;

we see that orienting RE.G/ and RŒl�, or equivalently, orderingE.G/ and Œl �, up to even
permutations, gives an orientation to M.G;ŒK�/.p/, as long as the action of Aut.G; ŒK�/
preserves the orientation.

Fix any order for Œl �, for example 1; 2; : : : ; l . Choose any Kasteleyn orientationK 2 ŒK�.
Define oi D o.G;K;i/ by V

K.h/D1
h=s2Di

d`h;

that is, we take the wedge of d`h over half-edges h of face i with K.h/ D 1. The
wedge is taken counterclockwise. Because there is an odd number of half-edges of the
i th face with KD 1, the element oi is well defined, and independent of which half-edge
appears first. In addition, oi is an odd-degree form.

Definition 5.27 Choose any Kasteleyn orientation K. Put

o.G;K/ D
lV
iD1

oi :

Define xo.G;K/ as the orientation on ker.AG/ induced from the exact sequence (29)
when RE.G/ is oriented by o.G;K/ and RŒl� by

Vl
iD1 dpi .

Remark 5.28 Since both dpi and oi are odd variables, choosing another order on Œl �
does not change xoG .

Lemma 5.29 The orientation xo.G;K/ depends only on ŒK�.

Before we get to the proof, we add a few auxiliary definitions.

Definition 5.30 Let G be any open ribbon graph. A good ordering is a bijection
n WH I ! jH I j which satisfies the following properties. First, if i.h/ < i.h0/, that is,
h belongs to face marked i and h0 to face marked i 0 > i , then n.h/ < n.h0/. Thus,
half-edges of the same face are clustered together. Second, the ordering n, when
restricted to half-edges of a single face, agrees with the counterclockwise ordering.

Geometry & Topology, Volume 27 (2023)



2606 Ran J Tessler

1

2

3

4

1

2
3

4

56

7
8

9

10

11
12

13
14
15

Figure 19: A good ordering of internal half-edges: the bold numbers in the
middles of the faces are the labels of the faces, the smaller ones next to
the half-edges are the half-edges numbers in the ordering. The numbers of
half-edges in face i are smaller than those of face j if i < j . In each face the
numbers of half-edges agree with the cyclic order induced by the face’s
orientation.

Let n be a good ordering, as in Definition 5.30, and K 2K.G/ a Kasteleyn orientation.
Define HK D fh 2H I jK.h/D 1g. We also define nK W jH I j ! Z by

nK.i/D jfh 2HK j n.h/ < igj:

Figure 19 illustrates a good ordering. Note that the restriction of a good ordering to a
subset of H I induces an order on its elements.

Proof of Lemma 5.29 Take any K 2 ŒK�. We recall from Lemma 5.8 that any other
element of ŒK� can be obtained from K by successive flips in vertices. It will thus
suffice to prove that the orientations induced by K and K 0 are the same when K and
K 0 differ by a single flip in vertex v. It will be enough to prove that o.G;K/ D o.G;K0/.

Fix a good ordering n. By definition,

o.G;K/ D
V

e2HK

d`e;

where the order of the wedging is the order n restricted to HK . The sign difference
between o.G;K/ and o.G;K0/ can be found geometrically by the following procedure,
also illustrated in Figure 20. Define

LK D f.n.h/; 0/ j h 2HKg and LK0 D f.n.h/; 1/ j h 2HK0g �R2:

For any e 2 E draw the chord c.e/ between .n.h0/; 0/ 2 LK and .n.h1/; 1/ 2 LK0 ,
where h0=s1 D h1=s1. By definition the change of signs between oG;K and oG;K0 is
just the parity of the number of intersections of these chords (slightly perturbed, if
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14
15

HK0 D 1; 5; 6; 7; 9; 10; 12; 13; 14; 15

HK D 1; 2; 3; 6; 7; 8; 10; 13; 14; 15

LK0

LK
1 2 3 4 5 6 7 8 9 10 1112 1314 15

Figure 20: In this diagram HK and HK0 are listed for two Kasteleyn orienta-
tionsK andK 0 for the graph G in the picture, whose half-edges are identified
with their n–value for some good order n. The Kasteleyn orientations K and
K 0 can be read from HK and HK0 , and they differ by a flip in the left internal
vertex. Below the chord diagram of LK and LK0 is drawn, and the number
of intersections is indeed even.

necessary). We shall prove that this number is always even. Note that for all edges
except for those issuing from v, the chords are parallel and vertical.

Let h1 be a half-edge of v. Put h2D s0.h1/, h3D s20.h1/ and Nhj D s1.hj /. Apart from
some borderline cases which can be treated separately, we may assume that we are in
the scenario

n. Nh2/D i1; n.h1/D i1C 1; n. Nh3/D i2;

n.h2/D i2C 1; n. Nh1/D i3; n.h3/D i3C 1:

Thus, the chord chj is either the chord between .ij C 1; 0/ and .ij�1; 1/, or the chord
between .ij C 1; 1/ and .ij�1; 0/. It is easy to see that the number of vertical chords it
intersects is the size of

Ij D fh 2HK n fhi ; xhigiD1;2;3 j n.h/ 2 .aj ; bj /g;

where aj D min.nK.ij C 1/; nK.ij�1// and bj D max.nK.ij C 1/; nK.ij�1//. For
exactly one j 2 f1; 2; 3g we have Ij D IjC1[ IjC2, where addition is modulo 3, and
the union is disjoint. Thus, any vertical chord either misses the chords chj or meets
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exactly two of them. In addition, it can be checked directly that the chords chj intersect
each other an even number of times. The lemma follows.

Corollary 5.31 For any G 2R0
g;k;l

and ŒK� 2 ŒK.G/�, the group Aut.G; ŒK�/ acts in
an orientation-preserving manner. In particular , the orientation xo.G;K/ induces , for
any p, an orientation on M.G;ŒK�/.

Denote this orientation by xo.G;ŒK�/. The main theorem of this subsection is:

Theorem 5.32 The orientations xo.G;ŒK�/ induce a canonical orientation on the space
Mcomb
g;k;l

.p/.

Proof We shall show that the orientations oG for G 2 SR0
g;k;l

are compatible on
codimension-one faces. This will show that a suborbifold of Mcomb

g;k;l
which differs from

Mcomb
g;k;l

in codimension-two cells is oriented, hence also Mcomb
g;k;l

is. Since Mcomb
g;k;l

itself
differs from Mcomb

g;k;l
by codimension-two strata in the interior, and in codimension-

one boundary, this argument will show that Mcomb
g;k;l

is also endowed with a canonical
orientation.

We therefore have to show that for any .G; ŒK�/ 2 SR0
g;k;l

and e … Br.G/[Loop.G/
with .G0; ŒK 0�/ D .Ge; ŒKe�/, the orientations induced on @eM.G;ŒK�/ by M.G;ŒK�/

and by M.G0;ŒK0�/ disagree.

Put H I D H I .G/ and H
0I D H I .G0/. Note that we have a natural identification

of E.G/ n e and E.G0/ n e0, for some edge e0, so from now on we treat them as the
same set. Choose a good ordering n for H I . There exists a good ordering n0 of H

0I

which, when restricted to H
0I n s�11 .e0/, defines the same order as the restriction of

n to H
0I n s�11 .e0/ ' H I n s�11 .e/. Fix a Kasteleyn orientation K 2 K.G/ and set

h 2 s�11 .e/ with K.h/D 1. Write

aD s0.h/; b D s20.h/; c D s1.s0.s1.h///; d D s1.s
2
0.s1.h///I

see Figure 21. For brevity write Nx for s1.x/. Apart from some borderline cases which
may be treated separately, we may assume all these vertices and half-edges are distinct,
and then, using vertex flips if needed, we may also restrict ourselves to the case where
K. Nd/D 1. In this case we can assume n was chosen in such a way that

n.xa/D i; n.h/D i C 1; n. xd/D i C 2; n.d/Dm; n.xc/DmC 1;

n.c/D p; n.xh/D pC 1; n.b/D pC 2; n. Nb/D j; n.a/D j C 1;

for some i , m, p and j , as in Figure 21.
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i

i C 1

i C 2

j

j C 1

p

pC 1

pC 2

m

mC 1

j 0

j 0C 1

j 0C 2

i 0
i 0C1

G Ge

e0e

m0

m0C 1

m0C 2
p0

p0C 1

Figure 21: The restrictions of the good orderings n and n0 to the half-edges
of G and Ge .

A canonical outward normal for M@eG ,!MG is just �d`e . We see that the induced
orientation on M@eG is just

(30) .�1/nK.n.h//C1
V

f 2HKnfhg

d f̀ D .�1/
nK.iC1/C1

V
f 2HKnfhg

d f̀ ;

where as usual the wedge is taken in the order nK induced by n.

In G0, let v01 be the vertex from which a and xd issue, and let v02 be the vertex from
which b and xc issue. We may take the half-edge h0 to be the third half-edge from v01.
Then, for some i 0, m0, p0 and j 0, we have

n0.xa/D i 0; n0. xd/D i 0C 1; n0.d/Dm0; n0.h0/Dm0C 1; n0.xc/Dm0C 2;

n0.c/D p0; n0.b/D p0C 1; n0. Nb/D j 0; n0.xh0/D j 0C 1; n0.a/D j 0C 2:

By Lemma 5.21 we have a representative K 0 of ŒKe�, described by

K 0.h0/D 1; K 0.xh0/D 0; K 0.d/DK.d/C 1D 1; K 0. xd/DK. xd/C 1D 0;

and K 0.f /DK.f / for any other half-edge f . As above, a canonical outward normal
for M@e0G

0 ,!MG0 is just �d`e0 . We see that the induced orientation on M@e0G
0 is

(31) .�1/nK0 .n
0.h0//C1

V
f 2HK0nfh

0g

d f̀ D .�1/
n0
K0
.m0C1/C1

V
f 2HK0nfh

0g

d f̀ :

The choice of n, n0 and K 0 makes the terms
V
f 2HKnfhg d f̀ and

V
f 2HK0nfh

0g d f̀

differ only in the relative location of d`d . By our assumptions on K. xd/ and K 0. xd/,
the difference is just the difference between nK. xd/�1D nK.iC2/�1 and n0K0.d/D
n0K0.m

0/. We subtracted 1 from nK. xd/ because we did not want to count h which
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occurs before xd in the order n. Now, nK.iC2/�1D nK.iC1/, as n.h/D i; K.h/D 1.
Similarly, n0K0.m

0/D n0K0.m
0C 1/� 1, since n0.d/Dm0 and K 0.d/D 1.

The total difference between the two orientations is thus

.�1/n
0

K0
.m0C1/C1Cn0

K0
.m0C1/�1CnK.iC1/C1CnK.iC1/ D�1;

as claimed.

Remark 5.33 The spaces Mg;k;l and Mcomb
g;k;l

.p/ are homeomorphic, therefore the
last theorem gives, in fact, another proof that Mg;k;l is oriented. Later we shall see
that the orientation constructed here agrees with the orientation of [35].

Corollary 5.34 For G 2 SR0g;k;l and e an internal edge which is not a bridge , the
two orientations on @eM.G;ŒK�/.p/ ' @eM.Ge;ŒKe�/.p/, induced as boundaries of
M.G;ŒK�/.p/ and M.Ge;ŒKe�/.p/, are opposite.

5.3 Critical nodal graphs and their moduli

5.3.1 Critical nodal ribbon graphs In this subsection we describe effective and
critical nodal graphs. They will parametrize strata which will participate in the analysis
of the intersection numbers and will contribute to the combinatorial formula. For
completeness we first describe slightly more general graphs.

Definition 5.35 A nodal spin ribbon graph with a lifting (graded nodal ribbon graph),
or a nodal graph for short, is a spin ribbon graph with a lifting (graded ribbon graph)
.G; z/, together with a subset V of legal points in B.Norm.G// nB.G/. We call V the
set of legal nodes of the nodal graph and s1V the illegal nodes, where s1 was defined
in Notation 4.28. The vertices and edges of the nodal graph are the vertices and edges
of Norm.G; z/ after forgetting the illegal nodes s1V . A metric is a metric on these
edges. If e is an edge in the nodal graph .G; z;V/, contracting the edge e yields the
nodal graph @e.G; z;V/ whose underlying graph is @e.G; z/, and whose legal nodes
are those legal nodes in @e.G; z/ which remain special points in Norm.@e.G; z// after
the contraction, where we use the natural correspondence between special points in
Norm.G; z/ and in Norm.@e.G; z//.

The components of the nodal graph are the connected components created after re-
moving s1V . More precisely, define an equivalence relation �N on the components of
Norm.G; z/ as follows. Components C1; C2 2 �0.Norm.G; z// are neighbors if one
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of them contains a legal point u … V such that s1u belong to the other component. For
C1; C2 2 �0.Norm.G; z//, we write C1 �N C2 if they can be connected in a path of
neighboring components. The components of the nodal graph are defined to be the
Norm–image of �N –equivalence classes.

In the case that the underlying graph is effective we have a more convenient definition.

Definition 5.36 An effective nodal spin ribbon graph with a lifting (effective graded
nodal ribbon graph), or an effective nodal graph, is a tuple .Gi ; zi ; m;V D fVeg/, or
.G; z/ for short, where

(a) .Gi ; zi / is an effective spin ribbon graph with a lifting (effective graded ribbon
graph),

(b) m W
S
i s1H

B.Gi /! Z�0, and

(c) the maps Ve W Œm.e/�!
S
i B.Gi / for e 2

S
i s1H

B.Gi / are injections.

We require the sets Ve D Ve.Œm.e/�/ to be disjoint. Denote by C.Gi ; zi ; m; fVeg/ the
different graded components of the graph, that is, the collection of .Gi ; zi /.

Let G be the graph obtained by choosing m.e/ points pe;1; : : : ; pe;m.e/ on e, ordered
according to the orientation of the boundary and identifying pe;i with Ve.i/. The
effective nodal graph is said to be connected if G is connected.

Write E.G/D
S
i E.Gi /; similarly define H I .G/, HB.G/, V.G/ and F.G/. For a

boundary edge eD h=s1 where h2 s1HB , we sometimes write m.e/Dm.h/. Vertices
in the image of Ve are called legal nodes and their set is denoted by V.G/. The boundary
marked points of G are boundary marked points of the Gi which are not legal nodes.
Denote them by B.G/. Define I.G/D

S
i I.Gi /.

An effective nodal ribbon graph is naturally embedded into the (topological) nodal
surface†D

�`
i †i

�
=�, defined as follows. †i is the topological open marked surface

into which Gi embeds, and in the case that Gi is a ghost it is a point. We identify
Gi with its image in †i . We add m.e/ points pe;1; : : : ; pe;m.e/ along the edge e, and
quotient by pe;i � Ve.i/. The genus of the graph is defined to be the (doubled) genus
of †.

A marked effective nodal graph is an effective nodal graph together with markings
mB W B.G/! Z and mI W I.G/! Z.

A graded critical nodal ribbon graph is an effective nodal graph such that each
.Gi ; zi / 2 SR0. In this case we use the Kasteleyn notation for components, .Gi ; ŒKi �/
rather than .Gi ; zi /, and we denote the whole graph by .G; ŒK�/ for short.
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A graded critical nodal graph G is odd if each Gi 2OSR0.

The notion of an isomorphism is the expected one. Write SRm
g;k;l

for the collection of
isomorphism classes of marked critical nodal graded ribbon graphs G with m nodes
and genus g such that mB WB.G/' Œk� and mI W I.G/' Œl �. Let OSRm

g;k;l
be the subset

of such graphs which are odd. Write Aut.G; ŒK�/ for the group of automorphisms of
.G; ŒK�/ 2 SRm

g;k;l
.

Define nongraded critical nodal ribbon graphs G D .Gi ; m;V/ in the same way, only
without the data of Kasteleyn orientations, so that each Gi belongs to R0 rather than
to SR0. Denote by Rm

g;k;l
the collection of isomorphism classes of nongraded critical

nodal ribbon graphs G with m nodes and genus g such that mB W B.G/ ' Œk� and
mI W I.G/' Œl �. Let ORm

g;k;l
be the subset of such graphs which are odd. Write Aut.G/

for the group of automorphisms of G 2Rm
g;k;l

.

A metric on a nodal ribbon graph is an assignment of positive lengths to its edges.

A bridge e 2E.G/ is an edge which is a bridge in one componentGi ofG. An effective
bridge is a bridge with m.e/D 0, if m is defined. Let Br.G; ŒK�/ be the collection of
bridges, and Breff.G; ŒK�/ the collection of effective bridges. As in the nonnodal case,
for brevity we shall usually omit ŒK� from the notation for Br and Breff. We similarly
define boundary loops as boundary loops in one component Gi of G, and effective
loops are boundary loops e with m.e/ D 0. Write Loop.G/ and Loopeff.G/ for the
collection of boundary loops and effective loops, respectively.

When it is understood from context whether or not the critical nodal graph is graded or
nongraded, we omit the words graded/nongraded, and just say critical nodal.

Remark 5.37 It is simple to verify that when .G; z;m;V/ is effective, Definitions 5.35
and 5.36 are equivalent. We shall therefore use Definition 5.36, which is more explicit,
whenever possible. It is also straightforward to verify that the definition of ORm

g;k;l

agrees with the one given in Notation 1.3.

In a metric effective nodal ribbon graph, the data of distances between illegal nodes to
other vertices is absent. On the other hand, the discrete data of which illegal node lies
on which edge, and the relative order of illegal nodes on a given edge, are included.
See the example at the bottom of Figure 22.

Observation 5.38 Under the forgetful map forspin W SRmg;k;l !Rm
g;k;l

, which forgets
the Kasteleyn orientation , odd graphs go to odd graphs and the preimage of G is
canonically ŒK.G/�=Aut.G/.
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5.3.2 Trivalent graphs versus graded critical nodal graphs In the analysis required
for proving Theorem 1.5, we will mainly need to analyze critical graded nodal graphs
and effective graphs which are obtained from them by contracting a single edge and
possibly forgetting some data. We will now describe operations between nodal and
nonnodal ribbon graphs. Although these operations can be defined in full generality,
we are interested only in cases where their output is trivalent or effective. We will
therefore restrict our definitions to this setting, leaving the relatively straightforward
details of the more general setting to the interested reader.

Given a connected effective spin ribbon graph with a lifting .G; z/, we define an effective
nodal graph X .G; z/ as follows. Its components are the components of Norm.G; z/,
after erasing every illegal boundary point and concatenating its two edges to one
edge. Note that under this map a contracted boundary becomes a Ramond marking of
perimeter zero. Suppose e is an edge obtained by concatenating e1; : : : ; emC1 in the
described process, and in this order. Definem.e/Dm. Suppose vi is the vertex between
ei and eiC1. Then Ve.i/D s1vi , where we use Notation 4.28. When .G; z/D .G; ŒK�/
is critical trivalent, we denote X .G; z/ by X .G; ŒK�/. It is easy to verify that:

Observation 5.39 The map X is a surjection from the collection of connected effective
spin ribbon graphs to the collection of nodal connected effective spin ribbon graphs
all of whose components are smooth. It restricts to a bijection between connected
trivalent graphs and connected graded critical nodal ribbon graphs. For any connected
effective spin ribbon graph .G; z/, there is a bijection between bridges (boundary loops)
in .G; z/ and effective bridges (effective loops) in X .G; z/.

We now extend the definition of X to metric effective spin ribbon graphs. For such
a graph .G; z; `/, define the effective nodal metric graph X .G; z; `/D .X .G; z/;X`/
by X`e D `e if the edge e is an edge of Norm.G; z/; otherwise, if e is the union of
e1; : : : ; emC1, define X`e D

PmC1
iD1 `ei . Note that the perimeters are left unchanged.

We also define a map from effective nodal graphs to effective spin ribbon graphs: given
an effective nodal graph .G; z;m;V/, define the spin ribbon graph zB.G; z/ as the graph
obtained by forgetting the data of m and V , and applying zB to each component .Gi ; zi /.
The analogous definition holds for metric effective nodal graphs.

If .G; z;m;V/ is an effective nodal graph and e is either an internal edge or a boundary
edge with m.e/D 0, then @e.G; z;m;V/ is the nodal graph whose underlying ribbon
graph is the graph obtained by contracting e, and the data ofm and V is induced fromG
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by the usual identification of edges of @eG as a subset of edges of G. Similarly, when
.G; ŒK�;m;V/ is critical trivalent and e is either an internal edge or an effective loop,
we define .Ge; ŒKe�; m0;V 0/ as the critical trivalent graph whose underlying graph is
.Ge; ŒKe�/, putting m0 Dm and V 0 D V , where we again use the identification between
edges of G and Ge.

Notation 5.40 Suppose that .G; ŒK�/ 2 SRm
g;k;l

.p/ and that e D fh1; h2 D s1h1g 2
Breff.G/[Loopeff.G/, with K.h1/D 0. Define the nodal ribbon graph Be.G; ŒK�/ as
follows. Suppose G is made of the components G1; : : : ; Gn. Without loss of generality
assume e is an edge of component Gn. Write vi D @e.hi / for the vertex obtained by
contracting hi in @eGn. Write x D s2h1 and y D s1.s�12 h1/ 2H

I .@eGn/.

The first n� 1 components of the graph Be.G; ŒK�/ are G0i DGi for i � n� 1, and for
these components we have K 0i DKi , m

0 Dm and fV 0
f
g D fVf g.

When e is a boundary loop, .G0n; zn/ D zB@e.Gn; ŒKn�/, and also in this component
m0 D m and fV 0

f
g D fVf g, where we use the natural identifications between edges

of Gn other than e and edges of G0n.

If e is an effective bridge, then in the case that the normalization Norm.@eGn/ is
disconnected, let G0n be the component which does not contain v2, and let K 0, m0

and V 0 be the induced maps. Note that G0n may be a ghost. Define the component
G0nC1 as the graph obtained by the component of v2 in Norm.@eGn/ after gluing the
half-edges x=s1 and y=s1 to a new edge xy, and removing the vertex v2. The updated
Kasteleyn orientation is the unique Kasteleyn orientation which gives any internal
half-edge its value under Kn. For any half-edge e0 ¤ xy, we have m0.e0/Dm.e0/ and
m.xy/Dm.x/Cm.y/C 1. Similarly, V 0.e0/D V.e0/ for e0 ¤ xy, while

(32) V 0xy.a/D

8<:
Vy.a/ if a �m.y/;
v1 if aDm.y/C 1;
Vx.a�m.y/� 1/ if a > m.y/C 1:

If @eGn n fveg is connected, set G0n to be the component of v1 in the normalization,
where again edges x and y are glued and v2 is removed, and K 0, m0 and V 0 are defined
in the same way as above.

There is a canonical surjection, which we shall also denote by Be,

E.G/[V.G/!E.BeG/[V.BeG/:

It takes e to v1, and all other edges to the corresponding edges, so that it is one-to-one
except on the edges x and y, which go to xy.
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Given a metric ` on the graph, with `e D 0, the graph Be.G; ŒK�; `/ is the graded nodal
ribbon graph with underlying graph Be.G; ŒK�/, and the metric is induced from ` if
e is a boundary loop, while if e is a bridge, then with the same notation as above,
.Be`/e0 D `e0 for e0 ¤ x; y, and Be`xy D `xC `y . For convenience we usually denote
Be` by ` as well.

A compatible sequence of effective bridges e1; : : : ; er is a sequence of bridges such
that eiC1 is an effective bridge in Bei � � �Be1G for all i . For such a sequence define
Be1;:::;er .G; ŒK�; `/D Ber � � �Be1.G; ŒK�; `/, and the map Be1;:::;er D Ber ı � � � ıBe1 .

The next observation follows easily from Observations 5.39 and 5.25.

Observation 5.41 If .G; ŒK�/2 SRm
g;k;l

and e 2 Loopeff.G/, then BeG is an effective
nodal ribbon graph.

If .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/, then BeG 2 SRmC1g;k;l
.

Moreover , for any .G; ŒK�/ 2 SRmC1
g;k;l

, and any legal node v, there exists a unique
graph .H; ŒK 0�/ 2 SRm

g;k;l
and an edge e 2 Breff.H/ with Be.H; ŒK 0�/D .G; ŒK�/ and

Bee D v. In addition , if .G; ŒK�/ is connected trivalent and e 2 Br.G; ŒK�/, then

X .@e.G; ŒK�//D Be.X .G; ŒK�//;

where we use the identification of bridges of Observation 5.39.

Notation 5.42 Recall Notation 4.6. For .G; ŒK�/2SRmC1
g;k;l

, denote by B�1
h;a
.G; ŒK�/D

B�1
Œh�;a

.G; ŒK�/ the isomorphism class of triples .H; ŒK 0�; e/ where H 2 SRm
g;k;l

,
Be.H; ŒK 0�/D .G; ŒK�/, and Bee D Vh.a/ for h 2 s1.HB.G// and a 2 Œm.h/�. Let

B�1G D fB�1Œh�;a.G; ŒK�/ j Œh� 2 Œs1.H
B.G//�; a 2 Œm.h/�g:

In other words, .H; ŒK 0�; e/D B�1
h;a
.G; ŒK�/ should be thought as the graph .H; ŒK 0�/

obtained by canceling the B operation, ie by returning the ath forgotten illegal node
of h, gluing it with its legal side, and then uncontracting the resulting node to obtain
the bridge e.

5.3.3 The moduli space of critical nodal graphs, the line bundles and the boundary
conditions

Definition 5.43 For an effective nodal ribbon graph .G; z;m;V/ define M.G;z;m;V/'

RE.G/
C

=Aut.G; z;m;V/ to be the moduli of positive metrics on G, and M.G;z;m;V/

as the subspace in which the i th perimeter equals pi > 0; i 2 Œl �. In particular, given
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Figure 22: This diagram presents trivalent graphs, their effective bridge
contractions and the operation B. TheC sign represents a legal side of node
and, after performing B, the wiggly lines contain the data of V , namely, which
edges contain which legal nodes, and in what order. At top left an effective
trivalent smooth graph .G; ŒK�/ on a disk is shown, at top center its bridge e
is contracted, then at top right Be.G; ŒK�/ is drawn. The second row describes
a similar scenario, but for a graph on a cylinder. The third row presents a
graph on a disk. First the bridge between boundary markings 2 and 3 is
contracted, and then the bridge between 4 and 5 is contracted. These bridges
are compatible. The bridges between 2 and 3 and 3 and 4, on the other hand,
are not compatible with each other.

.G; ŒK�/2SRm
g;k;l

, we have M.G;ŒK�/'RE.G/
C

=Aut.G; ŒK�/. Define M.G;z;m;V/ and
M.G;z;m;V/.p/ as the cell complexes whose cells correspond to nodal ribbon graphs
obtained from .G; z;m;V/ by edge contractions, and the gluing maps are induced by
these edge contractions.

For e 2E.G/, write @eM.G;z;m;V/ for the face of M.G;z;m;V/ where e is contracted,
ie the length of the edge e is set to be 0. The boundary of M.G;z;m;V/ can be written as

@M.G;z;m;V/ D
[

Œe�2ŒE.G/�

@eM.G;z;m;V/;
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where ŒE.G/� D E.G/=Aut.G; z;m;V/, as in Notation 4.6. We similarly define
@e1;:::;erM.G;z;m;V/.

The maps zB, X and Be1;:::;er on metric graphs induce moduli level maps. We denote
these maps by the same letters. When e1; : : : ; er are understood from the context, we
denote the former map by B.

Note that M@e.G;z;m;V/ ' @eM.G;z;m;V/, and that Be1;:::;er factors zB. The maps B, zB
and X are easily seen to be piecewise linear submersions.

Definition 5.44 For an effective nodal .G; z;m;V/ and i 2 Œl �, the S1–orbibundle
Fi !M.G;z;m;V/ is defined to be the set of pairs .`; x/ where ` 2M.G;z;m;V/ and
x is a point on the i th face, with the natural topology. For a .d; l/–set L, write SL!
M.G;z;m;V/ for the sphere bundle associated to fSL.i/ j i 2 Œd �g, as in Construction–
Notation 1. We define the forms ˛i , !i , x̨i and x!i as the pullbacks of the corresponding
forms defined on the component which contains face i .

If .G0; z0; m0;V 0/ is obtained from .G; z;m;V/ by edge contractions, we have the
usual natural identification between Fi !M.G0;z0;m0;V 0/ and the restriction of Fi !
M.G;z;m;V/ to the corresponding cell.

By the constructions we immediately get:

Observation 5.45 For any effective spin ribbon graph .G0; z0/ and i 2 Œl �, we have a
natural identification

.Fi !M.G0;z0//' X�.Fi !MX .G0;z0//;

while for an effective nodal spin ribbon graph .G; z/ and i 2 Œl �, we have a natural
identification

.Fi !M.G;z//' zB�.Fi !MzB.G0;z0//:

As a consequence:

(a) For .G; ŒK�/ 2 SRm
g;k;l

and e … Br.G/[Loop.G/, there is a canonical identifi-
cation

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' .Fi ! @eM.Ge;ŒKe�//;

and similarly for the bundles SL.

(b) For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/, there is a canonical identification

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' B�e .Fi !MBe.G;ŒK�//;

and similarly for the bundles SL.
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(c) For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loop.G/, there is a canonical identification

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' .‰
comb/�.Fi ! @eM.Ge;ŒKe�//;

and similarly for the bundles SL.

Proposition 5.46 Let s be a special canonical multisection of SL !Mcomb
g;k;l

. Let
A be the collection of effective graded .g; k; l/–boundary ribbon graphs , so that s
restricts , in particular , to multisections s.G;z/ for all .G; z/ 2 A. Then s induces
multisections s.G;z;m;V/ of SL !M.G;z;m;V/ for all effective nodal ribbon graphs
.G; z;m;V/ 2 X .A/, which satisfy the following relations:

� For any effective graded .G0; z0/,

s.G
0;z0/
D X�sX .G

0;z0/:

� For any effective nodal .G; z;m;V/,

s.G;z;m;V/ D zB�s0;

where s0 is a multisection of SL!MzB.G;z/.

In particular:

(a) For any .G; ŒK�/ 2 SRm
g;k;l

and e … Br.G/[Loop.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D s.G;ŒK�/j@eM.Ge;ŒKe�/

:

(b) For any .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D B�e s

Be.G;ŒK�/:

(c) For any .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loopeff.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D .‰comb/�s.Ge;ŒKe�/:

Here we compare multisections using the identifications of Observation 5.45.

Proof Let s be a special canonical multisection as above. Consider an effective nodal
.G; z;m;V/ 2 X .A/. Then .G; z;m;V/ can be written as X .G0; z0/ for some effective
boundary graph. Now sX .G

0;z0/ D zB�szBX .G0;z0/. We have a factorization

M.G0;z0/
X
//

zB

&&

M.G;z;m;V/

zB
��

MzB.G0;z0/
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The identifications of bundles SL, see Observations 4.40 and 5.45, are also compatible
with this diagram. Since s is canonical, by Corollary 4.43,

s.G
0;z0/
D zB�szB.G

0;z0/
D X�zB�szB.G

0;z0/:

Define s.G;z;m;V/ as the pullback of szB.G
0;z0/ along the vertical map zB. Clearly

sX .G
0;z0/ D X�s.G;z/.

By Observation 5.39, SRm
g;k;l
� X .A/. The “In particular” cases are now immediate

from the definition and Observation 5.45. In the first and third item we use that
zB.G; ŒK�/D zB.Ge; ŒKe�/, while in the second that Be D zB in that case.

The cells M.G;ŒK�/ for graded nodal graphs also carry canonical orientations.

Definition 5.47 We define orientations for M.G;ŒK�/.p/; .G; ŒK�/ 2 SRmg;k;l by

xo.G;ŒK�/ D
Y

C2C.G;ŒK�/

xoC ;

o.G;ŒK�/ D
V
i2Œl�

dpi ^xo.G;ŒK�/ D
V
i2Œl�

V
K.h/D1
h=s2Di

d`h;

with the wedge product over half-edges of face i taken counterclockwise.

Proposition 5.48 Let .G; ŒK�/2SRm
g;k;l

and e 2Breff.G/. Suppose that .G0; ŒK 0�/D
Be.G; ŒK�/ 2 SRmC1

g;k;l
, and let e0 be the unique edge in G0 with two Be–preimages.

There are canonical identifications
@eM.G;ŒK�/ ' M@e.G;ŒK�/ ' Fe0 ;

@eM.G;ŒK�/.p/'M@e.G;ŒK�/.p/' Fe0.p/;

where the space Fe0!M.G0;ŒK0�/ is the set of pairs .`; x/ with ` 2M.G0;ŒK0�/ and x a
point on e0, with the natural topology. Moreover , the orientation on @eM.G;ŒK�/.p/

induced from M.G;ŒK�/.p/, as in Definition 2.52, coincides with the orientation
dx ^ o.G0;ŒK0�/ on Fe0 , where dx is the orientation on the segment e0 considered as a
segment in the boundary.

Proof The only part which requires an explanation is the statement regarding orienta-
tions. Recall thatK 0 satisfiesK.h/DK 0.Bh/ for any h=s1¤ e. It is enough to compare
orientations of @eM.G;ŒK�/ ' Fe0G0. Suppose h is the legal side of e, that is, the half-
edge which satisfies h=s1D e andK.h/D1. Write e�1D .s�12 h/=s1 and e1D .s2h/=s1.
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Then, by recalling the definition of the canonical orientation (Section 5.2), we see
that the orientation for M.G;ŒK�/ can be written as d`e�1 ^ d`e ^ d`e1 ^O , and the
orientation on MG0 is d`e0 ^ O , where O is the wedge of other edge lengths, in
some order. Note that d`e0 D d`e�1 C d`e1 . Now, the induced orientation on the
boundary @eM.G;ŒK�/ is given by d`e�1 ^ d`e1 ^O . By considering Fe0G0 as the
moduli of metrics on the graph obtained from G0 by adding a new marked point on e0,
and with the definition of its orientation, we see that this orientation can be written as
d`e�1 ^ d`e0 ^O , where d`e�1 comes from the location of the new point on f . And
indeed,

d`e�1 ^ d`e1 ^O D d`e�1 ^ d`e0 ^O:

Corollary 5.49 The map comb WMg;k;l !Mcomb
g;k;l

preserves orientation.

Proof Indeed, by Proposition 5.48, we see that the orientations on Mcomb
g;k;l

satisfy
the same requirements of Theorem 2.53. The dimension-zero case can be checked by
hand.

We also have the following corollary of Corollary 5.34.

Corollary 5.50 For .G; ŒK�/ 2 SRm
g;k;l

and an internal edge e which is not a bridge ,
the orientations on @eM.G;ŒK�/.p/ ' @eM.Ge;ŒKe�/.p/, induced as boundaries of
M.G;ŒK�/.p/ and M.Ge;ŒKe�/.p/, are opposite.

Corollary 5.50 has an analog for the case that e is a boundary loop. For .G; ŒK�/ 2
SRm

g;k;l
and e 2 Loop.G/, write ‰comb

.G;ŒK�/;e
for the map @eM.G;ŒK�/! @eM.Ge;ŒKe�/

defined at the level of objects by leaving all the metric graph structure — in particular
the edge lengths — invariant, and flipping the lifting in the contracted boundary which
corresponds to e. When we write ‰comb we mean the union of the maps ‰comb

.G;ŒK�/;e

over all possible pairs .G; ŒK�/ 2 SRm
g;k;l

, for m� 0 and e 2 Loop.G/. The following
is an immediate corollary of the “Moreover” part of Theorem 2.53, and Corollary 5.49.
We will also provide a direct self-contained proof of this corollary in Section 6.2 below.

Corollary 5.51 For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loop.G/, the induced orientation
on @eM.Ge;ŒKe�/.p/ as a boundary of M.Ge;ŒKe�/.p/ is opposite to the orientation
on it obtained by taking the ‰comb–pushforward of the orientation on @eM.G;ŒK�/.p/,
induced as a boundary of M.G;ŒK�/.p/.
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6 The combinatorial formula

Throughout this section we fix g; k; l and set

d D 1
2

dimR.Mg;k;l/D
1
2
.3g� 3C kC 2l/:

We also write, for G 2 SRm
g;k;l

,

dim.G/D 1
2

dimR.MG/D
1
2
.3g� 3C kC 2l � 2m/:

In what follows we shall work with the orientations constructed in Section 5.2. These
are the same orientations as the ones constructed in [35], by Corollary 5.49.

Definition 6.1 For .G; ŒK�/ 2 SRm
g;k;l

define

WG ; �WG WM.G;ŒK�/!R

by

WG.`/D
Y

e2s1HB.G/

`
2m.e/
e

.m.e/C 1/Š
and �WG.`/D Y

e2s1HB.G/

`
2m.e/
e

m.e/Š .m.e/C 1/Š
:

6.1 Iterative integration and the integral form of the combinatorial
formula

Our approach for producing the explicit formula for intersection numbers will be by
an iterative process of integration by parts. Recall Definition 4.36 and Notation 4.37.
Given an .S; l/–set L W S ! Œl � for S � Œd �, the t th component of EL is LL.t/. Each
step of the iterative integration process below will involve integrating out (the form
corresponding to) one component LL.t/ for some t 2 S , using integration by parts.
The integration by parts will produce new boundary terms for the moduli on which we
integrate. Only boundary terms that correspond to contracting an effective bridge e
may have a nonzero contribution which does not cancel. Moreover, in order for such an
edge to contribute a nonzero contribution, when we integrate out the t th component the
illegal side of the half-node obtained by contracting e will have to lie in the face L.t/.
This is the content of first key lemma, Lemma 6.6. In order to be able to state it, we need
to add notation: specifically, notation that will allow us to keep track of which illegal
half-node corresponds to the t th component of the vector bundle which we integrate out.
For this we present the auxiliary notion of decorations. After performing an iteration
of integration by parts, the second key lemma, Lemma 6.7, transforms integrals over
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the boundaries of the moduli to integrals over the moduli spaces obtained by further
forgetting the illegal half-node. Theorem 6.10 essentially iterates these lemmas, and
uses some other cancellations to obtain a formula for the open intersection numbers as
sums of integrals. It is remarkable that this iterative integration process is performed
without appealing to a specific canonical multisection, and in some sense this is the key
point of the proof. In addition, it gives an alternative proof of the claim that canonical
boundary conditions give rise to well-defined intersection numbers, proven in [31] for
genus 0 and in [35] for g > 0.

Definition 6.2 A decoration D of a graph .G; ŒK�/ 2 SRm
g;k;l

is a choice of sets
Dh � Œd �, for any h 2 s1HB, which are pairwise disjoint and such that

jDhj Dm.h/:

When e D h=s1 we also write De D Dh. For an .S; l/–set L, an L–decoration is a
decoration for which

Dh � Li.h/:

In the next series of claims we shall omit ŒK� from the notation of graded graphs, to
lighten notation.

Denote the collection of all decorations of G by Dec.G/, and the collection of all
L–decorations of G by Dec.G;L/.

Let L.D/ be the l–subset of L given by LjS
h2s1H

B Dh , so that L.D/i D
S
i.h/Di Dh.

For .G; ŒK�/ 2 SRm>0
g;k;l

and a .G;L/–decoration D, define the set

B�1.G;D/� f.G0; e0;D0/ j .G0; e0/ 2 B�1G;D0 2 Dec.G0; L/g

by setting .G0; e0;D0/ 2 B�1.G;D/ exactly when .G0; e0/ 2 B�1G, D0 2 Dec.G0; L/
and D0e �DBe for any e 2 E.G0/ n fe0g. Note that in this case L.D0/ � L.D/, and
the difference is exactly one element.

In the language of the paragraph preceding this definition, L.D/ nL.D0/ is precisely
the element t 2 Œd � which corresponds to the effective bridge e0 in the iterative process.

In order to be able to calculate intersection numbers, we must understand the restriction
of the forms ˛i and !i to the boundary.

Suppose that .G; ŒK�/ 2 SRm
g;k;l

, e 2 Breff.G/ with h its illegal side, K.h/ D 1 and
i 2 Œl �. On M@eG.p/ we have two natural representatives for the angular 1–form,

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2623

˛
@eG
i D ˛Gi j@eMG

and B�˛BeG
i . Similarly, we have two natural choices for the induced

two-forms, !@eGi D !Gi j@eMG
and B�!BeG

i .

Notation 6.3 Write ˇi Dˇ
@eG
i D˛

@eG
i �B�˛BeG

i and Bi DB
@eG
i D!

@eG
i �B�!BeG

i .

Observation 6.4 With the above notation , if i ¤ i.e/, then Bi D ˇi D 0. Otherwise
we have

p2i ˇi D `s2hd`s�12 h and p2i Bi D d`s�12 h ^ d`s2h:

Unlike the forms ˛i , the form ˇi is pulled back from the combinatorial moduli, since
it has no angular variables.

Proof For i ¤ i.h/, the forms restricted from MG and those pulled back from MBeG

are canonically identified. Suppose i D i.h/; we handle Bi . The proof for ˇi is similar.
We have `e D 0, hence also d`e D 0 on @eMG . Thus the only difference between
!@eG and B�!BeG

i is that the former may contain terms with d`s2h or d`s�12 h, while
the latter depends only on their sum, by the definition of Be . Choose a good ordering n
in the sense of Definition 5.30, so that half-edges of the i th face appear first, and some
half-edge h0 ¤ h; s2h is the first edge in the ordering. One can always find such a
half-edge. Otherwise, the i th face is bounded by exactly two edges, h and s2h, which
therefore must be a boundary half-edge, and in particular K.s2h/D 1. But then the
sum of K on the i th face is even, which is impossible for a Kasteleyn orientation.

In BeG we choose a good ordering n0 for which h0, identified as an edge of BeG, is
the first half-edge. Suppose s�12 h is the j th half-edge in n, so that h and s2h are the
j C 1st and j C 2nd edges. Write `a for `n�1.a/. Then

p2i !
G
i j@eMG

D

X
a<b

d`a ^ d`b

D

X
a<b

a;b¤j;jC1;jC2

d`a ^ d`bC
X
a<j

d`a ^ .d j̀ C d j̀C2/

C

X
jC2<a

.d j̀ C d j̀C2/^ d`aC d j̀ ^ d j̀C2

D p2i B
�!

BeG
i C d j̀ ^ d j̀C2:

In the last equality we used the fact that `BeG
n
0�1.j /

D `n�1.j /C`n�1.jC2/, and for a¤ j ,

`
BeG
n
0�1.a/

D `eaCw.a/ ; where w.a/D
�
0 if a < j;
2 otherwise.
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Notation 6.5 Recall Notation 4.37 and Remark 3.5. For G and e as above, given a
.S; l/–set L and i 2 S , we define the form ˆiL on the sphere bundle SL! @eMG by

ˆiL Dˆ.frj gj2S ; f˛
0
j gj2S ; f!

0
j gj2S /Dˆ

@eG.frj gj2S ; f˛
0
j gj2S ; f!

0
j gj2S /;

where ˛0j is a copy of B�˛BeG
L.j /

for j ¤ i , and ˛0i D ˇL.i/. Similarly, !0j D B�!BeG
L.j /

,
unless j D i , and then !0i D BL.i/. As usual, x̂ iL D p

2LˆiL. As in Remark 3.5, when
S � Œd � we will also extend the domain of ˆiL by allowing

P
i2S r

2
i to vary.

From now until the end of this subsection, we fix a .d; l/–set L, and let EL be the
corresponding bundle.

Lemma 6.6 Let s be a special canonical multisection of EL. Take G 2 SRm
g;k;l

arbitrary and e an effective bridge of G, with h its illegal side. Letting D0 be an
L–decoration of G, write L0 D L.D0/. ThenZ

@eMG.p/

s�.WG x̂LnL0/D
X

j2.LnL0/i.h/

Z
@eMG.p/

WGs
�. x̂

j

LnL0
/:

It should be noted that different decorations D0 and D00 which determine the same set
L.D0/ D L.D00/ will give rise to the same integral. The decorations, as mentioned
above, are introduced only in order to keep track of the combinatorics of integrals that
will appear in the iterative integration process below.

Proof Write S D
S
h2s1HB D0h, so that L0 W S ! Œl � is a restriction of L W Œd �! Œl �.

We first use (19) and Notation 4.37 to write ˆLnL0 explicitly:

(33) ˆLnL0.frigi2Sc ; fy̨igi2Sc ; f y!igi2Sc /

D

jSc j�1X
kD0

2kkŠ
X
i2Sc

r2i y̨i ^
X

I�Scnfig
jI jDkj

V
j2I

.rj drj ^ y̨j /^
V

h…I[fig

y!h;

where y!j is Kontsevich’s two-form !L.j /, and y̨j is a copy of Kontsevich’s one-
form ˛L.j /. This is a form of degree dimR M@eG D dimR MBeG C 1. We obtain
ˆi
LnL0

by the same formula, after replacing y̨i and y!i by ˇL.i/ and BL.i/, respectively.

Now, the function WG does not depend on variables of the fiber of the sphere bundle,
hence it can be taken out of the pullback. By the definitions of the forms we can write

y̨j D B� y̨BeGj CˇL.j / and y!j D B�!BeG
L.j /
CBL.j /;
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where y̨BeGj is a copy of ˛BeG
L.j /

. We now substitute this in x̂LnL0 , and expand (33)
multilinearly.

Write i D i.h/ 2 Œl �. Any term containing ˇa or Ba for a ¤ i will vanish, by
Observation 6.4.

Similarly, any term in the expansion that contains either ˇa twice, or Ba twice, or ˇi
and Bi once, will vanish, as a consequence of a multiple appearance of d`s�12 h.

By Proposition 5.46, sj@eMG
is pulled back from MBeG . Now, a term in s�ˆLnL0

with no Bi or ˇi is pulled back from MBeG . But its degree is dimR MBeG C 1. Thus,
it vanishes for dimensional reasons.

We are left with terms containing a single ˇi or Bi . These ˇi or Bi are in fact ˇL.j /
or BL.j / for some j 2 Sc which is mapped by L to i , meaning j 2 .L nL0/i . The
lemma follows.

The second main lemma we need is the following.

Lemma 6.7 Fixm>0,G 2SRm
g;k;l

andD 2Dec.G;L/, and write L0DL.D/. Then

(34)
X

.G0;e0;D0/2B�1.G;D/

Z
M@e0G

0 .p/

WG0s
�. x̂ @e0G

0

/
L0nL.D0/

LnL.D0/

D

Z
MG.p/

WG x!LnL0 C

Z
@MG.p/

WGs
�. x̂G/LnL0 :

Importantly,
R
MG.p/

WG x!LnL0 does not depend on the multisection s, so this lemma
pushes the dependence on s to lower-dimensional moduli. After iterating, it will allow
us to completely remove the dependence of the integrals on s. This phenomenon is
expected, from the geometric point of view, since it was proven in [35; 31] that the
intersection numbers should be independent of the specific canonical multisection. And
indeed, the lemma is enabled by the properties of canonical multisections, and will not
be true for arbitrary, noncanonical, boundary conditions.

Proof For convenience we treat the case jAut.G/j D 1; the general case is handled
similarly, but notation becomes more complicated. Put

E 0 D fe 2E.G/ jm.e/ > 0g:

Recall Notation 5.42. Suppose .G0; e0/ 2 B�1G is B�1e;aC1G for some e 2 E 0 and
aC 1 2 Œm.e/�. Fix h 2De, and let

D.G0; h/ WD fD0 j .G0;D0/ 2 B�1.G;D/; h … L.D0/g:
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In words, D.G0; h/ is the set of decorations of G0 in B�1.G;D/ such that the only
element of L0 that they miss is h. Such decorations are determined by how we split the
elements in De n fhg into sets of sizes a and m.e/� 1� a that will decorate the two
edges in B�1e0 e— the edges which, after contracting e0 and forgetting its illegal side,
form e. Thus,

jD.G0; h/j D
�m.e/�1

a

�
:

Let e1 D s�12 e0 and e2 D s2e0 be the two half-edges of G0 mapped under Be0 to e. As
explained, m.e1/D a and m.e2/Dm.e/�a�1. Put `0e D `e1 . For fixed G0 and h we
have the equalityZ

M@e0G
0 .p/

WG0s
� x̂L

0nL.D0/

LnL.D0/
D

Z
M@e0G

0 .p/

WG0s
� x̂h

LnL.D0/;

hence the left-hand side of this equation is independent of D0. We will now show that

(35)
X

D02D.G0;h/

Z
M@e0G

0 .p/

WG0s
� x̂h

LnL.D0/

D

Z
MG.p/

�m.e/�1
a

�� Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C 1/Š

�

�

Z `e

0

.`0e/
2a.`e � `

0
e/
2.m.e/�a�1/

.aC 1/Š .m.e/� a/Š
.Ae;hCBe;hCCe/;

where

Ae;h D r
2
h.`e�`

0
e/d`

0
e^

X
n�0

2nnŠ
X
jI jDn
I�LnL0

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.I[L0/

x!L.j /;

Be;h D rh drh^.`e�`
0
e/d`

0
e^

X
i2LnL0

r2i y̨i

^

X
n�0

2.nC1/.nC1/Š
X
jI jDn

I�Ln.L0[fig/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /;

Ce D d`
0
e^d`e^

X
i2LnL0

r2i y̨i

^

X
n�0

2nnŠ
X
jI jDn

I�Ln.L0[fig/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /;
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where y̨i is a copy of x̨L.i/. Before proving this equation, observe that Ae;h, Be;h and
Ce depend on the multisection s through the sphere bundle fiber variables ri D ri .s/ and
x̨i D x̨i .s/, but we omit s from the notation. However, because s is special canonical,
it follows from the second item of Proposition 5.46 that s.x; `0e/ for x 2MG and
`0e 2 Œ0; `e� depends only on x and not on `0e , where we have used the identification of
Proposition 5.48. Thus, the same is true for the variable ri and the form y̨i . Therefore,
importantly, Ae;h, Be;h and Ce are independent of a, and their only dependence on `0e
and d`0e is through the terms which explicitly involve them.

The last equation follows from the following facts. First, the multiplicity�
m.e/� 1

a

�
comes from summing over the different decorations D0, which all give the same
contribution. Second, the term in WG0 for the edge f 2E 0 n feg is

`
2m.f /

f

.m.f /C 1/Š
:

The corresponding terms for e1 and e2 are, respectively,

.`0e/
2a

.aC 1/Š
and

.`e � `
0
e/
2.m.e/�a�1/

.m.e/� a/Š
;

Third, Proposition 5.48 reduces the integration over M@e0G
0.p/ to the repeated integral

obtained by first integrating over MG.p/ and then over the location of the node on the
edge e, which is encoded by `0e . This inner integration is precisely the integration

R `e
0

(with respect to d`0e). Next, recall that, with S D
S
h2s1HB Dh,

x̂h
LnL0.frigi2Sc ; fy̨igi2Sc ; f y!igi2Sc /

D

jSc j�1X
kD0

2kkŠ
X
i2Sc

r2i y̨i ^
X

I�Scnfig
jI jDk

V
j2I

.rj drj ^ y̨j /^
V

f …I[fig

y!f ;

where for j ¤ h, y!j D x!L.j / and y̨j is a copy of x̨L.j /, while y!h D p2hBL.h/ and
y̨h D p

2
h
ˇh. Using Observation 6.4, the sum of terms which have i D h in the second

summation is precisely Ae;h. The sum of terms with i ¤ h in which I contains h
is Be;h, while the remaining terms sum to Ce.
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We shall use the following proposition.

Proposition 6.8 We have

(a)
m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx D

y2m

.mC 1/Š
;

(b)
m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx D

2y2m�1

.mC 1/Š
:

Still fixing e and h 2De, we now apply Proposition 6.8, the fact that Ae;h, Be;h and
Ce are independent of a, and that ri and y̨i are independent of `0e , to sum equation (35)
over .G0a; e

0
a/ WD B�1e;aC1G, where aD 0; : : : ; m.e/� 1.

We obtain

(36)
m.e/�1X
aD0

X
D02D.G0a;h/

Z
M@e0G

0 .p/

WG0s
�ˆhLnL.D0/

D

Z
MG.p/

Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C1/Š

�
`
2m.e/
e

.m.e/C1/Š
. zAe;hC zBe;h/C

2`
2m.e/�1
e d`e

.m.e/C1/Š
^Y

�
;

where

zAe;h D r
2
h

X
m�0

2mmŠ
X
jI jDm
I�LnL0

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.I[L0/

x!L.j /;

zBe;h D�rh drh ^
X

i2LnL0

r2i y̨i

^

X
m�0

2.mC1/.mC 1/Š
X
jI jDm

I�Ln.L0[fig/

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /

and

Y D
X

i2LnL0

r2i y̨i ^
X
m�0

2mmŠ
X
jI jDm

I�Ln.L0[fig/

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /:
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The next step is to eliminate rh terms, for h 2 L0. For this, put

XD

�
1�

X
h2LnL0

r2h

�X
m�0

2mmŠ
X
jI jDm
I�LnL0

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.I[L0/

x!L.j /

C

� X
h2LnL0

rh drh

�
^

X
i2Ln.L0[fhg/

r2i y̨i

^

X
m�0

2.mC1/.mC1/Š
X
jI jDm

I�Ln.L0[fi;hg/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /:

Then sinceX
h2L0

r2h D 1�
X

h2LnL0

r2h and
X
h2L0

rh drh D�
X

h2LnL0

rh drh;

we obtain X
e2E 0

h2De

. zAe;hC zBe;h/DX:

Therefore, summing equation (36) over e 2E 0 and h 2De gives

(37)
X

.G0;e0;D0/2B�1.G;D/

Z
M@e0G

0 .p/

WG0s
� x̂L.D/nL.D

0/

LnL.D0/

D

Z
MG.p/

� Y
f 2E 0

`
2m.f /

f

.m.f /C 1/Š

�
X

C

Z
MG.p/

� X
e2E 0

� Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C 1/Š

�
2m.e/`

2m.e/�1
e d`e

.m.e/C 1/Š

�
^Y;

where the factor m.e/ in the last term comes from the cardinality of De and the
summation over h. Observe that Y DˆLnL0 , where we stress that we do not requireP
h2LnL0 r

2
h
D 1, as in Remark 3.5. X here is the same as Z there, after substituting

L nL0 for Œn�, y̨i for ˛i and x!L.i/ for !i . Thus, Remark 3.5 immediately gives that
the right-hand side of (37) isZ

MG.p/

�Y
e2E 0

`
2m.e/
e

.m.e/C 1/Š

V
i2LnL0

x!L.i/C d

� Y
e2E 0

`
2m.e/
e

.m.e/C 1/Š
x̂
LnL0

��
:

The claim now follows from Stokes’ theorem.
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Proof of Proposition 6.8 We first prove part (b). Write

f .x/D

1X
mD0

x2m

mŠ .mC 1/Š
:

The identity we need to prove is equivalent to

.f �f /.x/D f 0.x/;

where � is the convolution

.f �g/.x/D

Z x

0

f .y/g.x�y/ dy:

Using the Laplace transform, the last equation is equivalent to

F 2.�/D �F.�/� 1;

where
F.�/D

Z 1
0

e��xf .x/ dx

is the Laplace transform of f . Expanding F we obtain

(38) F D

1X
mD0

1

mŠ .mC 1/Š

Z 1
0

e��xx2mdx D

1X
mD0

.2m/Š

mŠ .mC 1/Š
��2m�1

D ��1
1�
p
1� 4��2

2��2
D �

1�
p
1� 4��2

2
:

The third equality is a consequence of the general binomial formula. Thus, we are left
with verifying that

F 2.�/D 1
2
�2.1�

p

1� 4��2/� 1D �F.�/� 1;

which is straightforward.

The first identity is a consequence of the second. Indeed, Write

Im D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx;

Jm D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx:

It suffices to show that
Im D

1
2
yJm:
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Indeed,

(39) Im D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx

D y

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx

�

m�1X
aD0

�m�1
a

� Z y

0

x2aC1.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx

D yJm�

m�1X
aD0

�m�1
a

� Z y

0

.y � t /2aC1t2.m�a�1/

.aC 1/Š .m� a/Š
dx

D yJm� Im;

where the second equality follows from opening one .y�x/ term, and the third follows
from the substitution t D y � x.

In order to be able to write an expression for the open intersection numbers we need
the following observation.

Observation 6.9 Suppose G 2 SRm
g;k;l

, and let e be an edge with m.e/ > 0. Then for
any decoration D, Z

@eMG.p/

WGs
� x̂

LnL.D/ D 0:

Proof It follows from the definition of WG that WG jM@eG.p/
D 0 identically.

We can now state and prove the integral form of the combinatorial formula. We recall
that d D 1

2
.3g� 3C kC 2l/.

Theorem 6.10 Let L W Œd �! Œl � be a .d; l/–set , with ai D jLi j for i 2 Œl �. Then

(40) p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i D

X
G2OSR�

g;k;l

X
D2Dec.G;L/

Z
MG.p/

WG x!LnL.D/;

where the collection OSRm
g;k;l

for m� 0 is defined in Definition 5.36.

Proof Define

Am D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/;

Sm D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

Z
@M.G;ŒK�/.p/

WGs
� x̂

LnL.D/;

Geometry & Topology, Volume 27 (2023)



2632 Ran J Tessler

where s is a nowhere-vanishing special canonical multisection. We will begin by
showing that

(41) Sm D AmC1CSmC1;

and that

(42) p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i D A0CS0:

For the first claim, consider Sm. Recall that for any G,

@M.G;ŒK�/ D

[
Œe�2ŒE.G/�

@eM.G;ŒK�/ D

[
Œe�2ŒE.G/�

M@e.G;ŒK�/:

Since for different edges the boundary cells intersect in positive codimension, the
integral over the union is just the sum over the edges e of the integrals over @eM.G;ŒK�/.

For an edge e which is not a bridge or a boundary loop, by Corollary 5.50 we know
that @eM.G;ŒK�/.p/D�@eM.Ge;ŒKe�/.p/, considered as oriented orbifolds, with the
orientation induced as a boundary.

Now, Dec.G;L/ and Dec.Ge; L/ are the same sets, and it is easy to see that

WG j@eM.G;ŒK�/
DWGe j@eM.Ge;ŒKe�/

:

Thus, given a decoration D, and using the first item of Proposition 5.46,Z
@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D�

Z
@eM.Ge;ŒK�/.p/

WGes
� x̂

LnL.D/:

For an effective loop e, the same argument, only using Corollary 5.51 instead of
Corollary 5.50, and item (c) of Proposition 5.46 instead of item (a), shows that given a
decoration D,Z

@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D�

Z
@eM.Ge;ŒK�/e .p/

WGes
� x̂

LnL.D/:

We should note that this is the second place that we use s being special canonical.

If e is a bridge or a boundary loop which is not effective, from Observation 6.9, for
any decoration D, Z

@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D 0:
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Thus, we can write

Sm D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

X
Œe�2ŒBreff.G/�

Z
M@e.G;ŒK�/.p/

WGs
� x̂

LnL.D/:

Applying Lemma 6.6, we obtain

Sm DX
.G;ŒK�/2SRm

g;k;l

X
D2Dec.G;L/

X
Œe�2ŒBreff.G/�

X
j2.LnL.D//i.e/

Z
M@e.G;ŒK�/.p/

WGs
� x̂ j

LnL.D/
:

When e is an effective bridge, then G0 D Be.G; ŒK�/ 2 SRmC1
g;k;l

. We should note
that this operation is also responsible for the appearance of ghost components, which
result from contracting a boundary edge between two legal boundary tails. In ad-
dition, j 2 .L n L.D//i.e/ induces a single decoration D0 of G0, which is defined
by .G;D/ 2 B�1.G0;D0/ and j 2 L.D0/. Moreover, any .G0; ŒK 0�/ 2 SRmC1

g;k;l
with

D0 2 Dec.G0; L/ is obtained in this way; see Observation 5.41. Hence, we can apply
Lemma 6.7 and get

Sm D
X

.G;ŒK�/2SRmC1
g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/

C

X
.G;ŒK�/2SRmC1

g;k;l

X
D2Dec.G;L/

Z
@M.G;ŒK�/.p/

WGs
� x̂

LnL.D/

D AmC1CSmC1;

as claimed.

For the second claim, using Lemma 4.47, we can write

p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;ŒK�/2SR0

g;k;l

Z
M.G;ŒK�/.p/

x!L

C

X
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L:

Note that this is the nonnodal case, so all bridges and boundary loops are effective
and the decorations are empty. The cancellation-in-pairs argument used above for the
contribution of the integrals over edges which are neither boundary loops nor bridges
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shows, in particular, thatX
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L

D

X
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒE.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L D S0;

which, combined with the previous equation, gives (42).

Iterating (41) for m� 0 and using (42), we see that the left-hand side of equation (40)
is
P
m�0Am.

We now claim:

Proposition 6.11 If G is a nodal graph such that on at least one boundary component
there is an even total number of boundary marked points and legal nodes , thenZ

M.G;ŒK�/.p/

WG x!LnL.D/ D 0:

The proof is given in Section 6.2; see Lemma 6.19. Thus,X
m�0

Am D
X
m�0

X
.G;ŒK�/2OSRm

g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/;

as claimed.

Observation 6.12 We have

jDec.G;L/j D
� Li
fm.e/ j e 2E; i.e/D ig

�
D

Y
i2Œl�

Li Š�Q
fe2E ji.e/Digm.e/Š

��
Li �

P
fe2E ji.e/Digm.e/

�
Š
:

Thus, with the above notation, we have

2
1
2
.gCk�1/

Y
i2Œl�

p
2ai
i h�a1 � � � �al�

k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

� Y
i2Œl�

� ai
fm.e/ je2E; i.e/D ig

��Z
M.G;ŒK�/.p/

WG x!LnL.D/

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

� Y
i2Œl�

ai Š�
ai�

P
fe2E ji.e/Digm.e/

�
Š

�Z
M.G;ŒK�/.p/

�WG x!LnL.D/;
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where �WG is defined in Definition 6.1, and D 2 D.G;L/ are arbitrary decorations.
Summing over all possible L and dividing by dŠ we get

(43) 2
1
2
.gCk�1/

X
P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
h�a1 � � � �al�

k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Z
M.G;ŒK�/.p/

�WG x!d�m

.d �m/Š
:

Dimensional reasons give:

Observation 6.13 Let L0 be an l–set , and let .G; ŒK�/ 2OSR�
g;k;l

. Suppose that for
some component C 2 C.G; ŒK�/,

dim.C / <
X
i2I.C/

L0i :

Then
R
MG

f!L0 D 0 for any function f .

Now, x! D
P
C2C.G/ x!

C , where x!C D
P
i2I.C/ x!i . Thus, together with the observa-

tion, we get the following:

Corollary 6.14 We have

�WG x!d�m

.d �m/Š
D

Y
C2C.G/

�WC .x!C /dim.C/

dim.C /Š
:

Thus ,

(44)
X

P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
2
1
2
.k�1/

h�a1 � � � �al�
k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Z
M.G;ŒK�/.p/

�WG Y
C2C.G;ŒK�/

.x!C /dim.C/

dim.C /Š

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š
:

In the above formula there may appear components C with dim.C /D 0. These are
precisely the ghost components and the genus 0 components with one internal tail and
one legal boundary tail.
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6.2 Power of 2

We aim now to gain a better understanding of the forms
V
dpi ^ .x!

d=dŠ/ and o.G;ŒK�/
and their ratio.

Definition 6.15 For .G; ŒK�/ 2 SR�
g;k;l

, define s.G; ŒK�/ to be the sign of

V
dpi ^

x!d

dŠ
W o.G;ŒK�/:

For G 2R�
g;k;l

, define

cspin.G/D
X

ŒK�2ŒK.G/�

s.G; ŒK�/:

Lemma 6.16 For G 2 SR�
g;k;l

,

V
dpi ^

x!d

dŠ
W o.G;ŒK�/ D s.G; ŒK�/cspin.G/2

jV I .G/j:

In particular , cspin.G/� 0.

Proof Both the left-hand side and the right-hand side are multiplicative with re-
spect to taking nonnodal components, by the first statement in Corollary 6.14 and the
construction of o.G;ŒK�/. Thus, it is enough to prove the lemma for graphs in SR0

g;k;l
.

Recall that any class ŒK� of Kasteleyn orientations is of size 2jV
I .G/j, by Lemma 5.8.

In addition, by Lemma 5.29, the o.G;K/ for different K 2 ŒK� are equal. Thus, the
lemma is equivalent to the equality

(45)
V
dpi ^

x!d

dŠ
D

X
K2K.G/

o.G;ŒK�/:

Recall that x! D
Pl
iD1 x!i . Fix a good ordering n. To prove equation (45), it will be

more comfortable to work with new variables `h; h 2H I , instead of `e; e 2E. Set

HK;i D
n
h 2HK

ˇ̌ h
s2
D i

o
; dK;i D

jHK;i j � 1

2
;

pK;i D
X

h2HK;i

`h; x!K;i D
X

h1;h22HK;i
n.h1/<n.h2/

d`h1 ^ d`h2
:

Remark 6.17 Only x!K;i depends on the ordering n. For different orders the change
in x!K;i is of the form dpK;i ^ dx, where x is a linear combination of fd`hgh 2HK;i .
Thus, for any a, the form dpK;i ^ x!

a
K;i is independent of n.
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Express each dpi by
P
h2Hi

d`h, and express also each x!i in the fd`hgh2HI basis as
above. Our next aim is to show that

(46)
V
dpi ^

x!d

dŠ
D

X
K2K.G/

V
i2Œl�

dpK;i ^
x!
dK;i
K;i

dK;i Š
.mod I /;

where I is the ideal .d`h � d`s1h/h2HI . In order to show equation (46) we expandV
dpi ^ .x!

d=dŠ/ multilinearly, in terms of fd`hgh2HI , without cancellations. Any
monomial which appears in this expression and contains exactly one of d`h; d`s1h
for any h 2H I defines a unique Kasteleyn orientation K, defined by K.h/D 1 if and
only if d`h appears in the monomial. This is indeed a Kasteleyn orientation since any
h 2 s1H

B has K.h/D 1, and for any i 2 Œl �, an odd number of variables of half-edges
appear: one comes from dpi , and the others come in pairs via powers of x!i .

It is transparent that any Kasteleyn orientation K 2 K.G/, is generated this way.
Moreover, regrouping all terms which correspond to the same Kasteleyn orientation,
and using the identity� 2mC1X

iD1

xi

�
^

�P
i<j xi ^ xj

�m
mŠ

D x1 ^ x2 ^ : : :^ x2mC1;

we get equation (46).

The “In particular” follows from the fact that
V
dpi ^ .x!

d=dŠ/ and s.G; ŒK�/o.G;ŒK�/
have the same sign.

Proposition 6.18 For G 2 SR0
g;k;l

and e … Br.G/[Loop.G/,

cspin.G/D cspin.Ge/:

Proof It follows from Lemma 6.16 that

cspin.G/D˙
X

ŒK0�2ŒK.G/�

o.G;ŒK0�/ W o.G;ŒK�/

for any fixed ŒK� 2 ŒK.G/�. If K;K 0 2K.G/, then by the orientability of the moduli,
Theorem 5.32, we see that

o.G;ŒK�/ W o.G;ŒK0�/ D o.Ge;ŒKe�/ W o.Ge;ŒK0e�/;

as .G; ŒK�/; .Ge; ŒKe�/ and .G; ŒK 0�/; .Ge; ŒK 0e�/ parametrize adjacent cells. Thus,
cspin.G/D˙cspin.Ge/. But cspin � 0, hence the equality.
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Lemma 6.19 If G 2Rm
g;k;l
nORm

g;k;l
, then cspin D 0.

Proof Again, as cspin is multiplicative in nonnodal components, it is enough to consider
the case of nonnodal graphs. Let @†b be a boundary with an even number of boundary
marked points. Note that given a surface † and a boundary component @†b , graded
spin structures on † can be partitioned into pairs which differ exactly in the lifting
of @†b . Thus, we can partition ŒK.G/� into pairs which differ exactly in the boundary
conditions at @†b . In combinatorial terms, for any pair f.G; ŒK1�/ and .G; ŒK2�/g in
the partition we can find K1 2 ŒK1� and K2 2 ŒK2� which agree everywhere, except
on edges with exactly one vertex in @†b , where they disagree. We shall show that
s.G; ŒK1�/D�s.G; ŒK2�/.

As a consequence of Proposition 6.18, cspin.G; ŒK�/D cspin.Ge; ŒKe�/ for G 2R0
g;k;l

and e … Br.G/[Loop.G/. By performing enough such Feynman moves at boundary
edges of G, see Figure 14 moves (b) and (c), we may assume only one nonboundary
edge emanates from @†b . Let 2a denote the number of the boundary marked points
on @†b . Note that @†b is part of the boundary of a single face, say face 1. Let h and
s1.h/ be the internal half-edges which touch @†b . Choose a good ordering n on G,
so that n.h/ D 1, n.h1/ D 2; : : : ; n.h2aC1/ D 2aC 2 and n.s1h/ D 2aC 3, where
hi 2 H

I are the other half-edges on @†b . This can always be done, possibly after
interchanging h and s1h. Choose any K1 2 ŒK1� and K2 2 ŒK2�, which differ only in
their values at h and s1h. Thus, the sign difference between o.G;ŒK1�/ and o.G;ŒK2�/
is just .�1/2aC1 D�1, since we change only the location of the variable d`h=s1 , by
2aC 1 spots. As claimed.

We can now prove Proposition 6.11.

Proof By Lemma 6.16, the proposition is equivalent to cspin.G/D 0. But cspin.G/DQ
C2C.G/ cspin.C/, which is 0 by Lemma 6.19.

We can now also prove Corollary 5.51.

Proof As above, it is enough to prove it for smooth G. The case where e is a
boundary loop is a special case of the graph considered in the proof of Lemma 6.19,
and in particular we see that the orientation expressions for .G; ŒK�/ and .Ge; ŒKe�/
are opposite. Recall that the map ‰comb preserves the edge-lengths of all edges, but
changes the Kasteleyn orientation to ŒKe�. By contracting these orientation expressions
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with the vector �@=@`e, we see that the induced orientation on @eM.Ge;ŒKe�/ and the
.‰comb/�–pushforward of the induced orientation on @eM.G;ŒK�/ are opposite.

Lemma 6.20 For G 2OR0
g;k;l

, we have

cspin.G/D 2
1
2
.gCb�1/;

where g is the genus of G, and b is the number of boundaries. For G 2ORm
g;k;l

,

cspin.G/D
Y

cspin.Gi /;

where Gi are the smooth components of G.

Proof Again it is enough to consider nonnodal graphs. By Lemma 6.16, cspin.G/� 0.
By Proposition 6.18 cspin.G; ŒK�/ D cspin.Ge; ŒKe�/, whenever G 2 OSR0

g;k;l
and

e …Br.G/[Loop.G/. Thus, it is enough to calculate cspin for the graph xG, where G is
the graph constructed in Example 5.18; see Figure 17. We shall work with the notation
of that example. We shall order the faces according to their labels, and we choose an
ordering n of the edges of face 1 such that a1 is the first edge. Choose a Kasteleyn
orientation and write

oG DW1^W2^ � � �^Wgs ^d`h2 ^d`x2 ^ � � �^d`hl ^d`xl ^d`e1;0 ^ � � �^d`e1;k1

^R^ d`y2 ^ � � � ^ d`yl ;

where Wi is the wedge of d`ai ; d`bi ; d`ci ; d`di ; d f̀i ; d`gi , according to the order
induced byK, and R is the wedge of the remaining variables, according to the ordering.
The ordering n, restricted to the half-edges which are involved in Wi , is

ai ; fi ; di ; xgi ; ci ; xfi ; bi ; gi :

There are four possibilities for K. xfi / and K.xgi /. Let K0i denote the set of possibilities
with K. xfi /K.xgi /D 0. Let K1i be the singleton made of the remaining possibility. One
can check by hand that the form Wi is constant in K0i , and minus that constant in the
fourth possibility.

The ordering restricted to the remaining edges is

b1;2; e2;k2C1; b2;3; e3;k3C1; : : : ; bb�1;b; eb;0; eb;1; : : : ; eb;kb ;
xbb�1;b;

eb�1;0; eb�1;1; : : : ; eb�1;kb�1 ;
xbb�2;b�1; eb�2;0; : : : ; e2;k2

xb1;2:

The only freedom inK is in the values ofK.bj;jC1/. The relative order of these edges is

b1;2; b2;3; : : : ; bb�1;b; xbb�1;b; : : : ; xb1;2:
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Observe that between bj;jC1 and xbj;jC1 in the ordering, there is an even number of
half-edges. Thus, different assignments of K.bj;jC1/ do not change the orientation oG .
There are 2b�1 such assignments, where b is the number of boundary components.

To summarize, s.G; ŒK�/ depends only on
P
i K.

xfi /K.xgi /, which is just the parity of
the graded spin structure (see Remark 5.19), and different parities give rise to different
signs. By the calculation in Remark 5.19 we see that cspin.G/ D ˙2

1
2
.g�bC1/Cb�1,

but as it cannot be negative we end with cspin.G/D 2
1
2
.gCb�1/.

Remark 6.21 An analogous power of 2 appears in [25] when one wants to calculate
the Laplace transform of the integral combinatorial formula. The method developed
in this paper is also applicable to that calculation. It shows exactly where this power
of 2 comes from, and how is it connected to spin structures. In fact, our cspin can be
thought as an open analog of the push down of the r D 2–spin Witten’s class to the
spinless moduli; see [39].

Corollary 6.22 For G 2 SR0
g;k;l

,

V
dpi ^

x!d

dŠ
W o.G;ŒK�/ D s.G; ŒK�/2

jV I .G/jC 1
2
.g.G/Cb.G/�1/:

6.3 Laplace transform and the combinatorial formula

As in the closed case, a more compact formula may be obtained after performing a
Laplace transform to Corollary 6.14.

Let �i be the variable dual to pi and write, for e D fh1; h2 D s1h1g,

�.e/D

8̂<̂
:

1

�iC�j
if i.h1/D i and i.h2/D j;

1

m.e/C1

�2m.e/
m.e/

�
�
�2m.e/�1
i if i.h1/D i and h2 2HB :

We also define z�.e/ D 1=�.e/ for an internal edge and z�.e/ D �i.e/ for a boundary
edge of face i .

Applying the transform to the left-hand side of Corollary 6.14 givesZ
p1;:::;pl>0

V
dpie

�
P
�ipi

X
P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D 2dC
1
2
.gCk�1/

X
P
aiDd

Y
i2Œl�

.2ai � 1/ŠŠ

�
2aiC1
i

h�a1 � � � �al�
k
i;

where d D 1
2
.kC 2l C 3g� 3/.
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Transforming the right-hand side leaves us withX
m�0

X
G2OSRm

g;k;l

Z
p1;:::;pl>0

V
dpie

�
P
�ipi

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š

D

X
m�0

X
G2OSRm

g;k;l

Z
p1;:::;pl>0

V
dpie

�
P
z�.e/`e

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š
;

where we have used the fact that the perimeter of a face is the sum of its edges’ lengths.

Recall that Y
C2C.G;ŒK�/

�WC D Y
e2EB.G/

`
2m.e/
e

.m.e//Š .m.e/C 1/Š
:

By Corollary 6.22, applied to .G; ŒK�/ 2OSR0
g;k;l

, we have�V
i2Œl� dpi

� x!d
dŠV

e2E.G/ d`e
D s.G; ŒK�/2jV

I .G/jC 1
2
.g.G/Cb.G/�1/;

where the variables in the denominator are ordered by o.G;ŒK�/, and jV I j, g and b are
the number of internal vertices of G, its genus and the number of boundary components,
respectively. In addition,X

ŒK�2ŒK.G/�

s.G; ŒK�/D cspin D 2
1
2
.gCb�1/;

by Lemma 6.20. Moreover, since Aut.G/ acts on ŒK.G/�, and is sign-preserving, we
see that X

ŒK�2ŒK.G/�

s.G; ŒK�/

jAut.G/j
D

X
ŒK�2ŒK.G/�=Aut.G/

s.G; ŒK�/

jAut.G; ŒK�/j
:

Thus, for a fixed G 2ORmg;k;l , summing over for�1spin.G/ using Observation 5.38, and
recalling that M.G;ŒK�/ 'RE.G/=jAut.G; ŒK�/j, we getX
ŒK�

1

jAut.G; ŒK�/j

Z
p1;:::;pl>0

V
dpie

�
P
z�.e/`e

Y
C2C.G;ŒK�/

Z
RE.C/

�WC .x!C /dim.C/

dim.C /Š

D

Q
C2C.G/ c.C /

jAut.G/j

Y
e2EnEB

Z 1
0

e�
z�.e/`e d`e

Y
e2EB

Z 1
0

e�
z�.e/`e

`
2m.e/
e

m.e/Š.m.e/C1/Š
d`e

D

Q
C2C.G/ c.C /

jAut.G/j

Y
e2E

�.e/;
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where c.C /D 2jV
I .C/jCg.C/Cb.C/�1. Summing over all G 2OR�

g;k;l
,

2dC
1
2
.gCk�1/

X
P
aiDd

lY
iD1

.2ai � 1/ŠŠ

�
2aiC1
i

h�a1 � � � �al�
k
i

D

X
G2OR�

g;k;l

Q
C2C.G/ c.C /

jAut.G/j

Y
e2E

�.e/:

This proves Theorem 1.5.

Open problem 3 The moduli space Mg;k;l is disconnected, and is composed of
components which parametrize different topologies, partitions of boundary markings
along boundary components and graded structures. The boundary conditions of [35; 31]
define in fact an intersection number on each such component, and their sum is what we
denote in this work by h�a1 � � � �al�

kig . Using the techniques presented in this section
one can actually calculate all these refined intersection numbers; see [2]. The inter-
section numbers h�a1 � � � �al�

kig are related to the KdV wave function, and therefore
satisfy many recursion relations. A natural question is whether the refined numbers
also satisfy interesting recursion relations, and whether they are related to an integrable
hierarchy. The paper [2] proposes a conjecture in this direction.

Appendix Properties of the stratification

A.0.1 Proof of Proposition 4.25 Fix sets I, B and P0. For a stable open ribbon
graphG, write MGDRE.G/

C
=Aut.G/. LetGg;B;.I;P0/ be the set of all such graphs with

boundary markings B, internal markings I and internal markings of perimeter zero P0.
We will show that combR maps MR

g;B;I[P0 to
`
Gg;B;.I;P0/

MG.p/ surjectively, and
that it is one-to-one on smooth or effective loci.

Step 1 An antiholomorphic involution % of a connected stable curve X is separating
if X=% is a connected orientable stable surface with boundary. X% is called the real
locus. A half of X is a stable connected subsurface with boundary †�X such that
the composition † ,!X !X=% is a homeomorphism.

A doubled .g;B; I [P0/–surface is a closed stable marked surface X with markings
fxigi2B and fzi ; Nzigi2I[P0 , together with a separating antiholomorphic involution %
and a preferred half †, satisfying

(a) xi 2X
% for all i , and

(b) zi 2 int.†/ for all i .
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Observation A.1 There is a natural one-to-one correspondence between open stable
.g;B; I [ P0–surfaces † and doubled .g;B; I [ P0/–surfaces .X; %;†/, given by
†! .D.†/;†/, where † is taken as a subset of D.†/.

