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We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to
the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center
stable and center unstable branching foliations. This extends our previous study of
the true foliations that appear in the dynamically coherent case. We complete the
classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic
manifolds, we show that any such diffeomorphism is either dynamically coherent and
has a power that is a discretized Anosov flow, or is of a new potential class called a
double translation.
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1 Introduction

A diffeomorphism f of a 3–manifoldM is partially hyperbolic if it preserves a splitting
of the tangent bundle TM into three 1–dimensional subbundles

TM DEs
˚Ec

˚Eu;

where the stable bundleEs is eventually contracted, the unstable bundleEu is eventually
expanded, and the center bundleEc is distorted less than the stable and unstable bundles
at each point. That is, for some n > 0 one has, at each x 2M,

kDf njE s.x/k< 1;

kDf njEu.x/k> 1;

kDf njE s.x/k< kDf
n
jE c.x/k< kDf

n
jEu.x/k:

From a geometric perspective, one can think of partial hyperbolicity as a generalization
of the discrete behavior of an Anosov flow. On a 3–manifoldM, such a flowˆ preserves
a splitting of the unit tangent bundle TM into three 1–dimensional subbundles

TM DEs
˚Tˆ˚Eu;

where Es is eventually exponentially contracted, Eu is eventually exponentially ex-
panded, and Tˆ is the tangent direction to the flow. After flowing for a fixed time, an
Anosov flow generates a partially hyperbolic diffeomorphism of a particularly simple
type, where the stable and unstable bundles are contracted uniformly, and the center
direction, which corresponds to Tˆ, is left undistorted. More generally, there are
examples of partially hyperbolic diffeomorphisms of the form f .x/Dˆ�.x/.x/, where
ˆ is a (topological) Anosov flow and � WM !R>0 is a positive continuous function;
the partially hyperbolic diffeomorphisms obtained in this way are called discretized
Anosov flows.
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A partially hyperbolic diffeomorphism is said to be dynamically coherent if there are
invariant foliations tangent to the center stable and center unstable bundles Ec˚Es

and Ec˚Eu. Discretized Anosov flows are dynamically coherent, since their center
stable and center unstable bundles are uniquely integrable. On the other hand, we show
in [3] that large classes of dynamically coherent partially hyperbolic diffeomorphisms
must in fact be discretized Anosov flows:

Theorem 1.1 [3, Theorem A] Let f WM !M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed Seifert fibered 3–manifold. If f is homotopic
to the identity, then some iterate is a discretized Anosov flow.

Theorem 1.2 [3, Theorem B] Let f WM !M be a dynamically coherent partially
hyperbolic diffeomorphism on a closed hyperbolic 3–manifold. Then some iterate is a
discretized Anosov flow.

The assumption of dynamical coherence is natural from a geometric perspective: the
way that an Anosov flow distorts its weak stable and weak unstable foliations is often
seen as the defining property of such a flow. In this light, the preceding results say
that on certain classes of manifolds, any diffeomorphism with a geometric structure
reminiscent to that of an Anosov flow must in fact come from one.

This assumption is much less satisfying from a dynamical perspective, however. Here
the interest in partial hyperbolicity stems from its appearance as a generic consequence
of dynamical conditions, such as stable ergodicity and robust transitivity (see Bonatti,
Díaz and Viana [6]), and one is not provided with any invariant foliations. Although
dynamical coherence was once generally expected, a number of recent results (see
for example Barthelmé, Fenley, Frankel and Potrie [4], Bonatti, Gogolev, Hammerlindl
and Potrie [7] and Rodriguez Hertz, Rodriguez Hertz and Ures [31]) have shattered
that belief. For instance, in the unit tangent bundle of a hyperbolic surface, we proved
in [4] that many partially hyperbolic diffeomorphisms are not dynamically coherent.

In our study of the dynamically coherent case in [3], the key to relating the inherently
local property of partial hyperbolicity with the global structure of the ambient manifold
lay in understanding the geometry and topology of the center stable and center unstable
foliations, as well as their leafwise and transverse dynamics. The present article does
away with the assumption of dynamical coherence. Instead of foliations we work with
the center stable and center unstable “branching foliations” constructed by Burago
and Ivanov [10] under certain orientability conditions. These are generalizations of
foliations in which distinct leaves are allowed to merge together.

Geometry & Topology, Volume 27 (2023)
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A large part of the present paper is concerned with carrying over our understanding of
the geometry of foliations to branching foliations. We find that much of the familiar
structure still holds in this more general context — sometimes by direct analogy, and
sometimes with considerably more work. At the same time, there are important points
at which branching foliations allow for more varied behavior than true foliations.
A particularly important example of this appears in Figure 9, where the possibility
of merging leaves thwarts one’s ability to use the qualitative transverse and tangent
behavior of a dynamical system to draw conclusions about its Lefschetz index. We
hope that our work will entice those interested in the theory of foliations to consider
the possible uses for branching foliations.

The following two theorems, which generalize the preceding theorems from [3], sum-
marize the major consequences of the present article.

Theorem A Let f WM !M be a partially hyperbolic diffeomorphism on a closed
Seifert fibered 3–manifold. If f is homotopic to the identity, then it is dynamically
coherent , and some iterate is a discretized Anosov flow.

This is a stronger version of Theorem 1.1, without the a priori assumption of dynamical
coherence. The following corresponds to Theorem 1.2.

Theorem B Let f WM !M be a partially hyperbolic diffeomorphism on a closed
hyperbolic 3–manifold. Then either

(i) f is dynamically coherent , some iterate is a discretized Anosov flow; or

(ii) f is not dynamically coherent , and after taking a finite cover1 and iterate , it
has center stable and center unstable branching foliations which are R–covered
and uniform , and a lift of f acts as a nontrivial translation on both of the
corresponding leaf spaces.

The existence or nonexistence of examples of type (ii) is one of the major questions
coming out of this article. See Section 2.0.6.

Let us also mention a dynamical consequence of our analysis (Corollary 4.14).

Theorem 1.3 Let f WM !M be a partially hyperbolic diffeomorphism of a closed
3–manifold M that is homotopic to the identity. If either M is hyperbolic or Seifert
fibered , or the center stable or center unstable branching foliation is f –minimal , then
f has no contractible periodic points (see Definition 4.13).

1This is only needed to get the existence of f –invariant branching foliations.
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2 Outline and discussion

After recalling some definitions, we outline the more detailed results that lie behind
our main theorems.

Let f WM !M be a partially hyperbolic diffeomorphism that is homotopic to the
identity on a closed 3–manifold M.

Convention Throughout this paper, we will assume that the group �1.M/ is not
virtually solvable.

Although this assumption is not always necessary, it will simplify certain parts of
the exposition. It does not result in loss of generality, since partially hyperbolic
diffeomorphisms have been completely classified in manifolds with solvable or virtually
solvable fundamental group; see Hammerlindl and Potrie [22; 23].

A foundational result of Burago and Ivanov (Theorem 3.6) implies that, after passing
to an appropriate finite power and lift, we can assume that there is a pair of “branching
foliations” Wcs and Wcu that are preserved by f and tangent to the center stable and
center unstable bundles Ec˚Es and Ec˚Eu.

We outline the theory of these branching foliations in Section 3, and construct cor-
responding leaf spaces Lcs and Lcu. Like the leaf spaces of true foliations, these are
simply connected, possibly non-Hausdorff 1–manifolds that capture the transverse
structure of eWcs and eWcu, the lifts of Wcs and Wcu to the universal cover. This is
where a large part of our work takes place, studying the dynamics of the following
important class of lifts of f .

Definition 2.1 A lift of f to the universal cover is called good if it moves each point
a uniformly bounded distance and commutes with every deck transformation.

Geometry & Topology, Volume 27 (2023)
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Since f is homotopic to the identity, it has at least one good lift, obtained by lifting
such a homotopy.

Remark 2.2 The diffeomorphisms we consider are in fact isotopic to identity: indeed,
all the manifolds that appear in this article are irreducible and covered by R3. Then,
the works of many authors — Waldhausen [35] for Haken manifolds, Boileau and
Otal [5] for Seifert manifolds and Gabai, Meyerhoff and Thurston [21] for hyperbolic
manifolds — give that homotopy implies isotopy. We will however not use this fact in
the sequel, as the existence of a good lift is all that we use.

2.0.1 Dynamics on leaf spaces In Section 4, we study the way that good lifts of f
permute the leaves of the lifted center stable and center unstable branching foliations,
and the implications for the structure of their leaf spaces. This extends [3, Section 3].

The picture is particularly simple when Wcs is f –minimal, which means that the only
closed, nonempty, f –invariant set which is a union of leaves is M itself. If Wcs is
f –minimal, then:

(?) � Each good lift zf fixes either every leaf or no leaf of eWcs.

� If some good lift zf fixes no leaf, then Wcs is R–covered and uniform, and zf
acts as a translation its leaf space.

The same holds for eWcu. In particular, if both Wcs and Wcu are f –minimal, then one
of the following holds for each good lift zf of f :

(1) Double invariance zf fixes every leaf of both eWcs and eWcu.

(2) Mixed behavior zf fixes every leaf of either eWcs or eWcu, and acts as a transla-
tion on the leaf space of the other.

(3) Double translation zf acts as a translation on the leaf spaces of both eWcs

and eWcu.

This trichotomy applies whenever f is transitive or volume-preserving, where the
associated branching foliations are always f –minimal [8].

When f is a discretized Anosov flow, there is a natural homotopy from the identity
to f that moves points along the orbits of the underlying flow. The good lift zf that
comes from lifting this homotopy fixes every center leaf. In order to show that a given
partially hyperbolic diffeomorphism is a discretized Anosov flow, we will need to find
a good lift with this property. Here, one takes the center leaves to be the components
of intersections between center stable and center unstable leaves. In particular, we will
need find a good lift with doubly invariant behavior.

Geometry & Topology, Volume 27 (2023)
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2.0.2 Center dynamics in fixed leaves In Section 5, we study the dynamics of the
center foliation within center stable and center unstable leaves. We obtain the following
crucial tool (see Definition 5.1 and Proposition 5.2):

(??) Suppose that Wcs is f –minimal, and that some good lift zf fixes every center
stable leaf but no center leaf in zM. Then every f –periodic center leaf in M is
coarsely contracted.

If one replaces Wcs with Wcu then one concludes that any f –periodic center leaf in M
is coarsely expanded. This is widely applicable since one can find a periodic center
leaf on any center stable or center unstable leaf with nontrivial fundamental group
(Proposition 5.6).

Remark 2.3 In the dynamically coherent case, (??) leads to a contradiction that yields
a fixed center leaf [3, Proposition 4.4]. In Section 9 we show that this holds as well
under the assumption of absolute partial hyperbolicity.

2.0.3 Minimality in hyperbolic and Seifert fibered manifolds In Section 6, we
show the following, which means that the preceding trichotomy holds whenever the
ambient manifold is hyperbolic or Seifert fibered.

If M is hyperbolic or Seifert fibered, then:

(?0) � Each good lift zf fixes either every leaf or no leaf of eWcs.

� If some good lift zf fixes every leaf, then Wcs is f –minimal.

� If some good lift zf fixes no leaf, then Wcs is R–covered and uniform, and zf
acts as a translation on its leaf space.

2.0.4 Double invariance implies dynamical coherence In Section 7 we prove the
following criterion for when a partially hyperbolic diffeomorphism is a discretized
Anosov flow:

Theorem 2.4 Let f W M ! M be a partially hyperbolic diffeomorphism that is
homotopic to the identity. If f admits f –minimal center stable and center unstable
branching foliations , and some good lift zf has doubly invariant behavior , then f is a
discretized Anosov flow.

The key is to show that such an f is dynamically coherent. Then [3, Theorem 6.1]
implies that it is a discretized Anosov flow.

Geometry & Topology, Volume 27 (2023)
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Until this point we have always assumed that the bundles Es, Ec and Eu have orienta-
tions that are preserved by f so that we can use the result of Burago and Ivanov to find
center stable and center unstable branching foliations. In Section 7.3, we show that
if a lift of an iterate of f is dynamically coherent and has a good lift zg with doubly
invariant behavior, then f is dynamically coherent. This is why Theorems A and B(i)
do not need the orientability conditions.

2.0.5 Seifert fibered and hyperbolic manifolds We rule out mixed behavior in
Seifert fibered manifolds in Section 8, and in hyperbolic manifolds in Sections 11–12.
Together with Theorem 2.4, this yields the following:

Theorem 2.5 Let f WM !M be a partially hyperbolic diffeomorphism homotopic to
the identity on a closed hyperbolic or Seifert fibered 3–manifold. Assume that there are
center stable and center unstable branching foliations. Then each good lift of f either

(i) fixes every leaf of both eWcs and eWcu, or

(ii) acts as a translation on both leaf spaces.

If there is a good lift of type (i), then f is a discretized Anosov flow.

As was already pointed out in [3, Remark 7.3], there are examples in Seifert fibered
manifolds where every good lift acts as a double translation. However, we show in
Section 8 that one can always find a finite power of such diffeomorphisms with a
good lift that has doubly invariant behavior. Together with the results of Section 7 this
implies Theorem A.

Since every diffeomorphism of a hyperbolic 3–manifold has an iterate homotopic to
the identity, one also deduces Theorem B.

Remark 2.6 An analogue of Theorem 2.5 holds under the assumption of f –minimality
together with absolute partial hyperbolicity. See Section 9.

We believe that Theorem 2.5 should hold, using the same strategy as here, under the
assumption of f –minimality together with the existence of an atoroidal piece in the
JSJ decomposition of M. We have not pursued this here as it would require proving
results similar to [33; 11; 17] in this setting.

2.0.6 Double translations This leaves open one major question:

Question Is there a partially hyperbolic diffeomorphism on a closed hyperbolic 3–
manifold whose good lifts act as double translations?

Geometry & Topology, Volume 27 (2023)
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As noted above, there are such examples on Seifert fibered manifolds, but by Theorem A
these are all dynamically coherent and have iterates that are discretized Anosov flows.

The dynamics of a double translation on a hyperbolic manifold would have to be
coarsely comparable to that of a pseudo-Anosov flow; see Section 11. The closest
analogues from this perspective are the non-dynamically-coherent examples on Seifert
manifolds, constructed in [7], which act as pseudo-Anosov maps on the base.

2.1 Remarks and references

There are three major areas in which the general case differs significantly from the
dynamically coherent case:

(1) Unlike the dynamically coherent case (see condition (??) in [3, Section 2]), there
may be annular center stable leaves which do not contain a closed center leaf.

(2) In hyperbolic manifolds, we cannot rule out the possibility of double translations
from the general version of the existence of cores that “shadow” the periodic orbits
of the transverse pseudo-Anosov flow; see condition (???) in [3, Section 2].

(3) In hyperbolic and Seifert manifolds, it is more difficult to eliminate the hypothesis
of f –minimality. See Section 6.

We refer to [15; 24; 30] for surveys on the problem of classification of partially hyper-
bolic diffeomorphisms in dimension 3. There is earlier work towards classification that
does not assume dynamical coherence, but these articles tend to have two simplifying
characteristics: they work with manifolds on which taut foliations are well understood
and amenable to classification, and on which known partially hyperbolic models are
available for comparison. Typically, dynamical coherence is established under the
assumption of nonexistence of invariant tori by using the fact that coarse dynamics
separates leaves of the branching foliations. Neither of these features hold for the
classes of manifolds considered in this article, and dynamical incoherence may appear
in several different ways.

For instance, we obtain dynamical coherence in Section 7 when the lift of the partially
hyperbolic diffeomorphism fixes each leaf of the lifted branching foliations. We also
learn more about the structure of the branching foliations in the non-dynamically-
coherent case, leading, in particular, to case (ii) of Theorem B. This structure also
allows us to better understand the dynamical properties of the system, even when the
manifold is not hyperbolic or Seifert fibered, as can be seen in Theorem 1.3.

Geometry & Topology, Volume 27 (2023)
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More generally, the framework that we develop for the study of non-dynamically-
coherent partially hyperbolic diffeomorphism is useful outside of the homotopy class
of the identity.

Below are several tools developed in this article that we wish to emphasize:

(1) In Sections 3 and 4, we develop some of the basic theory necessary for the
topological study of branching foliations and the diffeomorphisms that preserve them,
including the structure of their leaf spaces.

(2) In Section 5.1 we introduce the notion of coarsely contracting and coarsely re-
pelling periodic rays. This should be useful for the study of all partially hyperbolic
diffeomorphisms in 3–manifolds, ie including those not homotopic to the identity.

(3) In Section 6 we study the way that certain special lifts of a partially hyperbolic
diffeomorphism act within a fixed center stable leaf, and find conditions that guarantee
the nonexistence of fixed points. This involves understanding the behavior of strong
stable manifolds through fixed points under iteration, which may find applications in
other contexts.

(4) In Section 7 we prove uniqueness of (branching) foliations under certain conditions.
This is a key to finding results that do not require taking finite lifts and finite powers.
As such, it may also be relevant for the study of topological obstructions for partially
hyperbolic diffeomorphisms — note that the topological obstructions for the existence
of Anosov flows can depend on taking finite lifts; see eg [12].

There is other work that shows the uniqueness of branching foliations, but always in a
setting where there is an understood model partially hyperbolic diffeomorphism for
comparison.

(5) In Sections 11 and 12 we develop some tools to analyze the transverse geometry
of branching foliations. This combines ideas from the theory of Lefschetz index,
hyperbolic geometry, and the notion of coarsely expanding and contracting rays in
item (2).

The tools in (5) are used in [4] to prove that a large class of partially hyperbolic diffeo-
morphisms in Seifert manifolds are dynamically incoherent. In addition, (2) and (5)
are used in [18] to obtain fine dynamical consequences of partial hyperbolicity in
3–manifolds.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3105

3 Branching foliations and leaf spaces

In this section we review the existence of center stable and center unstable branching
foliations, and construct corresponding leaf spaces that capture their transverse topology.
We will also construct a “center foliation” and leaf space.

Definition 3.1 A branching foliation of a 3–manifold M is a collection F of C 1–
immersed surfaces, called leaves, each complete in its induced metric, such that

(i) each x 2M is contained in at least one leaf,

(ii) no leaf crosses itself,

(iii) different leaves do not cross each other, and

(iv) if Ln are leaves, and xn 2Ln converges to a point x 2M, then some subsequence
of the Ln converges to a leaf L with x 2 L.2

Here, “crossing” is meant in a topological sense; see [10] or [24].

Remark 3.2 In this context, “branching” refers to the fact that leaves may merge.
This should not be confused with the typical use of “branching” in the theory of
codimension-1 foliations, where it refers to non-Hausdorff behavior in the leaf space.

Since a branching foliation has C 1 leaves that do not cross, it has a well-defined tangent
distribution.

As with foliations, there is a sense in which branching foliations are “locally product
(branched) foliated”: around each point one can find a neighborhood U with a smooth
product structure U ' D2 � Œ0; 1� such that each leaf of F that intersects U does
so in a collection of discs that are transverse to the Œ0; 1�–fibration and meet every
Œ0; 1�–fiber. This follows readily from the fact that branching foliations are tangent to
C 1 distributions.

On a compact manifold there is a uniform scale �0, called the local product structure
size, such that every open set of diameter less than �0 is contained in a product chart as
above.
2Here, convergence should be understood in the pointed compact–open topology, ie given a compact setK
in L containing x, there is a sequence of compact subsetsKn of Ln containing xn such thatKn converges
to K in the Hausdorff topology.
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Definition 3.3 A branching foliation F is well-approximated by foliations if there is,
for a set of � > 0 accumulating on 0, a family of foliations fF�g with C 1 leaves, and a
family of continuous maps fh� WM !M g, which have the following properties (with
respect to some fixed Riemannian metric):

(v) The angles between leaves of F and F� are less than �.

(vi) The C 0–distance between h� and the identity is less than �.

(vii) On each leaf of F� , the map h� restricts to a local diffeomorphism to a leaf of F .

(viii) For each leaf L of F there is a leaf L� of F� with h�.L�/D L.

Remark 3.4 While the maps h� restrict to local diffeomorphisms on leaves, they will
fail to be global diffeomorphisms on leaves of F� that map to self-merging leaves of F .
In addition, the h� will not be local diffeomorphisms on M unless F is actually a true
foliation.

Definition 3.5 A partially hyperbolic diffeomorphism f W M ! M is said to be
orientable if the bundles Es, Eu and Ec admit orientations that are preserved by f .

The following is the foundational existence result of Burago and Ivanov:

Theorem 3.6 (Burago and Ivanov [10]) Let f be an orientable partially hyperbolic
diffeomorphism of a 3–manifold M. Then there are f –invariant branching foliations
Wcs and Wcu tangent to Ec˚Es and Ec˚Eu that are well-approximated by foliations.

Here, a branching foliation is said to be f –invariant if the image of any leaf under f
is again a leaf.

