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AGT relations for sheaves on surfaces

ANDREI NEGUT,

We consider a natural generalization of the Carlsson–Okounkov Ext operator on
the K–theory groups of the moduli spaces of stable sheaves on a smooth projective
surface. We compute the commutation relations between the Ext operator and the
action of the deformed W –algebra on K–theory, which was developed by the author
in previous work. The conclusion is that the Ext operator is closely related to a vertex
operator, thus giving a mathematical incarnation of the Alday–Gaiotto–Tachikawa
correspondence for a general algebraic surface.

14J60; 14D21

1 Introduction

1.1 Fix a smooth projective surface S over an algebraically closed field of characteristic
zero (henceforth denoted by C), and invariants .r; c1/ 2N �H 2.S;Z/. An important
object in algebraic geometry is the moduli space

(1-1) MD
1G

c2Dd..r�1/=2r/c2
1
e

Mc2

of H–stable sheaves on S with invariants .r; c1; c2/ for any c2 2 Z. The reason that
c2 is bounded below is called Bogomolov’s inequality, which states that there are no
H–stable sheaves if c2 < ..r � 1/=2r/c2

1
. We make the same assumptions as in our

earlier work [15; 17; 16]:

� Assumption A gcd.r; c1 �H /D 1.

� Assumption S Either !S ŠOS , or c1.!S / �H < 0.
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3062 Andrei Negut,

Assumption A implies that M is proper and there exists a universal sheaf1

(1-2)
U

��

M�S

Assumption S implies that M is smooth.

1.2 The enumerative geometry of the moduli space of stable sheaves is quite rich, as
evidenced by Donaldson invariants arising as certain integrals of cohomology classes
on M. In the present paper, we will consider algebraic K–theory instead of cohomology,
a process which accounts for the adjective “deformed” in the representation-theoretic
structures explained in Section 1.6. Explicitly, we consider the following algebraic
K–theory groups with Q coefficients:

(1-3) KM D

1M
c2Dd..r�1/=2r/c2

1
e

K0.Mc2
/˝Z Q:

Let m 2 Pic.S/, and consider two copies M and M0 of the moduli space (1-1). These
two copies may be defined with respect to a different c1 and stability condition H , but
we assume that the rank r of the sheaves parametrized by M and M0 is the same. In
this paper, we will mostly be concerned with the virtual vector bundle

(1-4)

Em

��

M�M0
�1

yy

�2

&&

M M0

(a straightforward generalization of the construction of Carlsson and Okounkov [7])
given by

(1-5) Em D R�.m/�R��.RHom.U 0;U ˝m//:

The RHom is computed on M �M0 � S : the notation U , U 0 and m stands for the
pullback of the universal sheaf from M�S and M0 �S , respectively, as well as the
pullback of the line bundle m from S . Similarly, � WM�M0 �S !M�M0 is the
standard projection, so Em is a complex of coherent sheaves on M�M0.
1We require the universal sheaves on the various connected components of M to be constructed as in
[15, Section 5.9], which will ensure that they lift in a compatible way to the moduli spaces Z1 and Z�

2
of

Section 2.4.
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1.3 Any Schur functor applied to Em gives rise to a K–theory class on M �M0,
which in turn induces an operator from KM0 to KM via the usual formalism of corre-
spondences. With this in mind, let us consider the following immediate generalization
of Carlsson and Okounkov [7, Equation (3)] and Carlsson, Nekrasov and Okounkov
[6, Equation (19)].

Definition 1.4 Consider the so-called Ext operator KM0
Am
�!KM given by

(1-6) Am D �1�.^
�Em ��

�
2 /;

with �1 and �2 as in (1-4). The pushforward and pullback maps are well-defined due
to the properness and smoothness of M and M0, respectively.

In (1-6), the symbol ^�Em denotes the total exterior power of Em; as Em is in general a
complex of coherent sheaves, some explanation is in order. Specifically, consider

(1-7) ^
�

�Em

t

�
D

X
k�0

.�t/�k Œ^kEm� 2KM�M0 ŒŒt
�1��;

where the right-hand side is the power series expansion of a rational function in t ; see
Section 3.1 for details. Then the quantity ^�Em in (1-6) denotes the t D 1 specialization
of (1-7). If this specialization is not well-defined, then all the results in Sections 1.6
and 1.9 hold with m replaced by m=t , and with all formulas being equalities of rational
functions in t ; see Section 3.1 for details.

Example 1.5 Let MDM0 and mDOS=t , with t being a formal parameter. Then
Assumption S implies that EOS

is locally free (up to a constant sheaf) and that

EOS
j� Š TanM;

where ��M�M0 denotes the diagonal. By a simple computation involving corre-
spondences, the isomorphism above implies that

Tr.AOS=t /D
X
k�0

.�t/�k�.M;^k TanM/

(up to a constant rational function in t). The right-hand side is the �t –genus of the
moduli space M, as considered for example in Göttsche and Kool [10].

1.6 In the present paper, we will seek to determine the Ext operator Am using the
representation-theoretic properties of the vector space KM. To this end, we need

Geometry & Topology, Volume 27 (2023)



3064 Andrei Negut,

to make KM into a representation of an appropriate algebra which is “big” enough,
in order to constrain the operator Am as much as possible. A candidate for such an
algebra is Ar , namely a particular integral form of the deformed W –algebra of type glr
(initially defined in Awata, Kubo, Odake and Shiraishi [1] and Feigin and Frenkel [8]).
The main purpose of our work in [15; 17; 16] is to construct an action Ar ÕKM; we
will recall the construction in Section 2, but let us summarize the main idea here. In
[17, Section 6.7], we construct certain geometric operators

(1-8) KM
Wn;k
��!KM�S for all .n; k/ 2 Z�N:

Under Assumptions A and S, we show in [16, Theorem 4.15] that the operators Wn;k

satisfy the quadratic commutation relations developed in [1] and [8]; see (2-28) for the
specific form of these relations in our language. In [17, Theorem 6.9], we further show
that Wn;k D 0 for all n 2 Z and k > r , which tautologically implies that the operators
(1-8) yield an action Ar ÕKM. Write

(1-9) q D Œ!S � 2KS WDK0.S/˝Z Q:

Given two copies M and M0 of the moduli space of stable sheaves, each with its own
universal sheaf U and U 0, respectively, we may write

(1-10) uD detU and u0 D detU 0

for the determinant line bundles on M�S and M0 �S , respectively. We set

(1-11) 
 D
mr u

qr u0
;

which is the class of a line bundle on M�M0 � S (it is implicit that m and q are
pulled back from S ). Our main result, which will be proved in Section 3, is:

Theorem 1.7 We have the following interaction between the Ext operator (1-6) and
the generators (1-8) of the W –algebra action:

(1-12) AmWk.x/.1�x/DmkWk.x
 /Am

�
1�

x

qk

�
;

where Wk.x/D
P

n2Z Wn;k=x
n. The series coefficients of the two sides of (1-12) are

maps KM0 !KM�S which arise from certain correspondences in KM�M0�S .

Remark See Section 2.1 for a review of correspondences as K–theoretic operators.
In particular, the composition of operators depends on which of Am and Wk.x/ is on
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the left of the other:

AmWn;k WKM0
Wn;k
��!KM0�S

Am�IdS
�����!KM�S ;

Wn;kAm WKM0
Am
��!KM

Wn;k
��!KM�S :

The expressions above are actually given by certain correspondences in KM�M0�S .
Then the factors q and 
 on the right-hand side of (1-12) indicate multiplication of the
aforementioned correspondences by various powers of the line bundles (1-9) and (1-11).

1.8 A major motivation for the study of the Ext operator Am stems from mathematical
physics: as explained in Carlsson, Nekrasov and Okounkov [6], the operator Am encodes
the contribution of bifundamental matter to partition functions of 5d supersymmetric
gauge theory on the algebraic surface S times a circle. Moreover, the deformed W –
algebra Ar encodes symmetries of Toda conformal field theory. In this language,
(1-12) becomes a mathematical manifestation of the Alday–Gaiotto–Tachikawa (AGT)
correspondence between gauge theory and conformal field theory, by describing the Ext
operator Am in terms of its commutation with W –algebra generators. To the author’s
knowledge, the present paper is the first mathematical treatment of AGT over general
algebraic surfaces in rank r > 1 (the reference [6] used different techniques from ours
to describe the Ext operator in the r D 1 case).