Note that all components of X% which are not isolated points are canonically oriented
as boundaries of the distinguished half.

Step 2 Fix positive fpigi2I . For convenience we denote by xI and xP0 the markings of
Nzi for i 2 I;P0. We now analyze the image of doubled surfaces .X; %;†/ under the
(closed) map combq defined on Mg;kC2l , where the perimeters q are defined so that
the faces of zi and Nzi for i 2 I have perimeter pi , and the other points are boundary
marked points or internal marked with perimeter 0. By the construction for closed
surfaces, the image is a stable ribbon graph G in the sense of Definition 4.2, embedded
in zX DKB[P0[ xP0.X/. Moreover, % induces an involution on zX and G, which we also
denote by %, and by Lemma 4.13 zX% �G. Faces and vertices marked by I[P0 are in
one distinguished half z† of zX , where a half is defined analogously to the above.

Write EB for %–invariant edges. Let HB be their halves which do not agree with
the orientation induced by z†. Write V B for %–invariant vertices. Let V I be vertices
in int.z†/, let H I be either half-edges in s1HB or half-edges which intersect int.z†/,
and let EI D .H I n s1H

B/=s1.

Observation A.2 H I [HB is invariant under s1, and s0 takes H I to H I [HB.

Indeed, if there were h 2 H I and h0 … H I [HB with s0h D h0, then there was a
common face which contained h and s1h0. But then this face would intersect both
int.z†/ and %.int.z†//, which is impossible.

Let v be a vertex, and consider its half-edges. The permutation s0 acts on them, and
also %. Write Bv for the set of s0–cycles which contain an element of HB, and write
Iv for those cycles in H I . It is easy to see that no s0–cycle contains more than two
boundary edges. It follows from the observation that inside a cycle in Bv the half-edges
are s0–ordered as h1; : : : ; h2rC2 so that8<:

h1 2 s1H
B ;

hi 2H
I n s1H

B if i 2 Œr C 1� n f1g;
hi D %.hi�r�1/ if i 2 Œ2r C 2� n Œr C 1�:

In particular, hrC2 2 HB and hi … .H I [HB/ for i 2 Œ2r C 2� n Œr C 2�. Define a
permutation zs0 of H I [HB which is s0 on H I , and otherwise, we are in the scenario
just described, zs0hrC2 D h1.
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Define new marking assignments f I , f B and f P0 as follows: f I maps i 2 I to the
face containing zi , f B maps i 2 B to the vertex xi is mapped to, and f P0 is defined
similarly.

Recall Notation 4.17. Let fIT .g; I; B/ be the set of isotopy types of smooth doubled
.g; I; B/–surfaces. Write fIT .g; I / D IT .g; I /. Clearly there exists a canonical
identification ˛ W fIT .g; I; B/' IT .g; I; B/.

We can enrich the graph .G; %/ with a defect function d on V I [ V B , defined as
follows. Let v 2 V I [V B be a vertex, and consider its preimage Xv in X . If Xv is not
a point, then it is a pointed nodal surface, doubled in case v 2 V B, and otherwise just a
usual closed one, without zi ; Nzi for i 2 I. Some of the special points of Xv correspond
to nodes whose two halves belong to Xv. Smooth Xv along these nodes. There is
a unique topological way to perform the smoothing process on a doubled surface,
which is consistent with the choice of a half, and is such that the resulting surface is
doubled. Define d.v/ 2 IT

�
g.v/Iv [ .f

P0/�1.v/; Bv [ .f
B/�1.v/

�
to be the class

of the smoothed Xv in the doubled case. Otherwise, d.v/ is the unique element in
IT
�
g.v/; Iv [ .f

P0/�1.v/
�
.

The ribbon graphG, together with the involution %, and the doubled data, which consists
of the sets H I ;HB ; V I ; V B and the maps d; f I ; f B ; f P0 is called a doubled ribbon
graph. We see that any doubled surface, together with perimeters as above, is associated
with a doubled graph. Call this association Dcomb. It now follows from definitions that:

Observation A.3 There is a canonical bijection Half between doubled .g;B; .I;P0//–
metric ribbon graphs and open .g;B; .I;P0//–metric ribbon graphs. Half.G/ is the
graph spanned byH I ;HB ; V I ; V B, with permutations zs0 and s1, maps f I ; f B ; f P0 ,
the same genus defect as G and topological defect ˛.d/.

Half.G/ is embedded in z†, which , after defining the corresponding defects , is exactly
KB;P0†.

Thus, by Observations A.1 and A.3, for any†2MR
g;k;l

and perimeters p, the symmetric
JS differential indeed defines a stable open ribbon graph with perimeters p embedded
in KB;P0†.

Step 3 We now show that:

Proposition A.4 The map

combR
WMR

g;B;I[P0 �RI
!

a
Gg;B;.I;P0/

MG
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is a surjection , and in the smooth case , or more generally when unmarked components
are not adjacent and form a moduli of dimension zero , it is in fact a bijection onto its
image.

This proposition is true in the closed case. By the above construction, it will be enough
to show these properties for Dcomb. By the closed theory, from the doubled metric
graph .G; `/ one can reconstruct the unique surface with extra structure zX into which
it embeds, including the complex structure on its marked components. Write q for the
set of perimeters of faces of G. It is evident that the perimeters of faces i and N{ are
the same. The involution on .G; `/ lifts to an involution on zX . For any singular point
v 2 zX which corresponds to the vertex v of the graph, any s0–cycle zv of half-edges
corresponds a new marked point labeled zv in the normalization of z†. We define a
surface X as follows. For a singular v with v 2 V B, replace v by a doubled surface †v
in the isotopy class d.v/. For a singular v 2 V I , replace v and %.v/ by two conjugate
closed surfaces †v and x†v, where †v is in the class of d.v/. Note that †v is not
necessarily stable. Let †1; : : : ; †r be the marked components of z†. Define

X D Stab
��a

Xi [
a

Xv

�ı
�

�
;

where the � identifies a marked point in some †v which corresponds to a s0–cycle zv
with the corresponding point in some †i . Stab is the stabilization map which contracts
an unstable component to a point.

One can easily extend % and the choice of a half to X , and Dcomb.X; q/ D .G; `/,
where q is the set of perimeters.

In the smooth or the more general case described in the statement, we have no freedom
in the reconstruction of X .
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Derived equivalences of hyperkähler varieties

LENNY TAELMAN

We show that the Looijenga–Lunts–Verbitsky Lie algebra acting on the cohomology
of a hyperkähler variety is a derived invariant, and obtain from this a number of conse-
quences for the action on cohomology of derived equivalences between hyperkähler
varieties.

This includes a proof that derived equivalent hyperkähler varieties have isomorphic
Q–Hodge structures, the construction of a rational “Mukai lattice” functorial for
derived equivalences, and the computation (up to index 2) of the image of the group
of auto-equivalences on the cohomology of certain Hilbert squares of K3 surfaces.

14F05, 14J32

1 Introduction

1.1 Background

We briefly recall the background to our results. We refer to Huybrechts [24] for
more details. For a smooth projective complex variety X , we denote by DX the
bounded derived category of coherent sheaves on X . By a theorem of Orlov [37] any
(exact, C–linear) equivalence ˆ W DX1 ��! DX2 comes from a Fourier–Mukai kernel
P 2D.X1�X2/, and convolution with the Mukai vector v.P/2H.X1�X2;Q/ defines
an isomorphism

ˆH
W H.X1;Q/ ��! H.X2;Q/

between the total cohomology of X1 and X2. This isomorphism is not graded, and
respects the Hodge structures only up to Tate twists. Nonetheless, Orlov has conjectured
[38] that ifX1 andX2 are derived equivalent, then for every i there exist (noncanonical)
isomorphisms Hi .X1;Q/Š Hi .X2;Q/ of Q–Hodge structures.

For every X we have a representation

�X W Aut.DX/! GL.H.X;Q//; ˆ 7!ˆH:
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Its image is known for varieties with ample or antiample canonical class (in which
case Aut.DX/ is small and well understood; see Bondal and Orlov [9]), for abelian
varieties — see Golyshev, Lunts and Orlov [18] — and for K3 surfaces. To place our
results in context, we recall the description of the image for K3 surfaces.

Let X be a K3 surface. Consider the Mukai lattice

zH.X;Z/ WD H0.X;Z/˚H2.X;Z.1//˚H4.X;Z.2//:

This is a Hodge structure of weight 0, and it comes equipped with a perfect bilinear form
b of signature .4; 20/. For convenience, we denote by ˛ and ˇ the natural generators of
H0.X;Z/ and H4.X;Z.2// respectively, so that zH.X;Z/D Z˛˚H2.X;Z.1//˚Zˇ.
The pairing b is the orthogonal sum of the intersection pairing on H2.X;Z.1// and the
pairing on Z˛˚Zˇ given by b.˛; ˛/D b.ˇ; ˇ/D 0 and b.˛; ˇ/D�1.

It was observed by Mukai [35] that if ˆ W DX1 ��! DX2 is a derived equivalence
between K3 surfaces, then ˆH restricts to an isomorphism ˆ

zH W zH.X1;Z/! zH.X2;Z/
respecting the pairing and Hodge structures. Denote by Aut.zH.X;Z// the group of
isometries of zH.X;Z/ respecting the Hodge structure, and by AutC.zH.X;Z// the
subgroup (of index 2) consisting of those isometries that respect the orientation on a
four-dimensional positive definite subspace of zH.X;R/.

Theorem 1.1 [22; 26; 35; 36; 39] Let X be a K3 surface. Then the image of �X is
AutC.zH.X;Z//.

In this paper, we prove Orlov’s conjecture on Q–Hodge structures for hyperkähler
varieties, construct a rational version of the Mukai lattice for hyperkähler varieties, and
compute (up to index 2) the image of �X for certain Hilbert squares of K3 surfaces.
The main tool in these results is the Looijenga–Lunts–Verbitsky Lie algebra.

1.2 The LLV Lie algebra and derived equivalences

Let X be a smooth projective complex variety. By the hard Lefschetz theorem, every
ample class �2NS.X/ determines a Lie algebra g��End.H.X;Q// isomorphic to sl2.
More generally, this holds for every cohomology class � 2H2.X;Q/ (algebraic or not)
satisfying the conclusion of the hard Lefschetz theorem. Looijenga and Lunts [33] and
Verbitsky [46] have studied the Lie algebra g.X/� End.H.X;Q// generated by the
collection of the Lie algebras g�. We will refer to this as the LLV Lie algebra. See
Section 2.1 for more details.
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We say thatX is holomorphic symplectic if it admits a nowhere degenerate holomorphic
symplectic form � 2 H0.X;�2X /.

Theorem A (Section 2.4) Let X1 and X2 be holomorphic symplectic varieties. Then
for every equivalenceˆ WDX1 ��!DX2 there exists a canonical isomorphism of rational
Lie algebras

ˆg
W g.X1/

��! g.X2/

with the property that the map ˆH WH.X1;Q/ ��!H.X2;Q/ is equivariant with respect
to ˆg.

Note that g.X/ is defined in terms of the grading and the cup product on H.X;Q/,
neither of which are preserved under derived equivalences.

To prove Theorem A we introduce a complex Lie algebra g0.X/ whose definition is
similar to the rational Lie algebra g.X/, but where the action of H2.X;Q/ on H.X;Q/
is replaced with a natural action of the Hochschild cohomology group HH2.X/ on
Hochschild homology HH�.X/. Since Hochschild cohomology and its action on
Hochschild homology is known to be invariant under derived equivalences, it follows
that g0.X/ is a derived invariant. We show that if X is holomorphic symplectic, then the
isomorphism HH�.X/! H.X;C/ (coming from the Hochschild–Kostant–Rosenberg
isomorphism) maps g0.X/ to g.X/˝Q C. This is closely related to Verbitsky’s “mirror
symmetry” for hyperkähler varieties [46; 47]. From this we deduce that the rational
Lie algebra g.X/ is a derived invariant.

1.3 A rational Mukai lattice for hyperkähler varieties

A hyperkähler (or irreducible holomorphic symplectic) variety is a simply connected
smooth projective variety X for which H0.X;�2X / is spanned by a nowhere degenerate
form.

Let X be a hyperkähler variety. Consider the Q–vector space

zH.X;Q/ WDQ˛˚H2.X;Q/˚Qˇ

equipped with the bilinear form b which is the orthogonal sum of the Beauville–
Bogomolov form on H2.X;Q/ and a hyperbolic plane Q˛˚Qˇ with ˛ and ˇ isotropic
and b.˛; ˇ/ D �1. By analogy with the case of a K3 surface, we will call zH.X;Q/
the (rational) Mukai lattice of X . Looijenga and Lunts [33] and Verbitsky [46] have
shown that the Lie algebra g.X/ can be canonically identified with so.zH.X;Q//;
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see Section 3.1 for a precise statement. Moreover, Verbitsky [46] has shown that
the subalgebra SH.X;Q/ of H.X;Q/ generated by H2.X;Q/ forms an irreducible
sub-g.X/–module. Using this, we show that Theorem A implies:

Theorem B (Section 4.2) Let X1 and X2 be hyperkähler varieties and

ˆ W DX1 ��! DX2

an equivalence. Then the induced isomorphism ˆH restricts to an isomorphism
ˆSH W SH.X1;Q/ ��! SH.X2;Q/.

Taking X1 DX2 DX in Theorem B we obtain a homomorphism

�SH
X W Aut.DX/! GL.SH.X;Q//:

The complex structure on a hyperkähler varietyX induces a Hodge structure of weight 0
on zH.X;Q/ given by

zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

Denote by Aut zH.X;Q/ the group of Hodge isometries of zH.X;Q/.

Theorem C (Section 4.2) Let X be a hyperkähler variety of dimension 2d and
second Betti number b2. Assume that b2 is odd or d is odd. Then �SH

X factors over a
map �zHX W Aut.D.X//! Aut.zH.X;Q//.

See Sections 3.2 and 4.2 for an explicit description of the implicit map

Aut.zH.X;Q//! GL.SH.X;Q//:

Note that all known hyperkähler varieties satisfy the parity conditions in the theorem:
there are two infinite series of deformation classes with odd b2 (generalized Kummers
and Hilbert schemes of points), and three exceptional deformation classes with odd d
(K3, OG6, OG10).

1.4 Hodge structures of derived equivalent hyperkähler varieties

Another application of Theorem A is the following:

Theorem D (Section 5) Let X1 and X2 be derived equivalent hyperkähler varieties.
Then for every i the Q–Hodge structures Hi .X1;Q/ and Hi .X2;Q/ are isomorphic.

This confirms Orlov’s conjecture for hyperkähler varieties. The proof is inspired by
Soldatenkov [43].
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1.5 Auto-equivalences of the Hilbert square of a K3 surface

In the second half of the paper we consider the problem of determining the image
of �X for certain hyperkähler varieties. An important difference with the first half of
the paper is that integral structures (lattices, arithmetic subgroups, . . . ) will play an
important role here.

As a first approximation to determining the image of �X , we consider a variation of
this problem which is deformation invariant. Let X be a smooth projective complex
variety. If X 0 and X 00 are smooth deformations of X (parametrized by paths in the
base), and if ˆ W DX 0 ��! DX 00 is an equivalence, then we obtain an isomorphism as
the composition

H.X;Q/! H.X 0;Q/ ˆ
H
�! H.X 00;Q/! H.X;Q/:

We define the derived monodromy group of X to be the subgroup DMon.X/ of
GL.H.X;Q// generated by all these isomorphisms. This group contains both the
usual monodromy group of X and the image of �X W Aut.DX/! GL.H.X;Q//.

If S is a K3 surface, then the result of Huybrechts, Macrì and Stellari [26] implies
DMon.S/ D OC.zH.S;Z//, and that the image of �S consists of those elements of
DMon.S/ that respect the Hodge structure on zH.S;Z/. Similarly, for an abelian
variety A, the results of [18] imply DMon.A/ D Spin.H1.A;Z/˚H1.A_;Z//, and
that the image of �A consists of those elements of DMon.A/ that respect the Hodge
structure on H1.A;Z/˚H1.A_;Z/.

Now let X be a hyperkähler variety of type K3Œ2�. We have H.X;Q/ D SH.X;Q/
and hence by Theorem C the action of Aut.DX/ on H.X;Q/ factors over a subgroup
O.zH.X;Q// of GL.H.X;Q//.

For an integral lattice ƒ � zH.X;Q/ we denote by OC.ƒ/ � O.ƒ/ the subgroup
consisting of those Hodge isometries that respect the orientation of a positive 4–plane
in ƒR.

Theorem E (Section 9.4) Let X be a hyperkähler variety deformation equivalent to
the Hilbert square of a K3 surface. There is an integral lattice ƒ� zH.X;Q/ such that

OC.ƒ/� DMon.X/� O.ƒ/
inside O.zH.X;Q//.

See Section 9.4 for a precise description of ƒ. As an abstract lattice, ƒ is isomorphic
to H2.X;Z/˚U , but its image in zH.X;Q/ is not Z˛˚H2.X;Z/˚Zˇ.
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Crucial in the proof of Theorem E is the derived McKay correspondence due to
Bridgeland, King and Reid [11] and Haiman [21]. It provides an ample supply of
elements of DMon.X/: every deformation of X to the Hilbert square S Œ2� of a K3
surface S induces an inclusion DMon.S/ ! DMon.X/. As part of the proof, we
explicitly compute this inclusion.

We denote by Aut.ƒ/ the group of isometries of ƒ� zH.X;Q/ that respect the Hodge
structure on zH.X;Q/. It follows from Theorem E that im.�X / is contained in Aut.ƒ/
for every X which is deformation equivalent to the Hilbert square of a K3 surface. For
some X we can show that the upper bound in the above corollary is close to being sharp.
Denote by AutC.ƒ/�Aut.ƒ/ the subgroup consisting of those Hodge isometries that
respect the orientation of a positive 4–plane in ƒR.

Theorem F (Section 10.2) Let S be a complex K3 surface and X D S Œ2�. Assume
that NS.X/ contains a hyperbolic plane. Then AutC.ƒ/� im.�X /� Aut.ƒ/.

Remark 1.2 To determine im �X up to index 2 for a general hyperkähler of type K3Œ2�

new constructions of derived equivalences will be needed.

Remark 1.3 Theorems E and F leave an ambiguity of index 2, related to orientations on
a maximal positive subspace of zH.X;R/. In the case of K3 surfaces, it was conjectured
by Szendrői [44] that derived equivalences must respect such orientation, and this was
proven by Huybrechts, Macrì, and Stellari [26]. Their method is based on deformation
to generic (formal or analytic) K3 surfaces of Picard rank 0, and on a complete
understanding of the space of stability conditions on those [25]. It is far from clear if
such a strategy can be used to remove the index 2 ambiguity for hyperkähler varieties
of type K3Œ2�.

Remark 1.4 That a lattice of signature .4; b2�2/ should play a role in describing the
image of �X for hyperkähler varieties X was expected from the physics literature —
see Dijkgraaf [16] — but it is not clear where the lattice should come from, nor what
its precise description should be for general hyperkähler varieties. In the above results,
the lattice ƒ arises in a rather implicit way, and one may hope for a more concrete
interpretation of its elements.

Remark 1.5 It is tempting to try to conjecture a description of the group Aut.DX/ in
terms of an action on a space of stability conditions on X , generalizing Bridgeland’s
work on K3 surfaces [10]. However, there is a representation-theoretic obstruction
against doing this naively. The central charge of a hypothetical stability condition on X
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takes values in H.X;C/, yet Theorems E and F suggest the central charge should take
values in zH.X;C/. IfX is of type K3Œ2�, then H.X;C/ and zH.X;C/ are nonisomorphic
irreducible DMon.X/–modules, so this would require a modification of the notion of
stability condition.

Acknowledgements

I am grateful to Nick Addington, Thorsten Beckmann, Dion Leijnse, Eyal Markman,
Zoë Schroot, and the referees for many valuable comments on earlier versions of this
paper. This project received funding from the European Research Council (ERC), grant
864145, and from the Dutch Research Council (NWO).

2 The LLV Lie algebra of a smooth projective variety

In this section we recall the construction of Looijenga and Lunts [33] and Verbitsky
[46] of a Lie algebra acting naturally on the cohomology of algebraic varieties. For
holomorphic symplectic varieties we show that this Lie algebra is a derived invariant.

2.1 The LLV Lie algebra

Let F be a field of characteristic zero and M be a Z–graded F –vector space of finite
F –dimension. Denote by h the endomorphism of M that is multiplication by n on Mn.

Let e be an endomorphism of M of degree 2. We say that e has the hard Lefschetz
property if for every n � 0 the map en W M�n ! Mn is an isomorphism. This is
equivalent to the existence of an f 2 End.M/ such that the relations

(1) Œh; e�D 2e; Œh; f �D�2f; Œe; f �D h

hold in End.M/. Thus, .e; h; f / forms an sl2–triple and defines a Lie homomorphism
sl2! End.M/.

Proposition 2.1 Assume that e has the hard Lefschetz property. Then the element f
satisfying (1) is unique , and if e and h lie in a semisimple sub-Lie algebra g�End.M/,
then so does f .

Proof The action of ad e on End.M/ has the hard Lefschetz property for the grading
defined by ad h. In particular,

.ad e/2 W End.M/�2
��! End.M/2

is an isomorphism. It sends f to �2e, so f is indeed uniquely determined.
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If e and h lie in g, then g � End.M/ is graded and the above map restricts to an
injective map

.ad e/2 W g�2 ,! g2:

Since h is diagonalizable, it is contained in a Cartan subalgebra of g. The symmetry
of the resulting root system implies that dim g�n D dim gn for all n. In particular, the
map .ad e/2 defines an isomorphism between g�2 and g2; thus f lies in g.

Let a be an abelian Lie algebra and e W a! gl.M/, defined by a 7! ea, a Lie homo-
morphism. We say that e has the hard Lefschetz property if e.a/� gl.M/2 and if there
exists some a 2 a such that ea has the hard Lefschetz property. Note that this is a
Zariski open condition on a 2 a.

If e W a! gl.M/ has the hard Lefschetz property, then we denote by g.a;M/ the Lie
algebra generated by the sl2–triples .ea; h; fa/ for a 2 a such that ea has the hard
Lefschetz property. We say that .a;M/ is a Lefschetz module if g.a;M/ is semisimple.

Now let X be a smooth projective complex variety of dimension d . Denote by M WD
H.X;Q/Œd � the shifted total cohomology of X (with middle cohomology in degree 0).
For a class � 2 H2.X;Q/, consider the endomorphism e� 2 End.M/ given by cup
product with �. If � is ample, then e� has the hard Lefschetz property, so the map
e W H2.X;Q/! gl.M/ has the hard Lefschetz property. We denote the corresponding
Lie algebra by g.X/ WD g.H2.X;Q/;M/.

Proposition 2.2 [33, 1.6, 1.9] .H2.X;Q/;M/ is a Lefschetz module.

In other words, g.X/ is a semisimple Lie algebra over Q.

2.2 Hochschild homology and cohomology

Let X be a smooth projective variety of dimension d with canonical bundle !X WD�dX .
Its Hochschild cohomology is defined as

HHn.X/ WD ExtnX�X .��OX ; ��OX /

and its Hochschild homology is defined as

HHn.X/ WD Extd�nX�X .��OX ; ��!X /:

Composition of extensions defines maps

HHn˝HHm! HHnCm; HHn˝HHm! HHm�n;

making HH�.X/ into a graded module over the graded ring HH�.X/.
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The Hochschild–Kostant–Rosenberg isomorphism (twisted by the square root of the
Todd class as in [30; 15]) defines isomorphisms

In W HHn.X/ ��!
M
iCjDn

Hi
�
X;
Vj

TX
�
; In W HHn.X/ ��!

M
j�iDn

Hi .X;�jX /:

Under these isomorphisms, multiplication in HH�.X/ corresponds to the operation
induced by the product in

V
�
TX , and the action of HH�.X/ on HH�.X/ corresponds

to the action induced by the contraction action of
V
�
TX on ��X ; see [12; 13].

Together with the degeneration of the Hodge–de Rham spectral sequence, the isomor-
phism I� defines an isomorphism

HH�.X/ ��! H.X;C/:

This map does not respect the grading; rather it maps HHi to the i th column of the
Hodge diamond (normalized so that the 0th column is the central column

L
p Hp;p).

Combining with the action of HH� on HH�, we obtain an action of the ring HH�.X/
on H.X;C/.

Theorem 2.3 Let ˆ WDX1 ��!DX2 be a derived equivalence between smooth projec-
tive complex varieties. Then we have natural graded isomorphisms

ˆHH�
W HH�.X1/ ��! HH�.X2/; ˆHH� W HH�.X1/ ��! HH�.X2/;

compatible with the ring structure on HH� and the module structure on HH�, and such
that the square

HH�.X1/ H.X1;C/

HH�.X2/ H.X2;C/

I

ˆHH� ˆH

I

commutes.

Proof See [13; 34].

2.3 The Hochschild Lie algebra of a holomorphic symplectic variety

Now assume that X is holomorphic symplectic of dimension 2d . That is, we assume
that there exists a symplectic form � 2 H0.X;�2X /. Note that this implies that a
Zariski-dense collection of � 2 H0.X;�2X / will be nowhere degenerate.

Through the isomorphism I WHH�.X/! H.X;C/, the vector space H.X;C/ becomes
a module under the ring HH�.X/.
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Lemma 2.4 HH�.X/Š H�.X;C/ as graded rings , and H.X;C/ is free of rank one
as an HH�.X/–module.

Proof A symplectic form � defines an isomorphism �1X
��! TX , and hence an

isomorphism of algebras
V
�
�1X

��!
V
�
TX . Combining this with the Hochschild–

Kostant–Rosenberg isomorphism I and the degeneration of the Hodge–de Rham spectral
sequence, we obtain a chain of isomorphisms of graded rings

HH�.X/ ��! H�
�
X;
V
�
TX
�
��! H�.X;��X /

��! H�.X;C/:

This proves the first assertion. For the second it suffices to observe that the module
HH�.X;C/ is generated by �d 2 HH2d .X/D H0.X;�2dX /.

Consider the endomorphisms hp; hq 2 End.H.X;C// given by

hp D p� d; hq D q� d on Hp;q:

These define the Hodge bigrading on H.X;C/, normalized to be symmetric along the
central part Hd;d. Note that h D hp C hq . The action of HHn.X/ on H.X;C/ has
degree n for the grading defined by h0 D hq � hp.

Lemma 2.4 and hard Lefschetz imply:

Corollary 2.5 For a Zariski-dense collection of � 2 HH2.X/, the action by �,

e0� W H.X;C/! H.X;C/;

has the hard Lefschetz property with respect to the grading defined by h0.

In particular, for every such � we have a complex subalgebra g� � End.H.X;C//
isomorphic to sl2, and the collection of such algebras generates a Lie algebra which
we denote by g0.X/� End.H.X;C//. From Lemma 2.4 we also obtain:

Corollary 2.6 The complex Lie algebras g0.X/ and g.X/˝QC are isomorphic.

In the next section, we will show something stronger: that g0.X/ and g.X/˝Q C

coincide as sub-Lie algebras of End.H.X;C//. Theorem A then follows by combining
this with the following proposition:

Proposition 2.7 Assume that X1 and X2 are holomorphic symplectic varieties. Then
for every equivalence ˆ W DX1 ��! DX2 there exists a canonical isomorphism of
complex Lie algebras

ˆg0
W g0.X1/

��! g0.X2/:
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It has the property that the mapˆH WH.X1;C/ ��!H.X2;C/ is equivariant with respect
to ˆg0 .

Proof This follows immediately from Theorem 2.3.

2.4 Comparison of the two Lie algebras and proof of Theorem A

The remainder of this section is devoted to the proof of the following:

Proposition 2.8 If X is holomorphic symplectic , then g.X/˝Q CD g0.X/ as sub-Lie
algebras of End.H.X;C//.

Let X be holomorphic symplectic. If F is a coherent OX–module then we will simply
write Hi .F/ for Hi .X;F/. We have decompositions

H2.X;C/D H2.OX /˚H1.�1X /˚H0.�2X /
and

HH2.X/D H2.OX /˚H1.TX /˚H0
�V2

TX
�
:

We will use the same symbol � to denote an element � 2 H2.X;C/ and the endo-
morphism of End.H.X;C// given by cup product with �. Note that � 2 g.X/˝Q C

by construction. Similarly, we will use the same symbol for � 2 HH2.X/ and the
resulting � 2 End.H.X;C//, given by contraction with �. We have � 2 g0.X/.

For a symplectic form � 2 H0.�2X /, we denote by L� 2 H0
�V2

TX
�

the image of the
form � 2H0.�2X / under the isomorphism �2X!

V2
TX defined by � . In suitable local

coordinates, we have

� D du1 ^ dv1C � � �C dud ^ dvd
and

L� D
@

@u1
^

@

@v1
C � � �C

@

@ud
^

@

@vd
:

Lemma 2.9 If � is a nowhere degenerate symplectic form then .�; hp; L�/ is an sl2–
triple in End.H.X;C//.

Proof Clearly � has degree 2 and L� has degree �2 for the grading given by hp, so
Œhp; ��D 2� and Œhp; L��D�2 L� .

We need to show that Œ�; L��D hp . This follows immediately from a local computation:
in the above local coordinates, one verifies that on the standard basis of �p the
commutator Œ�; L�� acts as p� d .
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Note that the existence of one nowhere degenerate � implies that a Zariski-dense
collection of � 2 H0.�2X / is nowhere degenerate.

Lemma 2.10 For a Zariski-dense collection ˛2H2.X;OX /, there is L̨ 2End.H.X;C//
such that .˛; hq; L̨ / is an sl2–triple.

Proof This follows from Lemma 2.9 and Hodge symmetry.

Lemma 2.11 For all � 2 H0
�
X;
V2
TX
�

the endomorphism � lies in g.X/˝Q C.

Proof It suffices to show that this holds for a Zariski-dense collection of � ; hence we
may assume without loss of generality that � D L� with � and L� as in Lemma 2.9. Let
˛ and L̨ be as in Lemma 2.10. Because � and hp commute with both ˛ and hq , we
have that every element of the sl2–triple .�; hp; L�/ commutes with every element of
the sl2–triple .˛; hq; L̨ /. From this, it follows that

.˛C �; h; L̨ C L�/ and .˛� �; h; L̨ � L�/

are sl2–triples. Since the elements ˛˙� lie in H2.X;C/, and apparently have the hard
Lefschetz property, we conclude that the endomorphisms L̨ ˙ L� lie in g.X/˝Q C;
hence also � D L� lies in g.X/˝Q C.

Corollary 2.12 hp and hq lie in g.X/˝Q C.

Proof By Lemma 2.9 we have hp D Œ�; L��, which by Lemma 2.11 lies in g.X/˝Q C.
Since hq D h� hp we also have that hq lies in g.X/˝Q C.

Fix a � 2H0
�
X;
V2
TX
�

that is nowhere degenerate as an alternating form on �1X . This
defines isomorphisms c� W�1X ! TX and c� W H1.�1X /! H1.TX / given by contracting
sections of �1X with � .

Lemma 2.13 For all � 2 H1.�1X /, we have Œ�; ��D c� .�/ in End.H.X;C//.

Proof This is again a local computation. If � is a local section of �1X , then a compu-
tation on a local basis shows Œ�; ��D c� .�/ as maps �pX !�

p�1
X .

Corollary 2.14 Every element �0 of H1.X; TX / lies in g.X/˝Q C.

Proof (See also [19, 4.5] for the case of a hyperkähler variety.) Every such �0 is
of the form c� .�/ for a unique � 2 H1.�1X /, and hence the corollary follows from
Lemmas 2.13 and 2.11 and the fact that � lies in g.X/˝Q C.
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We can now finish the comparison of the two Lie algebras.

Proof of Proposition 2.8 By Corollary 2.6 it suffices to show that g0.X/ is contained
in g.X/˝QC. By Proposition 2.1 it suffices to show that h0 is contained in g.X/˝QC,
and that for almost every a 2 HH2.X/ we have that the action of a on H.X;C/ is
contained in g.X/˝Q C. This follows from Lemma 2.11, Corollaries 2.12 and 2.14,
and the fact that the action of any ˛ 2 H2.OX / lies in g.X/˝Q C.

Together with Proposition 2.7, this proves Theorem A.

3 Rational cohomology of hyperkähler varieties

3.1 The BBF form and the LLV Lie algebra

Let X be a complex hyperkähler variety of dimension 2d . We denote by

b D bX W H2.X;Q/�H2.X;Q/!Q

its Beauville–Bogomolov–Fujiki, and by cX its Fujiki constant. These are related by

(2)
Z
X

�2d D
.2d/Š

2ddŠ
cXb.�; �/

d

for � 2 H2.X;Q/; see eg [41].

We extend b to a bilinear form on

zH.X;Q/ WDQ˛˚H2.X;Q/˚Qˇ;

by declaring ˛ and ˇ to be orthogonal to H2.X;Q/, and setting b.˛; ˇ/ D �1,
b.˛; ˛/D 0 and b.ˇ; ˇ/D 0. We equip zH.X;Q/ with a grading satisfying deg˛D�2
and degˇD 2, and for which H2.X;Q/ sits in degree 0. This induces a grading on the
Lie algebra so.zH.X;Q//.

For �2H2.X;Q/we consider the endomorphism e�2so.zH.X;Q// given by e�.˛/D�,
e�.�/D b.�; �/ˇ for all � 2 H2.X;Q/, and e�.ˇ/D 0.

Theorem 3.1 (Looijenga–Lunts, Verbitsky) There is a unique isomorphism of graded
Lie algebras

so.zH.X;Q// ��! g.X/

that maps e� to e� for every � 2 H2.X;Q/.

Proof See [33, Proposition 4.5] or [46, Theorem 1.4] for the theorem over the real
numbers. This readily descends to Q; see [43, Proposition 2.9] for more details.
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The representation of so.zH.X;Q// on H.X;Q/ integrates to a representation of the
group Spin.zH.X;Q// on H.X;Q/. Let � 2H2.X;Q/. Then e� is nilpotent, and hence
B� WD exp e� is an element of Spin.zH.X;Q//. It acts on zH.X;Q/ by

(3) B�.r˛C�C sˇ/D r˛C .�C r�/C
�
sC b.�; �/C r 1

2
b.�; �/

�
ˇ

for all r; s 2Q and � 2 H2.X;Q/. The action on the total cohomology of X is given
by:

Proposition 3.2 B� acts as multiplication by ch.�/ on H.X;Q/.

In particular, if L is a line bundle on X and ˆ W DX ! DX is the equivalence that
maps F to F ˝L, then ˆH D Bc1.L/.

3.2 The Verbitsky component of cohomology

Let X be a complex hyperkähler variety of dimension 2d . We define the even co-
homology of X as the graded Q–algebra

Hev.X;Q/ WD
M
n

H2n.X;Q/;

and the Verbitsky component of the cohomology of X as the sub-Q–algebra SH.X;Q/
of Hev.X;Q/ generated by H2.X;Q/. Clearly, SH.X;Q/Œ2d � is a sub-Lefschetz
module of Hev.X;Q/Œ2d � for H2.X;Q/.

Lemma 3.3 (Verbitsky [8; 45]) The kernel of the Q–algebra homomorphism

Sym�H2.X;Q/� SH.X;Q/

is generated by the elements �dC1 with � 2 H2.X;Q/ satisfying b.�; �/D 0.

Lemma 3.4 (Verbitsky) SH.X;Q/Œ2d � is an irreducible Lefschetz module.

Proof It is the smallest sub-Lefschetz module of Hev.X;Q/Œ2d � having a nontrivial
component of degree �2d .

Verbitsky also describes the space SH.X;Q/ explicitly. Below we normalize this
description, and use it to compute the Mukai pairing on SH.X;Q/.
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Proposition 3.5 There is a unique map

‰ W SH.X;Q/Œ2d �! Symd zH.X;Q/

satisfying

(i) ‰ is morphism of Lefschetz modules ,

(ii) ‰.1/D ˛d=dŠ.

Note that the Lefschetz module structure on Symd zH.X;Q/ is given by the Leibniz
rule

e�.x1 � � � xd / WD
X
i

x1 � � � e�.xi / � � � xd :

Proof Uniqueness is clear. For existence, consider the map

z‰ W Sym�H2.X;Q/! Symd zH.X;Q/;

given by
�1 � � ��n 7! e�1 � � � e�n.˛

d=dŠ/:

This map is well defined since the e�i commute. Moreover, the map is graded and
satisfies z‰.�x/D e� z‰.x/ for all �2H2.X;Q/ and x 2 Sym� H2.X;Q/. To show that
z‰ induces a morphism of Lefschetz modules with the desired properties it now suffices
to verify that it vanishes on the ideal generated by the �dC1 for �2H2.X;Q/ satisfying
b.�; �/D 0. Equivalently, it suffices to show that for every x 2 Symd zH.X;Q/ and
for every � 2 H2.X;Q/ with b.�; �/D 0 we have edC1

�
.x/D 0.

Without loss of generality, we may assume that x is a monomial of the form

x D ˛iˇj�1 � � ��m; i C j CmD d; �i 2 H2.X;Q/:

For degree reasons, we have ek
�
.ˇj�1 � � ��m/ D 0 for k > m. Moreover, it follows

from b.�; �/ D 0 that ek
�
.˛i / D 0 for k > i . Combining these, one concludes that

edC1
�

.x/D 0, which is what we had to prove.

Lemma 3.6 ‰.ptX /D ˇ
d=cX .

Proof Choose � 2 H2.X;Q/ with b.�; �/¤ 0. Then we have

(4) ‰.�2d /D e2d�

�
˛d

dŠ

�
D
.2d/Š

2ddŠ
b.�; �/dˇd :

Dividing by (2) gives the claimed identity.
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Consider the contraction (or Laplacian) operator

� W Symd zH.X;Q/! Symd�2 zH.X;Q/;

given by
x1 : : : xd 7!

X
i<j

b.xi ; xj /x1 � � � Oxi � � � Oxj � � � xd :

This is a morphism of Lefschetz modules, or equivalently of so.zH.X;Q//–modules.

Lemma 3.7 The sequence of Lefschetz modules

0! SH.X;Q/Œ2d � ‰�! Symd zH.X;Q/ �
�! Symd�2 zH.X;Q/! 0

is exact.

Proof Since �‰.1/ D 0, we have � ı‰ D 0. The map � is well known to be a
surjective map of so.zH.X;Q//–modules with irreducible kernel. Since ‰ is nonzero
and SH.X;Q/ is irreducible, it follows that the sequence is exact.

The Mukai pairing [14] on Hev.X;Q/ restricts to a pairing bSH on SH.X;Q/. It pairs
elements of degree m with elements of degree 2d �m, according to the formula

bSH.�1 � � ��m; �1 � � ��2d�m/D .�1/
m

Z
X

�1 � � ��m�1 � � ��2d�m:

Note that bSH.e�x; y/C bSH.x; e�y/D 0 for all x; y 2 SH.X;Q/ and � 2 H2.X;Q/,
so bSH is so.zH.X;Q//–invariant.

The pairing on zH.X;Q/ induces a pairing on Symd zH.X;Q/ defined by

bŒd�.x1 � � � xd ; y1 � � �yd / WD .�1/
d
X
�2Sd

Y
i

b.xi ; y�i /:

By construction, bŒd� is so.zH.X;Q//–invariant. The map ‰ is almost an isometry, in
the following sense:

Proposition 3.8 For all x; y 2 SH.X;Q/,

cXbŒd�.‰x;‰y/D bSH.x; y/:

Proof Both the Mukai form on SH.X;Q/Œ2d � and the pairing on Symd zH.X;Q/
are so.zH.X;Q//–invariant. Since SH.X;Q/ is an irreducible so.zH.X;Q//–module, it
suffices to verify the identity for some x; y 2 SH.X;Q/ with bSH.x; y/¤ 0.
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Let � 2 H2.X;Q/ with b.�; �/¤ 0. We have

bSH.1; �
2d /D

Z
X

�2d D
.2d/Š

2ddŠ
cXb.�; �/

d
¤ 0:

By (4),

‰.�2d /D
.2d/Š

2ddŠ
b.�; �/dˇd ;

and hence

cXbŒd�.‰.1/;‰.�
2d //D

cX .2d/Š

2d .d Š/2
bŒd�.˛

d ; ˇd /D
cX .2d/Š

2ddŠ
b.�; �/d ;

which agrees with the above expression for bSH.1; �
2d /.

Remark 3.9 If X is of type K3Œd� then cX D 1 and ‰ is an isometry.

4 Action of derived equivalences on the Verbitsky component

In this section we prove Theorems B and C from the introduction.

4.1 A representation-theoretical construction

LetK be a field of characteristic different from 2, and let V D .V; b/ be a nondegenerate
quadratic space over K. Let d be a positive integer and consider the space

SŒd�V WD ker.Symd V �
�! Symd�2 V /:

The Lie algebra so.V / acts faithfully on SŒd�V , inducing an inclusion

so.V /� End.SdV /:

Consider the normalizer of so.V / in GL.SŒd�V /, that is, the group

N.V; d/ WD fg 2 GL.SŒd�V / j g so.V /g
�1
D so.V /g:

Proposition 4.1 Assume that K is separably closed. Then there is an exact sequence

1! f˙1g ! O.V /�K�!N.V; d/! 1;

where the inclusion maps � to .�; �d / and the surjection maps .'; �/ to �SŒd�.'/.

Proof The only nontrivial part is surjectivity of O.V /�K�!N.V; d/. Denote by

� W O.V /!N.V; d/; ' 7! SŒd�.'/;

the restriction of this map to the first component.
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The representation SŒd�V of so.V / is irreducible, so by Schur’s lemma the centralizer
of so.V / in GL.SŒd�V / is K�, and we have an exact sequence

1!K�!N.V; d/
 
�! Aut.so.V //:

It therefore suffices to show that the image of  equals the image of  ı � .

The adjoint group of so.V / is PSO.V /, and we have a short exact sequence

(5) 1! PSO.V /! Aut.so.V //! Out.so.V //! 1;

where Out.so.V // coincides with the group of symmetries of the Dynkin diagram.

If dimV D 2nC1, then we have PSO.V /D SO.V /. The Dynkin diagram (of type Bn)
has no nontrivial automorphisms, so Aut.so.V; b//D SO.V /. The composition  ı �
maps SO.V / identically to SO.V /, and we conclude that the image of  is the image
of  ı � .

Now assume dimV D 2n. Since K is algebraically closed, PSO.V /D SO.V /=f˙1g.
The larger group O.V /=f˙1g embeds in Aut so.V /, with elements of determinant �1
in O.V / inducing the reflection in the horizontal axis in the Dynkin diagram (of
type Dn). For n ¤ 4, this inclusion is an equality, while for n D 4 “triality” gives
extra automorphisms. However, expressed on simple roots the highest weight of the
representation SŒd�V of so.V / is

d d d d

d=2

d=2

such that for nD 4 the extra automorphisms of so.V / do not lift to automorphisms
of SŒd�V . We conclude that the image of  is contained in O.V /=f˙1g and that the
composition  ı � is the natural map O.V /! O.V /=f˙1g, so also in this case the
image of  coincides with the image of  ı � .

Remark 4.2 The condition that K is algebraically closed is needed in the case of even
dimV. IfK is not algebraically closed, then one still has the exact sequence (5), but one
should be careful to define PSO.V / as the group of K–points of the algebraic group
PSO.V / over K. In general, this group is bigger than SO.V /=f˙1g/. In particular, not
every element of N.V; d/ can be lifted to O.V /�K�.

Proposition 4.3 Let V1 and V2 be nondegenerate quadratic spaces over K. Assume
that there is a linear isomorphism f WSŒd�V1!SŒd�V2 such that f so.V1/f

�1Dso.V2/
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as subspaces of End.V2/. Then there exists a � 2 K� and a similitude ' W V1! V2

such that f D �SŒd�.'/.

Proof Let K be a separable closure of K. Consider the Gal.K=K/–sets

S WD f' W V1;K ! V2;K j ' is a similitudeg

and
N WD fg W SŒd�V1;K ! SŒd�V2;K j g so.V1;K/g

�1
D so.V2;K/g

and the Galois-equivariant map

� WK��S !N; .�; '/ 7! �SŒd�.'/:

The map � is surjective. Indeed, since over a separably closed field the quadratic
spaces are isometric, we may assume without loss of generality that V1 D V2. Then
N DN.V1;K ; d / and the surjectivity follows from Proposition 4.1 (it suffices even to
consider isometries instead of similitudes).

The group K� acts on K� � S by �.�; '/ WD .��d�; �'/ and the fibers of � are
principal homogenous spaces under this action.

The map f defines a Galois-invariant element f 2 N , so its fiber ��1.f / carries a
natural Galois action. By Hilbert 90, we have H1.Gal.K=K;K�/Df1g, which implies
that ��1.f / contains a Galois-invariant element .�; '/.

The bilinear form b on V induces a bilinear form bŒd� on SŒd�V defined as

bŒd�.x1 � � � xd ; y1 � � �yd / WD .�1/
d
X
�2Sn

Y
i

b.xi ; y�i /;

Consider the group
G.V; d/ WDN.V; d/\O.SŒd�; bŒd�/

of isometries of SŒd�V that preserve the subspace so.V / of EndSŒd�V .

Proposition 4.4 If d is odd , then the map

O.V /!G.V; d/; ' 7! SŒd�.'/;

is an isomorphism. If d is even and dimV is odd , then the map

O.V /!G.V; d/; ' 7! det.'/SŒd�.'/;

is an isomorphism.
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Proof Assume first thatK is separably closed. The short exact sequence of Proposition
4.1 restricts to a short exact sequence

1! f˙1g ! O.V /� f˙1g !G.V; d/! 1;

from which one verifies directly that the given maps are isomorphisms. If K is not
separably closed, then the result follows from taking Galois invariants.

Remark 4.5 If both d and dimV are even, one obtains

G.VK ; d /Š O.VK/=f˙1g � f˙1g:

Note, however, that in general there are more Galois-invariant elements than just those
in O.V /=f˙1g. See also Remark 4.2.

4.2 The Verbitsky component

Theorem 4.6 Let X1 and X2 be hyperkähler varieties and ˆ W DX1 ! DX2 an
equivalence. Then the induced isomorphism ˆH W H.X1;Q/! H.X2;Q/ restricts to
an isomorphism ˆSH W SH.X1;Q/! SH.X2;Q/. Moreover:

(i) ˆSH is an isometry with respect to the Mukai pairings.

(ii) ˆSHg.X1/.ˆ
SH/�1 D g.X2/ in End.SH.X2;Q//.

Proof Note that SH.X;Q/ can be characterized as the minimal sub-g.X/–module of
H.X;Q/ whose Hodge structure attains the maximal possible level (width). It then
follows from Theorem A and from Lemma 3.4 that ˆH restricts to an isomorphism

ˆSH
W SH.X1;Q/ ��! SH.X2;Q/

respecting the Lie algebras g.X1/ and g.X2/. By [14], the map ˆH respects the Mukai
pairings, and the theorem follows.

Definition 4.7 For a complex hyperkähler variety we equip SH.X;Q/ and zH.X;Q/
with Hodge structures of weight 0, given by

SH.X;Q/� Hev.X;Q/D
M
n

H2n.X;Q.n//

and
zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

Lemma 4.8 Let X be a hyperkähler variety of dimension 2d . Then the map

‰ W SH.X;Q/! Symd zH.X;Q/

of Proposition 3.5 is a morphism of Hodge structures of weight 0.
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Proof One verifies directly that the “action map”

H2.X;Q.1//˝ zH.X;Q/! zH.X;Q/;

which maps .�; x/ to e�.x/ is a map of Hodge structures. From this it follows that the
action map

H2.X;Q.1//˝Symd zH.X;Q/! Symd zH.X;Q/

is a map of Hodge structures, and that the map

z‰ W Sym�H.X;Q.1//! Symd zH.X;Q/

from the proof of Proposition 3.5 is a morphism of Hodge structures.

Since multiplication in the cohomology ofX preserves the Hodge structure, the quotient
map Sym� H.X;Q.1//!SH.X;Q/ is also a morphism of Hodge structures, and hence
so is the map ‰ constructed in the proof of Proposition 3.5.

Proposition 4.9 Let X1 and X2 be derived equivalent hyperkähler varieties. Then
there exists a Hodge similitude ' W zH.X1;Q/ ��! zH.X2;Q/ and a scalar � 2Q� such
that the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

ˆSH

‰ ‰

�Symd .'/

commutes.

Proof Recall from Lemma 3.7 that the image of ‰ is precisely SŒd�zH� Symd zH. It
then follows from Theorem 4.6 and Proposition 4.3 that there exists a similitude ' and
a scalar � that make the square commute.

It remains to check that ' respects the Hodge structures. The Hodge structure on
zH.Xi ;Q/ is given by a morphism hi WC�! O.zH.Xi ;R//, and the preceding lemma
implies that the Hodge structure on SH.Xi ;Q/ is given by composing hi with the
injective map O.zH.Xi ;R//! GL.SH.Xi ;R//. Since ' maps the Hodge structure
on SH.X1;Q/ to the Hodge structure on SH.X2;Q/, we conclude that ' maps h1
to h2.

Theorem 4.10 (d odd) Assume that d is odd , and that X1 and X2 are deformation-
equivalent hyperkähler varieties of dimension 2d . Let ˆ W DX1 ��! DX2 be an
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equivalence. Then there is a unique Hodge isometry ˆzH making the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

ˆSH

‰ ‰

Symd .ˆzH/

commute. The formation of ˆzH is functorial in ˆ.

Proof Since X1 and X2 are deformation equivalent, we can choose an isometry
' W zH.X1;Q/ ��! zH.X2;Q/. Moreover, X1 and X2 have the same Fujiki constant, so
Symd ' restricts to an isometry between the images of ‰. Then by Theorem 4.6 and
Proposition 4.4, there is a unique isometry  2 O.zH.X2;Q// such that ˆzH WD  '
makes the square commute. Uniqueness forces its formation to be functorial.

That ˆzH respects the Hodge structures follows from the same argument as in the proof
of Proposition 4.9.

If d is even, then both existence and uniqueness ofˆzH in the statement of Theorem 4.10
fail. However, if we moreover assume that b2.X/ is odd, then one can use the description
of G.V; d/ from Proposition 4.4 to salvage this, at the cost of keeping track of a
determinant character.

Define an orientation on X to be the choice of a generator of det H2.X;R/, up to R�>0.
Equivalently, an orientation is the choice of generator of det zH.X;R/ up to R�>0. Define
the sign �.'/ of a Hodge isometry ' W zH.X1;Q/ ��! zH.X2;Q/ as �.'/D 1 if ' respects
the orientations and �.'/ D �1 otherwise. A derived equivalence between oriented
hyperkähler varieties is a derived equivalence between the underlying unoriented
hyperkähler varieties.

Theorem 4.11 (d even) Assume that d is even , and that ˆ W DX1 ��! DX2 is a
derived equivalence between oriented hyperkähler varieties of dimension 2d . Assume
that X1 and X2 have odd b2, and that the quadratic spaces H2.X1;Q/ and H2.X2;Q/
are isometric. Then there exists a unique Hodge isometry ˆzH making the square

SH.X1;Q/ SH.X2;Q/

Symd zH.X1;Q/ Symd zH.X2;Q/

�.ˆzH/ˆSH

‰ ‰

Symd .ˆzH/
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commute. Moreover , the formation of ˆzH is functorial for composition of derived
equivalences between hyperkähler varieties equipped with orientations.

Proof The argument is quite similar to the proof of Theorem 4.10. Choose an isometry
' W zH.X1;Q/ ��! zH.X2;Q/. Because the dimension of zH.Xi ;Q/ is odd, we may
replace ' with �' if necessary to ensure that ' respects the orientations, and hence we
may assume �.'/D 1. The map ' induces an isometry Symd ', which restricts to an
isometry 'SH W SH.X1;Q/! SH.X2;Q/.

By Theorem 4.6, there is a  2 G.zH.X2;Q/; d/ such that ˆSH D  ı 'SH, and by
Proposition 4.4, we have that  D det. 0/SŒd�. 0/ for a unique  0 2 O.zH.X2;Q//.
Now take ˆzH WD  0 ı '. Then �.ˆzH/ D det. 0/ and Symd .ˆzH/ lifts to the map
det. 0/�1 ı'SH D �.ˆ

zH/ˆSH as claimed.

Proposition 4.4 forcesˆzH to be unique, and this implies the functoriality for composition.
Compatibility with Hodge structures follows from the same argument as in the proof
of Proposition 4.9.

Remark 4.12 If X1 and X2 are hyperkähler varieties belonging to one of the known
families, and if ˆ W DX1 ��! DX2 is an equivalence, then the hypotheses of either
Theorem 4.10 or Theorem 4.11 are satisfied. Indeed, X1 and X2 will have the same
dimension 2d and because they have isomorphic LLV Lie algebra, they have the
same second Betti number b2. Going through the list of known families, one sees
that this implies that X1 and X2 are deformation equivalent. In particular, they have
isometric H2. Finally, all known hyperkähler varieties of dimension 2d with d even
have odd b2.

Taking X1 DX2 in Theorems 4.10 and 4.11 yields Theorem C from the introduction:

Theorem 4.13 Let X be a hyperkähler variety of dimension 2d . Assume that either d
is odd or that d is even and b2.X/ is odd. Then the representation

�SH
W AutD.X/! GL.SH.X;Q//

factors over a map �zH W AutD.X/! O.zH.X;Q//.

Remark 4.14 For d odd, the implicit map O.zH.X;Q// ! GL.SH.X;Q// is the
natural map coming from the isomorphism SH.X;Q/ Š SŒd�zH.X;Q//. For d even
(and b2 odd), it is the twist of the natural map with the determinant character

O.zH.X;Q//! f˙1g:
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5 Hodge structures

In this section we prove Theorem D from the introduction.

For a nondegenerate quadratic space V over Q we will make use of the algebraic
groups SO.V /, Spin.V /, and GSpin.V / (sometimes denoted CSpin.V /) over Q.
These groups sit in a commutative diagram with exact rows

(6)
1 �2 Spin.V / SO.V / 1

1 Gm GSpin.V / SO.V / 1

from which one deduces an exact sequence

(7) 1! �2!Gm �Spin.V /!GSpin.V /! 1;

where the first map is the diagonal embedding � 7! .�; �/. Alternatively, one can use (7)
as the definition of GSpin, and deduce the existence of the above commutative diagram.

We will write SO.V /, Spin.V /, and GSpin.V / for the groups of Q–points of these
algebraic groups. Note that the above exact sequences of algebraic groups need not
induce exact sequences of groups of Q–points, and the obstruction can be described in
terms of Galois cohomology. The sequence for the Spin–cover of SO.V / induces an
exact sequence

1! f˙1g ! Spin.V /! SO.V /! H1.Gal.Q=Q/; f˙1g/DQ�=.Q�/2;

where the connecting homomorphism SO.V /!Q�=.Q�/2 is the spinor norm. By
Hilbert 90, we have H1.Gal.Q=Q/;Q�/ D f1g and the analogous sequence for the
GSpin–cover does induce a short exact sequence

(8) 1!Q�! GSpin.V /! SO.V /! 1:

This will be used crucially in the proof of Theorem D.

Lemma 5.1 Let X be a hyperkähler variety of dimension 2d . There exists a unique
action of GSpin.zH.X;Q// on H.X;Q/ such that

(i) the action of Spin.zH.X;Q//�GSpin.zH.X;Q// integrates the action of g.X/D
so.zH.X;Q//;

(ii) a section � 2Gm �GSpin.zH.X;Q// acts as �i�2d on Hi .X;Q/.
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Proof The action of so.zH.X;Q// integrates to an action of the simply connected
algebraic group Spin.zH.X;Q//. This commutes with the action of Gm for which
� acts as �i�2d on Hi .X;Q/, and we obtain an action of Gm � Spin.zH.X;Q// on
H.X;Q/. The lemma claims that this descends to an action of the quotient group
GSpin.zH.X;Q//.

By (7) it suffices to verify that the kernel �2 acts trivially, ie that �1 2 Spin.zH.X;Q//
acts as .�1/i on Hi .X;Q/. Any sl2–triple .e�; h; f�/ in g.X/ induces an algebraic
subgroup SL2 � Spin.zH.X;Q// with the property that diag.�; ��1/ 2 SL2.Q/ acts
as �i on H2dCi .X;Q/. It follows that diag.�1;�1/ must be mapped to the nontrivial
central element �1 2 Spin.zH.X;Q//, and that �1 acts as .�1/i on Hi .X;Q/.

Recall from Definition 4.7 that we have equipped zH.X;Q/ and Hev.X;Q/ with Hodge
structures of weight 0. Similarly, we equip the odd cohomology of X with a Hodge
structure of weight 1,

Hodd.X;Q/ WD
M
i

H2iC1.X;Q.i//:

Lemma 5.2 Let g 2 GSpin.zH.X;Q//. If the action of g on zH.X;Q/ respects the
Hodge structure , then so does its action on Hev.X;Q/ and on Hodd.X;Q/.

Proof This follows immediately from the fact that the Hodge structure is determined
by the action of h0 2 g.X/˝Q C (see Section 2.3), and from the faithfulness of the
g.X/–module zH.X;Q/.

Theorem 5.3 Let X1 and X2 be hyperkähler varieties , and let ˆ W DX1 ��! DX2 be
an equivalence. Then for every i the Q–Hodge structures Hi .X1;Q/ and Hi .X2;Q/
are isomorphic.

Proof Consider the Lie algebra isomorphism ˆg W g.X1/
��! g.X2/ from Theorem A.

By Proposition 4.9, there exists a Hodge similitude � W zH.X1;Q/ ��! zH.X2;Q/ such
that the square

so.zH.X1;Q// so.zH.X2;Q//

g.X1/ g.X2/

Ad.�/

ˆg

commutes. Here the vertical maps are the isomorphisms from Theorem 3.1.
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The K3–type Hodge structure zH.X2;Q/ decomposes as N ˚ T , with N and T its
algebraic and transcendental parts, respectively. The Hodge similitude � maps the
distinguished elements ˛1 and ˇ1 of zH.X1;Q/ to N . By Witt cancellation, there exists
a  N 2 SO.N / and �;� 2 Q� such that  N�.˛1/ D �˛2 and  N�.ˇ1/ D �ˇ2.
Extending by the identity, we find a Hodge isometry  2 SO.zH.X2;Q// such that
 � W zH.X1;Q/ ��! zH.X2;Q/ is a graded Hodge similitude. In particular, the induced
map  � W g.X1/ ��! g.X2/ is graded, and  � maps the grading element h1 2 g.X1/
to the grading element h2 2 g.X2/.

By (8) the element  lifts to an element z 2 GSpin.zH.X2;Q//, which by Lemma 5.1
and Lemma 5.2 induces automorphisms of the Hodge structures Hev.X2;Q/ and
Hodd.X2;Q/. Now, by construction, the composition z ıˆH defines isomorphisms

z ıˆH
W Hev.X1;Q/ ��! Hev.X2;Q/; z ıˆH

W Hodd.X1;Q/ ��! Hodd.X2;Q/;

which respect both the grading and the Hodge structure, so they induce isomorphisms
of Hodge structures Hi .X1;Q/ ��! Hi .X2;Q/, for all i .

6 Topological K–theory

6.1 Topological K–theory and the Mukai vector

We now briefly recall some basic properties of topological K–theory of projective
algebraic varieties. See [1; 3; 4] for more details.

For every smooth and projective X over C we have a Z=2Z–graded abelian group

Ktop.X/ WD K0top.X/˚K1top.X/:

This is functorial for pullback and proper pushforward, and carries a product structure.
The group K0top.X/ is the Grothendieck group of topological vector bundles on the
differentiable manifold X an. Pullback agrees with pullback of vector bundles, and the
product structure agrees with the tensor product of vector bundles.

By [3, Section 1.10], the Chern character can be extended to odd degree, inducing a
Z=2Z–graded map

v
top
X W Ktop.X/! H.X;Q/;

given by vtop
X .F/D

p
TdX � ch.F/. The image of vtop

X is a Z–lattice of full rank.
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There is a “forgetful” map K0.X/!Ktop.X/ from the Grothendieck group of algebraic
vector bundles (or equivalently of the triangulated category DX). This is compatible
with pullback, multiplication, and proper pushforward. The Mukai vector

vX W K0.X/! H.X;Q/
factors over vtop

X .

If P is an object in D.X �Y / then convolution with its class in K0top.X �Y / defines a
map ˆK

P W Ktop.X/! Ktop.Y /, in such a way that the diagram

K0.X/ Ktop.X/ H.X;Q/

K0.Y / Ktop.Y / H.Y;Q/:

ˆP ˆK
P

v
top
X

ˆH
P

v
top
Y

commutes.

6.2 Equivariant topological K–theory

The above formalism largely generalizes to an equivariant setting. Again, we briefly
recall the most important properties; see [5; 6; 28; 42] for more details.

If X is a smooth projective complex variety equipped with an action of a finite group G,
we denote by K0G.X/ the Grothendieck group ofG–equivariant algebraic vector bundles
on X , or equivalently the Grothendieck group of the bounded derived category DGX
of G–equivariant coherent OX–modules. This is functorial for pullback along G–
equivariant maps and pushforward along G–equivariant proper maps.

Similarly, we have the G–equivariant topological K–theory

Ktop;G.X/ WD K0top;G.X/˚K1top;G.X/;

where K0top;G.X/ is the Grothendieck group of topological G–equivariant vector bun-
dles.

There is a natural map K0G.X/ ! K0top;G.X/ compatible with pullback and tensor
product. If f WX ! Y is proper and G–equivariant, then we have a pushforward map
f� W Ktop;G.X/! Ktop;G.Y /. There is a Riemann–Roch theorem [5; 28], stating that
the square

K0G.X/ Ktop;G.X/

K0G.Y / Ktop;G.Y /

f� f�

commutes.
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Now assume that we have a finite group G acting on X , and a finite group H acting
on Y . If P is an object in DG�H .X �Y /, then convolution with P induces a functor
ˆP W DGX ! DHY , see [40] for more details. Similarly, convolution with the class
of P in K0top;G�H .X �Y / induces a map ˆK

P W Ktop;G.X/! Ktop;H .Y /. These satisfy
the usual Fourier–Mukai calculus, and moreover they are compatible in the sense that
the square

K0G.X/ Ktop;G.X/

K0H .Y / Ktop;H .Y /

ˆP ˆK
P

commutes.

7 Cohomology of the Hilbert square of a K3 surface

Let S be a K3 surface and X D S Œ2� its Hilbert square. In the coming few paragraphs
we recall the structure of the cohomology of X in terms of the cohomology of S . See
[7; 17; 23] for more details.

7.1 Line bundles on the Hilbert square

Let G D f1; �g be the group of order two, acting on S �S by permuting the factors.
The Hilbert square X sits in a diagram

Z

S �S X

qp

where p WZ! S �S is the blow-up along the diagonal, and where q WZ!X is the
quotient map for the natural action of G on Z. Denote by R � Z the exceptional
divisor of p. Then R equals the ramification locus of q. We have q�OZ DOX ˚ E for
some line bundle E , and q�E ŠOZ.�R/.

If L is a line bundle on S then

L2 WD .q�p�.L�L//G

is a line bundle on X . The map

Pic.S/˚Z! Pic.X/; .L; n/ 7! L2˝ E˝n;

is an isomorphism.
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7.2 Cohomology of the Hilbert square

There is an isomorphism

H2.S;Z/˚Zı ��! H2.X;Z/

with the property that c1.L/ is mapped to c1.L2/, and ı is mapped to c1.E/. We will use
this isomorphism to identify H2.S;Z/˚Zı with H2.X;Z/. The Beauville–Bogomolov
form on H2.X;Z/ satisfies

bX .�; �/D bS .�; �/; bX .�; ı/D 0; bX .ı; ı/D�2

for all � 2 H2.S;Z/.

The cup product defines an isomorphism Sym2 H2.X;Q/ ��! H4.X;Q/. By Poincaré
duality, there is a unique qX 2 H4.X;Q/ representing the Beauville–Bogomolov form,
in the sense that

(9)
Z
X

qX�1�2 D bX .�1; �2/

for all �1; �2 2 H2.X;Z/. Multiplication by qX defines an isomorphism H2.X;Q/!
H6.X;Q/, and, for all �1; �2; �3 2 H2.X;Q/,

(10) �1�2�3 D bX .�1; �2/qX�3C bX .�2; �3/qX�1C bX .�3; �1/qX�2

in H6.X;Q/. Finally, for all � 2 H2.X;Q/ the Fujiki relation

(11)
Z
X

�4 D 3bX .�; �/
2

holds.

7.3 Todd class of the Hilbert square

Proposition 7.1 TdX D 1C 5
2
qX C 3Œpt�.

Proof See also [23, Section 23.4]. Since the Todd class is invariant under the mon-
odromy group of X , we necessarily have

TdX D 1C sqX C t Œpt�

for some s; t 2Q. By Hirzebruch–Riemann–Roch, for every line bundle L on S with
c1.L/D �,

�.X;L2/D

Z
X

ch.�/TdX D
1

24

Z
X

�4C
s

2

Z
X

�2qX C t:
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By the relations (11) and (9), the right-hand side reduces to

1
8
b.�; �/2C 1

2
sb.�; �/C t:

By [23, Section 23.4] or [17, 5.1], the left-hand side computes to

�.X;L2/D
1
8
b.�; �/2C 5

4
b.�; �/C 3:

Comparing the two expressions yields the result.

8 Derived McKay correspondence

8.1 The derived McKay correspondence

As in Section 7.1, we consider a K3 surface S , its Hilbert square X D S Œ2�, the maps
p WZ! S �S and q WZ!X , and the group G D f1; �g acting on S �S and Z.

The derived McKay correspondence [11] is the triangulated functor

BKR W Db.X/! DbG.S �S/
given as the composition

BKR W DX q�
�! DG.Z/

p�
�! DG.S �S/;

where the first functor maps F to q�F equipped with the trivial G–linearization. By
[11, Theorem 1.1; 21, Theorem 5.1], the functor BKR is an equivalence of categories.

Its inverse has been described in [31, Section 4]. Denote by j W Z! S �S �X the
G–equivariant closed immersion induced by p and q. The exceptional divisor R �Z
is G–invariant and hence defines a G–equivariant sheaf O.R/, and a G–equivariant
sheaf Q WD j�OZ.R/ in DG.S �S �X/.

Proposition 8.1 The inverse equivalence of BKR is given by the equivariant Fourier–
Mukai transform with respect to Q. It maps F 2 DG.S �S/ to the object

.q�p
�F/�D�1˝ E�1

of D.X/.

Proof The first statement is [31, 4.1]. By the adjunction formula for j WZ!S�S!X ,
this implies that F is mapped to

�
q�.p

�F ˝OZ.R//
�G
2 D.X/. If we upgrade the

line bundle E on X to a G–equivariant (for the trivial action on X) line bundle E�
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by making � act as �1, then q�E� Š OZ.�R/ as G–equivariant line bundles on Z.
Applying the projection formula once more for the equivariant map q, we find

.q�.p
�F ˝OZ.R///G Š .q�p�F ˝ E�1� /G Š .q�p

�F/�D�1˝ E�1:

Now let S1 and S2 be K3 surfaces with Hilbert squares X1 and X2. As was observed
by Ploog [39], any equivalence ˆ W DS1 ��! DS2 induces an equivalence

DG.S1 �S2/ ��! DG.S2 �S2/;

and hence, via the derived McKay correspondence, an equivalenceˆŒ2� WDX1 ��!DX2.

8.2 Topological K–theory of the Hilbert square

Theorem 8.2 The composition

BKRtop W Ktop.X/
q�
�! Ktop;G.Z/

p�
�! Ktop;G.S �S/

is an isomorphism.

Proof (See also [11, Section 10].) This is a purely formal consequence of the calculus
of equivariant Fourier–Mukai transforms sketched in Section 6.2. The functor BKR
and its inverse are given by kernels P 2 DG.X � S � S/ and Q 2 DG.S � S �X/.
The map BKRtop is given by convolution with the class of P in K0top;G.X � S � S/.
The identities in K0.X �X/ and K0G�G.S �S �S �S/ witnessing that P and Q are
mutually inverse equivalences induce analogous identities in K0top. These show that
convolution with the class of Q defines a two-sided inverse to BKRtop.

Consider the map
 K
W K0top.X/! K0top.S �S/

G

obtained as the composition of BKRtop and the forgetful map from K0top;G.S �S/ to
K0top.S �S/. Also, consider the map

�K
W K0top.S/! K0top.X/; ŒF � 7! BKR�1top .ŒF �F ; 1�� ŒF �F ;�1�/;

where ŒF �F ;˙1� denotes the class of the topological vector bundle F �F equipped
with ˙ the natural G–linearization.

By construction, these maps are “functorial” in DS , in the following sense:
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Proposition 8.3 If ˆ W DS1 ��! DS2 is a derived equivalence between K3 surfaces ,
and ˆŒ2� W DX1 ��! DX2 is the induced equivalence between their Hilbert squares ,
then the squares

K0top.X1/ K0top.S1 �S1/
G K0top.S1/ K0top.X1/

K0top.X2/ K0top.S2 �S2/
G K0top.S2/ K0top.X2/

 K

ˆŒ2�;K ˆK˝ˆK

�K

ˆK ˆŒ2�;K

 K
�K

commute.

Proposition 8.4 The sequence

0! K0top.S/˝Z Q �K
�! K0top.X/˝Z Q

 K
�! K0top.S �S/

G
˝Z Q! 0

is exact.

Proof In the proof, we will implicitly identify Ktop;G.S �S/ and Ktop.X/.

Note that the map �K is additive. Indeed, let F1 and F2 be (topological) vector bundles
on S . Then the cross term �KŒF1˚F2�� �KŒF1�� �KŒF2� computes to�

F1�F2˚F2�F1;
�
0 1
1 0

��
�
�
F1�F2˚F2�F1;

�
0 �1
�1 0

��
;

which vanishes because the matrices
�
0 1
1 0

�
and

�
0 �1
�1 0

�
are conjugated over Z.

Next we observe that  K WK0top.X/˝Z Q!K0top.S �S/
G˝Z Q is surjective. Indeed,

by the Künneth formula [2], the group K0top.S �S/
G ˝Z Q is generated by classes of

the form ŒF1�F2˚F2�F1�, and these lie in the image of  K.

Also, the composition  K�K vanishes. Computing the Q–dimensions one sees that it
suffices to show that �K is injective to conclude that the sequence is exact.

Pulling back to the diagonal and taking invariants defines a map

K0top.S/
�K
�! K0top;G.S �S/

��
�! K0top;G.S/

.�/G
��! K0top.S/:

This composition computes to

ŒF � 7! ŒSym2 F ��
�V2 F�:

This coincides with the second Adams operation, which is injective on K0top.S/˝Z Q,
since it has eigenvalues 1, 2, and 4. We conclude that �K is injective, and the proposition
follows.
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8.3 A computation in the cohomology of the Hilbert square

We now come to the technical heart of our computation of the derived monodromy of
the Hilbert square of a K3 surface.

Consider the map �H W H.S;Q/! H.X;Q/ given by

(12) �H.sC�C tptS /D .sıC�ıC tqXı/ � e
�ı=2;

for all s; t 2Q and � 2 H2.S;Q/. See Section 7.2 for the definition of ı 2 H2.X;Q/
and qX 2 H4.X;Q/.

Proposition 8.5 The square

K0top.S/ K0top.X/

H.S;Q/ H.X;Q/

�K

v
top
S v

top
X

�H

commutes.

Proof Since K0top.S/˝Z Q is additively generated by line bundles, it suffices to show

(13) v
top
X .�K.L//D

�
ıC�ıC

�
1
2
b.�; �/C 1

�
qXı

�
� e�ı=2

for a topological line bundle L with �D c1.L/. Deforming S if necessary, we may
assume that L is algebraic.

Using Proposition 8.1 and the fact that the natural map

L2˝ q�OZ! q�p
�.L�L/

is an isomorphism of OX–modules, we find

BKR�1ŒL�L; 1�D L2; BKR�1ŒL�L;�1�D E�1˝L2:

We conclude that �K maps L to ŒL2�.1� ŒE�1�/ in K0.X/.

We compute its image under vX . Using the formula for the Todd class from Proposition
7.1, we find

vX .�
K.L//D

�
1C 5

4
qX C � � �

�
exp.�/.1� e�ı/:

Since 1� e�ı has no term in degree 0, the degree 8 part of the square root of the Todd
class is irrelevant, so we have

vX .�
K.L//D

�
1C 5

4
qX
�

exp.�/.1� e�ı/:
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By the Fujiki relation (11) from Section 7.2, we have �3ı D 0, so the above can be
rewritten as

vX .�
K.L//D

�
1C 5

4
qX
�
�
�
ıC�ıC 1

2
�2ı

�
�
1�e�ı

ı
:

Since qXı�D b.ı; �/D 0, we can rewrite this further as

vX .�
K.L//D

�
1C 1

4
qX
�
�
�
ıC�ıC

�
1
2
b.�; �/C 1

�
qXı

�
�
1�e�ı

ı
:

Comparing this with the right-hand side of (13), we see that it suffices to show�
1C 1

4
qX
�
� .1� e�ı/D ıe�ı=2

in H.X;Q/. This boils down to the identities

1
6
ı3C 1

4
ıqX D

1
8
ı3; 1

24
ı4C 1

8
ı2qX D

1
48
ı4

in H6.X;Q/ and H8.X;Q/, respectively. These follow easily from the relations (9),
(10), and (11) in Section 7.2.

9 Derived monodromy group of the Hilbert square of a K3
surface

9.1 Derived monodromy groups

Let X be a smooth projective complex variety. We call a deformation of X the data of
a smooth projective variety X 0, a proper smooth family X ! B , a path 
 W Œ0; 1�! X ,
and isomorphisms X ��! X
.0/ and X 0 ��! X
.1/. We will informally say that X 0

is a deformation of X , the other data being implicitly understood. Parallel transport
along 
 defines an isomorphism H.X;Q/ ��! H.X 0;Q/.

IfX 0 andX 00 are deformations ofX , and if � WX 0!X 00 is an isomorphism of projective
varieties, then we obtain a composite isomorphism

H.X;Q/
�
�! H.X 0;Q/ �

�
�! H.X 00;Q/

�
�! H.X;Q/:

We call such an isomorphism a monodromy operator for X , and denote by Mon.X/
the subgroup of GL.H.X;Q// generated by all monodromy operators.

If X 0 and X 00 are deformations of X , and if ˆ W DX 0 ��! DX 00 is an equivalence, then
we obtain an isomorphism

H.X;Q/
�
�! H.X 0;Q/ ˆ

H

�
�! H.X 00;Q/

�
�! H.X;Q/:
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We call such an isomorphism a derived monodromy operator for X , and denote
by DMon.X/ the subgroup of GL.H.X;Q// generated by all derived monodromy
operators.

By construction, the derived monodromy group is deformation invariant. It contains
the usual monodromy group, and the image of �X , and we have a commutative square
of groups

Aut.X/ Aut.DX/

Mon.X/ DMon.X/

�X

Remark 9.1 The above definition is somewhat ad hoc, and should be considered a
poor man’s derived monodromy group. This is sufficient for our purposes. A more
mature definition should involve all noncommutative deformations of X .

Proposition 9.2 If S is a K3 surface , then DMon.S/D OC.zH.S;Z//.

Proof Indeed, if ˆ W DS1! DS2 is an equivalence, then

ˆH
W zH.S1;Z/! zH.S2;Z/

preserves the Mukai form, as well as a natural orientation on four-dimensional positive
subspaces; see [26, Section 4.5]. Also any deformation preserves the Mukai form and
the natural orientation, so any derived monodromy operator will land in OC.zH.S;Z//.

The converse inclusion can be easily obtained from the Torelli theorem, together with
the results of [22; 39] on derived auto-equivalences of K3 surfaces. Alternatively, one
can use that the group OC.zH.S;Z// is generated by reflections in �2–vectors ı. By the
Torelli theorem, any such �2–vector will become algebraic on a suitable deformation
S 0 of S , and by [32] there exists a spherical object E on S 0 with Mukai vector v.E/D ı.
The spherical twist in E then shows that reflection in ı is indeed a derived monodromy
operator.

9.2 Action of DMon.S / on H.X;Q/

By the derived McKay correspondence, any derived equivalence ˆS W DS1 ��! DS2
between K3 surfaces induces a derived equivalence ˆX W DX1 ��! DX2 between the
corresponding Hilbert squares. By Propositions 8.3 and 8.4, the induced map ˆHX only
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depends on ˆHS . Since any deformation of a K3 surface S induces a deformation of
X D S Œ2�, we conclude that we have a natural homomorphism

DMon.S/! DMon.X/;

and hence an action of DMon.S/ on H.X;Q/. In this subsection, we will explicitly
compute this action. As a first approximation, we determine the DMon.S/–module
structure of H.X;Q/, up to isomorphism.

Proposition 9.3 We have H.X;Q/Š zH.S;Q/˚ Sym2 zH.S;Q/ as representations of
DMon.S/D OC.zH.S;Z//.

Proof This follows from Propositions 8.3 and 8.4.

Since g.X/ is a purely topological invariant, it is preserved under deformations. In
particular, Theorem 4.13 implies that we have an inclusion DMon.X/� O.zH.X;Q//.
We conclude there exists a unique map of algebraic groups h making the square

(14)

DMon.S/ DMon.X/

O.zH.S;Q// O.zH.X;Q//h

commute.

Recall that in (3) we defined an isometry B� of zH.X;Q/ for every � 2 H2.X;Q/.

Theorem 9.4 The map h in the square (14) is given by

g 7! det.g/ � .B�ı=2 ı �.g/ ıBı=2/;

with � W O.zH.S;Q//! O.zH.X;Q// the natural inclusion.

The proof of this theorem will occupy the remainder of this section.

Consider the unique homomorphism of Lie algebras � W g.S/! g.X/ that respects the
grading and maps e� to e� for all � 2 H2.S;Q/� H2.X;Q/. Under the isomorphism
of Theorem 3.1 this corresponds to the map so.zH.S;Q//! so.zH.X;Q// induced by
the inclusion of quadratic spaces zH.S;Q/� zH.X;Q/.

Recall from Section 8.3 the map �H W H.S;Q/! H.X;Q/.
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Lemma 9.5 The map �H W H.S;Q/! H.X;Q/ is equivariant with respect to

�g W g.S/! g.X/; x 7! B�ı=2 ı �.x/ ıBı=2:

Proof We have �H D e�ı=2 � �H
0 , with

�H
0 .sC�C tptS /D sıC�ıC tqXı:

The map �H
0 respects the grading, and we claim that for every �2H2.S;Q/ the diagram

H.S;Q/ H.X;Q/ H.X;Q/

H.S;Q/ H.X;Q/ H.X;Q/

�H
0

e� e�

e�ı=2

e�ı=2e�e
ı=2

�H
0 e�ı=2

commutes. Indeed, we have

e�.�
H
0 .sC�C tptS //D sı�C�ı�C tqXı�;

�H
0 .e�.sC�C tptS //D sı�C b.�; �/qXı:

One verifies easily that these agree, using the identities (10) and (9) from Section 7.2
and the fact that b.�; ı/D b.�; ı/D 0. This shows that the left-hand square commutes.
The right-hand square commutes trivially, so the outer rectangle commutes, which
shows that �H D e�ı=2 � �H

0 is indeed equivariant with respect to �g.

