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The deformation space of geodesic triangulations
and generalized Tutte’s embedding theorem

YANWEN LUO

TIANQI WU

XIAOPING ZHU

We prove the contractibility of the deformation space of the geodesic triangulations
on a closed surface of negative curvature. This solves an open problem, proposed by
Connelly, Henderson, Ho and Starbird (1983), in the case of hyperbolic surfaces. The
main part of the proof is a generalization of Tutte’s embedding theorem for closed
surfaces of negative curvature.

54C25, 55Q52, 57N65, 57S05, 58D10

1 Introduction

We study the deformation space of geodesic triangulations of a surface within a fixed
homotopy class. Such a space can be viewed as a discrete analogue of the space of
surface diffeomorphisms homotopic to the identity. Our main theorem is:

Theorem 1.1 For a closed orientable surface of negative curvature , the space of
geodesic triangulations in a homotopy class is contractible. In particular , it is connected.

The group of diffeomorphisms of a smooth surface is a fundamental object in the study
of low-dimensional topology. Determining the homotopy types of diffeomorphism
groups has profound implications for a wide range of problems in Teichmüller spaces,
mapping class groups, and geometry and topology of 3–manifolds. Smale [23] proved
that the group of diffeomorphisms of a closed 2–disk which pointwise fix the boundary
is contractible. This enabled him to show that the group of orientation-preserving
diffeomorphisms of the 2–sphere is homotopy equivalent to SO.3/ [23]. Earle and
Eells [10] identified the homotopy type of the group of diffeomorphisms homotopic to
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3362 Yanwen Luo, Tianqi Wu and Xiaoping Zhu

the identity for any closed surface. In particular, this topological group is contractible
for a closed orientable surface with genus greater than one. It is consistent with our
Theorem 1.1 for the discrete analogue.

Cairns [6] initiated the investigation of the topology of the space of geodesic triangula-
tions and proved that, if the surface is a geometric triangle in the Euclidean plane, the
space of geodesic triangulations with fixed boundary edges is connected. A series of
further developments culminated in a discrete version of Smale’s theorem, proved by
Bloch, Connelly and Henderson [2]:

Theorem 1.2 The space of geodesic triangulations of a convex polygon with fixed
boundary edges is homeomorphic to a Euclidean space. In particular , it is contractible.

A simple proof of the contractibility of the space above is provided in Luo [21] using
Tutte’s embedding theorem [24]. It also provides examples showing that the homotopy
type of this space can be complicated if the boundary of the polygon is not convex. For
closed surfaces it is conjectured in Connelly, Henderson, Ho and Starbird [9] that:

Conjecture 1.3 The space of geodesic triangulations of a closed orientable surface
with constant curvature deformation retracts to the group of isometries of the surface
homotopic to the identity.

The connectivity of these spaces has been explored by Cairns [6], Chambers, Erickson,
Lin and Parsa [7] and Hass and Scott [18]. Awartani and Henderson [1] identified a
contractible subspace in the space of geodesic triangulations of the 2–sphere. Hass
and Scott [18] showed that the space of geodesic triangulation of a surface with a
hyperbolic metric is contractible if the triangulation contains only one vertex. Recently,
the authors [22] and Erickson and Lin [11] proved this conjecture independently in
the case of flat tori. Our main result affirms Conjecture 1.3 in the case of hyperbolic
surfaces and generalizes its conclusion to surfaces of negative curvatures.

One practical application of our work concerns the graph morphing on higher-genus
surfaces. Computing morphs between graphs has a wide range of applications in
geometric comparison, animation, and modeling. The 1–skeleton of geodesic triangular
mesh is one of the most common graphs on a surface. As a fundamental result, our
main theorem implies that, on a closed surface of negative curvature, any two geodesic
triangular meshes can be morphed to each other if they have the same combinatorial
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structure. Furthermore, in the proof of our main theorem, we generalize Tutte’s
embedding theorem to higher-genus surfaces. Following the idea initiated by Floater
and Gotsman [14], we can explicitly construct such morphs by linearly interpolating the
nonsymmetric edge weights. A similar idea has been applied for graph morphing on
flat tori in work by Chambers, Erickson, Lin and Parsa [7] and Erickson and Lin [11].