Note that there is no a priori uniqueness for the center stable and center unstable
branching foliations Wcs and Wcu related to a partially hyperbolic diffeomorphism.
Nevertheless, we will typically fix some pair of such branching foliations and call them
“the” branching foliations for our diffeomorphism. In addition, we will fix families of
approximating foliations Wcs

� and Wcu
� , with associated maps denoted by hcs

� and hcu
� .

On the other hand, since the stable bundle Es is uniquely integrable, a stable leaf s
that intersects a center stable leaf L must be contained entirely in L. Consequently, the
intersection of any two center stable leaves is saturated by stable leaves.
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Figure 1: The branching of center and center stable leaves. Left: two center
stable leaves sharing a region. Right: distinct center leaves inside a center
stable leaf.

Once we have fixed “the” center stable and center unstable branching foliations Wcs

and Wcu, the corresponding lifted foliations on zM will be denoted by eWcs and eWcu.
We may then define center leaves as follows:

Definition 3.7 A center leaf of a partially hyperbolic diffeomorphism is the projection
to M of a connected component of the intersection between a leaf of eWcs and a leaf
of eWcu.

Although the collection of center leaves is not a foliation, it is a kind of codimension-2
branching foliation. We will abuse terminology and call the collection of center leaves
the center foliation.

Remark 3.8 Each center leaf is tangent to the central direction Ec, but a complete
curve that is tangent to the central direction may not be a center leaf. Indeed, even
when the diffeomorphism is dynamically coherent, the central direction may not be
uniquely integrable. See [31] for an example.

3.1 Tautness

In this article, the approximating foliations Wcs
� and Wcu

� have no compact leaves.

Indeed, suppose that one has a compact leaf L 2Wcs
� . Then K WD hcs

� .L/ is a compact
leaf of Wcs. Since the stable bundleEs is uniquely integrable, this compact surface has a
foliation without compact leaves, so it is a torus. According to [27, Theorem 1.4], there
are only a few classes of manifolds that admit partially hyperbolic diffeomorphisms
with tori tangent to Es˚Ec, all mapping tori of T2.

Since we assume that �1.M/ is not virtually solvable, it follows that the approximating
foliations have no compact leaves, which implies that they are taut.

Geometry & Topology, Volume 27 (2023)
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3.2 Center stable and center unstable leaf spaces

Given a foliation F on a manifold M, the set of leaves of the lifted foliation zF on zM
has a natural topology — the quotient obtained from zM by collapsing each leaf to a
point — and the resulting space is called the leaf space of M.

In this section we will define a notion of leaf space for our branching foliations, where
it would not make sense to take the quotient topology. We will see, in fact, that the leaf
spaces of our branching foliations are homeomorphic to those of the approximating
foliations for small enough �.

Much of this section would apply to any codimension-1 branching foliation, of any
dimension, as long as the leaves in the universal cover are properly embedded Rn�1’s
in Rn. For convenience, however, we will mostly restrict attention to the branching
foliations that we are interested in. This allows for some shortcuts. For example, in
Proposition 3.16 we use the approximating foliations and maps to see that the leaf
space is a 1–manifold as desired, though this could also be done directly.

3.2.1 Complementary regions and sides SinceM is not finitely covered by S2�S1

(as �1.M/ is not virtually solvable), and our branching foliations are well-approximated
by taut foliations, it follows that the universal cover is homeomorphic to R3, and the
lifted leaves are properly embedded planes [14].

The complementary regions of a leaf L are the two connected components of zM nL.
For each complementary region U of a leaf L, the closure U D U [L is called a side
of L.

A coorientation of the branching foliation (which may be thought of as a coorientation
of its tangent distribution) determines, for each leaf L, a positive and a negative
complementary region, which we denote by L˚ and L	. The corresponding sides
are denoted by LC D L˚ [L and L� D L	 [L. We will fix such a coorientation
throughout.

3.2.2 Leaf spaces Let us now construct the center stable leaf space Lcs. This is
the set of leaves of eWcs with the topology defined below. The center unstable leaf
space Lcu is constructed similarly.

In the case of a true codimension-1 foliation, each transverse arc in the universal cover
maps homeomorphically to an arc in the leaf space. We will use a similar idea for

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3109

branching foliations, and use transverse arcs to construct the topology. In a true foliation
each point in a transverse arc intersects a single leaf; for our branching foliations we
need to “blow up” at some points, using the following definition:

Definition 3.9 Given x 2 zM, let Lcs.x/� Lcs denote the set of leaves that contain x.

Given distinct leaves L¤E in Lcs.x/, we will write L<x E whenever LC �E.

Claim 3.10 For each x 2 zM, <x defines a linear order , with respect to which Lcs.x/

is order-isomorphic to a closed interval (possibly a single point).

Proof Assume that Lcs.x/ is not a singleton.

That <x defines a linear order on Lcs.x/ follows from the fact that leaves do not
cross (property (iii) of Definition 3.1). From property (iv), it follows that this order is
complete.

To see that Lcs.x/ is order-isomorphic to a closed interval, it suffices to check that
there are no gaps in the order. That is, given L;E 2 Lcs.x/ such that L<x E, we must
find some L0 2 Lcs.x/ with L<x L0 <x E.

Given such L and E, let y be a boundary point of the connected component of L\E
that contains x. Consider a neighborhood B of y with diameter less than �0, the local
product structure size of Wcs. Since eWcs is product branched foliated in B, each leaf
that intersects B \ .LC \E�/ must intersect y, and since leaves do not cross, any
such leaf must intersect x. Any such leaf L0 will have L<x L0 <x E.

Combined with the linear ordering of points in a transversal, this gives a linear ordering
on the set of leaves that intersect a transversal:

Definition 3.11 Given a transverse arc � , let Lcs.�/� Lcs denote the set of leaves that
intersect � .

Orient � so that it agrees with the coorientation on eWcs. Given distinct leaves K ¤ L
in Lcs.�/, we will write K <� L whenever either

� K \ � lies forward of L\ � with respect to the orientation on � , or

� K and L intersect � at the same point x and K <x L.
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The following properties of these orderings may be found in [10, Section 7].

Claim 3.12 (1) For each open transverse arc � , <� is a linear order , with respect to
which Lcs.�/ is order-isomorphic to an open interval.

(2) If � and � are open transverse arcs , then <� and <� define the same linear
order on Lcs.�/\Lcs.�/, which is order-isomorphic to an open interval (possibly
empty).

Definition 3.13 (topology of Lcs) The center stable leaf space is Lcs, with the topology
T generated by all open intervals in Lcs.�/� Lcs, over all open transverse arcs � .

From Claim 3.12(2), it suffices to take any collection of open transverse arcs that
intersect every leaf of eWcs. Since M is compact, one can take a finite collection of
open transverse arcs in M and consider all of their lifts to zM. This implies in particular
that Lcs is second-countable.

Proposition 3.14 The center stable leaf space Lcs is a simply connected , possibly
non-Hausdorff 1–manifold.

The same applies to Lcu. This is not difficult to prove directly, and it applies more
generally to any codimension-1 branching foliation of a closed n–manifold, as long as
the lifted foliation is by properly embedded Rn�1’s in zM 'Rn. In the present case, it
follows as well from Proposition 3.16 below.

3.2.3 Leaf spaces and approximating foliations Let Lcs
� and Lcu

� denote the leaf
spaces of the approximating foliations Wcs

� and Wcu
� . The maps hcs

� and hcu
� induce

functions
g�;s W Lcs

� ! Lcs and g�;u W Lcu
� ! Lcu

between the corresponding leaf spaces, which are surjective whenever � is sufficiently
small; cf Definition 3.3.

Since Wcs
� is a true foliation, its leaf space Lcs

� is a simply connected, possibly non-
Hausdorff 1–manifold; cf [3, Appendix B].

Remark 3.15 It is possible to modify the proof of [10, Theorem 7.2], where the
foliations Wcs

� and maps hcs
� are constructed, so that the g�;s are injective in addition

to surjective. With this in hand, one could define the topology on Lcs to be the one
induced by this bijection.
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Instead of redoing the entire proof of [10, Theorem 7.2], we will use a simpler fact that
can easily be extracted from that proof: the maps hcs

� are “monotone” in the sense that
they preserve the natural linear order on plaques in local charts.

Proposition 3.16 When � is sufficiently small ,

(1) the preimage of each point in Lcs under g�;s is a closed interval ,

(2) g�;s W Lcs
� ! Lcs is continuous , and

(3) the topology T on Lcs is equivalent to the quotient topology T� induced by g�;s .

The same applies for the center unstable foliations.

Proof Let �0 be the local product sizes of Wcs, and let � < �0=2. Let T� be the quotient
topology induced by g�;s on Lcs.

(1) Let I � Lcs
� be the preimage of a leaf L 2 Lcs, and suppose that I contains two

leaves yL1 and yL2. We want to show that zhcs
� takes every leaf between yL1 and yL2 to L.

From property (vi) of Definition 3.3, the Hausdorff distance between yL1 and yL2 is less
than 2�. Since 2� was chosen to be less than the local product structure size, it follows
that the region between yL1 and yL2 has leaf space which is a closed interval. By the
local monotonicity of zhcs

� , it follows that g�;s maps the entire region between yL1 and
yL2 to L. This implies that the preimage of L is an interval, which is closed because
zhcs
� is continuous.

(2) Let U �Lcs be open. Around each point in U one can find an open interval J �U
that is the set of leaves intersecting a small open transversal ˇ. We want to show that
g�1�;s .J / is open in Lcs

� .

Let yL1 be a leaf in g�1�;s .J /. Then yL1 intersects ˇ (or a slightly bigger transversal), so
all the leaves of eWcs

� close enough to yL1\ˇ intersect ˇ. Thus an open neighborhood
of yL1 is contained in g�1�;s .J /, and g�;s is continuous.

(3) From (2) it follows that T � T�. Let us prove the other inclusion.

Suppose W 2 Lcs is an open set in T�, and let y 2W . Then U D .g�;s/�1.W / is an
open set containing the closed interval I D .g�;s/�1.y/. Let L and E be the boundary
leaves of I . Then one can find half-open intervals IL; IE � U such that IL\ I D L
and IE \ I D E. Then IL [ I [ IE projects to a set in Lcs which contains an open
interval around y in Lcs. Since this applies for every y 2W it follows that W is open
in T .
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This suffices to show that Lcs is a 1–manifold. It is possible to modify g�;s W Lcs
� ! Lcs

to be a homeomorphism when � is sufficiently small, but we will not need this fact.

In the sequel, we fix � small enough that the previous proposition applies for both the
center stable and center unstable foliations.

3.3 Center “foliations”

3.3.1 The center foliation within a center stable/unstable leaf Fix a center stable
leaf L of eWcs. We will describe the topology of the center leaf space, Lc

L, restricted
to L. The center leaf within a center unstable leaf is defined in the same manner.

Remark 3.17 Recall from Definition 3.7 that a center leaf in zM is defined as a
connected component of the intersection between a leaf of eWcs and a leaf of eWcu. Now,
the following situation may arise (see Figure 2): two leaves U1; U2 of eWcu and a leaf L
of eWcs such that the triple intersection U1\L\U2 contains a connected component
of c1 of U1 \L as well as a connected component c2 of U2 \L. That is, the center
leaves c1 and c2 represent the same set in zM. In this case, we also consider c1 and c2
as the same leaf of the center foliation in L.

Definition 3.18 (topology A in Lc
L) Consider a countable set of open transversals �i

which are perpendicular to the center bundle in L, and whose union intersects every
center leaf in L. Put the order topology on the set Ii of center leaves intersecting �i .
This induces the topology A in Lc

L.

L 2 eWcs

U2 2 eWcu

U1 2 eWcu

c1 D c2

Figure 2: Different center unstable leaves may intersect a given center stable
leaf in the same center leaf.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3113

Let L be a fixed leaf of eWcs. We again fix an � > 0 and consider the approximating
foliation eWcu

� . Since eWcu is transverse to L, so is eWcu
� (for � small enough). Thus,eWcu

� induces a 1–dimensional (nonbranching) foliation F� on L, and hence its leaf
space Lc

L;� is a 1–dimensional, not necessarily Hausdorff, simply connected manifold.

The behavior described in Remark 3.17 above leads to the following issue: the unique
center leaf c1 D c2 is approximated by two distinct leaves of F�. Thus, the leaf
space Lc

L of the center foliation on L is not in bijection with Lc
�. However, we still

have a surjective, but not necessarily injective, projection pr� W Lc
L;� ! Lc

L as in the
previous subsection. Let A� be the quotient topology from the map pr�.

Just as in Proposition 3.16 one can prove the following:

Lemma 3.19 The set of center leaves in L through a point x is a closed interval. Let
c0 be a center leaf in L. Let I D pr�1.c0/ � Lc

�. The set I is a closed interval. If
� < �0, then the topologies A and A� are the same.

3.3.2 Center foliation in zM Finally, we have to put a topology on the leaf space Lc

of the center foliation in zM.

Pick an 0 < � < �0 so that eWcs
� and eWcu

� are transverse to each other. Call F� the
1–dimensional foliation obtained as the intersection of eWcs

� and eWcu
� . The leaf space Lc

�

of F� is now a simply connected, possibly non-Hausdorff, 2–dimensional manifold.
But as before, there is only a surjective, and not injective, projection g� W Lc

�! Lc.

The map g� is defined in the following way: if xc is a leaf of F� , then it is the intersection
of a leaf xU of eWcu

� and a leaf xS of eWcs
� . There exists a unique connected component c

of g�;u. xU/\g�;s. xS/ that is at distance less than 2� from xc. We define g�.xc/D c.

Once again, the topology B� we put on Lc is obtained by identifying elements of Lc
�

that project to the same element of Lc and taking the quotient topology.

As done previously in Sections 3.2.2 and 3.3.1, in order to prove that the topology that
we put on Lc makes it a simply connected (not necessarily Hausdorff) 2–manifold, it
is enough to show that the preimages of points by g� are closed, simply connected
sets contained in a local chart of Lc

�. In order to do that, first notice that Lc
� is locally

homeomorphic to Lcs
� �Lcu

� . Indeed, any xc0 2Lc
� is a connected component of xU0\ xS0,

with xU0 2 Lcu
� and xS0 2 Lcs

� . Now, if Vu is a small enough open interval in Lcu
�

and Vs is a small enough open interval in Lcs
� , then for any xU 2 Vu and xS 2 Vs ,

Geometry & Topology, Volume 27 (2023)



3114 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

the intersection xU \ xS contains a unique connected component close to c0. Using this
local homeomorphism, the following lemma will imply that the topology Lc is as we
claimed.

Lemma 3.20 Let c0 be in Lc. The set R D g�1� .c0/ is homeomorphic to a closed
rectangle in Lcs

� �Lcu
� .

Proof Let xc1; xc2 2R. Let xU1 be the leaf in Lcu
� containing xc1 and let xS2 be the leaf in

Lcs
� containing xc2. Let U1 D g�;u. xU1/ and S2 D g�;s. xS2/. Since xc1; xc2 2R, the center

leaf c0 is a connected component of U1\S2. Thus xU1 and xS2 must intersect and the
intersection contains a unique connected component xc3 at distance at most 2� from c0.

Now, the proof of Lemma 3.19 shows that xc1 and xc3 are two ends of an interval in
the leaf space of F� restricted to xU1 that is entirely contained in R, and similarly for
xc2 and xc3 considered as elements of the leaf space of F� restricted to xS2. In turn, the
arguments of the proof of Lemma 3.19 imply that the set R projects to a closed interval
in both Lcs

� and Lcu
� , ie it is a closed rectangle in Lcs

� �Lcu
� .

Just as in the previous two sections we can also put a topology B on Lc directly as
follows:

Definition 3.21 (topology B on Lc) In M pick a collection of very small open
rectangles Ri which are almost perpendicular to the center bundle, and with boundary
two arcs in leaves of Lcs and two arcs in leaves of Lcu. Consider all lifts R of these
to zM. The set of center leaves intersecting R is naturally bijective to an open rectangle
and we give it the topology making this a local homeomorphism. The topology B is
generated by these rectangles.

First we justify why the set of center leaves through R is naturally an open rectangle.
Let L1; L2 be the center stable leaves containing the two arcs in the boundary of R,
and U1; U2 be the corresponding center unstable leaves. The set of center stable leaves
betweenL1; L2 (not includingL1; L2) is naturally order-isomorphic to an open interval.
This was proved in Section 3.2.2. The same holds for the center unstable foliation. The
product is an open rectangle. The set of center leaves intersecting R is a quotient of
this. The sets which are quotiented to a point are compact subrectangles. The proof
is the same as the previous lemma. Hence the quotient is naturally a rectangle. In
addition, if a collection of center leaves intersects two such rectangles R and R0, then
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the identifications in R also produce the same identifications in R0, and the order of
the center stable and center unstable foliations in the subsets are the same whether in
R or R0. Hence in the identification, the topologies agree.

Just as in the previous sections one can prove:

Lemma 3.22 For � < �0, the topologies B and B� are the same.

The main property is to prove is exactly that of Lemma 3.20. The rest follows just as
in the previous subsections.

3.4 From foliations to branching foliations

Using the leaf space, one can carry over a number of concepts from foliations to
branching foliations.

3.4.1 Uniform and R–covered branching foliations A branching foliation is said
to be R–covered if its leaf space is homeomorphic to R. It is uniform if every two
leaves in the universal cover are a finite Hausdorff distance apart.

By Proposition 3.16 a branching foliation is uniform or R–covered if and only if its
approximating foliations are, for � sufficiently small.

3.4.2 Saturations and minimality A foliation preserved by a homeomorphism f

is said to be f –minimal if the only closed, saturated, f –invariant sets are the empty
set and the whole manifold. We will define f –minimality identically for branching
foliations, but we must be careful about what we mean by “saturated”:

Definition 3.23 A set C �M is Wcs–saturated if, for every x 2 C , there is a leaf
of Wcs that contains x and is contained in C .

A saturation of a saturated set C �M is a collection of leaves X �Wcs whose union
is C .

Note that this is much weaker than asking that every leaf intersecting C be contained
inC . In particular, our notion of saturation has the peculiar property that the complement
of a saturated set need not be saturated; see Figure 3.

In addition, a saturated set may have different saturations. However, a saturated set
always has a unique maximal saturation, consisting of all leaves that are contained in it.
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L2

L1

R

Figure 3: L1 and L2 are two leaves in C , but the region R is not in C . Then,
in parts of R, all the center stable leaves intersect the branch locus between
L1 and L2, so have parts in C and parts not in C (and therefore M nC is not
saturated by center stable leaves).

Definition 3.24 We say that Wcs is f –minimal if the only closed, Wcs–saturated, and
f –invariant subsets of M are ∅ and M.

We emphasize that “closed” is meant as a subset of M, not Lcs.

Saturated sets and saturations are defined similarly in the universal cover. Here, a
saturation can be naturally thought of as a subset of the leaf space Lcs. However, the
topology of a saturated set in zM does not necessarily agree with the topology of a
saturation in Lcs:

Remark 3.25 Let C � zM be eWcs–saturated. It is possible for C to be closed in zM,
but have a saturation C � Lcs that is not closed in Lcs. However, it is easy to see that C
is closed in zM if and only if its maximal saturation is closed in Lcs.

It is true but less immediate that the only saturation of zM that is closed in Lcs is all
of Lcs (Lemma B.1).

3.4.3 Perfect fits The notion of “perfect fits” from the theory of codimension-1 foli-
ations [3, Section 4.1] applies to branching foliations once it is modified appropriately.

We will need the 2–dimensional version of this concept, in Section 5, to understand the
center and stable foliations within a center stable leaf. Given a center stable leaf L,
let CL and SL be the center and stable foliations within L, and let Lc

L and Ls
L be the

corresponding leaf spaces.
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Definition 3.26 A leaf c 2 CL and a leaf s 2 SL make a CS–perfect fit if they do not
intersect, but there is a local transversal � to CL through c such that every leaf in CL.�/
that lies sufficiently close to one side of c (in the linear order <� ) intersects s.

They make an SC–perfect fit if there is a local transversal � 0 to SL through s such that
every leaf in SL.�/ that lies sufficiently close to one side of s intersects c.

We say that c and s make a perfect fit if they make both a CS– and SC–perfect fit.

Remark 3.27 When defining CS–perfect fits it is important to use the linear order <�
on CL.�/, defined in Section 3.2.2, since there may be center leaves on the same side
of c as s that merge with c.

Since SL is a true foliation, the linear order <� 0 on SL.� 0/ comes directly from the
transversal � 0, so the notion of a SC–perfect fit is exactly as in [3, Section 4.1].

One may equivalently define CS–perfect fits as follows. Given a stable leaf s in L, let
Is � Lc

L be the set of center leaves that intersect s. Then c and s make a CS–perfect fit
if and only if c 2 @Is .

Lemma 3.28 Let c and s be center and stable leaves in a center stable leaf L that
make a CS–perfect fit. Then there is a stable leaf s0 such that c and s0 make a perfect fit.

The symmetric statement holds for SC–perfect fits.

Proof This is [3, Lemma 4.2], whose proof remains valid with the obvious modifica-
tions.