However, we note that formulas (1-12) are not enough to completely determine Am for
a general smooth projective surface S , and one should instead work with a deformed
vertex operator algebra which properly contains several deformed W –algebras Ar . In
the nondeformed case, a potential candidate for such a larger algebra was studied in
Feigin and Gukov [9], where the authors expect that it contains operators which modify
sheaves on S along entire curves, on top of our operators Wn;k which modify sheaves
at individual points. While we give a complete algebrogeometric description of the
latter operators, we do not have such a description for the former operators. Once such
a description is available, we hope that one can extend Theorem 1.7 to a bigger vertex
operator algebra properly containing Ar .

There is a situation where formulas (1-12) do indeed determine the Ext operator Am

completely: this corresponds to taking S DA2, replacing M by the moduli space of
framed rank r sheaves on the projective plane, and working with torus equivariant
K–theory; see Section 4.1 for details. In this particular case, we showed in [14] that
KM is isomorphic to the universal Verma module of Ar . Theorem 1.7 holds in the
situation at hand, and we will show in Theorem 4.5 that our formulas completely
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3066 Andrei Negut,

determine the Ext operator Am. This precisely yields the AGT correspondence for 5d
supersymmetric gauge theory on A2�S1; see for instance Braverman, Finkelberg and
Nakajima [4], Bruzzo, Pedrini, Sala and Szabo [5], Maulik and Okounkov [12] and
Schiffmann and Vasserot [18] for the history of this correspondence in mathematical
language.

1.9 Alongside the operators (1-8), we constructed in [16, Theorem 4.15] K–theory
lifts of the operators introduced by Grojnowski and Nakajima [11; 13] for r D 1, and
generalized by Baranovsky [2] for any r , in cohomology:

(1-13) KM
Pn
�!KM�S for all n 2 Zn0:

These operators satisfy the Heisenberg commutation relation (2-29), and interact with
the deformed W –algebra generators according to relation (2-30).

Recall the line bundles q and 
 of (1-9) and (1-11), respectively, and the footnote in
Theorem 1.7 to properly interpret compositions of the operators Am and P˙n.

Theorem 1.10 We have the following interaction between the Ext operator (1-6) and
the Heisenberg operators P˙n for all n> 0:

AmP�n�P�nAm

n
DAm.1� 


n/;(1-14)

AmPn�PnAm

�n
DAm.


�n
� qrn/:(1-15)

In Ar , the series Wr .x/ matches the normal-ordered exponential of the generating
series of the Pn; see Theorem 2.8. With this in mind, it is straightforward to show that
the k D r case of Theorem 1.7 follows from Theorem 1.10.

For any ˛ 2KS , we will write Pnf˛g for the composition

Pnf˛gWKM
Pn
�!KM�S

multiplication by proj�
2
.˛/

�������������!KM�S
proj1�
��!KM;

where proj1 and proj2 are the projections from M�S to M and S , respectively. Let
q1 and q2 denote the Chern roots of the cotangent bundle �1

S
. Any symmetric Laurent

polynomial in q1 and q2 gives rise to a well-defined element of KS , via

q1C q2 D Œ�
1
S � and q D q1q2 D Œ!S �:

Define

(1-16) ˆm DAm exp
� 1X

nD1

Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
;

where Œn�x D 1C xC � � � C xn�1. The expression in curly brackets is an element of
KS because Œn�q1

Œn�q2
is a unit in the ring KS .
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Remark To see that Œn�q1
Œn�q2

is a unit in the ring KS , since the Chern character
gives us an isomorphism KS Š A�.S;Q/, we have q1 C q2 D Œ�

1
S
� 2 2CN and

qD Œ!S �2 1CN , where N �KS denotes the nilradical. Therefore Œn�q1
Œn�q2
2n2CN ,

and is thus invertible in the ring KS .

Corollary 1.11 Formulas (1-12), (1-14) and (1-15) imply

ŒˆmWk.x/�mkWk.x
 /ˆm�

�
1�

x

qk

�
D 0;(1-17)

ˆmP˙n�P˙nˆm

�n
D˙ˆm.


�n
� q˙rn/(1-18)

for all k; n > 0. An operator ˆm satisfying (1-17) and (1-18) is called a vertex
operator.

Acknowledgements I thank Boris Feigin, Sergei Gukov, Hiraku Nakajima, Nikita
Nekrasov, Andrei Okounkov, Francesco Sala and Alexander Tsymbaliuk for many
interesting discussions on the subject of Ext operators and W –algebras. I gratefully
acknowledge the support of NSF grant DMS–1600375.

2 The moduli space of sheaves

2.1 Throughout the present paper, we will work with smooth projective varieties over
the field C. For such varieties X , we let

KX DK0.X /˝Z Q

be the Grothendieck group of the category of coherent sheaves on X , with scalars
extended to Q. Derived tensor product yields a ring structure on KX , and we have
pullback and pushforward maps for any proper l.c.i. morphism X ! Y .

Definition 2.2 Given smooth projective varieties X and Y , any class � 2 KX�Y

(called a “correspondence” in this setup) defines an operator

(2-1) KY
‰�
�!KX ; ‰� D projX �.� � proj�Y /;

where projX ; projY denote the projection maps from X �Y to X and Y , respectively.

The composition of operators (2-1) can also be described as a correspondence

(2-2) ‰� ı‰� 0 D‰� 00 WKZ !KX

Geometry & Topology, Volume 27 (2023)



3068 Andrei Negut,

for any � 2KX�Y and � 0 2KY �Z , where

(2-3) � 00 D projX�Z�

�
proj�X�Y .�/˝ proj�Y �Z .�

0/
�
;

where projX�Y , projY �Z and projX�Z are the standard projections from X �Y �Z

to X �Y , Y �Z and X �Z. Throughout the present paper, all operators KY !KX

arise from explicit correspondences. While we will use the language of composition of
operators for convenience, what is really happening behind the scenes is composition
of correspondences under the operation .�; � 0/ 7! � 00 of (2-3).

2.3 In Section 1.6, we referred to various operators KM ! KM�S as defining an
action of a certain algebra on KM, and we will now explain the meaning of this notion.
Given two arbitrary homomorphisms (of abelian groups)

(2-4) KM
x;y
�!KM�S ;

their “product” xyj� is defined as the composition

xyj� WKM
y
�!KM�S

x�IdS
���!KM�S�S

IdM ���
����!KM�S

where S
�
�! S �S is the diagonal. It is easy to check that .xyj�/zj� D x.yzj�/j�,

hence the aforementioned notion of product is associative, and it makes sense to define
x1 � � �xnj� for arbitrarily many operators x1; : : : ;xn WKM!KM�S .

Similarly, given two operators (2-4), we may define their commutator

KM
Œx;y�
��!KM�S�S

as the difference of the two compositions

KM
y
�!KM�S

x�IdS
���!KM�S�S ;

KM
x
�!KM�S

y�IdS
���!KM�S�S

IdM �swap�
������!KM�S�S ;

where swap W S �S ! S �S is the permutation of the two factors. In all cases studied
in the present paper, we will have2

Œx;y�D��.z/

for some KM
z
�!KM�S which is uniquely determined (the diagonal embedding ��

is injective because it has a left inverse), and which will be denoted by z D Œx;y�red.
We leave it as an exercise to the interested reader to prove that the commutator satisfies

2Here we abuse notation by writing�� instead of .IdM ��/� for the diagonal map KM�S!KM�S�S .
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the Leibniz rule in the form Œxyj�; z�red D xŒy; z�redj�C Œx; z�redyj�, and the Jacobi
identity in the form

�
Œx;y�red; z

�
redC

�
Œy; z�red;x

�
redC

�
Œz;x�red;y

�
red D 0.

Finally, we consider the ring homomorphism K D ZŒq˙1
1
; q˙1

2
�Sym! KS given by

sending q1 and q2 to the Chern roots of the cotangent bundle of S (therefore, qD q1q2

goes to the class of the canonical line bundle). We will often abuse notation, and write
q1; q2; q for the images of the indeterminates in the ring KS . For any � 2K and any
operator (2-4), we may define their product as the composition

� �x WKM
x
�!KM�S

IdM �.multiplication by �/
��������������!KM�S ;

where we identify � 2K with its image in KS . With this in mind, the ring KS can be
thought of as the “ring of constants” for the algebra of operators (2-4).