Lemma 9.6 There is an isomorphism

det.zH.X;Q//˝Sym2.zH.X;Q//Š H.X;Q/˚ det.zH.X;Q//

of representations of G D O.zH.X;Q//.

Proof This follows from Lemma 3.7, Theorem 4.13 and Remark 4.14.

We are now ready to prove the main result of this subsection.

Proof of Theorem 9.4 By Proposition 8.5, the map �H is equivariant for the action of
DMon.S/. Lemma 9.5 then implies that

h.g/D B�ı=2 ı �.g/ ıBı=2

for all g 2 SO.zH.S;Q//. We have an orthogonal decomposition

zH.X;Q/D B�ı=2.zH.S;Q//˚C
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withC of rank 1. Since SO.zH.S;Q// is normal in O.zH.S;Q//, the action of O.zH.S;Q//
(via h) must preserve this decomposition. With respect to this decomposition h must
then be given by

h.g/D .B�ı=2 ıg�1.g/ ıBı=2/˚ �2.g/;

where the �i .g/ W O.zH.S;Q// ! f˙1g are quadratic characters. This leaves four
possibilities for h. One verifies that �1 D �2 D detg is the only possibility compatible
with Proposition 9.3 and Lemma 9.6, and the theorem follows.

9.3 A transitivity lemma

In this section we prove a lattice-theoretical lemma that will play an important role in
the proofs of Theorems E and F.

Let b W L�L! Z be an even nondegenerate lattice. Let U be a hyperbolic plane with
basis consisting of isotropic vectors ˛ and ˇ satisfying b.˛; ˇ/D�1.

As before, to a � 2 L we associate the isometry B� 2 O.U ˚L/ defined as

B�.r˛C�C sˇ/D r˛C .�C r�/C
�
sC b.�; �/C r 1

2
b.�; �/

�
ˇ

for all r; s 2Z and �2L. Let 
 be the isometry of U˚L given by 
.˛/Dˇ, 
.ˇ/D˛,
and 
.�/D�� for all � 2 L.

Lemma 9.7 LetL be an even lattice containing a hyperbolic plane. Let G�O.U˚L/
be the subgroup generated by 
 and by B� for all � 2 L. Then , for all ı 2 U ˚L with
ı2 D�2 and for all g 2 O.U ˚L/, there exists a g0 2G such that g0g fixes ı.

Proof This follows from classical results of Eichler. A convenient modern source is
[20, Section 3], whose notation we adopt. The isometry B� coincides with the Eichler
transvection t .ˇ;��/. The conjugate 
B�
�1 is the Eicher transvection t .˛; �/. Hence
G contains the subgroup EU .L/�O.U ˚L/ of unimodular transvections with respect
to U . By [20, Proposition 3.3], there exists a g0 2EU .L/ mapping gı to ı.

9.4 Proof of Theorem E

Let X be a hyperkähler variety of type K3Œ2�. Let ı 2H2.X;Z/ be any class satisfying
ı2 D �2 and b.ı; �/ 2 2Z for all � 2 H2.X;Z/. For example, if X D S Œ2�, we may
take ı D c1.E/ as in Section 7.2. Consider the integral lattice

ƒ WD Bı=2.Z˛˚H2.X;Z/˚Zˇ/� zH.X;Q/:
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The subgroup ƒ � zH.X;Q/ does not depend on the choice of ı. In this section, we
will prove Theorem E. More precisely, we will show:

Theorem 9.8 OC.ƒ/� DMon.X/� O.ƒ/.

We start with the lower bound.

Proposition 9.9 OC.ƒ/� DMon.X/ as subgroups of O.zH.X;Q//.

Proof Since the derived monodromy group is invariant under deformation, we may
assume without loss of generality that X D S Œ2� for a K3 surface S and ı D c1.E/ as
in Section 7.2.

The shift functor Œ1� on DX acts as �1 on H.X;Q/, which coincides with the action of
�1 2O.zH.X;Q//. In particular, �1 2OC.ƒ/ lies in DMon.X/, so it suffices to show
that SOC.ƒ/ is contained in DMon.X/.

Consider the isometry 
 2 OC.zH.S;Q// given by 
.˛/ D �ˇ, 
.ˇ/ D �˛, and

.�/ D � for all � 2 H2.S;Q/. Then det.
/ D �1 and by Theorem 9.4 its image
h.
/ interchanges Bı=2˛ and Bı=2ˇ and acts by �1 on Bı=2H2.X;Z/. Since 
 lies in
DMon.S/� O.zH.S;Q//, we have that h.
/ lies in DMon.X/� O.zH.X;Q//.

Let G � O.zH.X;Q// be the subgroup generated by h.
/ and the isometries B� for
� 2 H2.X;Z/. Clearly G is contained in DMon.X/.

Let g be an element of SOC.ƒ/, and consider the image gBı=2ı of Bı=2ı. By
Lemma 9.7 there exists a g0 2G �DMon.X/ such that g0g fixes Bı=2ı. But then g0g
acts on

.Bı=2ı/
?
D Bı=2.Z˛˚H2.S;Z/˚Zˇ/

with determinant 1 and preserving the orientation of a maximal positive subspace. In
particular, g0g lies in the image of DMon.S/! DMon.X/, and we conclude that g
lies in DMon.X/.

The proof of the upper bound is now almost purely group-theoretical. Denote by
SOC.ƒ/ the intersection OC.ƒ/\SO.ƒ/. This group coincides with the kernel of the
spinor norm on SO.ƒ/.

Proposition 9.10 SO.ƒ/ is the unique maximal arithmetic subgroup of SO.ƒ˝Z Q/

containing SOC.ƒ/.
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Proof More generally, this holds for any even lattice ƒ with the property that the
quadratic form q.x/D b.x; x/=2 on the Z–module ƒ is semiregular [29, Section IV.3].

For such ƒ, the group schemes Spin.ƒ/ and SO.ƒ/ are smooth over Spec Z; see
eg [27]. In particular, for every prime p the subgroups Spin.ƒ˝Zp/ and SO.ƒ˝Zp/

of Spin.ƒ˝Qp/ and SO.ƒ˝Qp/, respectively, are maximal compact subgroups. It
follows that the groups

Spin.ƒ/D Spin.ƒ˝Q/\
Y
p

Spin.ƒ˝Zp/

and
SO.ƒ/D SO.ƒ˝Q/\

Y
p

SO.ƒ˝Zp/

are maximal arithmetic subgroups of Spin.ƒ˝Q/ and SO.ƒ˝Q/, respectively.

The subgroup SOC.ƒ/� SO.ƒ/ is the kernel of the spinor norm, and the short exact
sequence 1! �2 ! Spin! SO! 1 of fppf sheaves on Spec Z induces an exact
sequence of groups

1! f˙1g ! Spin.ƒ/! SOC.ƒ/! 1:

Let � � SO.ƒ˝Q/ be a maximal arithmetic subgroup containing SOC.ƒ/. Let z� be
its inverse image in Spin.ƒ˝Q/, so that we have an exact sequence

1! f˙1g ! z�! �!Q�=2:

Since the group z� is arithmetic and contains Spin.ƒ/, we have z�DSpin.ƒ/. Moreover,
� normalizes SOC.ƒ/ D ker.� ! Q�=2/, and, as the normalizer of an arithmetic
subgroup of SO.ƒ˝Q/ is again arithmetic, � must equal the normalizer of SOC.ƒ/.
But then � contains SO.ƒ/, and we conclude � D SO.ƒ/.

Corollary 9.11 DMon.X/� O.ƒ/.

Proof DMon.X/ preserves the integral lattice Ktop.X/ in the representation H.X;Q/
of O.zH.X;Q//, and hence is contained in an arithmetic subgroup of

O.zH.X;Q//D SO.zH.X;Q//� f˙1g:

By Proposition 9.9 it contains SOC.ƒ/� f˙1g, so we conclude from the preceding
proposition that DMon.X/ must be contained in O.ƒ/.

Together with Proposition 9.9 this proves Theorem 9.8.
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10 The image of Aut.DX/ on H.X;Q/

10.1 Upper bound for the image of �X

We continue with the notation of the previous section. In particular, we denote by X a
hyperkähler variety of type K3Œ2�, and byƒ� zH.X;Q/ the lattice defined in Section 9.4.
We equip zH.X;Q/ with the weight 0 Hodge structure

zH.X;Q/DQ˛˚H2.X;Q.1//˚Qˇ:

We denote by Aut.ƒ/� O.ƒ/ the group of isometries of ƒ that preserve this Hodge
structure.

Proposition 10.1 im.�X /� Aut.ƒ/.

Proof By Theorem 9.8 we have im.�X /� O.ƒ/. The Hodge structure on

H.X;Q/D
4M
nD0

H2n.X;Q.n//

induces a Hodge structure on g.X/ � End.H.X;Q//, which agrees with the Hodge
structure on so.zH.X;Q// induced by the Hodge structure on zH.X;Q/. If

ˆ W DX ��! DX

is an equivalence, then ˆH W H.X;Q/ ��! H.X;Q/ and ˆg W g.X/ ��! g.X/ are
isomorphisms of Q–Hodge structures, from which it follows that ˆH must land in
Aut.ƒ/� O.ƒ/.

10.2 Lower bound for the image of �X

We write AutC.ƒ/ for the index 2 subgroup Aut.ƒ/\OC.ƒ/ of Aut.ƒ/.

Theorem 10.2 Let S be a K3 surface and let X be the Hilbert square of S . Assume
that NS.X/ contains a hyperbolic plane. Then AutC.ƒ/� im �X � Aut.ƒ/.

Proof In view of Proposition 10.1 we only need to show the lower bound. The
argument for this is entirely parallel to the proof of Proposition 9.9. Recall that

ƒD Bı=2.Z˛˚H2.S;Z.1//˚Zı˚Zˇ/:

The shift functor Œ1� 2 Aut.DX/ maps to �1 2 AutC.ƒ/, so it suffices to show that
AutC.ƒ/\SO.ƒ/ is contained in im �X .
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Let 
S 2Aut.DS/ be the composition of the spherical twist in OS with the shift Œ1�. On
the Mukai lattice zH.S;Z/D Z˛˚H2.X;Z.1//˚Zˇ this equivalence maps ˛ to �ˇ
and ˇ to �˛ and is the identity on H2.S;Z/. Under the derived McKay correspondence
this induces an autoequivalence 
X 2 AutDX . By Theorem 9.4, the automorphism
�X .
X / 2 Aut.ƒ/ interchanges Bı=2˛ and Bı=2ˇ and acts by �1 on Bı=2H2.X;Z/.

Denote by G � Aut.ƒ/ the subgroup generated by �X .
X / and the isometries B� D
�X .�˝L/ with L a line bundle of class � 2 NS.X/. Clearly G is contained in the
image of �X . Note that G acts on the lattice

ƒalg WD Bı=2.Z˛˚NS.X/˚Zˇ/

and that by our assumption NS.X/ contains a hyperbolic plane.

Let g 2 AutC.ƒ/. By Lemma 9.7 applied to LD NS.X/, there exists a g0 2G such
that g0g fixes Bı=2ı. But then g0g acts on

.Bı=2ı/
?
D Bı=2.Z˛˚H2.S;Z/˚Zˇ/

with determinant 1 and preserving the Hodge structure and the orientation of a maximal
positive subspace. In particular, g0g lies in the image of Aut.DS/, and we conclude
that g lies in im �X .
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A new cohomology class on the moduli space of curves

PAUL NORBURY

We define a collection‚g;n 2H 4g�4C2n.Mg;n;Q/ for 2g�2Cn>0 of cohomology
classes that restrict naturally to boundary divisors. We prove that the intersection
numbers

R
Mg;n

‚g;n

Qn
iD1  

mi
i can be recursively calculated. We conjecture that

a generating function for these intersection numbers is a tau function of the KdV
hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a
generating function for the intersection numbers

R
Mg;n

Qn
iD1  

mi
i is a tau function

of the KdV hierarchy.

14D23, 32G15, 53D45

1. Introduction 2695

2. Existence 2698

3. Uniqueness 2709

4. Cohomological field theories 2717

5. Givental construction of cohomological field theories 2727

6. Progress towards a proof of Conjecture 1.5 2748

Appendix. Calculations 2755

References 2758

1 Introduction

Let Mg;n be the moduli space of genus g stable curves — curves with only nodal
singularities and finite automorphism group — with n labelled points disjoint from
nodes. Define  i D c1.Li/ 2 H 2.Mg;n;Q/ to be the first Chern class of the line
bundle Li !Mg;n with fibre above Œ.C;p1; : : : ;pn/� given by T �pi

C. Consider the
natural maps given by the forgetful map which forgets the last point,

(1) Mg;nC1
�
�!Mg;n;
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/gt.2023.27.2695
http://www.ams.org/mathscinet/search/mscdoc.html?code=14D23, 32G15, 53D45
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2696 Paul Norbury

and the gluing maps which glue the last two points,

(2)
Mg�1;nC2

�irr
��!Mg;n;

Mh;jI jC1 �Mg�h;jJ jC1
�h;I
��!Mg;n; I tJ D f1; : : : ; ng:

In this paper we construct cohomology classes ‚g;n 2H�.Mg;n;Q/ for g � 0, n� 0

and 2g� 2C n> 0 such that

(i) ‚g;n 2H�.Mg;n;Q/ is of pure degree,

(ii) ��irr‚g;n D‚g�1;nC2 and ��
h;I
‚g;n D �

�
1
‚h;jI jC1 ��

�
2
‚g�h;jJ jC1,

(iii) ‚g;nC1 D  nC1 ��
�‚g;n,

(iv) ‚1;1 ¤ 0,

where �i is projection onto the i th factor of Mh;jI jC1�Mg�h;jJ jC1. We prove below
that properties (i)–(iv) uniquely define intersection numbers of the classes ‚g;n with
the classes  i and more generally with classes in the tautological ring RH�.Mg;n/�

H 2�.Mg;n;Q/.

Remark 1.1 One can replace (ii) by the equivalent property

���‚g;n D‚�

for any stable graph � , defined in Section 3, of genus g with n external edges. Here

�� WM� D

Y
v2V .�/

Mg.v/;n.v/!Mg;n; ‚� D
Y

v2V .�/

��v‚g.v/;n.v/ 2H�.M� ;Q/;

where �v is projection onto the factor Mg.v/;n.v/. This generalises (ii) from 1–edge
stable graphs given by ��irr D �irr and ��h;I

D �h;I .

Remark 1.2 The sequence of classes ‚g;n satisfies many properties of a cohomologi-
cal field theory (CohFT). It is essentially a 1–dimensional CohFT with vanishing genus
zero classes, not to be confused with Hodge classes which are trivial in genus zero but
do not vanish there. The trivial cohomology class 1 2H 0.Mg;n;Q/, which is a trivial
example of a CohFT known as a topological field theory, satisfies conditions (i)–(ii),
while the forgetful map property (iii) is replaced by ‚g;nC1 D �

�‚g;n.

Theorem 1.3 There exists a class ‚g;n satisfying (i)–(iv) and , furthermore , any such
class satisfies the following properties:

(I) ‚g;n 2H 4g�4C2n.Mg;n;Q/.

Geometry & Topology, Volume 27 (2023)
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(II) ‚0;n D 0 for all n and ��
�
‚g;n D 0 for any � with a genus 0 vertex.

(III) ‚g;n 2H�.Mg;n;Q/Sn , ie it is symmetric under the Sn action.

(IV) ‚1;1 D 3 1.

(V) For any � 2 RH g�1.Mg;n/, the intersection number
R
Mg;n

‚g;n� 2 Q is
uniquely determined by (i)–(iii) and (IV).

The main content of Theorem 1.3 is the existence of‚g;n, the rigidity property (IV) and
the uniqueness property (V). The existence of ‚g;n is constructed via the pushforward
of a class over the moduli space of spin curves in Section 2. The rigidity property (IV)
is proven in Section 3 by starting with ‚1;1 D � 1 and determining constraints on �
to arrive at �D 3, which does occur due to the construction of ‚g;n. The uniqueness
result (V) involving classes in the tautological ring RH�.Mg;n/ is nonconstructive
since it relies on the existence of nonexplicit tautological relations. The proofs of
properties (I)–(III) are straightforward and presented in Section 3. Section 4 describes
how the classes ‚g;n naturally combine with any cohomological field theory.

Remark 1.4 Properties (i)–(iv) uniquely define the classes ‚g;n for g � 4 and all n,
but it is not known if they uniquely define the classes ‚g;n in general. Uniqueness
would follow from injectivity of the pullback map to the boundary

RH 2g�2.Mg/!RH 2g�2.@Mg/;

which holds for g D 2, 3 and 4. It would show that ‚g 2RH 2g�2.Mg/ is uniquely
determined from its restriction, and consequently ‚g;n would coincide with the classes
constructed in Section 2 for all n� 0.

The following conjecture allows one to recursively calculate all intersection numbersR
Mg;n

‚g;n

Qn
iD1  

mi

i via relations coming out of the KdV hierarchy. Such a recursive
calculation would strengthen property (V) since intersections of ‚g;n with  classes
determine all tautological intersections with ‚g;n algorithmically.

Conjecture 1.5 The function

Z‚.„; t0; t1; : : : /D exp
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj

is the Brézin–Gross–Witten tau function of the KdV hierarchy.

Geometry & Topology, Volume 27 (2023)



2698 Paul Norbury

The Brézin–Gross–Witten KdV tau function ZBGW was defined in [6; 30]. Conjecture
1.5 has been verified up to g D 7, ie the coefficients of the expansion of the logarithm
of the Brézin–Gross–Witten tau function are given by intersection numbers of the
classes ‚g;n for g � 7 and all n. Progress towards Conjecture 1.5, including a purely
combinatorial formulation that can be stated without reference to the moduli space of
stable curves or the KdV hierarchy, is discussed in Section 6.

Acknowledgements I would like to thank Dimitri Zvonkine for his ongoing interest
in this work, which benefited immensely from many conversations together. I would
also like to thank Vincent Bouchard, Alessandro Chiodo, Alessandro Giacchetto, Oliver
Leigh, Danilo Lewanksi, Rahul Pandharipande, Johannes Schmitt, Mehdi Tavakol,
Ran Tessler, Ravi Vakil and Edward Witten for useful conversations, the referee for
comments which improved the paper, and the Institut Henri Poincaré, where part of
this work was carried out.

2 Existence

The existence of a cohomology class‚g;n 2H�.Mg;n;Q/ satisfying (i)–(iv) is proven
here using the moduli space of stable twisted spin curves Mspin

g;n , which consists of
pairs .†; �/ given by a twisted stable curve † equipped with an orbifold line bundle �
together with an isomorphism �˝2 Š !

log
†

. See precise definitions below. We first
construct a cohomology class on Mspin

g;n and then push it forward to a cohomology class
on Mg;n.

A stable twisted curve, with group Z2, is a 1–dimensional orbifold, or stack, C such
that generic points of C have trivial isotropy group and nontrivial orbifold points have
isotropy group Z2. A stable twisted curve is equipped with a map which forgets the
orbifold structure � W C ! C, where C is a stable curve known as the coarse curve
of C. We say that C is smooth if its coarse curve C is smooth. Each nodal point of C
(corresponding to a nodal point of C ) has nontrivial isotropy group, the local picture at
each node is fxy D 0g=Z2 with Z2 action given by .�1/ � .x;y/D .�x;�y/, and all
other points of C with nontrivial isotropy group are labelled points of C.

A line bundle L over C is a locally equivariant bundle over the local charts such
that, at each nodal point, there is an equivariant isomorphism of fibres. Hence, each
orbifold point p associates a representation of Z2 on Ljp acting by multiplication
by exp.2� i�p/ for �p D 0 or 1

2
. One says L is banded at p by �p. The equivariant

Geometry & Topology, Volume 27 (2023)
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isomorphism at nodes guarantees that the representations agree on each local irreducible
component at the node.

The canonical bundle !C of C is generated by dz for any local coordinate z. At
an orbifold point x D z2, the canonical bundle !C is generated by dz; hence, it is
banded by 1

2
, ie dz 7! �dz under z 7! �z. Over the coarse curve, !C is generated

by dx D 2z dz. In other words, ��!C © !C; however, !C Š ��!C . Moreover,
deg!C D 2g� 2 and

deg!C D 2g� 2C 1
2
n:

For !log
C D !C.p1; : : : ;pn/, locally dx=x D 2 dz=z, so ��!log

C
Š !

log
C and deg!log

C
D

2g� 2C nD deg!log
C .

Following [1], define the moduli space of stable twisted spin curves by

Mspin
g;n D f.C; �;p1; : : : ;pn; �/ j � W �

2 Š�! !
log
C g:

Here !log
C and � are line bundles over the stable twisted curve C with labelled orbifold

points pj and deg � D g�1C 1
2
n. The pair .�; �/ is a spin structure on C. The relation

�2 Š�! !
log
C is possible because the representation associated to !log

C at pi is trivial:
dz=z! dz=z, z 7!�z. The equivariant isomorphism of fibres over nodal points forces
the balanced condition �pC D �p� for p˙ corresponding to p on each irreducible
component.

We can now define a vector bundle over Mspin
g;n using the dual bundle �_ on each stable

twisted curve. Denote by E the universal spin structure on the universal stable twisted
spin curve over Mspin

g;n . Given a map S !Mspin
g;n , E pulls back to � , giving a family

.C; �;p1; : : : ;pn; �/, where � W C! S has stable twisted curve fibres, pi W S ! C are
sections with orbifold isotropy Z2, and � W �2 Š�!!

log
C=S D!C=S .p1; : : : ;pn/. Consider

the pushforward sheaf ��E_ over Mspin
g;n . We have

deg �_ D 1�g� 1
2
n< 0:

Furthermore, for any irreducible component C0 i
�! C, the pole structure on sections of

the log canonical bundle at nodes yields i�!
log
C=S D!

log
C0=S . Hence, �0 W .� jC0/2 Š�!!

log
C0=S ,

where �0 D i� ı �jC0 . Since the irreducible component C0 is stable, its log canonical
bundle has negative degree and

deg �_jC0 < 0:

The negative degree of �_ restricted to any irreducible component implies R0��E_D 0

and the following definition makes sense:

Geometry & Topology, Volume 27 (2023)



2700 Paul Norbury

Definition 2.1 Define a bundle Eg;n D�R��E_ over Mspin
g;n with fibre H 1.C; �_/.

Represent the band of � at the labelled points by E� D .�1; : : : ; �n/ 2 f0; 1g
n so that,

at each labelled point pi , the representation of Z2 on � jpi
is given by multiplication

by exp.2� i�pi
/ for �pi

D
1
2
�i 2

˚
0; 1

2

	
. The number of pi with �pi

D 0 is even due
to evenness of the degree of the pushforward sheaf j� j WD ��OC.�/ on the coarse
curve C [33]. In the smooth case, the boundary type of a spin structure is determined
by an associated quadratic form, applied to each of the n boundary classes, which
vanishes since it is a homological invariant, again implying that the number of pi with
�pi
D 0 is even. The moduli space of stable twisted spin curves decomposes into

components determined by the band E� ,

Mspin
g;n D

G
�

Mspin
g;n;E�

;

where Mspin
g;n;E� consists of those spin curves with � banded by E� , and the union is

over the 2n�1 functions E� satisfying jE� jC nD
Pn

iD1.�i C 1/ 2 2Z. Each component
Mspin

g;n;E� is connected except when jE� j D n, in which case there are two connected
components determined by their Arf invariant, known as even and odd spin structures.
This follows from the case of smooth spin curves proven in [42].

Restricted to Mspin
g;n;E�

, the bundle Eg;n has rank

(3) rank Eg;n D 2g� 2C 1
2
.nCjE� j/

by the following Riemann–Roch calculation. Orbifold Riemann–Roch takes into
account the representation information

h0.C; �_/� h1.C; �_/D 1�gC deg �_�
nX

iD1

�pi
D 1�gC 1�g� 1

2
n� 1

2
jE� j

D 2� 2g� 1
2
.nCjE� j/:

Alternatively, one can use the usual Riemann–Roch calculation on the pushforward
of � to the underlying coarse curve C as follows. The sheaf of local sections OC.L/

of any line bundle L on C pushes forward to a sheaf jLj WD ��OC.L/ on C, which
can be identified with the local sections of L invariant under the Z2 action. Away
from nodal points, jLj is locally free, and hence a line bundle. At nodal points, the
pushforward jLj is locally free when L is banded by the trivial representation, and
jLj is a torsion-free sheaf that is not locally free when L is banded by the nontrivial

Geometry & Topology, Volume 27 (2023)
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representation; see [25]. The pullback bundle is given by

��.j�_j/D �_˝
O
i2I

O.��ipi/

since locally invariant sections must vanish when the representation is nontrivial. Hence,
deg j�_j D deg �_� 1

2
jE� j. Hence, Riemann–Roch on the coarse curve yields the same

result as above: h0.C; j�_j/� h1.C; j�_j/D 2� 2g� 1
2
.nCjE� j/. It is proven in [25]

that H i.C; �_/DH i.C; j�_j/, so the calculations agree.

We have h0.C; �_/D 0 since deg �_D 1�g� 1
2
n< 0, and the restriction of �_ to any

irreducible component C 0, say of type .g0; n0/, also has negative degree, deg �_jC 0 D
1� g0 � 1

2
n0 < 0. Hence, h1.C; �_/ D 2g � 2C 1

2
.nC jE� j/. Thus, H 1.C; �_/ gives

fibres of a rank 2g� 2C 1
2
.nCjE� j/ vector bundle.

The analogue of the boundary maps �irr and �h;I defined in (2) are multivalued maps
defined as follows. Consider a node p 2 C for .C; �;p1; : : : ;pn; �/ 2Mspin

g;n . Denote
the normalisation by � W zC! C with points p˙ 2 zC that map to the node, p D �.p˙/.
When zC is not connected, the spin structure ��� decomposes into two spin structures
�1 and �2. Any two spin structures �1 and �2 with bands at pC and p� that agree can
glue, but not uniquely, to give a spin structure on C. This gives rise to a multivalued
map, as described in [26, page 27], which uses the fibre product

.Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n
//

��

Mspin
g;n

��

Mh;jI jC1 �Mg�h;jJ jC1
//Mg;n

and is given by

.Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n

O�

tt

�h;I

((

Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

//Mspin
g;n

where I t J D f1; : : : ; ng. The map O� is given by the pullback of the spin structure
obtained from Mspin

g;n to the normalisation defined by the points of Mh;jI jC1 and
Mg�h;jJ jC1. The broken arrow Ü represents the multiply defined map �h;I ı O�

�1.
The multivalued map �h;I ı O�

�1 naturally restricts to components

Mspin
h;jI jC1;�1

�Mspin
g�h;jJ jC1;�2

Ü Mspin
g;n;E�

;

Geometry & Topology, Volume 27 (2023)
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where E� and I uniquely determine �1 and �2, since � must be banded by �p D 0 at an
even number of orbifold points, which uniquely determines the band �pC D �p� at the
separating node.

When zC is connected, a spin structure � on C pulls back to a spin structure Q� D ��� on zC.
As above, any spin structure Q� with bands at pC and p� that agree glues nonuniquely,
to give a spin structure on C, and defines a multiply defined map which uses the fibre
product

Mg�1;nC2 �Mg;n
Mspin

g;n
//

��

Mspin
g;n

��

Mg�1;nC2
//Mg;n

and is given by

Mg�1;nC2 �Mg;n
Mspin

g;n

O�

vv

�irr

''

Mspin
g�1;nC2

//Mspin
g;n

Again, �irr ı O�
�1 naturally restricts to components Mspin

g�1;nC2;E� 0
Ü Mspin

g;n;E�
, but,

unlike the case of �h;I ı O�
�1 above, E� does not uniquely determine E� 0. The map O�

now depends on � and there are two cases, corresponding to the decomposition of
the fibre product Mg�1;nC2�Mg;n

Mspin
g;n;E�

into two components which depend on the
behaviour of � at the nodal point p˙. Either � is banded by �p˙ D

1
2

, or it is banded
by �p˙ D 0, corresponding to E� 0 D .E�; 1; 1/ and E� 0 D .E�; 0; 0/, respectively.

The bundle Eg;n behaves naturally with respect to the boundary divisors.

Lemma 2.2 On components where � is banded by �p˙ D
1
2

, at the node ,

��irrEg;n Š O�
�Eg�1;nC2; ��h;I Eg;n Š O�

�.��1 Eh;jI jC1˚�
�
2 Eg�h;jJ jC1/;

where �i is projection from Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

onto the i th factor for i D 1; 2.

Proof A spin structure Q� on a connected normalisation zC has

deg Q�_ D 1� .g� 1/� 1
2
.nC 2/ < 0

and also negative degree on all irreducible components; hence, H 0.zC; Q�_/ D 0. By
Riemann–Roch,

h0.zC; Q�_/� h1.zC; Q�_/D 1� .g� 1/C deg Q�_� 1
2
.nC 2/D 2� 2g� n:
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Hence, dim H 1.zC; Q�_/D dim H 1.C; �_/ and the natural map

0!H 1.C; �_/!H 1.zC; Q�_/

is an isomorphism. In other words, ��irrEg;n Š �
�Eg�1;nC2.

The argument is analogous when zC is not connected and �p˙ D
1
2

. Again deg �_i < 0,
and it has negative degree on all irreducible components; hence, H 0.C; �_i /D 0 for
i D 1; 2. By Riemann–Roch,

dim H 1.C; �_1 /C dim H 1.C; �_2 /D dim H 1.C; �_/;

so the natural map

0!H 1.C; �_/!H 1.zC1; �
_
1 /˚H 1.zC2; �

_
2 /

is an isomorphism. In other words, ��
h;I

Eg;n Š O�
�.��

1
Eh;jI jC1˚�

�
2

Eg�h;jJ jC1/.

The pullback of Eg;n to boundary divisors with trivial isotropy at the node is described
in the following lemma:

Lemma 2.3 On components where � is banded by �p˙ D 0, at the node ,

(4) 0!OXh;I
! ��h;I Eg;n! O�

�.��1 Eh;jI jC1˚�
�
2 Eg�h;jJ jC1/! 0

for Xh;I D .Mh;jI jC1 �Mg�h;jJ jC1/�Mg;n
Mspin

g;n and

(5) 0!OXirr ! ��irrEg;n! O�
�Eg�1;nC2! 0

for Xirr DMg�1;nC2 �Mg;n
Mspin

g;n .

Proof When the bundle � is banded by �p˙ D 0, the map between sheaves of local
holomorphic sections

�.U; �/! �.��1U; ���/

is not surjective whenever U 3p. The image consists of local sections that agree, under
an identification of fibres, at pC and p�. Hence we have an exact sequence

(6) 0! �_! ���
��_! ���

��_jp! 0;

where the quotient sends a local section s 2 �.��1U; ���_/ to s.pC/� s.p�/. Note
that this difference of sections over different points makes sense since Xh;I and Xirr

come with a choice of isomorphism between the fibres over pC and p�. The exact
sequence (6) splits as follows. We can choose a representative � upstairs of any element
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from the quotient space so that �.pC/D 0, ie �.U; �_/ corresponds to elements of
�.��1U; ���_/ that vanish at pC. This is achieved by adding the appropriate multiple
of s.pC/� s.p�/ to a given � 2 �.��1U; ���_/. (Note that �.p�/ is arbitrary. One
could instead arrange �.p�/D 0 with �.pC/ arbitrary.) In other words, we can identify
�_ with ���_.�pC/ in the complex

0! ���_.�pC/! ���_! ���_jpC ! 0:

In a family � W C ! S , R0��.�
��_/D 0DR0��.�

��_.�pC// since deg ���_ < 0,
and it has negative degree on all irreducible components. Also R1��.�

��_jpC/D 0

since pC has relative dimension 0. Thus,

(7) 0!R0��.�
��_jpC/!R1��.�

��_.�pC//!R1��.�
��_/! 0:

We can identify the sequence (7) with the sequences (4) and (5) as follows. For the first
term of (7), ���_jpC ŠC canonically, since !log

C jpC ŠC canonically by the residue
map; hence, R0��.�

��_jpC/ŠWS . The second and third terms of (7) are identified with
the corresponding terms of (4) by O��.��

1
Eh;jI jC1˚�

�
2

Eg�h;jJ jC1/DR1��.�
��_/

and ��
h;I

Eg;nDR1��.�
��_.�pC//, and similarly with those of (5) by O��Eg�1;nC2D

R1��.�
��_/ and ��irrEg;n DR1��.�

��_.�pC//.

Remark 2.4 In Lemma 2.2, the nodal band is �p˙ D
1
2

and so �pCC�p� D 1. We see
from Lemma 2.3 that �p˙D0 really wants one of �p˙ to be 1 to preserve �pCC�p�D1.

Definition 2.5 For 2g� 2C n> 0, define the Chern class

�g;n WD c2g�2Cn.Eg;n/ 2H 4g�4C2n.Mspin
g;n ;Q/:

On the component Mspin
g;n;E�

of Mspin
g;n for jE� j D n, this defines the top Chern class, or

Euler class. The Chern class vanishes on all other components because, by (3), the rank
of Eg;n D 2g � 2C 1

2
.jE� j C n/ < 2g � 2C n when jE� j < n. Note that �0;n D 0 for

n� 3 because rank.E0;n/D n� 2 is greater than dimMspin
0;n
D n� 3, so its top Chern

class vanishes.

The cohomology classes �g;n behave well with respect to inclusion of strata.

Lemma 2.6 We have

��irr�g;n D O�
��g�1;nC2; ��h;I�g;n D O�

�.��1�h;jI jC1 ��
�
2�g�h;jJ jC1/:
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Proof When jE� j D n and � is banded by 1
2

at the nodal point, this is an immediate
application of Lemma 2.2 and the naturality of c2g�2Cn D ctop: we have

��irrctop.Eg;n/D O�
�ctop.Eg�1;nC2/;

��h;I ctop.Eg;n/D O�
�.��1 ctop.Eh;jI jC1/ ��

�
2 ctop.Eg�h;jJ jC1//:

When jE� j D n and � is banded by 0 at the nodal point, the nodal point is neces-
sarily nonseparating and we must consider the restriction of �g;n to the component
Mspin

g�1;nC2;E� 0
of Mspin

g�1;nC2
with jE� 0j D n. On this component, we have the exact

sequence of Lemma 2.3,

0!Eg�1;nC2! ��irrEg;n!OMspin
g�1;nC2;E�0

! 0;

which implies ��irrc2g�2Cn.Eg;n/ D c2g�3Cn.Eg�1;nC2;E� 0/ � c1.OMspin
g�1;nC2;E�0

/ D 0.
This vanishing result is a special case of the pullback by ��irr since �g�1;nC2 vanishes
on Mspin

g�1;nC2;E� 0
for jE� 0j D n.

Finally, when jE� j< n, this is simply because the pullback of the trivial class is trivial,
since in each case the restriction to an irreducible component has at least one labelled
point with band equal to 0, so that the right-hand side vanishes.

The cohomology classes �g;n also behave well with respect to the forgetful map

� WMspin
g;nC1

!Mspin
g;n

which is defined on components with � banded by 1
2

at pnC1 as follows. Define

�.C; �;p1; : : : ;pnC1; �/D .�.C/; ���;p1; : : : ;pn; ���/;

where �.C/ forgets the orbifold structure at pnC1. The pushforward sheaf ��� consists
of local sections invariant under the Z2 action. Since the representation at pnC1 is
given by multiplication by �1, any invariant local section must vanish at pnC1. In
terms of a local orbifold coordinate x D z2, an invariant section is of the form zf .x/s

for s a generator of � and its square

.zf .x/s/2 D z2f .x/2s2
D xf .x/2

dx

x
D f .x/2 dx

has no pole. In other words, its square is a section of !log
C with no pole at pnC1

and hence a section of !log
�.C/ D !�.C/.p1 C p2 C � � � C pn/. Furthermore, we have

��� D ��f�.�pnC1/g, ����� D �.�pnC1/ and deg ��� D deg � � 1
2

. The forgetful
map � is used to denote any family � W C!S since Mspin

g;nC1
is essentially the universal

curve of Mspin
g;n .
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Tautological line bundles Lpi
!Mspin

g;n for iD1; : : : ; n are defined analogously to those
defined over Mg;n as follows. Consider a family � W C! S with sections pi W S ! C
for i D 1; : : : ; n, and define

Lpi
WD p�i .!C=S /;  i D c1.Lpi

/ 2H�.Mspin
g;n ;Q/:

Lemma 2.7 �g;nC1 D� pnC1
����g;n:

Proof Over a family � W C! S, where S !Mspin
g;nC1

and � ! C is the universal spin
structure (also denoted by E), tensor the exact sequence of sheaves

0!OC.�pnC1/!OC!OCjpnC1
! 0

with �_.pnC1/ to get

0! �_! �_.pnC1/! �_.pnC1/jpnC1
! 0:

This induces a long exact sequence, which simplifies to the short exact sequence

0!R0��.�
_.pnC1/jpnC1

/!R1���
_
!R1��.�

_.pnC1//! 0

due to the vanishing R0��.�
_.pnC1// D 0 D R1��.�

_.pnC1/jpnC1
/. The first of

these vanishing results uses the identification �_.pnC1/ D ���_ described below
together with the vanishing R0���

_D 0 due to the negative degree on each irreducible
component described earlier. The second of these vanishing results uses the simple
dimension argument that R1�� vanishes on the image of pnC1, which has relative
dimension 0.

Recall that the forgetful map .C; �;p1; : : : ;pnC1; �/ 7! .�.C/; ���;p1; : : : ;pn; ���/

pushes forward � via � which forgets the orbifold structure at pnC1. As described
earlier, ����� D �.�pnC1/ since the pushforward gives the sheaf of locally invariant
sections, which necessarily vanish as the isotropy group acts by multiplication by �1.
Hence, �_.pnC1/ D ���_, which is used to calculate R0 above, and also to give
R1��.�

_.pnC1//D R1��.�
��_/D ��R1��.�

_/. Thus, the last two terms of the
short exact sequence become Eg;nC1! ��Eg;n.

For the first term of the short exact sequence, the residue map produces a canonical
isomorphism

��!
log
C=S jpnC1

DOS :

Thus, ��.� jpnC1
/ and ��.�_jpnC1

/ define line bundles over S with square OS and
hence trivial Chern class c.��.� jpnC1

//D 1D c.��.�
_jpnC1

//. The first term of the

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2707

short exact sequence R0��.�
_.pnC1/jpnC1

/ defines a line bundle �! S with Chern
class

c.�/D c
�
R0��.OC.pnC1/jpnC1

/
�

that fits into the short exact sequence

0! �!Eg;nC1! ��Eg;n! 0:

The triviality of ��.!
log
C=S jpnC1

/ implies

LpnC1
DR0��.!C=S jpnC1

/D�R0��.OC.pnC1/jpnC1
/I

hence,
c.�/D

1

c.LpnC1
/
D 1� pnC1

:

The short exact sequence then gives c2g�2CnC1.Eg;nC1/D� pnC1
���c2g�2Cn.Eg;n/,

as required.

Definition 2.8 For p WMspin
g;n !Mg;n, define

‚g;n D .�1/n2g�1Cnp��g;n 2H 4g�4C2n.Mg;n;Q/:

Lemma 2.7 and the relation
 nC1 D

1
2
p� nC1

proven in [26, Proposition 2.4.1], together with the factor of 2n in the definition of�g;n,
immediately gives property (iii) of ‚g;n,

‚g;nC1 D  nC1 ��
�‚g;n:

Property (iv) of ‚g;n is given by the following calculation:

Proposition 2.9 ‚1;1 D 3 1 2H 2.M1;1;Q/:

Proof A one-pointed twisted elliptic curve .E ;p/ is a one-pointed elliptic curve .E;p/
such that p has isotropy Z2. The degree of the divisor p in E is 1

2
and the degree of

every other point in E is 1. If dz is a holomorphic differential on E (where E DC=ƒ

and z is the identity function on the universal cover C), then, locally near p, we have
z D t2, so dz D 2t dt vanishes at p. In particular, the canonical divisor .!E/D p has
degree 1

2
and .!log

E /D .!E.p//D 2p has degree 1.

A spin structure on E is a degree 1
2

line bundle L satisfying L2 D !
log
E . Line bundles

on E correspond to divisors on E up to linear equivalence. Note that meromorphic
functions on E are exactly the meromorphic functions on E. The four spin structures
on E are given by the divisors �0 D p and �i D qi �p for i D 1; 2; 3, where qi is a
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nontrivial order 2 element in the group E with identity p. Clearly, �2
0
D 2pD!

log
E . For

i D 1; 2; 3, �2
i D 2qi � 2p � 2p since there is a meromorphic function }.z/�}.qi/

on E with a double pole at p and a double zero at qi . Its divisor on E is 2qi � 4p,
since p has isotropy Z2; hence, 2qi � 2p � 2p.

Since H 2.M1;1;Q/ is generated by  1, it is enough to calculate
R
M1;1

‚1;1. The
Chern character of the pushforward bundle E1;1 is calculated via the Grothendieck–
Riemann–Roch theorem:

ch.R��E_/D ��.ch.E_/Td.!_� //:

In fact we need to use the orbifold Grothendieck–Riemann–Roch theorem [53]. The
calculation we need is a variant of the calculation in [26, Theorem 6.3.3] which applies
to E such that E2 D !

log
C instead of E_. Importantly, this means that the Todd class has

been worked out, and it remains to adjust the ch.E_/ term. We getZ
M1;1

p�c1.E1;1/D�ch.R��E_/

D�2

Z
M1;1

�
11
24
�1C

1
24
 1C

1
2

�
�

1
24
C

1
12

�
.i�/�.1/

�
D�2

�
11
242 C

1
242 C

1
2
�

1
24
�

1
2

�
D�

1
16
;

which agrees with

�

Z
M1;1

3
2
 1 D�

3
2
�

1
24
D�

1
16
:

Hence, p�c1.E1;1/D�
3
2
 1 and‚1;1D�2p�c1.E1;1/D 3 1. One can also calculate

this using Chiodo’s formula [10], given by (41) in Section 5.

Proposition 2.10 The classes ‚g;n 2H 4g�4C2n.Mg;n;Q/ satisfy property (ii).

Proof The two properties (ii) of ‚g;n follow from the analogous properties for �g;n.
This uses the relationship between compositions of pullbacks and pushforwards in the
diagrams

Mspin
g�1;nC2

�irrıO�
�1

//

p

��

Mspin
g;n

p

��

Mg�1;nC2

�irr
//Mg;n

Mspin
h;jI jC1

�Mspin
g�h;jJ jC1

�h;IıO�
�1

//

p

��

Mspin
g;n

p

��

Mh;jI jC1 �Mg�h;jJ jC1

�h;I
//Mg;n

where the broken arrows signify multiply defined maps which are defined above using
fibre products.
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On cohomology, we have ��irrp� D 2p� O���
�
irr and ��

h;I
p� D 2p� O���

�
h;I

, where the
factor of 2 is due to the degree of O� ramification of p and the isotropy of the orbifold
divisor; see [33, (39)]. Hence,

��irr‚g;n D �
�
irrp�.�1/n2g�1Cn�g;n D 2p� O���

�
irr.�1/n2g�1Cn�g;n

D p�.�1/nC22gCn�g�1;nC2 D‚g�1;nC2

and, similarly, ��
h;I
‚g;n D �

�
1
‚h;jI jC1 ��

�
2
‚g�h;jJ jC1, which uses

2 � .�1/n2g�1Cn
D .�1/n2gCn

D .�1/jI jC12h�1CjI jC1.�1/jJ jC12g�h�1CjJ jC1:

Remark 2.11 The construction of �g;n should also follow from the cosection con-
struction in [7] using the moduli space of spin curves with fields

Mg;n.Z2/
p
D f.C; �; �/ j .C; �/ 2Mspin

g;n ; � 2H 0.C; �/g:

A cosection of the pullback of Eg;n to Mg;n.Z2/
p is given by ��3 since it pairs well

with H 1.C; �/: we have ��3 2H 0.C; .�_/3/ while H 1.C; �/ŠH 0.C; !˝ �_/_ D
H 0.C; .�_/3/_. Using the cosection ��3, a virtual fundamental class is constructed
in [7] that likely gives rise to �g;n 2H 4g�4C2n.Mspin

g;n ;Q/. The virtual fundamental
class is constructed away from the zero set of �.

3 Uniqueness

The degree property (I) of Theorem 1.3, ‚g;n 2H 4g�4C2n.Mg;n;Q/, proven below,
implies the initial value

‚1;1 D � ; � 2Q:

It leads to uniqueness of intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i

QN
jD1 � j̀ via a

reduction argument, and consequently property (V) of Theorem 1.3. The proofs in this
section of properties (II), (III) and (V) apply for any �¤ 0. We finish the section with
a rigidity result given by Theorem 3.6, proving that necessarily �D 3.

We first prove the following lemma, which will be needed later:

Lemma 3.1 Properties (i)–(iv) imply that ‚g;n ¤ 0 for g > 0 and all n.

Proof We have ‚1;1 D a or ‚1;1 D a 1 for a ¤ 0 by (i) and (iv). Using the
pullback property (iii) together with the equality  n i D  n�

� i for i < n, we have
‚1;nD a 2 � � � n or ‚1;nD a 1 2 � � � n; hence, .1C 1/‚1;nD a 1 2 � � � n andR
Mg;n

.1C 1/‚1;n D
1

24
a.n� 1/!, proving ‚1;n ¤ 0.
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Now we proceed by induction on g. For the base case of g D 1, we have ‚1;n ¤ 0 for
all n > 0. Assume ‚h;n ¤ 0 for 0 < h < g and all n. For g > 1, let � be the stable
graph consisting of a genus g� 1 vertex attached by a single edge to a genus 1 vertex
with n labelled leaves (called ordinary leaves in Section 5.0.1). Then, by (ii),

���‚g;n D‚g�1;1˝‚1;nC1;

which is nonzero since ‚g�1;1 ¤ 0 by the inductive hypothesis and ‚1;nC1 ¤ 0 by
the calculation above.

Proof of (I) Write
d.g; n/D degree.‚g;n/;

which exists by (i). Note that the degree here is half the cohomological degree, so
‚g;n 2H 2d.g;n/.Mg;n;Q/. Using (ii), ��irr‚g;n D‚g�1;nC2 implies that

d.g; n/D d.g� 1; nC 2/

since ‚g�1;nC2 ¤ 0 by Lemma 3.1. Hence, d.g; n/ D f .2g � 2C n/ is a function
of 2g� 2C n. Similarly, using (ii), ��

h;I
‚g;n D‚h;jI jC1˝‚g�h;jJ jC1 implies that

f .aC b/ D f .a/C f .b/ D .aC b/f .1/ since ‚h;jI jC1 ¤ 0 and ‚g�h;jJ jC1 ¤ 0,
again by Lemma 3.1. Hence,

d.g; n/D .2g� 2C n/k

for an integer k. But d.g; n/ � 3g � 3C n implies k � 1. When k D 0, this gives
deg‚g;n D 0, which contradicts (iii) together with Lemma 3.1; hence, k D 1 and
deg‚g;n D 2g� 2C n.

Proof of (II) This is an immediate consequence of (I) since

deg‚0;n D n� 2> n� 3D dimM0;n

and hence ‚0;n D 0. For any stable graph � with a genus 0 vertex, Remark 1.1 gives
��
�
‚g;n D ‚� D

Q
v2V .�/ �

�
v‚g.v/;n.v/ D 0 since the genus 0 vertex contributes a

factor of 0 to the product.

Proof of (III) Property (iii) implies that

‚g;n D

nY
iD1

 i ��
�‚g;
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where � WMg;n!Mg is the forgetful map. Since ��! 2 H�.Mg;n;Q/Sn for any
class ! 2 H�.Mg;Q/ and clearly

Qn
iD1  i 2 H�.Mg;n;Q/Sn , we have ‚g;n 2

H�.Mg;n;Q/Sn , as required.

The proof of (V) follows from the special case of the intersection of ‚g;n with a
polynomial in � and  classes.

Proposition 3.2 For any ‚g;n satisfying properties (i)–(iii), the intersection numbers

(8)
Z
Mg;n

‚g;n

nY
iD1

 
mi

i

NY
jD1

�
j̀

are uniquely determined from the initial condition ‚1;1 D � 1 for � 2Q.

Proof For n>0, we will push forward the integral (8) via the forgetful map � WMg;n!

Mg;n�1 as follows. Consider first the case when there are no � classes. The presence
of  n in ‚g;n D  n ��

�‚g;n�1 gives

‚g;n k D‚g;n�
� k ; k < n;

since  n k D  n�
� k for k < n. Hence,Z

Mg;n

‚g;n

nY
iD1

 
mi

i D

Z
Mg;n

��
�
‚g;n�1

n�1Y
iD1

 
mi

i

�
 mnC1

n

D

Z
Mg;n�1

��

�
��
�
‚g;n�1

n�1Y
iD1

 
mi

i

�
 mnC1

n

�

D

Z
Mg;n�1

‚g;n�1

n�1Y
iD1

 
mi

i �mn
;

so we have reduced an intersection number over Mg;n to an intersection number
over Mg;n�1. In the presence of � classes, replace �

j̀
by �

j̀
D ���

j̀
C j̀

n and
repeat the pushforward as above on all summands. By induction, we see that, for g> 1,Z

Mg;n

‚g;n

nY
iD1

 
mi

i

NY
jD1

�
j̀
D

Z
Mg

‚g �p.�1; �2; : : : ; �3g�3/;

ie the intersection number (8) reduces to an intersection number over Mg of ‚g times
a polynomial in the � classes. When gD 1, the right-hand side is instead

R
M1;1

‚1;1 �p

for p 2Q a constant.
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For g > 1, by (I), deg‚g D 2g�2, so we may assume the polynomial p consists only
of terms of homogeneous degree g� 1 (where deg �r D r ). But, by a result of Faber
and Pandharipande [24, Proposition 2], which strengthens Looijenga’s theorem [38],
a homogeneous degree g � 1 monomial in the � classes is equal in the tautological
ring to the sum of boundary terms, ie the sum of pushforwards of polynomials in  
and � classes by the maps .��/�. Such relations arise from Pixton’s relations and are
described algorithmically in [11]. Now, property (ii) of ‚g shows that the pullback
of ‚g to these boundary terms is ‚g0;n0 for g0 < g, so we have expressed (8) as a sum
of integrals of ‚g0;n0 against  and � classes. By induction, one can reduce to the
integral

R
M1;1

‚1;1 D
1

24
� and the proposition is proven.

A consequence of Proposition 3.2 is property (V) of Theorem 1.3, stated as Corollary 3.3
below. Let us first recall the definition of tautological classes in H�.Mg;n;Q/. Dual to
any point .C;p1; : : : ;pn/2Mg;n is its stable graph � with vertices V .�/ representing
irreducible components of C, internal edges representing nodal singularities and a
(labelled) external edge for each pi . Each vertex is labelled by a genus g.v/ and has
valency n.v/. The genus of a stable graph is g.�/D b1.�/C

P
v2V .�/ g.v/.

The strata algebra Sg;n is a finite-dimensional vector space over Q with basis given
by isomorphism classes of pairs .�; !/ for � a stable graph of genus g with n external
edges and ! 2H�.M� ;Q/ a product of � and  classes in each Mg.v/;n.v/ for each
vertex v 2 V .�/. There is a natural map

q W Sg;n!H�.Mg;n;Q/

defined by the pushforward q.�; !/D ��
�
.!/ 2H�.Mg;n;Q/. The map q allows one

to define a multiplication on Sg;n, essentially coming from intersection theory in Mg;n,
which can be described purely graphically. The image q.Sg;n/ � H�.Mg;n;Q/ is
the tautological ring RH�.Mg;n/ and an element of the kernel of q is a tautological
relation. See [47, Section 0.3] for a detailed description of Sg;n.

Corollary 3.3 For all � 2RH�.Mg;n/,
R
Mg;n

‚g;n� 2Q is uniquely determined by
properties (i)–(iii) and (IV).

Proof The tautological ring RH�.Mg;n/ consists of polynomials in the classes �i ,
 i and boundary classes, which are pushforwards under .��/� of polynomials in �i

and  i . By the natural restriction property (ii) satisfied by ‚g;n, given a monomial
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in � and  classes ! 2H�.M� ;Q/,Z
Mg;n

‚g;n � .��/�.!/D

Z
M�

���.‚g;n/ �! D

Z
M�

‚� �! D
1

jAut�j

Y
v2�

w.v/:

The final term is a product over the vertices of � of intersections ‚ classes with
monomials in � and classesw.v/D

R
Mg.v/;n.v/

‚g.v/;n.v/�
Qn.v/

iD1
Pv.f i ; �j g/, which,

by Proposition 3.2, are uniquely determined by (i)–(iii) and (IV).

Remark 3.4 The intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i

QN
jD1 � j̀ can be cal-

culated algorithmically from the intersection numbers
R
Mg;n

‚g;n

Qn
iD1  

mi

i with no
� classes. This essentially reverses the reduction shown in the proof of Proposition 3.2.
Explicitly, for � WMg;nCN !Mg;n and mD .m1; : : : ;mN /, define a polynomial in
� classes by

Rm.�1; �2; : : : /D ��. 
m1C1
nC1

� � � 
mNC1
nCN

/;

so, for example, R.m1;m2/ D �m1
�m1
C �m1Cm2

. Then

(9) ‚g;n �Rm D‚g;n ���. 
m1C1
nC1

� � � 
mNC1
nCN

/

D ��.�
�‚g;n � 

m1C1
nC1

� � � 
mNC1
nCN

/

D ��.‚g;nCN � 
m1

nC1
� � � 

mN

nCN
/:

The polynomials Rm.�1; �2; : : : / generate all polynomials in the �i , so (9) can be used
to remove any � class.

The following example demonstrates Proposition 3.2 with an explicit genus 2 relation:

Example 3.5 A genus two relation proven by Mumford [41, (8.5)], relating �1 and
the divisors defined by the double covers M1;1 �M1;1!M�1

and M1;2!M�2

in M2 labelled by stable graphs �i , is given by

�1�
7
5
ŒM�1

�� 1
5
ŒM�2

�D 0;

which induces the relation

‚2 � �1�
7
5
‚2 � ŒM�1

�� 1
5
‚2 � ŒM�2

�D 0:

Property (ii) of ‚g;n yieldsZ
M2

‚2 � ŒM�1
�D

Z
M�1

���1
‚2 D

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
;Z

M2

‚2 � ŒM�2
�D

Z
M�2

���2
‚2 D

Z
M1;2

‚1;2 �
1

jAut.�2/j
I
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hence, the relation on the level of intersection numbers is given byZ
M2

‚2 ��1�
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
�

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j
D 0:

We have
R
M1;1

‚1;1 D
1

24
�D

R
M1;2

‚1;2 from (iii), and jAut.�1/j D 2D jAut.�2/j.
Hence,Z

M2

‚2 � �1 D
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
C

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j

D
7
5
�
�

1
24
�
�2
�

1
2
C

1
5
�

1
24
� � 1

2
D

1
5760

.7�2
C 24�/:

Until now, ‚1;1 D � 1 for any nonzero � 2 Q. The following theorem proves the
rigidity condition (IV) that �D 3. The proof of the theorem relies on the fact that, for
low genus and small n, the cohomology is tautological. This allows us to work in the
tautological ring in order to construct ‚g;n from properties (i)–(iv).

Theorem 3.6 Let ‚g;n 2H�.Mg;n;Q/ satisfy (i)–(iv) and set the initial condition to
be ‚1;1 D � 1 ¤ 0. Then �D 3.

Proof The existence proof in Section 2 shows that �D 3 is possible but it does not
exclude other values. The strategy of proof of this theorem is to attempt to construct
classes, beginning with the initial condition ‚1;1 D � 1. Importantly, condition (iii)
determines ‚g;n for all n > 0 uniquely from ‚g, so the main calculation occurs
over Mg. We consider classes in RH 2g�2.Mg/ since, for small values of g, it is
known that H 2�.Mg;Q/ D RH�.Mg/. The essential idea is as follows. A class
‚g 2H 2g�2.Mg;Q/ pulls back under boundary maps to ‚g�1;2 and ‚g�1;1˝‚1;1.
The relationship

‚g�1;2 D  2�
�‚g�1;1

constrains the class ‚g. We find that ‚2 exists (and hence also ‚2;n exists for all n)
for all � 2Q, but that ‚3 (and ‚3;n) exists only for �D 3 or �D�11

15
. The existence

of ‚4 constrains � further, allowing only �D 3.

g D 1 From ‚1;1 D � 1, condition (iii) yields

‚1;n D � 1 2 � � � n

since  n j D  n�
� j for any j < n.
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g D2 The cohomology group H 4.M2;Q/ has basis f�2
1
; �2g. Set‚2Da11�

2
1
Ca2�2

and deduce a11 and a2 from restriction to M�i
� M2 for i D 1; 2, defined in

Example 3.5. Since �2 �M�1
D 0, we deduce that a11 D

1
2
�2 and restriction to M�2

then uniquely determines

‚2 D
1
2
�2�2

1 C
�
�� 3

2
�2
�
�2:

Commutativity of the boundary maps with the forgetful map shown in the diagrams

Mg�1;nC2

�irr
//

�

��

Mg;n

�

��

Mg�1;2

�irr
//Mg

Mh;jI jC1 �Mg�h;jJ jC1

�h;I
//

�

��

Mg;n

�

��

Mh;1 �Mg�h;1

�h
//Mg

implies that the classes ‚2;n D  1 � � � n�
�‚2 restrict consistently to the boundary to

give the correct genus 1 classes ‚1;n0 for all � 2Q.

g D 3 In genus 3, H 2�.M3;Q/DRH�.M3/ due to the calculation of the cohomol-
ogy H�.M3;Q/, for example by using the calculation of H�.M3;1;Q/ in [28] together
with the calculation of the tautological ring RH�.M3/ via Pixton’s relations [47]
implemented using the Sage package admcycles [12]. We have dim RH 4.M3/D 7

and we write ‚3 as a general linear combination of basis vectors in RH 4.M3/,

‚3 D a1111�
4
1 C a112�

2
1�2C a13�1�3C a22�

2
2 C a4�4C b1B1C b2B2;

where Bi 2RH 4.M3/ are given by

B1 D 1 2

�1 �2

and B2 D 1 2

�3

:

The pullback map

RH 4.M3/!RH 4.M2;2/˚RH 3.M2;1/˝RH 1.M1;1/

is injective (which implies that the map from RH 4.M3/ to the boundary is injective).
The restriction map

RH 4.M3/!RH 4.M2;2/

has 2–dimensional kernel and is surjective onto the S2–invariant part of RH 4.M2;2/.
Hence, the condition

��irr‚3 D‚2;2 D  1 2�
�‚2
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determines ‚3 up to parameters s; t 2Q:

a1111 D s;

a112 D
11
10
�C 17

15
�2
� 18sC 4

3
t;

a13 D�12�� 12�2
C 104s� 13t;

a22 D�
33
10
�� 29

10
�2
C 27s� 5t;

a4 D
376

5
�C 1933

30
�2
� 426sC 250

3
t;

b1 D t;

b2 D
2
5
�.3��/:

The pullback map

RH 4.M3/!RH 3.M2;1/˝RH 1.M1;1/

has 3–dimensional image, and the condition

���‚3 D‚2;1˝‚1;1 D . 1�
�‚2/˝ .� 1/

is a linear system which cannot be satisfied for a general choice of the two parameters
s and t defining ‚3 for general �, forcing � to satisfy a polynomial relation. We find
that

a1111 D
5

24
�3
�

19
120
�2
�

11
40
�;

a112 D
5
4
�3
�

147
20
�2
�

99
20
�;

a13 D
403
24
�3
�

209
12
�2
�

239
8
�D a13�

3108
53

b1;

a22 D�
3867
212

�3
C

99 471
2120

�2
C

22 143
530

�D a22C 12b1;

a4 D�
115

2
�3
C

1221
20
�2
C

618
5
�;

b1 D
1

40
�.�� 3/.15�C 11/;

b2 D
2
5
�.3��/:

The expressions for a13 and a22 are consistent only when b1 D 0; hence,

�.�� 3/.15�C 11/D 0:

g D 4 In genus 4, H 2�.M4;Q/DRH�.M4/ is due to the calculation by Bergström
and Tommasi [4] of the Hodge polynomial of M4 together with the calculation of the
tautological ring RH�.M4/ via Pixton’s relations using admcycles [12]. We choose
a general element ‚4 2 RH 6.M4/ which is a linear combination of basis vectors
for the 32–dimensional space RH 6.M4/. The pullback map of RH 6.M4/ to the
boundary can be shown to be injective using admcycles.
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The main purpose of the g D 4 calculation is to prove that �D�11
15

is impossible, so
we substitute �D�11

15
into ‚3 above to get

‚3 D
2783

81 000
�4

1 �
11 011
13 500

�2
1�2C

59 939
10 125

�1�3C
16 093
9000

�2
2 �

474 287
13 500

�4�
1232
1125

B2:

As in the g D 3 case above, we consider the pullback map

RH 6.M4/!RH 6.M3;2/;

which has a 6–dimensional kernel. The S2–invariant part of H 12.M3;2;Q/ is proven
in [3] to be 31–dimensional, and using admcycles it can be shown to be tautological.
The condition ��irr‚4 D‚3;2 D  1 2�

�‚3 produces a system of 31 equations in 32
unknowns. Using admcycles, we find that ‚3;2 lies in the image of the pullback map,
and constrains ‚4 to depend linearly on six parameters. The pullback map composed
with projection

RH 6.M4/!RH 5.M3;1/˝RH 1.M1;1/

uniquely determines the six parameters, and finally the resulting class ‚4 is shown
under the pullback map composed with projection

RH 6.M4/!RH 3.M2;1/˝RH 3.M2;1/

to disagree with‚2;1˝‚2;1. We conclude that �D�11
15

is impossible, leaving �D3.

4 Cohomological field theories

The class ‚g;n combines with known enumerative invariants, such as Gromov–Witten
invariants, to give rise to new invariants. More generally, ‚g;n pairs with any co-
homological field theory, which is fundamentally related to the moduli space of
curves Mg;n, retaining many of the properties of the cohomological field theory,
and is in particular often calculable.

A cohomological field theory is a pair .H; �/ composed of a finite-dimensional complex
vector space H equipped with a symmetric, bilinear, nondegenerate form, or metric, �,
and a sequence of Sn–equivariant maps. Many CohFTs are naturally defined on H

defined over Q; nevertheless, we use C in order to relate them to Frobenius manifolds,
and to use normalised canonical coordinates, defined later,

�g;n WH
˝n
!H�.Mg;n;C/
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that satisfy compatibility conditions, from the inclusions of strata

�irr WMg�1;nC2!Mg;n;

�h;I WMh;jI jC1 �Mg�h;jJ jC1!Mg;n; I tJ D f1; : : : ; ng;

given by

��irr�g;n.v1˝ � � �˝ vn/D�g�1;nC2.v1˝ � � �˝ vn˝�/;(10)

��h;I�g;n.v1˝ � � �˝ vn/D�h;jI jC1˝�g�h;jJ jC1

�O
i2I

vi ˝�˝
O
j2J

vj

�
;(11)

where � 2H ˝H is dual to � 2H�˝H�. When nD 0, �g WD�g;0 2H�.Mg;C/.
There exists a unit vector 1 2H which satisfies

�0;3.1˝ v1˝ v2/D �.v1; v2/:

The CohFT has flat unit if 1 2H is compatible with the forgetful map � WMg;nC1!

Mg;n by

(12) �g;nC1.1˝ v1˝ � � �˝ vn/D �
��g;n.v1˝ � � �˝ vn/

for 2g� 2C n> 0.

For a 1–dimensional CohFT, ie dim H D 1, identify �g;n with the image �g;n.1˝n/,
so we write �g;n 2 H�.Mg;n;C/. A trivial example of a CohFT is �g;n D 1 2

H 0.Mg;n;C/, which is a topological field theory, as we now describe.

A 2–dimensional topological field theory (TFT) is a vector space H and a sequence of
symmetric linear maps

�0
g;n WH

˝n
!C

for integers g � 0 and n> 0 satisfying the following conditions. The map �0
0;2
D �

defines a symmetric, bilinear, nondegenerate form �, and together with �0
0;3

it defines
a product � on H via

(13) �.v1 � v2; v3/D�
0
0;3.v1; v2; v3/

with identity element 1 given by the dual of �0
0;1
D 1� D �.1; � /. It satisfies

�0
g;nC1.1˝ v1˝ � � �˝ vn/D�

0
g;n.v1˝ � � �˝ vn/

and the gluing conditions

�0
g;n.v1˝ � � �˝ vn/D�

0
g�1;nC2.v1˝ � � �˝ vn˝�/;

�0
g;n.v1˝ � � �˝ vn/D�

0
g1;jI jC1˝�

0
g2;jJ jC1

�O
i2I

vi ˝�˝
O
j2J

vj

�
for g D g1Cg2 and I tJ D f1; : : : ; ng.
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Consider the natural isomorphism H 0.Mg;n;C/ŠC. The degree zero part of a CohFT
�g;n is a TFT

�0
g;n WH

˝n �g;n
��!H�.Mg;n;C/!H 0.Mg;n;C/:

We often write �0;3 D�
0
0;3

interchangeably. Associated to �g;n is the product (13)
built from � and �0;3.

Remark 4.1 The classes ‚g;n satisfy properties (10) and (11) of a 1–dimensional
CohFT. In place of property (12), they satisfy

‚g;nC1.1˝ v1˝ � � �˝ vn/D  nC1 ��
�‚g;n.v1˝ � � �˝ vn/

and ‚0;3 D 0.

The product defined in (13) is semisimple if it is diagonal H Š C˚C˚ � � �˚C, ie
there is a canonical basis fu1; : : : ;uN g �H such that ui � uj D ıij ui . The metric is
then necessarily diagonal with respect to the same basis, �.ui ;uj /D ıij�i for some
�i 2C n f0g for i D 1; : : : ;N. The Givental–Teleman theorem described in Section 5
gives a construction of semisimple CohFTs.

4.1 Cohomological field theories coupled to ‚g;n

Definition 4.2 For any CohFT � defined on .H; �/, define �‚ D f�‚g;ng to be the
sequence of Sn–equivariant maps �‚g;n WH

˝n!H�.Mg;n;C/ given by

�‚g;n.v1˝ � � �˝ vn/ WD‚g;n ��g;n.v1˝ � � �˝ vn/:

This is essentially the tensor product of CohFTs, albeit involving ‚g;n. The tensor
products of CohFTs is obtained as above by cup product on H�.Mg;n;C/, generalising
Gromov–Witten invariants of target products and the Künneth formula H�.X1�X2/Š

H�X1˝H�X2.

Generalising Remark 4.1, �‚g;n satisfies properties (10) and (11) of a CohFT on .H; �/.
In place of property (12), it satisfies

�‚g;nC1.1˝ v1˝ � � �˝ vn/D  nC1 ��
��‚g;n.v1˝ � � �˝ vn/

and �‚
0;3
D 0.
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Given a CohFT�Df�g;ng, or a more general collection of classes such as�Df�‚g;ng,
and a basis fe1; : : : ; eN g of H, the partition function of � is defined by

(14) Z�.„; ft
˛
k g/D exp

X
g;n; Ek

„g�1

n!

Z
Mg;n

�g;n.e˛1
˝ � � �˝ e˛n

/ �

nY
jD1

 
kj
j

Y
t j̨

kj

for ˛i 2 f1; : : : ;N g and kj 2 N. For dim H D 1 and �g;n D 1 2 H�.Mg;n;C/, its
partition function is Z�.„; ftkg/DZKW.„; ftkg/, which is defined in Section 5.1.

For �g;n D ‚g;n 2 H�.Mg;n;C/, Z�.„; ftkg/ D Z‚.„; ftkg/ gives its partition
function. Property (iii) is realised by the homogeneity property

(15) @

@t0
Z‚.„; t0; t1; : : : /D

1X
iD0

.2iC1/ti
@

@ti
Z‚.„; t0; t1; : : : /C

1
8
Z‚.„; t0; t1; : : : /;

proven in the following proposition:

Proposition 4.3 The function Z‚.„; t0; t1; : : : / is homogeneous of degree �1
8

with
respect to fq D 1 � t0; t1; t2; : : : g with deg q D 1 and deg ti D 2i C 1 for i > 0.
Equivalently, it satisfies the dilaton equation (15).

Proof We haveZ
Mg;nC1

‚g;nC1 �

nY
jD1

 
kj
j D

Z
Mg;nC1

��‚g;n � nC1 �

nY
jD1

 
kj
j

D

Z
Mg;nC1

��‚g;n � nC1 �

nY
jD1

�� 
kj
j

D

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j ��� nC1

D .2g� 2C n/

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j ;

which uses nC1� j D nC1��
� j for j D1; : : : ; n and ��.��! � nC1/D! ��� nC1.

In terms of the partition function Z‚.„; t0; t1; : : : /, this is realised by (15).

4.1.1 Gromov–Witten invariants Let X be a projective algebraic variety and con-
sider .C;x1; : : : ;xn/ a connected smooth curve of genus g with n distinct marked
points. For ˇ 2H2.X;Z/, the moduli space of stable maps Mg;n.X; ˇ/ is defined by

Mg;n.X; ˇ/D f.C;x1; : : : ;xn/
�
�!X j ��ŒC �D ˇg=�;
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where � is a morphism from a connected nodal curve C containing distinct points
fx1; : : : ;xng that avoid the nodes. Any genus zero irreducible component of C with
fewer than three distinguished points (nodal or marked), or genus one irreducible
component of C with no distinguished point, must not be collapsed to a point. We
quotient by isomorphisms of the domain C that fix each xi . The moduli space of stable
maps has irreducible components of different dimensions but it has a virtual class of
dimension

(16) dimŒMg;n.X; ˇ/�
virt
D .dim X � 3/.1�g/Chc1.X /; ˇiC n:

For i D 1; : : : ; n, there exist evaluation maps

(17) evi WMg;n.X; ˇ/!X; evi.�/D �.xi/;

and classes 
 2H�.X;Z/ pull back to classes in H�.Mg;n.X; ˇ/;C/ via

(18) ev�i WH
�.X;Z/!H�.Mg;n.X; ˇ/;C/:

The forgetful map p WMg;n.X; ˇ/!Mg;n maps a stable map to its domain curve
followed by contraction of unstable components. The pushforward map p� on coho-
mology defines a CohFT �X on the even part of the cohomology H DH even.X;C/

(and a generalisation of a CohFT on H�.X;C/) equipped with the symmetric, bilinear,
nondegenerate form

�.˛; ˇ/D

Z
X

˛^ˇ:

We have .�X /g;n WH
even.X;C/˝n!H�.Mg;n;C/ defined by

.�X /g;n.˛1; : : : ; ˛n/D
X
ˇ

p�

� nY
iD1

ev�i .˛i/\ ŒMg;n.X; ˇ/�
virt
�
2H�.Mg;n;C/:

Note that it is the dependence of pD p.g; n; ˇ/ on ˇ (which is suppressed) that allows
.�X /g;n.˛1; : : : ; ˛n/ to be composed of different-degree terms. The partition function
of the CohFT �X with respect to a chosen basis e˛ of H even.X IC/ is

Z�X
.„; ft˛k g/

D exp
X

g;n; Ek
Ę;ˇ

„g�1

n!

Z
Mg;n

p�

� nY
iD1

ev�i .e˛i
/\ ŒMg;n.X; ˇ/�

virt
� nY

jD1

 
kj
j

Y
t j̨

kj
:

It stores ancestor invariants. These are different from descendant invariants, which
use, in place of  j D c1.Lj /, ‰j D c1.Lj / for line bundles Lj !Mg;n.X; ˇ/ defined
similarly as the cotangent bundle over the i th marked point on the domain curve.
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Following Definition 4.2, we define �‚
X

by

.�‚X /g;n.˛1; : : : ; ˛n/D‚g;n �

X
ˇ

p�

� nY
iD1

ev�i .˛i/

�
2H�.Mg;n;C/

and

Z‚
�X
.„; ft˛k g/D exp

X
g;n; Ek
Ę;ˇ

„g�1

n!

Z
Mg;n

‚g;n �p�

� nY
iD1

ev�i .e˛i
/

�
�

nY
jD1

 
kj
j

Y
t j̨

kj
:

Let ‚PD
g;n � Ag�1.Mg;n;C/ be the .g�1/–dimensional Chow class given by the

pushforward of the top Chern class of the bundle Eg;n defined in Definition 2.1. The
virtual dimension of the pullback of ‚PD

g;n is

(19) dimfŒMg;n.X;d/�
virt
\p�1.‚PD

g;n/g D .dim X � 1/.1�g/Chc1.X /; ˇi:

Comparing the dimension formulas (16) and (19), we see that elliptic curves now
take the place of Calabi–Yau 3–folds to give virtual dimension zero moduli spaces,
independent of genus and degree. The invariants of a target curve X are trivial when
the genus of X is greater than 1 and computable when X D P1 [44], producing
results analogous to the usual Gromov–Witten invariants in [46]. For c1.X /D 0 and
dim X > 1, the invariants vanish for g > 1, while for g D 1 it seems to predict an
invariant associated to maps of elliptic curves to X.

4.1.2 Weil–Petersson volumes A fundamental example of a 1–dimensional CohFT
is given by

�g;n D exp.2�2�1/ 2H�.Mg;n;R/:

Its partition function stores Weil–Petersson volumes

Vg;n D
.2�2/3g�3Cn

.3g� 3C n/!

Z
Mg;n

�
3g�3Cn
1

and deformed Weil–Petersson volumes studied by Mirzakhani [39]. Weil–Petersson
volumes of the subvariety of Mg;n dual to ‚g;n make sense even before we find such
a subvariety. They are given by

V ‚
g;n D

.2�2/g�1

.g� 1/!

Z
Mg;n

‚g;n � �
g�1
1

;

which are calculable since they are given by a translation of ZBGW. If we include
 classes, we get polynomials V ‚

g;n.L1; : : : ;Ln/ which give the deformed volumes

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2723

analogous to Mirzakhani’s volumes. In [43; 51], the polynomials V ‚
g;n.L1; : : : ;Ln/

are related to the volume of the moduli space of super-Riemann surfaces.

4.1.3 ELSV formula Another example of a 1–dimensional CohFT is given by

�g;n D c.E_/D 1��1C � � �C .�1/g�g 2H�.Mg;n;C/;

where �i D ci.E/ is the i th Chern class of the Hodge bundle E!Mg;n defined to
have fibres H 0.C; !C / over a nodal curve C.

Hurwitz [31] studied the problem of connected curves † of genus g covering P1,
branched over r C 1 fixed points fp1;p2; : : : ;pr ;prC1g with arbitrary profile � D
.�1; : : : ; �n/ over prC1. Over the other r branch points, one specifies simple rami-
fication, ie the partition .2; 1; 1; : : : /. The Riemann–Hurwitz formula determines the
number r of simple branch points via 2� 2g� nD j�j � r .

Definition 4.4 Define the simple Hurwitz number Hg;� to be the weighted count
of genus g connected covers of P1 with ramification �D .�1; : : : ; �n/ over1 and
simple ramification elsewhere. Each cover � is counted with weight 1=jAut.�/j.

Coefficients of the partition function of the CohFT �g;n D c.E_/ appear naturally in
the ELSV formula [20], which relates the Hurwitz numbers Hg;� to the Hodge classes.
The ELSV formula is

Hg;� D
r.g; �/!

jAut�j

nY
iD1

�
�i

i

�i !

Z
Mg;n

1��1C � � �C .�1/g�g

.1��1 1/ � � � .1��n n/
;

where �D .�1; : : : ; �n/ and r.g; �/D 2g� 2C nCj�j.

Using �‚g;n D‚ � c.E
_/, we can define an analogue of the ELSV formula,

H‚
g;� D

.2g� 2C nCj�j/!

jAut�j

nY
iD1

�
�i

i

�i !

Z
Mg;n

‚g;n �
1��1C � � �C .�1/g�1�g�1

.1��1 1/ � � � .1��n n/
:

It may be that H‚
g;� has an interpretation of enumerating a new type of Hurwitz covers.

Note that it makes sense to set all �i D 0, and, in particular, there are nontrivial primary
invariants over Mg, unlike for simple Hurwitz numbers. An example calculation:Z

M2

‚2�1 D
1
5
�

1
8
�

1
8
�

1
2
C

1
10
�

1
8
�

1
2
D

1
128

D)�1 D
1

10
.2ı1;1C ıirr/:
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4.1.4 The versal deformation space of the A2 singularity The A2 singularity has a
2–dimensional versal deformation space M ŠC2D f.t1; t2/g parametrising the family

Wt .z/D z3
� t2zC t1

that admits a semisimple Frobenius manifold structure. Dubrovin [15] associated a
family of linear systems, defined in (20) below, depending on the canonical coordinates
.u1; : : : ;uN / of any semisimple Frobenius manifold M. This produces a CohFT �A2

defined on C2 from the A2 singularity using Definition 5.2. More generally, to any
point of a Frobenius manifold one can associate a cohomological field theory and,
conversely, the genus zero part of a cohomological field theory defines a Frobenius
manifold [15].