4 Branching foliations and good lifts

Fix a closed 3–manifold M whose fundamental group is not virtually solvable, a
partially hyperbolic diffeomorphism f WM !M homotopic to the identity, and a good
lift zf . We will assume that f is orientable (Definition 3.5) so that we have center stable
and center unstable branching foliations Wcs and Wcu which are well-approximated
by taut foliations (Theorem 3.6). This can be achieved by taking an iterate of f and
lifting to a finite cover of M — we will deal with the effects of replacing f and M in
Section 7.
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In this section we will study the way that a good lift zf acts on the lifted branching
foliations eWcs and eWcu in the universal cover zM.

4.1 Translation-like behavior

In this section, we will see that the action of zf on the center stable leaf space must look
locally like a translation. Identical statements hold for the center unstable foliation.

Remark 4.1 In fact, the results in this subsection are not really particular to partially
hyperbolic diffeomorphisms. They apply to any diffeomorphism that is homotopic
to the identity and that preserves a branching foliation well-approximated by taut
foliations. In addition, in this subsection we also do not need to assume that �1.M/ is
virtually solvable.

The key to this section is the following fact:

Lemma 4.2 (big half-space lemma) Let L be a leaf of eWcs. For any R > 0, there
exists a ball of radius R contained in each complementary region of L.

Proof This lemma holds for true foliations — see [3, Lemma 3.3] — so it suffices to
consider a leaf corresponding to L in the approximating foliation eWcs

� for � sufficiently
small.

Remark 4.3 The tautness of the foliation is essential for this result to hold. The
branching foliations in the non-dynamically-coherent example of [31], for instance, do
not satisfy that lemma.

Definition 4.4 (regions between leaves) Let K;L 2 eWcs be distinct leaves. In the
leaf space, Lcs n fK;Lg consists of three open connected components. Only one of
these components accumulates on both K and L: we call this the open Lcs–region
between K and L. Its closure in Lcs, which is obtained by adjoining K and L, is called
the closed Lcs–region between K and L.

Remark 4.5 The subset of zM that corresponds to the open Lcs–region between two
leaves may not be open. However, the subset of zM that corresponds to the closed
Lcs–region between two leaves is closed. It is also connected, but its interior may
not be. See Figure 4.
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V L

KU

W

Figure 4: The interior of the closed region between leaves may not be connected.

The following is the equivalent of [3, Proposition 3.5]. The same proof applies if one
considers complementary regions and regions between leaves as subsets of zM and Lcs,
as appropriate.

Proposition 4.6 If L 2 eWcs is not fixed by a good lift zf , then

(1) the closed Lcs–region between L and zf .L/ is an interval ,

(2) zf takes each coorientation at L to the corresponding coorientation at zf .L/, and

(3) the subset of zM corresponding to the closed Lcs–region between L and zf .L/ is
contained in the closed 2R–neighborhood of L, where

RD max
y2 zM

d.y; zf .y//:

Remark 4.7 In the above proposition, we may a priori have that L and zf .L/ merge.

Using Proposition 4.6 we therefore also obtain the equivalent of [3, Proposition 3.7].

Proposition 4.8 The set ƒ� Lcs of leaves that are fixed by zf is closed and �1.M/–
invariant. Each connected component I of Lcs nƒ is acted on by zf as a translation ,
and every pair of leaves in I are a finite Hausdorff distance apart.

In the above proposition, one has to be mindful again that “open” and “closed” refer to
the topology on the leaf space Lcs, and not the topology on zM.

When Wcs is f –minimal (Definition 3.24), we deduce the following dichotomy from
Proposition 4.8:

Corollary 4.9 If Wcs is f –minimal , then either

(1) zf fixes every leaf of eWcs, or

(2) Wcs is R–covered and uniform , and zf acts as a translation on the leaf space Lcs.
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Proof Although the proof is conceptually identical to that of the corresponding result
in the dynamically coherent case [3, Corollary 3.10], we will redo it since the distinction
between the topology in Lcs and zM becomes important.

Let ƒ be the set of leaves that are fixed by zf . Since zf commutes with deck transfor-
mations, each deck transformation preserves ƒ. In particular, if I is a component of
Lcs nƒ and g 2 �1.M/, one has either g.I /D I or g.I /\ I D∅.

So ƒ is invariant under zf and deck transformations, saturated by eWcs, and closed
in Lcs (by Proposition 4.8).

Let zB � zM be the union of the points in all leaves in zƒ, and let B D �. zB/ � M.
Since ƒ is closed in Lcs, zB is closed in zM, and B is closed in M. In addition, B is
f –invariant. Since Wcs is f –minimal, B is either ∅ or M.

If B is empty then ƒ is empty, and Proposition 4.8 implies that we are in case (2).

If B DM then zB D zM, and we have to prove that ƒ D Lcs. This follows from the
more general Lemma B.1, but it also has a more direct proof, as follows.

Suppose ƒ ¤ Lcs. Let I be a connected component of Lcs nƒ. Let J be the set of
points of zM contained in a leaf in I . The set I is open (in Lcs) and zf translates leaves
in I . It follows that the interior in zM of J is nonempty. These points in the interior
of J are not contained in zB . This contradicts zB D zM. So ƒ D Lcs, and we are in
case (1).

This immediately implies the trichotomy in Section 2.0.1.

4.2 Ruling out fixed points

Let us now find conditions under which we show that our good lift zf has no fixed
points in zM. We will use the following lemma.

Lemma 4.10 Let L 2 eWcs be a center stable leaf that is fixed by zf . Suppose that for
every y 2 L one can find a leaf L0 2 eWcs that is fixed by zf and intersects the unstable
leaf through y in a point other than y. Then no nontrivial power of zf fixes a point in L.

Proof Suppose that zf n fixes a point x 2 L for some n¤ 0. One can assume after
possibly switching signs that n > 0. Then expansion of the unstable leaf u through x
implies that no leaf L0 that intersects u at a point other than x can be fixed.
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Compare this with the simpler statement [3, Lemma 3.13] in the dynamically coherent
setting, where it suffices to assume L is not isolated in the set of fixed leaves.

Corollary 4.11 If zf fixes every center stable leaf , then it has no fixed or periodic
points in zM.

This follows immediately from the lemma. We will now exclude the existence of fixed
or periodic points under the assumption of f –minimality.

Theorem 4.12 If Wcs or Wcu is f –minimal , then zf does not have any fixed or
periodic points in zM.

Proof Assume without loss of generality that Wcs is f –minimal. By the dichotomy
in Corollary 4.9, zf either fixes every leaf of eWcs, or acts as a translation on Lcs.

If zf fixes every leaf of eWcs, the result follows from Lemma 4.10. If zf acts as a
translation on Lcs, then for any leaf L of eWcs one has zf i .L/\LD∅ for ji j sufficiently
large.

A noteworthy consequence is the nonexistence of “contractible periodic points” under
the assumption of f –minimality.

Definition 4.13 Let g be a homeomorphism of a manifold homotopic to the identity.
A point p is a contractible periodic point if gn.p/D p for some n¤ 0 and there is a
homotopy H WM � Œ0; 1�!M from the identity to g such that the concatenation of
the paths H.p; � /;H.g.p/; � /; : : : ;H.gn�1.p/; � / is homotopically trivial.

Notice that if p is a contractible periodic point of g of period n then there exists a good
lift zg of g and a lift zp of p such that zgn. zp/D zp. Thus, Theorem 4.12 immediately
yields:

Corollary 4.14 If f admits a f –minimal branching center stable or center unstable
foliation , then f has no contractible periodic points.

This completes the proof of Theorem 1.3 in the f –minimal case. The hyperbolic and
Seifert fibered cases follow from Proposition 6.1.
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4.3 Fundamental groups of leaves

The leaves of Wcs and Wcu are immersed surfaces which may not be injectively
immersed. In the universal cover, however, the leaves of eWcs and eWcu are properly
embedded planes; cf Section 3.2.

It follows that there may be a closed loop in a leaf with a corresponding element of
�1.M/ that fixes no lift of that leaf in the universal cover. These elements are not
useful for our purposes, so we will remove them by convention:

Convention When working with a fixed lift L of a leaf C of Wcs or Wcu, we will say
that an element  2 �1.M/ is in the fundamental group of C if it stabilizes L.

There is another way of seeing this notion of fundamental group arise: recall from
Theorem 3.6 that the branching foliations are approximated by true foliations Wcu

�

and Wcs
� and that there exists maps hcs

� and hcu
� mapping leaves of Wcs

� (or Wcu
� ) to

those of Wcs (or Wcu). Then, a loop is in the fundamental group of a leaf C of Wcs

if and only if it is freely homotopic to a loop in a corresponding leaf C� of Wcs
� for

every � small enough. Notice that if there are several leaves that project to C , in the
universal cover, take a lift L and it follows from Proposition 3.16 that the set of leaves
that projects to L is an interval in the leaf space of eWcs

� . It follows that hcs
� lifts to

an equivariant (with respect to the defined fundamental group of C ) diffeomorphism
from the boundary leaves of the closed interval to L. We call such a leaf L� and write
C� D �.L�/.

In other words, for us, the fundamental group of C based at y will be exactly
.hcs
� /�.�1.C�; y0//, where hcs

� .y0/D y.

In particular, since Wcs
� and Wcu

� are taut foliations without Reeb components, each
leaf is �1–injective in M. Thus, this second interpretation helps explain our convention:
the closed loops in a leaf of Wcs are either in the fundamental group as we defined it,
or they are due to a self-intersection. In that case, they are not an essential feature of
the leaf, as they stopped being closed when pulled-back to the approximating leaf.

Following our convention, we will then say that a leaf C of the branching foliation
is a plane, a cylinder or a Möbius band if its corresponding approximated leaf C� is,
respectively, a plane, a cylinder or a Möbius band for any small enough �.

Using these conventions, Proposition 3.14 of [3] holds for the leaves of the branching
foliations whenever zf has no fixed points in the leaf; cf Lemma 4.10. For ease of
reference, we restate it here.
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Proposition 4.15 Assume that zf fixes a leaf L of eWcs. Then C D �.L/ has cyclic
fundamental group (thus it is either a plane , an annulus or a Möbius band ), or L has a
point fixed by zf .

Remark 4.16 Similarly, because of possible self-intersections, we need to be careful
with how to define the path metric on a leaf of Wcs or Wcu.

If C is a leaf of, say, Wcs, we define a path on C as a continuous curve � that is the
projection of a continuous curve z� in a lift L of C to zM. We then define the path metric
on C as usual, but considering only the paths as defined before.

Notice that not every continuous curve � on C is a path in the above sense, as there
might not exists any lift of � that stays on only one lift of C .

Still, the analogue of [3, Lemma 3.11] holds:

Lemma 4.17 If zf fixes every leaf of eWcs (resp. eWcu) then there is a K > 0 such that
for every L 2 eWcs (resp. L 2 eWcu), we have that dL.x; zf .x// < K.

4.4 Gromov hyperbolicity of leaves

We now prove a version of [3, Lemma 3.20] in the non-dynamically-coherent setting.

Lemma 4.18 If Wcs is f –minimal , and zf fixes every leaf of eWcs. Then each leaf
of Wcs is Gromov hyperbolic.

Proof The foliation Wcs
� is taut. Thus, Candel’s theorem [13] asserts that either all

the leaves of Wcs
� are Gromov hyperbolic or there is a holonomy-invariant transverse

measure (of zero Euler characteristic).

Assume for a contradiction that � is a holonomy-invariant transverse measure. Since
Wcs
� is not f –invariant, we have to adjust the proof given in [3]. The transverse measure

� lifts to a measure z� transverse to eWcs
� . Thus, z� defines a measure on Lcs

� , the leaf
space of Wcs

� .

Let g�;s WLcs
� !Lcs be the canonical projection between the leaf spaces of Wcs

� and Wcs;
see Section 3.2.2. Let z� WD .g�;s/� z� be the corresponding measure on Lcs. Now z� is
zf –invariant since zf is the identity on Lcs, and it is also �1.M/–invariant as z� is. The

support of z� in Lcs is a closed set Z in Lcs that is zf –invariant and �1.M/–invariant.
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The measure z� on Lcs can also be considered as a measure on the set of transversals toeWcs in zM : For any transversal � to eWcs in zM , we define z�.�/ as the z�–measure of the
set of leaves in Lcs that intersects � . Notice that the measure of a point in zM (which
can be thought of as a degenerate transversal) can be positive if the image of that point
in Lcs is an interval.

Note also that we refrained from calling z� a transverse measure to eWcs because it is
by no means holonomy-invariant. In fact holonomy itself is not well-defined for a
branching foliation. Still, z� satisfies the property that if �1; �2 are transversals and
every leaf intersecting �1 also intersects �2, then z�.�1/� z�.�2/.

Projecting down to M, the measure z� induces a measure � on the set of transversals
to Wcs on M.

Let � be any unstable segment in M. Since zf fixes every leaf of eWcs, the measure of
f i .�/ (D �.f i .�//) is equal to �.�/ for any integer i . We can choose i very big and
negative so that the length of f i .�/ is extremely small. Therefore it is contained in a
small foliated box of Wcs, which is the projection of a compact foliated box of Wcs

� . It
follows that �.�/ is uniformly bounded. In particular, this implies that the �–measure
of any unstable leaf in M is bounded above. In turn, it implies that for any j > 0
(assumed big enough), there is an unstable segment uj of length > j which has �.uj /
measure < 1=j . Taking the midpoint of these segments and a converging subsequence,
we obtain a full unstable leaf, call it �, so that � has �.�/D 0 (since �.�/ < 1=j for all
big enough j ).

Let Y be the union of the leaves of Wcs that do not intersect � or any of its iterates
by f . Then Y is a closed subset of M and clearly f –invariant. Let L be a leaf in eWcs

which is in Z, the support of z�. Then by definition of support of z�, it follows that �.L/
cannot intersect � or any of its iterates by f . Hence �.L/ is in Y . In particular, Y is
not empty. This contradicts the fact that Wcs is f –minimal, and hence cannot happen.

This finishes the proof of the lemma.

5 Center dynamics in fixed leaves

This section deals with the dynamics of center leaves within center stable (and center
unstable) leaves. It is one of the first places where we encounter significant difficulties
compared with the dynamically coherent setting.
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In [3, Proposition 4.4] we found a condition for the existence of center leaves that
are fixed by a good lift, but the proof does not work without dynamical coherence
[3, Remark 4.8].

Throughout this section we continue to assume that f is orientable (Definition 3.5).

Definition 5.1 Let c �M be a center leaf that is fixed by f . We say that c is coarsely
contracting if it is homeomorphic to the line, and it contains a nonempty compact
interval I such that each compact interval J � c whose interior contains I has the
property that f .J /� VJ .

We say that c is called coarsely expanding if it is coarsely contracting for f �1.

We also naturally extend the definition of coarse contraction/expansion to leaves that
are periodic under f .

The following is the main result of this section.

Proposition 5.2 Suppose that Wcs is f –minimal , and that there is a good lift zf that
fixes every center stable leaf but no center leaf in zM. Then every f –periodic center leaf
in M is coarsely contracting.

Note that a coarsely contracting periodic leaf must contain a periodic point.

If Wcu is f –minimal, and there is a good lift zf that fixes every center unstable leaf
in zM , then one concludes that each periodic center leaf is coarsely expanding.

We will see in Proposition 5.6 that one can always find f –periodic center leaves.

5.1 Fixed centers or coarse contraction

We begin with a preliminary result.

Lemma 5.3 Suppose that zf fixes every center stable leaf but no center leaf in zM. Then
the same holds for every iterate zf n with n¤ 0.

Proof Suppose that zf n fixes a center leaf c0 for n>0, and let L be a center stable leaf
that contains c0 (which is fixed by zf by hypothesis). Since f is orientable, zf preserves
transverse orientations to the center and stable foliations on L.
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Let Ac be the axis for the action of zf on the center leaf space in L, ie the set of
center leaves c such that zf .c/ separates c from zf 2.c/; see [3, Appendix E]. Since
zf n.c0/D c0, the leaf c0 cannot be in Ac. If c0 is not in @Ac then we can replace it with

the unique center leaf that separates c0 from Ac. Thus we can assume that c0 2 @Ac.

Recall (see [1, Proposition 2.15]) that the boundary of the axis of a homeomorphism
on a 1–manifold splits into three disjoint sets: the “positive” boundary, “negative” and
“middle” boundary. That is, @Ac contains three types of leaves, the center leaves c such
that c and zf .c/ are nonseparated on their positive side, the leaves c such that c and
zf .c/ are nonseparated on their negative side, and the leaves c that are nonseparated

with a leaf c0 in Ac.

If c0 was in the “middle” boundary, then we would have that there exists c0 2 Ac not
separated with c0. Thus c0 and zf n.c0/ are separated, contradicting that c0 D zf n.c0/.
So c0 must be either in the positive or negative boundary. In particular, c0 and zf .c0/
are nonseparated.

Now, consider the closure of the set of stable leaves intersect c0. There exists a unique
stable leaf s0 in the boundary of that set that separates c0 from zf .c0/. Therefore,
s0 must be fixed by zf n, and hence contains a fixed point x of zf n.

In particular, we found a periodic point of zf ; thus, by the Brouwer translation theorem
(see eg [2]) zf must also admit a fixed point, say y. Since the center leaves through y
form a closed interval (Lemma 3.19), there exists at least one closed center leaf
through y, a contradiction.

In order to obtain coarsely contracting center leaves we will use the following tool.

Proposition 5.4 Suppose that zf fixes every center stable leaf in zM, and let L be a
center stable leaf that is also fixed by some  2 �1.M/ n fIdg.

Assume that there exists a properly embedded C 1–curve y�� L that is transverse to the
stable foliation and fixed by both  and zf .

� If zf does not act freely on Lc
L, then there is a center leaf in L fixed by both zf

and  .

� If zf acts freely on Lc
L, then every f –periodic center leaf in �.L/ is coarsely

contracting.

In the first case the center leaf projects to an f –invariant closed center leaf.
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Note also that the hypotheses of Proposition 5.4 are implied by the conclusion of the
graph transform lemma [3, Appendix H].

We will use the following result from [3], whose proof works equally well in the
non-dynamically-coherent case.

Lemma 5.5 [3, Lemma 4.15] Let c be a center leaf in a center stable leaf L � zM.
Suppose that L is Gromov hyperbolic , and fixed by zf and some nontrivial  2 �1.M/.
Moreover , assume that there exist two stable leaves s1; s2 on L such that

(1) the center leaf c is in the region between s1 and s2,

(2) the leaves s1 and s2 are a bounded Hausdorff distance apart , and

(3) the leaves c, s1 and s2 are all fixed by hD n ı zf m, m¤ 0.

Then there is a compact segment I � c such that h (if m> 0) or h�1 (if m< 0) acts as
a contraction on c n VI .

Proof of Proposition 5.4 Since zf fixes every leaf of Wcs, Lemma 4.10 implies that it
fixes no point in zM, and hence fixes no stable leaf.

Let S be the stable saturation of the curve y�. Let ˛ D �.y�/. The curve ˛ is closed,
f –invariant, and tangent to the center bundle.

Case 1 We start by assuming that zf fixes a center leaf c in L.

Suppose that c and y� do not intersect a common stable leaf. Then c does not intersect
the set S and there is a unique stable leaf s contained in the boundary of S such that
s separates S from c. Since both S and c are zf –invariant, so is s. But then zf must
admit a fixed point in s, a contradiction.3

Therefore there is a stable leaf s intersecting c in y and y� in x. Iterating forward by zf ,
we deduce that d. zf n.y/; zf n.x// converges to zero as y and x are in the same stable
leaf. Since both c and y� are zf –invariant, it implies that c and y� are asymptotic; note
that c and y� may or may not intersect. Calling ˛D�.y�/ the projection toM, we deduce
that �.c/ accumulates onto ˛. But as ˛ is closed and �.c/ is a center leaf, we deduce
that ˛ is also a center leaf. Hence y� is the required center leaf of the first option of the
proposition.

3Note the distinction of c being fixed by zf as opposed to �.c/ being periodic under f . It is the first
property which creates a fixed point of zf and a contradiction.
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Case 2 Assume now that zf acts freely on the center leaf space of L.

According to Lemma 5.3, zf n also acts freely on the center leaf space of L for any
n 6D 0.

We need to prove now that every center leaf in �.L/ that is periodic must be coarsely
contracting.

Let then c be a center leaf in L such that �.c/D e is periodic under f , say of period m.
Then, for some 1 2 �1.M/ n fIdg, we have c D 1 zf m.c/. (One can show under our
current assumptions that �.L/ projects to an annulus, so  and 1 are both powers of
a particular deck transformation, but we do not need that fact for the proof.) Let

h WD 1 ı zf
m:

We now want to show that either c intersects y�, or there exists another center leaf, also
fixed by h, that does.

Suppose first that c intersects S , ie there exists a stable leaf intersecting both c and y�.
Since the stable distance is contracted by h, which fixes both c and y�, we obtain that
either c and y� are asymptotic, or they intersect. If c and y� are asymptotic, then, as in
Case 1, we deduce that y� must be a center leaf, contradicting the fact that zf acts freely
on the center leaf space. Thus we must have that c intersects y�.