2.4 Recall the universal sheaf (1-2), and consider the derived scheme

(2-5) Z1 D PM�S .U/!M�S:

Since U is isomorphic to a quotient V=W of vector bundles on M�S (Proposition 2.2
of [15]), the projectivization in (2-5) is defined as the derived zero locus of a section
of a vector bundle on the projective bundle PM�S .V/. However, it was shown in
[15, Proposition 2.10] that under Assumption S, the derived zero locus is actually a
smooth scheme

Z1 D

1G
cDd..r�1/=2r/c2

1
e

ZcC1;c ;

whose connected components are given by

(2-6) ZcC1;c Df.FcC1;Fc/ such that FcC1�x Fc for some x 2Sg�McC1�Mc ;

and F 0 �x F means that F 0 � F and the quotient F=F 0 is isomorphic to the length
one skyscraper sheaf at the point x 2 S . This scheme comes with projection maps

(2-7)

ZcC1;c

pC

zz

pS

��

p�

##

McC1 S Mc

More generally, we defined a derived scheme Z�
2

in [17, Definition 4.17], which was
shown (under Assumption S, in [17, Proposition 4.21]) to be a smooth scheme

Z�2 D

1G
cDd..r�1/=2r/c2

1
e

Z�cC2;c ;
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whose connected components are given by

(2-8) Z�cC2;c D f.FcC2 �x FcC1 �x Fc/ for some x 2 Sg �McC2�McC1�Mc :

This scheme is equipped with projection maps as in (2-9) below, but we observe that
the rhombus is not derived Cartesian (and this is key to our construction):

(2-9)

Z�
cC2;c

�C

xx

��

%%

ZcC2;cC1

p��pS &&

ZcC1;c

pC�pSxx

McC1 �S

Note that all of the maps in the diagram above are proper, l.c.i. morphisms. Define

(2-10) Z�n D

1G
cDd..r�1/=2r/c2

1
e

Z�cCn;c ;

whose connected components are given by derived fiber products

(2-11) Z�cCn;c D Z�cCn;cCn�2 �
ZcCn�1;cCn�2

: : : �
ZcC2;cC1

Z�cC2;c!McCn� � � � �Mc :

While Z�n is a derived scheme, we note that its closed points are all of the form

(2-12) Z�cCn;cDf.FcCn; : : : ;Fc/ sheaves with FcCn�x � � ��x Fc for some x 2Sg:

Therefore, we have the following projection maps, which only remember the smallest
and the largest sheaf in a flag (2-12):

(2-13)

Z�cCn;c
pC

zz

pS

��

p�

##

McCn S Mc

(the notation generalizes (2-7)). In diagram (2-13), the maps p˙ are l.c.i. morphisms,
and the maps p˙�pS are proper (they inherit these properties from the maps in (2-9)).
Finally, we consider the line bundles L1; : : : ;Ln on Z�n, whose fibers are given by

(2-14) Li j.FcCn;:::;Fc/ D FcCn�i;x=FcCn�iC1;x

on the connected component Z�cCn;c � Z�n.
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2.5 Using the derived scheme (2-11) and the maps (2-13), define for all n; k 2N

KM
Ln;k
��!KM�S ; Ln;k D .�1/k�1.pC �pS /�.Lk

n �p
�
�/;(2-15)

KM
Un;k
��!KM�S ; Un;k D

.�1/rnCk�1un

q.r�1/n
.p� �pS /�

�Lk
n

Qr
�p�C

�
;(2-16)

where QD L1 � � �Ln, and u is the determinant of the universal sheaf on M�S , as in
(1-10).3 Implicit in the definitions (2-15) and (2-16) is that we define the operators
therein for all components Mc of the moduli space M. We also set

(2-17) Ln;0 D Un;0 D ı
0
n and L0;k D U0;k D ı

0
k :

Finally, consider for all k 2N t 0 the operators

(2-18) Ek WKM
pullback
����!KM�S

multiplication by ^kU
�����������!KM�S :

Since U Š V=W is a coherent sheaf of projective dimension one on M � S (see
[15, Proposition 2.2]), the class ^kU in (2-18) is defined by setting

(2-19) ^
�

�U
z

�
D

^�
�V

z

�
^�
�W

z

�
and picking out the coefficient of z�k when expanding in negative powers of z. The
reason for our notation for the operators (2-15), (2-16) and (2-18) is that these three
operators are respectively lower triangular, upper triangular, and diagonal with respect
to the grading on KM by the second Chern class; see (1-3).

Definition 2.6 [17, Section 6.7] For any .n; k/ 2 Z�N, consider the operators

(2-20) Wn;k D

n2�n1DnX
k0Ck1Ck2Dk

q.k�1/n2 �Ln1;k1
Ek0

Un2;k2

ˇ̌̌̌
�

as k0; k1; k2; n1; n2 run over N t 0 (recall the convention (2-17)).

Note that (2-20) is an infinite sum, but its action on KM is well-defined because the
operators Ln;k (resp. Un;k) increase (resp. decrease) the c2 of stable sheaves by n, and
Bogomolov’s inequality ensures that the moduli space of stable sheaves is empty if c2

is small enough.

3Note that u parametrizes the determinant of any one of the sheaves FcCn; : : : ;Fc in a flag (2-12), since
these sheaves have canonically isomorphic determinants; see Proposition 3.4.
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2.7 Similarly with (2-15) and (2-16), for all n 2N we have the operators

KM
P�n
��!KM�S ; P�n D .pC �pS /�

� n�1X
iD0

qiLn

Ln�i
�p��

�
;(2-21)

KM
H�n
��!KM�S ; H�n D .pC �pS /�.p

�
�/;(2-22)

KM
Pn
��!KM�S ; Pn D .�1/rnun.p� �pS /�

� n�1X
iD0

qiLn

QrLn�i
�p�C

�
;(2-23)

KM
Hn
��!KM�S ; Hn D .�1/rnun.p� �pS /�.Q�r

�p�C/:(2-24)

As a consequence of [17, formulas (2.15) and (5.18)–(5.21)], the operators H˙n are to
the operators P˙n as complete symmetric functions are to power sum functions

(2-25)
1X

nD0

H˙n

z˙n
D exp

� 1X
nD1

P˙n

nz˙n

�ˇ̌̌̌
�

or, explicitly,

H0 D proj�1;

where proj1 WM�S !M is the usual projection, and

H˙1 D P˙1;

H˙2 D
1
2
.P˙1P˙1j�CP˙2/;

H˙3 D
1
6
.P˙1P˙1P˙1j�C 3P˙1P˙2j�C 2P˙3/;

and so on.

Theorem 2.8 [17, Theorem 6.9] The operators (2-20) satisfy

Wn;r D u

n2�n1DnX
n1;n2�0

H�n1
Hn2

ˇ̌̌̌
�

for all n 2 Z;(2-26)

Wn;k D 0 for all k > r:(2-27)

2.9 We will now present the interaction of the operators (2-20), (2-21) and (2-23).
Recall the commutator construction from Section 2.3.

The following theorem was stated in [17, Theorem 3.13 and Proposition 3.15] and
proved in [16, Theorem 4.15] under Assumption S.
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Theorem 2.10 We have the following formulas for all n; n0 2 Z and k; k 0 2N:

ŒWn;k ;Wn0;k0 �D��

� m= l�m0=l 0

min.l;l 0/�min.k;k0/X
kCk0DlCl 0

mCm0DnCn0

c
m;m0;l;l 0

n;n0;k;k0
.q1; q2/ �Wm;lWm0;l 0

ˇ̌̌̌
�

�
;(2-28)

ŒPn0 ;Pn�D��

�
0 if sign.n/D sign.n0/;
ı0

nCn0nŒn�q1
Œn�q2

Œr �qn � proj�M if n0 < 0< n;
(2-29)

ŒWn0;k0 ;P˙n�D��.˙Œn�q1
Œn�q2

Œk 0�qnqn.r�k0/ı
C

˙ �W˙nCn0;k0/;(2-30)

where the coefficients c
m;m0;l;l 0

n;n0;k;k0
.q1; q2/ 2KS were computed algorithmically in [17].

They are certain universal symmetric Laurent polynomials in q1 and q2.