Recall that a Frobenius manifold is a complex manifold M equipped with an associative
product on its tangent bundle compatible with a flat metric — a nondegenerate symmetric
bilinear form — on the manifold. It is encoded by a single function F.t1; : : : ; tN /,
known as the prepotential, which satisfies a nonlinear partial differential equation,
known as the Witten–Dijkgraaf–Verlinde–Verlinde equation,

Fijm�
mnFk`n D Fi`m�

mnFjkn; �ij D F1ij

where �ik�kj D ıij , Fi D @=@tiF, @=@t1 D 1 corresponds to the flat unit vector
field for the product, and ft1; : : : ; tN g are (flat) local coordinates on M. The Frobenius
manifold is conformal if it comes equipped with an Euler vector field E which describes
symmetries of the Frobenius manifold, neatly encoded by

E �F.t1; : : : ; tN /D c �F.t1; : : : ; tN /C quadratic polynomial; c 2C:

For a semisimple conformal Frobenius manifold, multiplication by the Euler vector
field E produces an endomorphism U with eigenvalues fu1; : : : ;uN g known as canon-
ical coordinates on M. They give rise to vector fields @=@ui with respect to which the
metric �, product � and Euler vector field E are diagonal:

@

@ui

�
@

@uj
D ıij

@

@ui
; �

�
@

@ui
;
@

@uj

�
D ıij�i ; E D

X
ui

@

@ui
:

At any point of the Frobenius manifold, the endomorphism U, defined by multi-
plication by the Euler vector field E, and the endomorphism V D Œ�;U �, where
�ij D @ui

�j=2
p
�i�j for i ¤ j are the so-called rotation coefficients of the metric �

in the normalised canonical basis, produce the differential equation

(20)
�

d

dz
�U �

V

z

�
Y D 0:
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Choose a solution of (20) of the form Y DR.z�1/ezU and substitute z 7! z�1 to get

0D

�
d

dz
C

U

z2
C

V

z

�
R.z/eU=z

D

�
d

dz
R.z/C

1

z2
ŒU;R.z/�C

1

z
VR.z/

�
eU=z :

This associates an element R.z/D
P

Rkzk to each point of the Frobenius manifold.
Teleman [52] defined the endomorphisms Rk of H D TpM recursively from R0 D I

by

(21) ŒRkC1;U �D .kCV /Rk ; k D 0; 1; : : : :

It is useful to consider three natural bases of the tangent space H D TpM Š CN at
any point p of a semisimple Frobenius manifold: the flat basis f@=@tig, which gives a
constant metric �; the canonical basis f@=@uig, which gives a trivial product �; and the
normalised canonical basis fvig for viD�

�1=2
i @=@ui , which gives a trivial metric �. (A

different choice of square root of�i would simply give a different choice of normalised
canonical basis.) The transition matrix ‰ from flat coordinates to normalised canonical
coordinates sends the metric � to the dot product, ie ‰T‰ D �. The topological field
theory structure on H induced from � and � is diagonal in the normalised canonical
basis. It is given by

�g;n.v
˝n
i /D�

1�g�1=2n
i

and vanishes on mixed products of vi and vj for i ¤ j. In the normalised canonical
basis, the unit vector is given by

1D .�1=2
1
; : : : ; �

1=2
N
/I

hence, it uniquely determines the topological field theory. We find the normalised canon-
ical basis most useful for comparisons with topological recursion; see Section 5.2.1.

The Frobenius manifold structure on the versal deformation space M of the A2 sin-
gularity was constructed in [15; 48]. The product on tangent spaces of the family
Wt .z/D z3� t2zC t1 is induced from the isomorphism

TtM ŠCŒz�=W 0t .z/

given by @=@tk 7! @Wt=@tk D .�z/k�1, producing

@

@t1
�
@

@t1
D

@

@t1
;

@

@t1
�
@

@t2
D

@

@t2
;

@

@t2
�
@

@t2
D

1
3
t2
@

@t1
:

The metric is given by

�.p.z/; q.z//D�3 Res1
p.z/q.z/ dz

W 0t .z/
:
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With respect to the basis f@=@t1; @=@t2g, it is constant and hence flat:

�D

�
0 1

1 0

�
:

The Frobenius manifold structure on M is conformal. The unit and Euler vector fields
are 1 D @=@t1 and E D t1 @=@t1 C

2
3
t2 @=@t2, which correspond respectively to the

images of 1 and Wt .z/ in CŒz�=W 0t .z/.

The prepotential is produced via �ij D F1ij and �.@=@ti � @=@tj ; @=@tk/D Fijk ,

F.t1; t2/D
1
2
t2
1 t2C

1
72

t4
2 ;

and satisfies E �F.t1; t2/D
8
3
F.t1; t2/. The canonical coordinates are

u1 D t1C
2

3
p

3
t
3=2
2
; u2 D t1�

2

3
p

3
t
3=2
2
:

In the normalised canonical basis, the rotation coefficients �12 D�i
p

3
8

t
�3=2
2

D �21

give rise to V D Œ�;U �D i
p

3
2

t
�3=2
2

�
0 �1
1 0

�
. In canonical coordinates we have

(22) U D

�
u1 0

0 u2

�
; V D

2i

3.u1�u2/

�
0 1

�1 0

�
:

The metric � applied to the vector fields @=@ui D
1
2
.@=@t1� .�1/i.3=t2/

1=2 @=@t2/ is
�.@=@ui ; @=@uj /D ıij�i , where �1 D

p
3

2
t
�1=2
2

D��2. Restrict to the point of M

with coordinates .u1;u2/ D .2;�2/ or, equivalently, .t1; t2/ D .0; 3/. Then �1 D

1
2
D��2 determines the TFT and

U D

�
2 0

0 �2

�
; V D

1

6

�
0 i

�i 0

�
determines R.z/ 2L.2/GL.2;C/ and T .z/ 2 z2C2ŒŒz�� via (21) to get

(23)

R.z/D
X
m

.6m/!

.6m� 1/.3m/!.2m/!

�
�1 .�1/m6mi

�6mi .�1/m�1

��
1

1728
z
�m
;

T .z/D z.1�R�1.z/.1//; where 1D 1
p

2

�
1

i

�
:

The triple .R.z/;T .z/; 1/ 2 L.2/GL.N;C/ � z2CN ŒŒz�� �CN in (23) produces the
cohomological field theory �A2 associated to the A2 singularity at the point .t1; t2/D
.0; 3/ via Definition 5.2 in the next section.
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Remark 4.5 The matrix R.z/ defined in (23) — which uses the normalised canonical
basis for H, so that � is the dot product — is related to the matrix R.z/ in [47] by
conjugation by the transition matrix ‰ from flat coordinates to normalised canonical
coordinates

R.z/D‰
X
m

.6m/!

.3m/!.2m/!

�
.1C 6m/=.1� 6m/ 0

0 1

��
0 1

1 0

�m�
1

1728
z
�m
‰�1

for
‰ D

1
p

2

�
1 1

i �i

�
:

5 Givental construction of cohomological field theories

Givental produced a construction of partition functions of cohomological field theories
in [29]. He defined an action of the twisted loop group, and elements of z2CN ŒŒz��

known as translations, on partition functions of cohomological field theories and used
this to build partition functions of semisimple cohomological field theories out of
the basic building block ZKW.„; t0; t1; : : : / combined with the vector 1 2CN which
represents the topological field theory. This action was interpreted as an action on the
actual cohomology classes in H�.Mg;n;C/, independently, by Katzarkov, Kontsevich
and Pantev, and Kazarian and Teleman; see [47; 49].

The Givental action is defined on more general sequences of cohomology classes in
H�.Mg;n;C/ such as the collection of classes ‚g;n or �‚g;n defined from any CohFT
�g;n in Definition 4.2. If �g;n is semisimple, the classes �‚g;n can be obtained by
applying Givental’s action to the collection ‚g;n.

5.0.1 The twisted loop group action The loop group LGL.N;C/ is the group of
formal series

R.z/D

1X
kD0

Rkzk ;

where Rk are N �N matrices and R0 2 GL.N;C/. Define the twisted loop group
L.2/GL.N;C/�LGL.N;C/ to be the subgroup of elements satisfying R0 D I and

R.z/R.�z/T D I:

Elements of L.2/GL.N;C/ naturally arise out of solutions to the linear system (20)
given by .d=dz �U �V =z/Y D 0, where Y .z/ 2 CN, U D diag.u1; : : : ;uN / for ui
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distinct, and V is skew-symmetric. One can choose a solution of (20) which behaves
asymptotically for z!1 as

Y .z/DR.z�1/ezU ; R.z/D I CR1zCR2z2
C � � � :

This defines a power series R.z/ with coefficients given by N �N matrices, which is
easily shown to satisfy R.z/RT .�z/D I; hence, R.z/ 2L.2/GL.N;C/.

Givental [29] constructed an action on CohFTs using a triple

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN

as follows. For a given stable graph � of genus g and with n external edges, we have

�� WM� D

Y
v2V .�/

Mg.v/;n.v/!Mg;n:

Given .R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN, Givental’s action is defined
via weighted sums over stable graphs. For R.z/ 2L.2/GL.N;C/, define

E.z; w/D
I �R�1.z/R�1.w/T

zCw
D

X
i;j�0

Eijw
izj ;

which has the power series expansion on the right since R�1.z/ is also an element of
the twisted loop group, so the numerator I �R�1.z/R�1.w/T vanishes at w D�z.

Definition 5.1 For a stable graph � denote by

V .�/; E.�/; H.�/; L.�/DL�.�/tL�.�/

its sets of vertices, edges, half-edges and leaves. The disjoint splitting of L.�/ into
ordinary leaves L� and dilaton leaves L� is part of the structure on � . The set of half-
edges consists of leaves and oriented edges, so there is an injective map L.�/!H.�/

and a multiply defined map E.�/!H.�/ denoted by E.�/ 3 e 7! feC; e�g �H.�/.
The map sending a half-edge to its vertex is given by v WH.�/! V .�/. Decorate �
by functions

g W V .�/!N; ˛ W V .�/! f1; : : : ;N g;

k WH.�/!N p WL�.�/ Š�! f1; 2; : : : ; ng;

such that kjL�.�/> 1 and nD jL�.�/j. We write gv D g.v/, ˛v D ˛.v/, ˛`D ˛.v.`//,
p` D p.`/ and k` D k.`/. The genus of � is g.�/D b1.�/C

P
v2V .�/ g.v/. We say

� is stable if any vertex labelled by g D 0 is of valency � 3 and there are no isolated
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vertices labelled by g D 1. We write nv for the valency of the vertex v. Define Gg;n

to be the finite set of all stable, connected, genus g, decorated graphs with n ordinary
leaves and at most 3g� 3C n dilaton leaves.

Definition 5.2 [47; 49] Given a CohFT �0 D f�0g;ng and

.R.z/;T .z// 2L.2/GL.N;C/� z2CN ŒŒz��;

define R �T ��0 D�D f�g;ng by a weighted sum over stable graphs,

(24) �g;n WD

X
�2Gg;n

1

jAut.�/j
.��/���

Y
v2V .�/

w.v/
Y

e2E.�/

w.e/
Y

`2L.�/

w.`/

2H�.Mg;n;C/;

where � is the map that forgets dilaton leaves. Weights are defined as follows:

(i) Vertex weight w.v/D�0
g.v/;nv

at each vertex v.

(ii) Edge weight w.e/D E. 0e;  00e / at each edge e.

(iii) Leaf weight w.`/D

�
R�1. p.`// at each ordinary leaf ` 2L�;

T . p.`// at each dilaton leaf ` 2L�:

We consider only the even part of H�.Mg;n;C/, so (24) is independent of the order
in which we take the product of cohomology classes. If f�g;ng is a CohFT defined
on .C; �/ for H Š CN, then the classes f�g;ng in (24) satisfy the same restriction
conditions and hence define a CohFT on .C; �/with the same degree zero, or topological
field theory, terms as those of �0. If we choose T .z/� 0, then the sum in (24), which
is over stable graphs without dilaton leaves, defines the action of the twisted loop
group on CohFTs. If we choose R.z/� I, then (24) is a graphical realisation of the
translation action of T .z/ 2 z2H ŒŒz�� on a CohFT �0g;n defined by

.T ��0/g;n.v1˝ � � �˝ vn/

D

X
m�0

1

m!
���

0
g;nCm.v1˝ � � �˝ vn˝T . nC1/˝ � � �˝T . nCm//;

where � WMg;nCm !Mg;n is the forgetful map. The sum over m 2 N defining
.T ��0/g;n is finite since T .z/ 2 z2H ŒŒz��, so dimMg;nCm D 3g� 3C nCm grows
more slowly in m than the degree 2m coming from T, resulting in at most 3g� 3C n

terms. We can relax this condition and allow T .z/ 2 zH ŒŒz�� if we control the growth
of the degrees of all terms of �0g;n in n to ensure T .z/ produces a finite sum. In
particular, ‚g;n, and more generally �0‚g;n for any CohFT �0g;n, is annihilated by terms
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of degree > g� 1; hence, the sum defining .T�0/g;n consists of at most g� 1 terms
when T .z/ 2 zH ŒŒz��.

The tensor product � 7! �‚ given in Definition 4.2 commutes with the action of
R and commutes with the action of T up to rescaling. For a CohFT �, and R.z/ 2

L.2/GL.N;C/ and T .z/ 2 zCN ŒŒz��,

(25) .R ��/‚ DR ��‚; .zT / ��‚ D T ��‚:

The first relation in (25) uses the restriction properties (ii) of ‚g;n and the second of
these uses the forgetful property (iii) of ‚g;n to see

���
‚
g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/

�
D ���g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/‚g;nCm

�

D‚g;n���g;nCm

� nO
iD1

vi ˝

mO
iD1

T . nCi/

mY
iD1

 nCi

�

D‚g;n���g;nCm

� nO
iD1

vi ˝

mO
iD1

 nCiT . nCi/

�
and sum over m to get T ��‚ D .zT / ��‚.

The Givental–Teleman theorem [29; 52] proves that the action defined in Definition 5.2
is transitive on semisimple CohFTs. In particular, a semisimple CohFT defined on a
vector space of dimension N can be constructed via the Givental action on N copies
of the trivial CohFT. Given a semisimple CohFT �, there exists

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN

such that �g;n is defined by the weighted sum over graphs (24) using R.z/, T .z/

and�0g;n given by the topological field theory underlying�g;n. Note that a semisimple
topological field theory of dimension N is equivalent to 1 2CN which gives the unit
vector in terms of a basis in which the product is diagonal and the metric � is the dot
product, known as a normalised canonical basis.

On the level of partition functions, the construction of a semisimple CohFT from the
trivial CohFT is realised via an action of quantised differential operators yR and yT on
products of ZKW.„; t0; t1; : : : /, a KdV tau function defined in the next section.
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Definition 5.3 Define, for R.z/ D exp
�P

`>0 r`z
`
�
2 L.2/GL.N;C/ and T .z/ DP

k>0 T ˛
k

zk 2 zCN ŒŒz��,

yR WD exp
� 1X
`D1

X
˛;ˇ

� 1X
kD0

.rk/
˛
ˇt
ˇ

k

@

@t˛
kC`

C
1
2
„

`�1X
mD0

.�1/mC1.r`/
˛
ˇ

@2

@t˛m@t
ˇ

`�m�1

��
;

yT WD exp
� mX
˛D1

X
k>0

T ˛
k

@

@t˛
k

�
:

The partition function of (24) is given in [19; 29; 49] by

(26) Z�.„; ft
˛
k g/

D yR � yT � O1 �ZKW.„; ft1
k g/ � � �Z

KW.„; ftN
k g/

D exp
�X

g;n

„
g�1

X
�2Gg;n

1

jAut.�/j

Y
v2V .�/

yw.v/
Y

e2E.�/

yw.e/
Y

`2L.�/

yw.`/

�
:

The operator O1 rescales the variables y��ZKW.„; ft˛
k
g/DZKW..1˛/2„; f1˛t˛

k
g/. Vertex

weights yw.v/ store products of ZKW corresponding to the partition function of a
topological field theory, edge weights yw.e/ store coefficients of the series E.w; z/, and
leaf weights yw.`/ store the variables t˛

k
in a series weighted by coefficients of the series

R�1.�z/. We do not give explicit formulas for the weights — see [19; 29; 49] — and
instead use an equivalent elegant formulation given by topological recursion, defined
in Section 5.2.

A consequence of the relations (25) is the following proposition, which modifies the
construction of a semisimple CohFT � to produce �‚:

Proposition 5.4 Given a semisimple CohFT � defined via (24) using

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN ;

the collection of classes �‚ is defined via (24) using�
R.z/;

1

z
T .z/; 1

�
2L.2/GL.N;C/� zCN ŒŒz���CN

and
�0g;n D‚g;n˝�

.0/
g;n WH

˝n
!H 4g�4C2n.Mg;n;C/

for �.0/g;n the degree 0 part of �g;n determined by the vector 1 2 CN. Its partition
function Z�‚.„; ft

˛
k
g/ is obtained by replacing each copy of ZKW.„; ftkg/ in (26) by

a copy of Z‚.„; ftkg/ and shifting the operator yT.
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5.1 KdV tau functions

The KdV hierarchy is a sequence of partial differential equations beginning with the
KdV equation,

(27) Ut1
D U Ut0

C
1

12
„Ut0t0t0

; U.t0; 0; 0; : : : /D f .t0/:

A tau function Z.t0; t1; : : : / of the KdV hierarchy (equivalently the KP hierarchy in
odd times p2mC1 D tm=.2mC 1/!!) gives rise to a solution U D „ @2.log Z/=@t2

0
of

the KdV hierarchy. The first equation in the hierarchy is the KdV equation (27), and
later equations Utk

D Pk.U;Ut0
;Ut0t0

; : : : / for k > 1 determine U uniquely from
U.t0; 0; 0; : : : /. See [40] for the full definition.

The Kontsevich–Witten tau function ZKW is defined by the initial condition

U KW.t0; 0; 0; : : : /D t0

for U KW D „@2.log ZKW/=@t2
0

. The low-genus terms of log ZKW are

log ZKW.„; t0; t1; : : : /D „
�1
�

1
3!

t3
0 C

1
3!

t3
0 t1C

1
4!

t4
0 t2C � � �

�
C

1
24

t1C � � � :

Theorem 5.5 (Witten and Kontsevich [36; 54])

ZKW.„; t0; t1; : : : /D exp
X
g;n

„
g�1 1

n!

X
Ek2Nn

Z
Mg;n

nY
iD1

 
mi

i tmi

is a tau function of the KdV hierarchy.

The Brézin–Gross–Witten solution U BGWD„@2.log ZBGW/=@t2
0

of the KdV hierarchy
arises out of a unitary matrix model studied in [6; 30]. It is defined by the initial
condition

U BGW.t0; 0; 0; : : : /D
„

8.1� t0/2
:

The low-genus g terms (= coefficient of „g�1) of log ZBGW are

(28) log ZBGW
D�

1
8

log.1� t0/C„ �
3

128

t1

.1� t0/3
C„ �

2 15
1024
�

t2

.1� t0/5

C„
2
�

63
1024
�

t2
1

.1� t0/6
CO.„3/

D
1
8
t0C

1
16

t2
0 C � � �C„

�
3

128
t1C

9
128

t0t1C � � �
�

C„
2
�

15
1024

t2C
63

1024
t2
1 C � � �

�
:

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2733

It satisfies the homogeneity property

@

@t0
ZBGW.„; t0; t1; : : : /

D

1X
iD0

.2i C 1/ti
@

@ti
ZBGW.„; t0; t1; : : : /C

1
8
ZBGW.„; t0; t1; : : : /;

which coincides with (15), satisfied by Z‚.„; t0; t1; : : : /. A proof of this homogeneity
property for ZBGW can be found in [2; 14].

The tau function ZBGW.„; t0; t1; : : : / shares many properties of the famous Kontsevich-
Witten tau function ZKW.„; t0; t1; : : : / introduced in [54]. An analogue of Theorem 5.5
is given by Conjecture 1.5, which postulates that the function

Z‚.„; t0; t1; : : : /D exp
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj

coincides with ZBGW.„; t0; t1; : : : /. The tau function ZBGW appears in a generalisation
of Givental’s decomposition of CohFTs in [9].

Definition 5.6 Given a semisimple CohFT � with partition function Z�.„; ft
˛
k
g/

constructed as a graphical sum, via (26),

Z�.„; ft
˛
k g/D

yR � yT � O1 �ZKW.„; ft1
k g/ � � �Z

KW.„; ftN
k g/;

define

ZBGW
� .„; ft˛k g/D

yR � yT0 � O1 �Z
BGW.„; ft1

k g/ � � �Z
BGW.„; ftN

k g/;

where T0 D T=z.z/.

The same shift T0 D
1
z
T .z/ is used by ZBGW.„; ftkg/ and Z‚.„; ftkg/ due to their

common homogeneity property (15). One can also replace only some copies of
ZKW.„; ftkg/ in (26) by copies of ZBGW.„; ftkg/ and shift components of yT. For
example, in [13], the enumeration of bipartite dessins d’enfant is shown to have
partition function

(29) Z.„; ft˛k g/D
yR � yT �ZBGW�

�
1
2
„; i

˚
1p
2
t1
k

	�
ZKW.32„; f4

p
2t2

k g/

for R and T determined by the curve xy2CxyC 1D 0 as described in Section 5.2.
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R.z/ 2L.2/GL.N;C/
T .z/ 2 z2CN ŒŒz��;1 2CN

Givental construction
Z�.„; ft

˛
k
g/

S D .C;x;y;B/ ZS .„; ft˛
k
g/

topological recursion

Figure 1: Constructions of CohFT partition functions.

5.2 Topological recursion

Figure 1 summarises the contents of this section. The upper horizontal arrow in the
figure represents Givental’s construction of a partition function defined in (26) and
Definition 5.2. Topological recursion is defined in Section 5.2 — it produces a partition
function from a spectral curve S D .C;x;y;B/ consisting of a Riemann surface C

equipped with meromorphic functions x and y and a bidifferential B. We begin with a
description of the left vertical arrow, which represents the construction of an element
R.z/ 2 L.2/GL.N;C/ from .C;x;B/ in (30) and T .z/ and 1 from .C;x;y/ in (36)
and (35). We then define topological recursion in Section 5.2.1 and state the result
of [18], that topological recursion encodes the graphical construction in (26) and gives
equality of partition functions, represented by the right vertical arrow.

An element of the twisted loop group R.z/ 2 L.2/GL.N;C/ can be naturally con-
structed from a Riemann surface † equipped with a bidifferential B.p1;p2/ on †�†
and a meromorphic function x W †! C for N the number of zeros of dx. A basic
example is the function x D z2 on †D C, which gives rise to the constant element
R.z/ D 1 2 GL.1;C/. More generally, any function x that looks like this example
locally, ie x D s2C c for s a local coordinate around a zero of dx and c 2 C, gives
R.z/ D I CR1z C � � � 2 L.2/GL.N;C/, which is in some sense a deformation of
I 2 GL.N;C/, or N copies of the basic example.

Definition 5.7 On any compact Riemann surface .†; fAigiD1;:::;g/ with a choice of
A–cycles, define a fundamental normalised bidifferential of the second kind B.p;p0/

to be a symmetric tensor product of differentials on †�†, uniquely defined by the
properties that it has a double pole on the diagonal of zero residue, double residue equal
to 1, no further singularities and normalised by

R
p2Ai

B.p;p0/D0 for iD1; : : : ;g [27].
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On a rational curve, which is sufficient for the examples in this paper, B is the Cauchy
kernel

B.z1; z2/D
dz1 dz2

.z1� z2/2
:

The bidifferential B.p;p0/ acts as a kernel for producing meromorphic differentials on
the Riemann surface † via !.p/D

R
ƒ �.p

0/B.p;p0/, where � is a function defined
along the contour ƒ�†. Depending on the choice of .ƒ; �/, ! can be a differential
of the 1st kind (holomorphic), 2nd kind (zero residues) or 3rd kind (simple poles).

Definition 5.8 For .†;x/ a Riemann surface equipped with a meromorphic function,
define evaluation of any meromorphic differential ! at a simple zero P of dx by

!.P/ WD RespDP
!.p/p

2.x.p/�x.P//
;

where we choose a branch of
p

x.p/�x.P/ once and for all at P to remove the ˙1

ambiguity.

A fundamental example of Definition 5.8 required here is B.P;p/, which is a nor-
malised (trivial A–periods) differential of the second kind holomorphic on †nP with a
double pole at the simple zero P of dx.

In order to produce an element of the twisted loop group, Shramchenko [50] constructed
a solution Y .z/ of the linear system (20) using V D ŒB;U � for B˛ˇDB.P˛;Pˇ/ (defined
for ˛ ¤ ˇ) given by

Y .z/˛ˇ D�

p
z

p
2�

Z
�̌

B.P˛;p/ � e�x.p/=z :

The proof in [50] is indirect, showing that Y .z/ij satisfies an associated set of PDEs
in ui and using the Rauch variational formula to calculate @uk

B.P˛;p/. Instead, here
we work directly with the associated element R.z/ of the twisted loop group.

Definition 5.9 Define the asymptotic series in the limit z! 0 by

(30) R�1.z/˛ˇ D�

p
z

p
2�

Z
�̌

B.P˛;p/ � e.x.Pˇ/�x.p//=z;

where �̌ is a path of steepest descent for �x.p/=z containing x.Pˇ/.

Note that the asymptotic expansion of the contour integral (30) for z! 0 depends only
the intersection of �̌ with a neighbourhood of pDPˇ . When ˛D ˇ, the integrand has
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zero residue at pDPˇ , so we deform �̌ to go around Pˇ to get a well-defined integral.
Locally, this is the same as defining

R
R s�2 exp.�s2/ ds D�2

p
� by integrating the

analytic function z�2 exp.�z2/ along the real line in C deformed to avoid 0.

Lemma 5.10 [50] The asymptotic series R.z/ defined in (30) satisfies the twisted
loop group condition

(31) R.z/RT .�z/D Id:

Proof The proof here is taken from [16]. We have

(32)
NX
˛D1

ResqDP˛
B.p; q/B.p0; q/

dx.q/

D�ResqDp
B.p; q/B.p0; q/

dx.q/
�ResqDp0

B.p; q/B.p0; q/

dx.q/

D�dp

�
B.p;p0/

dx.p/

�
� dp0

�
B.p;p0/

dx.p0/

�
;

where the first equality uses the fact that the only poles of the integrand occur at
fp;p0;P˛ j ˛ D 1; : : : ;N g, and the second equality uses the Cauchy formula satisfied
by the Bergman kernel. Define the Laplace transform of the Bergman kernel by

LB˛;ˇ.z1; z2/D
ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

B.p;p0/e�x.p/=z1�x.p0/=z2 :

The Laplace transform of the left-hand side of (32) is

ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

e�x.p/=z1�x.p0/=z2

NX

D1

ResqDP

B.p; q/B.p0; q/

dx.q/

D

NX

D1

ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

e�x.p/=z1B.p;P
 /
Z
�̌

e�x.p0/=z2B.p0;P
 /

D

NX

D1

ŒR�1.z1/�


˛ ŒR
�1.z2/�




ˇ

z1z2

:

Since the Laplace transform satisfiesZ
�̨

d

�
!.p/

dx.p/

�
e�x.p/=z

D
1

z

Z
�̨

!.p/e�x.p/=z
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for any differential !.p/ by integration by parts, the Laplace transform of the right-hand
side of (32) is

�
ex.P˛/=z1Cx.Pˇ/=z2

2�
p

z1z2

Z
�̨

Z
�̌

e�x.p/=z1�x.p0/=z2

�
dp

�
B.p;p0/

dx.p/

�
Cdp0

�
B.p;p0/

dx.p0/

��
D�

�
1

z1
C

1

z2

�
LB˛;ˇ.z1; z2/:

Putting the two sides together yields the result, due to Eynard [21],

(33) LB˛;ˇ.z1; z2/D�

PN

D1ŒR

�1.z1/�


˛ ŒR
�1.z2/�

k
ˇ

z1C z2

:

Equation (31) is an immediate consequence of (33) and the finiteness of LB˛;ˇ.z1; z2/

at z2 D�z1.

5.2.1 Topological recursion Topological recursion is a procedure which takes as
input a spectral curve, defined below, and produces a collection of symmetric tensor
products of meromorphic 1–forms !g;n on C n. The correlators store enumerative
information in different ways. Periods of the correlators store top intersection numbers
of tautological classes in the moduli space of stable curves Mg;n and local expansions
of the correlators can serve as generating functions for enumerative problems.

A spectral curve S D .C;x;y;B/ is a Riemann surface C equipped with two mero-
morphic functions x;y WC!C and a bidifferential B.p1;p2/ defined in Definition 5.7,
which is the Cauchy kernel in this paper. Topological recursion, as developed by
Chekhov, Eynard and Orantin [8; 22], is a procedure that produces from a spectral
curve S D .C;x;y;B/ a symmetric tensor product of meromorphic 1–forms !g;n

on C n for integers g � 0 and n� 1, which we refer to as correlation differentials or
correlators. The correlation differentials !g;n are defined by

!0;1.p1/D�y.p1/ dx.p1/ and !0;2.p1;p2/D B.p1;p2/

and, for 2g� 2C n> 0, they are defined recursively via

!g;n.p1;pL/

D

X
dx.˛/D0

RespD˛ K.p1;p/

�

�
!g�1;nC1.p; Op;pL/C

ıX
g1Cg2Dg
ItJDL

!g1;jI jC1.p;pI /!g2;jJ jC1. Op;pJ /

�
:
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Here, we use the notation L D f2; 3; : : : ; ng and pI D fpi1
;pi2

; : : : ;pik
g for I D

fi1; i2; : : : ; ikg. The outer summation is over the zeroes ˛ of dx and p 7! Op is the
involution defined locally near ˛ satisfying x. Op/D x.p/ and Op ¤ p. The symbol ı
over the inner summation means that we exclude any term that involves !0;1. Finally,
the recursion kernel is given by

K.p1;p/D�
1

2
�

R p

Op
!0;2.p1; � /

Œy.p/�y. Op/� dx.p/
:

which is well defined in the vicinity of each zero of dx. It acts on differentials in p and
produces differentials in p1 since the quotient of a differential in p by the differential
dx.p/ is a meromorphic function. For 2g � 2C n > 0, each !g;n is a symmetric
tensor product of meromorphic 1–forms on C n with residueless poles at the zeros
of dx and holomorphic elsewhere. A zero ˛ of dx is regular if y is regular at ˛,
and irregular if y has a simple pole at ˛. A spectral curve is irregular if it contains
an irregular zero of dx. The order of the pole in each variable of !g;n at a regular
(resp. irregular) zero of dx is 6g� 4C 2n (resp. 2g). Define ˆ.p/ up to an additive
constant by dˆ.p/D y.p/ dx.p/. For 2g�2Cn> 0, the invariants satisfy the dilaton
equation [22]X

˛

RespD˛ ˆ.p/!g;nC1.p;p1; : : : ;pn/D .2g� 2C n/!g;n.p1; : : : ;pn/;

where the sum is over the zeros ˛ of dx. This enables the definition of the so-called
symplectic invariants

Fg D

X
˛

RespD˛ ˆ.p/!g;1.p/:

The correlators !g;n are normalised differentials of the second kind in each variable
since they have zero A–periods, and poles only at the zeros P˛ of dx of zero residue.
Their principal parts are skew-invariant under the local involution p 7! Op. A basis of
such normalised differentials of the second kind is constructed from x and B in the
following definition:

Definition 5.11 For a Riemann surface C equipped with a meromorphic function
x W C ! C and bidifferential B.p1;p2/ define the auxiliary differentials on C as
follows. For each zero P˛ of dx, define

(34) V ˛
0 .p/D B.P˛;p/; V ˛

kC1.p/D�d

�
V ˛

k
.p/

dx.p/

�
for ˛ D 1; : : : ;N and k D 0; 1; 2; : : : , where evaluation B.P˛;p/ at P˛ is given in
Definition 5.8.
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The correlators !g;n are polynomials in the auxiliary differentials V ˛
k
.p/. To any

spectral curve S, one can define a partition function ZS by assembling the polynomials
built out of the correlators !g;n [18; 21; 45].

Definition 5.12 ZS .„; fu˛kg/ WD exp
X
g;n

„g�1

n!
!S

g;n

ˇ̌̌̌
V ˛

k
.pi /Du˛

k

:

As usual, define Fg to be the contribution from !g;n,

log ZS .„; fu˛kg/D
X
g�0

„
g�1FS

g .fu
˛
kg/:

5.2.2 From topological recursion to Givental’s construction The input data for
Givental’s construction is a triple .R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN.
Its output is a CohFT�, and its partition function Z�.„; ft

˛
k
g/. The input data for topo-

logical recursion is a spectral curve S D .C;x;y;B/. Its output is the correlators !g;n,
which can be assembled into a partition function ZS .„; ft˛

k
g/.

From a compact spectral curve define a triple

S D .C;x;y;B/! .R.z/;T .z/;1/ 2L.2/GL.N;C/� zCN ŒŒz���CN

by

.C;x;B/ 7!R.z/ 2L.2/GL.N;C/

via (30),

(35) 1i
D

�
dy.P˛/ if P˛ is regular;
.y dx/.P˛/ if P˛ is irregular;

which is the unit in normalised canonical coordinates, and

(36) T .z/˛ D

8̂<̂
:

z
�
1˛ � 1

p
2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z
�

if P˛ is regular;

1˛ � 1
p

2�z

Z
�̨

y.p/ dx.p/ � e.x.P˛/�x.p//=z if P˛ is irregular:

Note that

lim
z!0

1
p

2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z
D

�
dy.P˛/ if P˛ is regular;
.y dx/.P˛/ if P˛ is irregular;

which defines 1; hence, the right-hand side of (36) lives in z2CN ŒŒz�� (resp. zCN ŒŒz��)
when P˛ is regular (resp. irregular). If � is a CohFT with flat unit — see (12)
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in Section 4 — given by 1 2 CN, then 1 determines the translation via T .z/ D

z.1�R�1.z/1/ 2 z2CN ŒŒz��. In this special case, y satisfies

(37) .R�1.z/1/˛ D
NX

kD1

R�1.z/˛k ��
1=2

k
D

1
p

2�z

Z
�̨

dy.p/ � e.x.P˛/�x.p//=z;

which uniquely determines y from its first-order data fdy.P˛/g at each P˛.

The map .C;x;y;B/ 7! .R.z/;T .z/; 1/ produces the left vertical arrow in Figure 1
and its generalisation to irregular spectral curves, ie a correspondence between the
input data, and via the graphical construction (26) this produces the same output
Z�.„; ft

˛
k
g/DZS .„; ft˛

k
g/, which is the main result of [18], stated in the following

theorem:

Theorem 5.13 [18] Given a CohFT � built from

R.z/ 2L.2/GL.N;C/; T .z/ 2 z2CN ŒŒz��; 1 2CN

via Definition 5.2, there exists a local spectral curve

S D .C;x;y;B/ 7! .R.z/;T .z/; 1/

on which x and B correspond to R.z/ via Definition 5.9 and y corresponds to T .z/

and 1 via (36) and (35), giving the partition function of the CohFT

Z�.„; ft
˛
k g/DZS .„; ft˛k g/:

In general, the spectral curve S in Theorem 5.13 is a local spectral curve which is a
collection of disk neighbourhoods of zeros of dx on which B and y are defined locally,
although we only consider compact spectral curves S in this paper. Theorem 5.13 was
proven only in the case T .z/D z.1�R�1.z/1/ in [18] but it has been generalised to
allow any T .z/ 2 z2CN ŒŒz��; see [9; 37]. We will use the converse of Theorem 5.13,
proven in [16], beginning instead from S. Theorem 5.13 was also generalised in [9]
to show that the operators y‰, yR and yT acting on copies of ZBGW analogous to (26)
arises by applying topological recursion to an irregular spectral curve. Equivalently,
periods of the correlators of an irregular spectral curve store linear combinations of
coefficients of log ZBGW. The appearance of ZBGW is due to its relationship with
topological recursion applied to the curve x D 1

2
z2, y D 1=z [14].

5.2.3 Spectral curve examples We demonstrate Theorem 5.13 with four key exam-
ples of rational spectral curves equipped with the bidifferential B.p1;p2/ given by
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the Cauchy kernel. The spectral curves in Examples 5.14 and 5.15, denoted by SAiry

and SBes, have partition functions ZKW and ZBGW, respectively. Any spectral curve
at regular (resp. irregular) zeros of dx is locally isomorphic to SAiry (resp. SBes). A
consequence is that the tau functions ZKW and ZBGW are fundamental to the correlators
produced from topological recursion. Moreover, the topological recursion partition
function ZS is constructed via (26), using a product of copies of ZKW and copies
of ZBGW, as in (29), where R and T are obtained from the spectral curve as described
in Section 5.2.2. The third example, given by Theorem 5.16, brings together ZKW and
Z‚ and conjecturally ZBGW in the limit. Proposition 5.4, which gives the relationship
between the Givental construction of a semisimple CohFT � and its associated �BGW,
has an elegant consequence for spectral curves. This is demonstrated explicitly in
the fourth example, which shows the relationship between the spectral curves of a
CohFT �A2 associated to the A2 singularity and .�A2/BGW.

Examples 5.14 and 5.15 below use the differentials

�m.z/D .2mC 1/!!z�.2mC2/ dz

defined by (34) for x D 1
2
z2 with respect to a global rational parameter z for the curve

C ŠC.

Example 5.14 Topological recursion applied to the Airy curve

SAiry D

�
C; x D 1

2
z2; y D z; B D

dz dz0

.z� z0/2

�
produces correlators which are proven in [23] to store intersection numbers

!
Airy
g;n D

X
Em2Zn

C

Z
Mg;n

nY
iD1

 
mi

i .2mi C 1/!!
dzi

z
2miC2
i

and the coefficient is nonzero only for
Pn

iD1 mi D 3g� 3C n. Hence,

ZKW.„; t0; t1; : : : /DZSAiry.„; t0; t1; : : : /D exp
X
g;n

„g�1

n!
!

Airy
g;n

ˇ̌̌̌
�m.zi /Dtm

D exp
X

g;n; Em

„g�1

n!

Z
Mg;n

nY
iD1

. 
mi

i tmi
/:

Example 5.15 Topological recursion applied to the Bessel curve

SBes D

�
C; x D 1

2
z2; y D

1

z
; B D

dz dz0

.z� z0/2

�
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produces correlators

!Bes
g;n D

X
Ek2Zn
C

bg.m1; : : : ;mn/

nY
iD1

.2mi C 1/!!
dzi

z
2miC2
i

;

where bg.m1; : : : ;mn/¤ 0 only for
Pn

iD1 mi D g� 1. It is proven in [14] that

ZBGW.„; t0; t1; : : : /DZSBes.„; t0; t1; : : : /D exp
X
g;n

„g�1

n!
!Bes

g;n

ˇ̌̌̌
�m.zi /Dtm

:

For the next example, define differentials �˛m.z; t/, using x D 1
2
z2� t � log z, by

(38)

�0
�1.z; t/D t�1=2z dz;

�1
�1.z; t/D dz;

�˛mC1.z; t/D�d

�
��m.z; t/

dx.z/

�
; � D 0; 1; mD�1; 0; 1; 2; : : : :

For m� 0, these are linear combinations of the V i
m.p/ defined in (34). The following

theorem uses the Chern polynomial

c.E E�g;n; t/D 1C t � c1.E
E�
g;n/C t2

� c2.E
E�
g;n/C � � � 2H�.Mspin

g;n;E�
;Q/; E� 2 f0; 1gn:

Theorem 5.16 [37] Topological recursion applied to the spectral curve

(39) x D 1
2
z2
� t � log z; y D z�1; B D

dz dz0

.z� z0/2

produces correlators !g;n satisfying

(40) !g;n.t; z1; : : : ; zn/

D

X
E�; Em

.�1/nt2g�2Cn21�g

Z
Mg;n

p�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/:

Proof Theorem 5.16 is a specialisation of a theorem in [37] which applies to a
generalisation of the moduli space of spin curves to the moduli space of r–spin curves

M1=r
g;n D f.C; �;p1; : : : ;pn; �/ j � W �

r Š�! !
log
C g:

For any s 2 Z, there is a line bundle E on the universal r–spin curve over M1=r
g;n

with fibres given by the universal r th root of .!log
C /s . Its derived pushforward R���E

defines a virtual bundle over M1=r
g;n . For example, when s D 1 and r D 1, �R���E
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is the Hodge bundle, and, when s D �1 and r D 2, �R���E D Eg;n coincides
with Definition 2.1 (where E_ has now become E due to s D �1.) Note that [37]
considers r th roots of .!log

C
/s
�
�
Pn

iD1 �ipi

�
for C the underlying coarse curve of C

with forgetful map � W C ! C. The r th roots in [37] coincide with the pushforward
j� j D ��� , which is the locally free sheaf of Z2–invariant sections of the pushforward
sheaf of � , and the isotropy representation at pi determines �i as described in Section 2.
For r D 2, ie �2 Š !

log
C , at any point pi banded by 1

2
the pushforward locally satisfies

j� j2 D !C .2pi/D !
log
C
.pi/; hence, .j� j_/2 D .!log

C
/�1.�pi/, which corresponds to

�i D 1. At any point pi banded by 0, the pushforward does not change local degree
and corresponds to �i D 0.

The Chern character of the virtual bundle �R���E is given by Chiodo’s general-
isation of Mumford’s formula for the Chern character of the Hodge bundle. For
� 2 f0; 1; : : : ; r � 1g, let j� W Sing� !M1=r

g;n be the map from the singular set of the
universal spin curve banded by �=r , where now the local isotropy is Zn. Let Bm.x/

be the mth Bernoulli polynomial. Chiodo [10] proved

(41) ch.R���E/D
X
m�0

�
BmC1.s=r/

.mC 1/!
�m�

nX
iD1

BmC1.mi=r/

.mC 1/!
 m

i

C
1
2
r

r�1X
�D0

BmC1.�=r/

.mC 1/!
.j� /�

 m
C C .�1/m�1 m

�

 CC �

�
:

The total Chern class of a virtual bundle c.E �F / WD c.E/=c.F / can be calculated
from its Chern character and in this case is given by

c.�R���E/D exp
� 1X

mD1

.�1/m.m� 1/! chm.R
���E/

�
:

The components of M1=r
g;n are given by M1=r

g;n;E�
for E� 2 Zn

r . The pushforward of the
restriction of c.�R���E/ to a component is known as the Chiodo class

Cg;n.r; sI E�/ WD p�c.�R���EjM1=r

g;n;E�

/ 2H�.Mg;n;Q/:

The sum of this pushforward over all components of M1=r
g;n is expressed as a weighted

sum over stable graphs in [32] which encodes a twisted loop group action as described
in Section 5, with edge and vertex weights proven in [37, Theorem 4.5] to exactly
match the edge and vertex weights arising from the spectral curve

Ox D zr
� log z; Oy D

r1Cs=r

s
zs; B D

dz dz0

.z� z0/2
:
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In particular, the term exp
�
�
P

m.BmC1.s=r/=m.mC 1//�m

�
which arises from theP

m.BmC1.s=r/=.mC 1/!/�m terms in Chiodo’s formula exactly matches the local
expansion of dy. More precisely, by [37, Lemma 4.1],

(42) 1
p

2�„

Z
�̨

dy.p/ � e.x.P˛/�x.p//=„
� dy.P˛/ exp

�
�

X
m

BmC1.s=r/

m.mC 1/
.�„/m

�
;

where � means the asymptotic expansion in the limit „! 0.

Hence, topological recursion applied to this spectral curve produces correlators with
expansion in terms of the local coordinate e� Oxi D e� Ox.zi / D zie

�zr
i around zi D 0,

(43) y!g;n.z1; : : : ; zn/

�

X
Ek2Zn
C

nY
iD1

c.ki/r
.ki /r =r d.e�ki Oxi /

Z
Mg;n

Cg;n.r; sI .�Ek/r /Qn
iD1.1� .ki=r/ i/

;

where � means expansion in a local coordinate, .�Ek/r 2 f0; : : : ; r � 1gn the residue
class of �Ek modulo r , and

c.k/D
kbk=rc

bk=rc!
:

We have used Ox D zr � log z and y D .r1Cs=r=s/zs here, rather than Ox D�zr C log z

and y D zs as used in [37], because the convention for the kernel K.p1;p/ used here
differs by sign from [37], and also to remove a factor of .r1Cs=r=s/2�2g�n from the
correlators. Chiodo’s formula and the asymptotic expansion (42) are true for any s 2Z;
hence, (43) holds for any s 2 Z, although it is stated only for s � 0 in [37].

In [37], .�Ek/r 2 f1; : : : ; rgn; however, replacing ki D r by ki D 0 leaves the Chiodo
class invariant since it does not change the component, but rather it twists the universal
bundle E over the component, resulting in adding a direct summand of a trivial bundle to
the virtual bundle �R���E which does not affect the total Chern class. The invariance
of the total Chern class, or equivalently the positive-degree terms of the Chern character,
can also be seen in Chiodo’s formula via properties of the Bernoulli polynomials.

We will use (43) in the case r D 2. Define

O�0
�1D 2z dz; O�1

�1D dz; O��m.z/D�d

�
O��
m�1

.z/

d Ox.z/

�
; � 2 f0; 1g; m2 f0; 1; 2; : : : g;

which have local expansion at z D 0 given by

O��m.z/�
X

k2ZC
k��.mod 2/

kmc.k/d.e�k Ox/:
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Each  i in the denominator of the right-hand side of (43) produces monomials�
1
2
ki i

�mi ; hence, (43) with r D 2 becomes

y!g;n.z1; : : : ; zn/D
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

 
mi

i
O��i
mi
.zi/2

�=2i�mi :

Change . Ox; Oy/ 7! .x;y/ by

x D t Ox
�

z
p

2t

�
�

1
2
t log.2t/D 1

2
z2
� t � log z; y D 1

2
st s=2

Oy
�

z
p

2t

�
D zs:

The differentials defined in (38) using x are given by

��m.z; t/D t�m�1=22�=2 O��m

�
z
p

2t

�
:

Hence,

!g;n.t; z1; : : : ; zn/

D
�

1
2
st s=2C1

�2�2g�n
y!g;n

�
z1
p

2t
; : : : ;

zn
p

2t

�
D
�

1
2
st s=2C1

�2�2g�n
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

 
mi

i
O��i
mi

�
zi
p

2t

�
2�=2i�mi

D
�

1
2
st s=2C1

�2�2g�n
X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

tmiC1=2 
mi

i ��i
mi
.zi/2

�mi

D
�

1
2
st s=2C1

�2�2g�n
tn=2

X
E�; Em

Z
Mg;n

Cg;n.2; sI E�/

nY
iD1

�
1
2
t
�mi 

mi

i ��i
mi
.zi/

D

X
E�; Em

t .1�s/.2g�2Cn/=221�gs2�2g�n

Z
Mg;n

Cg;n

�
2; sI E�;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/;

where the last equality uses
�

1
2
t
�Pmi

D
�

1
2
t
�3g�3Cn�deg for the degree operator

deg ck.E
E�
g;n/D k then

�
1
2
t
�� deg is absorbed into the Chern polynomial. Set s D�1 to

get the desired result.

The classes ‚g;n arise in the limit

lim
t!0

!g;n.t; z1; : : : ; zn/D
X
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/

for �m.z/ D .2mC 1/!!z�.2mC2/ dz. We explain the relationship of this limit with
Conjecture 1.5 in Proposition 6.1.
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5.2.4 A2 singularity In this section we calculate the spectral curves of the CohFT
�A2 and .�A2/‚. We begin with a general result relating the spectral curve of any
semisimple CohFT � with the spectral curve of �BGW.

Proposition 5.17 Given a semisimple CohFT � with partition function Z�.„; ft
˛
k
g/

encoded by the spectral curve

S D .C;x;y;B/

via Theorem 5.13, ZBGW
�

.„; ft˛
k
g/ is encoded by the spectral curve

yS D
�
C;x; Oy D

dy

dx
;B
�
:

Proof Note that the spectral curves S and yS share the same .C;x;B/ and hence
produce the same operator yR.z/ used in the construction of both Z� and ZBGW

�
.

Proposition 5.4 shows that a shift in the translation operator T .z/ 7! T .z/=z combined
with replacing each copy of ZKW.„; ftkg/ in (26) by a copy of Z‚.„; ftkg/ produces
the partition function of �‚. It relied upon the homogeneity property (15) satisfied
by Z‚.„; ftkg/. But ZBGW.„; ftkg/ also satisfies (15); hence, an identical argument to
that in Proposition 4.3 proves that, for a semisimple CohFT �, the partition function
ZBGW
�

.„; ft˛
k
g/ is obtained by replacing each copy of ZKW.„; ftkg/ in (26) by a copy

of ZBGW.„; ftkg/ and replacing the translation operator by T .z/ 7! T .z/=z.

Given an irregular spectral curve, it is proven in [9] that its partition function is
obtained from (26) with translation operator given by (36). Given a semisimple CohFT
� encoded by the regular spectral curve S D .C;x;y;B/, define Oy D dy=dx. Then,
since dy D Oy dx, the translation operator shifts by T .z/˛ 7! T .z/˛=z, which proves
that �BGW is encoded by the spectral curve yS D .C;x; Oy D dy=dx;B/.

Define the spectral curves

(44)
SA2
D

�
C; x D z3

� 3z; y D z
p
�3; B D

dz dz0

.z� z0/2

�
;

SBGW
A2

D

�
C; x D z3

� 3z; Oy D

p
�3

3z2� 3
; B D

dz dz0

.z� z0/2

�
:

The partition functions associated to S D SA2
defined in 4.1.4 and S D S‚

A2
are built

out of correlators !S
g;n by

ZS .„; ft˛k g/D exp
X
g;n

„g�1

n!
!S

g;n

ˇ̌̌̌
�˛

k
.zi /Dt˛

k

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2747

using the differentials �˛
k
.z/ defined on C by

(45) �˛0 D
dz

.1� z/2
�
.�1/˛dz

.1C z/2
; �˛kC1.p/D d

�
�˛

k
.p/

dx.p/

�
; ˛ 2 f1; 2g; k 2N:

These are linear combinations of the V i
k
.p/ defined in (34) with x D z3 � 3z. The

V i
k
.p/ correspond to normalised canonical coordinates while the �˛

k
.p/ correspond to

flat coordinates. We have

Z�A2 DZSA2 ; Z.�A2 /‚ DZ
S‚

A2 :

The equality ZA2
DZSA2 was proven in [17]; hence, Z.�A2 /‚ DZ

S‚
A2 by Proposition

5.17. We verify this by giving the local expansions of B and Oy for SA2
, which helps to

deal with different normalisations in the references. Choose a local coordinate t around
z D�1D P1 so that x.t/D 1

2
t2C 2. Then

B.P1; t/D
�i
p

6

dz

.zC 1/2
D dt

�
t�2
�

1
144
C

35
41 472

t2
C � � �C odd terms

�
;

B.P2; t/D
1
p

6

dz

.z� 1/2
D dt

�
�

i
24
C

35i
3456

t2
C � � �C odd terms

�
:

Around z D 1D P2, the local expansions of B.P˛; z/ are the same as those above, up
to sign. The odd terms are annihilated by the Laplace transform, and we get

R�1.z/˛˛ D�

p
z

p
2�

Z
�̨

B.P˛; t/ � e.�t2=2/=z
D 1� .�1/˛ 1

144
z� 35

41 472
z2
C � � � ;

R�1.z/˛3�˛ D�

p
z

p
2�

Z
�̨

B.P3�˛; t/ � e
.�t2=2/=z

D
i

24
zC .�1/˛ 35i

3456
z2
C � � � :

Hence, R�1.z/D I �R1zC .R2
1
�R2/z

2C � � � D I �RT
1

zCRT
2

z2C � � � gives

R1 D
1

144

�
�1 �6i

�6i 1

�
; R2 D

35

41 472

�
�1 12i

�12i �1

�
;

which determines all other Rk via (21) and agrees with (23) for �A2 .

The topological field theory is defined by fdy.P˛/g for i D 1; 2. The translation
operator T .z/ is determined by the (Laplace transform of the) local expansion of y

given by (36). Moreover, �A2 has flat unit, so in this case the odd expansions of dy is
determined by R�1.z/1 via (37), and hence uniquely determined by the terms dy.P˛/
for ˛ D 1; 2. This is visible on the spectral curve by the fact that the poles of dy are
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dominated by the poles of dx, ie dy=dx has poles only at the zeros P1 and P2 of dx,
and hence, by the Cauchy formula, dy satisfies

(46) d
�

dy

dx
.p/
�
D�

NX
˛D1

Resp0DP˛
dy

dx
.p0/B.p0;p/;

which is proven in [17] to imply (37). Thus, it remains to show that y defines the correct
topological field theory, representing 1 in normalised canonical coordinates. The local
expansion of dy D

p
�3 dz around P1 D�1 in the local coordinate x.t/D 1

2
t2C 2 is

dy D
p
�3 dz D

�
1
p

2
�

5

144
p

2
t2
C

385

124 416
p

2
t4
C � � �C odd terms

�
dt

and around P2 D 1 replace t by i t . Hence, the Laplace transform is�
1

p
2�z

Z
�̨

dy.p/ � e..x.Pk/�x.p///=z

�
DR�1.z/1

D
1
p

2

�
1

i

�
C

5

144
p

2

�
�1

i

�
zC

385

41 472
p

2

�
1

i

�
z2
C � � � :

Note that dy.P1/D
1p
2
D
p

11 and dy.P2/D
ip
2
D
p

12 gives the unit 1, and hence
the TFT. Thus, SA2

7! .R.z/;T .z/; 1/ for �A2 as required.

6 Progress towards a proof of Conjecture 1.5

A consequence of the homogeneity property (15) satisfied by both partition functions
Z‚.„; t0; t1; : : : / and ZBGW.„; t0; t1; : : : / is that, for g > 1, the coefficient of „g�1 of
the logarithm of the partition function, ie its genus g part, is a finite sum of rational
functions. They are both of the form

log Z.„; t0; t1; : : : /D�
1
8

log.1� t0/C

1X
gD2

„
g�1

X
�`g�1

c�t�

.1� t0/2g�2Cn
;

where t� WD
Q

t�i
for a partition � D .�1; : : : ; �n/. Hence, for each g, one needs

only match the finite set of coefficients c�, parametrised by partitions � of g� 1, of
log Z‚.„; t0; t1; : : : / with those of log ZBGW.„; t0; t1; : : : /, to determine equality.

The initial value of
R
M1;1

‚1;1 D
1
8

together with (15) produces all genus 1 terms
of log Z‚, and the calculation

R
M2;1

‚2;1 �  1 D
3

128
from Example 3.5 together
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with (15) produces all genus 2 terms, giving

log Z‚
D�

1
8

log.1� t0/C„ �
3

128
�

t1

.1� t0/3
CO.„2/:

Further calculations, such as the genus 3 calculation in the appendix and calculations
up to g D 7 and nD 6 using admcycles [12], prove

(47) log Z‚.„; t0; t1; : : : /D log ZBGW.„; t0; t1; : : : /CO.„8/:

Conjecture 1.5 is reduced to a purely combinatorial or analytic problem in the following
proposition. Recall the spectral curve (39) given by

x D 1
2
z2
� t � log z; y D z�1; B D

dz dz0

.z� z0/2

with correlators !g;n.t; z1; : : : ; zn/.

Proposition 6.1 Conjecture 1.5 is equivalent to

(48) lim
t!0

!g;n.t; z1; : : : ; zn/D !
Bes
g;n.z1; : : : ; zn/:

Proof By Theorem 5.16,

!g;n.t; z1; : : : ; zn/D
X
E�; Em

.�1/nt2g�2Cn21�g

Z
Mg;n

p�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi
.zi ; t/;

which is regular in t since

rank E E�g;n D 2g� 2C 1
2
.nCjE� j/;

so the Chern polynomial has degree at most 2g� 2C n in t�1. Hence, for jE� j D n,

lim
t!0

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

�
D .�1/n2g�1Cnp�c2g�2Cn.E

E�
g;n/D‚g;n;

while, for jE� j< n, rank E E�g;n < 2g� 2C n, so

lim
t!0

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

�
D 0:

Thus, the t ! 0 limit exists to give

lim
t!0

X
E�; Em

Z
Mg;n

.�1/nt2g�2Cn21�gp�c
�
E E�g;n;

2

t

� nY
iD1

 
mi

i ��i
mi

D

X
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/
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for
�m.z/D lim

t!0
�1

m.z; t/D .2mC 1/!!z�.2mC2/ dz:

Also, limt!0 �
0
m.z; t/D 0 for m� 0. The t ! 0 limit of the spectral curve (39) gives

the Bessel spectral curve of Example 5.15 with correlators proven in [14] to be given
by

!Bes
g;n.z1; : : : ; zn/D

X
Em

@nFBGW.„; ftkg/

@tm1
� � � @tmn

nY
iD1

�mi
.z/:

Hence, the conjectured limit (48) yieldsX
Em

Z
Mg;n

‚g;n

nY
iD1

 
mi

i �mi
.z/D

X
Em

@nFBGW.„; ftkg/

@tm1
� � � @tmn

nY
iD1

�mi
.z/;

which is equivalent to Conjecture 1.5.

The subtlety of the limit (48), which is known up to g D 7 for all n by the verification
of Conjecture 1.5 in these cases, can be seen as follows. The correlators are regular
in t ; for example,

!0;3.t; z1; z2; z3/DO.t/ D) lim
t!0

!0;3.t; z1; z2; z3/D 0:

However, the coefficients in the recursion can be irregular in t , ie blow up as t ! 0.
For example, we next introduce the parameter a to keep track of the contribution of
!0;3.t; z1; z2; z3/ and can set aD 1 at the end in this calculation of !1;2.t; z1; z2/:

!1;2.t; z1; z2/

D

X
dx.˛/D0

ReszD˛ K.z1; z/
�
a �!0;3.t; z; �˛.z/; z2/C!0;2.z; z2/!1;1.t; �˛.z//

C!0;2.�˛.z/; z2/!1;1.t; z/
�
;

lim
t!0

!1;2.t; z1; z2/D
1

1080
.74aC 61/

dz1 dz2

z2
1
z2

2

:

This gives the expected limit of !Bes
1;2
.z1; z2/ when aD 1, and shows the dependence of

limt!0 !1;2.t; z1; z2/ on !0;3.t; z1; z2; z3/ due to coefficients in the recursion which
are irregular in t .

6.1 Pixton relations

A collection of relations in the tautological ring RH�.Mg;n/was conjectured by Pixton
and proven in [47] using the CohFT �A2 . Such tautological relations can be used to
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produce topological recursion relations for CohFTs such as Gromov–Witten invariants.
Similarly, the intersections of‚g;n with Pixton’s relations produce topological recursion
relations satisfied by the intersection numbers

R
Mg;n

‚g;n

Qn
iD1  

mi

i .

The key idea behind the proof of Pixton’s relations in [47] is a degree bound on the
cohomology classes

deg�A2
g;n �

1
3
.g� 1C n/ < 3g� 3C n

combined with Givental’s construction of �A2
g;n in Definition 5.2 from the triple

.R.z/;T .z/; 1/ 2L.2/GL.N;C/� z2CN ŒŒz���CN obtained from the Frobenius man-
ifold structure on the versal deformation space of the A2 singularity; see Section 4.1.4.
Givental’s construction produces �A2

g;n, although it does not know about the degree
bound and produces classes in the degrees where �A2

g;n vanishes. This leads to sums
of tautological classes representing the zero class, ie relations given by the degree
d > 1

3
.g� 1C n/ part of the sum over stable graphs in (24) of the form

�A2
g;n D

X
�2Gg;n

1

jAut.�/j
.��/�!

R;T;1
�

:

Since �A2 has flat unit, the pushforward classes in (24) produce � polynomials; hence,
only graphs without dilaton leaves in the sum are required and the classes !R;T;1

�

consist of products of  and � classes associated to each vertex of � . The main
result of [47] is the construction of elements Rd

g;A
2 Sg;n for AD .a1; : : : ; an/ with

a˛ 2 f0; 1g satisfying q.Rd
g;A
/ D 0 which push forward to tautological relations in

H 2d .Mg;n;Q/. They are defined by Rd
g;A

, the degree d part of �A2
g;n.vA/ for a basis

fv0; v1g. The element R1
2
2H 2.M2;Q/ is given in Example 3.5.

When n � g � 1 and g > 1, we have d D g � 1 > 1
3
.g � 1C n/; hence, there exist

nontrivial relations R
g�1
g;A

. This produces the sum over graphs

‚g;n �R
g�1
g;A
D 0;

which defines a relation for each A between intersection numbers of classes with‚g;n,
ie coefficients of Z‚.„; ftkg/. This uses ‚g;n � .��/� D .��/�‚� together with
Remark 3.4 to replace � classes by  classes. We saw this in Example 3.5, arising
from the genus two Pixton relation

(49)
Z
M2;1

‚2;1 � 1�
7

10
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1�
1

10
�

Z
M1;2

‚1;2 D 0;
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which determines
R
M2;1

‚2 �  
2
1

from
R
M1;1

‚1;1 and
R
M1;2

‚1;2. Similarly, the
appendix uses genus three relations to deduce

R
M3;2

‚3;2 � 
2
1

and
R
M3;2

‚3;2 � 1 2

from lower-genus coefficients of Z‚.„; t0; t1; : : : /.

The following theorem proves that the coefficients of ZBGW.„; t0; t1; : : : / also sat-
isfy (49), and more generally an infinite set of relations satisfied by coefficients of
Z‚.„; t0; t1; : : : / arising from Pixton relations:

Theorem 6.2 Pixton relations produce infinitely many nontrivial relations satisfied by
the coefficients of both Z‚.„; t0; t1; : : : / and ZBGW.„; t0; t1; : : : /.

Proof For each g > 1, n and
�

1
2
.nC 1/

˘
possible A 2 f0; 1gn (due to symmetry and

vanishing of half for parity reasons), R
g�1
g;A
D 0 defines a nontrivial Pixton relation.

For each of these choices of g, n and A, due to the restriction and pullback properties
of ‚g;n as explained above, ‚g;n �R

g�1
g;A
D 0 defines a relation between coefficients of

Z‚.„; ftkg/, such as (49).

The main goal is to prove that the corresponding coefficients of ZBGW.„; ftkg/ also
satisfy this infinite set of relations. To do this, we study the partition function ZBGW

�A2
,

defined in Definition 5.6 via the spectral curve SBGW
A2

defined in (44). The relations
between coefficients of ZBGW.„; ftkg/ will be stored in the spectral curve. This
will produce identical relations satisfied by both the coefficients of ZBGW and Z‚.
To summarise, we have vanishing of certain coefficients of Z‚

A2
.„; ft˛

k
g/ due to the

cohomological viewpoint shown in the upper row in Figure 1, and vanishing of corre-
sponding coefficients of ZBGW

�A2
.„; ft˛

k
g/ due to Givental’s construction neatly encoded

by topological recursion shown in the lower row in Figure 1.

Pixton relations induce relations between intersection numbers of  and � classes
or  classes alone, ie coefficients of ZKW.„; ftkg/. These relations are realised by
unexpected vanishing of coefficients of the partition function ZA2

.„; ft˛
k
g/. Similarly,

unexpected vanishing of coefficients of the partition function ZBGW
A2

.„; ft˛
k
g/ correspond

to relations between coefficients of ZBGW.„; ftkg/.

The coefficients of log ZBGW
A2

.„; ft˛
k
g/ are obtained from the correlators !BGW;A2

g;n

of SBGW
A2

by

(50)
@n

@t
˛1

k1
� � � @t

˛n

kn

.FBGW
A2

/g.ft
˛
k g/

ˇ̌̌̌
t˛
k
D0

D Resz1D1 � � �ResznD1

nY
iD1

p˛i ;ki
.zi/!

BGW;A2
g;n .z1; : : : ; zn/
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for polynomials p˛;k.z/D
p
�3..�1/˛=˛/z3kC˛C lower-order terms for ˛ 2 f1; 2g

and k 2N chosen so that the residues are dual to the differentials �˛
k

defined in (45).
The lower-order terms (and the top coefficient) will not be important here because
we will only consider vanishing of (50) arising from high-enough-order vanishing of
!

A2
g;n.z1; : : : ; zn/ at zi D1, so that the integrand in (50) is holomorphic at zi D1.

Equation (50) is a special case of the more general phenomena, proven in [16], that
periods of !g;n are dual to insertions of vectors in a CohFT. Thus, we have shown
that relations between coefficients of ZBGW.„; ftkg/ induced from Pixton relations are
detected by high-order vanishing of !BGW;A2

g;n .z1; : : : ; zn/ at zi D1. The same is true
for high-order vanishing !A2

g;n.z1; : : : ; zn/ at zi D1, which is shown by

!
A2

2;1
.z/D 35

243
�
z.11z4C 14z2C 2/

.z2� 1/10
dz

D) ReszD1 zm!
A2

2;1
.z/D 0; m 2 f0; 1; : : : ; 12g:

Hence, (50) vanishes for k1 D 0; 1; 2; 3 and ˛1 � k1 mod 2, which gives the relations
between intersection numbers, or coefficients of ZKW.„; ftkg/,

(51)
Z
M2;1

Rd

2; Nd
 4�d

1 D 0; d D 1; 2; 3; 4;

where Rd

2; Nd
is a nontrivial Pixton relation, for Nd � d mod 2, between cohomology

classes in H 2d .M2;1;Q/ proven in [47], such as R2
2;0
D  2

1
C boundary termsD 0.

Lemma 6.3 We have
nX

iD1

ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/� 2g� 2;

where ordzD1 �.z/ is the order of vanishing of the differential at z D1.

Proof We can make the rational differential

!A2
g;n.z1; : : : ; zn/D

pg;n.z1; : : : ; zn/Qn
iD1.z

2
i � 1/2g

dz1 � � � dzn

homogeneous by applying topological recursion to x.z/ D z3 � 3Q2z and y D
p
�3=x0.z/ which are homogeneous in z and Q. Then !A2

g;n.Q; z1; : : : ; zn/ is ho-
mogeneous in z and Q of degree 2� 2g� n:

!A2
g;n.Q; z1; : : : ; zn/D �

2�2g�n!A2
g;n.�Q; �z1; : : : ; �zn/:

The degree of homogeneity uses the fact that

.z;Q/ 7! .�z; �Q/ D) y dx 7! �y dx D) !g;n 7! �2�2g�n!g;n
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because y dx appears in the kernel K.p1;p/ with homogeneous degree �1, which
easily leads to degree 2� 2g� n for !g;n. The degree 2� 2g� n homogeneity of

!A2
g;n.Q; z1; : : : ; zn/D

pg;n.Q; z1; : : : ; zn/Qn
iD1.z

2
i �Q2/2g

dz1 � � � dzn

implies that deg pg;n.Q; z1; : : : ; zn/ D 4gn � n C 2 � 2g � n. But we also know
that !A2

g;n.Q; z1; : : : ; zn/ is well defined as Q! 0 — the limit becomes !g;n of the
spectral curve x.z/D z3 and y D

p
�3=x0.z/ using the topological recursion defined

by Bouchard and Eynard [5] — so deg pg;n.z1; : : : ; zn/� 4gn�nC 2� 2g�n. Note
that dzi is homogeneous of degree 1 but has a pole of order 2 at zi D1; hence,

nX
iD1

ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/D 4gn� deg pg;n.z1; : : : ; zn/� 2n� 2g� 2:

Primary invariants of a partition function are those coefficients of
Qn

iD1 t
˛i

ki
with all

ki D 0. They correspond to intersections in Mg;n with no  classes. The primary
invariants of Z‚

A2
.„; ft˛

k
g/ vanish for n< 2g� 2. This uses deg�A2

g;n �
1
3
.g� 1C n/,

so deg�A2
g;n �‚g;n �

1
3
.g�1Cn/C2g�2Cn< 3g�3Cn when n< 2g�2. These

vanishing coefficients correspond to the relations ‚g;n �R
g�1
g;A
D 0, which, as discussed

above, give relations between coefficients of Z‚.„; ftkg/.

The primary coefficients of ZBGW
A2

.„; ft˛
k
g/ correspond to

Resz1D1 � � �ResznD1

nY
iD1

z
�i

i !
A2
g;n.z1; : : : ; zn/

for �i D 1 or 2. Different choices of �i give different relations (except half which vanish
for parity reasons). By Lemma 6.3,

Pn
iD1 ordziD1 !

BGW;A2
g;n .z1; : : : ; zn/� 2g�2, so,

for n< 2g� 2, there exists an i such that ordziD1 !
BGW;A2
g;n .z1; : : : ; zn/� 2. Hence,

z
�i

i !
A2
g;n.z1; : : : ; zn/ is holomorphic at zi D1, so

ResziD1 z
�i

i !
A2
g;n.z1; : : : ; zn/D 0

and we have

(52) n< 2g� 2 D) Resz1D1 � � �ResznD1

nY
iD1

z
�i

i !
A2
g;n.z1; : : : ; zn/D 0:

Hence, the primary coefficients of ZBGW
A2

.„; ft˛
k
g/ vanish for n < 2g � 2, yielding a

common set of relations satisfied by both the coefficients of Z‚.„; t0; t1; : : : / and
ZBGW.„; t0; t1; : : : /.
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An example of a genus 2 relation produced by Theorem 6.2 is

!
BGW;A2

2;1
.z/D

�5z2� 1

16
p
�3.z� 1/4.zC 1/4

dz:

It immediately follows that ReszD1

p
�3
2

z � !2;1.z/ D 0, which signifies a relation
between coefficients of ZBGW.„; t0; t1; : : : /. We will write the relations using ‚g;n;
however, the relations are between coefficients of ZBGW.„; t0; t1; : : : / and what we are
showing here is that these coefficients satisfy the same relations as intersection num-
bers involving ‚g;n, or, equivalently, coefficients of Z‚.„; t0; t1; : : : /. The graphical
expansion encoded by both Givental’s construction and topological recursion is given by

2 2 1 1 1

(plus graphs containing genus 0 vertices on which ‚2;1 vanishes), which contributes

22
�

60
1728
�

Z
M2;1

‚2;1 � 1C 22
�
�60
1728
�

Z
M2;1

‚2;1 � �1

C 22
�

84
1728
�

Z
M1;2

‚1;2 �

Z
M1;1

‚1;1C
2
2
�

84�60
1728

�

Z
M1;3

‚1;3;

which agrees with the expansion in weighted graphs of ReszD1

p
�3
2

z �!2;1.z/D 0

given by
5

1536
�

15
1536
C

7
2304
C

1
288
D 0:

Appendix Calculations

Here we show explicitly the equality ZBGWDZ‚ up to genus 3. The coefficients of the
Brézin–Gross–Witten tau function are calculated recursively since it is a tau function
of the KdV hierarchy. It has low genus g (= coefficient of „g�1) terms given by

log ZBGW
D�

1
8

log.1� t0/C„ �
3

128
�

t1

.1� t0/3
C„

2
�

15
1024
�

t2

.1� t0/5

C„
2
�

63
1024
�

t2
1

.1� t0/6
CO.„3/

D
1
8
t0C

1
16

t2
0C� � �C„

�
3

128
t1C

9
128

t0t1C� � �
�
C„

2
�

15
1024

t2C
63

1024
t2
1C� � �

�
:

The intersection numbers of ‚g;n stored in

log Z‚.„; t0; t1; : : : /D
X

g;n; Ek

„g�1

n!

Z
Mg;n

‚g;n �

nY
jD1

 
kj
j

Y
tkj
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are calculated recursively via relations among tautological classes in H�.Mg;n;Q/.
The calculation of these intersection numbers up to genus 2 can be found throughout the
text. We assemble them here for convenience, then present the genus 3 calculations.

g D 0 Theorem 1.3(II) gives ‚0;nD 0, which agrees with the vanishing of all genus 0
terms in ZBGW.

g D 1 Proposition 2.9 gives‚1;1D3 1; hence,
R
M1;1

‚1;1D
1
8

. We use this together
with the dilaton equation to get

R
M1;n

‚1;nD
1
8
.n�1/!. This agrees with�1

8
log.1�t0/

in log ZBGW.

g D 2 Using Mumford’s relation [41], �1 is the sum of boundary terms in M2, which
coincides with a genus 2 Pixton relation; Example 3.5 produced the genus 2 intersection
numbers from the genus 1 intersection numbers:Z

M2

‚2 � �1 D
7
5
�

Z
M1;1

‚1;1 �

Z
M1;1

‚1;1 �
1

jAut.�1/j
C

1
5
�

Z
M1;2

‚1;2 �
1

jAut.�2/j

D
7
5
�

1
8
�

1
8
�

1
2
C

1
5
�

1
8
�

1
2
D

3
128
:

Note that
R
M2;1

‚2;1 � 1D
R
M2;1

��‚2 � 
2
1
D
R
M2

‚2 ��1. Using the dilaton equation,
we then get

R
M2;n

‚2;n � 1 D
3

256
.nC 1/!, which agrees with the „ � 3

128
t1=.1� t0/

3

term in log ZBGW.

g D 3 There are two independent genus 3 Pixton relations expressing �2 and �2
1

as
sums of boundary terms in M3. The relations correspond to sums over stable graphs
in M3; hence, they contain many terms. In place of these, we use the equivalent
relations discovered earlier in [34; 35], which push forward to relations in M3. In
M3;1, we can write  3

1
as a sum of boundary terms, which yieldsZ

M3;1

‚3;1 � 
2
1

D

Z
M3;1

��‚3 � 
3
1

D
41
21
�

Z
M2;1

‚2;1 � 1 �

Z
M1;1

‚1;1C
5

42
�

Z
M2;2

‚2;2 � 1

�
1

105
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �
1

jAutj
C

11
70
�

Z
M1;2

‚1;2 �

Z
M1;2

‚1;2 �
1

jAutj

�
4

35
�

Z
M1;1

‚1;1 �

Z
M1;2

‚1;2 �

Z
M1;1

‚1;1�
1

105
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �
1

jAutj

�
1

1260
�

Z
M1;4

‚1;4 �
1

jAutj

Geometry & Topology, Volume 27 (2023)



A new cohomology class on the moduli space of curves 2757

D
41
21
�

3
128
�
1
8
C

5
42
�

9
128
�

1
105
�
1
8
�
2
8
�
1
2
C

11
70
�
1
8
�
1
8
�
1
2
�

4
35
�
1
8
�
1
8
�
1
8
�

1
105
�
1
8
�
2
8
�
1
2
�

1
1260
�
6
8
�
1
4

D
15

1024
:

In M3;2, we can write  2
1
 2� 1 

2
2

as a sum of boundary terms, which yields

7

Z
M3;2

‚3;2 �. 
2
1 � 1 2/

D 7

Z
M3;2

��‚3;1 �. 
2
1 2� 1 

2
2 /

D�
16
3
�

Z
M2;2

‚2;2 � 2 �

Z
M1;1

‚1;1�5

Z
M2;2

‚2;2 � 1 �

Z
M1;1

‚1;1

�
40
3
�

Z
M2;1

‚2;1 � 1 �

Z
M1;2

‚1;2�
1
6
�

Z
M2;3

‚2;3 � 1�

Z
M2;3

‚2;3 � 1 �
1

jAutj

�
1

15
�

Z
M1;1

‚1;1 �

Z
M1;4

‚1;4 �
1

jAutj
�

9
10
�

Z
M1;3

‚1;3 �

Z
M1;2

‚1;2

�
1

15
�

Z
M1;1

‚1;1 �

Z
M1;4

‚1;4 �
1

jAutj
C

4
15
�

Z
M1;2

‚1;2 �

Z
M1;3

‚1;3 �
1

jAutj

�
4
5
�

Z
M1;1

‚1;1 �

Z
M1;3

‚1;3 �

Z
M1;1

‚1;1

C
16
5
�

Z
M1;1

‚1;1 �

Z
M1;2

‚1;2 �

Z
M1;2

‚1;2�
1

180
�

Z
M1;5

‚1;5 �
1

jAutj

D �
16
3
�

9
128
�

1
8
�5 9

128
�

1
8
�

40
3
�

3
128
�

1
8
�

1
6
�

36
128
�

36
128
�

1
2

�
1

15
�
1
8
�
6
8
�
1
2
�

9
10
�
2
8
�
1
8
�

1
15
�
1
8
�
6
8
�
1
2
C

4
15
�
1
8
�
2
8
�
1
2
�

4
5
�
1
8
�
2
8
�
1
8
C

16
5
�
1
8
�
1
8
�
1
8
�

1
180
�
24
8
�
1
4

D�
357

1024
:

Hence, Z
M3;2

‚3;2 � 1 2 D

Z
M3;2

‚3;2 � 
2
1 C

1
7

357
1024
D

75
1024
C

51
1024
D

63
512
;

where
R
M3;2

‚3;2 � 
2
1
D

75
1024

is obtained from
R
M3;1

‚3;1 � 
2
1
D

15
1024

via the dilaton
equation. The dilaton equation then yieldsZ

M3;n

‚3;n � 
2
1 D

75
1024
�

1
5!
.nC 3/! and

Z
M3;n

‚3;n � 1 2 D
63

512
�

1
5!
.nC 3/!;

which agree with the terms „2 �
15

1024
t2=.1� t0/

5C„2 �
63

1024
t2
1
=.1� t0/

6 in log ZBGW.
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We determine the image of the 2–primary tmf Hurewicz homomorphism, where tmf is
the spectrum of topological modular forms. We do this by lifting elements of tmf� to
the homotopy groups of the generalized Moore spectrum M.8; v8

1/ using a modified
form of the Adams spectral sequence and the tmf resolution, and then proving the
existence of a v32

2 –self-map on M.8; v8
1/ to generate 192–periodic families in the
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1 Introduction

The Hurewicz theorem implies that the Hurewicz homomorphism

h W ��.S
n/! zH�.S

n
IZ/

is an isomorphism for �D n, implying the well-known result that the 0th stable stem is
given by

�s
0 Š Z:
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Adams [1] studied the Hurewicz homomorphism for real K–theory

hKO W �
s
�! ��KOD KO��.pt/:

The computation of the real K–theory of a point (the homotopy groups of the spectrum
KO representing real K–theory) is a consequence of the Bott periodicity theorem [11]:
these groups are given by the following 8–fold periodic pattern:

n mod 8 0 1 2 3 4 5 6 7
�nKO Z Z=2 Z=2 0 Z 0 0 0

The map hKO is an isomorphism in degree 0, and Adams showed that hKO is surjective
in degrees � � 1; 2 mod 8. He did this by constructing what is now known as a
v1–self-map

v4
1 W†

8M.2/!M.2/;

where M.2/ denotes the mod 2 Moore spectrum, and considering the projections

�8jC1C� 2 �
s
8jC1C�

of the elements

.1.1/ �� � v
4j
1
z� 2 �8jC2C�M.2/

to the top cell of M.2/. Here z� denotes a lift of � 2 �s
1

to the top cell of M.2/ and
� 2 f0; 1g. Because we have

�s
�˝QD 0

for �> 0, the homomorphism hKO is necessarily trivial in positive degrees �� 0 mod 4.

Goerss, Hopkins and Miller constructed the spectrum tmf of topological modular
forms [16] as a higher analog of the real K–theory spectrum.1 The homotopy groups
of tmf are 576–periodic. The goal of this paper is to determine the image of the 2–local
tmf–Hurewicz homomorphism

htmf W �
s
�! ��tmf.2/:

The 3–primary Hurewicz image has recently been determined by Belmont and Shi-
momura [9]. Since ��tmf.p/ has no torsion for p � 5, the p–primary tmf–Hurewicz
image is trivial in positive degrees for these primes. Henceforth, everything in this
paper is implicitly 2–local.

2–Locally, the homotopy groups of tmf are merely 192–periodic. These homotopy
groups were originally computed by Hopkins and Mahowald [19] (see also Bauer [3])

1Here, tmf denotes connective topological modular forms.

Geometry & Topology, Volume 27 (2023)
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Figure 1: The homotopy groups of tmf.

using the descent spectral sequence

Exts;t
�ell.A

ell;Aell/) �t�s.tmf/;

where .Aell; �ell/ is the elliptic curve Hopf algebroid. These homotopy groups are
displayed in Figure 1. In this figure:
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� A series of i black dots joined by vertical lines corresponds to a factor of Z=2i

which is annihilated by some power of c4.