1.1 Setup and the main theorem

Assume M is a connected closed orientable smooth surface with a smooth Riemannian
metric g of nonpositive Gaussian curvature. A topological triangulation of M can
be identified as a homeomorphism  from jT j to M , where jT j is the carrier of a
2–dimensional simplicial complex T D .V;E; F / with the vertex set V , the edge set E,
and the face set F . For convenience, we label the vertices as 1; 2; : : : ; n, where nD jV j
is the number of vertices. The edge in E determined by vertices i and j is written ij .
Each edge is identified with the closed unit interval Œ0; 1�.

Let T .1/ be the 1–skeleton of T , and denote by X DX.M; T; / the space of geodesic
triangulations homotopic to  jT .1/ . More specifically, X contains all the embeddings
' W T .1/!M such that

(i) the restriction 'ij of ' to the edge ij is a geodesic parametrized with constant
speed, and

(ii) ' is homotopic to  jT .1/ .

Given an embedding ' in X , 'ij is often identified as a map from Œ0; 1� to M such that
'.0/D i , '.1/D j and 'ij .t/ represents the point on the edge ij that is t along the
geodesic from i to j parametrized on Œ0; 1�.

It has been proved by Colin de Verdière [8] that such X.M; T; / is always nonempty.
Further, X is naturally a metric space, with the distance function

dX .'; �/Dmax
x
dg.'.x/; �.x//:

Then our main theorem is formally stated as follows:

Theorem 1.4 If .M; g/ has strictly negative Gaussian curvature , then X.M; T; / is
contractible. In particular , it is connected.

Here we consider only surfaces of negative curvature since this ensures the uniqueness
of the geodesic in a homotopy class, and our estimates using the CAT.k/ comparison
theorems of triangles rely on a strictly negative upper bound of the curvature of
the surface.
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1.2 Generalized Tutte’s embedding

Let zX D zX.M; T; / be the superspace of X containing all the continuous maps
' W T .1/!M satisfying that

(i) the restriction 'ij of ' to the edge ij is a geodesic parametrized with constant
speed, and

(ii) ' is homotopic to  jT .1/ .

The key difference between X and zX is that elements in zX may not be embeddings
of T .1/ to M . The space zX is also naturally a metric space, with the same distance
function

d zX .'; �/Dmax
x
dg.'.x/; �.x//:

We call an element in zX a geodesic mapping. A geodesic mapping is determined by
the positions qi D '.i/ of the vertices and the homotopy classes of 'ij relative to
the endpoints qi and qj . In particular, this holds for geodesic triangulations. Since
we can perturb the vertices of a geodesic triangulation to generate another, X is a
2n–dimensional manifold.

Let .i; j / be the directed edge starting from the vertex i and ending at the vertex j .
Denote by EE D f.i; j / W ij 2 Eg the set of directed edges of T . A positive vector
w 2R

EE
>0 is called a weight of T . For any weight w and geodesic mapping ' 2 zX , we

say ' is w–balanced if, for any i 2 V ,X
j Wij2E

wij vij D 0:

Here vij 2 TqiM is defined with the exponential map exp W TM ! M such that
expqi .tvij /D 'ij .t/ for t 2 Œ0; 1�.

The main part of the proof of Theorem 1.4 is to generalize Tutte’s embedding theorem
(see Theorem 9.2 in [24] or Theorem 6.1 in Floater [13]) to closed surfaces of negative
curvature. Specifically, we prove the following two theorems:

Theorem 1.5 Assume .M; g/ has strictly negative Gaussian curvature. For any
weight w there exists a unique geodesic mapping ' 2 zX.M; T; / that is w–balanced.
The induced map ˆ.w/D ' is continuous from R

EE
>0 to zX .