Suppose now that c does not intersect y�, and thus does not intersect S . Then there is a
unique stable leaf s in @S that separates y� from c. That leaf s must then be invariant
by h, so admits a fixed point for h. Then at least one center leaf, say c1, through that
fixed point must be fixed by h. Since c1 intersects S and is invariant by h, it must
intersect y�.

Thus in any case, we have a center leaf c1 that intersects y�, is invariant by h and, by
the above argument, has both ends that escape compacts sets of L.

Let I be the projection of c1 onto y� along stable leaves.

Suppose first that I is unbounded. Then, considering iterates by f m, we deduce that
�.c1/ must be asymptotic to �.y�/, so y� must be a center leaf, which is not allowed,
since zf is assumed to act freely on center leaves.

So I is bounded in y�. Let s1 and s2 be the stable leaves through the two endpoints of
the interval I . Since I is fixed by h, so are s1 and s2. Moreover, the center leaf c1, as
well as c if it is different from c1, is in between s1 and s2.
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Now, zf acts as a translation on y�, so there exists k 2 Z such that s2 separates s1 from
zf k.s1/. By Lemma 4.17, s1 and zf k.s1/ are a bounded Hausdorff distance apart. Thus
s1 and s2 are a bounded Hausdorff distance apart. So c satisfies all the conditions for
Lemma 5.5 to hold, thus it is coarsely expanding.

This finishes the proof of Proposition 5.4.

We are now ready to prove the main result of this section.

Proof of Proposition 5.2 Let e �M be an f –periodic center leaf, and let c � zM be
a lift of e. If m> 0 is the period of e, then c and zf m.c/ both project to e, so there is
an element  0 2 �1.M/ with  0. zf m.c//D c.

Choose a leaf L 2 eWcs that contains c. Then  0 is in the stabilizer of L, because
zf leaves invariant every leaf of eWcs. Since zf m acts freely on the center leaf space

(cf Lemma 5.3),  0 is not the identity.

Since zf does not have any fixed points, Proposition 4.15 implies that the stabilizer of
L in zM is infinite cyclic. Thus, there exists  2�1.M/nfidg such that n ı zf m.c/D c
for some n 2 Z with n¤ 0, and such that  generates the stabilizer of L. Let

h WD n ı zf m:

Notice that h is still a partially hyperbolic diffeomorphism and has bounded derivatives.

Since zf acts freely on Lc
L, it must also act freely on Ls

L. Let As be the axis for the
action of zf on the stable leaf space Ls

L; see [3, Appendix E]. No stable leaf in M can
be closed, so  must also act freely on Ls

L. Since  and zf commute, As is also the axis
for the action of  on Ls

L. The axis As can be a line or a countable union of intervals.

Suppose first that As is a line. Let s be a stable leaf in As and p in s. Then p and p
can be connected by a transversal to the stable foliation, chosen so that the projection
to �.L/ is a smooth simple closed curve. Let � be the union of the  iterates of this
segment. Applying the graph transform lemma [3, Lemma H.1] to � we obtain a curve y�
which satisfies the properties in the hypothesis of Proposition 5.4, as desired.

Now suppose that As is a countable union of intervals

As
D

[
i2Z

Œs�i ; s
C
i �D

[
i2Z

Ti :

Our first claim is that there exists s 2 As, fixed by h, such that the center leaf c is
between �1s and s.
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Suppose that c intersects some stable leaf s0 in As. Then s0 is in a unique Ti for some i
(the center leaf c cannot intersect two different intervals otherwise c would intersect
two nonseparated leaves, which is impossible). Then, since h fixes c, it also fixes the
axis As and preserves the transverse orientation. It follows that h.Tj /D Tj for all j .
In this case we set s D sCi . The leaf s is fixed by h and there exists k ¤ 0 such that
˙1Ti D Ti˙k . Thus Ti is in between �1s and s and hence, so is c. Recall here
that h preserves orientation.

Now, suppose instead that c does not intersect As. Hence, there is a unique i such that
sCi�1 [ s

�
i separates c from all other stable leaves in As. We again set s WD sCi . As

before, since h fixes both c and As, and preserves the transverse orientation, it must fix
s also. The same argument as above also shows that c is between �1s and s.

In either case we have found a stable leaf s (chosen as a positive endpoint of one of the
closed intervals Ti ) that is fixed by h, such that c lies between �1s and s. Notice
that both s and �1s are fixed by h.

The leaf �1s is between s and zf 2m.s/ D �2nC1s (assuming n � 1, otherwise
between s and f �2m.s/). Hence the Hausdorff distance between �1s and s is
bounded above by a uniform constant C > 0, depending only on f and m.

Thus the center leaf c, fixed by h, lies between the stable leaves s and �1s, also
fixed by h, which are a bounded Hausdorff distance apart. Moreover, the leaves of Wcs

are Gromov hyperbolic by Lemma 4.18. These are all the conditions needed to apply
Lemma 5.5, so c is coarsely contracting for h.

5.2 Existence of periodic center leaves

In order to apply Propositions 5.2 and 5.4 we will need some way to find periodic
center leaves.

Proposition 5.6 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity.

Suppose that some good lift zf fixes every center stable leaf in zM. If L is a center stable
leaf fixed by some  2 �1.M/ n fIdg, then there is an f –periodic center leaf in �.L/.

Proof First notice that if one can prove the above result for a finite cover of M and
a finite power of f , then the same result directly follows for the original map and
manifold. Thus, we may assume that M is orientable, f is orientation-preserving, and
the branching foliations are both transversely orientable.
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Given these assumptions, L projects to an annulus in M (Proposition 4.15). Let  be a
generator of the stabilizer of L.

If zf fixes a center leaf in L, then it would project to a center leaf fixed by f , proving
the claim. So we assume that zf acts freely on the center leaf space in L. This implies
that zf also acts freely on the stable leaf space in L, and we can thus consider the
stable axis A� Ls

L of zf . Since  also acts freely on the stable leaves, and commutes
with zf , it has the same set A as its axis. This axis is either a line or a countable union
of intervals.

If the axis is a countable union of intervals, there must be integers n;m such that
h WD n zf m fixes one of the intervals, and hence a stable leaf s. One cannot havemD 0,
since this would mean that n would fix a stable leaf, which is impossible. So m 6D 0,
and s projects to a periodic stable leaf �.s/ in M. This must contain a periodic point,
and at least one center leaf through that point is periodic, as desired.

If the axis is a line, then one can use the graph transform lemma [3, Appendix H] to
see that there is a properly embedded curve in L which is invariant under zf and  .
Then [3, Lemma H.3] provides a periodic center leaf, as desired.

5.3 Additional result

The intermediate results in this section also provide a proof of the following result,
which will be needed later in this article.

Proposition 5.7 Suppose that zf fixes every center stable leaf in zM, and let L be a
center stable leaf that is also fixed by some  2 �1.M/ n fIdg. Assume moreover that
there is no center leaf in L fixed by zf . Then there is a center leaf c in L fixed by
hD n ı zf m for some n;m with m¤ 0, and two stable leaves s1; s2 on L such that

(1) the center leaf c separates s1 from s2 in L,

(2) the leaves s1 and s2 are a bounded Hausdorff distance apart , and

(3) the leaves c, s1 and s2 are all fixed by hD n ı zf m, where m¤ 0.

Proof The conditions imply that �.L/ is an annulus. Proposition 5.6 implies that
there is a periodic center in �.L/.

To prove Proposition 5.7 we revisit the proof of Proposition 5.2. Since there is no
center fixed by zf in L, then as in the proof of Proposition 5.2 the map zf acts freely
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on the stable leaf space. As in that proposition we separate into whether the stable axis
is a line or a Z–union of intervals.

In the first case, as in Proposition 5.2 we produce a curve y� in L which is invariant
under yf and  . We will use Proposition 5.4, and the existence of such a curve y� is
necessary for that. The analysis of Proposition 5.4 has cases depending on the action
of zf on the center leaf space — as opposed to the action on the stable leaf space As.
However, in this proposition we are assuming that the action on the center leaf space in
L is free, so this is Case 2 of Proposition 5.4, where the proof showed the existence of a
center leaf c and stable leaves s1; s2 satisfying the conditions stated in this proposition,
except perhaps that c separates s1 from s2.

We now show that such a center leaf exists with this additional property. Suppose that
this does not happen for c. This can only occur if both ends of �.c/ are in the same
end of the annulus �.L/, or in other words, if �.c/ separates �.L/. Since the action of
zf on the center leaf space in L is free it has an axis denoted by Ac. The leaf c is not in

this axis. If the axis Ac is a real line then there is a unique center leaf c0 in the axis Ac

which is either nonseparated from c or is nonseparated from a leaf which separates c
from the axis. In either case it also follows that h fixes c0. We can then redo the analysis
with c0 instead of c. It will produce stable leaves s1; s2 fixed by h, with c0 between
them, and now c0 separates s1 from s2. If the center axis Ac is a countable union of
intervals, there is a unique consecutive pair of intervals such that c is “between” them.
Then the boundary leaves of these intervals are fixed by h. Choose c0 to be one of these
boundary leaves, and redo the proof with c0 instead of c to obtain the conclusion of the
proposition.

The other case of this proposition is when the stable axis is a Z–union of intervals.
Here we use the notation of the proof of Proposition 5.2, where As D

S
i2ZŒs

�
i ; s
C
i �DS

i2Z Ti . Consider sC0 , which is nonseparated in the stable leaf space from s�1 . There
are n;m, with m 6D 0, such that hD n ı zf m fixes all Ti and their boundary leaves.
Since sC0 and s�1 are nonseparated, consider a nearby stable leaf s which intersects
transversals to both of them. Choose a center c0 intersecting s and sC0 , and choose a
center c1 intersecting s and s�1 . Starting from c0 and considering the centers intersecting
s between c0\ s and c1\ s, there is a first center leaf, denoted by c, which does not
intersect sC0 . This center is fixed by h. Let s1 D sC0 and s2 D s�1 . They are both fixed
by h. In addition, c separates s1 from s2. Finally, s1 and s2 are a finite Hausdorff
distance from each other in L.

This completes the proof of the proposition.
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6 Minimality for Seifert and hyperbolic manifolds

In this section we will show that when M is hyperbolic or Seifert, the existence of
a single fixed center stable leaf implies that every center stable leaf is fixed. This is
considerably easier in the dynamically coherent case [3, Proposition 3.15].

We continue to assume that f is orientable.

Proposition 6.1 Suppose that M is hyperbolic or Seifert fibered , and a good lift zf
fixes some leaf of eWcs. Then zf fixes every leaf of eWcs, Wcs is f –minimal , and every
leaf of Wcs

� and Wcs is either a plane or an annulus. The same statement holds for Wcu.

The main issue in extending the proof of [3] to the non-dynamically-coherent context
is that here we cannot ensure the nonexistence of fixed points of zf , since Lemma 4.10
does not exclude fixed points when the branching foliation is not f –minimal. So we
will need to exclude the existence of fixed points for good lifts. We cannot exclude
their existence in general, but we are able to show that they cannot exist in minimal
sublaminations of Wcs or Wcu.

6.1 No fixed points for good lifts

Note that the definition of f –minimality for the whole foliation can be applied to
subsets: a Wcs–saturated subset of M is f –minimal if it is closed, nonempty, and
f –invariant, and no proper saturated subset satisfies these conditions.

The goal of this subsection is to prove the following proposition, which does not assume
that M is hyperbolic or Seifert.

Proposition 6.2 Let zf be a good lift of f to zM. Suppose that ƒ is a nonempty
f –minimal set of Wcs such that every leaf L of zƒD ��1.ƒ/ is fixed by zf . Then zf
has no fixed points in zƒ.

We will prove this proposition by contradiction. So from now on, we assume that there
is a fixed point p of zf in a leaf L contained in zƒ. This point projects to a fixed point
�.p/ in M. Note that any leaf L0 of zƒ that intersects the unstable leaf u.p/ through p
must have L0\u.p/D p D L\u.p/. This is because L and L0 are both fixed, and
unstable leaves are expanded.

6.1.1 Many fixed points The following property uses crucially the fact that ƒ is an
f –minimal sublamination.
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Lemma 6.3 There exists b > 0 such that any point in a leaf of zƒ is at distance at
most b (for the path metric on the leaf ) from a fixed point of zf .

Proof Otherwise, one can find a sequence of discs Di in leaves of zƒ that contain
no fixed points and whose radius goes to1. Up to deck transformations and subse-
quences, these disks converge to a full leaf L1 of eWcs that is contained in zƒ. Here, the
convergence is with respect to the topology of the center stable leaf space, which also
implies convergence as a set of zM. The leaf L1 does not contain any fixed point of zf .
Indeed, the unstable leaf through a fixed point q in L1 would eventually intersect one
of the discs Di . Since zf fixes the leaves of eƒ, this would imply that the leaf through
Di merges with L1 and that Di contains the fixed point q, a contradiction.

Since L1 contains no fixed points, it does not contain the zf –fixed point p, and
AD �.L1/ does not contain the f –fixed point �.p/. But the closure of AD �.L1/
in M is ƒ by minimality, so A must accumulate on �.p/. But this means that A
intersects u.�.p//, which implies that A contains �.p/ as explained above. This is a
contradiction.

6.1.2 A topological lemma Let L be a metrically complete, noncompact, simply
connected, Riemannian surface.

For a compact subset X � L we denote by Fill.X/ the complement of the unique
unbounded connected component of L nX . Note that Fill.X/ is always compact, as a
neighborhood of1 in the compactification of L is disjoint from X . Notice further that,
by definition, Fill.X/ is a compact connected set which does not separate the plane.

We will use the following simple properties of Fill.X/:

� If X � Y are compact sets, then Fill.X/� Fill.Y /.

� If g W L! L is a homeomorphism and X � L, then g.Fill.X//D Fill.g.X//.

The following lemma will be used in the next section; see Figure 5.

Lemma 6.4 Let L be as above. Then for every b > 0 and ı > 0 there exists R > 0
and n0 > 0 with the following property. Let A and B be topological disks , and let
`1; : : : ; `n, with n� n0, be disjoint curves that join A and B. Suppose that

(i) d.A;B/ > 2R, and

(ii) the ı–neighborhoods of the curves `i are pairwise disjoint.

Then the region Fill.A[B [`1[� � �[`n/n .A[B/ contains a disk D of radius > 4b.
Moreover , D can be chosen so that d.D;A/ and d.D;B/ are larger than d.A;B/=10.
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Figure 5: A depiction of Lemma 6.4.

Proof Using the Jordan curve theorem we can reorder the curves so that

� Fill.A[B [ `1[ � � � [ `n/D Fill.A[B [ `1[ `n/, and

� for 1 < i < n we have that `i � Fill.A[B [ `i�1[ `iC1/.

Take R > 100b and n0 > 100b=ı. Without loss of generality we can assume that n is
even. This way, we can choose a point x 2 `n=2 such that d.x;A/ > d.A;B/=4 and
d.x; B/ > d.A;B/=4. We claim that B.x; 4b/� Fill.A[B[`1[`n/. By our choice
of x it will follow that B.x; 4b/ is at distance larger than d.A;B/=10 from A and B.

To see this, consider a geodesic ray r starting from x, and let y be the first point of
intersection of r with @Fill.A[B [ `1[ � � � [ `n/ n .A[B/. By our ordering, there
are two possibilities: either

� y belongs to @A[ @B , or

� y belongs to `1[ `n.

By our assumptions, if y 2 @A[ @B then the distance d.x; y/ > R=4 > 4b. On the
other hand, if y 2 `1 then by our choice of reordering we deduce that r must intersect `i
for all 1 � i � n=2. Since the points of intersection are at distance pairwise larger
than ı, we deduce that d.x; y/ > 4b. Similarly, if y 2 `n we also get d.x; y/ > 4b.
This completes the proof.
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6.1.3 Proof of Proposition 6.2 We will repeatedly use the fact that zf �1 expands
stable length. To simplify notation we set g WD zf �1. The rest of this subsection is
devoted to the proof of Proposition 6.2.

According4 to Lemma 4.17, there is a constant K >0 such that, for any z 2L, we have

dL.z; g.z//�K;

where dL denotes the path metric on L. From now on within this subsection we will
always work in L, so we will drop the subscript and write d WD dL.

To finish the proof, our aim will be to show that the fact that zf moves points a bounded
distance in L, together with the exponential contraction of length along the stable
leaf s.p/ under iteration by zf , will force an arbitrarily large amount of “bunching”
of s.p/, which is impossible for leaves of planar foliations.

Indeed, since s.p/ is a leaf of a foliation of the plane, there exist some constants ı; �>0
such that if I; J � s.p/ are closed segments which are at distance larger than � in
the s.p/ metric, then their ı–neighborhoods are disjoint in L. Now, this implies in
particular that the volume of the ı–neighborhood of a segment of s.p/ must grow to
infinity with its length (and therefore, the diameter grows to infinity with the length).

Without loss of generality, we can assume that ı; � < 1 and K > 1.

To prove Proposition 6.2 we will fix b > 0 as given by Lemma 6.3, and ı > 0 by the
considerations above. Lemma 6.4 then gives us values of R > 0 and n0 > 0 associated
to b and ı so that its statement holds. We will fix

n >max
�
10R

K
;
10b

ı
; n0

�
:

We introduce the following notation: given any a; b 2 s.p/, we write Œa; b�s to indicate
the closed segment along the stable leaf s.p/ between a and b, oriented from a to b.

We will then pick points in y; z 2 s.p/ with the properties

� d.y; z/ > 200Kn,

� g.Œy; z�s/\ Œy; z�s D∅ (equivalently, z 2 Œy; g.y/�s).

The existence of points like this follows from the fact that if y0 is any point in s.p/,
the length of gk.Œy0; g.y0/�s/ grows to infinity, and thus its diameter grows too. See
Figure 6.

4It is not hard to see that the proof applies to the fixed sublamination.
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y

z

g.y/

Figure 6: Choosing points y and z in s.p/.

We will pick Ai D B.y;Ki/ and Bi D B.z;Ki/, the neighborhoods of radius Ki of
the points y and z. Given our choices, notice that g.y/2A1, g.z/2B1, and, for any i ,
we have g.Ai /� AiC1 as well as g.Bi /� BiC1.

The following holds:

Lemma 6.5 Every arc J � Œy; gn.z/�s which is disjoint from An[Bn is completely
contained in a fundamental domain of s.p/ for the action of g. More precisely, there
exists ` such that J � Œg`.y/; g`.z/�s or J � Œg`.z/; g`C1.y/�s.

Proof This is because Œy; z�s intersects A1 and B1, so every fundamental domain as
above intersects both An and Bn.

We can apply Lemma 6.4 to get:

Lemma 6.6 Fill.An[Bn[ Œy; gn.z/�s/n .A10n[B10n/ contains a disk of radius 4b.

Proof Note that Œg`.y/; g`C1.y/�s contains at least two segments joining A10n to
B10n if 0� ` < n; see Figure 6. Thus there are at least 2n such curves, which, since
they are segments separated in s.p/, must have pairwise disjoint ı–neighborhoods.
Thus, by our choice of constants b; ı;K and n above, we can apply Lemma 6.4 to
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find a disk of radius � 4b inside Fill.An [Bn [ Œy; gn.z/�/ n .An [Bn/ which is at
distance larger than d.An; Bn/=10 from An and Bn. Thus, the disk is contained in
Fill.An[Bn[ Œy; gn.z/�s/ n .A10n[B10n/, as required.

Using Lemma 6.3 we can find a fixed point q 2 Fix.g/ such that

B.q; 2b/� Fill.An[Bn[ Œy; gn.z/�s/ n .A10n[B10n/:

We can show the following:

Lemma 6.7 There exists an arc J � Œy; gn.z/�s such that either

(1) J intersects An only at its endpoints and q 2 Fill.An[J /, or

(2) J intersects Bn only at its endpoints and q 2 Fill.Bn[J /.

Moreover , J is contained in a fundamental domain: for some 0� `� n we either have
J � Œg`.y/; g`C1.y/�s or J � Œg`.z/; g`C1.z/�s.

Proof This follows from the fact that Fill.An [Bn [ Œy; gn.z/�s/ is contained in a
union of sets of this form.

To see this, note that

Fill.An[Bn[ Œy; gn.z/�s/D Fill.An[ Œy; gn.z/�/[Fill.Bn[ Œy; gn.z/�s/

becauseAn andBn are disjoint topological disks and Œy; gn.z/�s is a topological interval.
Indeed, by Jordan’s theorem yAD Fill.An[ Œy; gn.z/�s/ is a topological disk with an
arc attached (ie the segment Œw; gn.z/�s where w is the last point of intersection of
Œy; gn.z��s), and similarly yB D Fill.Bn[ Œy; gn.z/�s/ is a topological disk with an arc
attached. One has that Fill.An[Bn[ Œy; gn.z/�s/D Fill. yA[ yB/. Since the intersection
of these sets is connected (because their intersection retracts to Œy; gn.z/�s) we deduce5

that Fill. yA[ yB/D yA[ yB .