� An open circle corresponds to a factor of Z=2 which is not annihilated by a
power of c4.

� A box indicates a factor of Z.2/ which is not annihilated by a power of c4.

� The nonvertical lines indicate multiplication by � and �.

� A pattern with a dotted box around it and an arrow emanating from the right
face indicates this pattern continues indefinitely to the right by c4–multiplication
(ie tensor the pattern with Z.2/Œc4�).

� The vertical arrangement of the chart is arbitrary.

The homotopy groups ��tmf are given by tensoring the pattern depicted in Figure 1
with Z.2/Œ�

8�, where �8 2 �192tmf. Our choice of names for generators in Figure 1 is
motivated by the fact that the elements

�; �; �; �; x�; q; u; w

in the stable stems map to the corresponding elements in ��tmf under the tmf–Hurewicz
homomorphism. The other indecomposable multiplicative generators are named based
on the names of elements which detect them in the E2–term of the descent spectral
sequence. There is thus some ambiguity in the naming of some of these elements
coming from the filtration associated to the descent spectral sequence.

For definiteness we fix c4 2 �8tmf to be the unique element detected by c4 in the
descent spectral sequence of Adams filtration 4. Note that the c4–torsion in ��tmf does
not have c4–exponent 1. Indeed, on c4–torsion classes, multiplication by c4 is equal
to multiplication by �— see Bruner and Rognes [14, Section 9.5] — so, for example,
c4� D �� ¤ 0. However, all c4–torsion has c4–exponent 2; see loc. cit. and Behrens,
Hill, Hopkins and Mahowald [7, Proposition 6.1].

The main theorem of this paper is the following:

Theorem 1.2 The tmf–Hurewicz image is the subgroup of ��tmf generated by

(1) all the elements of ��3.tmf/,

(2) the elements ci
4
� and ci

4
�2,

(3) all the elements of ��tmf annihilated by a power of c4 except those in �24kC3tmf.

Geometry & Topology, Volume 27 (2023)



The 2–primary Hurewicz image of tmf 2767

Remark 1.3 The reader will note from Figure 1 that the subgroup of ��.tmf/ generated
by the elements of type (3) above form a self-dual pattern centered in dimension 85.
This is discussed in [14, Chapter 10].

Besides representing an advance in our understanding of v2–periodic homotopy at
the prime 2, Theorem 1.2 also has applications to smooth structures on spheres, as
explained in [7]. Specifically, Hill, Hopkins and the first two authors consider the
following question:

Question 1.4 In which dimensions n do there exist exotic smooth structures on the
n–sphere?

Such spheres with exotic smooth structures are called exotic spheres. The work of
Kervaire and Milnor [26] relates the existence of exotic spheres to the triviality of the
Kervaire homomorphism

�s
4kC2! Z=2

and the nontriviality of the cokernel of the J–homomorphism

J W �nSO! �s
n:

Specifically, they prove that exotic spheres exist in dimensions n for which:

nD 4k n� 8 and there exists a nontrivial element of coker J.

nD 4kC 1 There exists a nontrivial element of coker J, or there does not exist an
element of Kervaire invariant 1 in dimension nC 1.

nD 4kC 2 There exists a nontrivial element of coker J with Kervaire invariant 0.

nD 4kC 3 n� 7.

Combining this with the work of Moise [35], Browder [12], Barratt, Jones and Ma-
howald [2], Hill, Hopkins and Ravenel [18], and Wang and Xu [36], Question 1.4 has
been answered completely for n odd:

The only odd dimensions n for which there do not exist exotic spheres are
nD 1, 3, 5 and 61.

For n even, the case of nD 4 is unresolved. For other even n, by the previous discussion,
the question boils down to the existence of nontrivial elements of coker J (with Kervaire
invariant 0). It is shown in [7]:

The only even dimensions 4¤ n< 140 for which there do not exist exotic
spheres are nD 2, 6, 12 and 56.

Geometry & Topology, Volume 27 (2023)
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In the case of nD 8kC2� 10, Adams’ elements �8kC2 with nontrivial KO–Hurewicz
image are not in the image of J and have trivial Kervaire invariant. It thus follows that:

There exist exotic spheres in all dimensions nD 8kC 2� 10.

As is explained in [7], many of the 192–periodic families of elements of Theorem 1.2
also are not in the image of J and have trivial Kervaire invariant. Theorem 1.2 therefore
has the following corollary:2

Corollary 1.5 There exist exotic spheres in the following congruence classes of even
dimensions n� 8 modulo 192:

2; 6; 8; 10; 14; 18; 20; 22; 26; 28; 32; 34; 40; 42; 46; 50; 52; 54; 58; 60; 66; 68;

70; 74; 80; 82; 90; 98; 100; 102; 104; 106; 110; 114; 116; 118; 122; 124; 128;

130; 136; 138; 142; 146; 148; 150; 154; 156; 162; 164; 170; 178; 186:

(This accounts for over half of the even dimensions.)

We will prove Theorem 1.2 by first showing (Theorem 6.1) that the subgroup of ��tmf
described by Theorem 1.2 is contained in the Hurewicz image. This will be a relatively
straightforward consequence of some v1–periodic computations. The elements of
Theorem 1.2(1) are already established to be in the Hurewicz image by the preceding
discussion, and the elements of (2) are in the Hurewicz image because they are the
images of the elements �8iCj . We are left to show that the elements of type (3) lift
to �s
�. This is the main task of this paper.

In [14], Bruner and Rognes give a systematic and careful study of the Adams spectral
sequence for tmf, and in particular they have independently established the Hurewicz
image in many low-dimensional cases. Specifically, they prove Theorem 1.2 for degrees
� � 101 and also show that wx�3, w2x�, wx�4, 2�4�x� and 4�6�2 (in dimensions 105,
110, 125, 130 and 150) are in the Hurewicz image. Also, they use a different technique
(Anderson duality) to prove that the Hurewicz image is contained in the subgroup
of tmf� described in Theorem 1.2.

Our strategy to lift elements from ��tmf to �s
� is to use the methods of [7]. We

summarize that strategy here. We recall the following from [7, Proposition 6.1]:

2In fact, the v32
2

–self-map of Theorem 1.8 which is used to construct the periodic families of Theorem 1.2
also immediately implies the existence of some elements not in the image of the J–homomorphism which
are in the kernel of the tmf–Hurewicz homomorphism, such as the beta elements ˇ32k=8. However, we
will not concern ourselves here with the few additional dimensions such considerations add to the list of
Corollary 1.5.
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Proposition 1.6 [7] Every c4–torsion element x 2��tmf is 8–torsion and c2
4

–torsion.

Let M.2i/ denote the cofiber of 2i , and let M.2i ; v
j
1
/ denote the cofiber of a v1–self-

map (see Davis and Mahowald [15, Proposition 2.3])

v
j
1
W†2j M.2i/!M.2i/:

Corollary 1.7 Every c4–torsion element x 2 ��.tmf/ lifts to an element

Qx 2 tmf�C18M.8; v8
1/

so that the projection to the top cell maps Qx to x.

Given a c4–torsion element x 2 �<192.tmf/, Proposition 1.6 implies it lifts to an
element

Qx 2 tmf�M.8; v8
1/

so that the projection to the top cell maps Qx to x. We will then show that Qx lifts to an
element

Qy 2 ��M.8; v8
1/:

Then the image
y 2 �s

�

given by projecting Qy to the top cell is an element whose image under the tmf–Hurewicz
homomorphism is x.

Every c4–torsion element x0 2 ��192tmf is of the form v32k
2

x for x 2 �<192tmf. We
will prove the following theorem:

Theorem 1.8 There exists a v32
2

–self-map

v32
2 W†

192M.8; v8
1/!M.8; v8

1/:

If Qx 2 tmf�M.8; v8
1
/ is a lift of x, and Qy 2��M.8; v8

1
/ is a lift of Qx, as in the discussion

above, then the resulting element

v32k
2 Qy 2 ��M.8; v8

1/;

obtained by composing with the k–fold iterate of the v32
2

–self-map, projects to an
element y0 2 �s

� which maps to x0 under the tmf–Hurewicz homomorphism.

As in [7], the analysis above rests on a systematic analysis of the homotopy groups
��M.8; v8

1
/. This will be based on computations using the modified Adams spectral

sequence (MASS). The E2–term of the modified Adams spectral sequence will be
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analyzed in a region near its vanishing line by means of another spectral sequence, the
algebraic tmf resolution.

The work of [7] was hampered by the fact that all of the algebraic tmf resolution
computations were performed on the level of the E1–term of the algebraic tmf resolution.
In this paper, we will show that the weight spectral sequence, used in the context of
bo resolutions by Lellmann and Mahowald [28] and Beaudry, Behrens, Bhattacharya,
Culver and Xu [4], can be used to analyze the E2–term of the algebraic tmf resolution,
greatly simplifying the computations.

Conventions
� Homology will be implicitly taken with mod 2 coefficients.

� We let A� denote the dual Steenrod algebra, A==A.2/� denote the dual of the
Hopf algebra quotient A==A.2/, and, for an A�–comodule M (or more generally
an object of the stable homotopy category of A�–comodules; see Hovey [21]),
we let

Exts;t
A�
.M /

denote the group Exts;t
A�
.F2;M /.

� Given a Hopf algebroid .B; �/ and a comodule M, we will let C �
�
.M / denote

the associated normalized cobar complex.

� For a spectrum E, we let E� denote its homotopy groups ��E.

Outline of the paper

In Section 2, we recall the modified Adams spectral sequence (MASS), which takes
the form

massE
�;�
2
D ExtA�.H�X ˝H.8; v8

1//) ��.X ^M.8; v8
1//

for a certain object H.8; v8
1
/ in the stable homotopy category of A�–comodules. We

recall how the E2–term of the MASS can be studied using the algebraic tmf resolution,
which is a spectral sequence that takes the form

tmf
algE1.M /�;�;�) Ext�;�

A�
.M /

for any M in the stable category of A�–comodules. We then recall how the E1–term
of the algebraic tmf resolution decomposes as a sum of Ext groups involving tensor
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powers of bo Brown–Gitler comodules, and also summarize an inductive method to
compute these Ext groups.

In Section 3, we study the d1–differential in the algebraic tmf resolution for F2, and
introduce a tool, the weight spectral sequence (WSS)

tmf
algE1 D

wssE0)
tmf
algE2;

which serves as an analog of the May spectral sequence and converges to the E2–term of
the algebraic tmf resolution. The E0–page of the v0–localized weight spectral sequence
is identified with the cobar complex of a primitively generated Hopf algebra, and this
allows us to give “names” to the v0–torsion-free classes of tmf

algE1. We include many
charts of summands of tmf

algE1.F2/ corresponding to tensor powers of bo Brown–Gitler
comodules which illustrate this naming convention, and provide the essential data for
the rest of the computations in this paper. Finally, we study the g–local WSS3 using
recent work of Bhattacharya, Bobkova and Thomas [10], and show that many classes
are killed in the g–local WSS by d1–differentials. This is the key fact we will use to
systematically remove obstructions for lifting classes from tmf�X to ��X.

In Section 4 we study the structure of the MASS for M.8; v8
1
/. We recall the structure

of the MASS for tmf�M.8; v8
1
/, and we explain how to adapt the Ext charts of Section 3

to give the corresponding computations of tmf
algE1.H.8; v

8
1
//. We then explain how to

translate the computations of the g–localized algebraic tmf resolution of Section 3 to
the case of H.8; v8

1
/.

Section 5 is dedicated to the proof of Theorem 1.8. We recall the work of Davis,
Mahowald and Rezk, who discovered topological attaching maps between the first two
bo Brown–Gitler spectra which constitute tmf^ tmf, which give extra differentials in
the Adams spectral sequence of tmf^ tmf that kill some g–torsion-free classes. We
then prove a technical lemma (Lemma 5.5) which lifts differentials from the MASS
for tmfs

^M.8; v8
1
/ to the MASS for M.8; v8

1
/. We prove Theorem 1.8 by listing all

elements in tmf
algE1.H.8; v

8
1
// which could detect a nontrivial differential dr .v

32
2
/ in the

MASS for M.8; v8
1
/, and then we systematically eliminate these possibilities. Most of

these classes are g–torsion-free, and are eliminated in the WSS or by using Lemma 5.5.

In Section 6, we explain how v1–periodic computations give an upper bound on the
Hurewicz image.

3Here, g 2 Ext4;24
A�

.F2/ is the element corresponding to the element h4
2;1

in the May spectral sequence
which detects x� in the Adams spectral sequence for the sphere.
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Section 7 is devoted to showing this upper bound is sharp, by producing lifts of the
remaining elements of ��tmf to the sphere. We begin by identifying multiplicative
generators of the Hurewicz image in dimensions less than 192, so that it suffices for us to
lift these. We then lift these elements by producing elements in the MASS for M.8; v8

1
/

which we show are permanent cycles, and detect elements of ��M.8; v8
1
/ which

project to the desired elements on the top cell. These elements are then propagated to
v32

2
–periodic families using the self-map, thus proving Theorem 1.2 in all dimensions.
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2 Preliminaries

The techniques and methods of this paper closely follow those of [7]. In this section
we recall some spectral sequences used in that paper.

The modified Adams spectral sequence

Our computations of ��M.8; v8
1
/ and tmf�M.8; v8

1
/ will be performed using the

modified Adams spectral sequence (MASS). We refer the reader to [7, Section 6] for a
complete account of the construction of the MASS and summarize the form it takes here.
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Let StA� denote Hovey’s stable homotopy category of A�–comodules [21]. For objects
M and N of StA� , we define the group

Exts;t
A�
.M;N /D StA�.†

tM;N Œs�/

as a group of maps in the stable homotopy category. Here†tM denotes the t–fold shift
with respect to the internal grading of M, and N Œs� denotes the s–fold shift with respect
to the triangulated structure of StA� . This reduces to the usual definition of ExtA�
when M and N are A�–comodules.

Define H.8/ to be the cofiber of the map

.2.1/ †3F2Œ�3�
h3

0
�! F2

in the stable homotopy category of A�–comodules. Define H.8; v8
1
/ 2 StA� to be the

cofiber

.2.2/ †24H.8/Œ�8�
v8

1
�!H.8/!H.8; v8

1/:

For a spectrum X, the MASS takes the form

massE
s;t
2
.M.8; v8

1/^X /D Exts;t
A�
.H.8; v8

1/˝H�X /) �t�sM.8; v8
1/^X:

Recall the following from [7, Proposition 7.1]:

Proposition 2.3 M.8; v8
1
/ is a weak homotopy ring spectrum.4

It follows that, if X is a ring spectrum, the MASS above is a spectral sequence of
(nonassociative) algebras.

We recall the following key theorem of Mathew:

Theorem 2.4 (Mathew [34]) We have

H�tmfŠA==A.2/�

as an algebra in A�–comodules.

Taking X D tmf^Y for some Y and applying a change-of-rings theorem, the MASS
takes the form

massE
s;t
2
.tmf^M.8; v8

1/^Y /DExts;t
A.2/�

.H.8; v8
1/˝H�Y /) tmft�s.M.8; v8

1/^Y /:

4By this, we mean a spectrum with a possibly nonassociative product and a two-sided unit in the stable
homotopy category.
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The algebraic tmf resolution

The E2–page of the MASS for M.8; v8
1
/ will be analyzed using an algebraic analog of

the tmf resolution (as in [7, Section 6]).

The (topological) tmf resolution of a space X is the Adams spectral sequence based on
the spectrum tmf:

tmfE
s;t
1
D �t tmf^ tmfs

^X ) �t�sX:

Here, tmf is the cofiber of the unit

S ! tmf! tmf

and tmfs D tmf^s denotes its s–fold smash power.

The algebraic tmf resolution is an algebraic analog. Namely, let M be an object of the
stable homotopy category of A�–comodules and let A==A.2/� denote the cokernel of
the unit

0! F2!A==A.2/�!A==A.2/�! 0

(note that H�tmf D A==A.2/�). The algebraic tmf resolution of M is a spectral
sequence of the form

tmf
algE

s;t;n
1

.M /D Exts;t
A.2/�

.A==A.2/˝n
� ˝M /) ExtsCn;t

A�
.M /:

bo Brown–Gitler comodules

We recall some material on bo Brown–Gitler comodules. These are A�–comodules
which are the homology of the bo Brown–Gitler spectra constructed by [17]. Mahowald
used integral Brown–Gitler spectra to analyze the bo resolution [30]. The bo Brown–
Gitler comodules play a similar role in the algebraic tmf resolution [6; 31; 15; 8; 7].

Endow the mod 2 homology of the connective real K–theory spectrum

H�.bo/ŠA==A.1/� D F2Œ�
4
1 ; �

2
2 ; �3; : : : �

with a multiplicative grading by declaring the weight of �i to be

.2.5/ wt.�i/D 2i�1:

The i th bo Brown–Gitler comodule is the subcomodule

boi D F4iA==A.1/� �A==A.1/�
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spanned by monomials of weight less than or equal to 4i . It is isomorphic as an
A�–comodule to the homology of the i th bo Brown–Gitler spectrum boi .

The analysis of the E1–page of the algebraic tmf resolution is simplified via the
decomposition of A.2/�–comodules

A==A.2/� Š
M
i>0

†8iboi

of [6, Corollary 5.5]. We therefore have a decomposition of the E1–page of the
algebraic tmf resolution for M given by

.2.6/ tmf
algE

s;t;n
1

.M /Š
M

i1;:::;in>0

Exts;t
A.2/�

.†8.i1C���Cin/boi1
˝ � � �˝ boin

˝M /:

For any M, the computation of

Exts;t
A.2/�

.†8.i1C���Cin/boi1
˝ � � �˝ boin

˝M /

can be inductively determined from ExtA.2/�.bo˝k
1
˝M / by means of a set of exact

sequences of A.2/�–comodules, which relate the boi [6, Section 7] (see also [8]),

0!†8j boj ! bo2j !A.2/==A.1/�˝ tmfj�1!†8jC9boj�1! 0;.2.7/

0!†8j boj ˝ bo1! bo2jC1!A.2/==A.1/�˝ tmfj�1! 0:.2.8/

Here tmfj is the j th tmf–Brown–Gitler comodule — it is the subcomodule of

H�.tmf/ŠA==A.2/� D F2Œ�
8
1 ; �

4
2 ; �

2
3 ; �4; : : : �

spanned by monomials of weight less than or equal to 8j.5

The exact sequences (2.7) and (2.8) can be reexpressed as resolutions in the stable
homotopy category of A.2/�–comodules

bo2j !A.2/==A.1/�˝ tmfj�1!†8jC9boj�1!†8j boj Œ2�;

bo2jC1!A.2/==A.1/�˝ tmfj�1!†8j boj ˝ bo1Œ1�;

5Technically speaking, as is addressed in [6, Section 7], the comodules A.2/==A.1/�˝tmfj�1 in the above
exact sequences have to be given a slightly different A.2/�–comodule structure from the standard one
arising from the tensor product. However, this different comodule structure ends up being Ext–isomorphic
to the standard one. As we are only interested in Ext groups, the reader can safely ignore this subtlety.
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which give rise to spectral sequences

.2.9/

E
n;s;t
1
D

8̂̂̂<̂
ˆ̂:

Exts;t
A.1/�

.tmfj�1˝M /; nD 0;

Exts;t
A.2/�

.†8jC9boj�1˝M Œ�1�/; nD 1;

Exts;t
A.2/�

.†8j boj ˝M /; nD 2;

0; n> 2

9>>>=>>>;) Exts;t
A.2/�

.bo2j ˝M /;

E
n;s;t
1
D

8̂<̂
:

Exts;t
A.1/�

.tmfj�1˝M /; nD 0;

Exts;t
A.2/�

.†8j boj ˝ bo1˝M /; nD 1;

0; n> 1

9>=>;) Exts;t
A.2/�

.bo2jC1˝M /:

These spectral sequences have been observed to collapse in low degrees (see [8]) but it
is not known if they collapse in general. They inductively build ExtA.2/�.boi ˝M /

out of ExtA.2/�.bo˝k
1
˝M / and ExtA.1/�.tmfj ˝M /.

3 Analysis of the algebraic tmf resolution

In this section we will compute the d1–differential in the algebraic tmf resolution, and
will introduce a tool, the weight spectral sequence (WSS), which is a variant of the May
spectral sequence that converges to the E2–page of the algebraic tmf resolution.

The d1–differential in the algebraic tmf resolution

Our approach to understanding the d1–differential in the algebraic tmf resolution will
be to compute it on v0–torsion-free classes, and then infer its effect on v0–torsion
classes by means of linearity over ExtA�.F2/.

Consider the algebraic BPh2i and algebraic BP resolutions
BPh2i

algEs;t;n
D Exts;t

EŒ2��
.A==EŒ2�˝n

� /) ExtsCn;t
A�

.F2/;

BP
algEs;t;n

D Exts;t
E�
.A==E˝n

� / ) ExtsCn;t
A�

.F2/:

Here EŒ2�DEŒQ0;Q1;Q2� and E DEŒQ0;Q1;Q2; : : : � denote subalgebras of the
Steenrod algebra, where Qi are the Milnor generators dual to �iC1 2A�.

The d1–differential in the algebraic tmf resolution may be studied by means of the
zigzag

.3.1/ tmf
algE

�;�;�
1

!
BPh2i

algE
�;�;�
1

 
BP
algE

�;�;�
1

:

Note that
BP
algE

�;�;n
1

Š F2Œv0; v1; v2; : : : �˝F2Œ�
2
1
; �2

2
; : : : �˝n;
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where F2Œ�
2
1
; �2

2
; : : : � denotes the cokernel of the unit

F2! F2Œ�
2
1 ; �

2
2 ; : : : �:

The Adams spectral sequences

BP
algE

n;�;�
1

D
ass
�;�E2.BP^BPn/) C n

BP�BP.BP�/

collapse, where C �BP�BP is the normalized cobar complex for BP�BP, and

�2
i 2A==E� detects ti 2 BP�BP:

We conclude:

Lemma 3.2 The d1–differential in the algebraic BP resolution is the associated graded
of the differential in the cobar complex for BP�BP with respect to Adams filtration.

The weight spectral sequence

Endow the normalized cobar complex

C �.A�;A�;F2/

with a decreasing filtration by weight by defining

wt.a0Œa1 j � � � j as �/D wt.a1/C � � �Cwt.as/:

Applying ExtA�.F2;�/ to the resulting filtered A�–comodule produces a variant of
the May spectral sequence, which we will call the modified May spectral sequence
(MMSS),6

.3.3/ mmssE
w;s;t
0
D C �

E0A�
.F2/) Exts;t

A�
.F2/:

Since E0A� is primitively generated, we have

mmssE
�;�
1
D F2Œhi;j W i � 1; j � 0�:

The map tmf!H induces an inclusion

ˆ WH�.tmf^ tmfn/ ,!H�.H ^H n/Š C n.A�;A�;F2/:

Under this inclusion, the weight filtration restricts to a decreasing filtration on

H�.tmf^ tmfn/ŠA==A.2/�˝A==A.2/˝n
�

6The authors of [29] construct a similar modified May spectral sequence, but with a slightly different
filtration.
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by A�–subcomodules. Because the weights of all of the generators of A==A.2/� are
divisible by 8, we actually work with weights divided by 8. Applying ExtA.2/�.F2;�/

and taking cohomology, we get the weight spectral sequence (WSS)
wssE

w;n;s;t
0

D

M
i1C���CinDw

Exts;t
A.2/�

.boi1
˝ � � �˝ boin

/) tmf
algE

n;s;t
2

:

The WSS serves as an analog of the May spectral sequence for the algebraic tmf
resolution.

The map ˆ above induces a map of spectral sequences

.3.4/

wssE
w;n;0;t
0

+3

ˆ�
��

tmf
algE

n;0;t
0

ˆ�
��

mmssE
8w;n;t
0

// Extn;t
A�
.F2/

The v0–localized algebraic tmf resolution

Observe that we have

.3.5/ v�1
0 ExtA.2/�.F2/D F2Œv

˙
0 ; v

4
1 ; v

2
2 �:

Note that c4; c6 2 .tmf�/Q are detected in the v0–localized ASS by v4
1

and v3
0
v2

2
,

respectively.

We recall from [8] that

.3.6/ v�1
0 Ext�;�

A.2/�
.A==A.2/�/D F2Œv

˙
0 ; v

4
1 ; v

2
2 �Œ�

8
1 ; �

4
2 �

and that there is an isomorphism

.3.7/ v�1
0 ExtA.2/�.boi/Š F2Œv

˙
0 ; v

4
1 ; v

2
2 �f�

8i0

1 �4i00

2 giDi0Ci00 :

We will now compute the localized E1–page v�1
0

wssE1. The following is immediate
from the computation of the cobar differential (modulo terms of higher Adams filtration)
on the elements �8

1
and �4

2
, using (3.6), (3.7) and (3.1):

Proposition 3.8 There is an isomorphism of differential graded algebras

v�1
0

wssE
�;n;�;�
0

Š F2Œv
˙
0 ; v

4
1 ; v

2
2 �˝C n

F2Œ�
8
1
;�4

2
�
;

where F2Œ�
8
1
; �4

2
� is regarded as a primitively generated Hopf algebra.

Corollary 3.9 There is an isomorphism

v�1
0

wssE1 D F2Œv
˙
0 ; v

4
1 ; v

2
2 �˝F2Œh1;3; h1;4; : : : ; h2;2; h2;3; : : : �:
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Charts

For the convenience of the reader we include some charts of ExtA.2/�.bok
1
/ for 0�k�3

as well as ExtA.2/�.bo2/.

ExtA.2/�
.F2/ (see Figure 2) All the elements are c4D v

4
1

–periodic and v8
2

–periodic.
Exactly one v4

1
–multiple of each element is displayed with the � replaced by a ı.

Observe the wedge pattern beginning in t � s D 35. This pattern is infinite, propagated
horizontally by h2;1–multiplication and vertically by v1–multiplication. Here h2;1 is
the name of the generator in the May spectral sequence of bidegree .t � s; s/D .5; 1/,
and h4

2;1
D g.

ExtA.2/�
.bo˝k

1
/ for kD 1; 2 ; 3 (Figure 3) Every element is v8

2
–periodic. However,

unlike ExtA.2/�.F2/, not every element of these Ext groups is v4
1

–periodic. Rather, it is
the case that an element x 2 ExtA.2/�.bo˝k

1
/ either satisfies v4

1
x D 0 or is v4

1
–periodic.

The v4
1

–periodic elements fit into families which look like shifted and truncated copies
of ExtA.1/�.F2/ and are labeled with a ı. We have only included the beginning of
these v4

1
–periodic patterns in the chart. The other generators are labeled with a �.

A indicates a polynomial algebra F2Œh2;1�.

ExtA.2/�
.bo2/ (Figure 4) Via the spectral sequence (2.9), this Ext chart is assembled

out of ExtA.1/�.F2/, ExtA.2/�.†
8bo1/ and ExtA.2/�.†

17F2Œ�1�/.

h2 ;1–towers

Our computations of the MASS for M.8; v8
1
/ will rely on a detailed understanding of

this spectral sequence near its vanishing line. Since M.8; v8
1
/ is a type 2 complex, the

Hopkins–Smith periodicity theorem [20] implies that the E1–page of this MASS has a
vanishing line of slope 1=jv2j D

1
6

. However, g D h4
2;1

is not nilpotent in the modified
Ext groups ExtA�.H.8; v

8
1
//, and h2;1–multiplication has slope 1

5
. The goal of this

subsection is to show that many of the h2;1–towers in the E1–page of the algebraic tmf
resolution actually kill each other off by the E2–page of the algebraic tmf resolution.
We will then identify specific h2;1–periodic elements of ExtA�.F2/ that some of these
remaining h2;1–towers detect.

Consider the quotient Hopf algebra C� WD F2Œ�2�=.�
4
2
/ of A.2/�, with

Ext�;�
C�
.F2/D F2Œv1; h2;1�:
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Lemma 3.10 Let C.v8
2
/ be the cofiber of the map

v8
2 W†

56F2Œ�8�! F2

in the stable homotopy category StA.2/� . For any M 2 StA.2/� there is an isomorphism

g�1 ExtA.2/�.M ˝C.v8
2//Š h�1

2;1 ExtC�.M /:

Proof Since the element v8
2
2 ExtA.2/�.F2/ maps to zero in ExtC�.F2/, it follows that

there is a factorization
F2

//

��

A.2/==C�

C.v8
2
/

99

in StA.2/� . Explicit computation reveals

g�1 ExtA.2/�.F2/D F2Œv
8
2 ; v1; h

˙
2;1�

and it follows that the map

g�1C.v8
2/! g�1A.2/==C�

induces an isomorphism on ExtA.2/� , and is hence an equivalence. The result follows.

Corollary 3.11 For any M 2 StA.2/� , there is a v8
2

–Bockstein spectral sequence

h�1
2;1 ExtC�.M /˝F2Œv

8
2 �) g�1 ExtA.2/�.M /:

Bhattacharya, Bobkova and Thomas [10] computed the P1
2

–Margolis homology of
the tmf resolution, and in the process computed the structure of A==A.2/˝n

� as C�–
comodules. From this one can read off the Ext groups

h�1
2;1 ExtC�.A==A.2/

˝n
� /;

which in turn determines the g–local algebraic tmf resolution by Corollary 3.11 (the
spectral sequence in this corollary will collapse in the cases we consider it).

To state the results of [10], we will need to introduce some notation. The coaction
of F2Œ�2�=�

4
2

is encoded in the dual action of the algebra EŒQ1;P
1
2
� on A==A.2/˝n

� .
Define elements

xi;j D 1˝ � � �˝ 1˝ �iC3„ƒ‚…
j

˝1˝ � � �˝ 1; ti;j D 1˝ � � �˝ 1˝ �4
iC1„ƒ‚…
j

˝1˝ � � �˝ 1

in A==A.2/˝n
� . The weight filtration on A==A.2/� induces a multiweight filtration

on A==A.2/˝n
� indexed by n–tuples of weights. The generators xi;j and ti;j have
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multiweight
.0; : : : ; 0; 2iC2„ƒ‚…

j

; 0; : : : ; 0/:

For sets of multi-indices

I D f.i1; j1/; : : : ; .ik ; jk/g; I 0 D f.i 01; j
0
1/; : : : ; .i

0
k0 ; j

0
k0/g

with I \ I 0 D∅, let
xI tI 0 2A==A.2/�

denote the corresponding monomial. The action of the algebra EŒQ1;P
1
2
� on the

F2–submodule of A==A.2/˝n
� spanned by such monomials is given by

Q1.xI tI 0/D
X
`

xI�f.i`;j`/gtI 0[f.i`;j`/g;

P1
2 .xI tI 0/D

X
`<`0

xI�f.i`;j`/;.i`0 ;j`0 /g
tI 0[f.i`;j`/;.i`0 ;j`0 /g

:

For an ordered set
J D ..i1; j1/; : : : ; .ik ; jk//

of multi-indices, let
jJ j WD k

denote the number of pairs of indices it contains. Define linearly independent sets of
elements

TJ �A==A.2/˝n
�

inductively as follows. Define
T.i;j/ D fxi;j g:

For J as above with jJ j odd, define

TJ ;.i;j/ D fz �xi;j gz2TJ
;

TJ ;.i;j/;.i0;j 0/ D fQ1.z �xi;j /xi0;j 0gz2TJ
[fQ1.z �xi0;j 0/xi;j gz2TJ

:

Let
NJ �A==A.2/˝n

�

denote the F2–subspace with basis

Q1TJ WD fQ1.z/gz2TJ
:

While the set TJ depends on the ordering of J, the subspace NJ does not.

Finally, for a set of pairs of indices

J D f.i1; j1/; : : : ; .ik ; jk/g
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as before, define
xJ tJ WD xi1;j1

ti1;j1
� � �xik ;jk

tik ;jk
:

The following is the main theorem of [10]:7

Theorem 3.12 (Bhattacharya, Bobkova and Thomas) As modules over F2Œh
˙
2;1
; v1�,

we have

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.A==A.2/˝n

� /

D F2Œh
˙
2;1�˝

�
F2Œv1�fxJ 0 tJ 0gJ 0 ˚

M
jJ j odd

NJ fxJ 0 tJ 0gJ\J 0D∅

˚

M
jJ j¤0 even

F2Œv1�=v
2
1 ˝NJ fxJ 0 tJ 0gJ\J 0D∅

�
;

where J and J 0 range over the subsets of

f.i; j / W 1� i; 1� j � ng

and v1 acts trivially on NJ for jJ j odd. The summand

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.boi1

˝ � � �˝ boin
/

is spanned by those monomials of multiweight .8i1; : : : ; 8in/.

In light of Lemma 3.10 and Corollary 3.11, we may refer to elements of the g–local
algebraic tmf resolution as v8j

2
z, where z is an element of the h2;1–localized Ext groups

described in the theorem above.

Lemma 3.13 The WSS d0–differential on the element

x1;1t1;1 2 g�1 Ext�;�
A.2/�

.bo2/

is given by
dwss

0 .x1;1t1;1/DQ1.x1;1x1;2/ 2 ExtA.2/�.bo˝2
1
/:

Proof We use the map of spectral sequences

wssE0! g�1wssE0:

7The main theorem of [10] is a computation of P1
2

–Margolis homology, but the actual content of the paper
is a decomposition of A==A.2/� in the stable module category of EŒQ1;P

1
2
�.

Geometry & Topology, Volume 27 (2023)



2786 Mark Behrens, Mark Mahowald and J D Quigley

By explicit computation of g�1 ExtA.2/�.bo2/, under the map

ExtA.2/�.bo2/! g�1 ExtA.2/�.bo2/

we have
v�1

0 v2
2�

8
1�

4
2 7! h2;1x1;1t1;1:

In the WSS, we have

.3.14/ dwss
0 .v�1

0 v2
2�

8
1�

4
2/D v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �:

Again, by explicit computation of g–local Ext groups, under the map

ExtA.2/�.bo˝2
1
/! g�1 ExtA.2/�.bo˝2

1
/

we have
v�1

0 v2
2 Œ�

8
1 ; �

4
2 � 7! h2;1Q1.x1;1x1;2/:

Proposition 3.15 In g�1wssE0, all of the h2;1–towers coming from ExtA.2/�.bo˝k
1
/

for k � 2 either support nontrivial d0–differentials or are the target of d0–differentials.

Proof By Lemma 3.10 and Theorem 3.12, the h2;1–towers coming from

ExtA.2/�.bo˝k
1
/

are supported by the elements Tf.1;1/;:::;.1;k/g. By Lemma 3.13, the WSS d0 induces a
surjection for k D 2,

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �fx1;1t1;1g� F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝Nf.1;1/;.1;2/g:

For k > 2, observe that

T.1;1/;:::;.1;k/ DQ1.x1;1x1;2/T.1;3/;:::;.1;k/[Q1.x1;2x1;3/Tf.1;1/;.1;4/;:::;.1;k/g:

For k > 2 even, the WSS d0 gives isomorphisms

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝x1;1t1;1Nf.1;2/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v1; v

8
2 �=v

2
1 ˝Q1.x1;1x1;2/Nf.1;3/;:::;.1;k/g;

dwss
0 W F2Œh

˙
2;1; v1; v

8
2 �=v

2
1 ˝x1;2t1;2Nf.1;1/;.1;3/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v1; v

8
2 �=v

2
1 ˝Q1.x1;2x1;3/Nf.1;1/;.1;4/;:::;.1;k/g;

and, for k > 2 odd, the WSS d0 gives isomorphisms

dwss
0 W F2Œh

˙
2;1; v

8
2 �˝x1;1t1;1Nf.1;2/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v

8
2 �˝Q1.x1;1x1;2/Nf.1;3/;:::;.1;k/g;

dwss
0 W F2Œh

˙
2;1; v

8
2 �˝x1;2t1;2Nf.1;1/;.1;3/;:::;.1;k�1/g

Š�! F2Œh
˙
2;1; v

8
2 �˝Q1.x1;2x1;3/Nf.1;1/;.1;4/;:::;.1;k/g:
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We shall denote the elements of the Mahowald–Tangora wedge [32] in ExtA�.F2/ by8

vi
1h

j
2;1

g2; i � 0; j � 0:

Recall that the Mahowald operator

M D hg2; h
3
0;�i

leads to an infinite collection of wedges

M k.vi
1h

j
2;1

g2/ 2 ExtA�.F2/

with nonzero image in

ExtB�.F2/D ExtA.2/�.F2/Œv3�;

where B� is the quotient algebra

.3.16/ B� WD F2Œ�1; �2; �3; �4�=.�
8
1 ; �

4
2 ; �

2
3 ; �

2
4/

of A� [33; 23]. The existence of the element �2g2 2 ExtA�.F2/ gives elements

�2mM k.vi
1h

jC8m
2;1

g2/ 2 ExtA�.F2/:

These elements are all linearly independent, since they project to linearly independent
elements of ExtB�.F2/.

The following proposition gives the elements of ExtA.2/� that some of the remaining
h2;1–towers in ExtA.2/� detect in the algebraic tmf resolution:

Proposition 3.17 The following table lists , for i � 0, m � 0 and j � 4, an A.2/�–
comodule M, an h2;1–tower in g�1 ExtA.2/�.M /, the corresponding h2;1–tower in
ExtA.2/�.M /, and an h2;1–tower in ExtA�.F2/ that it detects in the algebraic tmf
resolution (assuming the latter is nonzero):

M g�1 ExtA.2/�.M / ExtA.2/�.M / ExtA�.F2/

F2 �2mvi
1
h

jC8mC8
2;1

�2mvi
1
h

jC8m
2;1

g2 �2mvi
1
h

jC8m
2;1

g2

bo1 �2mh
jC8mC4
2;1 Q1.x1;1/ �2mh

jC8mC4
2;1 �4

2 �2mh
jC8m
2;1 n

bo2
�2mh

jC8mC6
2;1

Q1.x2;1/ �2mh
jC8mC1
2;1

g.h2;1v
�2
0
v2

2
�16

1
/ �2mh

jC8m
2;1

Q2

�2mviC2
1

h
jC8mC11
2;1

x1;1t1;1 �2mviC2
1

h
jC8mC2
2;1

g2.v�1
0
v2

2
�8

1
�4

2
/ �2mvi

1
h

jC8m
2;1

Mg2

8This notation is slightly misleading, as there are a few wedge elements for which the P operator does not
take the element we are denoting by vi

1
x to the element we are denoting by viC4

1
x, but we justify this

notation by the fact that the wedge elements map to elements with such names in ExtA.2/�.F2/.
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(Note that the notation Q2 in the above table refers to the name of the generator of
Ext7;57C7

A�
.F2/, and not the Milnor generator Q2 2A.)

Proof The classes corresponding to �2mvi
1
hk

2;1
are clear, because they are in the

image of the map
ExtA�.F2/! ExtA.2/�.F2/:

In the case of the classes corresponding to �2mhk
2;1

n and �2mhk
2;1

Q2, we consider
the h

j
2;1

–multiples of n and Q2 2 ExtA�.F2/ for j � 4:

gn; gt; rn; mn; g2n; : : : ; gQ2; gC0; rQ2; mQ2; g2Q2; : : : :

It suffices to show that
n; t; Q2; C0

are detected in the algebraic tmf resolution by

.3.18/ h4
2;1�

4
2 C˛1; h5

2;1�
4
2 C˛2; h6

2;1v
�2
0 v2

2�
16
1 C˛3; h7

2;1v
�2
0 v2

2�
16
1 C˛4;

where g˛i D r˛i Dm˛i D 0.

Examination of a computer calculation of ExtA�.A==A.2/
˝2
� / reveals that none of the

elements n, t , Q2 and C0 are in the image of the map

.3.19/ Ext�;�
A�
.A==A.2/˝2

� /! Ext�C2;�
A�

.F2/:

Since the elements n, t , Q2 and C0 map to zero in ExtA.2/�.F2/, they must therefore
be detected on the 1–line of the algebraic tmf resolution. Examination of the relevant
Ext charts reveals the only possibility is for the elements to be detected by classes of
the form (3.18).

If we consider the class Mg 2ExtA�.F2/, one can check both that it is not in the image
of (3.19), and that the only class in ExtA.2/�.A==A.2/�/ which can detect it is the class

e2
0.v
�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/:

It follows from the multiplicative structure of the wedge and the fact that

ge2
0 D v

2
1h2

2;1g2;

that the elements vi
1
h

j
2;1

Mg2 2 ExtA�.F2/ are detected by

viC2
1

h
jC2
2;1

g2.v�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/

for i � 0 and j � 4.
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4 The MASS for M.8; v8
1
/

In this and the following sections, we shall use the notation

xŒk�

to denote an element of ExtA.2/�.M ˝H.8; v8
1
// detected by an element

x 2 ExtA.2/�.M /

on the k–cell of H.8; v8
1
/ for k 2 f0; 1; 17; 18g.

The MASS for tmf�M.8; v8
1
/

The computation of ExtA.2/�.H.8; v
8
1
// is depicted in Figure 5. In this figure, solid dots

correspond to classes carried by the “0–cell” of H.8; v8
1
/, and open circles correspond

to classes carried by the “1–cell” of H.8; v8
1
/. The large solid circles correspond to

h0–torsion-free classes of ExtA.2/�.F2/ on the 0–cell of H.8; v8
1
/. The classes with

solid boxes around them support h2;1–towers. Everything is v8
2

–periodic.

Figure 6 depicts the differentials in the MASS for tmf^M.8; v8
1
/ through the same

range; the complete computation of this MASS can be similarly accomplished. An
explanation of how to determine these differentials can be found in [7].

The algebraic tmf resolution for H.8; v8
1
/

The following lemma explains that, in our H.8; v8
1
/ computations, we may disregard

terms coming from ExtA.1/� in the sequence of spectral sequences (2.9):

Lemma 4.1 [7, Lemma 8.8] In the algebraic tmf resolution for M DH.8; v8
1
/, the

terms
ExtA.1/�.something/

in (2.9) do not contribute to Exts;t
A�
.H.8; v8

1
// if

s > 1
7
.t � s/C 51

7
:

For n> 0 and i1; : : : ; in > 0, the terms

Exts;t
A.2/�

.boi1
˝ � � �˝ boin

˝H.8; v8
1//

that are the terms in the algebraic tmf resolution for H.8; v8
1
/ are in some sense less

complicated than ExtA.2/�.H.8; v
8
1
//.
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Figure 5: The groups ExtA.2/�.H.8; v
8
1
//.
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Figure 6: The MASS for tmf^M.8; v8
1
/.
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Figure 7: ExtA.2/�.bo1˝H.8; v8
1//.
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Most of the features of these computations can already be seen in the computation
of ExtA.2/�.bo1˝H.8; v8

1
//, which is displayed in Figure 7. This computation was

performed by taking the computation of ExtA.2/�.bo1/ (see for example [6]) and
running the long exact sequences in Ext associated to the cofiber sequences

†3bo1Œ�3�
h3

0
�! bo1! bo1˝H.8/;

†24bo1˝H.8/Œ�8�
v8

1
�! bo1˝H.8/! bo1˝H.8; v8

1/:

In Figure 7, as before, solid dots represent generators carried by the 0–cell of H.8; v8
1
/

and open circles are carried by the 1–cell. Unlike the case of ExtA.2/�.H.8//, there is
v8

1
–torsion in ExtA.2/�.bo1˝H.8//. This results in classes in ExtA.2/�.bo1˝H.8; v8

1
//

carried by the 17–cell and the 18–cell of H.8; v8
1
/, which are represented by solid

triangles and open triangles, respectively. A box around a generator indicates that it
actually carries a copy of F2Œh2;1�. As before, everything is v8

2
–periodic.

One can similarly compute

ExtA.2/�.bo˝k
1
˝H.8; v8

1//

for larger values of k by applying the same method to the corresponding computations
of

ExtA.2/�.bo˝k
1
/

in [6]. We do not bother to record the complete results of these computations for small
values of k, but will freely use them in what follows. The spectral sequences (2.9)
imply these computations control ExtA.2/�.boI /.

h2 ;1–towers in the algebraic tmf resolution for H.8; v8
1
/

Theorem 3.12 has the following implication for the g–local algebraic tmf resolution of
H.8; v8

1
/:

h�1
2;1 Ext�;�

EŒQ1;P
1
2
�
.A==A.2/˝n

� ˝H.8; v8
1//

DF2Œh
˙
2;1�

�̋
F2Œv1�=v

8
1˝H.8/fxJ 0 tJ 0gJ 0˚

M
jJ j odd

NJ ˝H.8; v8
1/fxJ 0 tJ 0gJ\J 0D∅

˚

M
jJ j¤0 even

F2Œv1�=v
2
1 ˝NJ ˝H.8; v8

1/fxJ 0 tJ 0gJ\J 0D∅

�
;

where J and J 0 range over the subsets of

f.i; j / W 1� i; 1� j � ng:
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This leads to the following twist in the analog of Proposition 3.15:

Proposition 4.2 In g�1wssE0.H.8; v
8
1
//, all of the h2;1–towers coming from

ExtA.2/�.bo˝k
1
˝H.8; v8

1//

for k � 3 are either the source of a nontrivial d0–differential or the target of a d0–
differential. For k D 2, the h2;1–towers

v�1h
j
2;1

Q1.x1;1x1;2/Œn�

are killed for � 2 f0; 1g and n 2 f0; 1g (but the corresponding towers with n 2 f17; 18g

are not killed).

Proof Everything is identical to the proof of Proposition 3.15, except that the differ-
entials

dwss
0 W F2Œv1; h

˙
2;1�=v

8
1fx1;1t1;1g˝H.8/! F2Œv1; h

˙
2;1�=v

2
1fQ1.x1;1x1;2/g˝H.8; v8

1/

now have nontrivial kernel and cokernel.

We now give elements of ExtA�.H.8; v
8
1
// which these remaining h2;1–towers detect

in the algebraic tmf resolution. Note that, as pointed out in [33], the Mahowald operator
satisfies

h3
0M.x/D 0;

which implies that, for any x 2 ExtA�.F2/, there exists a lift

M.x/Œ1� 2 ExtA�.H.8//

and thus an element M.x/Œ1� 2 ExtA�.H.8; v
8
1
//. Furthermore, the element �2 D v8

2

exists in ExtA�.H.8; v
8
1
// (see Lemma 5.1 below). We conclude that, for 0 � i � 7,

j ; k; l � 0 and � 2 f0; 1g, the wedge elements

vi
1h

j
2;1
�2kM lg2Œ�� 2 ExtA�.H.8; v

8
1//

exist, and we see they are linearly independent by mapping to ExtB�.H.8; v
8
1
// (where

B� is as defined in (3.16)).

Proposition 4.3 The following table lists , for m � 0, 0 � i � 7, 0 � i 0 � 5,
j � 4, k 2 f0; 1; 17; 18g and �; �0 2 f0; 1g, an A.2/�–comodule M, an h2;1–tower in
g�1 ExtA.2/�.M˝H.8;v8

1
//, the corresponding h2;1–tower in ExtA.2/�.M˝H.8;v8

1
//

and an h2;1–tower in ExtA�.H.8; v
8
1
// that it detects in the algebraic tmf resolution:
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M g�1 ExtA.2/�.M˝H.8; v8
1
// ExtA.2/�.M˝H.8; v8

1
// ExtA�.H.8; v

8
1
//

F2 �2mvi
1
h

jC8
2;1

Œ�� �2mvi
1
h

j
2;1

g2Œ�� �2mvi
1
h

j
2;1

g2Œ��

bo1 �2mh
jC4
2;1

Q1.x1;1/Œk� �2mh
jC4
2;1

�4
2
Œk� �2mh

j
2;1

nŒk�

�2mh
jC6
2;1

Q1.x2;1/Œk� �2mh
jC1
2;1

g.h2;1v
�2
0
v2

2
�16

1
/Œk� �2mh

j
2;1

Q2Œk�

bo2 �2mvi0C2
1

h
jC11
2;1

x1;1t1;1Œ��
�2mvi0C2

1 h
jC2
2;1 �2mvi0

1
h

j
2;1

Mg2Œ��
�g2.v�1

0
v2

2
�8

1
�4

2
/Œ��

bo˝2
1

v�
0

1
�2mh

jC11
2;1

�2mv�
0

1
h

jC2
2;1 �2mv6C�0

1 h
j
2;1Mg2Œ��

�Q1.x1;1x1;2/Œ17C�� �g2.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ17C��

Proof The cases of

�2mvi
1h

j
2;1

g2Œ��; �2mh
j
2;1

nŒ��; �2mh
j
2;1

Q2Œ��; �2mvi0

1 h
j
2;1

Mg2Œ��

follow immediately from Proposition 3.17 since all of these elements are annihilated
by v3

0
.

The elements

h
jC4
2;1

�4
2 2 ExtA.2/�.bo1/; h

jC6
2;1

�16
1 2 ExtA.2/�.bo2/

lift to elements

.4.4/
h

jC4
2;1

�4
2 Œ17C �� 2 ExtA.2/�.bo1˝H.8; v8

1//;

h
jC6
2;1

�16
1 Œ17C �� 2 ExtA.2/�.bo2˝H.8; v8

1//:

One can explicitly check that the lifts (4.4) are permanent cycles in the algebraic tmf
resolution. Therefore they detect the desired elements

h
j
2;1

nŒ17C ��; h
j
2;1

Q2Œ17C �� 2 ExtA�.H.8; v
8
1//:

Applying case (5) of the geometric boundary theorem [5, Lemma A.4.1] to the triangle

H.8; v8
1/Œ�1�!†24H.8/Œ�8�

v8
1
�!H.8/!H.8; v8

1/

and the differential

d1.v
�0

1 h
jC2
2;1

g2.v�1
0 v2

2�
8
1�

4
2//D v

�0

1 h
jC2
2;1

g2.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/

in the algebraic tmf resolution for †24H.8/Œ�8� (3.14), we find that the images of the
elements

v8C�0

1
h

j
2;1

M.g2/Œ�� 2 ExtA�.H.8//
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under the map
ExtA�.H.8//! ExtA�.H.8; v

8
1//

are detected by the elements

v�
0

1 h
jC2
2;1

g2.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ17C ��

in the algebraic tmf resolution for H.8; v8
1
/.

5 The v32
2

–self-map on M.8; v8
1
/

We now endeavor to prove Theorem 1.8. We first recall the following lemma:

Lemma 5.1 [7, Lemma 7.6] The element

v8
2 2 Ext8;48C8

A.2/�
.H.8; v8

1//

is a permanent cycle in the algebraic tmf resolution , and gives rise to an element

v8
2 2 Ext8;48C8

A�
.H.8; v8

1//:

It follows from the Leibniz rule that v32
2

persists to the E4–page of the MASS for
M.8; v8

1
/. Our task will then be reduced to showing that dr .v

32
2
/D 0 for r � 4. We

will do this by identifying the potential targets of such a differential, and show that they
are either the source or target of shorter differentials. This will necessitate lifting certain
differentials from the MASS for tmf^ tmfn ^M.8; v8

1
/ to the MASS for M.8; v8

1
/.

As explained in [8, Section 7.4], work of the second author, Davis and Rezk [31; 15]
implies that the algebraic map

ExtA.2/.†
8bo1˚†

16bo2/! ExtA.2/�.A==A.2/�/

realizes to a map

.5.2/ tmf^ tmf2! tmf^ tmf;

where tmf ^ tmf2 is a spectrum built out of tmf ^†8bo1 and tmf ^†16bo2. They
furthermore show that there is a map

.5.3/ †32tmf! tmf^ tmf2;

which geometrically realizes the inclusion of the direct summand (2.9),

ExtA.2/�.†
33F2Œ�1�/ ,! ExtA.2/�.†

16bo2/� ExtA.2/�.†
8bo1˚†

16bo2/:

Geometry & Topology, Volume 27 (2023)



The 2–primary Hurewicz image of tmf 2797

The attaching map from tmf^ bo2 to tmf^ bo1 in the spectrum tmf^ tmf2 induces
d3–differentials from the h2;1–towers in bo2 to the h2;1–towers in bo1 in the ASS for
tmf^ tmf under the map (5.2). Furthermore, there are differentials in the ASSs for
tmf^bo1, tmf^bo2 and tmf, which induce differentials in the ASS for tmf^ tmf under
the maps (5.2) and (5.3). We wish to study when these differentials (and more generally
differentials in the ASS for tmf^ tmfn) lift via the tmf resolution to differentials in the
ASS for the sphere.

To this end we consider the partial totalizations

T n
WD Totn.tmf�C1/

of the cosimplicial tmf resolution of the sphere, so that we have

S ' lim
 ��

n

T n

and fiber sequences
†�ntmf^ tmfn

! T n
! T n�1:

The spectrum T n is a ring spectrum, and in particular has a unit

S ! T n:

We let

.5.4/ T n
D Totn.A==A.2/˝�C1

� /

denote the corresponding construction in the stable homotopy category of A�–co-
modules. There is a MASS

Ext�;�
A�
.T n
˝H.8; v8

1//) T n
�M.8; v8

1/

and the algebraic tmf resolution for H.8; v8
1
/ truncates to give an algebraic tmf resolu-

tion
nM

iD0

Ext�;�
A.2/�

.A==A.2/˝i
� ˝H.8; v8

1//) ExtA�.T
n
˝H.8; v8

1//:

The following lemma will be our key to lifting the desired differentials:

Lemma 5.5 Suppose x is an element of ExtA�.H.8; v
8
1
// which is detected in the

n–line of the algebraic tmf resolution for H.8; v8
1
/ by an element

x0 2 ExtA.2/�.A==A.2/
˝n
� ˝H.8; v8

1//:

Furthermore , suppose that , in the MASS for tmf^tmfn^M.8; v8
1
/, there is a differential

dmass
r .x0/D y0
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and that , for 2� r 0 < r , we have

dmass
r 0 .x/D 0

in the MASS for the M.8; v8
1
/. Then either

(1) the differential
dmass

r .x/

in the ASS for M.8; v8
1
/ is detected by y0 in the algebraic tmf resolution; or

(2) the element y0 is the target of a differential in the algebraic tmf resolution for
H.8; v8

1
/, or , in the algebraic tmf resolution for T n˝H.8; v8

1
/, y0 detects an

element of ExtA�.T
n˝H.8; v8

1
// which is zero in massEr .T

n ^M.8; v8
1
//.

Proof Consider the maps of algebraic tmf resolutions and MASSs induced from the
zigzag

M.8; v8
1/

˛
�! T n

^M.8; v8
1/

ˇ
 �†�ntmf^ tmfn

^M.8; v8
1/:

Define
Nx WD ˛�.x/ 2 ExtA�.T

n
˝H.8; v8

1//

Then Nx is detected by x0, regarded as an element of the algebraic tmf resolution for
T n ^M.8; v8

1
/. In particular, this means that

Nx D ˇ�.x
0/

Therefore, the differential
dmass

r .x0/D y0

in the MASS for tmf^ tmfn ^M.8; v8
1
/ maps to a differential

dmass
r . Nx/D Ny WD ˇ�.y

0/

in the MASS for T n ^M.8; v8
1
/. In particular, either

(1) Ny is nonzero in massEr .T
n ^M.8; v8

1
// and is detected by y0 in the algebraic

tmf resolution for T n˝H.8; v8
1
/, or

(2) either Ny D 0 in massEr .T
n ^M.8; v8

1
// or y0 is killed in the algebraic tmf

resolution for T n˝H.8; v8
1
/.

If the latter is true, then y0 is killed in the algebraic tmf resolution for H.8; v8
1
/, since

the algebraic tmf resolution for T n ˝H.8; v8
1
/ is a truncation of the algebraic tmf

resolution for H.8; v8
1
/.
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If we are in case (2), we are done. If we are in case (1), consider the differential

y WD dmass
r .x/

in the MASS for M.8; v8
1
/ (which is defined by hypothesis). We must have

˛�.y/D Ny:

Therefore, dmass
r .x/ is detected by y0 in the algebraic tmf resolution.

Remark 5.6 We will primarily be applying Lemma 5.5 to the following two cases:

Case 1 (x D�2mh
j
2;1

Q2Œk�) Suppose that we can prove

d ass
2 .�2mh

j
2;1

Q2Œk�/D 0

in the MASS for M.8; v8
1
/. The element �2mh

j
2;1

Q2Œk� is detected by

�2mh
jC1
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk� 2 ExtA.2/�.bo2˝H.8; v8

1//

in the algebraic tmf resolution, and it is proven in [8] that, in the ASS for tmf^ tmf,
there is a differential

d ass
3 .�2mh

jC1
2;1

g.h2;1v
�2
0 v2

2�
16
1 //

D�2mh
jC4
2;1

g.h2;1�
4
2/C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /;

where
�.m/D

�
1 if m� 2 mod 4;

0 otherwise:

Lifting this differential to tmf^ tmf^M.8; v8
1
/, Lemma 5.5 implies that either the

target of the differential d ass
3
.�2mh

j
2;1

Q2Œk�/ in the MASS for M.8; v8
1
/ is detected by

�2mh
jC4
2;1

g.h2;1�
4
2/Œk�C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk�

in the algebraic tmf resolution, or

�2mh
jC4
2;1

g.h2;1�
4
2/Œk�C �.m/�

2m�4h
jC20
2;1

g.h2;1v
�2
0 v2

2�
16
1 /Œk�

is the target of a differential in the algebraic tmf resolution or detects an element of
ExtA�.T

1˝H.8; v8
1
// which is zero on the E3–page of the MASS for T 1^M.8; v8

1
/.

Case 2 (xDM�2vi
1
h

jC8
2;1

Œ�� for �2f0; 1g and 0� i�4) The element M�2vi
1
h

jC8
2;1

Œ��

is detected by
�2viC2

1
h

jC10
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��
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in the algebraic tmf resolution for H.8; v8
1
/, and the map (5.3) implies there is a

differential

dmass
2 .�2viC2

1
h

jC10
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��/D v

iC3
1

h
jC19
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��

in the MASS for tmf^ tmf^M.8; v8
1
/.

Then Lemma 5.5 implies that either dmass
2

.M�2vi
1
h

jC8
2;1

Œ��/ is detected by

viC3
1

h
jC19
2;1

.v�1
0 v2

2�
8
1�

4
2/Œ��

in the algebraic tmf resolution, or viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� is killed in the tmf reso-

lution for H.8; v8
1
/ or it detects an element which is zero in the E2–term of the MASS

for T 1 ^M.8; v8
1
/. However, the element

M viC1
1

h
jC17
2;1

Œ�� 2 ExtA�.H.8; v
8
1//

is nonzero, and is detected by viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� in the algebraic tmf res-

olution for H.8; v8
1
/. We conclude that viC3

1
hjC19

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ�� is not killed in

the algebraic tmf resolution for H.8; v8
1
/. Since the algebraic tmf resolution for

T 1˝H.8; v8
1
/ is a truncation of the algebraic tmf resolution for H.8; v8

1
/, we conclude

that viC3
1

hjC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ�� detects a nontrivial element of the E2–page of the

MASS for T 1 ^M.8; v8
1
/. We conclude that

dmass
2 .M�2vi

1h
jC8
2;1

Œ��/

is nontrivial in the MASS for M.8; v8
1
/, and is detected in the algebraic tmf resolution

by viC3
1

h
jC19
2;1

.v�1
0
v2

2
�8

1
�4

2
/Œ��.

Proof of Theorem 1.8 By Proposition 2.3, it suffices to prove that

v32
2 2 ExtA�.H.8; v

8
1//

is a permanent cycle in the MASS. Furthermore, since v8
2
2 massE2.M.8; v8

1
//, the

Leibniz rule implies that v32
2
2massE4.M.8; v8

1
//. We therefore are left with eliminating

possible targets of dmass
r .v32

2
/ for r � 4.

Suppose that dr .v
32
2
/ is nontrivial for r � 4. We successively consider terms in

the algebraic tmf resolution which could detect dr .v
32
2
/, and then eliminate these

possibilities one by one.
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The only terms in the algebraic tmf resolution E1–page which can contribute to
Exts;191Cs

A�
.H.8; v8

1
// for s � 36 are

� ExtA.2/�.bo˝s
1
/ for 0� s � 6, and

� ExtA.2/�.bo˝s
1
˝ bo2/ for 0� s � 2.

Furthermore, bo˝s
1

only contributes h2;1–towers in this range for s D 5; 6. We list
these contributions below, except we do not list elements in h2;1–towers coming from
bo˝s

1
for s � 2 which are zero in the WSS E1–term (see Proposition 4.2). Also, since

v32
2

is a permanent cycle in the MASS for tmf^M.8; v8
1
/, we can disregard any terms

coming from ExtA.2/�.F2/ (the 0–line of the algebraic tmf resolution). Finally, we do
not include any terms which can be eliminated through the application of Case 2 of
Remark 5.6.

We now eliminate these possibilities one by one. We will consider the terms in order
of reverse algebraic tmf filtration.

bo˝4
1

In the modified May spectral sequence (3.3), there is a differential

dmmss
8 .b2;2h2

3/D h5
3

which lifts under the map ˆ� of (3.4) to a nontrivial differential

dwss
1 .Œ�8

1 j �
8
1 j �

4
2 j �

4
2 �/D Œ�

8
1 j �

8
1 j �

8
1 j �

8
1 j �

8
1 �

in the WSS for F2, and this implies a nontrivial differential

dwss
1 .v4

1�
6h2

1Œ�
8
1 j �

8
1 j �

4
2 j �

4
2 �Œ1�/D v

4
1�

6h2
1Œ�

8
1 j �

8
1 j �

8
1 j �

8
1 j �

8
1 �Œ1�

in the WSS for H.8; v8
1
/.

bo˝2
1
˝bo2 In the cobar complex for F2Œ�

8
1
; �4

2
�, we find

d.Œ�8
1 ; �

4
2 � j �

8
1�

4
2/ and d.ı81 j ı

8
1ı42 j ı

4
2C ı42 j ı

8
1ı42 j ı

8
1/

are linearly independent, and

d.Œ�8
1 ; �

4
2 � j �

8
1�

4
2 C �

8
1�

4
2 j Œ�

8
1 ; �

4
2 �/D 0:

However,
d.�8

1�
4
2 j �

8
1�

4
2/D Œ�

8
1 ; �

4
2 � j �

8
1�

4
2 C �

8
1�

4
2 j Œ�

8
1 ; �

4
2 �:

The elements are thus eliminated by multiplying the computations above with v�2
1
v4

2
h22

2;1

and lifting them to the top cell of H.8; v8
1
/.
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bo˝3
1

Note that
Ext10;10C48

A�
.F2/D 0:

We conclude that the class

v4
1c0h1.v

�1
0 v2

2�
8
1�

4
2/ 2 ExtA.2/�.bo2/

must either support or be the target of a differential in the algebraic tmf resolution,
for otherwise it would give a nonzero element of Ext10;10C48

A�
.F2/. However, by

examination, there are no classes in ExtA.2/�.F2/ which can kill v4
1
c0h1.v

�1
0
v2

2
�8

1
�4

2
/

in the algebraic tmf resolution, so there must be a nontrivial differential

dr .v
4
1c0h1.v

�1
0 v2

2�
8
1�

4
2//

in the algebraic tmf resolution for F2. Since the target of this differential must be
h1–torsion, there is only one possibility:

d2.v
4
1c0h1.v

�1
0 v2

2�
8
1�

4
2//D v

4
1h2

1v
2
2�

8
1 j �

8
1 j �

4
2 :

It follows that we have

d2.v
4
1c0.v

�1
0 v2

2�
8
1�

4
2//D v

4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 :

This differential lifts to a differential

d2.v
4
1c0.v

�1
0 v2

2�
8
1�

4
2/Œ1�/D v

4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 Œ1�

in the algebraic tmf resolution for H.8; v8
1
/. Multiplying by �6, we have

d2.�
6v4

1c0.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D�

6v4
1h1v

2
2�

8
1 j �

8
1 j �

4
2 Œ1�:

bo1˝bo2 There is a differential

dwss
0 .�12

2 /D Œ�4
2 ; �

8
2 �

in the WSS for F2 which lifts to a differential

dwss
0 .v1h21

2;1g.v�1
0 v2

2�
12
2 //D v1h21

2;1g.v�1
0 v2

2 Œ�
4
2 ; �

8
2 �/:

We therefore only have to consider one of the two potential elements. In the modified
May spectral sequence (3.3), there is a differential

dmmss
8 .h2;3/D h1;3h1;4

which lifts to a differential
dwss

1 .�8
2/D �

8
1 j �

16
1 :

using the map ˆ� of (3.3), and gives a differential

dwss
1 .�4

2 j �
8
2/D �

4
2 j �

8
1 j �

16
1 :
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The elements
v1g.v�1

0 v2
2�

4
2 j �

8
2/ 2 ExtA.2/�.bo1˝ bo2/

and
v1g.v�1

0 v2
2�

4
2 j �

8
1 j �

16
1 / 2 ExtA.2/�.bo˝2

1
˝ bo2/

support h2;1–towers which are nontrivial in wssE1. Therefore, we have a nontrivial
differential

dwss
1 .v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
2//D v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
1 j �

16
1 /:

This differential lifts to the top cell of H.8; v8
1
/ to give

dwss
1 .v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
2/Œ18�/D v1h21

2;1g.v�1
0 v2

2�
4
2 j �

8
1 j �

16
1 /Œ18�

in the WSS for H.8; v8
1
/.

bo˝2
1

The element
h5

2;1�
4v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�

detects the element
�4
�MP�h2

0e0Œ18�

in the algebraic tmf resolution for H.8; v8
1
/. Regarding this element as an element in

the MASS for tmf^ bo2
1, there is a nontrivial differential

dmass
3 .h5

2;1�
4v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�/D h24

2;1v1g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:

By applying .�/^tmf2 to the map of tmf–modules (5.2), we may consider the composite

.5.7/ tmf^ bo2
1 ,! .tmf^ tmf2/

^tmf2! tmf^ tmf2:

The differential above maps to a nontrivial differential between elements of the same
name in the MASS for tmf^ tmf2. We wish to apply Lemma 5.5. We must have

dmass
2 .�4

�MP�h2
0e0Œ18�/D 0

in the MASS for M.8; v8
1
/, since there are no elements in the algebraic tmf resolution

for H.8; v8
1
/ which could detect a target for this differential. Thus Lemma 5.5 implies

that either
dmass

3 .�4
�MP�h2

0e0Œ18�/

is nontrivial and detected by h24
2;1
v1g.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18�, or

h24
2;1v1g.v�1

0 v2
2 Œ�

8
1 ; �

4
2 �/Œ18�
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is killed in the algebraic tmf resolution for H.8; v8
1
/, or detects an element which is

killed in the MASS for T 2 ^M.8; v8
1
/. The only such possibility is for

�2h23
2;1�

4
2 Œ17�

to detect the source of a d2–differential in the MASS for T 2 ^M.8; v8
1
/ to do such a

killing. Projecting onto the top Moore space of M.8; v8
1
/, this would imply

�2h23
2;1�

4
2

detects an element in the algebraic tmf resolution for the sphere which supports a
nontrivial d2–differential in the ASS for the sphere. However, �2h23

2;1
�4

2
detects

�2g5
��h2c1

in the ASS for the sphere, and there is a differential

d ass
2 .�2g5

��h2c1/D d ass
2 .�2g2/ �g3

��h2c1 D�
2h2

2g2e0 �g
3
��h2c1:

However, �2h2
2
e0 ��h2c1 D 0 in ExtA�.F2/ [13], so this d ass

2
is zero.

We now turn our attention to the other potential target coming from bo˝2
1

,

h15
2;1�

2g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:

This element detects
�2g2v6

1h2;1Mg3Œ0�

in the algebraic tmf resolution for M.8; v8
1
/. However, in the ASS for the sphere,

v6
1
h2;1g3 is a d2–cycle, and so there is a differential

d ass
2 .�2g2

� v6
1h2;1g3/D d ass

2 .�2g2/ � v6
1h2;1g3

D�2h2
2g2e0 � v

6
1h2;1g3

D v7
1h22

2;1g2:

Applying M.�/ D h�; h3
0
;g2i and mapping under the inclusion of the bottom cell

of M.8; v8
1
/, we get a nontrivial differential

dmass
2 .�2g2

� v6
1h2;1Mg3Œ0�/D v7

1h22
2;1Mg2Œ0�:

bo1 The element
h31

2;1g.h2;1�
4
2/

detects
g8n 2 ExtA�.F2/

in the algebraic tmf resolution for F2 (Proposition 3.17). This element can be eliminated
by Case 1 of Remark 5.6, but we can also handle it manually using low-dimensional
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calculations in the ASS for the sphere. There is a differential

d3.mQ2/D g3n

in the ASS for the sphere [24], from which it follows that g8n is zero on the E4–page
of the ASS of the sphere, and hence g8nŒ0� is zero on the E4–page of the MASS
for M.8; v8

1
/.

For the element
h18

2;1�
2g.h2;1�

4
2/Œ17�;

we wish to employ Case 1 of Remark 5.6, using the differential

dmass
3 .h15

2;1�
2g.h2;1v

�2
0 v2

2�
16
1 /Œ17�/D h18

2;1�
2g.h2;1�

4
2/Œ17�

in the MASS for tmf^ tmf^M.8; v8
1
/. Note that

h15
2;1�

2g.h2;1v
�2
0 v2

2�
16
1 /Œ17�

detects the element
C 00 ��2g2Œ17�

in the algebraic tmf resolution. Observe [25; 13] that we have

d2.C
00
��2g2/D C 00 � d2.�

2g2/D g2
�C 00�h2

2e0 D g2
� 0D 0:

It follows that d2.C
00 ��2g2Œ17�/ is in the image of the map

ExtA�.H.8//! ExtA�.H.8; v
8
1//;

but a check of the algebraic tmf resolution for H.8; v8
1
/ reveals there are no possible

targets in this bidegree. We therefore have

d2.C
00
��2g2Œ17�/D 0:

Therefore, the hypotheses of Lemma 5.5 are satisfied. It follows that

h18
2;1�

2g.h2;1�
4
2/Œ17�

either is killed in the algebraic tmf resolution for H.8; v8
1
/, or detects an element in

the MASS which is killed by d3.C
00 ��2g2Œ17�/, or detects an element which killed by

a d2–differential in the MASS for T 1 ^M.8; v8
1
/. We just need to eliminate this last

possibility.

Any possible source for such a d2–differential would necessarily be detected on the
0–line of the algebraic tmf resolution and would not support a nontrivial d2 in the
MASS for tmf^M.8; v8

1
/. The only such possibility is

�4h19
21Œ1�:
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However, we can express this element as the Hurewicz image of the element

gm ��4
�g2Œ1�

in the MASS for M.8; v8
1
/. This element is therefore necessarily a d2–cycle, since it

is a product of d2–cycles.

bo2 We begin with the element

h5
2;1�

4g.h2;1v
�2
0 v2

2�
16
1 /Œ18�

which detects the element
�4gQ2Œ18�

in the MASS for M.8; v8
1
/. We are in Case 1 of Remark 5.6. An elementary check

using the charts of [25] reveals that the element gQ2 in the ASS for the sphere lifts to
a d2–cycle

gQ2Œ18�

supported by the top cell of H.8; v8
1
/. Since�4 is a d2–cycle in the MASS for M.8; v8

1
/,

we deduce that
�4gQ2Œ18�

is a d2–cycle. We therefore deduce that

dmass
3 .�4gQ2Œ18�/

either is detected by

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

in the algebraic tmf resolution for H.8; v8
1
/, or

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

is killed in the algebraic tmf resolution for H.8; v8
1
/ or detects an element which is

killed in the MASS for T 1 ^M.8; v8
1
/. The only possible sources of such algebraic

tmf resolution differentials are wedge elements coming from ExtA.2/�.H.8; v
8
1
//, and

we know these all must be permanent cycles in the algebraic tmf resolution because
they detect the corresponding wedge elements of ExtA�.H.8; v

8
1
//. The only elements

of the algebraic tmf resolution which can detect an element which could support a
d2–differential killing

�4h8
2;1g.h2;1�

4
2/Œ18�C h24

2;1g.h2;1v
�2
0 v2

2�
16
1 /

in the MASS for T 1 ^M.8; v8
1
/ are the elements

.5.8/ �2v6
1h23

2;1Œ0� and �2v3
1h24

2;1Œ1�:
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However, using the map of spectral sequences

massE
�;�
2
.T 1
^M.8; v8

1//!
massE

�;�
2
.tmf^M.8; v8

1//;

we can eliminate these possibilities on the basis that the elements (5.8) support nontrivial
d2–differentials in the MASS for M.8; v8

1
/.

We are left with eliminating

v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

as possibly detecting dmass
5

.v32
2
/ in the MASS for M.8; v8

1
/. This is the trickiest

obstruction to eliminate. In the MASS for tmf^ tmf^M.8; v8
1
/, there is a differential

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�:

The problem is that, in the WSS for H.8; v8
1
/, there is a nontrivial differential

dwss
0 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D�

2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�:

Sublemma 5.9 The element v32
2

is a permanent cycle in the MASS for T 1^M.8; v8
1
/.

bo1
h31

2;1
g.h2;1�

4
2
/Œ0�

h18
2;1
�2g.h2;1�

4
2
/Œ17�

bo2
h5

2;1
�4g.h2;1�

16
1
/Œ18�

v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

bo˝2
1

h5
2;1�

4v1g.v�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�

h15
2;1
�2g.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18�

bo1˝ bo2
v1h21

2;1g.v�1
0 v2

2 Œ�
4
2 ; �

8
2 �/Œ18�

v1h21
2;1

g.v�1
0
v2

2
Œ�8

2
; �4

2
�/Œ18�

bo3
1 v4

1�
6h1.v

2
2�

8
1 j �

8
1 j �

4
2/Œ1�

v1h18
2;1

g.v�2
0
v4

2
Œ�8

1
; �4

2
� j �8

1
�4

2
/Œ18�

bo˝2
1
˝ bo2 v1h18

2;1
g.v�2

0
v4

2
.�8

1
j �8

1
�4

2
j �4

2
C �4

2
j �8

1
�4

2
j �8

1
//Œ18�

v1h18
2;1

g.v�2
0
v4

2
�8

1
�4

2
j Œ�8

1
; �4

2
�/Œ18�

bo4
1

v4
1
�6h2

1
�8

1
j �8

1
j �4

2
j �4

2
Œ1�

Table 1: List of potential targets of dmass
r .v32

2
/ for r � 4.
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Proof The elements of the algebraic tmf resolution which could possibly detect the
target of a differential

dmass
r .v32

2 /; r � 4;

in the MASS for T 1 ^M.8; v8
1
/ consist of those terms in Table 1 coming from bo1

and bo2.

Using (5.3), there is a map

†31tmf^M.8; v8
1/!†�1tmf^ tmf! T 1

and we therefore have a differential

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

in the MASS for T 1^M.8; v8
1
/. Therefore, v2

1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� cannot be the target

of a differential dmass
5

.v32
2
/ in the MASS for T 1 ^M.8; v8

1
/.

Our previous arguments eliminate all the other possibilities.

Suppose now for the purpose of generating a contradiction that the differential

dmass
5 .v32

2 /

in the MASS for M.8; v8
1
/ is nontrivial and detected by v2

1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� in the

algebraic tmf resolution for H.8; v8
1
/. Consider the fiber sequence

†�2tmf2
^M.8; v8

1/!M.8; v8
1/! T 1

^M.8; v8
1/

@
�!†�1tmf2:

We have proven that v32
2

exists in �192T 1 ^M.8; v8
1
/, and, because our assumption

implies that v32
2

does not lift to �192M.8; v8
1
/, we must have

0¤ @.v32
2 / 2 �191†

�2tmf2
^M.8; v8

1/:

Sublemma 5.10 There exists a choice of v32
2
2 �192T 1 ^M.8; v8

1
/ such that @.v32

2
/

has modified Adams filtration 34.

Proof Let X hki denote the k th modified Adams cover of X — so that the MASS
for X hki is the truncation of the MASS for X obtained by only considering terms in
massE

s;t
2
.X / for s � k — and let Xhki denote the cofiber

X hkC1i
!X !Xhki
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Then we have fiber sequences

M.8; v8
1/hki! .T 1

^M.8; v8
1//hki! .†�1tmf2

^M.8; v8
1//hk�2i:

Define �Mhki to be the homotopy pullback

�Mhki //

��

T 1 ^M.8; v8
1
/

��

M.8; v8
1
/hki // .T 1 ^M.8; v8

1
//hki

Then the algebraic tmf resolution for �Mhki is the truncation of the algebraic tmf
resolution for M.8; v8

1
/ obtained by omitting, for n� 2, all terms of

ExtA.2/�.boi1
˝ � � �˝ boin

˝H.8; v8
1//

of cohomological degree greater than k � n. It follows from the map of algebraic tmf
resolutions and MASSs associated to the map

M.8; v8
1/!

�Mhki
that there is a differential

dmass
5 .v32

2 /D v2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�

in the MASS for �Mhki. This differential is nontrivial in the MASS for �Mh36i, because
it is nontrivial in the MASS for M.8; v8

1
/, and any intervening differentials killing

the target in the algebraic tmf resolution or MASS for �Mh36i would lift to M.8; v8
1
/

because the spectral sequences are isomorphic in the relevant range. The same is not
true in the case of �Mh35i, where

dwss
0 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D 0

and therefore �2v1h22
2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� persists to the E2–term of the MASS

dmass
2 .�2v1h22

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�/D v

2
1h31

2;1.v
�1
0 v2

2�
8
1�

4
2/Œ1�:

Therefore, the proof of Sublemma 5.9 goes through with T 1 ^M.8; v8
1
/ replaced

by �Mh35i to show that there exists an element

fv32
2
2 �192

�Mh35i
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which is detected by v32
2

in the MASS. Consider the diagram

†�1tmf2

���Mh36i

��

// T 1 ^M.8; v8
1
/

@0
//

@

55

.†�1tmf2 ^M.8; v8
1
//h34i

���Mh35i
// T 1 ^M.8; v8

1
/

@00
// .†�1tmf2 ^M.8; v8

1
//h33i

where the rows are cofiber sequences. The element fv32
2
2 �192

�Mh35i maps to an
element v32

2
2 T 1 ^M.8; v8

1
/ with

@00.v32
2 /D 0:

However, since dmass
5

.v32
2
/ is nontrivial in the MASS for �Mh36i, the element v32

2
2

�192T 1 ^M.8; v8
1
/ cannot lift to �Mh36i, and therefore

@0.v32
2 /¤ 0:

It follows that @.v32
2
/ has modified Adams filtration 34.

However, we have:

Sublemma 5.11 There are no elements of �191†
�2tmf2 ^M.8; v8

1
/ of modified

Adams filtration 34.

Proof The only possible elements in the algebraic tmf resolution for tmf2^M.8; v8
1
/

which could contribute to modified Adams filtration 34 in this degree are

.5.12/ �2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//

and the elements of Table 1 of algebraic tmf filtration greater than 1 in the appropriate
modified Adams filtration. However, the previous arguments eliminate all of the
candidates coming from Table 1, so we are left with eliminating (5.12). We wish to lift
the differential

dmass
3 .�6v1h3

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�/D�

2v1h22
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�

in the MASS for tmf^tmf2^M.8; v8
1
/ to a differential in the MASS for tmf2^M.8; v8

1
/.