Theorem 1.6 If ' 2 zX is w–balanced for some weight w, then ' 2X .

Theorem 1.6 can be regarded as a generalization of the embedding theorems of Colin
de Verdière (see Theorem 2 in [8]) and Hass and Scott (see Lemma 10.12 in [18]),
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which imply that the minimizer of the discrete Dirichlet energy

E.'/D
1

2

X
ij2E

wij l
2
ij

among the maps ' in the homotopy class of  jT .1/ is a geodesic triangulation. Here lij
is the geodesic length of 'ij in M . The minimizer is a w–balanced geodesic mapping
with wij D wj i for ij 2E. Hence, Theorem 1.6 extends the previous results from the
cases of symmetric weights to nonsymmetric weights. We believe that the proofs of
Colin de Verdière [8] and Hass and Scott [18] could be easily modified to work with
our nonsymmetric case. Nevertheless, we give a new proof in Section 3 to make the
paper self-contained.

1.3 Mean value coordinates and the proof of Theorem 1.4

Theorems 1.5 and 1.6 give a continuous map ˆ from R
EE
>0 to X . To map a geodesic

embedding to a weight, we use the mean value coordinates introduced by Floater [12].
Given ' 2X the mean value coordinates are defined to be

wij D
tan
�
1
2
˛ij
�
C tan

�
1
2
ˇij
�

jvij j
;

where jvij j equals the geodesic length of 'ij .Œ0; 1�/, and ˛ij and ˇij are the inner
angles in '.T .1// at '.i/ sharing the edge 'ij .Œ0; 1�/. The construction of mean value
coordinates gives a continuous map ‰ from X to R

EE
>0. Further, by Floater’s mean

value theorem (see Proposition 1 in [12]), any ' 2 X is ‰.'/–balanced. Namely,
ˆ ı‰ D idX . Then Theorem 1.4 is a direct consequence of Theorems 1.5 and 1.6.

Proof of Theorem 1.4 Since R
EE
>0 is contractible, ‰ ıˆ is homotopic to the identity

map. Since ˆ ı‰ D idX , X is homotopy equivalent to the contractible space R
EE
>0.

We will prove Theorem 1.5 in Section 2 and Theorem 1.6 in Section 3.

Acknowledgment The authors were supported in part by NSF 1737876, NSF 1760471,
NSF DMS FRG 1760527 and NSF DMS 1811878.

2 Proof of Theorem 1.5

Theorem 1.5 consists of three parts: the existence of the w–balanced geodesic mapping,
the uniqueness of the w–balanced geodesic mapping and the continuity of the map ˆ.
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In this section we will first parametrize zX by M, where M is the product manifold
of the n copies of the universal cover �M of M . Then we prove the three parts in
Sections 2.1, 2.2 and 2.3, respectively.

For the proof we mainly work on the universal covering space �M instead of the original
surfaceM . This is because a geodesic arc is uniquely determined by its endpoints in �M
but not in M , and thus the geodesic triangulation of M in the same homotopy class is
naturally parametrized by the lifted vertices in �M . The condition of strictly negative
curvature is mostly needed in the proof of the existence of the w–balanced mappings,
where we frequently compare geodesic triangles in �M with geodesic triangles of
constant negative curvature.

Assume that p is the covering map from �M to M , and � is the corresponding group of
deck transformations of the covering so that �M=� DM . For any i 2 V , fix a lifting
Qqi 2 �M of qi 2M . For any edge ij , denote by Q'ij .t/ by the lifting of 'ij .t/ such that
Q'ij .0/D Qqi . Here Q'ij .1/ may not be equal to Qqj , but p. Q'ij .1//D 'ij .1/D qj Dp. Qqj /,
and so there exists a unique deck transformation Aij 2 � such that Q'ij .1/ D Aij Qqj .
Notice that the deck transformation Aij depends on the choice of the lifts Qqi and Qqj of
qi and qj , respectively. We can deduce that Aij D A�1ji for any edge ij .