Indeed, we show in [17, Theorem 3.13] that (2-28) is equivalent to the defining relation in
the deformed W –algebra Ar (with�� replaced by .1�q1/.1�q2/). Similarly, relation
(2-29) is the defining relation in the deformed Heisenberg algebra. As we explained in
[17, Definition 5.2 and formulas (5.20)–(5.21)] and proved in [16, Theorem 4.15], the
fact that the operators (2-20), (2-21) and (2-23) satisfy the relations in Theorem 2.10
is precisely what we mean when we say that the deformed W –algebra Ar and the
deformed Heisenberg algebra act on the groups KM.

2.11 Let us consider the operators of Section 2.5 and form the generating series

(2-31) Ln.y/D

1X
kD1

Ln;k

.�y/k
and Un.y/D

1X
kD1

Un;k

.�y/k
:

In other words, these power series are considered as operators

KM
Ln.y/
���!KM�S

r
1

y

z
; Ln.y/D .pC �pS /�

�
1

1� .y=Ln/
�p��

�
;

KM
Un.y/
���!KM�S

r
1

y

z
; Un.y/D

.�1/rnun

q.r�1/n
.p� �pS /�

� Q�r

1� .y=Ln/
�p�C

�
:

We will also consider the operators

E.y/ WKM
pullback
�����!KM�S

multiplication by ^�.U=y/
��������������!KM�S

r
1

y

z
:

Furthermore, we will consider the generating series

(2-32) L.x;y/D 1C

1X
nD1

Ln.y/x
n and U.x;y/D 1C

1X
nD1

Un.y/

xn
;
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and also set

Wk.x/D

1X
nD�1

Wn;k

xn
;(2-33)

W .x;y/D 1C

1X
kD1

Wk.x/

yk
:(2-34)

The definition of the W –algebra generators in (2-20) is equivalent to

(2-35) W .x;yDx/DL.x;yDx/E.yDx/U.xq;yDx/j�;

where Dx is the q–difference operator in the variable x, ie Dx.f .x// D f .xq/. In
formula (2-35), we place all powers of Dx to the right (resp. left) of all powers of x

when writing down the power series L.x;yDx/ (resp. U.xq;yDx/). In terms of
generating series, formula (2-30) reads

(2-36) ŒWk.x/;P˙n�D��
�
˙Œn�q1

Œn�q2
Œk�qnqn.r�k/ı

C

˙ �x˙nWk.x/
�
:

2.12 Given a rational function F.z/, whose set of simple poles is partitioned into two
disjoint sets P1 tP2 (which may be empty), we will write

(2-37)
Z
P1�z�P2

F.z/D
X
c2P1

Res
zDc

F.z/

z
D�

X
c2P2

Res
zDc

F.z/

z
:

The first equality is a definition, and the second equality is the residue theorem. If
F.z1; : : : ; zn/ is a rational function with simple poles of the form zi D c and zi D 
 zj

for various c 2 P1 tP2 and various scalars 
 in some set Q, then we set

(2-38)
Z
P1�z1�����zn�P2

F.z1; : : : ; zn/

as the result of the n–step process which starts with F.z1; : : : ; zn/=z1 � � � zn, and at
the i th step replaces a rational function in zi ; : : : ; zn by the sum of its residues of the
form zi D c
1 � � � 
i�1 for various c 2 P1 and 
1; : : : ; 
i�1 2 Q [ f1g. Just like in
(2-37), the residue theorem implies that the answer is the same as .�1/n times the
result of the n–step process which starts with F.z1; : : : ; zn/=z1 � � � zn, and at the i th step
replaces a rational function in z1; : : : ; znC1�i by the sum of its residues of the form
znC1�i D c
1 � � � 
i�1 for various c 2 P2 and 
1; : : : ; 
i�1 2Q[f1g.
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Proposition 2.13 [17, following the proof of Proposition 5.12] We have the following
formulas for the maps (2-13):

.pC �pS /�r.L1; : : : ;Ln/(2-39)

D

Z
f0;1gtP�zn�����z1�U

r.z1; : : : ; zn/
nQ

iD1

^�

�
ziq

U

�
�

1�
z2q

z1

�
: : :

�
1�

znq

zn�1

� Q
1�i<j�n

�

�
zj

zi

� ;
.p� �pS /�r.L1; : : : ;Ln/(2-40)

D

Z
U�zn�����z1�f0;1gtP

r.z1; : : : ; zn/
nQ

iD1

^�

�
�
U
zi

�
�

1�
z2q

z1

�
: : :

�
1�

znq

zn�1

� Q
1�i<j�n

�

�
zj

zi

� ;
where

�.x/D
.1�xq1/.1�xq2/

.1�x/.1�xq/
2KS .x/

and r.z1; : : : ; zn/ is a rational function with coefficients in .p˙�pS /
�.KM�S / whose

poles are all of the form zi D c, where c 2 f0;1gtP for some finite set P .

Note that the integrands in (2-39)–(2-40) have poles when zi equals q1 or 0 times one
of the Chern roots of U . Thus, the location of the symbol U in the subscripts of the
integrals (2-39)–(2-40) indicates whether these poles are thought to lie in the set P1 or
P2 for the sake of the notation (2-37).

3 Computing the Ext operator

3.1 To properly define the Ext operator (1-6), note that the complex Em of (1-4) can
be written as a difference V1�V2 of vector bundles. Then we define

(3-1) ^
�

�Em

t

�
D

^�

�V1

t

�
^�

�V2

t

� D
rank V1P
kD0

.�t/�k Œ^kV1�

rank V2P
kD0

.�t/�k Œ^kV2�

and interpret it as a rational function in t , with coefficients in KM�M0 . Strictly speaking,
the object ^�Em in (1-6) refers to the specialization of this rational function at t D 1. If
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this specialization is not well-defined, ie if

rank V2X
kD0

.�1/k Œ^kV2�

is not a unit in KM�M0 , then we employ the following artifice: replace m by m=t in
formulas (1-11), (1-12), (1-17) and throughout the current section. Once one does this,
our main Theorems 1.7, 1.10 and Corollary 1.11 will be equalities of operator-valued
rational functions in t . Moreover, we will often use the notation

^
�

�
t

U
�

instead of ^
� .U_t/

for any coherent sheaf U (all our coherent sheaves have finite projective dimension).

3.2 The main goal of the present section is to compute the commutation relations
between the Ext operator Am WKM0 !KM of (1-6) and the operators

(3-2) Wn;k ;P˙n0 WKM!KM�S

of (2-20), (2-21) and (2-23) for all n 2Z and n0; k 2N. One must be careful what one
means by “commutation relation”. While the operator

P˙nAm unambiguously refers to KM0
Am
��!KM

P˙n
��!KM�S ;

AmP˙n henceforth refers to KM0
P˙n
��!KM0�S

Am�IdS
����!KM�S ;

and analogously for Wn;k instead of P˙n. As opposed to the operators (3-2), the
operator Am acts nontrivially between all components of the moduli space

(3-3) Amj
c0

c WKMc0
!KMc

:

In principle, the moduli spaces of sheaves in the domain and codomain can correspond
to different choices of first Chern class and stability condition, but we always require
them to have the same rank r . Therefore, there are two universal sheaves

U

��

M�S

and

U 0

��

M0 �S

of the same rank r , where M (resp. M0) is the union of the moduli spaces that appear
in the codomain (resp. domain) of (3-3). The determinants of these universal sheaves
are denoted by u and u0, respectively, as in (1-10).
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3.3 We must explain how to make sense of the symbols q;m; 
 in (1-12), (1-14) and
(1-15). In the language of correspondences from Section 2.1, the operators

KM0
z
�!KM�S

studied in the present paper (such as the compositions Wn;kAm or P˙nAm that appear
in (1-12), (1-14) and (1-15)) arise from K–theory classes � on M�M0 �S . Then
the product qz refers to the operator corresponding to the class proj�S .q/ �� , while the
product 
 z refers to the operator corresponding to the class

proj�S
�

m

q

�r
�

proj�M�S .detU/
proj�M0�S .detU 0/ ��;

where M�M0 �S
projM�S ; projM0�S ; projS
���������������!M�S; M0 �S; S are the projections.

Proposition 3.4 We have the equality of correspondences KMc˙n
!KMc�S

(3-4) P˙n � .detUc˙n/D .detUc/ �P˙n

for all c 2 Z. Formula (3-4) also holds with P˙n replaced by Wn;k or H˙n.