We therefore must argue that

dmass
2 .�6v1h3

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ1�/D 0
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in the MASS for tmf2^M.8; v8
1
/. We will therefore argue there are no elements in the

algebraic tmf resolution for tmf2^M.8; v8
1
/ which could detect the target of such a d2.

Ignoring any possibilities which are eliminated by Proposition 4.2, the only possibilities
are

�6v4
1h1v

�1
0 v2

2�
8
1 j Œ�

8
1 ; �

4
2 �Œ1�;

�6v4
1h1v

�1
0 v2

2 Œ�
8
1 ; �

4
2 � j �

8
1 Œ1�;

�6v4
1h2

0Œ�
8
1 ; �

4
2 � j �

8
1 j �

8
1 j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j Œ�

8
1 ; �

4
2 � j �

8
1 j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j �

8
1 j Œ�

8
1 ; �

4
2 � j �

8
1 Œ0�;

�6v4
1h2

0�
8
1 j �

8
1 j �

8
1 j Œ�

8
1 ; �

4
2 �Œ0�:

However, these are killed by the respective WSS differentials

dwss
0 �6v4

1h1v
�1
0 v2

2�
8
1 j �

8
1�

4
2 Œ1�;

dwss
0 �6v4

1h1v
�1
0 v2

2�
8
1�

4
2 j �

8
1 Œ1�;

dwss
0 �6v4

1h2
0�

8
1�

4
2 j �

8
1 j �

8
1 j j�

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1�

4
2 j �

8
1 j �

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1 j �

8
1�

4
2 j �

8
1 Œ0�;

dwss
0 �6v4

1h2
0�

8
1 j �

8
1 j �

8
1 j �

8
1�

4
2 Œ0�:

Thus we have arrived at a contradiction, as we have produced an element of modified
Adams filtration 34, and subsequently showed no such elements exist. We conclude that
our supposition, that the differential dmass

5
.v32

2
/ in the MASS for M.8; v8

1
/ is nontrivial

and detected by v2
1
h31

2;1
.v�1

0
v2

2
�8

1
�4

2
/Œ1� in the algebraic tmf resolution, is false.

6 Determination of elements not in the tmf Hurewicz image

Theorem 6.1 The elements of tmf� not in the subgroup described in Theorem 1.2 are
not in the Hurewicz image.

We first recall some well-known K–theory computations. Recall that ��KO is given
by the v4

1
–periodic pattern

1

�
�2

2v2
1 v4

1

�v4
1

�2v4
1

2v6
1

Let
M.21/ WD lim

��!
i

M.2i/

denote the Moore spectrum for Z=21.
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Consider the diagram of cofiber sequences

.6.2/

†�1KO^M.2/
p
//

�2�1

��

KO �2
// KO

. � /
//

�2�1

��

KO^M.2/

�2�1

��

†�1KO^M.21/
p
// KO // KOQ

. � /

// KO^M.21/

The groups KO�M.2/ are well known to be given by the v4
1

–periodic pattern

N1

x�

x�2

z�

z�2

2 Nv2
1

Nv4
1

� Nv4
1

�2 Nv4
1

v4
1
z�

v4
1
z�2

2 Nv6
1

where we denote lifts of elements of KO� along the map p of diagram (6.2) with a
tilde, and the images of the map . � / with a bar. It then follows easily from the map of
long exact sequences coming from the above diagram that KO�M.21/ is given by the
v4

1
–periodic pattern

N2�1

z�

z�2
Nv2
1 2�1 Nv4

1

v4
1z�

v4
1z�

2
Nv6
1

where again we denote lifts over the map p with a tilde, and images under the map . � /
with a bar. The infinite sequences of dots going down represent the elements 2�i in
Z=21 DQ=Z.2/.

Proof of Theorem 6.1 Recall [27, Corollary 3] that we have an equivalence

c�1
4 tmf' KOŒj�1�;

where j�1 D�=c3
4

. Applying �0 to this equivalence, we have a commutative diagram

S //

��

KO � s

%%

tmf // c�1
4

tmf
'
// KOŒj�1�
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The 2–primary Hurewicz image of tmf 2813

Consider the diagram

��S

h

��

��C1M.21/
p

oo

h

��

// KO�C1M.21/� v

i

))

tmf�

L
��

tmf�C1M.21/oo
L
// c�1

4
tmf�C1M.21/

p0

ss

KO�C1M.21/Œj�1�

c�1
4

tmf�

Suppose that x 2 tmf>0 has nontrivial image in L.x/ 2 c�1
4

tmf� and that x D h.y/.
Since y is torsion, it lifts over p to an element

Qy 2 ��C1M.21/:

The commutativity of the diagram implies that

0¤L.x/ 2 Im.p0 ı i/

and this implies that
L.x/ 2

˚
ck

4 �
l
W k � 0; l 2 f1; 2g

	
:

Now consider elements of the form

x D ˛�k� 2 tmf�

with ˛ 6� 0 mod 8. Suppose that x D h.y/. Lift y to an element

Qy 2 ��C1M.21/:

Then we have
Lh. Qy/D 1

8
˛�kv2

1
D

1
4
˛v12kC2

1
j�k
¤ 0:

But the commutativity of the diagram implies that Lh. Qy/ is in the image of i , which
implies that k D 0.

7 Lifting the remaining elements of tmf� to �s
�

Multiplicative generators of the Hurewicz image below the 192–stem

In this section, we determine a set of elements which multiplicatively generate the tmf
Hurewicz image below the 192–stem. The results in this subsection drastically reduce
the number of classes which we must lift in the sequel.
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Lemma 7.1 The Hurewicz map S ! tmf is a map of ring spectra. In particular , it
preserves multiplication.

Corollary 7.2 Suppose ˛ D ˇ
 is a product of elements ˇ; 
 2 ��.tmf/ with lifts
ž; z
 2 ��.S/. Then žz
 2 ��.S/ must be a lift of ˛.

With this in mind, it suffices to find a subset of the Hurewicz image which generates
the entire Hurewicz image up to the 192–stem under products. Our desired generating
subset is given in Corollary 7.16. We will obtain our generating set by listing generators
in lemmas and then recording their products in corollaries, until we have exhausted the
tmf Hurewicz image up to stem 192.

Lemma 7.3 The classes � 2 �1.tmf/, � 2 �3.tmf/, � 2 �8.tmf/, � 2 �14.tmf/,
x� 2 �20.tmf/, u 2 �39.tmf/ and w 2 �45.tmf/ are in the Hurewicz image.

Proof The elements �, �, �, �, x�, u and w are all well-known elements of �s
�, detected

in the Adams spectral sequence by h1, h2, c0, d0, g, �h1d0 and �h1g [22, Table 8].
These elements have nontrivial images under the map of Adams spectral sequences
induced by the unit map S ! tmf. The lemma is therefore somewhat tautological, as
the corresponding elements in tmf were defined in Section 1 to be the Hurewicz images
of these elements.

Lemma 7.4 The class q 2 �32.tmf/ is in the Hurewicz image.

Proof See the proof of Lemma 7.18(1).

Corollary 7.5 The classes �2 2 �2.tmf/, �2 2 �6.tmf/, �3 D �� 2 �9.tmf/, �� 2
�15.tmf/, �� 2 �17.tmf/, x�� 2 �21.tmf/, x��2 D �� 2 �22.tmf/, x�� D �2 2 �28.tmf/,
q� 2 �33.tmf/, x�� 2 �34.tmf/, x��� 2 �35.tmf/, x�2 2 �40.tmf/, x�2� 2 �41.tmf/,
x�2�2D�32�42.tmf/,w�2�46.tmf/, x�q2�52.tmf/, x�q�2�53.tmf/, x�2�2�54.tmf/,
x�u 2 �59.tmf/, x�3 2 �60.tmf/, x�w 2 �65.tmf/, x�w� 2 �66.tmf/, x�4 2 �80.tmf/,
x�2w 2 �85.tmf/, w2 2 �90.tmf/, x�5 2 �100.tmf/, x�3w 2 �105.tmf/, x�w2 2 �110.tmf/,
x�4w 2 �125.tmf/ and x�2w2 2 �130.tmf/ are in the Hurewicz image.

Lemma 7.6 The classes f��2g� 2 �54.tmf/, f��2g� 2 �65.tmf/ and f�2�2gx� 2

�70.tmf/ are in the Hurewicz image.

Proof See Lemma 7.21.

Corollary 7.7 The classes f��2g�2 2 �57.tmf/ and f��2g�� 2 �68.tmf/ are in the
Hurewicz image.
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Lemma 7.8 The classes f��4g� 2�102.tmf/, f��4g 2�104.tmf/, f��4g 2�110.tmf/,
2�4x� 2 �116.tmf/ and f��4gx� 2 �117.tmf/ are in the Hurewicz image.

Proof See Lemmas 7.22 and 7.23.

Corollary 7.9 The classes f��4g� 2 �105.tmf/, f��4g� 2 �111.tmf/, f��4g� 2

�113.tmf/, f��4g�22�116.tmf/, f��4gx��2�118.tmf/, f��4g�2�124.tmf/, f��4gx�2

�130.tmf/, f��4gx�� 2 �131.tmf/, f��4gx�2 2 �137.tmf/ and f��4gx�2� 2 �138.tmf/
are in the Hurewicz image.

Lemma 7.10 The class fq�4g 2 �128.tmf/ is in the Hurewicz image.

Proof See Lemma 7.24.

Corollary 7.11 The classes fq�4g� 2 �129.tmf/, fq�4g� D w��4 2 �142.tmf/,
fq�4gx� 2 �148.tmf/, fq�4gx�� 2 �149.tmf/ and fq�4gx��2 2 �150.tmf/ are in the
Hurewicz image.

Lemma 7.12 The class �4u 2 �135.tmf/ is in the Hurewicz image.

Proof See Lemma 7.25.

Corollary 7.13 The classes �4u� 2 �136.tmf/ and �4ux� 2 �155.tmf/ are in the
Hurewicz image.

Lemma 7.14 The classes f��6g� 2 �150.tmf/ and f��6g� 2 �161.tmf/ are in the
Hurewicz image.

Proof See Lemma 7.26.

Corollary 7.15 The classes f��6g�2 2 �153, f��6g�3 2 �156, f��6g�� 2 �162.tmf/
and f��6g�� 2 �164.tmf/ are in the Hurewicz image.

Thus our calculation of the Hurewicz image up to dimension 192 has been reduced to
showing that the following list of elements is in the Hurewicz image:

Corollary 7.16 Up to dimension 192, the Hurewicz image is generated under multipli-
cation by˚
�; �; �; �; x�; q;u; w; f��2

g�; f��2
g�; f�2�2

gx�; f��4
g�; f��4

g; f��4
g; 2�4

x�;

f��4
gx�; fq�4

g; �4u; f��6
g�; f��6

g�
	
:
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Lifting generators

We will now describe our method for lifting generators. Given an element x 2 tmf�, we
want to lift it to an element y 2 �s

�. To this end, we consider the diagram of (M)ASSs

ExtA.2/�.H.8; v
8
1
// +3

��

tmf�C18M.8; v8
1
/

��

ExtA�.H.8; v
8
1
// +3

66

��

��C18M.8; v8
1
/

77

��

ExtA.2/�.F2/ +3 tmf�

ExtA�.F2/ +3

66

�s
�

66

First, we identify an element

x0 2 ExtA.2/�.F2/

which detects the element x in the ASS for tmf�, and then we identify an element

Qx0 2 ExtA.2/�.H.8; v
8
1//

which maps to it. This element Qx0 can be regarded as an element of the 0–line of the
algebraic tmf resolution for ExtA�.H.8; v

8
1
//. We will show that the element Qx0 is a

permanent cycle in the algebraic tmf resolution, and thus lifts to an element

Qy0 2 ExtA�.H.8; v
8
1//:

We will then show that the element Qy0 is a permanent cycle in the MASS for M.8; v8
1
/,

and hence detects an element

Qy 2 ��M.8; v8
1/:

Let y 2 �s
� be the projection of Qy to the top cell. It then follows that the image of y in

tmf� equals x, modulo terms of higher Adams filtration (AF). Furthermore, using the
v32

2
–self-map on M.8; v8

1
/, we deduce that the element

v32k
2 Qy 2 ��M.8; v8

1/

projects on the top cell to an element v32k
2

y 2 �s
� whose image in tmf� is �8kx

modulo terms of higher Adams filtration. Finally, Theorem 6.1 eliminates the potential
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ambiguity caused by elements of higher Adams filtration, since the elements of higher
Adams filtration are v4

1
–periodic.

We will show all of the generators of Corollary 7.16 except for �, � and � actually
come from the top cell of M.8; v8

1
/, and thus v32

2
–periodicity extends our work below

dimension 192 to all dimensions. It turns out that �2 and � do not come from the top
cell of M.8; v8

1
/. In order to show that the elements

�8k�2; �8k� 2 ��tmf

are in the Hurewicz image for k > 0, we will instead show that �8�2 and �8� come
from the top cell of M.8; v8

1
/ (Lemma 7.27).

Lemma 7.17 The following classes lift to the top cell of M.8; v8
1
/:

(1) � 2 �14.tmf/.

(2) x� 2 �20.tmf/.

Proof We will check that each element lifts using the AHSS:

(1) Since � is 2–torsion (and thus 8–torsion), it lifts to �Œ1� 2 �15.M.8//. Inspection
of [25, page 3] in stems 31 and 32 and AF� 12 reveals that there are no classes which
could detect v8

1
�Œ1�. Therefore �Œ1� lifts to �Œ18� 2 �32.M.8; v8

1
//.

(2) Since x� is 8–torsion, it lifts to x�Œ1� 2 �21.M.8//. Inspection of [25, page 3] in
stems 36 and 37 and AF� 12 reveals that there are no classes which could detect v8

1
x�Œ1�.

Therefore x�Œ1� lifts to x�Œ18� 2 �38.M.8; v8
1
//.

Lemma 7.18 The following classes lift to the top cell of M.8; v8
1
/:

(1) q 2 �32.tmf/.

(2) u 2 �39.tmf/.

(3) w 2 �45.tmf/.

Proof We will check that each element lifts using the Atiyah–Hirzebruch spectral
sequence (AHSS).

(1) We begin with q 2 �32.tmf/, which we will define to be the unique nontrivial
c4–torsion class detected by the element

v4
2c0 2 Ext7;7C32

A.2/�
.F2/

Geometry & Topology, Volume 27 (2023)



2818 Mark Behrens, Mark Mahowald and J D Quigley

in the ASS for tmf. The element v4
2
c0 does not lift to ExtA� . Nevertheless, we claim

that there is an element9 Qq 2 �s
32

detected by the element

�h1h3 2 Ext6;6C32
A�

.F2/

in the ASS for the sphere, which maps to q under the tmf Hurewicz homomorphism.
Our strategy will be to argue that Qq and q lift to

QqŒ18� 2 �50M.8; v8
1/ and qŒ18� 2 tmf50M.8; v8

1/;

respectively, and that the element which detects QqŒ18� in the MASS for M.8; v8
1
/ maps

to the element which detects qŒ18� in the MASS for tmf^M.8; v8
1
/ under the map

.7.19/ ExtA�.H.8; v
8
1//! ExtA.2/�.H.8; v

8
1//:

Inspection of [25, page 3] in stem 32 and AF� 7 reveals that Qq is 2–torsion (and thus
8–torsion), so Qq lifts to QqŒ1�2�33.M.8//. Inspection of [25, page 3] in stems 48 and 49

and AF� 14 reveals that there are no classes which could detect v8
1
QqŒ1�. Therefore QqŒ1�

lifts to QqŒ18� 2 �50.M.8; v8
1
//. A similar but easier analysis reveals that the lift qŒ18�

exists.

The elements �h1h3 2 ExtA�.F2/ and v4
2
c0 2 ExtA.2/�.F2/ are h0–torsion, and hence

lift to elements

�h1h3Œ1� 2 ExtA�.H.8//; v4
2c0Œ1� 2 ExtA.2/�.H.8//

which detect QqŒ1� 2 �33M.8/ and qŒ1� 2 tmf33M.8/, respectively, in the MASS. To
identify the elements which detect QqŒ18� and qŒ18� in the MASS, we make use of the
geometric boundary theorem [5, Appendix A].10 The differentials

d3.v
2
1h2;1g2Œ1�/D v8

1�h3h1Œ1�; d4.v
2
1h2;1g2Œ1�/D v8

1v
4
2c0Œ1�

in the MASSs for M.8/ and tmf^M.8/, respectively, imply that QqŒ18� 2 �50M.8; v8
1
/

and qŒ18� 2 tmf50M.8; v8
1
/ are detected by

v2
1h2;1g2Œ1� 2 ExtA�.H.8; v

8
1//; v2

1h2;1g2Œ1� 2 ExtA.2/�.H.8; v
8
1//

in the MASSs for M.8; v8
1
/ and tmf^M.8; v8

1
/, respectively, and the former maps to

the latter under the map (7.19).

9The element we are calling Qq 2 �s
32

is traditionally called q, but we add the tilde to distinguish it from
the element we are calling q in �32tmf.
10We are specifically using case .5/ of the geometric boundary theorem since the relevant class (denoted
by p�.y/ in the theorem statement) is a permanent cycle. We will be using this argument repeatedly in
subsequent proofs in this section, and for brevity will simply say “by the geometric boundary theorem . . . ”
in these subsequent instances.
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(2) Since u 2 �39tmf is detected by an element of ExtA.2/� in the image of the map

.7.20/ ExtA�.F2/! ExtA.2/�.F2/;

we immediately see that the element u 2 �39.S/ maps to it. We are left with lifting
u 2 �s

39
to the top cell of M.8; v8

1
/. Inspection of [25, page 3] in stem 39 and

AF� 10 reveals that u is 2–torsion (and thus 8–torsion), so u lifts to uŒ1�2 �40.M.8//.
Inspection of [25, page 3] in stems 55 and 56 and AF � 17 reveals that there are no
classes which could detect v8

1
uŒ1�. Therefore uŒ1� lifts to uŒ18� 2 �57.M.8; v8

1
//.

(3) The element w 2 �45tmf is detected by an element which is in the image of the
map (7.20), and thus we deduce that w 2 �45.S/ maps to it. A similar argument to the
case above shows that w lifts to wŒ18� 2 �63.M.8; v8

1
//.

Lemma 7.21 The following classes lift to the top cell of M.8; v8
1
/:

(1) �2�2 2 �54.tmf/.

(2) �2�� 2 �65.tmf/.

(3) �2�2x� 2 �70.tmf/.

Proof We follow the proof of [7, Theorem 11.1] (which builds on [7, Example 9.5
and Proposition 10.1]).

(1) We begin with �2�2 2 �54.tmf/. This class lifts to an element

�2�2Œ1� 2 tmf55.M.8//

which is detected by
v8

2h2
2Œ1� 2 Ext12;55C12

A.2/�
.H.8//

in the MASS for tmf^M.8/. Let

�2�2Œ18� 2 tmf72.M.8; v8
1//

be a lift of �2�2Œ1�. In the MASS for tmf^M.8/, there is a differential

d2.v
10
2 v4

1h2h0Œ1�/D v
8
2v

8
1h2

2Œ1�:

Since v10
2
v4

1
h2h0Œ1� is a permanent cycle in the MASS for tmf^M.8; v8

1
/, it follows

from the geometric boundary theorem that �2�2Œ18� is detected by v10
2
v4

1
h2h0Œ1� in

the MASS for tmf^M.8; v8
1
/. In particular, we see that �2�2Œ18� has modified Adams

filtration (MAF) 18 and stem 72.
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We now check that v10
2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/. Its relative position11 is t � s D 65 and AF D 17, its relative position

in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 58 and AFD 16, and its relative position in

ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 51 and AFD 15, the last of which lies above

the vanishing line. Inspection of the relevant charts shows that v10
2
v4

1
h2h0Œ1� cannot

support a nontrivial d1–differential since the target bidegrees are zero. Therefore
v10

2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic tmf resolution for H.8; v8

1
/ and

therefore it detects an element fv10
2
v4

1
h2h0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same algebraic tmf resolution charts reveals that there are
no possible targets for a nontrivial differential supported by fv10

2
v4

1
h2h0Œ1�g in the

MASS for M.8; v8
1
/. Therefore fv10

2
v4

1
h2h0Œ1�g is a permanent cycle which detects a

lift of �2�2.

(2) The class �2�� 2 �65.tmf/ lifts to an element

�2��Œ1� 2 tmf66.M.8//

which is detected by
v8

2h2d0Œ1� 2 Ext15;66C15
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �2��Œ1� to an element

�2��Œ18� 2 tmf83.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
10
2 v4

1d0h0Œ1�/D v
8
2v

8
1h2d0Œ1�:

By the geometric boundary theorem, v8
2
��Œ18� is detected by v10

2
v4

1
d0h0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �2��Œ18� has MAF 21 and stem 83.

We now check that v10
2
v4

1
d0h0Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t � sD 76 and AFD 20,

its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 69 and AFD 19, and its

relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 62 and AFD 18, the last of

which has targets only above the vanishing line. Inspection of the relevant charts shows

11We will say that x 2 ExtA.2/�.H.8; v
8
1
// has relative position .t�s; s/ in ExtA.2/�.boI ˝H.8; v8

1
// if

the image of a differential supported by x in the algebraic tmf resolution lies in ExtsC1;t
A.2/�

.boI˝H.8; v8
1
//,

and the image of a differential supported by x in the MASS could be detected in the algebraic tmf
resolution by an element in ExtsCr;t�rC1

A.2/�
.bo1˝H.8; v8

1
//. In other words, if you were to pretend x is

an element in Exts;t
A.2/�

.boI ˝H.8; v8
1
//, then dr –differentials in the algebraic tmf resolution “look” like

Adams d1’s, and dr –differentials in the MASS “look” like Adams dr ’s.
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that v10
2
v4

1
d0h0Œ1� cannot support a nontrivial d1–differential since the target bidegrees

are zero. Therefore v10
2
v4

1
d0h0Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/ and detects an element fv10

2
v4

1
d0h0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a non-
trivial differential supported by fv10

2
v4

1
d0h0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv10
2
v4

1
d0h0Œ1�g is a permanent cycle.

(3) The class �2�2x� 2 �70.tmf/ lifts to an element

�2�2
x�Œ1� 2 tmf71.M.8//

which is detected by
g2h6

2;1Œ1� 2 Ext16;71C16
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �2�2x�Œ1� to an element

�2�2
x�Œ18� 2 tmf88.M.8; v8

1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
8
2v

4
1d0e0Œ1�/D g2v8

1h6
2;1Œ1�:

By the geometric boundary theorem,�2�2x�Œ18� is detected by v8
2
v4

1
d0e0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �2�2x�Œ18� has MAF 24 and stem 88.

We now check that v8
2
v4

1
d0e0Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t � s D 81 and AFD 23

and its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 74 and AFD 22, the

latter of which lies above the vanishing line. Inspection of the relevant charts shows
that v8

2
v4

1
d0e0Œ1� cannot support a nontrivial differential in the algebraic tmf resolution

for H.8; v8
1
/ since the target bidegrees are zero. Therefore v8

2
v4

1
d0e0Œ1� is a permanent

cycle in the algebraic tmf resolution for H.8; v8
1
/ and therefore lifts to an element

fv8
2
v4

1
d0e0Œ1�g in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by fv8

2
v4

1
d0e0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv8
2
v4

1
d0e0Œ1�g is a permanent cycle in the MASS for M.8; v8

1
/.

Lemma 7.22 The following classes lift to the top cell of M.8; v8
1
/:

(1) �4�2 2 �102.tmf/, �4� 2 �104.tmf/, �4� 2 �110.tmf/.

(2) �42x� 2 �116.tmf/.
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Proof (1) These classes were lifted in [7, Theorem 11.1].

(2) The class �42x� 2 �116.tmf/ lifts to an element

�42x�Œ1� 2 tmf117.M.8//

which is detected by
v16

2 h0gŒ1� 2 Ext23;117C23
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �42x�Œ1� to an element

�42x�Œ18� 2 tmf134.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
18
2 v4

1d0h2Œ1�/D v
16
2 v8

1h0gŒ1�:

By the geometric boundary theorem,�42x�Œ18� is detected by v18
2
v4

1
d0h2Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �42x�Œ18� has MAF 29 and stem 134.

We now check that v18
2
v4

1
d0h2Œ1� is a permanent cycle in the algebraic tmf resolution for

H.8; v8
1
/. Its relative position in ExtA.2/�.bo1˝H.8; v8

1
// is t�sD 127 and AFD 28,

its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t � s D 120 and AF D 27, and

its relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 113 and AF D 26, the

last of which lies above the vanishing line. Inspection of the relevant charts shows
that v16

2
2x�Œ18� cannot support a nontrivial d1–differential since the target bidegrees

are zero. Therefore v16
2

2x�Œ18� is a permanent cycle in the algebraic tmf resolution for
H.8; v8

1
/ and lifts to an element v16

2
2x�Œ18� in ExtA�.H.8; v

8
1
//.

Finally, inspection of the same charts reveals that there are no possible targets for a
nontrivial differential supported by v16

2
2x�Œ18� in the MASS for M.8; v8

1
/. Therefore

v16
2

2x�Œ18� is a permanent cycle.

Contrary to the previous cases, there are several potential obstructions to lifting �4x��2

�117.tmf/ to the top cell of M.8; v8
1
/ which are tricky to resolve. However, since this

element is 2–torsion and v4
1

–torsion, we may instead attempt to lift it to the top cell of
the generalized Moore spectrum M.2; v4

1
/ of [6], where the potential obstructions are

much simpler to analyze. It then follows from the fact that the composite

†8M.2; v4
1/
�4v4

1
��!M.8; v8

1/! S18

is projection onto the top cell of M.2; v4
1
/ that�4x�� does lift to the top cell of M.8; v8

1
/.
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Lemma 7.23 The class �4x�� 2 �117.tmf/ lifts to the top cell of M.2; v4
1
/.

Proof The class �4�x� 2 �117.tmf/ lifts to an element

�4�x�Œ1� 2 tmf118.M.2//

which is detected by
v16

2 h1gŒ1� 2 Ext21;118C21.H.2//

in the MASS for tmf^M.2/. Lift �4�x�Œ1� to an element

�4�x�Œ10� 2 tmf127.M.2; v4
1//:

In the MASS for tmf^M.2/, there is a differential

d3.v
20
2 h2

2Œ1�/D v
16
2 v4

1h1gŒ1�:

It follows from the geometric boundary theorem that �4�x�Œ10� is detected by v20
2

h2
2
Œ1�

in the MASS for tmf^M.2; v4
1
/. In particular, we see that �4�x�Œ10� has MAF 24 and

stem 127.

We now check that v20
2

h2
2
Œ1� is a permanent cycle in the algebraic tmf resolution for

H.2; v4
1
/. Its relative position in ExtA.2/�.bo1˝H.2; v4

1
// is t�sD 120 and AFD 23,

its relative position in ExtA.2/�.bo˝2
1
˝H.2; v4

1
// is t � s D 113 and AFD 22, and its

relative position in ExtA.2/�.bo˝3
1
˝H.2; v4

1
// is t�sD 106 and AFD 21. Inspection

of the relevant charts [6, Figures 6.4–6.5] shows that there is potentially a nontrivial
differential

d1.v
20
2 h2

2Œ1�/D x119;24;

in the algebraic tmf resolution, where

x119;24 2 Ext24;119C24
A.2/�

.bo1˝H.2; v4
1//;

but, since v20
2

h2
2
Œ1� is v16

2
–divisible and x119;24 is not, this differential cannot occur

(compare with the proof of [7, Proposition 10.1]). Therefore v20
2

h2
2
Œ1� is a permanent

cycle in the algebraic tmf resolution for H.2; v4
1
/ and therefore lifts to an element

fv20
2

h2
2
Œ1�g in ExtA�.H.2; v

4
1
//.

Finally, inspection of the same charts reveals that there are no possible nontrivial
differentials supported by fv20

2
h2

2
Œ1�g in the MASS for M.2; v4

1
/. Therefore fv20

2
h2

2
Œ1�g

is a permanent cycle in the MASS for M.2; v4
1
/.

Lemma 7.24 The class �4q 2 �128.tmf/ lifts to the top cell of M.8; v8
1
/.

Proof The class �4q 2 �128.tmf/ lifts to an element

�4qŒ1� 2 tmf129.M.8//
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which is detected by
v20

2 c0Œ1� 2 Ext23;129C23
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �4qŒ1� to an element

�4qŒ18� 2 tmf146.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d4.v
16
2 g2h2;1v

2
1 Œ1�/D v

20
2 v8

1c0Œ1�:

By the geometric boundary theorem, �4qŒ18� is detected by v16
2

g2h2;1v
2
1
Œ1� in the

MASS for tmf^M.8; v8
1
/. In particular, we see that�4qŒ18� has MAF 29 and stem 146.

We now check that v16
2

g2h2;1v
2
1
Œ1� is a permanent cycle in the algebraic tmf resolution

for H.8; v8
1
/. Its relative position in ExtA.2/�.bo1 ˝H.8; v8

1
// is t � s D 139 and

AFD 28, its relative position in ExtA.2/�.bo˝2
1
˝H.8; v8

1
// is t�sD 132 and AFD 27,

and its relative position in ExtA.2/�.bo˝3
1
˝H.8; v8

1
// is t � s D 125 and AFD 26.

The proof of Lemma 7.18(1) implies that the element

g2h2;1v
2
1 Œ1� 2 ExtA.2/�.H.8; v

8
1//

is a permanent cycle in the algebraic tmf resolution for H.8; v8
1
/. It follows from

Lemma 5.1 that
v16

2 g2h2;1v
2
1 Œ1�

is a permanent cycle in the algebraic tmf resolution for H.8; v8
1
/, and detects an element

v16
2 � fg

2h2;1v
2
1 Œ1�g 2 ExtA�.H.8; v

8
1//

which persists to the E3–page of the MASS for M.8; v8
1
/.

The only possibility for this element to support a nontrivial MASS differential is for it
to support a d3–differential whose target to by detected by the element

v1h19
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//

in the algebraic tmf resolution for H.8; v8
1
/.

We wish to use Lemma 5.5 to argue that the element v1h19
2;1
.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18� detects

an element in ExtA�.H.8; v
8
1
// which is zero in the E3–page of the MASS. In the

MASS for bo2
1 ^M.8; v8

1
/, there is a differential

d2.v
8
2h10

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�/D v1h19

2;1.v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�:
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Using the map

†16tmf^ bo2
1 ^M.8; v8

1/ ,! tmf^ tmf2
^M.8; v8

1/

we get the same differential in the MASS for tmf^tmf2^M.8; v8
1
/. By Proposition 4.3,

the element v8
2
h10

2;1
.v�1

0
v2

2
Œ�8

1
; �4

2
�/Œ18� is a permanent cycle in the algebraic tmf resolu-

tion for H.8; v8
1
/, detecting the element

�2v6
1M.g2/Œ1� 2 ExtA�.H.8; v

8
1//:

Therefore the hypotheses of Lemma 5.5 are satisfied, and we deduce that

v1h19
2;1.v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �/Œ18�

detects an element which is zero in the E3–page of the MASS, and hence cannot be
the target of a nontrivial d3–differential in the MASS.

Lemma 7.25 The class �4u 2 �135.tmf/ lifts to the top cell of M.8; v8
1
/.

Proof The class �4u 2 �135.tmf/ lifts to an element

�4uŒ1� 2 tmf136.M.8//

which is detected by

v16
2 v2

1x35Œ1� 2 Ext25;136C25
A.2/�

.H.8//

in the MASS for tmf^M.8/. Lift �4uŒ1� to an element

�4uŒ18� 2 tmf153.M.8; v8
1//:

There is a differential in the MASS for tmf^M.8/,

d4.v
16
2 v3

1h2
2;1g2Œ1�/D v16

2 v10
1 x35Œ1�;

so, by the geometric boundary theorem, �4uŒ18� is detected by v16
2
v3

1
h2

2;1
g2Œ1� in the

MASS for tmf^M.8; v8
1
/. In particular, �4uŒ18� has MAF 31 and stem 153.

We now check that v16
2
v3

1
h2

2;1g2Œ1� is a permanent cycle in the algebraic tmf resolution
for H.8; v8

1
/. Note that v3

1
h2

2;1
g2Œ1� detects uŒ18� in the MASS for tmf^M.8; v8

1
/. In

Lemma 7.18, we established that uŒ18� lifts to M.8; v8
1
/, and therefore v3

1
h2

2;1
g2Œ1� is

a permanent cycle in the algebraic tmf resolution and it detects a permanent cycle in
the MASS for M.8; v8

1
/. It follows from Lemma 5.1 that

v16
2 v3

1h2
2;1g2Œ1�

is a permanent cycle in the algebraic tmf resolution and detects an element

v16
2 � fv

3
1h2

2;1g2Œ1�g 2 ExtA�.H.8; v
8
1//:
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Inspection of the relevant charts shows that the only possible nontrivial MASS differ-
entials supported by this element would be

d2.v
16
2 � fv

2
1h2

2;1g2Œ1�g/D fv8
2h15

2;1�
4
2 Œ18�g:

However, we have
d2.v

16
2 � fv

3
1h2

2;1g2Œ1�g/D 0;

since it is a product of d2–cycles.

Lemma 7.26 The following classes lift to the top cell of M.8; v8
1
/:

(1) �6�2 2 �150.tmf/.

(2) �6�� 2 �161.tmf/.

Proof (1) The class �6�2 2 �150.tmf/ lifts to an element

�6�2Œ1� 2 tmf151.M.8//

which is detected by
v24

2 h2
2Œ1� 2 Ext28;151C28

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �6�2Œ1� to an element

�6�2Œ18� 2 tmf168.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
26
2 v4

1h2h0Œ1�/D v
24
2 v8

1h2
2Œ1�:

By the geometric boundary theorem,�6�2Œ18� is detected by v26
2
v4

1
h2h0Œ1� in the MASS

for tmf^M.8; v8
1
/. In particular, we see that �6�2Œ18� has MAF 34 and stem 168.

In Lemma 7.21(1), we showed that v10
2
v4

1
h2h0Œ1� is a permanent cycle in the algebraic

tmf resolution, detecting an element

fv10
2 v4

1h2h0Œ1�g 2 ExtA�.H.8; v
8
1//

in the algebraic tmf resolution for H.8; v8
1
/. By Lemma 5.1, this is also true of

v26
2
v4

1
h2h0Œ1�.

Lemma 5.1 implies that d2.v
16
2
/D 0 in the MASS for M.8; v8

1
/. By Lemma 7.21(1),

it follows that
d2.v

16
2 � fv

10
2 v4

1h2h0Œ1�g/D 0:

Inspection of the algebraic tmf resolution charts reveals that there are no possible targets
of a longer MASS differential supported by v16

2
� fv10

2
v4

1
h2h0Œ1�g.
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(2) The class �6�� 2 �161.tmf/ lifts to an element

�6��Œ1� 2 tmf162.M.8//

which is detected by

v24
2 d0h2Œ1� 2 Ext31;161C31

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �6��Œ1� to an element

�6��Œ18� 2 tmf179.M.8; v8
1//:

In the MASS for tmf^M.8/, there is a differential

d2.v
26
2 v4

1h0d0Œ1�/D v
24
2 v8

1h2d0Œ1�:

By the geometric boundary theorem, �6��Œ18� is detected by v26
2
v4

1
h0d0Œ1� in the

MASS for tmf ^M.8; v8
1
/. In particular, we see that �6��Œ18� has MAF 37 and

stem 179.

We showed in Lemma 7.21 that v10
2
v4

1
h0d0Œ1� is a permanent cycle in the algebraic

tmf resolution. By Lemma 5.1, it follows that v26
2
v4

1
h0d0Œ1� is a permanent cycle in

the algebraic tmf resolution for H.8; v8
1
/ and lifts to an element fv26

2
v4

1
h0d0Œ1�g in

ExtA�.H.8; v
8
1
//.

Finally, inspection of the algebraic tmf resolution charts reveals that there are no pos-
sible nontrivial differentials on fv26

2
v4

1
h0d0Œ1�g in the MASS for M.8; v8

1
/. Therefore

fv26
2
v4

1
h0d0Œ1�g is a permanent cycle.

Lemma 7.27 The classes �8�2 2 �198tmf and �8� 2 �200tmf lift to the top cell of
M.8; v8

1
/.

Proof The classes �8�2 2 �198.tmf/ and �8� 2 �200tmf lift to elements

�8�2Œ1� 2 tmf199.M.8//; �8�Œ1� 2 tmf201.M.8//

which are detected by

v32
2 h2

2Œ1� 2 Ext36;199C36
A.2/�

.H.8//; v32
2 c0Œ1� 2 Ext37;201C37

A.2/�
.H.8//

in the MASS for tmf^M.8/. Lift �8�2Œ1� and �8�Œ1� to elements

�8�2Œ18� 2 tmf210.M.8; v8
1//; �8�Œ18� 2 tmf212.M.8; v8

1//:
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In the MASS for tmf^M.8/, there are differentials

d2.v
32
2 v4

1h0h2v
2
2 Œ1�/D v

32
2 v8

1h2
2Œ1�; d3.v

32
2 v4

1e0Œ1�/D v
32
2 v8

1c0Œ1�:

By the geometric boundary theorem,�8�2Œ18� is detected by v34
2
v4

1
h0h2Œ1� and�8�Œ18�

is detected by v32
2
v4

1
e0Œ1� in the MASS for tmf^M.8; v8

1
/.

In [7, Theorem 11.1] the classes�4�2Œ18�2�120M.8; v8
1
/ and�4�Œ18�2�122M.8; v8

1
/

were produced by showing that the elements

v18
2 v4

1h0h2Œ1� 2 Ext26;120C26
A.2/�

.H.8; v8
1//; v16

2 v4
1e0Œ1� 2 Ext26;122C26

A.2/�
.H.8; v8

1//

detect via the algebraic tmf resolution elements

fv18
2 v4

1h0h2Œ1�g2Ext26;120C26
A�

.H.8; v8
1//; fv

16
2 v4

1e0Œ1�g2Ext26;122C26
A�

.H.8; v8
1//;

which are permanent cycles in the MASS for M.8; v8
1
/.

Since the element v16
2
2 ExtA�.H.8; v

8
1
// is the square of the element v8

2
, we have

d2.v
16
2
/D 0. We deduce that the elements

v16
2 � fv

18
2 v4

1h0h2Œ1�g 2 Ext26;120C26
A�

.H.8; v8
1//;

v16
2 � fv

16
2 v4

1e0Œ1�g 2 Ext26;122C26
A�

.H.8; v8
1//

persist to the E3–page of the MASS for M.8; v8
1
/. If we can show they are permanent

cycles, we are done.

We begin with fv34
2
v4

1
h0h2Œ1�g. Examination of the algebraic tmf resolution for

M.8; v8
1
/ reveals that the only possibility of a nontrivial differential in the MASS

supported by this element would be a d4.fv
34
2
v4

1
h0h2Œ1�g/, which would be detected

by
h33

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18� 2 ExtA.2/�.bo˝2

1
˝H.8; v8

1//:

In the MASS for tmf^ bo^2
1 there is a differential

dmass
2 .�2h24

2;1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�/D h33

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�:

Using the map (5.7) we deduce that there is a corresponding differential in the MASS
for tmf^ tmf^2. The elements

h33
2;1v1v

�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�; �2h24

2;1v1v
�1
0 v2

2 Œ�
8
1 ; �

4
2 �Œ18�

respectively detect

v7
1h23

2;1Mg2Œ1� 2 ExtA�.H.8; v
8
1//; �2v6

1h14
2;1Mg2Œ1� 2 ExtA�.H.8; v

8
1//
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in the algebraic tmf resolution for M.8; v8
1
/. We therefore deduce from Lemma 5.5

that v7
1
h23

2;1
Mg2Œ1� is killed by

dmass
2 .�2v6

1h14
2;1Mg2Œ1�/

in the MASS for M.8; v8
1
/. Therefore it cannot be the target of a nontrivial dmass

4
.

We now consider fv32
2
v4

1
e0Œ1�g. Examination of the algebraic tmf resolution for

M.8; v8
1
/ reveals that the only possibility of a nontrivial differential in the MASS

supported by this element would be a d4.fv
32
2
v4

1
e0Œ1�g/, which would be detected by

�2h28
2;1�

4
2 Œ18� 2 ExtA.2/�.bo1˝H.8; v8

1//

in the algebraic tmf resolution for M.8; v8
1
/. To eliminate this possibility we wish to

employ Case 1 of Remark 5.6, using the differential

dmass
3 .�2h25

2;1v
�2
0 v2

2�
16
1 Œ18�/D�2h28

2;1�
4
2 Œ18�

in the MASS for tmf^ tmf^M.8; v8
1
/. The element �2h25

2;1
v�2

0
v2

2
�16

1
Œ18� detects the

element
�2h19

2;1Q2Œ18� 2 ExtA�.H.8; v
8
1//

in the algebraic tmf resolution for M.8; v8
1
/. We just need to check that there is no

possibility for �2h19
2;1

Q2Œ18� to support a nontrivial dmass
2

in the MASS for M.8; v8
1
/.

However, examination of the algebraic tmf resolution for M.8; v8
1
/ reveals there are

no classes which could detect the target of such a nontrivial dmass
2

.
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Hamiltonian no-torsion

MARCELO S ATALLAH

EGOR SHELUKHIN

In 2002, Polterovich established that on closed aspherical symplectic manifolds,
Hamiltonian diffeomorphisms of finite order, also called Hamiltonian torsion, must
be trivial. We prove the first higher-dimensional Hamiltonian no-torsion theorems
beyond that of Polterovich, by considering the dynamical aspects of the problem.
Our results are threefold.

First, we show that closed symplectic Calabi–Yau and negative monotone symplectic
manifolds admit no Hamiltonian torsion. A key role is played by a new notion of a
Hamiltonian diffeomorphism with nonisolated fixed points.

Second, going beyond topological constraints by means of Smith theory in filtered
Floer homology, barcodes and quantum Steenrod powers, we prove that every closed
positive monotone symplectic manifold admitting Hamiltonian torsion is geomet-
rically uniruled by pseudoholomorphic spheres. In fact, we produce nontrivial
homological counts of such curves, answering a close variant of Problem 24 from
the introductory monograph of McDuff and Salamon. This provides additional
no-torsion results and obstructions to Hamiltonian actions of compact Lie groups,
related to a celebrated result of McDuff from 2009, and lattices such as SL.k;Z/
for k � 2. We also prove that there is no Hamiltonian torsion diffeomorphism with
noncontractible orbits.

Third, by defining a new invariant of a Hamiltonian diffeomorphism, we prove a
first nontrivial symplectic analogue of Newman’s 1931 theorem on finite groups
of transformations. Namely, for each monotone symplectic manifold there exists a
neighborhood of the identity in the Hamiltonian group endowed with Hofer’s metric
or Viterbo’s spectral metric that contains no finite subgroups.
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1 Introduction and main results

1.1 Introduction

The question of the existence of finite group actions on manifolds has been of interest
in topology for a long time. It was in order to study this question that P A Smith [99]
developed in the 1930s what is now called Smith theory for cohomology with Fp

coefficients in the context of continuous actions of finite p-groups. We refer the reader
to Borel [4], Bredon [5], Floyd [25] and Hsiang [45] for references on Smith theory.

Quite a lot of progress regarding this question has been obtained in low-dimensional
topology (see for example Morgan [62]) and in smooth topology in arbitrary dimension
(see for example Mundet i Riera [78]). As a first easy example, we remark that it is not
hard to classify finite group actions on closed surfaces. Further progress was made in
low-dimensional symplectic topology (Chen and Kwasik [10]) ruling out symplectic
finite group actions acting trivially on homology on certain symplectic Calabi–Yau
4–manifolds (see also Wu and Liu [109]) by means of tools such as Seiberg–Witten
theory, which are available only in dimension four.

In higher-dimensional symplectic topology,1 while the existence of general symplectic
finite group actions has to the best of our knowledge not been ruled out in any given set-
ting,2 it was shown by Polterovich [72] that nontrivial Hamiltonian finite group actions,
which we refer to as Hamiltonian torsion, on symplectically aspherical manifolds do not
exist. Essentially, the only other constraints on symplectic and Hamiltonian finite group
actions in higher dimensions were obtained by Mundet i Riera [77], showing, roughly
speaking, that finite groups acting in a Hamiltonian way (or symplectically in the simply
connected case) must be approximately abelian: specifically, they satisfy the Jordan
property. In turn, abelian Hamiltonian finite group actions do exist on closed symplectic
manifolds such as toric varieties, which tend to have a lot of pseudoholomorphic curves.
These developments, as well as further results that we describe below, have motivated
Problem 24 from the list of problems that are “appealing in their own right and central
to symplectic topology” in the monograph [59] of McDuff and Salamon. This problem
seeks obstructions to the existence of Hamiltonian torsion related to the scarcity of
pseudoholomorphic curves in the manifold. One of the goals of this paper is to produce
a solution to a close version of Problem 24, proving a result which is, in a way, stronger.

1That is, in dimension 2n� 6.
2See Section 1.2.4, however.
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Another goal is to study the metric rigidity properties of Hamiltonian torsion, also
alluded to in the presentation of this problem. Finally, we prove a topological rigidity
result: all periodic orbits of a Hamiltonian isotopy whose time-one map is torsion must
be contractible.

To motivate Problem 24 further, and to introduce a few important notions, we add that
Hamiltonian actions of cyclic groups on rational ruled symplectic 4–manifolds — that is,
symplectic S2–bundles over S2 — were recently shown to be induced by S1–actions;
see Chen [9] and Chiang and Kessler [11]. However, this is false for general symplectic
4–manifolds; see Remark 7. The strongest restriction to date on manifolds admitting
nontrivial Hamiltonian S1–actions was obtained by McDuff [57], who showed that
all such manifolds must be uniruled, in the sense that at least one genus-zero k–point
Gromov–Witten invariant for k � 3 involving the point class must not vanish. Of
course, rational ruled symplectic 4–manifolds satisfy this condition, with k D 3: they
are strongly uniruled. Either condition implies that these manifolds are geometrically
uniruled: for each !–compatible almost complex structure J and each point p 2M ,
there is a J–holomorphic sphere3 passing through p. Finally, in Shelukhin [93] a new
notion of uniruledness, Fp–Steenrod uniruledness, was introduced for p D 2, and was
generalized to odd primes p > 2 by work in progress of Shelukhin and Wilkins [97];
the quantum Steenrod pth power of the cohomology class Poincaré dual to the point
class is defined and deformed in the sense of not coinciding with the classical Steenrod
pth power. This notion similarly implies geometric uniruledness. It is currently not
known whether it implies uniruledness in the sense of McDuff, but it is expected to
do so; see Seidel [91] and Seidel and Wilkins [92] for first steps in this direction.

This paper proves the first higher-dimensional Hamiltonian no-torsion results since that
of Polterovich, which hold beyond the symplectically aspherical case. Firstly, we prove
that, in addition to symplectically aspherical manifolds, symplectically Calabi–Yau
and negative monotone symplectic manifolds do not admit Hamiltonian torsion. An
elementary argument then shows that if a closed symplectic manifold M admits Hamil-
tonian torsion, then it has a spherical homology class A such that hc1.TM /;Ai> 0

and hŒ!�;Ai > 0; see Corollary 2. Our results have a similar flavor to the result of
McDuff for S1–actions: indeed, negative monotone and Calabi–Yau manifolds are not
geometrically uniruled, and neither are the symplectically aspherical ones.

3This is a smooth map u WCP1
!M satisfying Du ı j D J ıDu for the standard complex structure j

on CP1. Such spheres and their significance in symplectic topology were discovered by Gromov [38]. We
refer to McDuff and Salamon [58] for a detailed modern description of this notion.
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Going far beyond topological restrictions, we further study restrictions on Hamiltonian
torsion in the (positive) monotone case. Using recently discovered techniques, we show
that in this case the existence of nontrivial Hamiltonian torsion implies Fp–Steenrod
uniruledness for certain primes p, and hence geometric uniruledness. This again fits
well with the result of McDuff and in fact provides a partial solution to Problem 24
from the monograph [59] of McDuff and Salamon. Studying the properties of the
quantum Steenrod operations and their relation to Gromov–Witten invariants further —
see Seidel and Wilkins [92] and Wilkins [106; 107] for first inroads in this direction —
might show that our solution is in fact quite complete. Furthermore, we are tempted to
conjecture the following analogue of the result of McDuff.

Conjecture 1 Each closed symplectic manifold with nontrivial Hamiltonian torsion
must be uniruled.

Before addressing further results on the metric properties of Hamiltonian torsion
diffeomorphisms when they exist in the monotone case, we comment on our methods
of proof. The main general idea of the paper is to treat such a diffeomorphism as a
Hamiltonian dynamical system, despite the fact that it exhibits very simple periodic
dynamics. Indeed, quite paradoxically, studying its asymptotic behavior for large
iterations is effective, as it yields new topological and Floer-theoretical properties of
such diffeomorphisms.

Curiously enough, on a more technical level, our arguments involve a recently discov-
ered analogue of Smith theory in filtered Hamiltonian Floer homology (see Seidel [90],
Shelukhin [95] and Shelukhin and Zhao [98]), and related notions of quantum Steenrod
powers (see Shelukhin and Wilkins [97] and Wilkins [106; 107]). Previously these
methods were applied to questions of existence of infinitely many periodic points
(see again Shelukhin and Wilkins [97] and Shelukhin [95]) and, more restrictively, of
obstructions on manifolds to admit Hamiltonian pseudorotations (see Shelukhin [93; 94]
and Çineli, Ginzburg and Gürel [7]). In fact, a more precise general theme of this paper
is that a Hamiltonian diffeomorphism of finite order behaves in many senses like a
counterexample to the Conley conjecture. For instance, the statement of Corollary 2 is
analogous to that of [36, Theorem 1.1] that provides the most general setting wherein
the Conley conjecture is known to hold.

Our third and last series of results studies the metric rigidity of Hamiltonian torsion and
related maps. We start by proving that the spectral norm (see Oh [65], Schwarz [86]

Geometry & Topology, Volume 27 (2023)



Hamiltonian no-torsion 2837

and Viterbo [104]) of a Hamiltonian torsion element � of order k on a closed rational
symplectic manifold (ie a manifold for which hŒ!�; �2.M /iD � �Z with �> 0) satisfies

 .�/� �=k, and as an immediate consequence, the same estimate applies for the Hofer
norm (see Hofer [40] and Lalonde and McDuff [51]).

More importantly, in our final main result, we prove that in the monotone case, given
� 2 Ham.M; !/ n fidg of order k, ie with �k D id, there exists m 2 Z=kZ such that

(1) 
 .�m/�
�

3
:

This last result should be considered a Hamiltonian analogue of the celebrated result
of Newman [63] (see also Dress [16] and Smith [100]), the C 0–distance having been
replaced by the spectral distance. Moreover we prove the stronger statement that if
k is prime, then 
 .�m/� �bk=2c=k for a certain m 2 Z=kZ, and provide a similar
statement in the context of Hamiltonian pseudorotations.

The bound (1) can further be seen to imply Newman’s result in a special case, as
follows. By Shelukhin [96, Theorem C] (see also Kawamoto [47]), when M DCPn

is the complex projective space with the standard symplectic form normalized so that
CP1 has area 1, there is a constant cn, depending only on the dimension, such that for
all � 2 Ham.M; !/, the usual C 0–distance of � to the identity satisfies

dC 0.�; id/� cn
 .�/:

Hence, if � is of finite order, then by (1) there exists m 2 Z such that

dC 0.�m; id/�
cn

3
:

It would be very interesting to see if the results of this paper can be extended to
the case of Hamiltonian homeomorphisms, as defined in Buhovsky, Humilière and
Seyfaddini [6]. This generalization does not seem to be straightforward because we use
the properties of the linearization of the Hamiltonian diffeomorphism at its fixed points,
as well as Smith theory in filtered Floer homology, which is not in general stable in the
C 0–topology.

We close the introduction by noting that we expect that our results in the monotone
case should extend to the semipositive case, once the relevant results of [95] and [97]
have been generalized to the requisite setting. Since these generalizations would not
considerably differ, in a conceptual way, from the arguments presented in this paper,
but would necessitate more lengthy technical proofs, we defer their investigation to
further publications.
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1.2 Main results

We start with the following theorem of Polterovich [72], originally stated in the case
where �2.M /D 0. For the reader’s convenience we include its proof in Section 5.4.

Theorem A (Polterovich) Let .M; !/ be a closed symplectically aspherical sym-
plectic manifold. If G is a finite group , then each homomorphism G! Ham.M; !/ is
trivial.

In this paper we prove a number of additional “no-torsion” theorems of this kind,
going beyond the symplectically aspherical case, and study the metric properties of
Hamiltonian diffeomorphisms of finite order when such obstructions do not hold. Our
conditions on the manifold that imply the absence of Hamiltonian torsion are of two
kinds: the first is purely topological, and the second, perhaps more surprisingly, is in
terms of pseudoholomorphic curves.

1.2.1 Topological conditions The first set of results of this paper is as follows.

Theorem B Let .M; !/ be a closed negative monotone or closed symplectically
Calabi–Yau symplectic manifold. If G is a finite group , then each homomorphism
G! Ham.M; !/ is trivial.

A simple exercise in linear algebra shows that the class of manifolds, which we call
symplectically nonpositive, covered by Theorems A and B can be described concisely
as those closed symplectic manifolds .M; !/ for which

hŒ!�;Ai � hc1.TM /;Ai � 0 for all A 2 �2.M /:

In other words, the following holds.

Corollary 2 If a closed symplectic manifold .M; !/ admits a nontrivial homomor-
phism G!Ham.M; !/ from a finite group , then there exists an A 2 �2.M / such that
hŒ!�;Ai> 0 and hc1.TM /;Ai> 0.

For details of this implication see [36, Proof of Theorem 4.1].

Theorem B follows directly from Theorems C and D below. These two steps essentially
generalize the notion of a perfect Hamiltonian diffeomorphism, ie one that has a finite
number of contractible periodic points of all periods, to the case of compact path-
connected isolated sets of fixed points. We call such an isolated set of fixed points
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of � 2 Ham.M; !/ a generalized fixed point of �. Recall that a fixed point x of a
Hamiltonian diffeomorphism � D �1

H
is called contractible whenever the homotopy

class ˛.x; �/ of the path ˛.x;H / D f�t
H
.x/g for a Hamiltonian H generating � is

trivial. This class does not depend on the choice of Hamiltonian, by a classical argument
in Floer theory. We call a generalized fixed point F of � contractible if all fixed points
x 2 F are contractible. We denote by F the generalized periodic orbit, consisting
of all ˛.x;H / for x 2 F , corresponding to the generalized fixed point F . This is
a subset of the free loop space LM of M . If F is contractible, we show that there
exists a capping xF of F , which is a lift of F to a suitable cover of the connected
component LptM of the loop space consisting of contractible loops. Finally, and
crucially, we introduce the following notion: we call a generalized fixed point F

index-constant if the mean-index �.H; xx/ for xx 2 xF is constant as a function of xx 2 xF
(which is in turn determined by x 2 F and the capping xF ). We refer to Section 2.1.3
for the definition of the mean-index.

We call � 2 Ham.M; !/ a generalized perfect Hamiltonian diffeomorphism if there
exists a sequence kj !1 of iterations satisfying the following two properties: first,
it contains a subsequence li D kji

with li j liC1 for all i ; second, for all j 2 Z>0 the
diffeomorphism �kj has only a finite set, which does not depend on j , of contractible
generalized fixed points, which are all index-constant.

Finally, we call a diffeomorphism � with a finite number of (contractible) generalized
fixed points weakly nondegenerate if for each (contractible) fixed point x of �, the
spectrum of the differential D.�/x at x contains points different from 12C. Using the
existence of !–compatible almost complex structures invariant under a Hamiltonian
diffeomorphism of finite order, we prove the following structural result.

Theorem C Let .M; !/ be a closed symplectic manifold. Then a torsion Hamiltonian
diffeomorphism � 2Ham.M; !/ is a weakly nondegenerate generalized perfect Hamil-
tonian diffeomorphism. In fact , it is Floer–Morse–Bott and its generalized fixed points
are symplectic submanifolds.

While we do not require this for Theorem C, for most of our applications it is sufficient
to assume that � is p–torsion for a prime p, that is, �p D id.

Following the index arguments of Salamon and Zehnder [84], and their generalization
due to Ginzburg and Gürel [34], we prove the following obstruction to the existence of
weakly nondegenerate generalized perfect Hamiltonian diffeomorphisms.
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Theorem D Let a closed symplectic manifold .M; !/ be negative monotone or sym-
plectically Calabi–Yau. Then .M; !/ does not admit weakly nondegenerate generalized
perfect Hamiltonian diffeomorphisms.

Together with Theorem C, Theorem D immediately implies Theorem B. In fact, in view
of Cauchy’s theorem for finite groups, to rule out all Hamiltonian finite group actions it
is sufficient to rule out all Hamiltonian torsion of prime order. One can say that, almost
paradoxically, we use the large-time asymptotic behavior of our Hamiltonian system to
study its periodic dynamics! This is the main general idea of this paper.

As easy examples show, generalized perfect Hamiltonian diffeomorphisms do indeed
exist on the manifolds of Theorem D if one drops the weak nondegeneracy assumption.
For example, one can take T 2 D S1 �S1, where S1 DR=Z, to be the standard torus
with .x;y/ denoting a general point, and !st D dx ^ dy the standard symplectic form,
and pick � 2 Ham.T 2; !st/ given by � D �t

H
for t > 0, with H 2 C1.T 2;R/ given

by H.x;y/D cos.2�y/. It is easy to see that the set of contractible periodic points
of � consists precisely of the two isolated sets fy D 0g and

˚
y D 1

2

	
.

1.2.2 Conditions in terms of pseudoholomorphic curves Our second set of results
deals with the class of monotone symplectic manifolds. It is evident that far more than
topological conditions is necessary to rule out Hamiltonian torsion in this case, since
each Hamiltonian S1–manifold, such as CPn for example, admits Hamiltonian torsion.
We formulate our restriction on the existence of Hamiltonian torsion geometrically
as follows. For an !–compatible almost complex structure J on a closed symplectic
manifold .M; !/, we say that the manifold is geometrically uniruled if for each point
p 2M , there exists a nonconstant J–holomorphic sphere u W CP1

!M such that
p 2 im.u/.

Theorem E Let .M; !/ be a closed monotone symplectic manifold that is not geo-
metrically uniruled for some !–compatible almost complex structure J . Then each
homomorphism G! Ham.M; !/, where G is a finite group , is trivial.

This is a corollary of the following more precise result involving the quantum Steenrod
power operations.

Theorem F Let .M; !/ be a closed monotone symplectic manifold that admits a
Hamiltonian diffeomorphism of order d > 1. Then the pth quantum Steenrod power of
the cohomology class � 2H 2n.M IFp/ Poincaré dual to the point class is deformed
for all primes p coprime to d .
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Theorem F follows directly from Theorems G and I below.

Theorems E and F provide an obstruction to the existence of Hamiltonian diffeomor-
phisms of finite order in terms of pseudoholomorphic curves. The existence of an
obstruction of this type was conjectured by McDuff and Salamon, and publicized as
Problem 24 in their introductory monograph [59]. Therefore we provide a solution to a
reasonable variant of this problem. Indeed, further investigations into the enumerative
nature of quantum Steenrod operations might prove that our solution is in fact complete
in the framework of monotone symplectic manifolds. Such investigations were initiated
in Seidel and Wilkins [92] and Wilkins [106; 107].

In particular, in the special case where .M; !/ has minimal Chern number N DnC1, we
deduce from Theorem F and the work of Seidel and Wilkins [92], as in Shelukhin [93],
that nontrivial Hamiltonian torsion implies that the quantum product Œpt�� Œpt� does not
vanish. This means that the manifold is strongly rationally connected: it implies strong
uniruledness, and moreover that for each pair of distinct points p1;p2 in M , and each
!–compatible almost complex structure J , there exists a J–holomorphic sphere in M

passing through p1 and p2.

As mentioned above, the proof of Theorem F relies on two steps: Theorems G and I.
These steps are aimed at showing that torsion Hamiltonian diffeomorphisms of closed
monotone symplectic manifolds, which by Theorem C are generalized perfect and
weakly nondegenerate, are moreover homologically minimal in the following sense.
To formulate it precisely, we first discuss a useful technical notion.

Let K be a coefficient field. For a generalized fixed point F of a Hamiltonian diffeo-
morphism  , we define a generalized version HFloc. ;F/ of local Floer homology.
Such notions date back to the original work of Floer [24; 23] and have been revisited a
number of times: for example by Pozniak in [76]. It is naturally Z=2Z–graded.4

We call a Hamiltonian diffeomorphism a generalized K pseudorotation with the se-
quence kj if it is generalized perfect with the sequence kj and, further, HFloc. ;F/¤ 0

for all F 2 �0.Fix. // and the homological count

N. ;K/ WD
X

F2�0.Fix. //

dimK HFloc. ;F/

of generalized fixed points of  D �kj satisfies

N. ;K/D dimK H�.M IK/ for all j 2 Z>0:

4We also define a Z–graded version for a capped generalized 1–periodic point xF lifting F .
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We recall that usually an Fp pseudorotation is defined analogously, with the sequence
kj D pj�1, and with the additional hypothesis that each F 2 �0.Fix. // for  D �kj

consists of a single point. Unless otherwise stated, a generalized Fp pseudorotation
will be considered with the sequence kj D pj�1.

In view of the discussion in Shelukhin [95; 96], this homological minimality for a
Hamiltonian diffeomorphism  with a finite number of generalized fixed points is
equivalent to the absence of finite bars in the barcode B. / of  , a notion of recent
interest in symplectic topology; see eg Kislev and Shelukhin [48], Polterovich and
Shelukhin [74], Polterovich, Shelukhin and Stojisavljević [75] and Shelukhin [95; 96].
It also implies the equality

Specess.F IK/D Specvis.F IK/

between two homologically defined subsets of the spectrum associated to a Hamiltonian
F 2H generating  . Recall that the spectrum Spec.F / of F is the set of critical values
of the action functional of F . For a coefficient field K, there is a nested sequence of
subsets

Specess.F IK/� Specvis.F IK/� Spec.F /:

Here the essential spectrum Specess.F IK/ is the set of values of all spectral invariants
associated to F , in other words the set of starting points of infinite bars in the barcode
of F . The visible spectrum Specvis.F IK/ is the set of action values of capped (gener-
alized) periodic orbits of F that have nonzero local Floer homology, in other words
the set of endpoints of all bars in the barcode. It is not hard to modify the definitions
of the two homological spectra to include multiplicities, in which case their equality
would be equivalent to homological minimality.

The first step in the proof of Theorem F, which is nontrivial and uses Smith theory in
filtered Floer homology (cf [95; 98]), is the following reduction.

Theorem G Let .M; !/ be a closed monotone symplectic manifold. Suppose that
� 2 Ham.M; !/ is a Hamiltonian diffeomorphism of prime order q � 2. Then:

(i) For each prime p different from q, the q–torsion diffeomorphism � is a weakly
nondegenerate generalized pseudorotation over Fp, with the sequence kj given
by the monotone increasing ordering of the set

fk 2 Z>0 j k ¤ 0 (mod q)g:
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(ii) Moreover , for each Hamiltonian H generating �, and each coefficient field K of
characteristic p coprime to q, we have

Specess.H IK/D Specvis.H IK/;

and for all k coprime to q, we have

Specess.H .k/
IQ/D k �Specess.H IQ/C � �Z:

(iii) Finally, part (i) holds also for p D q, and in part (ii), equalities

Specess.H IK/D Specvis.H IK/;

Specess.H .k/
IK/D k �Specess.H IK/C � �Z

hold with arbitrary coefficient field K, and moreover ,

Specvis.H IK/D Spec.H /:

The proof of Theorem G appears in Section 5.9. For the moment, we briefly explain
the approach used to prove Theorem G(i). Following the main theme of the proof
of Theorem C, we use information about large iterations of H to study the periodic
Hamiltonian diffeomorphism �D�1

H
that it generates. More precisely, let D �k with

k coprime to q. Combining the theory of barcodes of Hamiltonian diffeomorphisms
(see Proposition 23), and Smith-type inequalities in filtered Floer homology (see
Theorem N), we observe that for the bar-lengths

ˇ1. ;Fp/� � � � � ˇK. ;Fp/. ;Fp/

of  , we have the following inequality. Set

ˇtot. ;Fp/D ˇ1. ;Fp/C � � �CˇK. ;Fp/. ;Fp/

to be the total bar-length of  . Then

ˇtot. 
pm

;Fp/� pm
�ˇtot. ;Fp/:

However, ˇtot. 
pm

;Fp/ is bounded, since it can take at most q�1 values. This implies

ˇtot. ;Fp/D 0;

which in turn implies part (i), by the theory of barcodes; see Proposition 23.

Remark 3 We separate part (iii) of Theorem G because it requires a different proof, re-
lying on Proposition 5 below. The first statement of part (iii) is obtained via Proposition 5
by classical Smith theory combined with the classical homological Arnol’d conjecture,
outlined in Chiang and Kessler [11, Remark 7.1] with details for p D 2. One could
also obtain this statement by a suitable generalization of Theorem N on Smith theory
in filtered Floer homology, which is, however, out of the scope of this paper.

Geometry & Topology, Volume 27 (2023)



2844 Marcelo S Atallah and Egor Shelukhin

Remark 4 When the order q is not prime, a version of Theorem G still holds. We leave
its somewhat lengthier formulation to the interested reader, since we do not require it
for our arguments, only observing that part (i) holds under the assumption that p does
not divide q, and the sequence of iterations is given by fk 2 Z>0 j gcd.k; q/D 1g and
part (ii) holds as stated.

The following statement is a key component of the proof of Theorem G(iii). It relies
on the generalization of the Morse–Bott theory of Pozniak [76, Theorem 3.4.11] to the
situation with signs and orientations, as in for example Schmaschke [85, Chapter 9],
Fukaya, Oh, Ohta and Ono [28, Chapter 8], or Wehrheim and Woodward [105]. How-
ever, it is not entirely straightforward, because as classical examples show, it is false
in the general Floer–Morse–Bott situation, while in our case it holds because of the
existence of special !–compatible almost complex structures adapted to the situation.

Proposition 5 Let .M; !/ be a closed symplectic manifold , and � 2 Ham.M; !/

a Hamiltonian diffeomorphism of finite order d � 2. Let F be a path-connected
component of the fixed-point set of �. Finally , let R be a commutative unital ring.
Then the local Floer homology of � at F with coefficients in R satisfies

HFloc.�;F/ŠH.F IR/:

The proof of Theorem G has the following by-product, which is a new analogue, for
Hamiltonian torsion, of the classical consequence of Floer theory, whereby the map
�1.Ham.M; !//! �1.M / is trivial.

Theorem H Let .M; !/ be a closed monotone symplectic manifold , and let � in
Ham.M; !/ be a Hamiltonian diffeomorphism of finite order. Then all the fixed points
of � are contractible.

The second step in the argument proving Theorem F is the following statement. It
essentially follows the arguments of Shelukhin [94] and Shelukhin and Wilkins [97].

Theorem I Let .M; !/ be a closed monotone symplectic manifold that admits a
weakly nondegenerate generalized Fp pseudorotation for a prime p � 2. Then the
pth quantum Steenrod power of the cohomology class � 2H 2n.M IFp/ Poincaré dual
to the point class is deformed.

Theorems G and I immediately imply Theorem F and therefore, by a Gromov compact-
ness argument, Theorem E.
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1.2.3 Applications to actions of Lie groups and lattices To conclude the discussion
of our first two sets of results, we discuss their implications to the question of existence
of Hamiltonian actions of possibly disconnected Lie groups, and lattices in Lie groups,
on closed symplectic manifolds.

A well-known result of Delzant [15] (see [73] for an alternative argument) implies
that a simple Lie group can only act nontrivially on a closed symplectic manifold if
it is compact. A compact zero-dimensional Lie group is finite, whence Theorems B
and E provide topological and geometrical obstructions to their actions. The identity
component K0 of a compact Lie group K of positive dimension is a compact connected
Lie group of positive dimension, and as such admits a maximal torus T Š .S1/k

of positive dimension, whose conjugates cover the whole group K0. Therefore, the
absence of Hamiltonian torsion, as in Theorems A, B, E and F, implies that a nontrivial
K–action yields a nontrivial K0–action, since otherwise it would factor through K=K0,
which is finite. This in turn yields a nontrivial T –action and a fortiori a nontrivial
S1–action. A celebrated result of McDuff [57] then shows that nontrivial S1–actions
imply uniruledness in the sense of k–point genus-zero Gromov–Witten invariants, and
hence geometric uniruledness. We therefore obtain the following result.

Corollary 6 Let .M; !/ be a closed positive monotone symplectic manifold that
is not geometrically uniruled , or a negative monotone or symplectically Calabi–Yau
symplectic manifold. Then each homomorphism K! Ham.M; !/ for a compact Lie
group K must be trivial.

Moreover, by a simple continuity argument, a nontrivial continuous S1–action implies
a nontrivial Z=pZ–action for each prime p. Therefore Theorems B and E imply the
above corollary for symplectically aspherical, symplectically Calabi–Yau, negative
monotone, or monotone symplectic manifolds directly, without relying on the result
of McDuff. Moreover, Theorem F also implies that if a positive monotone symplectic
manifold admits a nontrivial Hamiltonian S1–action, it must be Fp–Steenrod uniruled
for all primes p. It is seen from examples due to Seidel and Wilkins [92] that there exist
closed monotone symplectic manifolds that are uniruled in the sense of Gromov–Witten
invariants, and yet not Fp–Steenrod uniruled for certain primes p. More precisely, the
monotone blowup M of CP2 at 6 points is not F2–Steenrod uniruled, but is evidently
uniruled in the Gromov–Witten sense.

The following discussion shows that for a certain nonmonotone 6–point blowup of
CP2 there exists a Hamiltonian involution that cannot be inscribed into an S1–action.
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Note that [92, Example 1.7] and Theorem F imply that the monotone blowup M admits
no Hamiltonian torsion of order other than 2. It would be interesting to construct a
nontrivial Hamiltonian involution of M or prove that it does not exist.

Remark 7 In [12], Chiang and Kessler gave an example of a symplectic involution,
ie � 2 Symp.M0/ such that �2 D id, of a certain nonmonotone 6–point blowup M0

of the standard CP2, with blowup sizes 1
2
; 1

4
; 1

4
; 1

4
; 3

16
; 1

8
. This involution belongs

to the symplectic Torelli group Symph.M0/ of symplectomorphisms acting trivially
on homology, and has the property that it does not belong to any S1–subgroup of
Ham.M0/. Li, Li and Wu [53] showed in particular that the mapping-class group
�0 Symph.M0/ is isomorphic to the quotient G6 D P6.S

2/=Z of the spherical pure
braid group P6.S

2/ on 6 strands by its center ZŠZ=2Z. It is well known that G6 has
no torsion; see González-Meneses [37] for a beautiful account of related subjects. This
implies that � 2 Symp0.M0/DHam.M0/, showing that � is a Hamiltonian involution
that does not belong to any S1–subgroup.

We note that McDuff’s theorem was proven by showing that certain loops of Hamiltonian
diffeomorphisms in a blow-up of the manifold are nontrivial, and detectable by Seidel’s
representation [87]. It would be interesting to investigate the existence of nontrivial
Hamiltonian loops associated to Hamiltonian diffeomorphisms of finite order. For a
Hamiltonian H generating � 2Ham.M; !/ of order d , the Hamiltonian H .d/ generates
a loop homotopic to f.�t

H
/dg. The noncontractibility of this loop is not obvious since

for a rotation �2�=3 of S2 by angle 2�=3 about the z–axis, the loop f�3
t �2�=3

g is not
contractible in Ham.S2; !st/, while the loop f�3

�t �4�=3
g is contractible therein, yet

��4�=3 D �2�=3.

Finally we can argue, following the work of Polterovich [72] on the Hamiltonian
Zimmer conjecture, that SL.k;Z/ for k � 2 has no nontrivial Hamiltonian actions on
symplectically aspherical, symplectically Calabi–Yau, negative monotone, or monotone
and not geometrically uniruled closed symplectic manifolds. Indeed, it is well known
that SL.k;Z/ for k � 2 is generated by elements of finite order. We remark, however,
that the case of finite-index subgroups of SL.k;Z/ with k � 3 is much more difficult
and seems to be currently out of reach of our methods.

1.2.4 Symplectic actions It makes sense to study finite group actions by more general
symplectic diffeomorphisms than Hamiltonian ones. In particular, a classical statement
in the topology of hyperbolic surfaces is that diffeomorphisms of finite order cannot be
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isotopic to the identity. Further progress in this direction was made in low-dimensional
symplectic topology; see Chen [9], Chen and Kwasik [10] and Wu and Liu [109]. In
this section we collect remarks and results in the higher-dimensional setting.

Let us denote by Symp.M; !/ the group of diffeomorphisms preserving the symplec-
tic form, and by Symp0.M; !/ its identity component. Of course Ham.M; !/ is a
subgroup of Symp0.M; !/.

We first make the observation that if Ham.M; !/ and Symp0.M; !/ coincide, Hamil-
tonian no-torsion theorems yield no-torsion theorems for elements of Symp0.M; !/.
Let �! �H 1.M;R/ be the well-known flux group, defined as the image of the map
Flux W�1.Symp.M; !//!H 1.M;R/ given by integrating ! over the two-cycle traced
by a loop of symplectomorphisms applied to one-cycles. It is a finitely generated
abelian group. The exact sequence

1! Ham.M; !/! Symp0.M; !/!H 1.M;R/=�!! 1

therefore implies that Ham.M; !/ D Symp0.M; !/ if and only if H 1.M;R/ D 0.
Second, following Polterovich [72, Example 1.3.C], by the same exact sequence we
note that whenever �! D 0, all torsion elements in Symp0.M; !/ must in fact be
Hamiltonian. By a result of McDuff [56, Theorem 1], this happens for homologically
monotone and negative monotone symplectic manifolds, ie when Œ!� D � � c1.TM /

for some � ¤ 0 as elements of H 2.M;R/. By a result of Kędra [49], this also holds
for closed symplectically aspherical manifolds .M; !/, ie when Œ!� D 0 on �2.M /,
of nonvanishing Euler characteristic or when the center of �1.M / is trivial; see also
Kędra, Kotschick and Morita [50].

We expect that the methods developed in this paper will yield new results on torsion in
symplectomorphism groups and plan to investigate this in a further publication.

1.2.5 Metric properties Our third and final set of results studies the metric properties
of Hamiltonian torsion diffeomorphisms, in cases that are not ruled out by our previous
arguments, for example on CPn.

Recall that the spectral pseudonorm of a Hamiltonian H 2C1.S1�M;R/ on a closed
symplectic manifold .M; !/ is defined in terms of Hamiltonian spectral invariants as


 .H /D c.ŒM �;H /C c.ŒM �;H /;

and the spectral norm of � 2 Ham.M; !/ is set as


 .�/D inf
�1

H
D�


 .H /:

Geometry & Topology, Volume 27 (2023)



2848 Marcelo S Atallah and Egor Shelukhin

We refer to Section 2 for a more in-depth discussion of this interesting notion, remarking
for now that this is a conjugation-invariant and nondegenerate norm on Ham.M; !/,
yielding a bi-invariant metric

d
 .f;g/D 
 .gf
�1/:

This was shown in large generality in Oh [65], Schwarz [86] and Viterbo [104].

Furthermore, whenever defined, 
 .�/ provides a lower bound on the celebrated Hofer
distance dHofer.�; id/, defined as

dHofer.�; id/D inf
�1

H
D�

Z 1

0

max
M

H.t;�/�min
M

H.t;�/ dt I

see Hofer [40] and Lalonde and McDuff [51]. Finally in Buhovsky, Humilière and
Seyfaddini [6], Kawamoto [47] and Shelukhin [96] it was shown, in various degrees of
generality, that 
 .�/ is bounded by the C 0–distance dC 0.�; id/ of � to the identity, at
least in a small dC 0–neighborhood of the identity.

These and numerous other recent results show that the spectral norm 
 is an important
measure of a Hamiltonian diffeomorphism. Here, we provide lower bounds on 
 .�/,
under the assumption that � is of finite order. Our first result is relatively general
and quite straightforward, and follows essentially from the homogeneity of the action
functional under iteration. However, it underlines the fact that the finite order condition
implies certain metric rigidity.

Theorem J Let .M; !/ be a closed rational symplectic manifold , with rationality
constant � > 0, ie hŒ!�; �2.M /i D � �Z. Suppose that � 2 Ham.M; !/ is a nontrivial
Hamiltonian diffeomorphism of order d , ie �d D id. Then 
 .�/� �=d .

As a further consequence of Theorem G, which requires considerably more complex
methods, we obtain the following analogue of Newman’s theorem for the spectral
norm of Hamiltonian torsion elements. This result is the first nontrivial result of
its kind in symplectic topology, and is implicitly conjectured in the formulation of
[59, Problem 24].

Theorem K Let .M; !/ be a closed monotone symplectic manifold of rationality
constant � > 0. Consider a Hamiltonian diffeomorphism � 2 Ham.M; !/ of order
d > 1. Then there exists m 2 Z=dZ such that


 .�m/�
�

3
:
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Here the coefficients are in an arbitrary field K. In fact , if d D p is prime , we prove
the stronger statement that there exists m 2 Z=pZ such that


 .�m/�
� � bp=2c

p
:

The key notion in the proof of this result is a new invariant of a Hamiltonian diffeomor-
phism � 2Ham.M; !/, which we call the spectral length l.�;K/ of � with coefficients
in a field K. It is defined as the minimal diameter of Specess.H IK/\ I over intervals
I D .a� �; a��R of length �, where H is a Hamiltonian with �1

H
D �. In particular,

we show that this minimum does not depend on the choice of the Hamiltonian H . We
show the key property that l.�;K/� 
 .�;K/ and that, in our case, the spectral length
behaves in a controlled way with respect to iterations. By a combinatorial analysis of
our situation we consequently deduce Theorem K. We expect l.�;K/ to have additional
applications in quantitative symplectic topology, which we plan to investigate.

Theorem K is generally speaking sharp, as can be seen from the rotation � of S2 by
2�=3 about the z–axis. In this case �3 D id and 
 .�/ D 
 .�2/ D 
 .��1/ D �=3,
where � is the area of the sphere. Observe moreover that the lower bound in Theorem K
does not depend on the order of �. In particular if d D 2, then Theorem J gives the
stronger lower bound 
 .�/� �=2, which is again sharp for the �–rotation of S2 about
the z–axis. We recall that Newman’s theorem is a directly analogous assertion, but for
the C 0–distance to the identity, in the setting of homeomorphisms of smooth manifolds.
In contrast to our result, the constant in Newman’s theorem is not explicit.