The fact that J is contained in a fundamental domain is a direct consequence of the
fact that it intersects An (or Bn) only in its boundaries, and thus Lemma 6.5 can be
applied.

5Here we are using the fact from plane topology that generalizes the Jordan curve theorem stating that if
X and Y are compact connected sets, then their union separates the plane if and only if their intersection
is not connected.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3139

Both cases are analogous, so we will assume from now on that the first option happens,
namely, q 2 Fill.An [ J / for a curve J � Œy; gn.z/�s which intersects An only at its
endpoints and such that J is contained in a fundamental domain of s.p/.

To reach a contradiction, the idea will be to find fixed points q1; q2 which are sufficiently
close, and such that one belongs to Fill.An[J / and the other does not. If we choose
them appropriately, we will be able to see that gi .J / will intersect a geodesic joining q1
and q2 for several values of i (before the set gi .An/ becomes too big). This will produce
some accumulation of the arcs gi .J / (which are segments of s.p/ far along s.p/); this
is not possible, and gives the desired contradiction.

Lemma 6.8 There are fixed points q1; q2 2 Fix.g/ such that d.q1; q2/ < 3b and we
have that q1 2 Fill.An[J / nA10n while q2 … Fill.An[J /.

Proof We will use Lemma 6.3. By the choice of the point q we can consider an
unbounded geodesic ray r starting at q which is at distance larger than 2b from A10n.
One can cover r by balls of radius b; in each such ball there is a fixed point, and
eventually, the fixed point is not in Fill.An[J /, which is a bounded set. So there is a
pair of such points for which one belongs to Fill.An[J / and the other does not. Their
distance is less than 3b.

We are now ready to prove Proposition 6.2 by finding a contradiction, which will be
produced using the following:

Lemma 6.9 For every 0� i � n, we have that gi .J /\ Œq1; q2�L¤∅, where Œq1; q2�L
denotes a geodesic segment joining q1 and q2.

Proof Note first that since d.q1; q2/ < 3b and q1 … A10n, we know that the geodesic
segment Œq1; q2�L is disjoint from A5n (recall that ı < 1 and that n > 10b=ı).

Since q1 2 Fill.An [ J / is fixed, we get that q1 D gi .q1/ 2 g
i .Fill.An [ J // D

Fill.gi .An/[ gi .J //. Similarly, we get that since q2 … Fill.An [ J /, we have that
q2 … Fill.gi .An/[gi .J //.

This implies that @Fill.gi .An/[gi .J //must intersect Œq1; q2�L. Since gi .An/�AnCi ,
which is disjoint from Œq1; q2�L, we deduce that gi .J / must intersect Œq1; q2�L, as we
wanted to show.
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The contradiction is now the fact that gi .J / are curves whose ı–neighborhoods are
disjoint, and all intersect Œq1; q2�L, which is a geodesic segment of length < 3b. This
produces n different points at pairwise distance� ı in Œq1; q2�L, which is a contradiction
since n > 10b=ı.

6.2 Proof of Proposition 6.1

We are now ready to prove Proposition 6.1.

This proof follows the same structure as the one of [3, Proposition 3.15] and we will
continuously refer to it. Recall the standing assumption that f is orientable.

Considerƒ an f –minimal nonempty subset. We need to show thatƒDM. We assume
for the sake of contradiction that ƒ¤M.

Since Wcs has no closed leaves and ƒ is f –minimal, there cannot be any isolated
leaves in ƒ (for the topology of the stable leaf space).

Now, Proposition 6.2 allows us to assert that zf has no fixed points in leaves of zƒ.
Then, Corollary 6.12 implies that each leaf of ƒ is either a plane or an annulus.

Fix an � small enough and letƒ0 be the pullback ofƒ to the approximating foliation Wcs
� .

That is, ƒ0 D .hcs
� /
�1.ƒ/. Let V be a connected component of zM n zƒ0.

Claim 6.10 The projection �.V / to M has finitely many boundary leaves.

This is a standard fact in the theory of foliations [14, Lemma 5.2.5].

Claim 6.11 Each leaf L� @V projects to an annulus �.L/ in M.

Proof Suppose that �.L/ is a plane. Recall (see [14, Lemma 5.2.14]) that �.V / has
an octopus decomposition and a compact core. So for any ı > 0, the subset of points
in �.L/ that are at distance greater than ı from another boundary component of �.V /
is precompact. Since �.L/ is supposed to be a plane, that subset must be contained
in a closed disk D. Then �.L/ nD is an annulus that is ı–close to another boundary
component, �.L0/, of �.V /. Moreover, the subset of �.L0/ that is ı–close to �.L/nD
then also has to be an annulus. If �1.L0/ were not a plane it would be an annulus and
its nontrivial curve corresponds to a curve homotopic to the boundary of the closed
disk D, which is homotopically trivial in M. Since the leaves of Wcs

� are �1–injective,
this implies that �.L0/ is also a plane.
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Since M is irreducible this implies that �.V / is homeomorphic to an open disk times
an interval. So �.V / has only two boundary components, both of which are planes. In
particular, the isotropy group of V is trivial and �.V / is homeomorphic to V.

We will now switch to the branching foliation to finish the proof. Let AD hcs
� .�.L//

and B D hcs
� .�.L

0//. Since we chose � small enough, up to taking ı small enough also,
the unstable segments through A n hcs

� .D/ intersect B, and their length is uniformly
bounded. Moreover, no unstable ray of A can stay in hcs

� .�.V //. This is because �.V /
is homeomorphic to an open disk times an interval. So, since D is compact, the length
of every unstable segment between A and B is bounded by a uniform constant. Notice
that, since Wcs is a branching foliation, we may have A\B ¤ ∅, ie some of these
unstable segments may be points.

Since L and L0 are in @V, which is a connected component of zM n zƒ0, we have that
A;B 2 @ .M nƒ/. So in particular, A and B are fixed by f . Hence, the set of unstable
segments between A and B is also invariant by f . Since the lengths of unstable
segments between A and B are bounded above and f expands the unstable length, all
the unstable segments must have zero length, ie AD B . This implies that V is empty,
which contradicts the assumption that ƒ¤M.

Thus we showed that every component of �.@V / is an annulus. We can then apply
without change the (topological) arguments of the proof of [3, Proposition 3.15] to
obtain a torus T , composed of annuli along leaves of Wcs

� together with annuli transverse
to Wcs

� , which bounds a solid torus U 0 in �.V /.

Now consider U D hcs
� .U

0/. Because of the collapsing of leaves, U may not be a solid
torus. If U is empty for any such component U 0, this would directly contradict the
assumption ƒ¤M. So for some such complementary component U 0, the set U is not
empty and it is contained in a solid torus (the �–tubular neighborhood of U 0 in M ).
We can then use the same “volume vs length” argument on U, exactly as in the end of
the proof of [3, Proposition 3.15], to get a final contradiction. This ends the proof of
Proposition 6.1.

6.3 Some consequences

An important consequence of Proposition 6.2 is the following:

Corollary 6.12 Suppose that f is a partially hyperbolic diffeomorphism in M that
is homotopic to the identity. Let zf be a good lift of f to zM. Suppose that ƒ is a
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nonempty (saturated ) f –minimal subset of Wcs such that every leaf of the lift zƒ to zM
is fixed by zf . Then every leaf in the f –minimal set ƒ of Wcs is either a plane or an
annulus.

Proof Let A be a leaf of ƒ and L a lift in zM. By Proposition 6.2, L does not admit
any fixed points of zf . Hence, zf acts freely on the space of stable leaves in L.

Now, recall that �1.A/ can be defined as the elements  2 �1.M/ that fix L; see
Section 4.3. So if  2 �1.A/, it must also act freely on the space of stable leaves in L.
As zf commutes with every deck transformation, Corollary E.4 of [3] — which still
applies in the context of branching foliation, as does all of [3, Appendix E] — implies
that �.A/ is abelian, ie A is either a plane or an annulus (again with the understanding
that A might actually only be an immersion of one of these manifolds in M, and
recalling that all bundles were assumed to be orientable in this section, so in particular
the leaves cannot be Möbius bands).

As a consequence, we also get the following result, which completes the proof of
Theorem 1.3 as announced.

Corollary 6.13 Suppose that f is a partially hyperbolic diffeomorphism homotopic
to the identity. Suppose that f is either volume-preserving or transitive , or that M is
either hyperbolic or Seifert. Let zf be a good lift of f . Then zf has no periodic points.
In particular , f has no contractible periodic points.

Proof Up to finite covers and iterates, we may assume that f preserves the branching
foliations Wcs and Wcu.

If zf acts as a translation on either Wcs or Wcu, then it does not have periodic points.

Otherwise, since we showed that under our assumptions the branching foliations are
f –minimal, the result then follows from Theorem 4.12.

7 Double invariance implies dynamical coherence

In this section we show that if the center stable and center unstable branching foliations
are minimal and leafwise fixed by a good lift zf W zM! zM, then, f has to be dynamically
coherent (ie the branching foliations do not branch). Therefore, we will be able to
apply the results from the dynamically coherent setting.
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The universal cover zM of M is homeomorphic to R3 (since it admits a partially
hyperbolic diffeomorphism; see [3, Appendix B]). We do not assume anything further
on M in this section.

Recall also that a center leaf is a connected component of the intersection of a leaf ofeWcs and one of eWcu; cf Definition 3.7.

This section (and the proof of dynamical coherence) is split into three parts. First,
in Section 7.1, we show that for an appropriate lift of M and power of f , double
invariance of the foliations implies that the center leaves are fixed. The lift and power
we need to consider here is in order to have everything orientable and coorientable.
Then, in Section 7.2, we show that if a good lift fixes every center leaf, then it must
be dynamically coherent. Finally, in Section 7.3, we show that if a lift and power of
a partially hyperbolic diffeomorphism is dynamically coherent and fixes the center
leaves, then the original diffeomorphism is itself dynamically coherent (and a good lift
of a power of it will fix every center leaf).

7.1 Center leaves are all fixed

To begin, we would like to show that zf fixes every center leaf. The results of Section 5
already provide at least one fixed center leaf:

Lemma 7.1 Let f WM !M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f –minimal branching foliations Wcs and Wcu. If there
is a good lift zf that fixes every leaf of eWcs and eWcu, then zf fixes some center leaf.

Proof Suppose that zf fixes no center leaf. Since there is at least one nonplanar leaf,
Proposition 5.6 provides an f –periodic center leaf c in M. Applying Proposition 5.2 toeWcs

bran shows that c is coarsely contracting, but the same result applied to eWcu
bran shows

that c is coarsely expanding. This is a contradiction, so zf must fix a center leaf, as
desired.

Proposition 7.2 Let f WM !M be an orientable partially hyperbolic diffeomorphism
homotopic to the identity with f –minimal branching foliations Wcs and Wcu. If a good
lift zf of f fixes every leaf of eWcs and eWcu, then zf fixes every center leaf.

Proof Let
Fixc
zf
WD fc W zf .c/D cg;

thought of as a subset of the center leaf space.
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The set Fixc
zf

is obviously �1.M/–invariant. It is also open, by an argument very
similar to the one in [3, Lemma 6.3]: if c is a fixed center leaf in a center stable leaf L
in zM, then for any center leaf c0 in L close enough to c (for the topology of the center
leaf space in L), there is a strong stable leaf that intersects c, c0 and zf .c0/. Now, since
zf fixes the center unstable leaves, c0 and zf .c0/ are on the same center unstable leaf.

Since no transversal can intersect the same leaf twice, it implies that c0 D zf .c0/. Thus
the set of fixed center leaves within each center stable leaf is open (in the center leaf
space within that center stable leaf). Similarly, the set of fixed center leaves within
each center unstable leaf is open. Together, these facts imply that the set of fixed center
leaves is open in the center leaf space.

Note that a good lift zf fixes every leaf of eWcs, so f fixes every leaf of Wcs. In
particular, f –minimality of Wcs is equivalent to minimality of Wcs. Hence Wcs is
minimal; similarly for Wcu.6

To see that zf fixes every center leaf, we proceed as in [3, Lemma 6.4]: we show first
that every center leaf in a center stable leaf (resp. center unstable leaf) which projects to
an annulus has to be fixed (due to our orientability assumptions, leaves cannot project
to a Möbius band). Then the same argument as in [3, Lemma 6.4] applies to show that
every center leaf has to be fixed.

Let L be any center stable leaf that projects to an annulus, and choose a generator  of
the isotropy group of L.

Since the set of fixed center leaves is open in the center leaf spaces of any center
unstable leaf, minimality of Wcs implies that L must have some fixed center leaves.

We will first prove that if c is a center leaf in L which is in the boundary of the set
of fixed center leaves in L, then �.c/ is periodic under f . We will then show, as in
Proposition 5.4, that any periodic leaf in �.L/ must be coarsely contracting. The same
argument applied to the center unstable leaves yields that periodic center leaves must
also be coarsely expanding; a contradiction.

Since zf cannot have fixed points (as zf fixes all the leaves of eWcs and eWcu), zf acts
freely on the space of stable leaves in L.

We assume, for a contradiction, that not all center leaves in L are fixed. Let FixL be
the set (in Lc

L, the center leaf space on L) of center leaves fixed by zf .

6In fact f –minimality and minimality are always equivalent as long as the branching foliation does not
have a compact leaf, without assumptions on f ; see Lemma B.2.
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The set FixL is open, and assumed not to be the whole of L. So let c1 be any leaf in
@FixL.

Let .cn/ be any sequence of center leaves in FixL that converge to c1. Then zf .cn/D cn
converges to zf .c1/. As the leaf c1 is not fixed by zf , we deduce that zf .c1/ is not
separated from c1.

Hence, there exists a (unique) stable leaf s1 which separates zf .c1/ from c1 and makes
a perfect fit with c1; see Section 3.4.3 for the definition of perfect fits in the non-
dynamically-coherent setting. Then zf .s1/ makes a perfect fit with zf .c1/. Because
c1 and zf .c1/ are not separated from each other, s1 and zf .s1/ intersect a common
transversal to the stable foliation. It follows that the stable axis of zf acting on L is a
line. Thus, since  commutes with zf , the stable axis of  is that same line. Moreover,
both the stable leaves s1 and zf .s1/ are in the axis of zf .

Since the stable axis of zf acting on L is a line, the graph transform argument
[3, Appendix H] applies and we obtain a curve y�, tangent to the center direction,
which is fixed by both  and zf .

As s1 makes a perfect fit with c1, and s1 intersects y�, we deduce that there exists a
stable leaf s that intersects both c1 and y�. Let x D s \ y� and y D s \ c1. We denote
by J the segment of s between x and y.

Since y� projects down to a closed curve �.y�/, and zf decreases stable lengths, there exist
n1; n2 2 Z and m1; m2 2N as large as we want such that the four points n1 zf m1.x/,
n1 zf m1.y/, n2 zf m2.x/ and n2 zf m2.y/ are all in a disk of radius as small as we
want.

Suppose now that n1 zf m1.c1/ ¤ n2 zf m2.c1/. Then, up to switching n1; m1 and
n2; m2, we obtain that n2 zf m2.c1/ intersects n1 zf m1.J /. This is in contradiction
with the fact that c1 is in @FixL, which is invariant by both zf and  .

Thus n1 zf m1.c1/D 
n2 zf m2.c1/. In other words, c1 is fixed by the map hD n zf m

for some n;m integers with m> 0. (Although not useful for the rest of the proof, one
can further notice that y� and c1 intersect, as h decreases the length of J by forward
iterations and both c1 and y� are fixed by h.)

Now recall that we built above a stable leaf s1 making a perfect fit with c1. And, by
our choice of s1, the center leaf c1 is in between s1 and s2 WD zf �1.s1/.

Recall that s1 is the unique leaf making a perfect fit with c1 and separating c1 from
zf .c1/. Thus h.s1/ is the unique leaf making a perfect fit with h.c1/D c1 and separating
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h.c1/D c1 from hı zf .c1/D zf ıh.c1/D zf .c1/. That is, s1 is fixed by h. Using again
that h and zf commute, we deduce that s2 is also fixed by h.

Now, the leaves s1 and s2 are also a bounded distance apart, so Lemma 5.5 holds and
we deduce that c1, as well as any other center leaf c that is in between s1 and s2, must
be coarsely contracting. Note now that any center leaf c in L that is fixed by some
h0 D n

0 zf m
0

is separated from FixL by a center leaf c01 � @FixL as above. Hence, we
proved that every nonfixed periodic leaf in �.L/ is coarsely contracting.

Therefore, the same argument applied to the center unstable leaf containing c1 shows
that c1 must also be coarsely expanding; a contradiction.

So we obtained that every center stable or center unstable leaf L which is fixed by
some nontrivial element of �1.M/ has all of its center leaves fixed by zf . Since Fixc

zf
is open (in the center leaf space), minimality of the foliations implies that it contains
every center leaf, as in the end of the proof of [3, Lemma 6.4].

7.2 Dynamical coherence

We now want to prove dynamical coherence provided that a good lift fixes every center
leaf. We do not assume that f is orientable, only that it admits branching foliations.
We start with the following:

Lemma 7.3 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity, preserving branching foliations Wcs and Wcu. Let zf be a good lift
that fixes every center leaf. Then there is a global bound on the length of every center
segment between a point x and zf .x/.

In the dynamically coherent case this was very easy as the center curves form an actual
foliation and there is a local product picture near any compact segment. We have to be
more careful in the non-dynamically-coherent setting.

Proof We assume the conclusion of the lemma fails. Then there exists a sequence xi
of points in zM contained in center leaves ci such that the length in ci from xi to zf .xi /
diverges to infinity. This length depends not only on xi but also on ci , since there may
be many center leaves through xi . We denote by ei the segment in ci from xi to zf .xi /.

Up to acting by covering translations we can assume that the xi converge to a point
x 2 zM. Let Li and Ui be, respectively, a center stable leaf and center unstable leaf
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containing ci . Up to considering a subsequence, we may assume that Li converges to
a center stable leaf L containing x; see condition (iv) of Definition 3.1. Similarly, we
can further assume that Ui converges to some center unstable leaf U with x 2 U .

For i large enough, all the leaves Li intersect a small unstable segment in u.x/. The
set of center stable leaves intersecting this segment is also a segment (even though
many different leaves may intersect a given point in u.x/). Hence we may assume that
Li is weakly monotone, and so is Ui . Let c be the center leaf through x contained in
L\U . Then zf .x/ 2 c, and we call e the segment in c from x to zf .x/.

Suppose first that Li D L for all big i . So we may assume Li D L for all i . Then the
center leaves ci are all in L and, for i big enough, intersect s.x/. Hence the leaves ci
are, for i big enough, contained in an interval of the center leaf space in L. In addition
they are converging to c, which is a center leaf through x and zf .x/. This implies that
the length of ei is converging to the length of e, and hence the length of ei is bounded
in i ; contradiction.

Suppose now that the Li are all distinct from L. The points xi and zf .xi / are all in a
compact region of zM. Since Li converges to L, we have that u.xi / intersects L for
big enough i . We call this nearby intersection yi . Likewise, u. zf .xi // intersects L in
zf .yi /. We want to push the center segments ci contained in Ui \Li along unstable

segments to center segments in Ui \L.

For i big enough, both xi and zf .xi / are very near L. Thus, their unstable leaves u.xi /
and u. zf .xi // both intersect L. Let yi be the intersection of u.xi / with L— recall that
this intersection is unique as the center stable branching foliation is approximated by a
taut foliation. Then zf .yi / is the intersection of u. zf .xi // with L, since L is fixed by zf .
Then the intersection of the unstable saturation of ei with L is a compact segment
inside a center leaf between yi and zf .yi /, since zf fixes every center leaf. Let bi be this
segment between yi and zf .yi /. The segments bi also converge to e, so the previous
paragraph shows that the lengths of the bi are bounded. Since the distance between xi
and yi converges to zero, this in turn implies that the lengths of the segments ei are
themselves bounded. This contradicts our assumption and finishes the proof.

Lemma 7.4 Let f WM !M be a partially hyperbolic diffeomorphism homotopic to
the identity , preserving branching foliations Wcs and Wcu. Let zf be a good lift that
fixes every center leaf. If c1 and c2 are different center leaves in a single center stable
leaf L 2 eWcs, then c1\ c2 D∅.
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L

c1

c2

zf �1.x/
x zf �2.x/

B

Figure 7: Two centers that merge. The bound on the distance between x and
zf .x/ forces a behavior like the figure.

Proof Suppose that there are distinct center leaves c1 and c2 that intersect at a point
x 2 c1\ c2. Then zf .x/ is also in c1\ c2. If c1 coincides with c2 in their respective
segments from x to zf .x/, then applying iterates of zf implies that c1 D c2, contrary to
assumption.

So we may assume that x is a boundary point of an open interval I in, say, c1, which is
disjoint from c2 but such that both endpoints are in c2. Then c1[ c2 bounds a bigon B
with endpoints x; y and a “side” in I . All center segments in B pass through x and y
and they have bounded length by Lemma 7.3. Each stable segment intersecting I also
intersects the other “boundary” component of B. See Figure 7.