Equation (3-4) is best restated in the language of correspondences from Section 2.1. In
these terms, P˙n is given by a K–theory class supported on the locus

CD f.FcCn �nx Fc/ for some x 2 Sg �McCn �Mc �S;

where F 0 �nx F means that F 0 � F and that F=F 0 is a length n sheaf supported
at x. Then (3-4) merely states that the universal sheaves UcCn and Uc have isomorphic
determinants when restricted to C. This is just the version “in families” of the well-
known statement that a codimension-2 modification of a torsion-free sheaf does not
change its determinant. As a consequence of Proposition 3.4, 
 of (1-11) will behave
just like a constant in all our computations, ie it will not matter where we insert 
 in
any product of operators among P˙n, H˙n and Wn;k .

3.5 Our main intersection-theoretic computation is the following:

Lemma 3.6 We have the following relations involving the Ext operator Am

Am.H�n�H�nC1/D 

n.H�n�H�nC1/Am;(3-5)

Am.Hn�Hn�1

�1/D .Hn


�n
�Hn�1qr
�nC1/Am(3-6)

for all n 2N. (Recall that H0 D proj�1 , where M�S
proj1
��!M is the usual projection.)
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Proof Consider the following diagrams of spaces and arrows, for all c; c0 2 Z:

(3-7)

Mc �S �Mc0

�1�IdS

��

�2

��

Mc �Z
�

c0Cn;c0
Id�pC�pS

uu ((

Id�pS�p�

OO

Mc �Mc0Cn �S

vv ))

Z�c0Cn;c0

pC�pSvv p� %%

Mc �S Mc0Cn �S Mc0

(3-8)

Mc �S �Mc0

� 0
1
�IdS





� 0
2

��

Z�c;c�n �Mc0

vv

p0��Id

))

p0
C
�p0

S
�Id

OO

Z�c;c�n

p0
C
�p0

S
xx p0� ((

Mc�n �Mc0

uu ''

Mc �S Mc�n Mc0

Recall that H�n D .pC �pS /�p
�
�, in the notation of (2-13). Then the rule for compo-

sition of correspondences in (2-2) gives us the formulas

AmH�n D .�1 � IdS /�.‡n ��
�
2 /;(3-9)

H�nAm D .�
0
1 � IdS /�.‡

0
n ��

0�
2 /;(3-10)

where, in the notation of (3-7) and (3-8),

‡n D .Id�pS �p�/�
�
^
�
�
.Id�pC/

�Em

��
;(3-11)

‡ 0n D .p
0
C �p0S � Id/�

�
^
�
�
.p0� � Id/�Em

��
(3-12)

are certain classes on Mc �S �Mc0 , which we will now compute.

Claim 3.7 In K–theory we have the equalities

(3-13) .Id�pC/
�Em D .Id�p�/

�EmC

�
1

L1
C � � �C

1

Ln

�
.Id�pS /

�
�Um

q

�
on Mc �Z

�

c0Cn;c0 , where U denotes the universal sheaf on Mc �S , and

(3-14) .p0� � Id/�Em D .p
0
C � Id/�Em� .L1C � � �CLn/.p

0
S � Id/�.U 0_m/

on Z�c;c�n �Mc0 , where U 0 denotes the universal sheaf on Mc0 �S .
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Proof To prove (3-13), consider the diagram

(3-15)

Mc �Z
�

c0Cn;c0 �S

�

��

Id�pC�IdS

uu

Id�p��IdS

))

Mc �Mc0Cn �S

�

��

Mc �Mc0 �S

�

��

Mc �Z
�

c0Cn;c0

Id�pC

uu

Id�p�

))

Mc �Mc0Cn Mc �Mc0

where the vertical maps are the natural projections (we use the notation � for all of
them). We have the short exact sequence of sheaves over Z�c0Cn;c0 �S

(3-16) 0! U 0C! U 0�! ��.L1 “˚” � � � “˚”Ln/! 0;

where U 0
˙
D .p�

˙
� IdS /.universal sheaf/, while L1; : : : ;Ln denote the tautological

line bundles on Z�c0Cn;c0 that were defined in (2-14), and

(3-17) � W Z�c0Cn;c0 ! Z�c0Cn;c0 �S

is the graph of the map pS . The notation “˚” in (3-16) refers to a coherent sheaf which
is filtered by the line bundles L1; : : : ;Ln; since we work in K–theory, we henceforth
make no distinction between this coherent sheaf and its associated graded object. We
may also pull back the short exact sequence (3-16) to Mc�Z

�

c0Cn;c0�S . Now apply the
functor RHom.�;U ˝m/ to the short exact sequence (3-16), where U is the universal
sheaf pulled back from Mc �S :

RHom.U 0C;U ˝m/D RHom.U 0�;U ˝m/�

nX
iD1

1

Li
RHom.O� ;U ˝m/:

Now recall that the line bundles Li come from Z�c0Cn;c0 , and so they are unaffected by
the derived pushforward map ��,

��RHom.U 0C;U ˝m/D ��RHom.U 0�;U ˝m/�

nX
iD1

1

Li
��RHom.O� ;U ˝m/:

Recalling (1-5), the formula above reads

(3-18) .Id�pC/
�Em D .Id�p�/

�EmC

nX
iD1

1

Li
��RHom.O� ;U ˝m/:
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Then (3-13) follows from the fact that

(3-19) ��RHom.O� ;U ˝m/D

Id‚ …„ ƒ
�� ı��

�
RHom.O; � !.U ˝m//

�
D Umj� ˝�

!O:

(The first equality is coherent duality, and the second equality holds for any closed
embedding � .) The right-hand side of (3-19) matches .Id�pS /

�.Um=q/ because the
map � W Z�n! Z�n �S is obtained by base change from the diagonal map S ! S �S ,
and the ratio of dualizing objects on S and S �S is precisely q D Œ!S �.

As for (3-14), consider the diagram

(3-20)

Z�c;c�n �Mc0 �S

�

��

p0
C
�Id� IdS

uu

p0��Id� IdS

))

Mc �Mc0 �S

�

��

Mc�n �Mc0 �S

�

��

Z�c;c�n �Mc0

p0
C
�Id

uu

p0��Id

))

Mc �Mc0 Mc�n �Mc0

and consider the following analogue of (3-16):

0! UC! U�! � 0�.L1 “˚” � � � “˚”Ln/! 0;

where U˙ D .p0�˙ � IdS /.U/, and � 0 denotes the graph of the map pS W Z
�

c;c�n! S .
Let us apply the functor RHom.U 0;�˝m/ to the short exact sequence above:

RHom.U 0;U�˝m/D RHom.U 0;UC˝m/C

nX
iD1

Li ˝RHom.U 0;O� 0 ˝m/:

Let us apply �� to the equality above, and recall the definition of Em in (1-5):

.p0� � Id/�Em D .p
0
C � Id/�Em�

nX
iD1

Li ˝ ��RHom.U 0;O� 0 ˝m/:

By adjunction, we have

��RHom.U 0;O� 0 ˝m/D

Id‚ …„ ƒ
�� ı�

0
� RHom.U 0j� 0 ;p0S

�
m/D .U 0_m/j� 0 :
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Armed with (3-13) and (3-14), we may rewrite (3-11) and (3-12) as

‡n D Œ^
�Em� � .Id�pS �p�/�

� nO
iD1

^
�

�Um

Liq

��
;

‡ 0n D Œ^
�Em� � .p

0
C �p0S � Id/�

� nO
iD1

^
�

�
�
Lim

U 0
��
:

Henceforth, “U ;U 0” in the subscript of the integrals are simply shorthand for “the set
of Chern roots of U ;U 0”, respectively, and Proposition 2.13 implies

‡n D Œ^
�Em�

Z
U 0�zn�����z1�f0;1gtU

nQ
iD1

^�.Um=.ziq//

^�.U 0=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

;(3-21)

‡ 0n D Œ^
�Em�

Z
f0;1gtU 0�zn�����z1�U

nQ
iD1

^�.ziq=U/
^�.zim=U 0/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:(3-22)

Consider the rational function with coefficients in KMc�S�Mc0
given by

(3-23) In.z1; : : : ; zn/D

nQ
iD1

^�.Um=.ziq//

^�.U 0=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:

One may then rewrite (3-21) and (3-22) as

‡n D Œ^
�Em�

Z
U 0�zn�����z1�f0;1gtU

In.z1; : : : ; zn/;