Finally, we remark that analogous statements hold for generalized Fp pseudorotations �
with sufficiently large admissible sequences. For example, for the sequence kj Dpj�1,
we get the lower bound 
 .�kj / � �=.pC 1/ for some j 2 Z>0, which is saturated
by the rotation of S2 by 2�=.pC 1/ about the z–axis. For the sequence kj D j , we
obtain the following lower bound, which is saturated by any 2��–rotation on S2 about
the z–axis, where � 62Q.

Theorem L Let � 2 Ham.M; !/ be a generalized K pseudorotation with sequence
kj D j on a closed monotone symplectic manifold .M; !/ with rationality constant �.
Then

sup
j2Z>0


 .�kj /�
�

2
;

the coefficients being taken in K.

Geometry & Topology, Volume 27 (2023)



2850 Marcelo S Atallah and Egor Shelukhin

This result is new in this generality even for strongly nondegenerate pseudorotations.
Moreover, Theorem L applies to irrational elements of effective Hamiltonian S1–
actions, and Theorem K applies to rational elements. In particular, by considering
the element

�
1
2

�
2 S1 DR=Z, we obtain that the Hofer length of such a Hamiltonian

S1–action is at least �. In the case of semifree S1–actions, this lower bound can be
deduced from McDuff and Slimowitz [60], where it is also proven that the S1–action
is Hofer length-minimizing among Hamiltonian loops in the same free homotopy class.
Our results do not prove such homotopical minimality. However, they do apply in the
case where the action is not semifree, where no such results are known. In fact such
Hamiltonian loops may well be nullhomotopic; see also Karshon and Pearl [46] for
more general shortening results in this case. Finally, we observe that in the special
case where .M; !/ is a complex projective space, a similar result to Theorem L can be
obtained in a different way by following the methods of Ginzburg and Gürel [35].

2 Preliminary material

2.1 Basic setup

In this section, we recall established aspects of the theory of Hamiltonian diffeo-
morphisms on symplectic manifolds. Throughout the article, .M; !/ denotes a 2n–
dimensional closed symplectic manifold.

Definition 8 (monotone, negative monotone and symplectically Calabi–Yau) Suppose
that the cohomology class of the symplectic form ! is proportional to the first Chern
class, ie

Œ!�D � � c1.TM /

for some � ¤ 0, on the image H S
2
.M IZ/ of the Hurewicz map �2.M /!H2.M IZ/.

If � < 0 we call .M; !/ negative monotone, and if � > 0 we call it (positive) monotone.
If the first Chern class c1.TM / vanishes on the image of the Hurewicz map, we say
that .M; !/ is symplectically Calabi–Yau.

The symplectic manifold .M; !/ is called rational whenever P! D hŒ!�;H S
2
.M IZ/i

is a discrete subgroup of R. If P! ¤ 0, then P! D � �Z for � > 0, which we call the
rationality constant of .M; !/. If P! D 0 we call .M; !/ symplectically aspherical.5

5In the literature the additional condition hc1.TM /;H S
2
.M IZ/i D 0, which we do not require, is often

imposed. This condition allows one to introduce a Z–grading on the Floer complex, which we do not
require once P! D 0.

Geometry & Topology, Volume 27 (2023)



Hamiltonian no-torsion 2851

Finally we recall that the minimal Chern number of .M; !/ is the index

N DNM D ŒZ W I �

in Z of the subgroup I D im
�
c1.TM / W �2.M /! Z

�
. Namely, ŒZ W I �D jZ=I j is the

cardinality of the quotient group Z=I .

2.1.1 Hamiltonian isotopies and diffeomorphisms We next consider normalized
1–periodic Hamiltonian functions H 2 H � C1.S1 �M;R/, where H is the space
of Hamiltonians normalized so that H.t;�/ has zero !n–mean for all t 2 Œ0; 1�. For
each H 2H we have the corresponding time-dependent vector field X t

H
defined by

the relation !.X t
H
; � / D �dHt . In particular, to each Hamiltonian function we can

associate a Hamiltonian isotopy f�t
H
g induced by X t

H
and its time-one map �H D �

1
H

.
We omit the H from this notation whenever it is clear from context. Such maps �H are
called Hamiltonian diffeomorphisms and they form a group denoted by Ham.M; !/.

For a Hamiltonian diffeomorphism � 2Ham.M; !/, we denote the set of its contractible
fixed points by Fix.�/. Contractible means the homotopy class ˛.x; �/ of the path
˛.x;H /D f�t

H
.x/g for a Hamiltonian H 2H generating � is trivial. This class does

not depend on the choice of Hamiltonian, by a classical argument in Floer theory. We
write x.k/ for the image of x 2 Fix.�/ under the inclusion Fix.�/� Fix.�k/.

We denote by H .k/ 2 C1.S1 �M;R/ the k th iteration of a Hamiltonian function H ,
given by H .k/.t;x/D kH.kt;x/. Note that �H .k/ D �k

H
. There is a bijective corre-

spondence between Fix.�H / and contractible 1–periodic orbits of the isotopy f�t
H
g,

thus for x 2 Fix.�H /, we denote by x.t/ the 1–periodic orbit given by x.t/D �t
H
.x/

and, similarly, by x.k/.t/ the 1–periodic orbit given by x.k/.t/D �t
H .k/.x.k//.

2.1.2 The Hamiltonian action functional Let x W S1!M be a contractible loop. It
is then possible to extend this map to a capping of x, namely, a map xx W D2!M such
that xxjS1 D x. Let LptM denote the space of contractible loops in M and consider the
equivalence relation on capped loops given by

.x; xx/� .y; xy/ () x D y and xx # .�xy/ 2 ker.Œ!�/\ ker.c1/;

where xx # .�xy/ stands for gluing the disks along their boundaries with the orienta-
tion of xy reversed. Here ker.Œ!�/ and ker.c1/ denote the kernels of the homomor-
phisms H S

2
.M IZ/ ! R induced by Œ!� and c1.TM /. The quotient space zLptM

of capped loops by the above equivalence relation is a covering of LptM with the
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group of deck transformations isomorphic to � D H S
2
.M IZ/=

�
ker.Œ!�/\ ker.c1/

�
.

Note that if .M; !/ is positive or negative monotone or symplectically Calabi–Yau,
then ker.Œ!�/\ ker.c1/D ker.Œ!�/, whence � DH S

2
.M IZ/= ker.Œ!�/. Note also that

� Š �2.M /=
�
ker.Œ!�0/ \ ker.c0

1
/
�
, where the maps Œ!�0; c0

1
W �2.M / ! R are the

compositions of Œ!� and c1 with the Hurewicz homomorphism �2.M /!H S
2
.M IZ/.

We write .x; xx/, or simply xx, for the equivalence class of the capped loop. With this
notation, to each A 2 � we associate the deck transformation sending a capped loop xx
to xx #A. We define the Hamiltonian action functional AH W zLptM !R of a 1–periodic
Hamiltonian H by

AH .xx/D

Z 1

0

H.t;x.t// dt �

Z
xx

!:

Observe that the critical points of the Hamiltonian action functional are exactly .x; xx/
for x a contractible 1–periodic orbit satisfying the equation x0.t/ D X t

H
.x.t//. We

denote by O.H / the set of such orbits, and by zO.H / the set of critical points of AH . The
action spectrum of H is defined as Spec.H /DAH . zO.H //. We remark, following [86],
that in the rational case the action spectrum is a closed nowhere-dense subset of R. In
addition, if A 2 � then

AH .xx # A/DAH .xx/�

Z
A

!;

and for xx.k/, the k th iteration of xx with the naturally inherited capping, we have

AH .k/.xx.k//D kAH .xx/:

Definition 9 (nondegenerate and weakly nondegenerate orbits) A 1–periodic orbit x

of H is called nondegenerate if 1 is not an eigenvalue of the linearized time-one map
D.�1

H
/x.0/ at x.0/. We call x weakly nondegenerate if there exists at least one eigen-

value of D.�1
H
/x.0/ different from 1. We say that a Hamiltonian H is nondegenerate

(resp. weakly nondegenerate) if all its 1–periodic orbits are nondegenerate (resp. weakly
nondegenerate).

The nondegeneracy of an orbit x of H is equivalent to

graph.�H /D f.x; �H .x// j x 2M g

intersecting the diagonal �M �M �M transversely at .x.0/;x.0//. Following [84],
for any Hamiltonian H and � > 0, there exists a nondegenerate Hamiltonian H 0

satisfying kH �H 0kC 2 <�. This fact is key in the definition of filtered Floer homology
of degenerate Hamiltonians and for local Floer homology.
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2.1.3 Mean-index and the Conley–Zehnder index Following [84; 34], the mean-
index �.H; xx/ of a capped orbit xx of a possibly degenerate Hamiltonian H is a real
number measuring the sum of the angles swept by certain eigenvalues of fD.�t

H
/x.t/g

lying on the unit circle. Here a trivialization induced by the capping is used in order
to view fD.�t

H
/x.t/g as a path in Sp.2n;R/. One can show that for the time-one

map � D �H generated by the Hamiltonian H , the mean-index depends only on the
class �z of f�t

H
gt2Œ0;1� in the universal cover eHam.M; !/, making the notation �.�z; xx/

suitable. In addition, the mean-index depends continuously on �z in the C 1–topology
and on the capped orbit, and it behaves well with iterations,

�.�zk ; xx.k//D k ��.�z; xx/:

Meanwhile, the Conley–Zehnder index CZ.H; xx/ of a nondegenerate capped 1–periodic
orbit xx is integer-valued, and roughly measures the winding number of the abovemen-
tioned eigenvalues. Once again, the index only depends on �z, so we can also write
CZ.H; xx/ D CZ.�z; xx/. We shall use the same normalization as in [34], namely,
CZ.H; xx/D n if x is a nondegenerate maximum of an autonomous Hamiltonian H

with small Hessian and xx is the constant capping. We shall omit the H or �z in the
notation when it is clear from the context. We remark that for an element A 2 � ,

�.xx # A/D�.xx/� 2hc1.TM /;Ai and CZ.xx # A/D CZ.xx/� 2hc1.TM /;Ai:

Also, in the case that xx is nondegenerate, we have

(2) j�.xx/�CZ.xx/j< n:

Following [79; 73; 18], we observe that a version of the Conley–Zehnder index can
be defined even in the case where the capped orbit is degenerate. It is called the
Robbin–Salamon index, and it coincides with the usual Conley–Zehnder index in the
nondegenerate case. Furthermore, we note that the mean-index can be equivalently
defined by

(3) �.�zH ; xx/D lim
k!1

1

k
CZ.�zkH ; xx

.k//;

where we are slightly abusing notation in the sense that CZ here means the Robbin–
Salamon index so as to include the degenerate case. The limit in (3) exists, as the
Robbin–Salamon index is a quasimorphism CZ W eSp.2n;R/ ! R; see eg [14] and
[18, Section 3.3.4]. In particular, as can be seen directly from its definition in [84],
the mean-index is induced by a homogeneous quasimorphism � W eSp.2n;R/!R.
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Moreover, this map is continuous, and satisfies the additivity property

�.ˆ‰/D�.ˆ/C�.‰/

for all ˆ 2 �1.Sp.2n;R//� eSp.2n;R/ and all ‰ 2 eSp.2n;R/.

2.2 Floer theory

Floer theory was first introduced by A Floer [21; 22; 23] as a generalization of the Morse–
Novikov homology for the Hamiltonian action functional defined above. We refer
to [67] for details on the constructions described in this subsection, and to [1; 88; 110]
for a discussion of canonical orientations.

2.2.1 Filtered and total Floer homology We review the construction of filtered
Floer homology in order to recall some basic properties and set notation.

Let H be a nondegenerate 1–periodic Hamiltonian on a rational symplectic manifold
.M; !/ and K a fixed base field. For a 2 RnSpec.H / and fJt 2 J .M; !/gt2S1 a
generic loop of !–compatible almost complex structures, set

CFk.H IJ /
<a
D

nX
�xx � xx

ˇ̌
xx 2 zO.H /; CZ.xx/D k; �xx 2K; AH .xx/ < a

o
;

where #f�xx ¤ 0 j AH .xx/ > cg < 1 for every c 2 R. Intuitively, it is the vector
space over K generated by the critical points of the Hamiltonian action functional
of filtration level < a. The graded K–vector space CF�.H;J /<a is endowed with
the Floer differential dH IJ , which is defined as the signed count of isolated solutions
(quotiented out by the R–action) of the asymptotic boundary value problem on maps
u WR� S1!M defined by the negative gradient of AH ; see [83; 84]. In other words,
the boundary operator counts the finite-energy solutions to the Floer equation,

@u

@s
CJt .u/

�
@u

@t
�X t

H .u/

�
D 0 such that E.u/D

Z
R

Z
S1





@u@s




2

dt ds <1;

which converge as s tends to ˙1 to periodic orbits x� and xC such that the capping
xx� # u is equivalent to xxC and CZ.xx�/�CZ.xxC/D 1. In this case the Floer trajectory
u satisfies E.u/ D AH .xx�/ � AH .xxC/. We thus obtain the filtered Floer chain
complex .CF�.H IJ /<a; dH IJ /, which is a subcomplex of the total Floer chain complex
(corresponding to aDC1). Furthermore, for an interval I D .a; b/ with a< b and
a; b 2 .RnSpec.H //[f˙1g, we define the Floer complex in the action window I as
the quotient complex

CF�.H IJ /I D CF�.H IJ /<b=CF�.H IJ /<a;
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where CF�.H IJ /<�1 D 0. The resulting homology of this complex HF�.H /I is the
Floer homology of H in the action window I and it is independent of the generic choice
of almost complex structure J . So the (total) Floer homology of H can be obtained
by setting aD�1 and b DC1. We note that in the positive and negative monotone
case CF�.H IJ / is naturally a module over the Novikov field ƒK DKŒŒq�1; q� with q

a variable of degree 2N . Indeed we define q�1 � xx D xx # A0 for A0 the generator of �
with hc1.TM /;A0i D N , and extend it to a module structure in the natural way. In
the Calabi–Yau case, CF�.H IJ / is a module over the Novikov field

ƒK;! D

nX
aiT

�i
ˇ̌
ai 2K; �i 2 P! ; �i!1

o
:

While we shall not use it in the paper, we remark that in the general case, it is a module
over the Novikov field

ƒK;!;c1
D

nX
aiT

Ai
ˇ̌
ai 2K; Ai 2 �; !.Ai/!1

o
:

Observe that by interpolating between distinct Hamiltonians through generic families
and writing the Floer continuation map, where the Hamiltonian perturbation term
and the almost complex structure depend on the R–coordinate, one can show that
HF�.H / does not depend on the Hamiltonian, and HF�.H /I depends only on the
homotopy class of f�t

H
gt2Œ0;1� in the universal cover eHam.M; !/ of the Hamiltonian

group Ham.M; !/. Also, when M is rational the above construction extends by a
standard continuity argument to degenerate Hamiltonians.

Remark 10 Theorems B, D and J partially deal with negative monotone or general
spherically rational symplectic manifolds. It is important to emphasize that for our
arguments to apply to this case in full generality, we must make use of the machinery
of virtual cycles to guarantee that the Floer differential is well defined. In this case,
the ground field K should be of characteristic zero. Our arguments are not sensitive
to the specific approach to questions of transversality. We refer to [33; 55; 28; 80]
for early works on the subject, subsequently augmented in [32, Chapters 15–20; 31,
Section 9; 30, Section 8; 29, Section 19]. We refer to [32, Chapter 1.4] for an overview
of other approaches to virtual fundamental cycles. This includes the theory of polyfolds
initiated in [42; 43; 44]; see [20] for a recent survey. We also note that [69] provides
foundations of Hamiltonian Floer theory in full generality. Furthermore, we mention
the following cases where classical transversality techniques are applicable. First, if
.M; !/ is a semipositive6 symplectic manifold — that is, if .M; !/ is symplectically

6The terminology “weakly monotone” also appears in the literature for the same notion.
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aspherical, symplectically Calabi–Yau, positive monotone, or if the minimal Chern
number of .M; !/ is N � n�2 — then classical transversality applies by [41]. Second,
if the manifold is homologically rational, ie the symplectic form can be scaled so that
all of its periods are integers, then classical transversality applies by [8] following [13].

2.2.2 The irrational case In this paper we also consider the case in which the
manifold M is symplectically Calabi–Yau, which includes the possibility of it being
irrational. In this case we have to work a little harder if H is degenerate since the
continuation argument above does not work as before, as nonspectral a; b for H do
not necessarily remain nonspectral even for arbitrarily small perturbations H1 of H .
Moreover, the resulting homology groups depend on the choice of nondegenerate
perturbation H1. We shall follow [39] to work around this issue.

For a fixed Hamiltonian H and action window I D .a; b/ with a < b, where a; b 2

.R n Spec.H //[ f˙1g, consider the set of nondegenerate perturbations zH whose
action spectra do not include a and b and H � zH , ie H.t;x/� zH .t;x/ for all x 2M

and t 2 S1. Note that such perturbations zH of a mean-normalized H will in general
not be mean-normalized. However, this does not present an issue for our purposes.
Observe that � induces a partial order in the set of perturbations. In addition, by
considering a monotone decreasing homotopy zH s from zH 0 to zH 1, one obtains an
induced homomorphism between the Floer homology groups. These give rise to
continuation maps HF�.H 0/I ! HF�.H 00/I whenever H 00 �H 0. Therefore, we can
define the filtered Floer homology of H by taking the direct limit

HF�.H /I D lim
��!

HF�.H 0/I

over the homology groups of the perturbations satisfying the aforementioned conditions.
We remark that in the case where H is nondegenerate or M is rational, this definition
coincides with the usual filtered Floer homology groups.

2.2.3 Local Floer homology In this section we shall follow [34] in order to briefly
review the construction of the local Floer homology of a Hamiltonian H at a capping xx
of an isolated 1–periodic orbit x.

Since xx is isolated we can find an isolating neighborhood U of x in the extended
phase-space S1 �M whose closure does not intersect the image f.t;y.t//gt2Œ0;1� of
any other orbit y of H . For a sufficiently C 2–small nondegenerate perturbation H 0

of H , the orbit x splits into finitely many 1–periodic orbits O.H 0;x/ of H 0, which
are contained in U and whose cappings are inherited from xx. We denote by O.H 0; xx/
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the capped 1–periodic orbits xx splits into. Moreover, we can also guarantee that any
Floer trajectory and any broken trajectory between capped orbits in O.H 0; xx/ are
contained in U . For a base field K we consider the vector space CF�.H; xx/ generated
by O.H 0; xx/, which by the above observation naturally inherits a Floer differential
and a grading by the Conley–Zehnder index. The homology of this chain complex
is independent of the choice of the perturbation H 0 once it is close enough to H ,
and it is called the local Floer homology of H at xx; it is denoted by HFloc

� .H; xx/.
This group depends only on the class �z of f�t

H
g in the universal cover eHam.M; !/,

and the capped orbit xx. Namely, homotopic paths have choices of cappings of orbits
corresponding to a fixed point x 2 Fix.�/ in bijection, and the corresponding groups
are canonically isomorphic. Hence we write HFloc

� .H; xx/D HFloc
� .�
z; xx/. If we ignore

the Z–grading, then the group depends only on � D �1
H

and x 2 Fix.�/. In this case,
we write HFloc.�;x/ for the corresponding local homology group, which is naturally
only Z=.2/–graded.

Let xx be a capped 1–periodic orbit of a Hamiltonian H . We define the support
of HFloc

� .H; xx/ to be the collection of integers k such that HFloc
k
.H; xx/ ¤ 0. By

the continuity of the mean-index and by equation (2), it follows that HFloc
� .H; xx/ is

supported in the interval Œ�.xx/ � n; �.xx/C n�. One can show that if x is weakly
nondegenerate then HFloc

� .H; xx/ is actually supported in .�.xx/� n; �.xx/C n/. We
shall explore the idea behind the proof of this second fact later as we use the same
argument to prove a similar claim in slightly greater generality. Namely, we extend it
to an isolated compact path-connected family of contractible fixed points.

2.3 Quantum homology and PSS isomorphism

In the present section we describe the quantum homology of a symplectic manifold. It
might be helpful to think of it as the Hamiltonian Floer homology in the case where
the Hamiltonian is a C 2–small time-independent Morse function. Alternatively, one
may consider it as the cascade approach [26] to Morse homology for the unperturbed
symplectic area functional on the space zLptM . For a more detailed exposition of these
subjects we refer to [52; 67; 89].

2.3.1 Quantum homology Fix a ground field K. Consider the Novikov field ƒD
ƒKDKŒŒq�1; q� of .M; !/ in the positive and negative monotone cases, where deg.q/D
2N and ƒDƒK;! in the Calabi–Yau case. We set

QH.M /DQH.M;K/DH�.M Iƒ/
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as a ƒ–module. This module has the structure of a graded-commutative unital algebra
over ƒK whose product, denoted by �, is defined in terms of 3–point genus-zero
Gromov–Witten invariants [54; 58; 81; 82; 108]. It can be thought of as a deformation
of the usual intersection product on homology. As in the classical homology algebra,
the unit for this quantum product is the fundamental class ŒM � of M .

2.3.2 Piunikhin–Salamon–Schwarz isomorphism Under our conventions for the
Conley–Zehnder index, one obtains a map

PSS WQH�.M /! HF��n.H /

by counting (for generic auxiliary data) certain isolated configurations. More precisely,
the configurations considered consist of negative gradient trajectories 
 W .�1; 0�!M

of a generic Morse–Smale pair7 incident at 
 .0/ with the asymptotic lims!�1 u.s; � /

of a map u WR�S1!M of finite energy, satisfying the Floer equation

@u

@s
CJt .u/

�
@u

@t
�X t

K .u/

�
D 0

for .s; t/ 2R� S1 and K.s; t/ 2 C1.M;R/ a small perturbation of ˇ.s/Ht such that
K.s; t/Dˇ.s/Ht for s��1 and for s�C1. Here ˇ WR! Œ0; 1� is a smooth function
satisfying ˇ.s/ D 0 for s � �1 and ˇ.s/ D 1 for s � C1. This map produces an
isomorphism of ƒK–modules, which intertwines the quantum product on QH.M /

with the pair-of-pants product on Hamiltonian Floer homology. This map is called the
Piunikhin–Salamon–Schwarz isomorphism.

2.4 Spectral invariants in Floer theory

We review the theory of spectral invariants following the works of [73; 34; 67], which
contain a more exhaustive list of properties and finer details of the construction.

Let .M; !/ be a closed symplectic manifold, H a generic Hamiltonian and fJtgt2S1 a
loop of !–compatible almost complex structures. For a 2R nSpec.H /, the inclusion
of the filtered Floer complex into the total complex induces a homomorphism

ia W HF.H /<a
! HF.H /:

7That is, a Morse function f 2 C1.M;R/ and Riemannian metric g on M , satisfying the Morse–Smale
condition.
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For each ˛M 2QH�.M / n f0g, using the PSS isomorphism QH�.M /Š HF��n.H /

we then define
c.˛M ;H /D inffa 2R j PSS.˛M / 2 im.ia/g:

It is not hard to see that the spectral invariants do not depend on the choice of an almost
complex structure. In addition, for H 2 H the spectral invariant c.˛M ;H / depends
only on the class �zH of f�t

H
g in the universal cover eHam.M; !/; consequently, we

also denote it by c.˛M ; �zH /D c.˛M ;H /.

Definition 11 (non-Archimedean valuation) Let ƒ be a field. A non-Archimedean
valuation on ƒ is a function � Wƒ!R[fC1g such that

(i) �.x/DC1 if and only if x D 0,

(ii) �.xy/D �.x/C �.y/ for all x;y 2ƒ,

(iii) �.xCy/�minf�.x/; �.y/g for all x;y 2ƒ.

The Novikov field ƒK DKŒŒq�1; q� possesses a non-Archimedean valuation

� WƒK!R[fC1g

given by setting �.0/DC1 and

(4) �
�X

aj qj
�
D�maxfj j aj ¤ 0g:

Spectral invariants enjoy a wealth of useful properties, established by Schwarz [86],
Viterbo [104], Oh [58; 64; 66] and generalized by Usher [101; 102], all of which
hold for closed rational symplectic manifolds, using the machinery of virtual cycles as
discussed in Remark 10 if necessary. We summarize some of the relevant properties
for our purposes:

(i) Spectrality For each ˛M 2QH.M / n f0g and H 2H,

c.˛M ; �zH / 2 Spec.H /:

(ii) Stability For any H;G 2H and ˛M 2QH.M / n f0g,Z 1

0

min
M
.Ht �Gt / dt � c.˛M ; �zH /� c.˛M ; �zG/�

Z 1

0

max
M
.Ht �Gt / dt:

(iii) Triangle inequality For any H;G 2H and ˛M ; ˛0
M
2QH.M / n f0g,

c.˛M �˛
0
M ; �zH�zG/ � c.˛M ; �zH /C c.˛0M ; �zG/:
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(iv) Value at identity For every ˛M 2QH.M / n f0g,

c.˛M ;eid/D�� � �.˛M /;

where � is the rationality constant of .M; !/ and � is as in (4).

(v) Novikov action For all H 2H, ˛M 2QH.M / and � 2ƒK,

c.�˛M ;H /D c.˛M ;H /� � � �.�/:

(vi) Non-Archimedean property For all ˛M ; ˛0
M
2QH.M /,

c.˛M C˛
0
M ;H /�maxfc.˛M ;H /; c.˛0M ;H /g:

By the continuity property, the spectral invariants are defined for all H 2 H, and
all the above listed properties apply in this generality. Further, we observe that for
˛M 2 QH.M / satisfying ˛M � ˛M D ˛M , the triangle inequality for the spectral
invariants implies

c.˛M ; �zH .k//D c.˛M ; �zkH /� k � c.˛M ; �zH /:

2.4.1 Spectral norm For a Hamiltonian H 2H, we define its spectral pseudonorm by

(5) 
 .H /D c.ŒM �; �zH /C c.ŒM �; �zH /;

where H is the Hamiltonian function H .t;x/D�H.1�t;x/. A result of [65; 86; 104]
shows that


 .�/D inf
�1

H
D�


 .H /

defines a nondegenerate norm 
 WHam.M; !/!R�0 and yields a bi-invariant distance

 .�; �0/D 
 .�0��1/. We call 
 .�/ the spectral norm of � and 
 .�; �0/ the spectral
distance between � and �0.

2.4.2 Carrier of the spectral invariant In this section we review the definition of
carriers of the spectral invariant, mainly following [34]. We observe that while we
are going to introduce the notion of carriers specifically for the fundamental class
ŒM � 2QH.M /, it can be done so for any nontrivial quantum homology class �.

First, we fix ˛M D ŒM � and write c.H /D c.�zH /D c.ŒM �; �zH /. Observe that in the
case of a nondegenerate Hamiltonian H , we have

c.�zH /D inffAH .�/ j � 2 CFn.H /; PSS.ŒM �/D Œ� �g;

where AH .�/D maxfAH .xx/ j �xx ¤ 0g for � D
P
�xxxx. That is, it is the maximum

action of a capped orbit xx entering � 2CFn.H /. By the spectrality property of spectral
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invariants, the infimum is obtained. Consequently, there exists a cycle � satisfying
Œ� �D PSS.ŒM �/ such that AH .xx/D c.�zH / for an orbit xx entering � . We call xx the
carrier of the spectral invariant and observe that in order to guarantee its uniqueness,
all the 1–periodic orbits of H need to have distinct action values. In order to generalize
the notion of carriers to the case where H is degenerate and has isolated orbits, we first
recall that for each C 2–small nondegenerate perturbation H 0, every capped 1–periodic
orbit xx splits into several nondegenerate 1–periodic orbits O.H 0; xx/, with their capping
inherited from xx.

Definition 12 (carrier of degenerate H with isolated orbits) A capped 1–periodic
orbit xx is said to be a carrier of the spectral invariant if there exists a sequence fH 0

k
g

of nondegenerate perturbations C 2–converging to H such that for each k, one of the
orbits in O.H 0

k
; xx/ is a carrier of the spectral invariant for H 0

k
. A uncapped orbit is

said to be a carrier if it becomes one for a suitable capping.

As in the nondegenerate case, the uniqueness of the carrier follows from all the
1–periodic orbits having distinct action values. In this case, the carrier becomes
independent of the choice of sequence fH 0

k
g. In addition, the definition of a carrier and

the continuity of the action functional and of the mean-index readily yield

c.�zH /DAH .xx/ and 0��.�zH ; xx/� 2n;

where the inequalities can be made strict in the case where the orbit x is weakly
nondegenerate. In [34] the following result was obtained.

Lemma 13 Suppose H only has isolated 1–periodic orbits , and let xx be a carrier of
the spectral invariant of the fundamental class. Then HFloc

n .H; xx/¤ 0.

In Section 3.1.2 below, we generalize this statement to the case of isolated path-
connected sets of periodic orbits, and also to arbitrary quantum homology classes.

3 Isolated connected sets of periodic points

3.1 Generalized perfect Hamiltonians

Recall that a Hamiltonian H is called perfect if it has a finite number of contractible
periodic points of all periods. We consider the more general condition where H has
finitely many isolated path-connected families of periodic orbits, which in turn implies
that Fix.�H / is composed of finitely many isolated path-connected sets.
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Definition 14 A Hamiltonian diffeomorphism � 2 Ham.M; !/ is generalized perfect
whenever the following conditions are met:

(i) Fix.�/ has finitely many isolated compact path-connected components.

(ii) There exists a sequence of integers ki ! 1 which contains a subsequence
li D kji

with li j liC1 for all i , and for which Fix.�ki /D Fix.�/ for all i .

(iii) For each isolated path-connected component F of Fix.�/, and for all i , the
mean-index �.H .ki /; xx.ki //, where x 2 F and xx 2 xF , is a constant function of
x 2 F . We denote this constant by �.H .ki /; xF .ki //.

An isolated path-connected component F � Fix.�/ can be thought of as, and is indeed
called in this paper, a generalized fixed point. In this section we slightly generalize
some of the theory discussed in Section 2, allowing us to treat generalized perfect
Hamiltonians. We observe that the third condition in Definition 14 is not vacuous:
indeed, one can construct an example of a generalized fixed point F where the mean-
index is not a constant function of x 2 F , by means of the Hamiltonian suspension
construction [71, Section 3.1] applied to an appropriate contractible Hamiltonian loop
of S2. However, as stated in Theorem C, a p–torsion Hamiltonian diffeomorphism is
weakly nondegenerate generalized perfect: in particular, the mean-index is constant on
each generalized fixed point.

3.1.1 Lifts of generalized 1–periodic orbits Let .M; !/ be a closed symplectic
manifold and H a Hamiltonian function generating a Hamiltonian diffeomorphism �H

on M whose set of contractible fixed points consists of a finite number of path-connected
components. Denote the path-connected components of Fix.�H / by F1; : : : ;Fm. For
each j and each x 2Fj , there is a corresponding contractible loop x.t/D �t

H
.x/, thus

to each isolated fixed-point set Fj we can associate a subset Fj of the space LptM of
all contractible loops in M . It is natural to ask whether the generalized orbits Fj lift to
the �–cover zLptM in a suitable manner, namely, if the preimage under the projection
Pr W zLptM ! LptM is composed of isolated path-connected “copies” of Fj . We show
that the lift exists, and we denote by xFj a particular lift of Fj . This is analogous to a
capping of an orbit in the case of a usual Hamiltonian.

Consider the set F � LptM associated to F 2 �0.Fix.�H // and let i WF ! LptM be
the natural inclusion map. Formally, we are asking when, given a loop x0 2F and
xx0 2 Pr�1.fx0g/, a lift of i exists: namely, a unique map f W F ! zLptM such that
f .x0/D xx0 and Pr ı f D i . From the theory of covering spaces, the existence of the
lift is equivalent to i�.�1.F ;x0//� Pr�.�1. zLptM; xx0//.
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Proposition 15 Let .M; !/ be a symplectic manifold in one of the three classes
considered in this paper , and �H a generalized perfect Hamiltonian diffeomorphism.
Then each generalized orbit F can be lifted to xF in a unique manner specified by a
loop x0 2F and an element in its fiber xx0 2 Pr�1.x0/.

Proof Let 
 be a loop in F such that 
0 D x0. We show that we can find a loop z
 in
zLptM such that i ı 
 D Pr ı z
 , which implies the claim of the theorem. We build z
 in
a natural way by defining the capping at 
s to be given by gluing the “cylinder” given
by traversing the loop 
 from 0 to s to the capping xx0. To see that the capped orbits z
0

and z
1 are equivalent in zLptM , we show that

(6)
Z

T2


 �! D 0

for every loop 
 in F . We can then guarantee the existence of a lift. Equation (6) follows
from the continuity of AH and the fact that Spec.H / has zero measure in R. Indeed,
AH .z
s/DAH .z
0/ for every s, otherwise, the fact that z
s is a critical point for each s

would imply that AH

�S
0�t�s z
t

�
is a positive measure subset of Spec.H /. Finally,

AH .z
1/DAH .z
0/ amounts to fulfilling the sufficient condition given by equation (6).
Therefore for the three classes we consider, the proof is complete since in this case
� Š �2.M /= ker.Œ!�/ and hence it is only necessary to verify (6). Alternatively, one
can prove that hŒT 2�; 
 �.c1/iD 0 directly, by replacing 
 with a map 
1 WS

2!M with
hŒT 2�; 
 �.c1/i D hŒS

2�; 
 �
1
.c1/i, which vanishes by our assumption on the manifold

and (6).

3.1.2 Generalized local Floer homology In this section, we define a version of
local Floer homology for a generalized capped orbit xF � zLptM of a 1–periodic
Hamiltonian H in a way that is closely related to what was done in [61; 34]. The only
differences are that we are beyond the symplectically aspherical case and we are dealing
with path-connected components of Fix.�H / instead of isolated points. The proofs
of [61] used to define the local Floer homology are valid in this case with nearly no
modifications. The notion of local Floer homology in a more general setting goes back to
the original work of Floer [24; 23] and has been revisited a number of times, for example
in the work of Pozniak [76]. The main ingredients of the construction are as follows.

For each F 2 �0.Fix.�H //, we can find an isolating neighborhood UF of the corre-
sponding generalized 1–periodic orbit F in the extended phase-space S1 �M , ie

f.t; �t
H .x// j t 2 S1; x 2 Fg � UF :
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Moreover, we can choose this collection of neighborhoods to be pairwise disjoint: UF is
disjoint from UF 0 for each pair of distinct generalized fixed points F and F 0. Such an
open set UF in the extended phase-space can be constructed, using the isotopy �t

H
,

from an open neighborhood of F in M . Hence by a slight abuse of notation we think
of UF as a neighborhood of F in M .

Now there exists an � > 0 small enough that for any nondegenerate Hamiltonian
perturbation H 0 satisfying kH �H 0kC 2 < �, the set of orbits O.H 0;F / which F

splits into is contained in UF , and so is every (broken) Floer trajectory connecting
any such two orbits; see Lemma 21. We can now consider the complex CF�.H 0; xF /
over a ground field K generated by the capped 1–periodic orbits O.H 0; xF / which xF
splits into, where the cappings are naturally produced from the specific lift xF . One can
see that this complex is graded by the Conley–Zehnder index and has a well-defined
differential. By a standard continuation argument, one can show that the homology of
this complex is independent of the nondegenerate perturbation (once it is small enough)
and of the choice of almost complex structure. We refer to the resulting homology as
the local Floer homology of H at xF , and denote it by HFloc

� .H; xF /. Write

�min.H;F /D min
xx2 xF

�.H; xx/ and �max.H;F /Dmax
xx2 xF

�.H; xx/

for the minimum and maximum of the mean-indices �.H; xx/ for xx 2 xF .

We claim that if F is a family of weakly nondegenerate orbits, then the support of
HFloc
� .H; xF / satisfies

(7) Supp.HFloc
� .H; xF //� .�

min.H; xF /� n; �max.H; xF /C n/:

In fact, by a simple argument following from the continuity of the mean-index and
inequality (2), one obtains that Supp.HFloc

� .H; xF // satisfies the nonstrict version
of (7). In order to obtain the strict inequalities, we use the assumption that F is weakly
nondegenerate, and its compactness, to argue as in [84]. In the situation where the
Hamiltonian is generalized perfect, we obtain the following.

Lemma 16 Suppose H is a weakly nondegenerate generalized perfect Hamiltonian
and let xF be a generalized capped orbit of H . Then HFloc

� .H; xF / is supported in the
open interval .�.H; xF /� n; �.H; xF /C n/.

Furthermore, the notion of action carriers discussed in Section 2.4 remains valid in
this generalized setting by altering isolated fixed points to generalized fixed points in
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Definition 12. Thus, the spectral invariant c.ŒM �;H / is carried by a capped generalized
periodic orbit xF of H . In this case, we have the following generalization of Lemma 13,
whose proof, once Lemma 21 below is taken into account, follows just as in [34].

Lemma 17 Suppose H has only a finite number of generalized fixed points , and
let xF be a carrier of the spectral invariant of the fundamental class. In this case
HFloc

n .H; xF /¤ 0:

Remark 18 Consider F 2 �0.Fix.�// and F � LptM the associated generalized
1–periodic orbit. We remark that different choices of lifts xF result in isomorphic local
Floer homology groups, with a shift in index given by an integer multiple of 2N . In
particular, if A 2 � , then

HFloc
� .H; xF # A/Š HFloc

�C2hc1.TM /;Ai.H;
xF /;

where xF # A denotes the unique choice of lift containing the capped orbit xx # A for
x 2 F and xx 2 xF . From this discussion, we conclude that dimK HFloc

� .H; xF / does
not depend on the capping of F . Hence, the notation dimK HFloc

� .H;F/ is justified
in this case. Furthermore, when .M; !/ is symplectically Calabi–Yau the local Floer
homology does not depend on the choice of lift, thus we denote it by HFloc

� .H;F/.
This is analogous to the effect of recapping on local Floer homology in the case of
isolated fixed points.

We shall require a slightly more general statement about carriers of quantum homology
classes. The definition of a carrier xF of a quantum homology class ˛M 2QH.M / is
the same as for the fundamental class, with ŒM � replaced by ˛M . We then have the
following result.

Lemma 19 Let ˛M 2QHk.M /nf0g be a homogeneous element of degree k. Suppose
H has only finitely many (contractible) generalized fixed points and let xF be a carrier
of the spectral invariant of ˛M . Then HFloc

k�n
.H; xF /¤ 0.

In fact a stronger result is true, of which this statement is a direct consequence. It
was proven as [93, Theorem D] in the context of �1

H
with isolated fixed points, but its

proof adapts essentially immediately to the context of a finite number of (contractible)
generalized fixed points. Indeed, our case differs from the one in [93] by replacing
fixed points by generalized fixed points everywhere, hence the only technical difference
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consists in establishing Lemma 21. We recall that the proof relies on homological
perturbation techniques, starting from the decomposition of Section 3.1.4. It constitutes
a Novikov-field version of the canonical ƒ0–complexes from [95]. The goal of these
arguments is to introduce a new complex which calculates the same total homology
but replaces each local Floer complex CFloc

� .H; xF /, which depends on a sufficiently
C 2–small perturbation H1 of H , by its homology HFloc

� .H; xF /. This is the local
Floer homology of H at xF , which does not depend on H1. Note that since we work
over a field, CFloc

� .H; xF / is chain-homotopy equivalent to HFloc
� .H; xF / with the zero

differential. The complex obtained from the Floer complex of H1 in this way computes
the same total homology, as desired, but is also strict in the sense of strictly decreasing
a natural filtration. Furthermore, it allows us to compute directly the filtered Floer
homology of H .

Theorem M Let .M; !/ be a closed symplectic manifold which is positive or negative
monotone. Consider the class �z 2 eHam.M; !/ of the Hamiltonian flow f�t

H
gt2Œ0;1� of

H 2H, with Fix.�1
H
/ consisting of a finite number of generalized fixed points. Let K

be a ground field which is arbitrary in the positive monotone case and of characteristic
zero in the negative monotone case. Then there is a filtered homotopy-canonical
complex .C.H /; dH / over the Novikov field ƒK on the action-completion ofM

HFloc
� .�
z; xF /;

the sum running over all capped generalized 1–periodic orbits xF 2 zO.H /. Specif-
ically, C.H / consists of infinite sums x D

P
yi where yi 2 HFloc

� .�
z; xF i/ with

AH . xF i/
i!1
���! �1. The complex .C.H /; dH / is free and graded over ƒK, and is

strict , ie AH .dH .y//<AH .y/ for all y 2C.H /, with respect to the non-Archimedean
action-filtration AH on C.H /, defined by

(8) AH

�X
�j yj

�
Dmaxf��.�j /CAH .yj /g; AH .yj /DAH . xF i.j//:

Here fyj g is a ƒK–basis of C.H / that is determined by fyj j i.j /D ig being a basis
of HFloc

� .�
z; xF i/, where Fix.�/ D fFig and for each i , xF i is a choice of a lift of the

generalized 1–periodic orbit Fi corresponding to Fi to a capped generalized periodic
orbit in zO.H /. Furthermore , for all a 2RnSpec.H /, the filtered homology HF.H /<a

is given by HF.C.H /<a/, where C.H /<a D .AH /
�1 .�1; a/. In particular ,

HF.H /DH.C.H /; dH /ŠQH.M IƒK/:

Moreover , for all a � b with a; b 2 .R n Spec.H // [ f1g, the comparison map
HF.H /<a! HF.H /<b is induced by the inclusion C.H /<a! C.H /<b .

Geometry & Topology, Volume 27 (2023)



Hamiltonian no-torsion 2867

Definition 20 (visible spectrum) We define the visible spectrum of a Hamiltonian
function H as

Specvis.H /D fAH . xF / j HFloc
� .H; xF /¤ 0g;

where AH . xF / denotes the action of any capped orbit xx 2 xF for a lift xF associ-
ated to a generalized fixed point F � Fix.�H /. Indeed, an argument similar to the
proof of Proposition 15 shows that the restriction AH j xF is constant. It is clear that
Specvis.H / � Spec.H /. In the context of barcodes (see Section 3.1.5), the visible
spectrum corresponds to the endpoints of all bars of the barcode B.H / associated to
the filtered Floer homology of H .

3.1.3 Crossing energy We show that for a C 2–small perturbation H 0 of a generalized
perfect Hamiltonian H on a closed symplectic manifold .M; !/, every Floer trajectory u

connecting orbits of H 0 contained in distinct isolating neighborhoods has energy
bounded below by a constant independent of the perturbation. This is an important
technical step.

Lemma 21 There exist ı > 0 and � > 0 such that for every nondegenerate perturbation
H 0 of H satisfying kH �H 0kC 2 < �, every orbit in O.H 0;Fj / is contained in UFj for
j D 1; : : : ;m, every Floer trajectory u connecting capped orbits in distinct isolating
neighborhoods satisfies E.u/ > ı, and every Floer trajectory connecting capped orbits
in the same O.H 0; xFj / is contained in UFj . Finally, if .M; !/ is rational , every Floer
trajectory u connecting capped orbits in O.H 0; xFj /, O.H 0; xF 0j /, for different cappings
xFj ; xF

0
j of the same Fj , has energy E.u/� �=2.

Proof Suppose there exists a sequence of nondegenerate Hamiltonians fH 0
k
g that

C 2–converges to H , and a sequence of Floer trajectories uk of H 0
k

connecting orbits
in distinct isolating neighborhoods such that E.uk/! 0. Since H has finitely many
generalized fixed points, we may suppose without loss of generality that all the Floer
trajectories uk connect orbits in UF to orbits in UF 0 , where F ;F 0 2 �0.Fix.�H // are
distinct.

By a compactness result of [19], and arguing as in [61], we obtain the existence of a
Floer trajectory u of H connecting an orbit in UF to an orbit in UF 0 such that E.u/D 0.
Thus,

@u

@s
D 0 and

@u

@t
DX t

H ;

which, in turn, implies that for each s, the loop us D u.s; � / is a 1–periodic orbit of H .
This contradicts the fact that the generalized fixed points of H are isolated.
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Note that in the above argument, if for each k, uk connects orbits in the same UFj but is
not contained in UFj , then for k sufficiently large, E.uk/ > ı again. Indeed, otherwise
we would again reach a contradiction by a compactness argument. However, if now
uk connects orbits in the same O.H 0

k
; xFj /, then its energy, given by the difference of

actions of its two asymptotic capped orbits, tends to zero as k!1. We conclude that
uk must be contained in UFj for all k sufficiently large.

Finally, we remark that if uk connects orbits in O.H 0
k
; xFj / and in O.H 0

k
; xF 0j /, where

xFj and xF 0j are different cappings of Fj , then, if the symplectic manifold is rational,
E.uk/� �� o.1/ as k!1.

3.1.4 Decomposition of Floer differential An important feature related to local
Floer homology concerns the decomposition of the full differential defined on the
complex CF�.H 0/ into the sum of local differentials of complexes CFloc

� .H; xF /—
for all the different lifts of the finitely many generalized fixed points — and into
an additional component we shall call D. Note that here, H 0 is a nondegenerate
Hamiltonian C 2–close enough to H in the aforementioned sense. Namely, for each
chain � 2 CF�.H 0/, we have

(9) @� D
X
z@ xF� CD�;

where z@ xF represents an extension of the local differential of the complex CFloc
� .H; xF /

obtained by setting z@ xF xx D 0 for every capped orbit which does not belong O.H 0; xF /.
Loosely speaking, D only “counts” Floer trajectories connecting orbits contained in
disjoint isolating open sets UF .

Remark 22 Suppose that � is a chain in the complex CF�.H 0/ and xz is an orbit
entering D� . Naturally, there exists 0 � k � m such that xz 2 CF�.H; xFk/ for a
particular lift of Fk , and a Floer trajectory u connecting an orbit xy 2 CF�.H; xF l/ to
xz for l ¤ k (and a particular lift of Fl ). We then obtain

(10) AH 0.xz/DAH 0.xy/�E.u/ <A0H .xy/� ı;

where the first equality comes from the fact that the energy of a Floer trajectory
connecting two capped orbits is equal to their action difference, and the ı comes from
the uniform lower bound for the crossing energy from Lemma 21. In other words,

AH 0.Dx/ <AH 0.x/� ı

for all x ¤ 0 in CF�.H 0/.

3.1.5 Barcodes of Hamiltonian diffeomorphisms The proof of Theorem G uses
notions and results regarding barcodes of Hamiltonian diffeomorphisms, in the case
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where they have a finite number of contractible generalized fixed points. Hitherto, this
theory was developed mostly for the case where the generalized fixed points are in fact
points, yet given Lemma 21, all relevant results generalize to our situation. In the next
section we describe the main Smith-type inequality regarding the behavior of barcodes
under iteration.

We will summarize the properties necessary for us, and refer to [74; 75; 103; 48; 96; 95]
for further discussion of this notion, in the context of continuity in the Hofer distance
and the spectral distance in particular. For convenience, we work in the setting of
monotone symplectic manifolds, yet natural analogues of various statements exist in
the semipositive, rational and general settings.

Proposition 23 Let .M; !/ be a monotone symplectic manifold with P! D � �Z, and
consider � 2 Ham.M; !/ with Fix.�/ consisting of a finite number of generalized
fixed points. Let K be a coefficient field. Let H be a Hamiltonian generating �. Then
Spec.H /�R is a discrete subset , and there exists a countable collection

B.H /D B.H IK/D f.Ii ;mi/gi2I ;

called the barcode of H with coefficients in K, of intervals Ii in R of the form
Ii D .ai ; bi � or Ii D .ai ;1/, called bars with multiplicities mi 2 Z>0, such that the
following properties hold :

(i) The group � �Z acts on B.H / in the sense that for all k 2 Z and all .I;m/ 2 B,
we have .I C �k;m/ 2 B.

(ii) For each window J D .a; b/ in R with a; b 62 Spec.H /, only a finite number of
intervals I with .I;m/ 2 B have endpoints in J . Furthermore ,

dimK HF.H /J D
X

(I;m/2B.H /
#@I\JD1

m;

where for an interval I D .a; b�, we set @I D fa; bg, and for I D .a;1/, we set
@I D fag.

(iii) For a2 Spec.H / and � > 0 sufficiently small that .a��; aC�/\Spec.H /Dfag,
we have

dimK HF.H /.a��;aC�/ D
X

(I;m/2B.H /
a2@I

m;

dimK HF.H /.a��;aC�/ D
X

A. xF /Da

dimK HFloc.H; xF /:
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(iv) There are K.�;K/ orbits of finite bars counted with multiplicity, and B.K/

orbits of infinite bars counted with multiplicity, under the � �Z action on B.H /.
These numbers satisfy

B.K/D dimK H�.M IK/ and N.�;K/D 2K.�;K/CB.K/;

where

N.�;K/D
X

dimK HFloc.�;F/

is the homological count of the fixed points of �, the sum running over all the
set �0.Fix.�// of its generalized fixed points.

(v) To each orbit Œ.I;m/�, with I D .a; b�, of finite bars , there corresponds a bar-
length jI j D b � a, counted with multiplicity m. There are hence K.�;K/

bar-lengths corresponding to the orbits of finite bars ,

0< ˇ1.�;K/� � � � � ˇK.�;K/.�;K/;

which depend only on �. We call

ˇ.�;K/D ˇK.�;K/.�;K/

the boundary-depth of �, and

ˇtot.�;K/D
X

1�j�K.�;K/

ǰ .�;K/

its total bar-length.

(vi) Each spectral invariant c.˛;H / 2 Spec.H / for ˛ 2QH�.M / n f0g is a starting
point of an infinite bar in B.H /, and each such starting point is given by a
spectral invariant.8

(vii) If H 0 is another Hamiltonian generating �, then B.H 0/D B.H /Œc� for a certain
constant c 2R, where B.H /Œc�D f.Ii � c;mi/gi2I .

(viii) If K is a field extension of F and H is a Hamiltonian , then B.H IK/DB.H IF/.
In particular , B.H IK/D B.H IFp/ if char.K/D p, and B.H IK/D B.H IQ/
if char.K/D 0.

8In fact, representatives for the set of orbits of infinite bars counting with multiplicity, can be obtained
as spectral invariants of an orthogonal basis of QH�.M / over the Novikov field ƒK, with respect to the
non-Archimedean filtration lH .�/D c.�;H /. As we shall not require this stronger statement, we refer to
[95; 96] for a discussion of the relevant notions.
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3.1.6 Smith theory in filtered Floer homology One of the fundamental results
of [95] is the following Smith-type inequality, that readily adapts to our setting by
Lemma 21 and its generalization to the situation of branched covers of the cylinder as
in [98, Proposition 9]. We refer to [95, Theorem D] for a detailed argument in the case
of isolated fixed points, and observe that our generalization below is formulated in such
a way that the same proof applies verbatim, by replacing fixed points by generalized
fixed points everywhere.

Theorem N Let .M; !/ be a monotone symplectic manifold , p a prime number ,
and � 2 Ham.M; !/ with Fix.�/ and Fix.�p/ each consisting of a finite number of
generalized fixed points , and such that the natural inclusion Fix.�/! Fix.�p/ restricts
to a homeomorphism from each generalized fixed point F of � to a generalized fixed
point of �p, which we denote by F .p/. Then

ˇtot.�
p;Fp/� p �ˇtot.�;Fp/:

This inequality will be the key component in the proof of Theorem G.

A somewhat simpler statement than Theorem N is the Smith inequality in generalized
local Floer homology, whose proof is precisely as in [98] together with the crossing
energy argument of Lemma 21.

Proposition 24 Let .M; !/ be a closed symplectic manifold , p a prime number and
� 2 Ham.M; !/. Suppose that Fix.�/ and Fix.�p/ each consist of a finite number of
generalized fixed points. Let F be a generalized fixed point of �, such that the natural
inclusion Fix.�/! Fix.�p/ restricted to F is a homeomorphism onto F .p/. Then

dimFp
HFloc.�;F/� dimFp

HFloc.�p;F .p//:

3.1.7 Quantum Steenrod operations Quantum Steenrod operations are remarkable
algebraic maps

QStp WQH�.M IFp/!QH�.M IFp/ŒŒu��h�i

for p a prime number, u a formal variable of degree 2, and � a formal variable of
degree 1. As is the usual quantum product, QStp is essentially defined by certain
counts of configurations consisting of holomorphic curves in M incident with negative
gradient trajectories of Morse functions in M . The main difference is that QStp uses
p input and 1 output trajectories, and the counts are carried out in families parametrized
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by the classifying space B.Z=pZ/ of Z=pZ. The investigation of the enumerative
significance of these counts, in terms of various Gromov–Witten invariants, and its
implications for mirror symmetry was started in [91; 92].

These operations were first proposed by Fukaya [27], and were formally introduced
for p D 2 by Wilkins in [106]. They were then studied in [107] in relation to the
equivariant pair-of-pants product of Seidel [90]. For a definition for p > 2 odd, see
[91; 97]. The significance of quantum Steenrod operations in Hamiltonian dynamics
was first observed in [93], and was further investigated in [7; 94; 97]. While for the
moment these operations are defined in the setting of monotone symplectic manifolds,
it is expected that they will be generalized to the semipositive (also called weakly
monotone) setting.

One particular property of quantum Steenrod operations that we use in this paper, which
was first observed in [93] for p D 2, and proved in [97] for p > 2, is that whenever

(11) QStp.�/¤ u.p�1/n�;

where � 2H 2n.M IFp/ is the cohomology class Poincaré dual to the point class, the
symplectic manifold .M; !/ is geometrically uniruled: for each !–compatible almost
complex structure J on M , and each point x 2 M , there exists a J–holomorphic
sphere u W CP1

!M such that x 2 im.u/. Hence, we call a (monotone) symplectic
manifold Fp–Steenrod uniruled if condition (11) holds. The algebraic significance of
this condition is that u.p�1/n�D Stp.�/, where Stp is the (slightly reformulated) total
Steenrod pth power of the class �, and in general,

QStp D StpCO.q/;

where O.q/ is a collection of terms involving the quantum variable q to power at least 1.
These terms correspond to configurations involving J–holomorphic spheres of positive
symplectic area, hence condition (11) means that the quantum Steenrod power of the
point cohomology class is deformed by holomorphic spheres.

3.2 Floer cohomology

At times it shall be convenient to work with Floer cohomology and quantum cohomology
of closed symplectic manifolds, instead of homology. All the preliminary results above
adapt naturally to this setting. In fact, we may define

CF�.H;J /D CFn��.H ;J /;
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where H .t;x/D�H.1� t;x/, J t .x/D J1�t .x/. The usual action functional AH on
the left-hand side takes the form .�AH / on the right-hand side. Note that hereby the
cohomological differential increases the filtration, the triangle inequality for spectral
invariants has the opposite inequality, and infinite bars in the barcode are of the form
.�1; b/. Local Floer cohomology is defined in the same way as for homology. Action
carriers, and contribution to local Floer cohomology hold similarly: c.�;H / for
� 2 QH 2n.M / is carried by a capped generalized periodic orbit xF of H if, in the
same sense as for homology, xF is a lowest action term in a highest minimal action
representative of the image PSSH .�/ of � under the PSS isomorphism [70] from the
quantum cohomology QH�.M /! HF��n.H / to the filtered Floer cohomology of
the Hamiltonian H . For .M; !/ rational, in particular monotone, for each nonzero
class �2QH�.M /, and for H 2H with #�0.Fix.�1

H
// <1, we have that c.�;H / is

carried by at least one generalized capped 1–periodic orbit xF of H . Furthermore, if �
is a homogeneous class of degree k, and xF carries c.�;H /, then HFk�n

loc .H; xF /¤ 0.

We refer to [52] for further discussion of the comparison between Floer homology and
Floer cohomology.

4 Cluster structure of the essential spectrum

Definition 25 (essential spectrum) We define the essential spectrum of a Hamiltonian
function H as

Specess.H /D fc.˛;H / j ˛ 2QH�.M / n f0gg:

Observe that the spectrality property of the spectral invariants is equivalent to the
inclusion Specess.H / � Spec.H /. In fact, Lemma 19 implies that Specess.H / �

Specvis.H / for Hamiltonian diffeomorphisms with a finite number of (contractible)
generalized fixed points. In the context of barcodes (see Section 3.1.5), the essential
spectrum corresponds to the endpoints of infinite bars of the barcode B.H / associated
to the filtered Floer homology of H .

We next show that whenever 
 .H / < �, the essential spectrum has a cluster structure
determined by the subset produced by quantum homology classes of valuation 0.

Proposition 26 Suppose M is a monotone symplectic manifold and H a Hamiltonian
function on M . Then

0� c.ŒM �; �zH /� c.˛; �zH /� 
 .H /

for all ˛ 2QH.M / such that �.˛/D 0, including all ˛ 2H�.M /�QH.M /.
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Proof By the triangle inequality and the value at identity properties of the spectral
invariant,

c.˛; �zH /D c.˛ � ŒM �;eid�zH /� c.˛;eid/C c.ŒM �; �zH /D c.ŒM �; �zH /

for all ˛ 2QH.M / such that �.˛/D 0. In addition,

0D c.˛;eid/D c.˛ � ŒM �; �zH�zH /� c.˛; �zH /C c.ŒM �; �zH /:

Combining both inequalities we obtain

0� c.ŒM �; �zH /� c.˛; �zH /� c.ŒM �; �zH /C c.ŒM �; �zH /D 
 .H /;

which concludes the proof of the proposition.

Proposition 27 Let M be a monotone symplectic manifold with rationality constant
� > 0, let H be a Hamiltonian function on M with 
 .H / < � and let ˛ 2QH.M /.
Then

c.ŒM �; �zH /� � < c.˛; �zH /� c.ŒM �; �zH /

if , and only if , �.˛/D 0.

Proof If �.˛/D 0, then Proposition 26 and the hypothesis that 
 .H / < � imply that

c.ŒM �; �zH /� � < c.˛; �zH /� c.ŒM �; �zH /:

Conversely, let x1; : : : ;xB be a homogeneous basis of H�.M /�QH.M / and write
c D c.ŒM �; �zH /. Then, by Proposition 26, we have c.xk ; �zH / 2 .c � �; c� for all
1� k � B. Also, for qj 2ƒK, the equality c.qj xk ; �zH /D c.xk ; �zH /C j� implies
that c.qj xk ; �zH / 62 .c � �; c� for all j ¤ 0. Thus, if c.˛; �zH / 2 .c � �; c� for

˛ D �xk D

X
aj qj xk ;

where � 2ƒ, the non-Archimedean property of the spectral invariant imposes that

˛ D a0xk C

X
j<0

aj qj xk ;

which in turn implies �.˛/D 0. In general, ˛ 2QH.M / is of the form
P
�kxk , where

�k D
P

a
.k/
j qj . Consequently, if c.˛; �zH / 2 .c � �; c�, we may argue as before to

conclude

(12) ˛ D
X

k

�
a
.k/
0

xk C

X
j<0

a
.k/
j qj xk

�
:

Thus, �.˛/D 0, which concludes the proof of the claim.
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Remark 28 The above propositions are valid, albeit with minor modifications to the
proofs, in the more general case where M is only assumed to be rational. If M is
negative monotone, then the base field K is required to be of characteristic zero; see
Remark 10.

Let � 2 Ham.M; !/, and suppose 
 .�/ < �. We can, therefore, find a Hamiltonian
function H generating � such that 
 .H / < �. Our goal is to extract information from
the cluster structure of H in order to bound 
 .�/ from below. First we set notation.
Put S1

�DR=� �Z and, for a2R, let Œa�2 S1
� be its equivalence class. For � 2 S1

�, define

�� D f.a� �; a� j a 2R; Œa�D �g:

Note that the intervals in �� are disjoint and their union covers the real line. In addition,
observe that, modulo � � Z, the set Specess.H / \ I does not depend on the interval
I 2 �� .

Definition 29 (spectral length) We define the �–parsed spectral length of H as

l.H; �� /D diam.Specess.H /\ I/D supfja� bj j a; b 2 Specess.H /\ Ig;

where I 2 �� is arbitrary. For �H D �Œc.ŒM �;H /� we call l.H; �H / the fundamental
length of H . Finally, we define the spectral length of � 2 Ham.M; !/ as

(13) l.�/D inffl.H; �� / j � 2 S1
�g;

where H is any Hamiltonian function generating �. The right-hand side of (13) does not
depend on the choice of Hamiltonian: indeed, if H 0 is another Hamiltonian generating �,
then Specess.H 0/D Specess.H /Cc for a certain c 2R by Proposition 23(vii). (Another
proof using Seidel elements is also possible.)

Remark 30 The following alternative definition of l.�/ helps calculate it in examples.
Set � WR! S1

� for the natural projection: �.a/D Œa�. The image �.Specess.H //� S1
�

is then a finite set. Hence its complement consists of a finite number of open intervals
fKj g

m
jD1

. In terms of these intervals,

l.�/D ��max
j
jKj j;

where for an interval K in S1
� we denote by jKj the length of K with respect to the

standard metric. Yet again, we may reformulate l.�/ more intuitively as the smallest
length of an interval containing �.Specess.H //, that is,

l.�/D inffjLj jL� �.Specess.H //g;

the infimum running over intervals L in S1
�.
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Remark 31 We can also define an a priori larger invariant l 0.�/� l.�/ of � by

l 0.�/D inf
�1

H
D�

l.H; �H /:

However, we find l.�/ more convenient for this paper.

Lemma 32 The fundamental length of a Hamiltonian H satisfies

l.H; �H /� 
 .H /:

If , in addition , 
 .H / < �, then we have equality, ie

l.H; �H /D 
 .H /:

Proof By definition the �–parsed spectral length of H is bounded above by � for
any choice of � 2 S1; in particular, l.H; �H /� �. Thus, we need only to consider the
case where 
 .H / < �. Equation (12) in the proof of Proposition 27, or alternatively
Proposition 23(vi), implies that #fSpecess.H /\ Ig<1 for I2�H and hence for I2��
for any � 2 S1

�. Thus by Proposition 27 the fundamental length of H is given by

l.H; �H /D c.ŒM �;H /� c.˛min;H ;H /;

where ˛min;H 2QH.M / has zero valuation. Consequently, Proposition 26 implies that
l.H; �H /� 
 .H /. To prove equality, we observe that by the Poincaré duality property
of spectral invariants (see [68; 17]) and the fact that the set Specess.H /\ I is finite,
there exists ˇ 2QH.M / n f0g such that c.ˇ;H /D�c.ŒM �;H /. By adding 
 .H / to
both sides of the equality we obtain c.ˇ;H /C 
 .H /D c.ŒM �;H /, which implies

c.ŒM �;H /� � < c.ˇ;H /� c.ŒM �;H /:

Therefore, 
 .H /� l.H; �H /, which gives us the claimed equality.

Lemma 33 Let � be a Hamiltonian diffeomorphism. Then , l.�/� 
 .�/.

Proof Let H be any Hamiltonian function that generates �. By definition l.H; �� /<�

for every � 2 S1
�; in particular, we have l.�/ < �. Hence, if 
 .�/ � �, the desired

inequality holds trivially. Therefore, we may suppose that 
 .�/ < �, in which case we
may take H such that 
 .H / < �. Consequently, Lemma 32 implies l.H; �H /D 
 .H /;
in particular, we have that l.�/ � 
 .H /. If H 0 is any other Hamiltonian function
generating �, with 
 .H 0/ � 
 .H /, the same argument implies l.�/ � 
 .H 0/. Thus,
we conclude that l.�/� 
 .�/.

Geometry & Topology, Volume 27 (2023)



Hamiltonian no-torsion 2877

Remark 34 Lemma 32 immediately implies that if 
 .�/ < �, then l 0.�/D 
 .�/. It
is not clear that the same holds for l.�/. However, we can prove that if 
 .�/ < �=2,
then l.�/ D 
 .�/. Indeed, if 
 .H / < 
 .�/ C � < �=2, by Lemma 32 we have
l.H; �H / D 
 .H / < �=2. However, this implies that for arbitrary � 2 S1

�, either
l.H; �� / D l.H; �H /, if the partitions of Specess.H / into clusters corresponding to
�H and �� coincide, or l.H; �� / � �� l.H; �H / > �=2 > l.H; �H /, if they do not.
Hence, by taking the infima, l.�/D 
 .�/.

Lemma 35 Let � be a generalized Hamiltonian K pseudorotation with sequence
kj D j and take a Hamiltonian H generating �. Suppose that all the distances between
pairs of points in Specess.H / are rational multiples of �. Then there exists a positive
integer m such that 
 .�m/� �.

Proof Fix the base coefficient field K for all homological notions in the proof. We can
suppose 
 .�/ < �, otherwise the implication of the theorem would be true for mD 1.
Furthermore, we note that the hypothesis of the theorem is independent of the choice
of Hamiltonian function; thus, we may suppose that 
 .H / < �, which by Lemma 32,
implies l.H; �H /D 
 .H /. Hence, we have a cluster structure determined by finitely
many values of the essential spectrum of H belonging to the interval

IH D .c.ŒM �;H /� �; c.ŒM �;H /�:

Thus, setting
Specess.H /\ IH D fc1; : : : ; cBg;

by the hypothesis of the proposition we have

ci � cj D
aij

bij
� 2 � �Q\ .��; �/

for all i ¤ j . Note that any pair of points ˛; ˇ 2Specess.H / are of the form ˛D ciCk�

and ˇ D cj C l� for integers l and k. Thus their difference is of the form

(14) ˛�ˇ D

�
aij

bij
C .k � l/

�
�:

Now, let m be the integer given by
Q

i<j bij . The facts that

Fix.�m/D Fix.�/; Specess.H /D Specvis.H / and HFloc.�kj ;F .kj //¤ 0

for all generalized fixed points F of � imply

(15) Specess.H .m//Dm �Specess.H /C � �Z:
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As a consequence of equations (14) and (15) and the definition of m, we have that
Specess.H .m// D � � ZC c for a suitable constant c 2 R. Hence, l.F; �� / D 0 for
any Hamiltonian F generating �m and � 2 S1

�. If 
 .F / < �, then by Lemma 32

 .F / D l.F; �F / D 0, which is absurd since this would imply �m D id. Hence

 .�m/� �.

5 Proofs

5.1 Proof of Theorem C

Let .M; !/ be a closed symplectic manifold and consider a nontrivial � 2Ham.M; !/

such that �p D id for an integer9 p. We can construct a Riemannian metric h � ; � i
which is invariant under the action of the group

G D fid; �; : : : ; �p�1
g;

a fact that is true for any compact Lie group G. In other words, � is an isometry with
respect to this metric. We first show that Fix.�/ is composed of finitely many isolated
path-connected components.

Let x2F�Fix.�/, where F is the path-connected component of x. We claim that there
exists a neighborhood of x which does not intersect any other connected component
of Fix.�/. Suppose the contrary. Then x would be a limit point of Fix.�/ n F . In
particular, if B�.x/ is a normal ball of radius � around x, then there exists a point
y 2 B�.x/ \ .Fix.�/ n F/ and we can consider the unique minimizing geodesic 

given by the exponential map, satisfying 
 .0/D x and 
 .1/D y. However, � is an
isometry so we have that z
 D � ı 
 is also a minimizing geodesic satisfying z
 .0/D x

and z
 .1/D y, hence by uniqueness we must have Image.
 /� Fix.F/, contradicting
the fact that y was in a distinct path-connected component. Since F is compact we can
choose the radius � of the normal ball uniformly so that F is in fact isolated, which
by the compactness of M implies that there are only finitely many path-connected
components.

Furthermore, if k is coprime to p then we have Fix.�k/D Fix.�/. In fact, since p and
k are relatively prime there exist integers ak and bk such that akkC bkp D 1. Thus,

� D �akkCbkp
D �akk�bkp

D �akk :

9While we do not use it in this proof, it might help the reader to first assume that p is a prime.
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So if x is a fixed point of �k then the above equality shows that x is also a fixed
point of �. Conversely, if x is a fixed point of � it is clearly a fixed point for any
of its iterations. Finally, the same argument shows that if x is contractible as a fixed
point of �k it is also contractible as a fixed point of �, and vice versa. Therefore
Fix.�k/D Fix.�/.

To show that � is weakly nondegenerate we utilize the fact if M is connected and
f 2 Iso.M; h � ; � i/ is such that f .x/ D x and D.f /x D idTxM for a point x 2M ,
then f D idM . This can be proven by considering the nonempty closed set

S D fy 2M j f .y/D y;D.f /y D idTyM g;

and noting that the existence of normal balls implies that S is also open. Applied to
our context, we must then show that for every x 2 Fix.�/, D.�/x must have at least
one eigenvalue different from 1, otherwise � would have to be trivial. One way to see
this is by noting that as D.�/x 2 Sp2n.TxM / is an element of finite order, its Jordan
form is diagonal, hence it is trivial if and only if all its eigenvalues are equal to 1.

A slight modification of the above arguments, which amounts to the slice theorem
[2, Theorem I.2.1], shows first that each connected component F of the fixed-point set
of � is a closed connected submanifold of M (and hence is path-connected). Moreover,
for each F and x 2F , ker.D.�/x� idTxM /DTxF , which is to say that the graph of �
intersects the diagonal ��M �M� cleanly. In other words, � is a Floer–Morse–Bott
Hamiltonian diffeomorphism.

Finally, to prove that for a generalized fixed point F of �, and capping xF of its
corresponding generalized periodic orbit F , the mean-index �.H; xx/ is constant as
a function of x 2 F , we argue as follows. We shall prove that for a fixed x0 2 F ,
the function f W F ! R, given by f .x/ D �.H; xx/��.H; xx0/, has integer values.
By continuity of the mean-index this implies that f is identically constant, and as
f .x0/D 0, it is identically zero. This shows the required statement.

First we prove that f has integer values. Similarly to the case of a Riemannian metric,
by [59, Proposition 2.5.6] we can find an !–compatible almost complex structure J

on M that is preserved by �. This allows us to consider D.�/x 2 Sp2n.TxM / for
all x 2 F a unitary matrix, which has diagonal Jordan form, and is determined up to
conjugation by its spectrum with geometric multiplicities. Furthermore its spectrum lies
in the finite set �p �C of pth roots of unity. Therefore by continuity of the spectrum in
the operator norm, which holds for normal and hence for unitary matrices in particular,
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the spectrum of D.�/x does not depend on x 2 F , and all D.�/x for x 2 F are
conjugate by appropriate unitary isomorphisms. Therefore D.�/x and D.�/x0

can be
connected to the identity by conjugate paths, which therefore have equal mean-indices.
Now, as the paths obtained from D.�t

H
/x and D.�t

H
/x0

by means of the cappings
differ from these conjugate paths by suitable loops ˆ and ˆ0 in the symplectic group,
we obtain that f .x/D�.H; xx/��.H; xx0/D�.ˆ/��.ˆ0/ 2 Z.

Finally, observe that with D.�/x being .!x;Jx/–unitary, TxF is Jx–invariant, and
the tangent space TxM splits as a symplectic direct sum TxF ˚Nx , where Nx is
the normal bundle to F at x (in fact this splitting can be obtained by taking Nx to
be the Hermitian orthogonal complement of TxF). In particular, F is a symplectic
submanifold of .M; !/.

Hence, the above discussion shows that � is generalized perfect with sequence kj being
the monotone-increasing ordering of the set

fk 2 Z>0 j gcd.k;p/D 1g:

Remark 36 We have just seen that a p–torsion Hamiltonian diffeomorphism � is
weakly nondegenerate generalized perfect. In our setting it is enough to consider the
case where � has prime order. In fact, if � has order d � 2 and l is a prime that
divides d , ie there is an integer m such that d D lm, we consider the Hamiltonian
diffeomorphism  D �m, which, in turn, has prime order. Equivalently, by Cauchy’s
theorem, if G is a finite group then for every prime p dividing its order there exists an
element of order p.

5.2 Proof of Proposition 5

We first observe that by the universal coefficient formula, it is sufficient to prove the
statement for RD Z.

Now from [85, Chapter 9 and the proof of Theorem 2.3.2] as well as the translation of
[76, Theorem 3.4.11] from the setting of Lagrangian clean intersections to the Floer–
Morse–Bott Hamiltonian setting [3, Theorem 5.2.2] by means of the graph construction,
it is direct to see that there is an isomorphism

HFloc.�;F/ŠH.F IO�˙1 Z/

of the local Floer homology and the homology of F with coefficients in a Z–local
system O�˙1 Z, with structure group f˙1g Š Z=2Z, associated to a double cover O
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of F that we describe below. It is the goal of the proof to show that in our case this
local system is trivial.

The local system O is defined as follows. For x;y 2 F , consider the space Px;y.F/ of
smooth maps 
 WR! F such that

lim
s!�1


 .s/D x and lim
s!1


 .s/D y

for which the convergence is exponential with derivatives. Let u
 W R � S1 ! M

denote the cylinder u
 .s; t/D �
t
H
.
 .s//. Look at the bundle E
 !R�S1 given by

E
 D .u
 /
�TM . Now for each sufficiently small positive number � 2 .0; �0/, where

�0 depends only on H and F , consider real Cauchy–Riemann differential operators

D
 WW
1;p;�.E
 /!Lp;�.E
 /

between Sobolev spaces of sections of E
 with �–exponential decay as jsj ! 1,
that over .�1;�C / and .C;1/, for a large C > 0, coincide with real Cauchy–
Riemann operators determined by a choice of an!–compatible almost complex structure
fJtg 2 JM and connections whose parallel transport over the curve f.s; t/gt2Œ0;1� (with
s fixed) is determined by the linearization of �t

H
at 
 .s/. For � > 0 sufficiently small,

all these operators are Fredholm. Moreover, with the auxiliary data of connections and
complex structures forming a contractible space, all these operators are furthermore
homotopic to each other in the space of Fredholm operators. It is shown in [85] and
[28, Chapter 8] that for 
; 
 0 2 Px;y.F/, the orientation torsors jD
 j and jD
 0 j of
the determinant spaces det.D
 / and det.D
 0/ are canonically isomorphic.10 We can
therefore fix x 2F , and set our local system O!F to be induced from the sets jD
 j for

 2Px;y.F/ with y 2F , with the natural identifications provided by this isomorphism.

Now we prove that O is trivial in our case. Suppose 
 2 Px;y.F/. It is sufficient to
show that det.D
 / is canonically oriented. Now, as in the proof of Theorem C, in our
case there exists an !–compatible almost complex structure J on M which is invariant
under �. In particular, D.�/x W TxM ! TxM is .Jx; !x/–unitary for all x 2 F .
This, together with the fact that the universal cover eSp.2n;R/ deformation-retracts
to the universal cover zU .n/ of its unitary subgroup, implies that D
 is homotopic in
the space of Fredholm operators, canonically up to a contractible choice of auxiliary

10Recall that the determinant line of a Fredholm operator D is the real vector space of dimension one
defined as det.D/D det.coker.D//_˝ det.ker.D//, where for a real finite-dimensional vector space V

of dimension d , det.V /Dƒd .V /, and for a real vector space l of dimension one, its orientation torsor
over the group˙1 is jl j D .l n f0g/=.R>0/.
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data, to a real Cauchy–Riemann operator D WW 1;p;�.E
 /!Lp;�.E
 / corresponding
to a J–unitary connection. Call the homotopy11 fDr gr2Œ0;1�, where D0 D D
 and
D1 DD. But such operators D are in fact complex Cauchy–Riemann operators, their
kernels and cokernels are complex vector spaces, and hence their determinants are
canonically oriented. Hence jDj and jD
 j admit canonical elements o and o
 . By a
similar argument, following the definition of the isomorphisms  
;
 0 W jD
 j

�
�! jD
 0 j

from [85; 28, Chapter 8], with the key point being that orientation gluing is natural
with respect to homotopies [85, Lemma 9.4.1], we see that  
;
 0.o
 /D o
 0 . Therefore
O admits a continuous section, and hence is trivial. This finishes the proof.

5.3 Proof of Theorem J

Consider � 2Ham.M; !/nfidg such that �d D id, and let H be a Hamiltonian function
generating �. Then 
 .H / > 0 by the nondegeneracy of the spectral norm. Since � has
finite order d we have that f�t

H .d/gt2Œ0;1� is a Hamiltonian loop, which, in addition to
the fact that M has rationality constant � > 0, implies that Spec.H .d//D aC� �Z for
a real constant a. One can show by a quick calculation that Spec.H .d//D�aC � �Z.

Furthermore, observe that Spec.H / � Spec.H .d//=d . In fact, if c 2 Spec.H / then
there exists a 1–periodic capped orbit xx 2 zO.H / such that AH .xx/D c. Consequently,
AH .d/.xx.d//D d �AH .xx/D d � c, which implies the claim when added to the fact that
xxd is a critical point of AH .d/ .

Finally, the above observations imply that 
 .H / 2 .�=d/ �Z. In particular, the fact

 .H /� 0 implies 
 .H /� �=d . Since H was an arbitrary Hamiltonian generating �,
it is clear that 
 .�/� �=d .

5.4 Proof of Theorem A

Similarly to the case of Theorem J, �d D id implies, in the symplectically aspherical
setting, that for a Hamiltonian H generating �, we have Spec.H .d// D fag and
Spec.H .d// D f�ag for a constant a 2 R, so Spec.H / � Spec.H .d//=d D fa=dg

consists of at most one point. Since Spec.H / contains c.ŒM �;H /, we obtain that

11In fact we apply a homotopy depending smoothly on x0 2 F from the symplectic connections on
x�.TM /! S1 for x.t/D �t

H .x0/ given by the linearized flow of �t
H

to unitary connections, while at all
times preserving their monodromies D.�1

H
/x0

over S1 for all x0 2 F . This means in particular that the
kernels of the asymptotic operators for fixed x0 do not depend on the homotopy parameter r , up to natural
identification. This and the compactness of F imply that the � > 0 above can be chosen sufficiently small
that all the operators Dr along the homotopy are indeed Fredholm as operators W 1;p;�.E
 /!Lp;�.E
 /.
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c.ŒM �;H / D a=d . Similarly, c.ŒM �;H / D �a=d . This means that 
 .H / D 0 and
hence 
 .�/D 0, which implies by nondegeneracy of 
 that � D id. This finishes the
proof.