The stable lengths grow without bound under negative iterates of zf . Hence, since a
stable segment can intersect a local foliated disk of the stable foliation in L only in a
bounded length, it follows that the diameter in zf n.L/ of zf n.B/ grows without bound
as n goes to �1. But the length of the center segments in zf n.B/ are all bounded,
according to Lemma 7.3. Moreover, between any two points in zf n.B/ there exists a
path along (at most) two center leaves — one just follows the center leaf to one of the
endpoints and then switches to the appropriate other center leaf. Thus the diameter is
bounded, which is a contradiction.

Thus we deduce what we wanted to obtain in this section.
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Corollary 7.5 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity, preserving branching foliations Wcs and Wcu. If some good lift zf fixes
every center leaf , then f is dynamically coherent.

Proof By Proposition B.3 it is enough to show that the leaves of the branching
foliations do not merge.

Assume that two center unstable leaves U1 and U2 merge. Let L be a center stable
leaf intersecting U1 and U2 at the merging, ie L is a leaf through a point x such that
the unstable leaf through x is a boundary component of U1 \U2. Then, connected
components of U1 \L and U2 \L give two center leaves that intersect but do not
coincide. This contradicts Lemma 7.4. A symmetric argument gives that two center
stable leaf cannot merge either, proving dynamical coherence of f .

7.3 Dynamical coherence without taking lifts and iterates

We now want to prove that if a finite lift and finite power of a partially hyperbolic
diffeomorphism is dynamically coherent, then the original diffeomorphism is itself
dynamically coherent. Although we do not know how to prove it in this generality, we
show it when a good lift of the dynamically coherent lift fixes every center leaf, which
is enough for our purposes.

Again, in this subsection we do not assume that f is orientable.

We start by showing a uniqueness result for the pairs of the center stable and center
unstable foliations under some conditions.

Lemma 7.6 Let g WM !M be a dynamically coherent partially hyperbolic diffeomor-
phism homotopic to the identity. Let Wcs and Wcu be g–invariant foliations tangent to
Ecs and Ecu, respectively. Let Wc be the center foliation associated with Wcs and Wcu

(defined as in Definition 3.7), and assume that there exists a good lift zg which fixes all
the leaves of eWc.

Suppose that Wcs
1 and Wcu

1 are two g–invariant foliations tangent , respectively, to Ecs

and Ecu. Suppose that zg also fixes all the leaves of the center foliation eWc
1 associated

with Wcs
1 and Wcu

1 .

Then Wcs DWcs
1 and Wcu DWcu

1 .
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Proof The argument is similar to the one made in Lemma 7.4.

Let eWcs
1 and eWcu

1 be two g–equivariant foliations as in the lemma. We will consider
the center foliation eWc

1 defined by taking the connected components of intersections of
leaves of eWcs

1 and eWcu, to show that eWcs D eWcs
1 . A symmetric argument shows thateWcu D eWcu

1 .

Since every leaf of both eWc and eWc
1 is fixed by zg, Lemma 7.3 implies that zg moves

points a uniformly bounded amount in both center foliations.

Consider, for a contradiction, a point x 2 zM such that eWc.x/ ¤ eWc
1.x/; note that

we are dealing here with actual foliations, not branching ones, so this notation makes
sense. Without loss of generality, we can choose x so that the leaves L WD eWcs.x/ and
L1 WD eWcs

1 .x/ do not coincide in any neighborhood of x.

Let c and c1 be the center leaves obtained respectively as the connected components of
L\F and L1\F containing x for some F 2 eWcu.

By assumption, both c and c1 are fixed by zg, so we are in the exact same setup as in
the proof of Lemma 7.4. Thus we deduce that c D c1, a contradiction.

We can now state and prove the aim of this section.

Proposition 7.7 Let f WM !M be a partially hyperbolic diffeomorphism such that
f k is homotopic to the identity for some k > 0. Let yM be a finite cover of M which
makes all bundles orientable. Let g be a lift to yM of a homotopy of f k to the identity
that preserves orientation of the bundles. Suppose that g is dynamically coherent and
that there exists a good lift zg of g that fixes all the center leaves. Then f is dynamically
coherent and f k is a discretized Anosov flow.

Proof First we notice that the assumptions of the proposition will be verified for any
further finite cover xM of yM — because one can take a further lift xg of g to xM, it is
dynamically coherent and zg is a good lift of xg too. Hence, without loss of generality,
we may and do assume that yM is a normal cover of M.

Let eWcs and eWcu be the lifts to zM of the center stable and center unstable foliations
of g. Our goal is to show that these foliations are �1.M/–invariant, thus they descend
to foliations in M, and that these projected foliations are f –invariant.

Notice that zg fixes each leaf of eWcs and eWcu.
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The map g is obtained from a lift of a homotopy of f k to the identity. Lifting that
homotopy further to zM, we get a good lift zf k of f k that is also a lift (hence a good lift)
of g to zM. As both zg and zf k are good lifts of g, there exists a ˇ 2 �1. yM/� �1.M/

such that zgD ˇ zf k . (Note however that zg is not necessarily a good lift of f k as zg only
commutes with elements of �1. yM/ and not �1.M/.)

Moreover, both zg and zf k move points a bounded distance in zM; hence so does
ˇ D zg. zf k/�1. Lemma A.1 then implies that either ˇ is the identity or M is Seifert
(and ˇ is either the identity or a power of a regular fiber).

We split the rest of the proof of dynamical coherence into two cases.

Case 1 Suppose that M is not a Seifert fibered space.

Then ˇ is the identity, which means that zg D zf k .

Let  be a deck transformation in �1.M/. Define the foliations

Fcs
 WD  eWcs; Fcu

 WD  eWcu; Fc
 WD  eWc:

The leaves of these foliations are all fixed by zg because  commutes with zf k D zg. In
particular, Lemma 7.6 then implies that  eWcs D eWcs and  eWcu D eWcu. Since this is
true for any element of �1.M/, these foliations descend to foliations Wcs

M and Wcu
M

in M.

Now we need to show that Wcs
M and Wcu

M are also f –invariant. Equivalently, we need
to show that eWcu and eWcs are invariant by any lift f1 of f to zM.

Let f1 be a lift of f to zM. Notice that f may not be homotopic to the identity, so f1
is not assumed to be a good lift. Let Fcs

1 WD f1.
eWcs/ and Fcu

1 WD f1.
eWcu/.

We will first show that f1 and zg commute. Both f1zg and zgf1 are lifts of the map f kC1

to zM. So .zg/�1.f1/�1zgf1 is a deck transformation  2 �1.M/. As zg moves points a
bounded distance, we have that d.f1.y/; zgf1.y// is bounded in zM. In addition, f1 has
bounded derivatives so d.y; .f1/�1zgf1.y// is also bounded in zM. So using again that
zg is a good lift, we deduce that d.y; .zg/�1.f1/�1zgf1.y// is bounded in zM.

Hence  is a deck transformation that moves points a bounded distance. Applying
Lemma A.1 again gives that ˇ is the identity (since M is not Seifert). Hence f1 and zg
commute.

Since zg fixes every leaf of eWc (the center foliation in zM ) and commutes with f1,
we deduce that zg fixes every leaf of f1.eWc/. We can again apply Lemma 7.6 to get
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that f1.eWcs/ D eWcs and f1.eWcu/ D eWcu. That is, the foliations eWcs and eWcu are
f1–invariant. Since this holds for any lift of f , it implies that Wcs

M and Wcu
M are

f –invariant. Hence f is dynamically coherent with foliations Wcs
M and Wcu

M . This
completes the proof that f is dynamically coherent when M is not Seifert fibered.

Case 2 Assume that M is Seifert fibered.

In this case, Lemma A.1 implies that ˇD zg. zf k/�1 is either the identity or represents a
power of a regular fiber of the Seifert fibration. In any case, ˇ is in a normal subgroup
of �1.M/ isomorphic to Z. Moreover, as proved earlier, ˇ 2 �1. yM/.

Let  2 �1.M/ be any deck transformation. Consider the foliations Fcs
 WD  eWcs and

Fcu
 WD  eWcu, as before.

We first claim that these foliations are zg–invariant. We show this for Fcs
 , the other

being analogous. Let L 2 eWcs. We have

zg.L/D ˇ zf k.L/D ˇ zf k.L/D ˇ˙1 zf k.L/:

Notice that both zf k (because it is a lift of g) and ˇ (because it belongs to �1. yM/

and the foliation Wcs is defined in yM ) preserve the foliation eWcs. It follows that
ˇ˙1 zf k.L/ 2 eWcs, so

zg.L/D ˇ˙1 zf k.L/ 2 Fcs
 :

Thus Fcs
 is zg–invariant.

We now want to show that the foliations Fcs
 , Fcu

 and Fc
 WD  eWc are all leafwise fixed

by zg.

Since yM was chosen to be a normal cover ofM, any element  2�1.M/ can be thought
of as a diffeomorphism of yM. Hence we can consider the foliation yFcs

 WD Wcs in yM.
Note that yFcs

 is tangent to the center stable distribution Ecs � T yM, since  preserves
the tangent bundle decomposition, as it is defined by f in M. The argument above
shows that yFcs

 is g–invariant.

Thus, we can consider g to be a dynamically coherent diffeomorphism for the pair of
transverse foliations yFcs

 and Wcu. Moreover, g is homotopic to the identity and the
good lift zg fixes every leaf of eWcu. Since yM is Seifert, mixed behavior is excluded
(cf [3, Theorem 5.1]) and this implies that zg must also fix every leaf of Fcs

 .

The symmetric argument shows that Fcu
 is also fixed by zg. We can apply Proposition 6.1

to both yFcs
 and yFcu

 , implying that they are g–minimal. To apply the proposition we
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need that g is orientable. Hence, the center foliation Fc
 is fixed by zg, thanks to

Proposition 7.2 (this also uses that g is orientable).

Since all the leaves of Fc
 are fixed by zg, we can finally apply Lemma 7.6 to deduce

that Fcs
 D

eWcs and Fcu
 D

eWcu. As this is true for any  , the foliations eWcs and eWcu

descend to foliations Wcs
M and Wcu

M on M in this case too.

We now again have to show that Wcs
M and Wcu

M are f –invariant. The argument is the
same for both foliations, so we only deal with Wcs

M .

We start with a preliminary step. Let f� be the automorphism of �1.M/ induced by f .
Let

A WD �1. yM/\f�.�1. yM//\ � � � \ .f�/
k�1.�1. yM//:

The set A is a finite-index, normal subgroup of �1.M/. Moreover, as f k is homotopic
to the identity, f�.A/D A.

As we remarked at the beginning of the proof, we can without loss of generality prove
the result for any further finite cover of yM. Thus we choose, if necessary, a further
cover so that �1. yM/D A. Since f�.A/D A, the map f lifts to a homeomorphism yf

of yM.

As in the first case, we let f1 be an arbitrary lift of yf to zM and we define Fcs
1 WDf1.

eWcs/

and Fcu
1 WD f1.

eWcu/. (In particular, f1 is also a lift of f .)

Note as before that both zgf1 and f1zg are lifts of f kC1, and zgf1.zg/�1.f1/�1 is a
bounded distance from the identity (because zg is and f1 has bounded derivatives). So
ı WD zgf1.zg/

�1.f1/
�1 is an element of �1.M/ a bounded distance from the identity.

By Lemma A.1, ı represents a power of a regular fiber of the Seifert fibration, so is
in the normal Z subgroup of �1.M/ (note that since �1.M/ is not virtually nilpotent,
there exists a unique Seifert fibration on M; see Appendix A).

In addition, zgf1 and f1zg are also lifts of the homeomorphisms g yf and yf g in yM to zM .
Hence ı is in �1. yM/.

Using once more the arguments above, we get that .f1/�1ıf1.ı/�1 is a bounded
distance from the identity, and projects to the identity in M (and in yM ), hence it is
a deck transformation � also contained in the Z normal subgroup of �1.M/. Thus ı
and � commute. Moreover, � is also in �1. yM/.
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Now we can show that zg preserves Fcs
1 . Let L be in eWcs. Then

zg.f1.L//D ıf1.zg.L//D ıf1.L/D f1.�ı.L//:

Here �ı.L/ is in eWcs, because L is in eWcs and �ı is in �1. yM/. Hence zf1.�ıL/ is in
f1.eWcs/ so zg preserves Fcs

1 .

What we proved implies that g preserves yf .Wcs/ in yM. Now consider the pair of
foliations yf .Wcs/ and Wcu. They are both invariant by g, so g is dynamically coherent
for this particular pair of foliations, and zg fixes the leaves of eWcu. So once again, as
yM is Seifert, we get that zg must also fix every leaf of f1.eWcs/; cf [3, Theorem 5.1].

The symmetric argument implies that zg fixes every leaf of f1.eWcu/. Once again,
yM being Seifert implies that all the foliations are g–minimal (Proposition 6.1). Hence
zg also fixes the center foliation f1.eWc/ (Proposition 7.2). So Lemma 7.6 applies and
we deduce that f1.eWcs/D eWcs and f1.eWcu/D eWcu.

In particular, f preserves the foliations Wcs
M and Wcu

M as wanted. So f is dynamically
coherent.

This finishes the proof that f is dynamically coherent. Once that is known, then
Propositions 6.5 and G.2 of [3] imply that f k is a discretized Anosov flow. This
finishes the proof of the proposition.

8 Proof of Theorem A

Fix a partially hyperbolic diffeomorphism f WM !M that is homotopic to the identity
on a closed Seifert fibered 3–manifold M. We make no orientability assumptions. We
will show that some iterate of f is a discretized Anosov flow, completing the proof of
Theorem A.

Fix a finite cover yM of M so that the lifted center, stable and unstable bundles are
orientable. Then there is an integer k > 0 such that a lift of f k to yM will preserve the
orientations of the bundles. In addition, we can find such a lift that is homotopic to the
identity by lifting a homotopy from f k to the identity. Fix such a lift g W yM ! yM.

Applying Theorem 3.6, we have g–invariant center stable and center unstable branching
foliations Wcs and Wcu on yM.

Lemma 8.1 There exists a lift zg of an iterate of g that fixes every leaf of eWcs and also
fixes every leaf of eWcu.
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Proof We will use the following result, found in [3, Proposition 7.1 and Remark 7.2].

Proposition 8.2 Let g W M ! M be a partially hyperbolic diffeomorphism that is
homotopic to the identity on a Seifert fibered 3–manifold M with orientable Seifert
fibration. Then some iterate of g has a good lift which fixes every leaf of eWcs.

Since yM is orientable, the bundles are orientable, and Wcs is a horizontal foliation (see
[3, Theorem F.3]), it follows that the Seifert fibration is orientable. Thus there is an
integer i > 0 such that the iterate gi has a good lift zgi which fixes every leaf of eWcs.

Suppose that zgi fixes one leaf of eWcu. Then Proposition 6.1 says that Wcu is gi–minimal
and zgi fixes every leaf of eWcu, as desired.

Suppose, then, that zgi fixes no leaf of eWcu. Then zg fixes no center leaf, and we can
apply Proposition 5.2 to see that every periodic center leaf of g has to be coarsely
contracting. Exchanging roles, and applying Proposition 8.2 to the center unstable
branching foliation, we deduce that every periodic center leaf for g must be coarsely
expanding. Notice that although the lifts may be different, the coarsely expanding and
coarsely contracting behavior is for periodic center leaves of the original map g.

As there must be at least one such periodic center leaf (cf Proposition 5.6), this gives a
contradiction.

Let zgi be a good lift of an iterate gi , for some i > 0, that fixes every leaf of both eWcs

and eWcu. Then Proposition 7.2 implies that zgi fixes every center leaf, and Corollary 7.5
says that gi is dynamically coherent. Then Proposition 7.7 tells us that f is dynamically
coherent.

Now that we have reduced to the dynamically coherent case, [3, Theorem A] says
that f has an iterate that is a discretized Anosov flow. This completes the proof of
Theorem A.

Note that the arguments in the proof of Lemma 8.1 also eliminate mixed behavior for
good lifts in Seifert fibered manifolds.

9 Absolutely partially hyperbolic diffeomorphisms

In this section, we explain how one can improve the trichotomy in Section 2.0.1
eliminating the mixed case, if one uses a strong version of partial hyperbolicity.

Geometry & Topology, Volume 27 (2023)



3156 Thomas Barthelmé, Sérgio R Fenley, Steven Frankel and Rafael Potrie

Definition 9.1 A partially hyperbolic diffeomorphism f WM !M on a 3–manifold
is called absolutely partially hyperbolic if there exist constants �1 < 1 < �2 such that
for some ` > 0 and every x 2M, we have

kDf `jE s.x/k< �1 < kDf
`
jE c.x/k< �2 < kDf

`
jEu.x/k:

Notice that, although subtle, the difference between being absolutely partially hyperbolic
versus just partially hyperbolic is far from trivial. Here, we just show that with this
stronger property one can significantly simplify the arguments. However, some previous
results have shown significant differences between the two notions, specifically with
regard to the integrability of the bundles; see [9; 31; 29].

We will show the following:

Theorem 9.2 Let f WM!M be an absolutely partially hyperbolic diffeomorphism on
a 3–manifold. Suppose that f is homotopic to the identity and preserves two branching
foliations Wcs and Wcu that are both f –minimal. Then either

(i) f is a discretized Anosov flow, or

(ii) Wcs and Wcu are R–covered and uniform and a good lift zf of f acts as a
translation on their leaf spaces.

In order to prove this theorem, the main step will be to show that, using absolute partial
hyperbolicity, we have an improvement of Proposition 5.2.

Proposition 9.3 Let f WM!M be an absolutely partially hyperbolic diffeomorphism
homotopic to the identity , and zf a good lift of f to zM. Assume that every leaf of eWcs

is fixed by zf . Let L be a leaf whose stabilizer is generated by  2 �1.M/ n fidg. Then
there is a center leaf in L fixed by zf .

The proof is essentially the same as the one in [25, Section 5.4], but we repeat it since
the contexts are different.

Proof The proof is by contradiction. Assume that zf does not fix any center leaf in L.

Proposition 5.6 gives that there exists a center leaf which is periodic by f . Call c a lift
of this center leaf. Using Proposition 5.7 we get two stable leaves s1 and s2 in L fixed
by h WD n ı zf m, a bounded distance apart in L and such that c separates s1 from s2

in L. We denote by B the band bounded by s1 and s2.
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Since  is an isometry, the diffeomorphism h is absolutely partially hyperbolic, and we
can (modulo taking iterates) assume that there are constants �1 < �2 such that

kDhjE sk< �1 < �2 < kDhjE ck:

Moreover, there is a constant R > 1 such that kDh�1k �R in all of L.

For simplicity, we will assume that the distance between s1 and s2 is smaller than 1
2

so that the band B is contained in the neighborhood yB D
S
x2S1

B1.x/ of radius 1
around s1.

For every positive d there is a constant r.d/ > 0 such that for any set of diameter
less than d , the length of a stable leaf contained in this set is at most r.d/. This is
because in a foliated box only one segment of a stable segment can intersect it. This
implies that stable leaves (and center leaves as well) are quasi-isometrically embedded
in their neighborhoods of a fixed diameter. So there is a K > 0 such that for any stable
segment J contained in yB with endpoints z and w, we have

length.J /�Kd yB.z; w/:

Now, choose n > 0 such that K2 �n1=�
n
2 �

1
2

and once n is fixed, choose D > 0 so
that D=2� 2RnC 2K=�n2 .

We now pick points z; w 2 s1 such that d yB.z; w/DD, and take J s an arc of s1 joining
these points. From the choice of K and D we know that length.J s/ � KD. So it
follows that length.hn.J s//�KD�n1 .

Choose a center curve J c joining B1.hn.z// with B1.hn.w//— this can be done
because c separates s1 from s2 — and call zn and wn the endpoints in each ball. It
follows that length.J c/�K2D�n1C 2K.

Since the distance between the endpoints of J c and hn.z/, hn.w/ is less than 1, by
iterating backwards by h�n we get that d.h�n.zn/; z/ and d.h�n.wn/; w/ are less
than Rn.

This implies that

D � d yB.z; w/�K
2 �

n
1

�n2
DC 2RnC

2K

�n2
;

a contradiction with the choices of n and D, completing the proof of the proposition.

Using this proposition, we can prove Theorem 9.2 in the same way as [3, Theorem 5.1].
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Proof of Theorem 9.2 Let zf be a good lift of f . Since Wcs and Wcu are f –minimal,
by Corollary 4.9 zf either fixes each leaf of eWcs and eWcu, or acts as a translation on
both leaf spaces (in which case the foliations are R–covered and uniform and we are
in case (ii) of the theorem), or zf translates one and fixes the other.

If zf fixes the leaves of both eWcs and eWcu, then Proposition 7.2 and Corollary 7.5
imply that we are in case (i) of the theorem.

So we have to show that we cannot be in the mixed case. Suppose that zf fixes every
leaf of eWcs.