‡ 0n D Œ^
�Em�

Z
f0;1gtU 0�zn�����z1�U

In.z1m; : : : ; znm/ � 
�n:

Changing the variables zi 7! zi=m in the second formula, we conclude that

(3-24) ‡n�‡
0
n � 


n
D Œ^�Em�

� Z
U 0�zn�����z1�f0;1gtU

In�

Z
f0;1gtU 0�zn�����z1�U

In

�
:

The only difference between the two integrals is the location of the poles f0;1g with
respect to the variables z1; : : : ; zn. Therefore, we conclude that the difference above
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picks up the residues at 0 and1 in the various variables. However, all such residues
vanish, except for

Res
z1D1

In.z1; : : : ; zn/

z1

D�In�1.z2; : : : ; zn/;(3-25)

Res
znD0

In.z1; : : : ; zn/

zn
D 
 � In�1.z1; : : : ; zn�1/:(3-26)

Therefore, formula (3-24) implies that

(3-27) ‡n�‡
0
n � 


n
D ‡n�1�‡

0
n�1 � 


n

which, as an equality of classes on Mc �S �Mc0 , precisely encodes (3-5). Let us run
the analogous computation for (3-6) (we will recycle all of our notation):

(3-28)

Mc �S �Mc0

�1�IdS

��

�2

��

Mc �Z
�

c0;c0�n

Id�p��pS

vv &&

Id�pS�pC

OO

Mc �Mc0�n �S

ww ((

Z�c0;c0�n

p��pS
xx

pC
""

Mc �S Mc0�n �S Mc0

(3-29)

Mc �S �Mc0

� 0
1
�IdS

��

� 0
2

��

Z�cCn;c �Mc0

xx

p0
C
�Id

''

p0��p0
S
�Id

OO

Z�cCn;c

p0��p0
Szz p0

C &&

McCn �Mc0

vv %%

Mc �S McCn Mc0

Recall that Hn D .�1/rnun.p��pS /�.Q�r �p�C/, in the notation of (2-13). Then the
rule for composition of correspondences in (2-2) gives us

AmHn D .�1 � IdS /�.‡n ��
�
2 /;(3-30)

HnAm D .�
0
1 � IdS /�.‡

0
n ��

0�
2 /;(3-31)
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where

‡n D .�1/rnu0
n
.Id�pS �pC/�

�
Q�r
� ^
�
�
.Id�p�/

�Em

��
;(3-32)

‡ 0n D .�1/rnun.p0� �p0S � Id/�
�
Q�r
� ^
�
�
.p0C � Id/�Em

��
(3-33)

are certain classes on Mc �S �Mc0 . As a consequence of (3-13) and (3-14), which
continue to hold as stated in the new setup, we may rewrite (3-32) and (3-33) as

‡n D .�1/rnu0
n
Œ^�Em�.Id�pS �pC/�

�
Q�r

nO
iD1

^
�

�
�
Um

Liq

��
;

‡ 0n D .�1/rnunŒ^�Em�.p
0
� �p0S � Id/�

�
Q�r

nO
iD1

^
�

�Lim

U 0
��
:

Therefore, Proposition 2.13 implies

‡n D Œ^
�Em�

Z
f0;1gtU�zn�����z1�U 0

.�1/rnu0
n
z�r

1
: : : z�r

n

nQ
iD1

^�.ziq=U 0/
^�.Um=.ziq//

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

;(3-34)

‡ 0n D Œ^
�Em�

Z
U�zn�����z1�f0;1gtU 0

.�1/rnunz�r
1
: : : z�r

n

nQ
iD1

^�.zim=U 0/
^�.U=zi/

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

:(3-35)

Consider the rational function with coefficients in KMc�S�Mc0
given by

(3-36) In.z1; : : : ; zn/D

qrn
nQ

iD1

^�.U 0=.ziq//

^�.Um=.ziq//

n�1Q
iD1

.1� .qziC1=zi//
Q

i<j

�.zj=zi/

One may then rewrite (3-34) and (3-35) as

‡n D Œ^
�Em�

Z
f0;1gtU�zn�����z1�U 0

In.z1; : : : ; zn/;

‡ 0n D Œ^
�Em�

Z
U�zn�����z1�f0;1gtU 0

In

�
z1m

q
; : : : ;

znm

q

�
� 
 n:

Changing the variables zi 7! ziq=m in the second formula, we conclude that

(3-37) ‡n�‡
0
n�

�n
D Œ^�Em�

� Z
f0;1gtU�zn�����z1�U 0

In�

Z
U�zn�����z1�f0;1gtU 0

In

�
:
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The only difference between the two integrals is the location of the poles f0;1g with
respect to the variables z1; : : : ; zn. Therefore, we conclude that the difference above
picks up the residues at 0 and1 in the various variables. However, all such residues
vanish, except for

Res
znD0

In.z1; : : : ; zn/

zn
D 
�1

� In�1.z1; : : : ; zn�1/;

Res
z1D1

In.z1; : : : ; zn/

z1

D�qr
� In�1.z2; : : : ; zn/:

Therefore, formula (3-37) implies that

(3-38) ‡n�‡
0
n � 


�n
D ‡n�1 � 


�1
�‡ 0n�1 � q

r
�nC1;

which, as an equality of classes on Mc �S �Mc0 , precisely encodes (3-6).

3.8 We will now show how Lemma 3.6 allows us to prove Theorem 1.10.

Proof of Theorem 1.10 We will only prove (1-14), since (1-15) is analogous. We
will use formulas (2-25), which say that the H operators are to the P operators as
complete symmetric functions are to power sum functions. Then let us place (3-5) into
a generating series that goes over all n 2N,

(3-39)
1X

nD0

AmH�n.z
n
� znC1/D

1X
nD0

�
.
 z/n� .
 z/nC1

�
H�nAm:

If we write H�.z/ for the power series (2-25) (with sign ˙D�), then (3-39) reads

(3-40) AmH�.z/.1� z/DH�.z
 /.1� 
 z/Am:

If P is an operator KM! KM�S which commutes with two line bundles ` and `0

(in the sense of Proposition 3.4, and the discussion after it), then

(3-41) A exp.P / exp.`0/j� D exp.P / exp.`/j�A () AP CA`0 D PAC `A:

(This claim uses the associativity of the operation x;y  xyj�, as discussed in
Section 2.3.) With this in mind, formula (3-40) implies

AmP�.z/�

1X
nD1

Am

nz�n
D P�.z
 /Am�

1X
nD1


 n Am

nz�n
;

where P�.z/D
P1

nD1 P�n=.nz�n/. Extracting the coefficient of zn yields precisely
equation (1-14).
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3.9 Having proved Lemma 3.6, we will now perform the analogous computations for
the commutator of Am with the operators of Section 2.5.

Lemma 3.10 We have the following relations involving the Ext operator Am:

AmLn.y/�AmLn�1.y/(3-42)

DLn

�
y

m

�
Am � 


n
�Ln�1

�
yq

m

�
E

�
yq

m

�
AmE.y/�1

ˇ̌̌̌
�

� 
 n�1;

Un

�
yq

m

�
Am � 


�n
�Un�1

�
yq

m

�
Am � q


�nC1(3-43)

DAmUn.y/�E

�
yq

m

��1

AmE.yq/Un�1.yq/

ˇ̌̌̌
�

� q:

The two sides of (3-42) and (3-43) map KM0 to KM�SJy�1K. The symbol j� applied
to any term that involves three of the series L;E;U means that we restrict a certain
operator KM0 !KM�S�S�SJy�1K to the small diagonal.

Proof In order to prove (3-42), we will closely follow the proof of Lemma 3.6. With
the notation therein, one needs to replace (3-11) and (3-12) by

‡n;y D .Id�pS �p�/�

�
1

1� .y=Ln/
^
�
�
.Id�pC/

�Em

��
;

‡ 0n;y D .p
0
C �p0S � Id/�

�
1

1� .y=Ln/
^
�
�
.p0� � Id/�Em

��
:

This has the effect of inserting �
1�

y

zn

��1

into the right-hand sides of formulas (3-21) and (3-22). Therefore, the function
In.z1; : : : ; zn/ defined in (3-23) should be replaced by

In;y.z1; : : : ; zn/D
In.z1; : : : ; zn/

1� .y=zn/
:

It is easy to see that the nonzero residues of In;y are

Res
z1D1

In;y.z1; : : : ; zn/

z1

D�In�1;y.z2; : : : ; zn/;

Res
znDy

In;y.z1; : : : ; zn/

zn
D
^�.Um=.yq//

^�.U 0=y/ �
In�1;yq.z1; : : : ; zn�1/Qn�1

iD1 �.y=zi/
:
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Therefore, the analogue of identity (3-27) is

‡n;y �‡
0
n;y=m � 


n
D ‡n�1;y �‡

0
n�1;yq=m � 


n�1^
�.Um=.yq//

^�.U 0=y/ :

This equality of classes on Mc �S �Mc0 precisely underlies equality (3-42).