5.5 Proof of Theorem K

Consider � 2 Ham.M; !/ n fidg such that �p D id for a prime number p. Fix a
coefficient field K. We show that there exists a positive integer m such that

(16) 
 .�m/�
bp=2c

p
� �;

where bp=2c denotes the floor of p=2. We may suppose p � 3, since the case pD 2 is
settled by Theorem J for mD 1. In this case, note that bp=2c D .p� 1/=2. Supposing
that 
 .�/ < �.p � 1/=2p, we can find a Hamiltonian H generating � satisfying

 .H / < �.p�1/=2p. In the proof of Theorem J we saw that 
 .H / must be a positive
integer multiple of �=p. Therefore, by Lemma 32 we can find a positive integer
r � .p� 3/=2 such that

(17) l.H; �H /D 
 .H /D
r�

p
:

In particular, we have that 2r < p, which combined with the fact that p > 2 implies
that there exist integers a; b such that a.2r/C bp D 1. Observe that b must be an
odd integer, since a.2r/ is even while p and 1 are odd. Let k be the integer such that
�b D 2kC 1. Furthermore, note that a¤ 0, and set mD jaj. There are two cases to
be considered, depending on the sign of the integer a:

� If a> 0, we have that m.2r/� .2kC 1/p D 1, which implies

(18)
mr

p
�

pC 1

2p
D k;

where .p C 1/=2 D dp=2e. Furthermore, since m and p are coprime, Theorem G
implies that

(19) Specess.H .m//Dm �Specess.H /C �Z:

Combining (17), (18) and (19) we obtain that there exist c0; c1 2 Specess.H / such that

mc1�mc0 D
mr�

p
D
.pC 1/�

2p
C k�:
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In addition, mc1 C j� and mc0 C j� belong to the essential spectrum of H .m/ for
every integer j . We conclude that for each � 2 S1

� and I 2 �� , there exists an integer l

such that either

mc1C l�;mc0C .kC l/� 2 I or mc1C l�;mc0C .kC l C 1/� 2 I:

Consequently,

l.H .m/; �� /�minfmc1�mc0� k�; mc0�mc1C .kC 1/�g

Dmin
�
.pC 1/�

2p
;
.p� 1/�

2p

�
D
.p� 1/�

2p
:

Since � was arbitrary, we conclude

(20) l.�m/�
bp=2c

p
� �:

� If a< 0, an analogous argument can be made to show that once again (20) is valid.

Hence, by Lemma 33 we obtain the inequality (16).

5.6 Proof of Theorem L

Consider a generalized pseudorotation � as in Lemma 35. As a consequence of this
lemma, we may suppose that there exist c1; c22Specess.H / such that c1�c22��.RnQ/,
otherwise 
 .�m/ � � for some positive integer m. Since the orbit of any irrational
rotation in S1 is dense, for every � > 0 there exists an integer m� such that

�

2
� � < dS1

�
.Œc1�; Œm� � c2�/�

�

2
;

where for x 2R we denote by Œx� 2 S1
� DR=�Z its equivalence class, and dS1

�
is the

distance function on S1
� coming from the standard flat metric on R. Therefore, arguing

as in the proof of Theorem K we conclude

sup
k2Z>0


 .�k/�
�

2
:

The proofs of Theorems D and I rely on the following observations regarding the mean-
index. First, let �z be a lift of � to the universal cover eHam.M; !/ of Ham.M; !/. As
our path-connected isolated fixed-point sets are weakly nondegenerate, if the capping
xF of the generalized 1–periodic orbit F corresponding to an isolated fixed-point set
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F � Fix.�/ carries a cohomology class � of Conley–Zehnder index n in HFn.�z/Š

QH 2n.M; ƒK/, for a coefficient field K, then its mean-index �D�.�z; xF / satisfies
�� n< n<�C n. Hence,

(21) �.�z; xF / 2 .0; 2n/:

Similarly, if xF carries a homology class u 2 HFn.�z/ Š QH2n.M; ƒK/, then (21)
holds. Both of these implications follow from Lemma 19, equation (7) and Section 3.2.
We will specifically use the case uD ŒM �, which follows from Lemma 17.

5.7 Proof of Theorem D

We first treat the negative monotone case. Choose H 2H so that the path f�t
H
gt2Œ0;1�

represents the class �z lifting �. Let ki be the sequence associated to � as a generalized
perfect Hamiltonian diffeomorphism. By the pigeonhole principle applied to the
subsequence li with li j liC1 for all i , there exists an isolated fixed-point set F � Fix.�/,
and an increasing subsequence of ki , which we renumber and denote by ri , such that
c.ŒM �;H .ri // is carried by a capping xG i of the isolated set of 1–periodic orbits of the
ri–iterated Hamiltonian H .ri / corresponding to F .ri /. Set xG D xG 1. Since r1 divides
all ri , by taking a power of � we can assume that r1 D 1.

Write xG i as a recapped iteration of xG , ie

(22) xG i D xG
.ri / # Ai :

We claim that for ri large, !.Ai/ � 0 and c1.Ai/ > 0, contradicting negative mono-
tonicity. Indeed, write Ai for the action functional of H .ri /, and A WD A1. Then by
(22) and the triangle inequality for spectral invariants,

(23) riA. xG /�!.Ai/DAi. xG i/D c.ŒM �;H .ri //� ric.ŒM �;H /D riA. xG /:

Hence,
!.Ai/� 0:

However, as xG i carries c.ŒM �;H .ri //, by (21) we have �.H .ri /; xG i/2 .0; 2n/ and also
�.H; xG / 2 .0; 2n/. Hence ri�.H; xG / > 2n for ri large enough, and

(24) 2n>�.H .ri /; xG i/D ri�.H; xG /� 2c1.Ai/:

Therefore
c1.Ai/ > 0;

which finishes the proof.
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We now prove the symplectic Calabi–Yau case of the theorem. In this case, the mean-
index of each capped fixed-point set xF does not depend on the capping. Hence we
write �.H;F/ for each generalized fixed point F for this mean-index. Then for each
positive sequence ki!1 of iterations with �ki having a fixed finite number of weakly
nondegenerate generalized fixed points, we argue as follows. For each F 2 �0.Fix.�//,

�.H .ki /;F .ki //D .ki=k1/�.H
.k1/;F .k1//:

Hence, if �.H .k1/;F .k1// > 0 then �.H .ki /;F .ki // > 2n for all ki sufficiently large,
and if �.H .k1/;F .k1// � 0 then �.H .ki /;F .ki // � 0 for all ki . Now, as each F
is weakly nondegenerate, we obtain by the same argument as for the proof of the
support property of local Floer homology, Lemma 16, that for all ki sufficiently large,
H .ki / admits a C 2–small nondegenerate Hamiltonian perturbation Hi without capped
periodic orbits of Conley–Zehnder index n. However, this is in contradiction to the
existence of the PSS isomorphism. Specifically, in this case HFn.Hi/D 0 by definition
of Floer homology, and by the PSS isomorphism HFn.Hi/ŠQH2n.M /¤ 0. Indeed
ŒM � 2QH2n.M / is nonzero.

The following result was first proven in [93] in the setting of a pseudorotation assuming
that the quantum Steenrod square of the point cohomology class is undeformed, or
in other words that .M; !/ is not F2–Steenrod uniruled. We observe that the same
statement holds for generalized pseudorotations, with essentially the same proof, and
with a small modification following [97], for all primes p. Here � 2QH 2n.M; ƒFp

/

denotes the cohomology class Poincaré dual to the point.

Theorem O Let  be a generalized Fp pseudorotation with sequence kj D pj�1 of a
closed monotone symplectic manifold .M; !/ that is not Fp–Steenrod uniruled. Then

(25) c.�; z p/� p � c.�; z /

for each z 2 eHam.M; !/ covering  .

We proceed to the proof of Theorem I.

5.8 Proof of Theorem I

Choose H 2 H so that the path f�t
H
gt2Œ0;1� represents the class �z lifting �. By

the pigeonhole principle, there exists an isolated fixed-point set F � Fix.�/, and an
increasing sequence ki such that c.�;H .ri // for ri D pki is carried by a capping xG i of
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the isolated set of 1–periodic orbits of the ri–iterated Hamiltonian H .ri / corresponding
to F .ri /. By taking a power of �, we can assume that r1 D 1, and set xG D xG 1. Write
xG i as a recapped iteration of xG , ie

(26) xG i D xG
.ri / # Ai :

We claim that for ri large, we get !.Ai/�0 and c1.Ai/>0, contradicting monotonicity.
Indeed, write Ai for the action functional of H .ri /, and set A WDA1. Then by (26) and
Theorem O,

riA. xG /�!.Ai/DAi. xG i/D c.�;H .ri //� ric.�;H /D riA. xG /:

Hence,
!.Ai/� 0:

However, as xG i carries c.�;H .ri //, by (21) we have �.H .ri /; xG i/ 2 .0; 2n/ and also
�.H; xG / 2 .0; 2n/. Hence ri�.H; xG / > 2n for ri large enough, and

2n>�.H .ri /; xG i/D ri�.H; xG /� 2c1.Ai/:

Therefore,
c1.Ai/ > 0:

5.9 Proof of Theorem G

Suppose that � 2 Ham.M; !/ n fidg is of prime order q � 2. Let p � 2 be a prime
different from q. In particular, �j �pk

¤ id for all k 2 Z and 1� j � q� 1.

Write
B.�;Fp/D max

1�j�q�1
ˇtot.�

j ;Fp/:

By Theorem N we obtain for 1� j � q� 1 that

B.�;Fp/� ˇtot.�
j �pk

;Fp/� pkˇtot.�
j ;Fp/:

Choosing a sufficiently large positive k, this implies that for all 1� j � q� 1,

ˇtot.�
j ;Fp/D 0;

whence by Proposition 23 all such �j are generalized Fp pseudorotations. They are
weakly nondegenerate by Theorem C. In other words, the equality

Specvis.H IFp/D Specess.H IFp/

follows directly from the fact that ˇtot.�;Fp/D 0. This finishes the proof of part (i).
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Let us prove that Specvis.H .k/IQ/D k �Specvis.H IQ/C � �Z for all k 2 Z coprime
with q. By the universal coefficient formula in local Floer homology, it is sufficient to
prove the identity Specvis.H .k/IFp/D k �Specvis.H IFp/C� �Z for coefficients in Fp

for an infinite sequence of primes p. Consider the primes p for which p D a .mod q/,
where a 2 .Fq/

� is a cyclic generator of the multiplicative group .Fq/
� D GL.1;Fq/

of Fq . In this case the set f�pj j j 2 Z�0g coincides with

f�k
j 1� k � q� 1g D f�k

j k ¤ 0 .mod q/g:

Let xF be a capped generalized periodic orbit of H . It is enough to prove that

dimFp
HFloc.H .pj /; xF .pj //D dimFp

HFloc.H; xF /

for all j 2Z�0. Indeed, as explained above, each capped generalized fixed point of �k

is a recapping of a pj –iterated capped generalized fixed point of �.

We know by the Smith inequality in generalized local Floer homology, Proposition 24,
that dimFp

HFloc.H .pj /; xF .pj // is an increasing function of j . However, by the finite-
order condition it takes only a finite number of values. Therefore it must be identically
constant. This finishes the proof of part (ii).

Now we prove part (iii) relying on Proposition 5. First let p D q. Then for  D �k ,
with k coprime to p,

(27) N. ;Fp/D
X

dimFp
HFloc. ;F/D

X
dimFp

H.F IFp/;

the sum running over all contractible generalized fixed points F of  , since by
Proposition 5,

HFloc. ;F/ŠH.F IFp/

for all generalized fixed points F . We remark that H.F IFp/¤ 0. By Proposition 23,
we know that

N. ;Fp/� dimFp
H.M IFp/:

On the other hand, by the classical Smith inequality [99; 25; 4], we have

(28)
X

dimFp
H.F IFp/� dimFp

H.M IFp/;

the sum running over all the generalized fixed points of  . This yields

N. ;Fp/D dimFp
H.M IFp/:

This finishes the proof of the first statement of part (iii).
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To prove the second statement of part (iii), we first note that for char.K/D p,

Specess.H;K/D Specess.H;Fp/ and Specvis.H;K/D Specvis.H;Fp/

by Proposition 23, and the equality

Specess.H;Fp/D Specvis.H;Fp/

follows by the first statement of part (iii) and Proposition 23. For the last part, we note
that by Proposition 5, Specvis.H;K/D Spec.H / because

dim HFloc.H; xF /D dim HFloc.�;F/D dim H.F IK/ > 0

for all capped contractible generalized 1–periodic orbits xF of H . Now for k coprime
to q, Spec.H .k// D fAH .k/. xF .k/ # A/g, where the set runs over all A 2 � , and xF
runs over all capped contractible generalized 1–periodic orbits xF of H . Indeed, all the
contractible generalized fixed points of �k are of the form F .k/ for F a contractible gen-
eralized fixed point of �, and the identity quickly follows. Now using the homogeneity
and the recapping properties of the action functional, we obtain

Spec.H .k//D k �Spec.H /C � �Z:

Combined with the identities Specess.H .k/IK/D Specvis.H .k/IK/D Spec.H .k// and
Specess.H IK/D Specvis.H IK/D Spec.H /, this finishes the proof.

5.10 Proof of Theorem H

First assume that  is of prime order p. Then the proof follows from equations (27)
and (28). Indeed, the upper bound holds for all the generalized fixed points of  , and
the lower bound N. ;Fp/ � dimFp

H.M IFp/ takes into account only contractible
generalized fixed points. If  had a noncontractible generalized fixed point, it would
contribute dimFp

H.F IFp/ > 0 to the sum, making the equality impossible. Alter-
natively, one can argue by means of a suitable generalization of Theorem N with
p ¤ q.

Now suppose that  is of order pk , with k � 1. As in Section 5.9, by Proposition 5

HFloc. ;F/ŠH.F IFp/

for all generalized fixed points F ; and

(29) N. ;Fp/D
X

dimFp
HFloc. ;F/D

X
dimFp

H.F IFp/;
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the sum running over all contractible generalized fixed points F of  . Moreover, by
Proposition 23, we have

N. ;Fp/� dimFp
H.M IFp/:

Finally, by the Smith inequality for finite p–groups [99; 25; 4] we again have

(30)
X

dimFp
H.F IFp/� dimFp

H.M IFp/;

the sum running over all the generalized fixed points of  . Now, as in the case
of order p, if  had a noncontractible generalized fixed point, it would contribute
dimFp

H.F IFp/ > 0 to the sum, making it impossible for (30) and (29) to hold
simultaneously.

For  of arbitrary integer order d D p
k1

1
� � �p

km
m , we proceed by induction. We have

already shown the base of induction. Now we suppose that the result is true for all
orders having at most m� 1 distinct prime divisors, and prove it for  of order d as
above. Then  1 D  

p
k1
1 is of order d=p

k1

1
, which has exactly m� 1 prime divisors,

and hence by induction all the fixed points of  1 are contractible. This implies that
the order of the homotopy class of each fixed point of  divides p

k1

1
. In the same way,

we obtain that this order also divides p
kj
j for all 1 � j �m, and therefore it divides

gcd.pk1

1
; : : : ;p

km
m /D 1. Therefore each fixed point of  is contractible. This finishes

the proof.
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A higher-rank rigidity theorem for
convex real projective manifolds

ANDREW ZIMMER

For convex real projective manifolds we prove an analogue of the higher-rank rigidity
theorem of Ballmann and Burns and Spatzier.

53C24; 20H10, 22E40, 37D40, 53C15

1 Introduction

A real projective structure on a d–manifold M is an open cover M D
S
˛ U˛ along

with coordinate charts '˛ WU˛! P .RdC1/ such that each transition function '˛ ı'�1ˇ
coincides with the restriction of an element in PGLdC1.R/. A real projective manifold
is a manifold equipped with a real projective structure.

An important class of real projective manifolds is the convex real projective manifolds,
which are defined as follows. First, a subset �� P .RdC1/ is called a properly convex
domain if there exists an affine chart which contains it as a bounded convex open set.
In this case, the automorphism group of � is

Aut.�/ WD fg 2 PGLdC1.R/ W g�D�g:

If � �Aut.�/ is a discrete subgroup that acts freely and properly discontinuously on�,
then the quotient manifold �n� is called a convex real projective manifold. Notice that
local inverses to the covering map �! �n� provide a real projective structure on
the quotient. In the case when there exists a compact quotient, the domain � is called
divisible. For more background see the expository papers by Benoist [7], Marquis [22]
and Quint [25].

When d � 3, the structure of closed convex real projective d–manifolds is very well
understood thanks to deep work of Benzécri [9], Goldman [16] and Benoist [6]. But,
when d � 4, their general structure is mysterious.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
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We establish a dichotomy for convex real projective manifolds inspired by the theory
of nonpositively curved Riemannian manifolds. In particular, a compact Riemannian
manifold .M; g/with nonpositive curvature is said to have higher rank if every geodesic
in the universal cover is contained in a totally geodesic subspace isometric to R2.
Otherwise, .M; g/ is said to have rank one. An important theorem of Ballmann [2]
and Burns and Spatzier [11; 12] states that every compact irreducible Riemannian
manifold with nonpositive curvature and higher rank is a locally symmetric space. This
foundational result reduces many problems about nonpositively curved manifolds to
the rank-one case. Further, rank-one manifolds possess very useful “weakly hyperbolic
behavior” (see for instance Ballmann [1] and Knieper [20]).

In the context of convex real projective manifolds, the natural analogue of isometrically
embedded copies of R2 are properly embedded simplices, see Section 2.6 below, which
leads to a definition of higher rank:

Definition 1.1 (i) A properly convex domain �� P .Rd / has higher rank if for
every p; q 2� there exists a properly embedded simplex S �� with dim.S/� 2
and Œp; q�� S .

(ii) If a properly convex domain � � P .Rd / does not have higher rank, then we
say that � has rank one.

There are two basic families of properly convex domains with higher rank: reducible
domains (see Section 2.4) and symmetric domains with real rank at least two.

A properly convex domain �� P .Rd / is called symmetric if there exists a semisimple
Lie group G � PGLd .R/ which preserves � and acts transitively. In this case, the real
rank of � is defined to be the real rank of G. Koecher and Vinberg characterized the
irreducible symmetric properly convex domains and proved that G must be locally
isomorphic to either

(i) SO.1;m/ with d DmC 1,

(ii) SLm.R/ with d D 1
2
.m2Cm/,

(iii) SLm.C/ with d Dm2,

(iv) SLm.H/ with d D 2m2�m, or

(v) E6.�26/ with d D 27.

For details see Faraut and Korányi [15], Koecher [21] and Vinberg [28; 29]. Borel [10]
proved that every semisimple Lie group contains a cocompact lattice, which implies
that every symmetric properly convex domain is divisible.

Geometry & Topology, Volume 27 (2023)
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We prove that these two families of examples are the only divisible domains with higher
rank. In fact, we show that being symmetric with real rank at least two is equivalent to
a number of other “higher rank” conditions. Before stating the main result we need a
few more definitions.

Definition 1.2 � Given g 2 PGLd .R/, let

�1.g/� �2.g/� � � � � �d .g/

denote the absolute values of the eigenvalues of some (hence any) lift of g to
SL˙d .R/ WD fh 2 GLd .R/ W det hD˙1g.

� g 2 PGLd .R/ is proximal if �1.g/ > �2.g/. In this case, let `Cg 2P .Rd / denote
the eigenline of g corresponding to �1.g/.

� g 2 PGLd .R/ is biproximal if g and g�1 are both proximal. In this case, define
`�g WD `

C

g�1 .

Next we define a distance on the boundary using projective line segments:

Definition 1.3 Given a properly convex domain � � P .Rd / the (possibly infinite
valued) simplicial distance on @� is defined by

s@�.x; y/

D inffk W 9a0; : : : ; ak with x D a0; y D ak and Œaj ; ajC1�� @� for 0� j � k� 1g:

We will prove a characterization of higher rank in the context of convex real projective
manifolds:

Theorem 1.4 (see Section 9) Suppose that � � P .Rd / is an irreducible properly
convex domain and � � Aut.�/ is a discrete group acting cocompactly on �. Then
the following are equivalent :

(i) � is symmetric with real rank at least two.

(ii) � has higher rank.

(iii) The extreme points of � form a closed proper subset of @�.

(iv) Œx1; x2�� @� for every two extreme points x1; x2 2 @�.

(v) s@�.x; y/� 2 for all x; y 2 @�.

(vi) s@�.x; y/ <C1 for all x; y 2 @�.

(vii) � has higher rank in the sense of Prasad and Raghunathan (see Section 8).

Geometry & Topology, Volume 27 (2023)
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(viii) For every g 2 � with infinite order , the cyclic group gZ has infinite index in the
centralizer of g in � .

(ix) Every g 2 � with infinite order has at least three fixed points in @�.

(x) Œ`Cg ; `
�
g �� @� for every biproximal element g 2 � .

(xi) s@�.`
C
g ; `
�
g / <C1 for every biproximal element g 2 � .

M Islam [18] has recently defined and studied rank-one isometries of a properly convex
domain. These are analogous to the classical definition of rank-one isometries of
CAT.0/ spaces (see [1]) and are defined as follows:

Definition 1.5 (Islam [18]) Suppose that �� P .Rd / is a properly convex domain.
An element g 2Aut.�/ is a rank-one isometry if g is biproximal and s@�.`Cg ; `

�
g / > 2.

Remark 1.6 (1) When g 2 Aut.�/ is a rank-one isometry, the properly embedded
line segment .`Cg ; `

�
g / � � is preserved by g. Further, g acts by translations on

.`Cg ; `
�
g / in the following sense: if H� is the Hilbert metric on �, then there exists

T > 0 such that
H�.g

n.x/; x/D nT

for all n� 0 and x 2 .`Cg ; `
�
g /.

(2) Islam [18, Proposition 6.3] also proved a weaker characterization of rank-one
isometries: g 2 Aut.�/ is a rank-one isometry if and only if g acts by translations on
a properly embedded line segment .a; b/�� and s@�.a; b/ > 2.

As an immediate consequence of Theorem 1.4:

Corollary 1.7 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. Then the following are
equivalent :

(i) � has rank one.

(ii) � contains a rank-one isometry.

Islam has also established a number of remarkable results when the automorphism
group contains a rank-one isometry; see [18] for details. For instance:

Corollary 1.8 (consequence of Theorem 1.4 and [18, Theorem 1.5]) Suppose that
� � P .Rd / is an irreducible properly convex domain and � � Aut.�/ is a discrete
group acting cocompactly on �. If d � 3 and � is not symmetric with real rank at
least two , then � is an acylindrically hyperbolic group.

Geometry & Topology, Volume 27 (2023)
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1.1 Outline of the proof of Theorem 1.4

The difficult part is showing that any one of conditions (ii)–(xi) implies that the domain
is symmetric with real rank at least two.

One key idea is to construct and study special semigroups in P .End.Rd // associated
to each boundary face. This is accomplished as follows. First, motivated by a lemma
of Benoist [5, Lemma 2.2], we consider a compactification of a subgroup of PGLd .R/:

Definition 1.9 Given a subgroup G � PGLd .R/ let

GEnd
� P .End.Rd //

denote the closure of G in P .End.Rd //.

Next, for a dividing group, we introduce subsets of this compactification:

Definition 1.10 Suppose that��P .Rd / is a properly convex domain and ��Aut.�/
is a discrete group acting cocompactly on �. If F � @� is a boundary face and
V WD SpanF �Rd , then define

�End
F WD fT 2 �End

W image.T /� V g
and

�End
F;? WD fT 2 �

End
W image.T /D V and ker.T /\V D f0gg:

We then prove:

Theorem 3.1 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. If � is nonsymmetric ,
F � @� is a boundary face , V WD SpanF �Rd , and dim.V /� 2, then:

(a) If T 2 �End
F , then T .�/� F .

(b) If T 2 �End
F;?, then T .F / is an open subset of F .

(c) The set
fT jV W T 2 �

End
F;?g

is a nondiscrete Zariski-dense semigroup in P .End.V //.

Using Theorem 3.1 we will show that any one of Theorem 1.4(ii)–(xi) implies that the
domain is symmetric with real rank at least two. Here is a sketch of the argument: First
suppose that �� P .Rd / is an irreducible properly convex domain, � � Aut.�/ is a
discrete group acting cocompactly on �, and any one of Theorem 1.4(ii)–(xi) is true.

Geometry & Topology, Volume 27 (2023)
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Then let E� � @� denote the extreme points of �. We will show that there exists a
boundary face F � @� such that

(1) F \ E� D∅:

By choosing F minimally, we can also assume that E� intersects every boundary face
of strictly smaller dimension. As before, let V WD SpanF . Then using (1) we show
that T jV 2 Aut.F / for every T 2 �End

F;?. Therefore Theorem 3.1 implies that either �
is symmetric or Aut.F / is a nondiscrete Zariski-dense subgroup of PGL.V /. In the
latter case, it is fairly easy to deduce that PSL.V /� Aut.F /, see Lemma 4.5 below,
which is impossible. So � must be symmetric.

1.2 Outline of the paper

In Section 2 we recall some preliminary material. In Section 3 we prove Theorem 3.1.
In Section 4 we prove the rigidity result mentioned in the previous subsection.

The rest of the paper is devoted to the proof of the various equivalences in Theorem 1.4.
In Sections 5, 6, and 7 we prove some new results about the action of the automorphism
group. In Section 8 we consider the rank of a group in the sense of Prasad and
Raghunathan. Finally, in Section 9 we prove Theorem 1.4.
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2 Preliminaries

2.1 Notation

Given a linear subspace V �Rd , we let P .V /� P .Rd / denote its projectivization. In
all other cases, given some object o, we will let Œo� be the projective equivalence class
of o. For instance:

(i) If v 2Rd n f0g, let Œv� denote the image of v in P .Rd /.

(ii) If � 2 GLd .R/, let Œ�� denote the image of � in PGLd .R/.

(iii) If T 2 End.Rd / n f0g, let ŒT � denote the image of T in P .End.Rd //.
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We also identify P .Rd /D Gr1.Rd /, so for instance if x 2 P .Rd / and V � Rd is a
linear subspace, then x 2 P .V / if and only if x � V .

Finally, given a subset X of Rd (respectively P .Rd /), we will let SpanX �Rd denote
the smallest linear subspace containing X (respectively the preimage of X ).

2.2 Convexity and line segments

A subset C � P .Rd / is called convex if there exists an affine chart which contains
it as a convex subset. A subset C � P .Rd / is called properly convex if there exists
an affine chart which contains it as a bounded convex subset. For convex subsets, we
make some topological definitions:

Definition 2.1 Let C �P .Rd / be a convex set. The relative interior of C , denoted by
rel-int.C /, is the interior of C in its span and the boundary of C is @C WDC nrel-int.C /.

A line segment in P .Rd / is a connected subset of a projective line. Given two points
x; y 2 P .Rd / there is no canonical line segment with endpoints x and y, but we will
use the convention that if C � P .Rd / is a properly convex set and x; y 2 C , then
(when the context is clear) we will let Œx; y� denote the closed line segment joining
x to y which is contained in C . In this case, we will also let .x; y/D Œx; y� n fx; yg,
Œx; y/D Œx; y� n fyg, and .x; y�D Œx; y� n fxg.

2.3 Irreducibility

A subgroup � � PGLd .R/ is irreducible if f0g and Rd are the only �–invariant linear
subspaces of Rd , and strongly irreducible if every finite-index subgroup is irreducible.

We will use the following observation several times:

Observation 2.2 If � � PGLd .R/ is strongly irreducible , x1; : : : ; xk 2 P .Rd /, and

V1; : : : ; Vk ¨ Rd

are linear subspaces , then there exists g 2 � such that gxj … P .Vj / for all 1� j � k.

Proof Let G D �Zar denote the Zariski closure of � in PGLd .R/ and let G0 � G
denote the connected component of the identity of G (in the Zariski topology). Then
G0\� is a finite-index subgroup of � and hence G0 is irreducible. So each set

Oj D fg 2G0 W gxj … P .Vj /g

is nonempty and Zariski open in G0. Hence OD
Tk
jD1Oj is nonempty and Zariski

open in G0. Since � \G0 is Zariski dense in G0, there exists some g 2 � \O.
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2.4 Zariski closures

An open convex cone C � Rd is reducible if there exists a nontrivial vector space
decomposition Rd D V1 ˚ V2 and convex cones C1 � V1 and C2 � V2 such that
C D C1 C C2. Otherwise, C is said to be irreducible. The preimage in Rd of a
properly convex domain �� P .Rd / is the union of a cone and its negative; when this
cone is reducible (respectively irreducible) we say that � is reducible (respectively
irreducible).

Benoist determined the Zariski closures of discrete groups acting cocompactly on
irreducible properly convex domains:

Theorem 2.3 (Benoist [5]) Suppose that � � P .Rd / is an irreducible properly
convex domain and � � Aut.�/ is a discrete group acting cocompactly on �. Then
either

(i) � is symmetric , or

(ii) � is Zariski dense in PGLd .R/.

2.5 The Hilbert distance

In this section we recall the definition of the Hilbert metric. But first some notation:

Given a projective line L � P .Rd / and four distinct points a; x; y; b 2 L we define
the cross ratio by

Œa; x; y; b�D
jx� bjjy � aj

jx� ajjy � bj
;

where j � j is some (any) norm in some (any) affine chart of P .Rd / containing a, x, y
and b.

Next, for x; y 2P .Rd / distinct, let Lx;y �P .Rd / denote the projective line containing
x and y.

Definition 2.4 Suppose that �� P .Rd / is a properly convex domain. The Hilbert
distance on �, denoted by H�, is defined as follows: if x; y 2� are distinct, then

H�.x; y/D
1
2

logŒa; x; y; b�;

where @�\Lx;y D fa; bg with the ordering a; x; y; b along Lx;y .

The following result is classical; see for instance [13, Section 28].
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Proposition 2.5 Suppose that �� P .Rd / is a properly convex domain. Then H� is
a complete Aut.�/–invariant metric on � which generates the standard topology on �.
Moreover , if p; q 2�, then there exists a geodesic joining p and q whose image is the
line segment Œp; q�.

2.6 Properly embedded simplices

In this subsection we recall the definition of properly embedded simplices.

Definition 2.6 A subset S � P .Rd / is a simplex if there exists g 2 PGLd .R/ and
k � 0 such that

gS D fŒx1 W � � � W xkC1 W 0 W � � � W 0� 2 P .Rd / W x1 > 0; : : : ; xkC1 > 0g:

In this case, we write dim.S/D k (notice that S is homeomorphic to Rk).

Definition 2.7 Suppose that A� B � P .Rd /. Then A is properly embedded in B if
the inclusion map A ,! B is a proper map (relative to the subspace topology).

By [23, Proposition 1.7], [17], or [26] the Hilbert metric on a simplex is isometric to a
normed space, and so:

Observation 2.8 Suppose that �� P .Rd / is a properly convex domain and S ��
is a properly embedded simplex. Then .S;H�/ is quasi-isometric to RdimS .

2.7 Limits of linear maps

Every T 2 P .End.Rd // induces a map

P .Rd / nP .kerT /! P .Rd /

defined by x! T .x/. We will frequently use:

Observation 2.9 If .Tn/n�1 converges in P .End.Rd // to T 2 P .End.Rd //, then

T .x/D lim
n!1

Tn.x/

for all x 2 P .Rd / n P .kerT /. Moreover , the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

2.8 The faces and extreme points of a properly convex domain

Definition 2.10 Suppose that �� P .Rd / is a properly convex domain. For x 2� let
F�.x/ denote the (open) face of x; that is,

F�.x/D fxg[ fy 2� W 9 an open line segment in � containing x and yg:
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If x 2 @� and F�.x/D fxg, then x is called an extreme point of �. Finally, let

E� � @�
denote the set of all extreme points.

These subsets have some basic properties:

Observation 2.11 Suppose that �� P .Rd / is a properly convex domain.

(i) If x 2�, then F�.x/D�.

(ii) F�.x/ is open in its span.

(iii) y 2 F�.x/ if and only if x 2 F�.y/ if and only if F�.x/D F�.y/.

(iv) If y 2 @F�.x/, then F�.y/� @F�.x/ and F�.y/D FF�.x/.y/.

(v) If x; y 2� and z 2 .x; y/, then

.p; q/� F�.z/

for all p 2 F�.x/ and q 2 F�.y/.

Proof These are all simple consequences of convexity.

We will also use results about the action of the automorphism group:

Proposition 2.12 [19, Proposition 5.6] Suppose that ��P .Rd / is a properly convex
domain , p0 2�, and .gn/n�1 is a sequence in Aut.�/ such that

(i) gn.p0/! x 2 @�,

(ii) g�1n .p0/! y 2 @�, and

(iii) gn converges in P .End.Rd // to T 2 P .End.Rd //.

Then imageT � SpanF�.x/, P .kerT /\�D∅, and y 2 P .kerT /.

In the case of “nontangential” convergence we can say more:

Proposition 2.13 [19, Proposition 5.7] Suppose that � � P .Rd / is a properly
convex domain , p0 2 �, x 2 @�, .pn/n�1 is a sequence in Œp0; x/ converging to x,
and .gn/n�1 is a sequence in Aut.�/ such that

sup
n�1

H�.gn.p0/; pn/ <C1:

If gn converges in P .End.Rd // to T 2 P .End.Rd //, then

T .�/D F�.x/;

and hence imageT D SpanF�.x/.
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Proposition 5.7 in [19] is stated differently, so we provide the proof:

Proof Proposition 2.12 implies T .�/� F�.x/, so we have to prove T .�/� F�.x/.

Fix y 2 F�.x/. Then we can pick a sequence .yn/n�1 in Œp0; y/ such that

sup
n�1

H�.yn; pn/ <1:

Thus
sup
n�1

H�.g
�1
n .yn/; p0/ <1:

So there exists nj !1 such that the limit

q WD lim
j!1

g�1nj
.ynj

/

exists in �. Notice that q … P .kerT / by Proposition 2.12 and so the “moreover” part
of Observation 2.9 implies that

T .q/D lim
n!1

gn.q/D lim
j!1

gnj
.q/D lim

j!1
gnj

.g�1nj
.ynj

//D lim
j!1

ynj
D y:

Since y was arbitrary, F�.x/� T .�/.

2.9 Proximal elements

In this section we recall some basic properties of proximal elements. For more back-
ground we refer the reader to [8].

Definition 2.14 Suppose that F WM !M is a C 1 map of a manifold M . Then a fixed
point x2M of F is attractive if j�j<1 for every eigenvalue � of d.F /x WTxM!TxM .

A straightforward calculation provides a characterization of proximality:

Observation 2.15 Suppose that g 2 PGLd .R/ and x is a fixed point of the g action
on P .Rd /. Then the following are equivalent :

(i) x is an attractive fixed point of g.

(ii) g is proximal and x D `Cg .

Next we explain the global dynamics of a proximal element.

Definition 2.16 If g 2 PGLd .R/ is proximal, then define H�g 2Grd�1.Rd / to be the
unique g–invariant linear hyperplane with

`Cg ˚H
�
g DRd :

If g is biproximal, then also define HCg WDH
�

g�1 .
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When g 2 PGLd .R/ is proximal, H�g is usually called the repelling hyperplane of g.
This is motivated by the following observation:

Observation 2.17 If g 2 PGLd .R/ is proximal , then

Tg WD lim
n!1

gn

exists in P .End.Rd //. Moreover , imageTg D `Cg , kerTg DH�g , and

imageTg ˚ kerTg DRd :

Hence
`Cg D lim

n!1
gnx

for all x 2 P .Rd / nP .H�g /.

Observation 2.18 Suppose �� P .Rd / is a properly convex domain. If g 2 Aut.�/
is proximal , then `Cg is an extreme point of @� and P .H�g /\ @�D∅.

Proof Proposition 2.12 implies that `Cg 2 @� and P .H�g /\@�D∅. Let F DF�.`Cg /
and V D SpanF . Then g.V /D V . Let Ng 2GLd .R/ be a lift of g 2 PGLd .R/ and let
h2GL.V / denote the element obtained by restricting Ng to V . Notice that h is proximal
since `Cg � V . Further Œh� 2 Aut.F / and h.`Cg /D `

C
g . Since Aut.F / acts properly on

F and `Cg 2 F , the cyclic group

Œh�Z � Aut.F /� PGL.V /

must be relatively compact. This implies that every eigenvalue of h has the same absolute
value. Then, since h is proximal, V must be one-dimensional and so F D f`Cg g. Thus
`Cg is an extreme point.

The following result can be viewed as a converse to Observation 2.17 and will be used
to construct proximal elements.

Proposition 2.19 Suppose that .gn/n�1 is a sequence in PGLd .R/ and

T WD lim
n!1

gn

exists in P .End.Rd //. If dim.imageT /D 1 and

imageT ˚ kerT DRd ;

then , for n sufficiently large , gn is proximal and

imageT D lim
n!1

`Cgn
:
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Proof Since gn! T in P .End.Rd //,

lim
n!1

gn.x/D T .x/D imageT 2 P .Rd /

for all x 2 P .Rd / n P .kerT /. Moreover, the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

By assumption,
imageT … P .kerT /;

so we can find a compact neighborhood U of imageT in P .Rd / such that U is
homeomorphic to a closed ball and

U \P .kerT /D∅:

Then, by passing to a tail, we can assume that gn.U /�U for all n. So, by the Brouwer
fixed-point theorem, each gn has a fixed point xn2U . SinceU can be chosen arbitrarily
small,

imageT D lim
n!1

xn:

We claim that, for n large, xn is an attractive fixed point of gn. By Observation 2.15
this will finish the proof. Let fn W P .Rd /! P .Rd / be the diffeomorphism induced
by gn, that is fn.x/D gn.x/ for all x. Then, since each gn acts by projective linear
transformations, we see that the fn converge locally uniformly in the C1 topology on
P .Rd / nP .kerT / to the constant map f � imageT . So, fixing a Riemannian metric
on P .Rd /, we have

lim
n!1

kd.fn/xn
k D 0:

Hence, for n large, xn is an attractive fixed point of gn.

2.10 Rank-one isometries

In this section we state a characterization of rank-one isometries established in [18]:

Theorem 2.20 (Islam [18, Proposition 6.3]) Suppose that �� P .Rd / is a properly
convex domain and 
 2 Aut.�/. If

inf
p2�

H�.
.p/; p/ > 0

and 
 fixes two points x; y 2 @� with s@�.x; y/ > 2, then:

(i) 
 is biproximal and f`C
 ; `
�

 g D fx; yg. In particular , 
 is a rank-one isometry.

(ii) The only points fixed by 
 in @� are `C
 and `�
 .
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(iii) If w 2 @�, then
.`C
 ; w/[ .w; `

�

 /��:

(iv) If z 2 @� n f`˙
 g, then
s@�.`

˙

 ; z/D1:

Remark 2.21 Notice that (iv) is a consequence of (iii).

3 A semigroup associated to a boundary face

Theorem 3.1 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. If � is nonsymmetric ,
F � @� is a boundary face , V WD SpanF , and dim.V /� 2, then:

(a) If T 2 �End
F , then T .�/� F .

(b) If T 2 �End
F;?, then T .F / is an open subset of F .

(c) The set
fT jV W T 2 �

End
F;?g

is a nondiscrete Zariski-dense semigroup in P .End.V //.

The proof of Theorem 3.1 will follow from a series of lemmas, many of which hold in
greater generality.

For the rest of the section fix a properly convex domain �� P .Rd / and a subgroup
� � Aut.�/. Notice that we are not (currently) assuming that � is irreducible, that �
is discrete, or that � acts cocompactly on �.

Observation 3.2 (a) If T 2 �End, then P .kerT /\�D∅.

(b) If S; T 2 �End and imageT n kerS ¤∅, then S ıT 2 �End.

Proof Part (a) follows immediately from Proposition 2.12.

For part (b), fix S; T 2 �End with imageT n kerS ¤∅. By hypothesis S ıT is a well-
defined element of P .End.Rd //. To show that S ı T 2 �End, fix sequences .gn/n�1
and .hn/n�1 in � such that

S D lim
n!1

gn and T D lim
n!1

hn

in P .End.Rd //. Then, since S ıT ¤ 0,

S ıT D lim
n!1

gnhn

in P .End.Rd //. So S ıT 2 �End.
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Lemma 3.3 If F � @� is a boundary face and T 2 �End
F , then T .�/� F .

Proof Suppose T 2 �End
F . Then there exists a sequence .gn/n�1 in � such that

T D lim
n!1

gn

in P .End.Rd //. Since P .kerT /\�D∅,

T .p/D lim
n!1

gn.p/ 2�

for all p 2�. So T .�/��. Since image.T /� V ,

T .�/� P .V /\�D F :

Lemma 3.4 If F � @� is a boundary face and T 2�End
F;?, then T .F / is an open subset

of F .

Proof By definition and Observation 3.2

.�[F /\P .kerT /� .�[P .V //\P .kerT /D∅:

So T induces a continuous map on�[F . SinceF ��, the previous lemma implies that

T .F /� T .�/� F :

Since V \ kerT D f0g, T .F / is an open subset of P .V /. So

T .F /� rel-int.F /D F:

Lemma 3.5 If F � @� is a boundary face , then the set

fT jV W T 2 �
End
F;?g

is a semigroup in P .End.V //.

Proof Fix T1; T2 2 �End
F;?. Then

imageT2 n kerT1 D V n kerT1 D V n f0g ¤∅;

and so T1 ıT2 2 �End by Observation 3.2.

We first show ker.T1ıT2/\V Df0g. Suppose v2ker.T1ıT2/\V . Then T2.v/2kerT1.
But imageT2 D V and kerT1 \V D f0g, so T2.v/D 0 and so v 2 kerT2 \V D f0g.
So v D 0, and thus

(2) f0g D ker.T1 ıT2/\V:

Next, by definition,
image.T1 ıT2/� imageT1 D V:
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So by (2) and dimension counting

image.T1 ıT2/D V:

Thus T1 ıT2 2 �End
F;?.

Since imageT2 D V
T1jV ıT2jV D .T1 ıT2/jV ;

so
.T1 ıT2/jV 2 fT jV W T 2 �

End
F;?g:

Then, since T1; T2 2 �End
F;? were arbitrary, we see that

fT jV W T 2 �
End
F;?g

is a semigroup in P .End.V //.

The next lemma requires a definition.

Definition 3.6 A point x 2 @� is a conical limit point of � if there exist p0 2�, a
sequence .pn/n�1 in Œp0; x/ with pn! x, and a sequence .
n/n�1 in � with

sup
n�1

H�.
n.p0/; pn/ <C1:

Notice that if � acts cocompactly on� then every boundary point is a conical limit point.

Lemma 3.7 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and the image of � ,! PGL

�VkRd
�

is strongly irreducible
(eg � is Zariski dense in PGLd .R/), then there exists a sequence .gn/n�1 in � with :

(i) gn! T in P .End.Rd //, where T 2 �End
F;?.

(ii) g1jV ; g2jV ; : : : are pairwise distinct elements of P .Lin.V;Rd //.

Proof By hypothesis there exist p0 2�, a sequence .pn/n�1 in Œp0; x/ with pn! x,
and a sequence .
n/n�1 in � with

sup
n�1

H�.
n.p0/; pn/ <C1:

After passing to a subsequence we can suppose that the limit

S D lim
n!1


n

exists in P .End.Rd //. Then, by Proposition 2.13,

imageS D SpanF D V;
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and so S 2 �End
F . By passing to another subsequence we can suppose that

V1 D lim
n!1


�1n V

exists in Grk.Rd /.

Let V D Spanfv1; : : : ; vkg, V1D Spanfu1; : : : ; ukg, and kerS D Spanfs1; : : : ; sd�kg,
and let W1 D Œu1 ^ � � � ^uk� and

W2 D
˚
˛ 2

VkRd W ˛^ s1 ^ � � � ^ sd�k D 0
	
:

Since the image of � ,! PGL
�VkRd

�
is strongly irreducible, Observation 2.2 implies

that there exists some � 2 � such that �Œv1 ^ � � � ^ vk� … W1 [W2. Equivalently,
kerS \�V D f0g and �V ¤ V1.

Define gn WD 
n�. Then
T WD S ı� D lim

n!1
gn

exists in P .End.Rd //. Further, imageT D imageS D V and

kerT \V D ��1.kerS \�V /D f0g;

so T 2 �End
F;?. Also, since T .V /D V ,

V D T .V /D lim
n!1

gnV:

Next we claim that gnV ¤ V for n sufficiently large. Notice that gnV D V if and
only if g�1n V D V if and only if 
�1n V D �V . But 
�1n V ! V1 and �V ¤ V1, so
gnV ¤ V for n sufficiently large.

Finally, since gnV ! V and gnV ¤ V for n sufficiently large, we can pass to a subse-
quence so that V; g1V; g2V; : : : are pairwise distinct subspaces. Thus g1jV ; g2jV ; : : :
must be pairwise distinct.

Lemma 3.8 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and the image of � ,! PGL.^kRd / is strongly irreducible
(eg � is Zariski dense in PGLd .R/), then the set

fT jV W T 2 �
End
F;?g

is nondiscrete in P .End.V //.

Proof Let T 2 �End
F;? and .gn/n�1 be as in the previous lemma. Since g1jV ; g2jV ; : : :

are pairwise distinct and each gnjV is determined by its values on any set of dimV C1

points in general position, after passing to a subsequence we can find a point x0 2 F
such that g1.x0/; g2.x0/; : : : are pairwise distinct.
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Since x0 2 F and P .kerT /\F D∅,

T .x0/D lim
n!1

gn.x0/:

Since g1.x0/; g2.x0/; : : : are pairwise distinct, by passing to another sequence we can
assume that gn.x0/¤ T .x0/ for all n. Then, for each n there exists a unique projective
line Ln containing T .x0/ and gn.x0/. By passing to a subsequence we can suppose
that Ln converges to a projective line L. Then let W � Rd be the two-dimensional
linear subspace with LD P .W /.

Fix some W 0 2 Grk.Rd / with W � W 0 and suppose that V D Spanfv1; : : : ; vkg,
W 0 D Spanfw1; : : : ; wkg, and kerT D Spanft1; : : : ; td�kg. Let

U D
˚
˛ 2

VkRd W ˛^ t1 ^ � � � ^ td�k D 0
	
:

Since the image of � ,! PGL
�VkRd

�
is strongly irreducible, Observation 2.2 implies

that there exists ' 2 � such that 'Œv1^� � �^vk� …U and 'Œw1^� � �^wk� …U . Hence
kerT \'V D f0g and kerT \'W D f0g.

Notice that T 'T D limn!1 gn'gn is in �End
F;?. Then replacing .gn/n�1 with a tail,

we can assume that
Sn WD T 'gn 2 �

End
F;?

for all n.

We claim that the set
fSn.x0/ W n� 0g � F

is infinite. For this calculation we fix an affine chart A of P .Rd / which contains �.
We then identify A with Rd�1 so that T .x0/D 0 and

A\LD f.t; 0; : : : ; 0/ W t 2Rg:

Since kerT \'V D f0g, in these coordinates the map T ' is smooth in a neighborhood
of 0D T .x0/. Further, since kerT \'W D f0g, in these coordinates

d.T '/0.1; 0; : : : ; 0/¤ 0:

Now, since Ln! L and gn.x0/! T .x0/ in these coordinates,

gn.x0/D .tn; 0; : : : ; 0/C o.jtnj/

for some sequence .tn/n�1 converging to 0. Then, in these coordinates,

Sn.x0/D T 'gn.x0/D T '..tn; 0; : : : ; 0/C o.jtnj//

D T 'T .x0/C tnd.T '/0.1; 0; : : : ; 0/C o.jtnj/:
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Since d.T '/0.1; 0; : : : ; 0/ ¤ 0 and tn ! 0, we see that the set fSn.x0/ W n � 0g is
infinite.

Finally, since SnjV ! T 'T jV , this implies that

fSnjV W n� 0g[ fT 'T jV g

is nondiscrete in P .End.V //.

Lemma 3.9 Suppose x 2 @� is a conical limit point of � , F D F�.x/, V D SpanF ,
and dim.V /D k. If k � 2 and � is Zariski dense in PGLd .R/, then

fT jV W T 2 �
End
F;?g

is Zariski dense in P .End.V //.

Proof Let Z0 be the Zariski closure of

fT jV W T 2 �
End
F;?g

in P .End.V //.

Lemma 3.7 implies that �End
F;? is nonempty, so fix T 2 �End

F;?. Then define

Z1 D fg 2 PGLd .R/ W rank.T ıgjV / < dim.V /g:

Notice that Z1 is a proper Zariski-closed set in PGLd .R/ since rank.T / D dim.V /.
Also define

Z2 D fg 2 PGLd .R/ W T ıgjV 2Z0g:

Notice that Z2 is a Zariski-closed subset of PGLd .R/.

We claim that � �Z1[Z2. If g 2 � nZ1, then rank.T ıgjV /D dimV and

image.T ıgjV /� imageT D V:

So .T ı g/.V / D V , which implies that T ı g 2 �End
F;?, and hence that g 2 Z2. So

� �Z1[Z2.

Then, since Z1 is a proper Zariski closed subset of PGLd .R/ and � is Zariski dense
in PGLd .R/, we see that Z2 D PGLd .R/. Therefore

Z0 � fT ıgjV W g 2Z2g D fT ıgjV W g 2 PGLd .R/g � PGL.V /;

since imageT D V . Thus Z0 D P .End.V //.

Proof of Theorem 3.1 Parts (a) and (b) follow from Lemmas 3.3 and 3.4, respectively.
Since � acts cocompactly on �, every point in @� is a conical limit point, and
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Theorem 2.3 implies that � is Zariski dense in PGLd .R/. So part (c) follows from
Lemmas 3.3, 3.8, and 3.9.

4 The main rigidity theorem

Recall that E� � @� denotes the set of extreme points of a properly convex domain �.
In this section we prove the following rigidity result:

Theorem 4.1 Suppose that � � P .Rd / is an irreducible properly convex divisible
domain and there exists a boundary face F � @� such that

F \ E� D∅:

Then � is symmetric with real rank at least two.

The rest of the section is devoted to the proof of the theorem, so suppose �� P .Rd /

satisfies the hypothesis of the theorem. Then let � �Aut.�/ be a discrete group acting
cocompactly on �.

We assume, for a contradiction, that � is not symmetric with real rank at least two.

Lemma 4.2 It holds that � is not symmetric.

Proof If � were symmetric, then by assumption it would have real rank one. Then,
by the characterization of symmetric convex divisible domains, � coincides with the
unit ball in some affine chart. Therefore E� D @�, which is impossible since there
exists a boundary face F � @� such that

F \ E� D∅:

Now we fix a boundary face F � @�, where

E�\F D∅

and if F 0 � @� is a face with dimF 0 < dimF then

E�\F 0 ¤∅:
Then define V WD SpanF .

Lemma 4.3 If T 2 �End
F;?, then the map

F ! P .V /; p 7! T .p/;

is in Aut.F /.
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Proof Notice that T jV 2 PGL.V / since T .V /� V and kerT \V D f0g. So we just
have to show that T .F / D F . Theorem 3.1(b) says that T .F / � F , and so we just
have to show that F � T .F /.

Fix y 2F . Since the set T .F /\F is closed in F , there exists x0 2 T .F /\F such that

HF .y; x0/D min
x2T.F /\F

HF .y; x/:

Since T jV 2 PGL.V /, the set T .F / is open in F . So we either have y D x0 2 T .F /
or x0 2 T .@F /. Suppose for a contradiction that x0 2 T .@F /. Then let x00 2 @F be the
point where T .x00/Dx0. Next, let F 0� @F be the face of x00. Then dimF 0< dimF , so

E�\F 0 ¤∅:

Thus we can find z 2F 0 and a sequence .zn/n�1 in E� such that zn! z. Since z 2F 0,
there exists an open line segment L in F which contains z and x00. Then T .L/ is an
open line segment in F since T jV 2 PGL.V /. So, since T .x00/ 2 F , we also have
T .z/ 2 F , and since

T 2 �End
F;? � �

End;

there exists a sequence .gn/n�1 in � such that gn! T in P .End.Rd //. Now note that
z … P .kerT / since kerT \V D f0g. So by the “moreover” part of Observation 2.9,

T .z/D lim
n!1

gn.zn/ 2 F:

However, gn.zn/ 2 E�, and so

T .z/ 2 E�\F D∅:

Thus we have a contradiction. Hence y D x0 2 T .F /, and since y 2 F was arbitrary
we have F � T .F /.

Lemma 4.4 Aut.F / is nondiscrete and Zariski dense in PGL.V /.

Proof This follows immediately from Lemma 4.3 and Theorem 3.1(c).

Lemma 4.5 PSL.V /� Aut.F /:

Proof Let Aut0.F / denote the connected component of the identity in Aut.F / and
let g� sl.V / denote the Lie algebra of Aut0.F /. Then g¤ f0g since Aut.F / is closed
and nondiscrete. Also Aut0.F / is normalized by Aut.F /, and so

Ad.g/gD g
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for all g 2 Aut.F /. Then, since Aut.F / is Zariski dense in PGL.V /, we see that

Ad.g/gD g

for all g 2 PGL.V /. Since the representation Ad W PGL.V /!GL.sl.V // is irreducible,
we must have gD sl.V /. Thus Aut0.F /D PSL.V /.

Proof of Theorem 4.1 The previous lemma immediately implies a contradiction: fix
x 2 F , then

P .V /� F � Aut.F / � x � PSL.V / � x D P .V /:

So F D P .V /, which contradicts the fact that � is properly convex.

5 Density of biproximal elements

In this section we prove a density result for the attracting and repelling fixed points of
biproximal elements. To state the result we need one definition: if � � P .Rd / is a
properly convex domain and � � Aut.�/, then the limit set of � is

L�.�/D
[
p2�

� �p\ @�:

Equivalently, a point x 2 @� is in L�.�/ if and only if there exist p 2� and a sequence
.
n/n�1 in � such that 
n.p/! x.

Theorem 5.1 Suppose that ��P .Rd / is a properly convex domain and � �Aut.�/
is a strongly irreducible group. If x; y 2L�.�/ are extreme points of � and .x; y/��,
then there exists a sequence of biproximal elements .gn/n�1 in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Before proving the theorem we state and prove one corollary:

Corollary 5.2 Suppose that ��P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If x; y 2 @� are extreme
points and .x; y/ ��, then there exists a sequence of biproximal elements .gn/n�1
in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Proof A result of Vey [27, Theorem 5] implies that � is strongly irreducible and
Proposition 2.13 implies that @�D L�.�/, so Theorem 5.1 implies the corollary.
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Proof of Theorem 5.1 By definition there exist p 2� and a sequence .
n/n�1 in �
such that 
n.p/! x. Passing to a subsequence, we can suppose the limits

TC D lim
n!1


n and T � D lim
n!1


�1n

exist in P .End.Rd //. By Proposition 2.12

imageTC � SpanF�.x/D Spanfxg D x;

and so imageTC D x. Proposition 2.12 also implies that P .kerT �/\� D ∅ and
x 2 P .kerT �/. Notice that y … P .kerT �/ since .x; y/��.

Similarly, we can find a sequence .�n/n�1 in � such that the limits

SC D lim
n!1

�n and S� D lim
n!1

��1n

exist in P .End.Rd //, imageSC D y, and x … P .kerS�/.

Fix some x0 2 imageT � and y0 2 imageS�. Since � is strongly irreducible, by
Observation 2.2 there exists h 2 � such that:

(i) h.y0/ … P .kerTC/; hence, h.imageS�/š kerTC.

(ii) hS�.x/ … P .kerTC/.

(iii) h.x0/ … P .kerSC/; hence, h.imageT �/š kerSC.

(iv) hT �.y/ … P .kerSC/.

Then consider gn D 
n ıh ı��1n . By our choice of h, we have TC ıh ıS� ¤ 0 and
hence

TC ı h ıS� D lim
n!1

gn

in P .End.Rd //. Notice that image.TC ıh ıS�/D imageTC D x and, by our choice
of h,

x … P .ker.TC ı h ıS�//:
So

image.TC ı h ıS�/C ker.TC ı h ıS�/D xC ker.TC ı h ıS�/DRd ;

and hence, by Proposition 2.19, gn is proximal for n sufficiently large and `Cgn
! x.

By similar reasoning g�1n is proximal for n sufficiently large and `�gn
D `C

g�1
n

! y.

6 North–south dynamics

In this section we prove a stronger version of Theorem 5.1 for pairs of extreme points
in the limit set whose simplicial distance is greater than two.
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Theorem 6.1 Suppose �� P .Rd / is a properly convex domain and � � Aut.�/ is
strongly irreducible. Assume x; y 2L�.�/ are extreme points of � and s@�.x; y/ > 2.
If A;B �� are neighborhoods of x and y, then there exists g 2 � with

g.� nB/� A and g�1.� nA/� B:

Remark 6.2 Theorem 6.1 is an analogue of a result for CAT.0/ spaces; see Chapter 3
and specifically Theorem 3.4 of [3].

Before proving the theorem we state and prove one corollary:

Corollary 6.3 Suppose that � � P .Rd / is an irreducible properly convex domain
and � � Aut.�/ is a discrete group acting cocompactly on �. Assume x; y 2 @� are
extreme points and s@�.x; y/ > 2. If A;B �� are neighborhoods of x and y, then
there exists g 2 � with

g.� nB/� A and g�1.� nA/� B:

Proof A result of Vey [27, Theorem 5] implies that � is strongly irreducible and
Proposition 2.13 implies that @�D L�.�/, so Theorem 6.1 implies the corollary.

Lemma 6.4 Suppose that � � P .Rd / is a properly convex domain , 
 2 Aut.�/ is
biproximal , and s@�.`C
 ; `

�

 / > 2. If A;B �� are neighborhoods of `C
 and `�
 , then

there exists N � 0 such that


n.� nB/� A and 
�n.� nA/� B

for all n�N .

Proof Observation 2.17 implies that

(3) `C
 D lim
n!1


n.x/

for all x 2 P .Rd /�P .H�g / and the convergence is locally uniform.

We claim that
P .H�g /\�D f`

�
g g:

Proposition 2.12 implies that f`�g g � P .H�g / \� and that � \ P .H�g / D ∅. So
if y 2 P .H�g /\� then Œy; `�g � � P .H�g /\�, and hence Œy; `�g � � @�. Then, by
Theorem 2.20(ii), we have yD `Cg . So P .H�g /\��f`

�
g g and the claim is established.
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Then, by the locally uniform convergence in (3), there exists N1 > 0 such that


n.� nB/� A

for all n�N1.

Repeating the same argument with 
�1 shows that there exists N2 > 0 such that


�n.� nA/� B

for all n�N2.

Then N DmaxfN1; N2g satisfies the conclusion of the lemma.

Proof of Theorem 6.1 By Theorem 5.1 there exists a sequence of biproximal elements
.gn/n�1 in � such that

lim
n!1

`Cgn
D x and lim

n!1
`�gn
D y:

Since s@�.x; y/ > 2 we may pass to a tail of .gn/n�1 and assume that

s@�.`
C
gn
; `�gn

/ > 2

for all n.

Next, fix n sufficiently large that `Cgn
2 A and `�gn

2 B . Then, by Lemma 6.4, there
exists m� 0 such that

gmn .� nB/� A and g�mn .� nA/� B;

so g D gmn satisfies the theorem.

7 Fixed points and centralizers

In this section we prove the following result, connecting the number of boundary fixed
points of an element with the size of its centralizer:

Theorem 7.1 Suppose that �� P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If g 2 � has infinite order
then the following are equivalent :

(i) There exist two distinct points x; y 2 @� fixed by g with s@�.x; y/ <C1.

(ii) g fixes at least three points in @�.

(iii) The cyclic group gZ has infinite index in its centralizer.
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Corollary 7.2 Suppose that ��P .Rd / is an irreducible properly convex domain and
� � Aut.�/ is a discrete group that acts cocompactly on �. If g 2 � is biproximal ,
then the following are equivalent :

(i) Œ`Cg ; `
�
g �� @�.

(ii) s@�.`
C
g ; `
�
g / <C1.

(iii) g has at least three fixed points in @�.

(iv) The cyclic group gZ has infinite index in its centralizer.

We will first recall some results established in [19], then prove the theorem and corollary.

7.1 Maximal abelian subgroups and minimal translation sets

Theorem 7.3 (Islam and Zimmer [19, Theorem 1.6]) Suppose that �� P .Rd / is
a properly convex domain and � � Aut.�/ is a discrete group that acts cocompactly
on �. If A � � is a maximal abelian subgroup of � then there exists a properly
embedded simplex S �� such that

(i) S is A–invariant ,

(ii) A acts cocompactly on S , and

(iii) A fixes each vertex of S .

Moreover , A has a finite-index subgroup isomorphic to Zdim.S/.

Remark 7.4 The above result is a special case of [19, Theorem 1.6], which holds in
the more general case when � � Aut.�/ is a naive convex cocompact subgroup.

Definition 7.5 Suppose that ��P .Rd / is a properly convex domain and g 2Aut.�/.
Define the minimal translation length of g to be

��.g/ WD inf
x2�

H�.x; g.x//

and the minimal translation set of g to be

Min�.g/D fx 2� WH�.g.x/; x/D ��.g/g:

Cooper, Long and Tillmann [14] showed that the minimal translation length of an
element can be determined from its eigenvalues:

Proposition 7.6 [14, Proposition 2.1] If �� P .Rd / is a properly convex domain
and g 2 Aut.�/, then

��.g/D
1
2

log
�1.g/

�d .g/
:
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Remark 7.7 Recall that

�1.g/� �2.g/� � � � � �d .g/

denote the absolute values of the eigenvalues of some (and hence any) lift of g to
SL˙d .R/ WD fh 2 GLd .R/ W det hD˙1g.

As a consequence of Proposition 7.6, we observe the following:

Observation 7.8 If ��P .Rd / is a properly convex domain , p02�, and g2Aut.�/,
then

lim
n!1

1

n
H�.g

n.p0/; p0/D ��.g/:

Proof Proposition 7.6 implies that ��.gn/D n��.g/, and hence

lim inf
n!1

1

n
H�.g

n.p0/; p0/� ��.g/:

For the other inequality, fix � > 0 and q 2� with H�.g.q/; q/ < ��.g/C �. Then

lim sup
n!1

H�.g
n.p0/; p0/

n

� lim sup
n!1

H�.g
n.q/; q/C 2H�.p0; q/

n

� lim sup
n!1

H�.g
n.q/; gn�1.q//C � � �CH�.g.q/; q/C 2H�.p0; q/

n

D lim sup
n!1

H�.g.q/; q/C
2H�.p0; q/

n
< ��.g/C �:

Since � > 0 was arbitrary, the proof is complete.

Next, given a group G and an element g 2 G, let CG.g/ denote the centralizer of g
in G. Then given a subset X �G, define

CG.X/D
\
x2X

CG.x/:

Theorem 7.9 (Islam and Zimmer [19, Theorem 1.10]) Suppose that �� P .Rd / is a
properly convex domain , � � Aut.�/ is a discrete group that acts cocompactly on �,
and A� � is an abelian subgroup. Then

Min�.A/ WD
\
a2A

Min�.a/

is nonempty and C�.A/ acts cocompactly on the convex hull of Min�.A/ in �.
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Remark 7.10 The above result is a special case of [19, Theorem 1.9], which holds in
the more general case when � � Aut.�/ is a naive convex cocompact subgroup.

Proposition 7.11 Suppose that S � P .Rd / is a simplex. If g 2 Aut.S/ fixes every
vertex of S , then MinS .g/D S .

Proof See for instance [19, Proposition 7.3].

Observation 7.12 Suppose��P .Rd / is a properly convex domain and � �Aut.�/
is a discrete group. If g 2 � is biproximal and .`Cg ; `

�
g /��, then gZ has finite index

in C�.g/.

Proof First notice that C�.g/ preserves .`Cg ; `
�
g /. Since Aut.�/ acts properly on �

and � � Aut.�/ is discrete, we see that C�.g/ acts properly on .`Cg ; `
�
g /. Then gZ

has finite index in C�.g/ since gZ acts cocompactly on .`Cg ; `
�
g /.

7.2 Proof of Theorem 7.1

Fix a maximal abelian subgroup A� � which contains g. Then, by Theorem 7.3, there
exists S �� such that

� S is a properly embedded simplex,

� A acts cocompactly on S ,

� A fixes every vertex of S , and

� A has a finite-index subgroup isomorphic to Zdim.S/.

Since g has infinite order, dim.S/� 1.

We consider a number of cases and prove that in each case (i), (ii), and (iii) are either
all true or all false.

Case 1 Assume dim.S/� 2. Then clearly (i), (ii), and (iii) are all true.

Case 2 Assume dim.S/D 1. Let vC and v� be the vertices of S and fix some p0 2 S .
Then, after possibly relabeling, we can assume that

lim
n!˙1

gn.p0/D v
˙:

Case 2(a) Assume s@�.vC; v�/ > 2. Then Theorem 2.20 implies that g is a rank-one
isometry and v˙ D `˙g . Theorem 2.20 also implies that vC and v� are the only fixed
points of g in @� and s@�.vC; v�/D1. Hence (i) and (ii) are false. Observation 7.12
implies that gZ has finite index in C�.g/ and hence (iii) is false.
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Case 2(b) Assume s@�.vC; v�/ D 2. Then, by definition, (i) is true. Fix y0 2 @�
such that ŒvC; y0�[ Œy0; v��.

Pick a sequence nj !1 such that the limits

T˙ WD lim
j!1

g˙nj

exist in P .End.Rd //. Then Proposition 2.12 implies that v� 2 P .kerT˙/ and
P .kerT˙/\�D∅. This implies that v˙ … P .kerT˙/ since .vC; v�/��. Also, g
commutes with T˙ and hence gP .kerT˙/D P .kerT˙/.

Passing to a further sequence, we can suppose that g˙nj .y0/! y˙. Then

ŒvC; y˙�[ Œy˙; v��� @�

and so, since .vC; v�/��, y˙ must be distinct from vC and v�. Since g˙nj .x/!v˙

for all x 2 P .Rd / nP .kerT˙/, we must have y 2 P .kerTC\ kerT �/. Thus the set

C WD @�\P .kerTC\ kerT �/

is nonempty. Then g has a fixed point y 2C since C is g–invariant, closed, and convex,
so g has at least three fixed points in @� and (ii) is true.

Recall that v� 2 P .kerT˙/ and P .kerT˙/\�D∅; hence,

ŒvC; y�[ Œy; v��� @�:

Let S 0 be the open simplex with vertices vC, v� and y. Since .vC; v�/�� we have
S 0 ��. In particular,

(4) HS 0.p; q/�H�.p; q/

for all p; q 2 S 0. Since p0 2 .v�; vC/� S 0 ��, Observation 7.8 implies that

��.g/D lim
n!1

H�.g
n.p0/; p0/

n
D lim
n!1

HS 0.g
n.p0/; p0/

n
D �S 0.g/:

Then, by (4) and Proposition 7.11,

S 0 DMinS 0.g/�Min�.g/:

Now we claim that gZ has infinite index in C�.g/. Theorem 7.9 implies that there is a
compact set K �� such that

S 0[ .vC; v�/� C�.g/ �K:

Further, gZ preserves .vC; v�/, so it is enough to show that

sup
p2S 0

H�.p; .v
C; v�//D1:
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Fix .pn/n�1 in S 0 converging to y. Since .vC; v�/�� and ŒvC; y�[ Œy; v��� @�,
Observation 2.11 implies that the faces F�.vC/, F�.v�/, and F�.y/ are all distinct.
Then, by the definition of the Hilbert metric,

lim
n!1

H�.pn; .v
C; v�//D1:

Thus gZ has infinite index in C�.g/ and so (iii) is true.

7.3 Proof of Corollary 7.2

Theorem 7.1 implies that (ii) D) (iii)() (iv), and by definition (i) D) (ii). Finally,
by Observation 7.12, (iv) D) (i).

8 Rank in the sense of Prasad and Raghunathan

In this section we consider the rank of a group in the sense of [24].

Definition 8.1 (Prasad and Raghunathan) Suppose that � is an abstract group. For
i � 0 let Ai .�/� � be the subset of elements whose centralizer contains a free abelian
group of rank at most i as a subgroup of finite index. Next define r.�/ to be the
minimal i 2 f0; 1; 2; : : : g[ f1g such that there exist 
1; : : : ; 
m 2 � with

� �

m[
jD1


jAi .�/:

Then the Prasad–Raghunathan rank of � is defined to be

rankPR.�/ WD supfr.��/ W �� is a finite-index subgroup of �g:

Prasad and Raghunathan computed the rank of lattices in semisimple Lie groups, which
implies:

Theorem 8.2 [24, Theorem 3.9] Suppose that �� P .Rd / is an irreducible properly
convex domain. If � is symmetric with real rank r and � �Aut.�/ is a discrete group
acting cocompactly on �, then rankPR.�/D r .

As a corollary to Selberg’s lemma we get a lower bound on the Prasad–Raghunathan rank:

Corollary 8.3 If � � PGLd .R/ is a finitely generated infinite group , rankPR.�/� 1.
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Proof By Selberg’s lemma, there exists a finite-index torsion-free subgroup �� � � .
Notice that every element of A0.��/ has finite order and hence A0.��/D fidg. Then,
since �� is infinite,

rankPR.�/� r.�
�/� 1:

In this section we will show that the existence of a rank-one isometry implies that the
Prasad–Raghunathan rank is one.

Proposition 8.4 Suppose �� P .Rd / is a properly convex domain and � � Aut.�/
is a finitely generated strongly irreducible discrete group. If there exists a biproximal
element g 2 � with .`Cg ; `

�
g /��, then

rankPR.�/D 1:

Remark 8.5 The proof of Proposition 8.4 is a simple modification of Ballmann and
Eberlein’s proof [4] of the analogous statement for CAT.0/ groups.

The rest of the section is devoted to the proof of Proposition 8.4, so suppose��P .Rd /,
� � Aut.�/, and g 2 � satisfy the hypothesis of the proposition. By Corollary 8.3 it
is enough to fix a finite-index subgroup �� � � and show that r.��/ � 1. Also, by
replacing g with a sufficiently large power, we may assume that g 2 ��.

Lemma 8.6 Suppose that x1; x2 2 @� and .x1; x2/��. If A;B � @� are open sets
with A\B D ∅, then we can find disjoint neighborhoods V1 and V2 of x1 and x2
such that for each ' 2 Aut.�/ at least one of the following occurs:

(i) '.V1/\AD∅.

(ii) '.V1/\B D∅.

(iii) '.V2/\AD∅.

(iv) '.V2/\B D∅.

Proof The following argument is essentially the proof of Lemma 3.10 in [4].

Fix a distance dP on P .Rd / induced by a Riemannian metric. Then, for each n and
j D 1; 2, let Vj;n be a neighborhood of xj whose diameter with respect to dP is less
than 1=n.

Suppose for a contradiction that the lemma is false. Then, for each n, there exists
'n 2 Aut.�/ such that

(5) 'n.Vj;n/\A¤∅ and 'n.Vj;n/\B ¤∅
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for j D 1; 2. By passing to a subsequence, we can suppose that

T WD lim
n!1

'n

exists in P .End.Rd //. Then

T .u/D lim
n!1

'n.u/

for all u 2 P .Rd / n P .kerT /. Moreover, the convergence is uniform on compact
subsets of P .Rd / nP .kerT /.

Proposition 2.12 implies that P .kerT / \� D ∅. Then, since .x1; x2/ � �, it is
impossible for both x1 and x2 to be contained in P .kerT /. So, after possibly relabelling,
we may assume that x1 … P .kerT /.

By (5) there exist sequences an; bn 2 @� converging to x1 such that 'n.an/ 2 A and
'n.bn/ 2 B . Then, since x1 … P .kerT /,

T .x1/D lim
n!1

'n.an/ 2 A and T .x1/D lim
n!1

'n.bn/ 2 B:

So T .x1/ 2 A\B D∅, which is a contradiction.

Lemma 8.7 r.��/� 1:

Proof The following argument is essentially the proof of Theorem 3.1 in [4].

Since � is strongly irreducible �� is also strongly irreducible, so, by Observation 2.2,
there exists � 2 �� such that

�`Cg ; �`
�
g ; `
C
g and `�g

are all distinct. Then h WD �g��1 is biproximal, `˙
h
D �`˙g , and

.`C
h
; `�h /D �.`

C
g ; `
�
g /��:

Fix open neighborhoods A;B � @� of `C
h

and `�
h

such that A \ B D ∅. Then
let V1; V2 � @� be neighborhoods of `Cg and `�g such that A, B , V1 and V2 satisfy
Lemma 8.6.

By further shrinking each Vj , we can assume that each @� nVj is homeomorphic to a
closed ball.

Next, let U1� V1 be a closed neighborhood of `Cg such that, if x 2U1 and y 2 @�nV1,
then s@�.x; y/ > 2. Such a choice is possible by Theorem 2.20(ii). In a similar fashion,
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let U2 � V2 be a closed neighborhood of `�g such that, if x 2U2 and y 2 @�nV2, then
s@�.x; y/ > 2.

By further shrinking each Uj , we can assume that each Uj is homeomorphic to a closed
ball.

By Observation 2.18, each `˙g and `˙
h

is an extreme point of �. Furthermore, by
Theorem 2.20(iii),

s@�.`
˙
g ; `
˙
h /D1D s@�.`

˙
g ; `
�

h
/:

So, by Theorem 6.1, there exist '1; '2;  1;  2 2 �� such that

(i) '1.@� nA/� U1 and '�11 .@� nU1/� A,

(ii)  1.@� nA/� U2 and  �11 .@� nU2/� A,

(iii) '2.@� nB/� U1 and '�12 .@� nU1/� B ,

(iv)  2.@� nB/� U2 and  �12 .@� nU2/� B .

We claim that

�� D '�11 A1.�
�/[ �11 A1.�

�/['�12 A1.�
�/[ �12 A1.�

�/:

Fix 
 2 ��. By construction, at least one of the four possibilities in Lemma 8.6 must
occur.

Case 1 Assume 
.V1/\AD∅. Then

(6) '1
.U1/¨ '1
.V1/� '1.@� nA/� U1;

so, by the Brouwer fixed-point theorem, '1
 has a fixed point in x 2 U1 (recall that
U1 is homeomorphic to a closed ball). Further,

.'1
/
�1.@� nV1/� .'1
/

�1.@� nU1/� 

�1.A/� @� nV1;

so '1
 also has a fixed point in y 2 @�nV1. Now, by construction, s@�.x; y/ > 2. So,
by Theorem 2.20(i), either

inf
p2�

H�.'1
.p/; p/D 0

or '1
 is biproximal with
fx; yg D f`C'1


; `�'1

g:

In the latter case, .`C'1

; `�'1


/��, and so '1
 2 A1.�/ by Observation 7.12. Thus
we have reduced to showing that

inf
p2�

H�.'1
.p/; p/ > 0:
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Assume for a contradiction that

inf
p2�

H�.'1
.p/; p/D 0:

Then, by Proposition 7.6, we have

�1.'1
/D �2.'1
/D � � � D �d .'1
/:

Since x and y are eigenlines of '1
 , this implies that '1
 fixes every point of the
line .x; y/. Then, since Aut.�/ acts properly on � and �� is discrete, the group

K D f.'1
/
n
W n 2 Zg

is finite. So .'1
/N D id for some large N . Then (6) implies that

U1 D .'1
/
N .U1/¨ U1:

So we have a contradiction, and hence

inf
p2�

H�.'1
.p/; p/ > 0

and so '1
 2 A1.��/.

Case 2 Assume 
.V1/\B D∅. Then arguing as in Case 1 shows that '2
 2A1.��/.

Case 3 Assume 
.V2/\AD∅. Then arguing as in Case 1 shows that  1
 2A1.��/.

Case 4 Assume 
.V2/\B D∅. Then arguing as in Case 1 shows that  2
 2A1.��/.

Since 
 2 �� was arbitrary,

�� D '�11 A1.�
�/[ �11 A1.�

�/['�12 A1.�
�/[ �12 A1.�

�/:

Hence r.��/� 1.

9 Proof of Theorem 1.4

Suppose for the rest of the section that �� P .Rd / is an irreducible properly convex
domain and � �Aut.�/ is a discrete group that acts cocompactly on �. We will show
that the following conditions are equivalent:

(i) � is symmetric with real rank at least two.

(ii) � has higher rank.

(iii) The extreme points of � form a closed proper subset of @�.
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(vi) (viii) (ix) (x) (xi)

(v) (iv)

(ii) (xii) (iii)

(i) (vii)

Lemma 9.4

definition
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9.2

definition Lemma 9.5
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8.
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Figure 1: The proof of Theorem 1.4.

(iv) Œx1; x2�� @� for every two extreme points x1; x2 2 @�.

(v) s@�.x; y/� 2 for all x; y 2 @�.

(vi) s@�.x; y/ <C1 for all x; y 2 @�.

(vii) � has higher rank in the sense of Prasad and Raghunathan.

(viii) For every g 2 � with infinite order, the cyclic group gZ has infinite index in the
centralizer C�.g/ of g in � .

(ix) Every g 2 � with infinite order has at least three fixed points in @�.

(x) Œ`Cg ; `
�
g �� @� for every biproximal element g 2 � .

(xi) s@�.`
C
g ; `
�
g / <C1 for every biproximal element g 2 � .

(xii) There exists a boundary face F � @� such that

F \ E� D∅:

We verify all the implications shown in Figure 1. First notice that .iii/D) .xii/,
.iv/D) .vi/, and .v/D) .vi/ are by definition. The implication .i/D) .vii/ is due
to Prasad and Raghunathan; see Theorem 8.2 above. Proposition 8.4 implies that
.vii/D) .x/. Theorem 7.1 implies that .viii/() .ix/. Corollary 7.2 implies that
.ix/D) .x/ and .x/() .xi/. Theorem 4.1 implies that .xii/D) .i/. The remaining
implications in Figure 1 are given as lemmas below.

Lemma 9.1 .i/D) .ii/ and .i/D) .iii/.
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Proof These implications follow from direct inspection of the short list of irreducible
symmetric properly convex domains.

Lemma 9.2 .ii/D) .v/.

Proof Suppose x; y 2 @�. If Œx; y� � @�, then s@�.x; y/ � 1. If .x; y/ � �, then
there exists a properly embedded simplex S � � with dim.S/ � 2 and .x; y/ � S .
Then

s@�.x; y/� s@S .x; y/� 2:

Since x; y 2 @� were arbitrary, we see that .v/ holds.

Lemma 9.3 .iv/D) .xii/.

Proof Fix a boundary face F � @� of maximal dimension. We claim that

E�\F D∅:

Otherwise, there exists x 2 F and a sequence xn 2 E� such that xn! x 2 F . Now
fix an extreme point y 2 @� n F . Then, by hypothesis, Œxn; y� � @� for all n, so
Œx; y�� @�.

Fix z 2 .x; y/� @� and let C denote the convex hull of y and F . By Observation 2.11,

@�� F�.z/� rel-int.C /:
Then

dimF�.z/ > dimF;

which is a contradiction. So we must have E�\F D∅, and hence .xii/ holds.

Lemma 9.4 .vi/D) .viii/.

Proof By Theorem 7.3 every infinite-order element g 2 � preserves a properly
embedded simplex S �� with dim.S/� 1. Hence g fixes the vertices v1; : : : ; vk of S .
By hypothesis s@�.v1; v2/ <C1 and hence, by Theorem 7.1, gZ has infinite index in
the centralizer C�.g/.

Lemma 9.5 .x/D) .iv/.

Proof We prove the contrapositive: if there exist extreme points x; y 2 @� with
.x; y/��, then there exists a biproximal element g 2 � with .`Cg ; `

�
g /��. If such x

and y exist, then by Theorem 5.1 there exist biproximal elements gn 2 � with `Cgn
! x

and `�gn
! y. Then, for n large, we must have .`Cgn

; `�gn
/��.
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