SinceM is not T3, there are leaves of Wcs with nontrivial fundamental group. Consider
the lift L in eWcs of such a leaf, with L invariant by  in �1.M/ n fIdg. We can apply
Proposition 9.3 to conclude that there is a center leaf c in L that is fixed by zf . So,
in particular, zf needs to fix a center unstable leaf containing c (note that there may
be an interval of center unstable leaves intersecting L in c, but the endpoints of such
an interval will then be fixed by zf ). Thus zf has to also fix every leaf of eWcu, by
Corollary 4.9.

10 Regulating pseudo-Anosov flows and translations

The rest of the paper is concerned with hyperbolic 3–manifolds. We will get positive
results dealing with the non-dynamically-coherent case. That is, we want to understand
the dynamics of a homeomorphism acting by translation on a branching foliation. In
order to be able to do that, we first need to build a regulating pseudo-Anosov flow
transverse to the branching foliation. The existence of such a flow is a relatively
immediate consequence of the construction of the regulating flow and the fact that the
branching foliation is well-approximated by foliations.

Proposition 10.1 Let M be a hyperbolic 3–manifold and F a branching foliation
well-approximated by foliations F� and such that F (and thus also F� for small �) is
R–covered and uniform. Then there exists a transverse and regulating pseudo-Anosov
flow ˆ for F .

Proof By [33; 11; 17] (see [3, Theorem D.3]), for any � there exists a pseudo-Anosov
flow ˆ� transverse to and regulating for F�.

Now, as � gets small, the angle between leaves of F� and leaves of F becomes arbitrarily
small.
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Then, since both F and F� are R–covered and uniform, for any leaf L 2 zF there exist
two leaves L1; L2 2 zF� such that L is in between L1 and L2.7 As ˆ� is regulating
for F� , every orbit of ẑ � intersects both L1 and L2, thus it also intersects L. So every
orbit of ẑ � intersects every leaf of zF ; that is, ˆ� is regulating for F .

The fact that the flow ˆ� can be chosen transverse to zF follows from the construction
of ˆ�; see [33; 11; 17]. The flow ˆ� is build by blowing down certain laminations
transverse to F�. Moreover, these laminations are transverse to any foliations that
are close enough to F� for a uniform angle. Since the angle between F and F� gets
arbitrarily small, ˆ� will also be transverse. For a continuous family of R–covered
foliations, this property is explicitly stated in [11, Corollary 5.3.22].

Using the regulating pseudo-Anosov flow given by Proposition 10.1, all of [3, Section 8]
works for a branching foliation without change. Thus we obtain:

Proposition 10.2 Let M be a hyperbolic 3–manifold. Let f WM !M be a homeo-
morphism homotopic to the identity that preserves a (branching) foliation F . Suppose
that F is uniform and R–covered , and that a good lift zf of f acts as a translation on
the leaf space of F . Let ˆ be a transverse regulating pseudo-Anosov flow to F .

Then , for every  2 �1.M/ associated with a periodic orbit of ˆ, there is a compact
yf–invariant set T in M which intersects every leaf of yF , where M D zM=hi and
yf WM !M is the corresponding lift of f .

Moreover , if an iterate yf k of yf fixes a leaf L of yF , and  fixes all the prongs of this
orbit , then the fixed set of yf k in L is contained in T \L and has negative Lefschetz
index.

Almost without any change, we obtain the corresponding version of [3, Proposition 9.1].

Proposition 10.3 Let f be a partially hyperbolic diffeomorphism in a hyperbolic
3–manifold which preserves a branching foliation Wcs tangent to Ecs. Assume that a
good lift zf of f acts as a translation on the foliation Wcs, and let ˆcs be a transverse
regulating pseudo-Anosov flow. Then , for every  2 �1.M/ associated to the inverse
periodic orbit of ˆcs, there are n > 0 and m> 0 such that hD n ı zf m fixes a leaf L
of Wcs.
7By construction, each leaf of F is the image of a leaf of F� by a continuous map homotopic to the
identity of M, so, given a leaf L 2 zF , there is a leaf L0 2 zF� at a bounded distance < a1 from L. Now
using the fact that F� is uniform, choose L1; L2 in zF� on different components of zM �L0, and so that for
any p 2 L0, q 2 L1 and z 2 L2, we have d.p; q/ > a1 and d.p; z/ > a1. The leaves L1 and L2 satisfy
the required property.
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Proof The only difference is that we cannot say that the action of h in the leaf space
is expanding, since collapsing of leaves may change the behavior. However, the same
proof gives the existence of an interval in the leaf space which is mapped inside itself
by h�1 giving a fixed leaf, as desired.

Remark 10.4 In the non-dynamically-coherent situation, the proof of [3, Theorem B]
does not give a contradiction: it could happen (and indeed does happen in a situation
with similar properties, see eg [7]) that having a fixed point in a leaf of the foliation
does not force the dynamics on the leaf space to be repelling around the leaf in terms
of the action on the leaf space. This issue has previously appeared, in particular in
Proposition 6.2.

Notice that if one assumes the existence of a periodic center leaf, then we can easily
prove a version of [3, Theorem B] in the non-dynamically-coherent setting.

Proposition 10.5 Let f W M ! M be a partially hyperbolic diffeomorphism on a
hyperbolic 3–manifold. Suppose that there exists a closed center leaf c that is periodic
under f . Then f is a discretized Anosov flow.

Proof We start by replacing f by a power, so that f becomes homotopic to the
identity.

Let zf be a good lift of f . We will show that zf fixes every leaf of eWcs and eWcu. Then
Section 7 above shows that the original f (before taking a power) is dynamically
coherent; hence the result follows from [3, Theorem B].

Suppose that zf does not fix every leaf of, say, eWcs. Then Corollary 4.9 implies that
the leaf space of eWcs is R and that zf acts as a translation on it.

Let zc be a lift of the periodic closed center leaf c. Since c is periodic and zf acts as a
translation, there exists  2 �1.M/ which is nontrivial and such that .zc/D zf k.zc/ for
some k. Now c is also closed, so there exists g 2 �1.M/� Id such that g.zc/D zc. We
have that g is distinct from any power of  , since if L 2 eWcs is such that zc 2 L, we
have that g.L/D L¤ k.L/ for every k ¤ 0.

On the other hand, gı.zc/Dgı zf k.zc/D zf kıg.zc/D.zc/, which implies that �1ıgı
and g fix zc. This is impossible since M is hyperbolic: if they both fix zc then they have
they have the same axis. But the geodesic axes of the hyperbolic transformations g and
�1g cannot share an ideal point since g and  are not contained in a cyclic group.
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Remark 10.6 The arguments here show that the dynamics of the transverse pseudo-
Anosov flow coarsely affects the dynamics of f . In particular, if zf is a translation with
respect to a certain R–covered branching foliation, there must be a lower bound on the
topological entropy of f depending only on the R–covered branching foliation and the
amount of translation of zf . It is possible that in certain hyperbolic 3–manifolds one
could control the possible geometries of R–covered foliations, in which case one could
find a uniform lower bound on the entropy of partially hyperbolic diffeomorphisms that
act as translations on their branching foliations. If such a bound could be obtained, one
could deduce that if the entropy of a partially hyperbolic diffeomorphism is sufficiently
low, then the system must be a discretized Anosov flow.

11 Translations in hyperbolic 3–manifolds

In this section we obtain further consequences of having a partially hyperbolic diffeo-
morphism act as a translation in a hyperbolic 3–manifold.

We start by recalling the setting. Let f WM !M be a (not necessarily dynamically
coherent) partially hyperbolic diffeomorphism on a hyperbolic 3–manifold. Up to
replacing f by a power, we assume that it is homotopic to the identity. Up to taking
a further iterate of f and a lift to a finite cover of M, we can assume that f admits
branching foliations, and that the good lift zf acts as a translation on the leaf space
of eWcs.

Letˆcs be a transverse regulating pseudo-Anosov flow to Wcs given by Proposition 10.1.
This flow is fixed throughout the discussion.

Then Proposition 10.3 shows that for any periodic orbit of ˆcs, there exists a center
stable leaf periodic by f .

11.1 Periodic center rays

We will now produce rays in periodic center leaves which are expanding. A ray in L is
a proper embedding of Œ0;1/ into L. We say that a ray is a center ray if it is contained
in a center leaf. So a center ray cx is the closure in L of a connected component of
c n fxg, where c is a center curve and x 2 c.

Let  in �1.M/ be associated with a periodic orbit ı0 of the pseudo-Anosov flow ˆcs.
Let L be a leaf (given by Proposition 10.3) of eWcs fixed by h WD n ı zf m, with m> 0.
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A center ray cx is expanding if h.cx/D cx and x is the unique fixed point of h in cx
and every y 2 cx n fxg verifies that h�n.y/! x as n!C1. It is contracting if it is
expanding for h�1.

Proposition 11.1 Assume that a good lift zf of f acts as a translation on the (branching)
foliation eWcs. Let ˆcs be a regulating transverse pseudo-Anosov flow. Let  in
�1.M/ be associated with a periodic orbit ı0 of ˆcs. Let L be a leaf of eWcs fixed by
hD n ı zf m, where m> 0. Assume that  fixes all prongs of a lift of ı0 to zM. Then
there are at least two center rays in L, fixed by h, which are expanding.

Remark 11.2 We should stress that we cannot guarantee that we get a single center
leaf with both rays expanding. For example, it is very easy to construct an example
such that h has Lefschetz index �1 in L, and has exactly 3 fixed center leaves in L,
and only two fixed expanding rays, which are contained in distinct center leaves; see
Figure 9. This situation occurs in the examples constructed in [7] in the unit tangent
bundle of a surface.

We will use Proposition 11.1 and its proof to eliminate the mixed behavior in hyper-
bolic 3–manifolds. It should be noted that this proposition also gives some relevant
information about the structure of the enigmatic double translation examples which are
not ruled out by our study.

The key point is to understand how each fixed center leaf contributes to the total Lef-
schetz index of the map in a center stable leaf which we can control. Since the dynamics
preserves foliations and one of them has a well-understood dynamical behavior (ie in
the center stable foliation, the stable foliation is contracting) we can compute the index
just by looking at the dynamics in the center foliation; see Figure 8.

As remarked above, one does have to be careful when computing the index, as cancel-
lations might happen with branching foliation; see Figure 9.

We are now ready to give a proof of Proposition 11.1.

Proof of Proposition 11.1 By Proposition 10.2, we know that the fixed-point set of h
in L is contained in the lift of T to zM (which intersects L in a compact set) and has
Lefschetz index 1�p, where p is the number of stable prongs at the fixed point. In
particular, h has some fixed points in L.

Let L2 D zf m.L/. We denote by �12 W L! L2 the flow along the êcs map.

Geometry & Topology, Volume 27 (2023)



Partial hyperbolicity in 3–manifolds, II 3163

index �1index 0index 1

Figure 8: Contribution of index of a center arc, depending on the center dynamics.

Claim 11.3 Let c1 and c2 be two distinct center leaves in L that have a nontrivial
intersection. Suppose that both c1 and c2 are fixed by h, and there exist two distinct
points z; y 2 c1\ c2 which are fixed by h. Then the center leaves c1 and c2 coincide
on the segment between z and y.

Proof Let Œy; z�c1
and Œy; z�c2

be the center segments between y and z in c1 and c2,
respectively.

Figure 9: Two segments of zero index merge with a point with index 1 to
produce a global �1 index.
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Assume for a contradiction that Œy; z�c1
and Œy; z�c2

are distinct. Then, up to changing
y and z, we can assume that the intersection between the open intervals .y; z/c1

and
.y; z/c2

is empty.

Thus, by construction, Œy; z�c1
and Œy; z�c2

intersect only at z and y. We let B be the
bigon in L bounded by Œy; z�c1

and Œy; z�c2
.

Note that any stable leaf that enters the bigon B must exit it (otherwise it would limit in
a stable leaf entirely contained inB, which is impossible). Hence, B is “product foliated”
by stable leaves. Since B is compact, the length of the stable segments contained in B
is bounded.

Since z; y are fixed by h it follows that B is also fixed by h. Let s be one such stable
segment connecting .z; y/c1

to .z; y/c2
. Then the images of s under powers of h�1

stay in B but must also have unbounded length, a contradiction.

Let x be a fixed point of h. Recall from Lemma 3.19 that the set of center leaves
through x in L is a closed interval. In particular, h fixes the endpoints of this interval.
Hence, x is contained in a center leaf c such that h.c/D c.

Claim 11.4 All the fixed points of h in L are contained in the union of finitely many
compact segments of center leaves in L.

Proof Let c be a center leaf fixed by h. Since the fixed points are contained in a
compact set C (see [3, Lemma 8.11]), there is a minimal compact interval J in c which
contains all the fixed points of h in c.

Suppose that there exist infinitely many distinct such minimal intervals Ji in center
leaves ci . Since the fixed points of h in L are in a compact set, we can choose i and j
large enough that Ji is very close in the Hausdorff distance of L to Jj . Let z be an
endpoint of Ji . Then the stable leaf s.z/ through z intersects the center leaf cj . As z is
fixed by h and so is cj , contraction of the stable length implies that z 2 cj , thus z 2 Jj .

Hence, both endpoints of Ji are on Jj . By Claim 11.3, it implies that Ji � Jj , and
minimality of the interval Jj implies Jj D Ji , which is a contradiction.

Let fJi ; 1 � i � i0g be a finite family of compact intervals containing all the fixed
point of h, as given by Claim 11.4. Note that we do not necessarily take the minimal
intervals as constructed in the proof of Claim 11.4, as we want the following properties
for that family.
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Claim 11.5 We can choose the collection of intervals fJi ; 1� i � i0g, each in a center
leaf fixed by h, satisfying the following properties:

(1) The union
S
1�i�i0

Ji contains all the fixed points of h.

(2) The endpoints of each interval Ji are fixed by h.

(3) The intervals are pairwise disjoint.

Proof Let c1; : : : ; cn be a minimal collection of center leaves that contains all fixed
points of h in L, as given by Claim 11.4. Let Ji be the minimal compact interval
containing all fixed points of h in ci .

The family Ji then satisfies conditions (1) and (2). So we only have to show that
one can split the intervals Ji further so that condition (3) is also satisfied (while still
satisfying the first two conditions).

Notice that ci and cj intersect if and only if Ji and Jj intersect. Thus, we can restrict
our attention to each connected component of the union of the ci separately.

Up to renaming, assume that
S
1�i�k ck is a connected component of

S
1�i�n ck .

Now we can consider the union of the J1; : : : ; Jk as a graph, where the vertices are
the endpoints of the segments Ji together with the points where two segments merge,
and the edges are the subsegments joining the vertices. With this convention, the union
of the J1; : : : ; Jk is then a tree. Otherwise there would be a bigon in L enclosed by
the union, which is ruled out by Claim 11.3.

Let B be this tree. Our goal is to remove enough open segments from the Ji so that
no vertex of this associated tree has degree 3 or more. Consider a vertex p in B with
degree 3 or more. Then there are two edges e1 and e2 abutting at p on the same side
of p. We claim that e1 cannot have points fixed by h arbitrarily close to p (except for
p itself). Otherwise one would have a fixed point y 2 e1 such that s.y/ intersects e2.
Since e2 is contained in a fixed leaf, e2 \ s.y/ is fixed by h. This implies (since h
decreases stable length) that y is in e2. Thus, by Claim 11.3, the intersection of e1 and
e2 would contain the segment Œy; p�, contradicting the fact that they are distinct edges.

Thus, we can remove an open interval .p; z/ from, say, e1, where z is fixed by h but
.p; z/ has no fixed points. In the new tree, p has index one less than before and z has
index one.
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Doing this recursively on each vertex of index strictly greater than 2, we will obtain, as
sought, a disjoint collection of intervals that also satisfy conditions (1) and (2).

Now we will look at the index of h on the fixed intervals Ji , for 1� i � i0, produced
by Claim 11.5. Note that for each such interval Ji there are no other fixed points of h
nearby in L. Let c be a leaf fixed by h containing Ji .

If h is contracting on c near both endpoints of Ji on the outside, then the index of Ji
is C1. This is because the stable foliation is contracting under h D n ı zf m (since
m > 0). Hence h is contracting near Ji . If h is expanding on both sides, the index
is �1. If one side is contracting and the other is expanding, then the index is zero.

The global index for h can then be computed by adding the indexes of h on each of the
intervals Ji , taking care of cancellations.

Let ck , for 1 � k � k0, be finitely many center leaves, fixed by h and containing all
the Ji . We choose this collection to have the minimum possible number of leaves.

Each leaf ck contains finitely many segments Ji , so there are exactly two infinite rays
that do not contain any Ji . The contribution of ck to the global index of h (before
possible cancellations) will then be �1 if both rays are expanding, 0 if one is expanding
while the other contracts, and 1 if both are contracting.

Suppose, for a contradiction, that there is at most one expanding ray in L. So each ck ,
considered separately, has index either 0 or 1.

If there is an expanding ray, let ck be a leaf with an expanding ray. Otherwise let ck be
any leaf. Now we need to consider how the other leaves and the possible cancellations
impact the global index of h. Let cl be a leaf that intersects ck . If cl shares an expanding
ray with ck , then the other ray of cl is contracting, and eventually disjoint from the
corresponding ray of ck . The fixed set (if any) of this ray in cl has index zero. If cl
does not share an expanding ray with ck , then both rays of cl are contracting. The ray
that is added to the same end as the expanding ray of ck contributes index 1. The other
ray contributes index 0. In any case the index, starting at 0 or 1, does not decrease.

Now, if cm is another leaf that is disjoint from the set above, then both rays are
contracting and it contributes an index 1. So again the index does not decrease.

Thus, if there is at most one expanding ray, then the index of h is at least 0. This
contradicts the fact that the index of h is 1�p where p � 2, and thus finishes the proof
of Proposition 11.1.
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11.2 Periodic rays and boundary dynamics

Proposition 11.1 gave the existence of periodic rays that are coarsely expanding. Here
we will show that such a ray has a well-defined ideal point on the circle at infinity of
the leaf, and that it corresponds to the endpoint of a prong of the transverse regulating
pseudo-Anosov flow, ˆcs.

As previously, we assume that we have a center stable leaf L 2 eWcs such that there is a
deck transformation  for which  ı zf m.L/DL for some m>0. We let L2D zf m.L/
and define �12 W L! L2 the flow along êcs map. We also take as before

h WD  ı zf m and g WD  ı �12:

Recall that h and g are maps of L that are a bounded distance from each other. Also
g preserves the (singular) foliations Gs and Gu. We again assume that if g has a fixed
point x0 in L then  is such that g preserves each of the prongs of Gs.x0/ and Gu.x0/.

The action of g on the circle at infinity S1.L1/ has an even number of fixed points,
which are alternately attracting and repelling. We denote by P the set of attracting fixed
points and by N the set of repelling ones. With this notation, we get the following.

Proposition 11.6 Let � W Œ0;1/! L be a contracting fixed ray for h. Then the limit
limt!1 �.t/ exists in S1.L/ and it is a (unique) point in N. (Symmetrically, if � is an
expanding fixed ray, its limit point belongs to P .)

Proof Let y be in P and let U be a small neighborhood of y in L[ S1.L/ as in
[3, Section 8]. If � has a point q in U \L, then hn.q/ converges to y as n!C1,
so � could not be a contracting ray; a contradiction. So � cannot limit to any point
in P . If z is in S1.L/ n fN [P g, then hn.z/ converges to a point in P under forward
iteration. Hence, again, a small neighborhood Z of z in L[S1.L/ is sent, under some
iterate, inside a neighborhood U as in the first part of the proof. So any point in Z\L
converges to a point in P under forward iteration. Hence � cannot limit to a point
in S1.L/ n fN [P g either. So � can only limit to points in N . Since � is properly
embedded in L, the set of accumulations points of � is connected, so it has to be a
single point.

12 Mixed case in hyperbolic manifolds

In this section we show that even in the non-dynamically-coherent case, the mixed
behavior is impossible for hyperbolic 3–manifolds. This will be done by using the study
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of translations in hyperbolic 3–manifolds developed in Sections 10 and 11 to provide
more information on the dynamics of general partially hyperbolic diffeomorphisms.

The main result of this section is the following.

Theorem 12.1 Let f WM !M be a partially hyperbolic diffeomorphism homotopic
to the identity on a hyperbolic 3–manifold M. Suppose that there exists a finite lift and
finite power yf of f that preserves two branching foliations Wcs and Wcu, and is such
that a good lift zf fixes a leaf of eWcu. Then f is a discretized Anosov flow.

This, together with Proposition 6.1, completes Theorem 2.5.

12.1 The setup

Consider a partially hyperbolic diffeomorphism f as in Theorem 12.1.

Our goal is to show that the good lift zf of f fixes every leaf of eWcs and eWcu. Indeed,
Proposition 7.2 (and Corollary 7.5) then implies that yf is dynamically coherent, so we
can then use [3, Theorem B] to obtain that yf is a discretized Anosov flow. In turn, thanks
to Proposition 7.7, we obtain that f itself is dynamically coherent and a discretized
Anosov flow.