As for (3-43), we proceed analogously. One needs to replace (3-32) and (3-33) by

‡n D
.�1/rnu0

n

q.r�1/n
.Id�pS �pC/�

� Q�r

1�y=Ln
� ^
�
�
.Id�p�/

�Em

��
;

‡ 0n D
.�1/rnun

q.r�1/n
.p0� �p0S � Id/�

� Q�r

1�y=Ln
� ^
�
�
.p0C � Id/�Em

��
:

This has the effect of inserting

qn.1�r/

�
1�

y

zn

��1

into the right-hand sides of formulas (3-34) and (3-35). Therefore, the function In

defined in (3-36) should be replaced by

In;y.z1; : : : ; zn/D
In.z1; : : : ; zn/

q.r�1/n.1�y=zn/
:

It is easy to see that the nonzero residues of In;y are

Res
znDy

In;y.z1; : : : ; zn/

zn
D q
^�.U 0=.yq//

^�.Um=.yq//
�
In�1;yq.z1; : : : ; zn�1/

n�1Q
iD1

�.y=zi/

;

Res
z1D1

In;y.z1; : : : ; zn/

z1

D�q � In�1;y.z2; : : : ; zn/:

Therefore, the analogue of identity (3-38) is

‡n;y �‡n;yq=m � 

�n
D ‡n�1;yq � q

^�.U 0=.yq//

^�.Um=.yq//
�‡n�1;yq=m � q


�nC1:

This equality of classes on Mc �S �Mc0 precisely underlies equality (3-43).

3.11 In all formulas below, whenever one encounters a product of several L, E, U

operators, one needs to place the symbol j� next to it, eg L.: : : /E.: : : /U.: : : /j� as in
(2-20). From now on, we will suppress the notation j� from our formulas for brevity.
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Proof of Theorem 1.7 In terms of the generating series (2-32), formulas (3-42) and
(3-43) take the form

.1�x/AmL.x;y/DL

�
x
;

y

m

�
Am�xL

�
x
;

yq

m

�
E

�
yq

m

�
AmE.y/�1;

U

�
x
;

yq

m

�
Am

�
1�

q

x

�
DAmU.x;y/�

q

x
E

�
yq

m

��1

AmE.yq/U.x;yq/:

Change the variables x 7! xq, y 7! y=q in the second equation, and multiply the first
equation by E.y/ and the second equation by E.y=m/. Thus we obtain

.1�x/AmL.x;y/E.y/DL

�
x
;

y

m

�
AmE.y/

�xL

�
x
;

yq

m

�
E

�
yq

m

�
Am;

E

�
y

m

�
U

�
xq
;

y

m

�
Am

�
1�

1

x

�
DE

�
y

m

�
AmU

�
xq;

y

q

�
�

1

x
AmE.y/U.xq;y/:

Now let us replace the variable y by the symbol yDx , where Dx denotes the q–
difference operator Dx.f .x//D f .xq/. However, we make the following prescription:
in the first equation above, the Dx’s are placed to the right of all x’s, while in the
second equation, the Dx’s are placed to the left of all the x’s. We thus obtain

.1�x/AmL.x;yDx/E.yDx/

DL

�
x
;

yDx

m

�
AmE.yDx/�xL

�
x
;

yDxq

m

�
E

�
yDxq

m

�
Am;

E

�
yDx

m

�
U

�
xq
;

yDx

m

�
Am.1�x/

DAmE.yDx/U.xq;yDx/�E

�
yDx

m

�
AmU

�
xq;

yDx

q

�
x:

Now let us multiply the first equation on the right by U.qx;yDx/ (with the Dx’s
placed to the left of all the x’s) and the second equation on the left by L.x
;yDx=m/

(with the Dx’s placed to the right of all the x’s):

.1�x/AmL.x;yDx/E.yDx/U.xq;yDx/

DL

�
x
;

yDx

m

�
AmE.yDx/U.xq;yDx/

�xL

�
x
;

yDxq

m

�
E

�
yDxq

m

�
AmU.xq;yDx/
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and

L

�
x
;

yDx

m

�
E

�
yDx

m

�
U

�
xq
;

yDx

m

�
Am.1�x/

DL

�
x
;

yDx

m

�
AmE.yDx/U.xq;yDx/

�L

�
x
;

yDx

m

�
E

�
yDx

m

�
AmU

�
xq;

yDx

q

�
x:

The two terms in the right-hand sides of the above equations are pairwise equal to each
other (this is not manifestly obvious for the second term, because y differs from yq,
but this is a consequence of commuting Dx past x). We conclude that

.1�x/AmL.x;yDx/E.yDx/U.xq;yDx/

DL

�
x
;

yDx

m

�
E

�
yDx

m

�
U

�
xq
;

yDx

m

�
Am.1�x/:

Recalling the definition (2-35), this implies

.1�x/AmW .x;yDx/DW

�
x
;

yDx

m

�
Am.1�x/:

Taking the coefficient of .yDx/
�k implies (1-12). In doing so, the right-most factor

1�x changes into 1�x=qk due to the fact that the operators 1=Dk
x must pass over it.

3.12 Finally, we recall the operator ˆm WKM0 !KM defined in (1-16),

ˆm DAm exp
� 1X

nD1

Pn

n

�
.qn� 1/q�rn

Œn�q1
Œn�q2

��
;

and let us translate (1-12), (1-14) and (1-15) into commutation relations involving ˆm.

Proof of Corollary 1.11 Since Pn commutes with Pn0 for all n; n0 > 0, (1-15) implies
(1-18) when the sign is C. Let us now prove (1-18) when the sign is �. We write

ˆm DAm � exp;

where exp is shorthand for

exp
� 1X

nD1

Pn

n

�
.qn� 1/q�rn

Œn�q1
Œn�q2

��
:

Then (1-14) reads

ˆm � exp�1
�P�n�P�n �ˆm � exp�1 
 n

Dˆm � exp�1.1� 
 n/:

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3089

The relation above will establish (1-18) for ˙D� once we prove that

(3-44) Œexp�1;P�n�D .1� q�rn/ exp�1 :

If we take the logarithm of (3-44), it boils down to

(3-45)
�
P�n;

Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
D 1� q�rn:

Relation (3-45) is an equality of operators KM!KM�S (the right-hand side denotes
pullback multiplied by proj�S .1� q�rn/), and it is proved as follows. Take equality
(2-29) of operators KM!KM�S�S , multiply it by

(3-46) proj�3

�
1

n
�
.qn� 1/q�nr

Œn�q1
Œn�q2

�
2KM�S�S

and then apply proj12� to the result (above, we write M�S �S
proj12; proj3
������!M�S; S

for the obvious projection maps). The outcome of this procedure is precisely (3-45).

Now let us prove (1-12) D) (1-17). To do so, we must take formula (2-36) for ˙DC
(which is a priori an equality of operators KM!KM�S�S ), multiply it by (3-46) and
then apply proj12� to the result. The resulting equality reads�

Wk.x/;
Pn

n

�
.qn� 1/q�nr

Œn�q1
Œn�q2

��
D
.1� q�nk/xn

n
Wk.x/:

It is easy to show that ŒW;P �D cW implies that exp.�P /W D exp.c/ �W exp.�P /

as long as c commutes with both W and P . Therefore, we infer that

exp�1 Wk.x/D exp
� 1X

nD1

.1� q�nk/xn

n

�
Wk.x/ exp�1

D) exp�1 Wk.x/D
1� .x=qk/

1�x
�Wk.x/ exp�1

D) ˆm exp�1 Wk.x/ � .1�x/DˆmWk.x/ exp�1
�

�
1�

x

qk

�
:

With this in mind, (1-12) and the fact that ˆm exp�1 DAm imply that

mkWk.x
 /ˆm exp�1
�

�
1�

x

qk

�
DˆmWk.x/ exp�1

�

�
1�

x

qk

�
Multiplying on the right with exp yields (1-17).
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4 The Verma module

4.1 Let us now specialize to S DA2, and explain all the necessary modifications to
the constructions in the present paper; we refer the reader to [14, Section 3] for details.
From here on, let M be the moduli space parametrizing rank r torsion-free sheaves F
on P2, together with a trivialization along a fixed line1� P2:

MD fF ;F j1
�
ŠOr

1g:

The c1 of such sheaves is forced to be 0, but c2 is free to vary over the nonnegative
integers, and so the moduli space breaks up into connected components as before:

MD
1G

cD0

Mc :

The space M is acted on by the torus T DC��C��.C�/r , where the first two factors
act by scaling A2, and the latter r factors act on the framing �. Note that

KT
0 .pt/D ZŒq˙1

1 ; q˙1
2 ;u˙1

1 ; : : : ;u˙1
r �;

where q1; q2;u1; : : : ;ur are the standard elementary characters of the torus T . We
note that q1 and q2 are the equivariant weights of �1

A2 , and the determinant of the
universal sheaf U is the equivariant constant uD u1 � � �ur . Consider the group

KM D

1M
cD0

KT
0 .Mc/˝ZŒq˙1

1
;q˙1

2
;u˙1

1
;:::;u˙1

r �
Q.q1; q2;u1; : : : ;ur /

The main goal of loc. cit. was to define operators akin to (2-20), (2-21) and (2-23),

(4-1) Wn;k ;P˙n0 WKM!KM

for all n 2 Z and k; n0 2N, and then show that these operators satisfy the relations in
the deformed W –algebra of type glr (since S DA2, KM ŠKM�S naturally).

Definition 4.2 [14, Definition 2.28] Let q1; q2;u1; : : : ;ur be formal symbols. The
universal Verma module Mu1;:::;ur

is the Q.q1; q2;u1; : : : ;ur /–vector space with basis

(4-2) Wn1;k1
: : :Wns ;ks

j¿i

as the pairs .ni ; ki/ range over �N�f1; : : : ; rg and are ordered in nondecreasing order
of the slope ni=ki . We make Mu1;:::;ur

into a deformed W –algebra module as follows.

Geometry & Topology, Volume 27 (2023)



AGT relations for sheaves on surfaces 3091

The action of an arbitrary generator Wn;k on the basis vector (4-2) is prescribed by the
commutation relations (2-28), together with the relations

Wn;k j¿i D 0 if n> 0 or k > r;

W0;k j¿i D ek.u1; : : : ;ur /j¿i for all k;

where ek denotes the k th elementary symmetric polynomial.

Theorem 4.3 [14, Theorem 3.12] We have an isomorphism of modules for the
deformed W –algebra of type glr (the action on the left-hand side is given by (4-1))

(4-3) KM ŠMu1;:::;ur
;

induced by sending the K–theory class of the structure sheaf of M0 �M to j¿i.

4.4 The Ext (respectively vertex) operator Am (respectively ˆm) for S D A2 was
studied in [14, Section 4], where we obtained an analogue of Theorem 1.7 in the
case k D 1 (some coefficients in the formulas of loc. cit. differ from those of the
present paper, because their operator Am differs from ours by an equivariant constant).
However, having only proved the case k D 1 in loc. cit. led to weaker formulas than
(1-12). Thus, the present paper strengthens the results of loc. cit.; see Remark 4.8
therein. Specifically, Corollary 1.11 completely determines the operator ˆm (hence
also Am) in the case S DA2, due to Theorems 4.3 and 4.5.

Theorem 4.5 Given two Verma modules Mu1;:::;ur
and Mu0

1
;:::;u0r , there is a unique

(up to constant multiple in Q.q1; q2;u1; : : : ;ur ;u
0
1
; : : : ;u0r /) linear map

ˆm WMu0
1
;:::;u0r !Mu1;:::;ur

satisfying (1-17) for all k � 1.

Proof The existence of such a linear map follows from the very fact that the operator
(1-16) satisfies (1-17). To show uniqueness, it is enough to prove h¿jˆm j¿i D 0

implies ˆm D 0, for any operator that satisfies the following relations for all n, k:

(4-4) ˆmWn;k�ˆmWnC1;k �q
�k
DWn;kˆm �m

k
�nk
�WnC1;kˆm �

mk

qk

�.nC1/k ;

where m and 
 are certain nonzero constants.
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Claim 4.6 For any parameters u1; : : : ;ur , there exists a nondegenerate pairing

Mu1;:::;ur
˝Mu1;:::;ur

h � ;� i
��!Q.q1; q2;u1; : : : ;ur /

such that the adjoint of Wn;k is W�n;k for all n 2 Z and k 2N.

Proof Using Theorem 4.3, the required pairing is provided by the equivariant Euler
characteristic pairing on KM (renormalized as in [14, Section 3.14]). The operators
Wn;k and W�n;k are adjoint with respect to this pairing [14, formula (3.39)].

Let us now complete the proof of Theorem 4.5. Because Verma modules are generated
by Wn;k acting on ¿, then we must show that h¿jˆm j¿i D 0 implies

(4-5) h¿jW�ns ;ks
: : :W�n1;k1

ˆmWn0
1
;k0

1
: : :Wn0t ;k

0
t
j¿i D 0

for all collections of indices .ni ; ki/; .n
0
i ; k
0
i/ 2 Z�0 � f1; : : : ; rg, ordered by slope

n1

k1

� � � � �
ns

ks
and

n0
1

k 0
1

� � � � �
n0t
k 0t
:

The matrix coefficient (4-5) is nonzero only if the ni and the n0j are all nonpositive, so
we will prove formula (4-5) by induction on the nonpositive integer ı D

P
ni C

P
n0i .

We may assume that ns; n
0
t < 0 because W0;k j¿i is a multiple of j¿i for any k. The

base case ı D 0 of the induction is simply the assumption h¿jˆm j¿i D 0. As for the
induction step, let us iterate relation (4-4) to obtain

ˆmWn0
1
;k0

1
� � �Wn0t ;k

0
t
2 span

�
ˆmWn0

1
C"1;k

0
1
� � �Wn0tC"t ;k

0
t
;

Wn0
1
C"0

1
;k0

1
� � �Wn0tC"

0
t ;k
0
t
ˆm;

where "1; : : : ; "t 2 f0; 1g are not all 0, and "0
1
; : : : ; "0t 2 f0; 1g. That means that the

left-hand side of (4-5) is a linear combination of

h¿jW�ns ;ks
� � �W�n1;k1

ˆmWn0
1
C"1;k

0
1
� � �Wn0tC"t ;k

0
t
j¿i;

which is 0 by the induction hypothesis, because the "i are not all 0, and

(4-6) h¿jW�ns ;ks
� � �W�n1;k1

Wn0
1
C"0

1
;k0

1
� � �Wn0tC"

0
t ;k
0
t
ˆm j¿i:

The induction step will be complete once we show that (4-6) is 0. As a consequence of
(2-28), the product of W ’s in (4-6) can be written as a linear combination of

W�n00r ;k
00
r
� � �W�n00

1
;k00

1
with

n00
1

k 00
1

� � � � �
n00r
k 00r
;
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and
P

n00i D
P

ni �
P

n0i �
P
"0i for degree reasons. If n00r > 0, then the product of

W ’s above annihilates h¿j. Thus, we may assume n00r � 0, in which case the fact thatX
n00i D

X
ni �

X
n0i �

X
"0i >

X
ni C

X
n0i

(recall that n0i < 0 by assumption, while "0i 2 f0; 1g) means that we can apply the
induction hypothesis to conclude that (4-6) is 0.

We note that the identification of Am (in the case S DA2) with a vertex operator was
also achieved in [3], which computed relations (3-42) and (3-43) for nD 1 in the basis
of fixed points. This uniquely determines the operator Am due to certain features of
the Ding–Iohara–Miki algebra, but does not directly establish the connection with the
generating currents of the deformed W –algebra of glr . From a geometric point of view,
this is because the Nakajima-type simple correspondences only describe the operators
L1;k and U1;k . As we have seen in Section 2.4, in order to define the operators Ln;k

and Un;k for all n (with the ultimate goal of defining the W –algebra generators Wn;k

in (2-20)), one needs to introduce the more complicated correspondences (2-11).
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