Since Proposition 7.7 allows us to use finite lifts and powers, we assume directly
that f D yf , that Wcs and Wcu are orientable and transversely orientable, and that f
preserves their orientations.

Since zf is assumed to fix one leaf of eWcu, Proposition 6.1 implies that every leaf
of eWcu is fixed. We will prove by contradiction that every leaf of eWcs is fixed by zf .
So, by Proposition 6.1, we can assume that Wcs is R–covered and uniform and that zf
acts as a translation on the leaf space of eWcs. In particular, there are no center curves
fixed by zf .

Then, we can apply Proposition 5.2 to Wcu to deduce that every periodic center leaf is
coarsely expanding.

On the other hand, since zf acts as a translation on eWcs, we can use the results from
Sections 10 and 11. Let ˆcs be a regulating pseudo-Anosov flow transverse to Wcs

given by Proposition 10.1.

The flow ˆcs is a genuine pseudo-Anosov, that is, it admits at least one periodic orbit
which is a p–prong with p � 3; see [3, Proposition D.4].
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Now, we choose  in �1.M/, associated to this prong, and apply Proposition 10.3:
up to taking powers, we can assume that h WD  ı zf k for some k > 0 fixes a leaf L
of eWcs. Moreover, the dynamics in L resembles that of the dynamics of a p–prong,
and in particular fixes every prong.

Notice that Proposition 11.1 also provides some center rays which are expanding in L
for h. We will need to use some of the ideas involved in the proof of that proposition
(even though the statement itself will not be used).

We summarize the discussion above in the following proposition.

Proposition 12.2 Let f W M ! M be a partially hyperbolic diffeomorphism of a
hyperbolic 3–manifold M , homotopic to the identity, preserving branching foliations
Wcs and Wcu. Suppose that a good lift zf fixes a leaf of eWcu and acts as a translation oneWcs. Then , up to taking finite iterates and covers , there exists  2 �1.M/ and k > 0
such that a center stable leaf L 2 eWcs is fixed by h WD  ı zf k , and its Lefschetz index
is IFix.h/.h/ D 1� p, with p � 3. Moreover , every center curve fixed by h in L is
coarsely expanding.

Let  be as in the proposition. Let L be a center stable leaf fixed by hD  ı zf k and
L2 D zf

k.L/. As previously, we write �12 W L! L2 for the map obtained by flowing
from L to L2 along êcs. We set g WD  ı �12.

The map g acts on the compactification of L with its ideal circle L[S1.L/ the same
way as h does; see Sections 10 and 11.

Let ı be the unique orbit of êcs fixed by  and let x be the (unique) intersection of ı
with L. Note that x is the unique fixed point of g. We assume that  fixes the prongs
of ı, so h has exactly 2p fixed points in S1.L/. These fixed points are contracting
if they correspond to an ideal point of Gu.x/, and expanding if they are ideal points
of Gs.x/.

12.2 Proof of Theorem 12.1

To prove Theorem 12.1 we will first show some properties. Recall from Proposition 11.6
that every proper ray in L 2 eWcs fixed by h has a unique limit point in S1.L/; notice
that the ray must be either expanding or contracting. We will show that the fixed rays
associated to the center and stable (branching) foliations have different limit points at
infinity.
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Lq1

z

cs.z/

Figure 10: Rays have to land in different points of S1.L/.

Lemma 12.3 Let s be a stable leaf in L which is fixed by h. Then the two rays of s
limit to distinct ideal points of L. The same holds if c is a center leaf in L fixed by h.

Proof We do the proof for the center leaf c; the one for stable leaves is analogous,
and a little bit easier (since there is no branching).

By hypothesis, c is fixed by h, hence it is coarsely expanding under h. It follows that
there are fixed points of h in c. By Proposition 11.6, each ray of c can only limit to a
point in P � S1.L/ where, as previously, P is the set of attracting fixed points of h
in S1.L/. Let q1 and q2 be the ideal points of the rays. What we have to prove is that
q1 and q2 are distinct.

Suppose that q1 D q2. Then c bounds a unique region S in L which limits only to
q1 2 S

1.L/. The other complementary region of c in L limits to every point in S1.L/.
Let z be a fixed point of h in c. Then the stable leaf s.z/ of z has a ray s1 entering S .
It cannot intersect c again, and it is properly embedded in L. Hence it has to limit
to q1 as well. See Figure 10.

But now this ray is contracting for h. This contradicts Proposition 11.6 because this
ray should limit in a point of N .

Remark 12.4 The proof used strongly that periodic center leafs are coarsely expanding,
in order to induce a behavior at infinity. In the examples of [7] it does happen that
different stable curves land in the same ideal point at infinity in their center stable leaf.
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Figure 11: Showing the existence of fixed points below x in Lemma 12.5.

Now we show a sort of dynamical coherence for fixed center rays.

Lemma 12.5 Suppose that c1 and c2 are distinct center leaves in L which are fixed
by h. Then c1 and c2 cannot intersect.

Notice that since f is not necessarily dynamically coherent, the distinct center leaves
c1 and c2 can a priori intersect each other. The proof will depend very strongly on the
fact that center rays fixed by h are coarsely expanding.

Proof Suppose that c1 and c2 intersect. Since c1 and c2 are both fixed by h, so is
their intersection. Since h is coarsely expanding in each, c1 and c2 share a fixed point
of h. In the proof of Claim 11.3, we showed that c1 and c2 cannot form a bigon B.

It follows that there is a point x, fixed by h, which is an endpoint of all intersections of
c1 and c2: on one side x bounds a ray e1 of c1 and a ray e2 of c2 such that e1 and e2
are disjoint. For a point y in e1 near enough to x, we have that s.y/ must intersect c2.
Since stable lengths are contracting under powers of h, it implies that e1 is contracting
towards x near x and similarly for e2; see Figure 11. But e1 is coarsely expanding.
Hence there must exist fixed points of h in e1. Let y 2 e1 be the closest point to x
which is fixed by h. Similarly, let z in e2 be the closest to x fixed by h.

The leaves s.y/ and s.z/ are not separated from each other in the stable leaf space
in L.
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Let now c be a center leaf through x which is between c1 and c2 and which is the first
center leaf not intersecting s.y/.

Then h.c/D c since s.y/ is fixed and c is the first leaf through x not intersecting s.y/.
Consider the ray of c starting at x and moving in the direction of y. This ray is the limit
of compact center segments from x to points in s.y/. As such this ray of c can only
intersect stable leaves which are between s.x/ and s.y/. Because the map h contracts
stable lengths it follows that the map h is contracting in this ray of c. This contradicts
Proposition 12.2 because this ray is in a center leaf which is fixed by h.

Thus far, we showed that distinct center leaves inL which are fixed by h do not intersect.
Then the proof of Claim 11.4 also implies that fixed center leaves cannot accumulate
(as accumulation would imply that some fixed leaves intersect).

We conclude that there are finitely many center leaves in L that are fixed under h. Each
such center leaf is coarsely expanding. For each such center leaf c, we consider a small
enough open topological disk containing all the fixed points of h in c, and no other
fixed point of h in L. Then, on such disks, the Lefschetz index of h is �1. Since the
total Lefschetz number of h in L is 1�p it follows that:

Lemma 12.6 There are exactly p� 1 center leaves which are fixed by h in L.

This together with the following lemma will allow us to make a counting argument to
reach a contradiction.

Lemma 12.7 Let c1 and c2 be two distinct center leaves in L fixed by h. Let y1 2 c1
and y2 2 c2 be fixed points of h. Then s.y1/ and s.y2/ do not have common ideal
points.

Proof Suppose, for a contradiction, that there are distinct fixed center leaves c1 and
c2 satisfying the following: there are points y1 2 c1 and y2 2 c2, fixed by h, such that
s1 D s.y1/ and s2 D s.y2/ share an ideal point in S1.L/.

Let q be the common ideal point of the corresponding rays of s1 and s2. Note that by
Proposition 12.2 the point q cannot be an endpoint of c1 or c2, because ideal points of
fixed centers are contracting in S1.L/ and ideal points of fixed stables are repelling
in S1.L/.
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Figure 12: A depiction of the main objects in the proof of Lemma 12.7.

Let ej be the ray in sj with endpoint yj and ideal point q. Suppose first that no center
leaf intersecting e1 intersects e2. Let c0 be a center leaf intersecting e1. Iterate c0
by powers of h�1. It pushes points in s1 away from y1. Since the leaves h�i .c0/ all
intersect s1 and none of them intersects s2 or c2, the sequence .h�i .c0// converges to
a collection of center leaves as i !C1. Then there is only one center leaf in this
limit, call it c, which separates all of h�i .c0/ from s2. This c is invariant under h and
it has an ideal point in q because it separates h�i .c0/ (recall that h�i .c0/\ s1! q

as i !1) from s2. Now q is a repelling fixed point in S1.L/, so c must have an
attracting ray, a contradiction with Proposition 12.2.

It follows that some center leaf intersecting e1 also intersects e2. Let c0 be one such
center leaf. Now iterate by positive powers of h. Then .hi .c0// converges to a fixed
center leaf v1 through y1 and a fixed center leaf v2 through y2. But then v1 and c1 are
both fixed by h and both contain y1. Lemma 12.5 implies that c1 D v1 and c2 D v2.
In particular v1 6D v2, and they are nonseparated from each other. In this case, consider
s the unique stable leaf defined as the first leaf not intersecting c1 that separates s1
from s2. Then, as above, h fixes s and has a fixed point y in s. But a center leaf c
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through y fixed by h has to intersect the interior of the ray e1. This intersection point
is the intersection of c fixed by h, and s1 fixed by h. So this intersection point is fixed
by h. But this is a contradiction, because y1 is the only fixed point of h in s1. So
Lemma 12.7 is proven.

We now can complete the proof of Theorem 12.1.

Proof of Theorem 12.1 By Lemma 12.6, there are p�1 center leaves fixed by h in L.
We denote them by c1; : : : ; cp�1.

Each center leaf has at least one fixed point. Let yi , for 1� i � p� 1, be a fixed point
in ci . Then, for each i , Lemma 12.3 states that s.yi / has two distinct ideal points z1i
and z2i .

Moreover, for every i 6D j , the ideal points of the stable leaves are distinct by
Lemma 12.7. It follows that there are at least 2p� 2 distinct points in S1.L/ which
are repelling.

But we also know that there are exactly p points in S1.L/ that are repelling under h.
It follows that 2p � 2 � p, which implies p D 2. However, we had that p � 3, thus
obtaining a contradiction.

This finishes the proof of Theorem 12.1.

Appendix A Some 3–manifold topology

Besides the 3–manifold topology presented in [3, Appendix A] we will need an addi-
tional result, which is important for understanding certain particular deck transforma-
tions when one lifts to finite covers.

Lemma A.1 Let M be a closed , irreducible 3–manifold with fundamental group that
is not virtually nilpotent. Suppose that ˇ is a nontrivial deck transformation so that
d.x; ˇ.x// is bounded above in zM. Then M is a Seifert fibered space and ˇ represents
a power of a regular fiber.

Proof First we assume that M is orientable. Then, the JSJ decomposition states
that M has a canonical decomposition into Seifert fibered and geometrically atoroidal
pieces. We lift this to a decomposition of zM and construct a tree T in the following
way: the vertices are the lifts of components of the torus decomposition of M, and we
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associate an edge if two components intersect along the lift of a torus. Such a lift of a
torus is called a wall. There is a minimum separation distance between any two walls.

The deck transformation ˇ acts on this tree. Let W be a wall. Suppose that ˇ.W / is
distinct from W. But, as subsets of zM, the walls W and ˇ.W / are a finite Hausdorff
distance from each other. Then �.W / and �.ˇ.W // are tori in M, and the region V
in zM betweenW and ˇ.W / projects to �.V /, which is T2�Œ0; 1� inM. If this happens,
then M is a torus bundle over a circle. In that case, use that �1.M/ is not virtually
nilpotent, so the monodromy of the fibration is an Anosov map of T2. But then no ˇ
as above could satisfy the bounded distance property. It follows that ˇ.W /DW for
any wall, and in particular ˇ.P /D P for any vertex of T .

Now consider a vertex P . Suppose first that �.P / is homotopically atoroidal. By the
geometrization theorem, �.P / is hyperbolic. If ˇ restricted to P were to satisfy the
bounded distance property, then it would have to be the identity on P . Hence ˇ itself
is the identity, a contradiction.

Hence all the pieces of the torus decomposition of M are homotopically toroidal.
Suppose now that there is one such piece �.P / that is geometrically atoroidal (but not
homotopically atoroidal). The proof of the Seifert fibered conjecture [16; 20] shows
that �.P / has no boundary and �.P / is Seifert. In other words, M D �.P / is Seifert.
So we can assume that all the pieces of the torus decomposition are geometrically
toroidal. Then they are all Seifert fibered. Thus M is a graph manifold.

We will show that the torus decomposition of M is in fact trivial, proving that M is
Seifert fibered. Suppose it is not true. Then the tree T is infinite. Let P1; P2; P3 be
three consecutive vertices in T . Let W1 be the wall between P1 and P2. Then ˇ.W1/
(as a set in zM ) is a bounded distance from W1 and sends the Seifert fibration of P
in W1 to lifts of Seifert fibers. It follows that ˇ D ık1˛1, where ı1 represents a regular
fiber in �.P1/, and ˛1 is a loop in �.W1/. Similarly, if W2 is the wall between P2
and P3, then ˇ D ıi3˛3, where ˛3 is a loop in �.W3/. Then ˛1 and ˛3 are both in the
boundary of �.P2/. The loops representing ık1˛1 and ıi3˛3 are both in the boundary
of �.P2/. They represent the same element of �1.M/ only when k D i D 0 and ˛1
and ˛3 are freely homotopic. That means that P2 is a torus times an interval, which is
impossible in the torus decomposition in our situation, as explained above.

It follows now that the torus decomposition of M is trivial, which implies that M is
Seifert fibered. Moreover, if the base is not hyperbolic, then �1.M/ is virtually nilpotent
[32, Theorem 5.3]. But this contradicts the hypothesis of the lemma.
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It follows that the base is hyperbolic. Also ˇ induces a transformation in the universal
cover of the base that is a bounded distance from the identity. This can only happen if
this transformation is the identity. Therefore ˇ represents a power of a regular Seifert
fiber in M (notice that nonregular fibers induce a finite symmetry on the base, thus not
the identity, and not a bounded distance from the identity).

So the lemma is proven when M is orientable. If M is not orientable, then it has
a double cover M2 which is orientable. Now ˇ2 lifts to an element of �1.M2/ that
satisfies the assumption of the lemma. So we can apply the result to M2 and obtain
that M2 is Seifert. Thus M is doubly covered by a Seifert space, which, by a result of
Tollefson [34], implies that M itself is Seifert fibered. It follows that ˇ corresponds to
a power of a regular fiber. This finishes the proof of the lemma.

Appendix B Minimality and f –minimality

We prove that in certain situations minimality is equivalent to f –minimality. We need
the following result, which is of interest in itself.

Lemma B.1 Let Lcs be the leaf space of eWcs. Let B � Lcs be a closed set of leaves.
Suppose that , for all x 2 zM, there exists a leaf L 2 B containing x. Then B D Lcs.

Proof The lemma is obvious when Wcs is a true foliation (and one does not need to
require B to be closed). However, when Wcs has some branching, one could possibly
have a union of leaves that cover all of zM without using all the leaves of eWcs. For
closed sets of leaves we show this is not possible.

Let L be a leaf of eWcs, x a point in L and � an open unstable segment through x.
The set of leaves of eWcs intersecting � is isomorphic to an open interval. Using the
transversal orientation to eWcs, we can put an order on this interval.

By our assumption, every point in � intersects a leaf in B. Let L0 be the supremum of
leaves in B, intersecting � and smaller than or equal to L. Since B is closed, we have
L0 2 B. Notice that x is in both L and L0.

We claim that L0DL. If L is not equal to L0 then they branch out. Let y be a boundary
point of L\L0. Let z 2 L0, with z … L close enough to y that its unstable leaf u.z/
intersects L. Now take any point w 2 u.z/ in between z and L \ u.z/. Any leaf
L1 2 eWcs that contains w must contain y. Hence (because leaves do not cross), L1 also
contains x. By definition, it is above L0, thus L1 is not in B. Since this is true for any
leaf through w, it contradicts our assumption.
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Lemma B.2 When Wcs does not have compact leaves , then f –minimality of Wcs is
equivalent to minimality of Wcs.

Proof Minimality obviously implies f –minimality, so we only need to show the other
implication.

Suppose that Wcs is not minimal and let C be the union of a set of Wcs leaves which is
closed and not M. Let Wcs

� be an approximating foliation, with approximating map hcs
�

sending leaves of Wcs
� to those of Wcs. Then .hcs

� /
�1.C / is a set which is a union of

Wcs
� leaves, which is closed and notM. In particular, it contains an exceptional minimal

set D. By [26, Theorem 4.1.3], the actual foliation Wcs
� has finitely many exceptional

minimal sets B1; : : : ; Bk . The union B of these is not M because D 6DM. The set of
leaves in B is a closed set of leaves denoted by B. Then AD hcs

� .B/ is a closed subset
of M, and AD hcs

� .B/ is a closed set of leaves, being the image by hcs
� of the leaves

in B. Let zAD ��1.A/; we stress that this is on the leaf-space level, not in terms of
sets. This is a closed subset of Lcs.

Let Ai WD hcs
� .Bi /. Every leaf of Wcs which is the image of a leaf in Bi is dense in Ai .

Using this, it is easy to see that f .A/D A. By f –minimality it follows that ADM.

Since A DM , zA is a closed subset of Lcs, whose union of points in all leaves of zA
is zM , as ADM. Lemma B.1 implies that zAD Lcs. Hence for each leaf E of Wcs, it is
the image of a leaf F in some Bi . Conversely, every leaf of Wcs

� maps by hcs
� to a leaf

of Wcs.

For each leaf E of Wcs, its preimage .hcs
� /
�1.E/ is a closed interval of leaves of Wcs

� .
No leaf in the interior of the interval can be in a Bi as it is a minimal set. It follows
that the complementary regions to B in M are I–bundles. These can be collapsed to
generate another foliation C. Since the Bi were minimal sets of Wcs

� , the collapsing of
each of these is a minimal set of C. Since the union is all of M, there can be only one
such minimal set, so Wcs

� is minimal.

But this contradicts the fact that D is an exceptional minimal set of Wcs
� .

We state the following criteria for dynamical coherence (which in this setting is quite
obvious).

Proposition B.3 [8, Proposition 1.6 and Remark 1.10] Assume that f is a partially
hyperbolic diffeomorphism admitting branching foliations Wcs and Wcu. If no two
distinct leaves of Wcs or Wcu intersect , then f is dynamically coherent.
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Appendix C The Lefschetz index

Here we define the Lefschetz index and give the main property that we used. We refer
to the monograph by Franks [19, Section 5] for details and other references.

For any space X and subset A�X , we denote by Hk.X;A/ the kth relative homology
group with coefficients in Z.

Definition C.1 Let V � Rk be an open set and F W V � Rk ! Rk be a continuous
map such that the set of fixed points of F is � � V, a compact set. Then the Lefschetz
index of F , denoted by I�.F /, is an element in Z Š Hk.R

k;Rk � f0g/, defined
as follows. It is the image by .id � F /� W Hk.V; V � �/ ! Hk.R

k;Rk � f0g/ of
the class u� , where u� itself is the image of the generator 1 under the composite
Hk.R

k;Rk�D/!Hk.R
k;Rk��/ŠHk.V; V ��/. Here D is a ball containing � .

It is easy to see that if � D Fix.F /D �1[� � �[�j , where �i are compact and disjoint,
then I�.F /D

Pj
1 I�.F /. Here I�.F / is the index restricted to an open set Vi of V

which does not intersect the other �m; see [19, Theorem 5.8(b)].

This technical definition works well with the standard examples. For a single hyperbolic
fixed point q, the index at q is exactly sgn.det.id�DqF //, where det is the determinant
and sgn is the sign of the determinant; see [19, Proposition 5.7]. Hence in dimension
two, the index of a hyperbolic fixed point when the orientation of the bundles is
preserved is �1. This can be generalized to a p–prong hyperbolic fixed point, to
obtain that the index is 1�p. This is because the index is invariant under homotopic
changes. A p–prong can be easily split into p� 1 distinct hyperbolic points which are
differentiable. In addition, for any fixed set which behaves locally as a hyperbolic fixed
point, the index is the same as the hyperbolic fixed point.

The main property we use is the following.

Proposition C.2 [19, Theorem 5.8(c)] Let P be a topological plane equipped with a
metric d . Let g; h W P ! P be two homeomorphisms. Suppose that there exists R > 0
such that

� for every x 2 P , one has that d.g.x/; h.x// < R, and

� there is a disk D such that , for every x …D, one has that d.x; g.x// > 2R.

Then the total index satisfies IFix.g/.g/D IFix.h/.h/.

See also [28, Section 8.6] for an alternative presentation of the Lefschetz index.
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