Equip �M with the natural pullback Riemannian metric Qg of g with negative Gaussian
curvature. This metric is equivariant with respect to � . For any x; y 2 �M , there exists
a unique geodesic with constant speed parametrization x;y W Œ0; 1�! �M such that
x;y.0/D x and x;y.1/D y. We can naturally parametrize zX as follows:

Theorem 2.1 For any .x1; : : : ; xn/ 2M, define ' D 'Œx1; : : : ; xn� as

'ij .t/D p ı xi ;Aijxj .t/

for any ij 2E and t 2 Œ0; 1�. Then ' is a well-defined geodesic mapping in zX , and the
map .x1; : : : ; xn/ 7! 'Œx1; : : : ; xn� is a homeomorphism from M to zX .

We omit the proof of Theorem 2.1, which is routine but lengthy. In the remainder of
this section, for any x; y; z 2 �M and u; v 2 Tx �M :

(i) d.x; y/ is the intrinsic distance between x and y in . �M; Qg/.

(ii) v.x; y/D exp�1x y 2 Tx �M .

(iii) 4xyz is the geodesic triangle in �M with vertices x, y and z, which could
possibly be degenerate.

(iv) †yxz is the inner angle of 4xyz at x if d.x; y/ > 0 and d.x; z/ > 0.
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(v) jvj is the norm of v under the metric Qgx .

(vi) u � v is the inner product of u and v under the metric Qgx .

By scaling the metric if necessary, we may assume that the Gaussian curvatures of
.M; g/ and . �M; Qg/ are bounded above by �1.

2.1 Uniqueness

We first prove Lemma 2.2 using CAT.0/ geometry. See Theorem 4.3.5 in [4] and
Theorem 1A.6 in [3] for the well-known comparison theorems.

Lemma 2.2 Assume x; y; z 2 �M . Then

(i) jv.z; x/� v.z; y/j � d.x; y/, and

(ii) v.x; y/ � v.x; z/C v.y; x/ � v.y; z/� d.x; y/2,

and equality holds if and only if 4xyz is degenerate.

Proof If4xyz is degenerate then there exists a geodesic  in �M such that x; y; z 2  ,
and then the proof is straightforward, so we assume that 4xyz is nondegenerate.

(i) Three points v.z; x/, v.z; y/, and 0 in Tz �M determine a Euclidean triangle, where
jv.z; x/j D d.x; z/, jv.z; y/j D d.z; y/ and the angle between v.z; x/ and v.z; y/ is
equal to †xzy. Then, by the CAT.0/ comparison theorem,

jv.z; x/� v.z; y/j< d.x; y/:

(ii) Let x0; y0; z0 2R2 be such that

jx0� z0j2 D jv.x; z/j; jy
0
� z0j2 D jv.y; z/j and jx0�y0j2 D jv.x; y/j:

Then, by the CAT.0/ comparison theorem, †yxz < †y0x0z0 and †xyz < †x0y0z0.
Hence,

v.x; y/ � v.x; z/C v.y; x/ � v.y; z/ > .y0� x0/ � .z0� x0/C .x0�y0/ � .z0�y0/

D jx0�y0j22 D d.x; y/
2:

Proof of uniqueness in Theorem 1.5 If ' is not unique, assume 'Œx1; : : : ; xn� and
'Œx01; : : : ; x

0
n� are two different geodesic mappings that are both w–balanced for some

weight w. We are going to prove a discrete maximum principle for the function
j 7! d.xj ; x

0
j /. Assume i 2 V is such that d.xi ; x0i / D maxj2V d.xj ; x0j / > 0. By

lifting the w–balanced assumption to �M , we have that

(1)
X

fj Wij2Eg

wij v.xi ; Aijxj /D 0;

Geometry & Topology, Volume 27 (2023)
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and

(2)
X

fj Wij2Eg

wij v.x
0
i ; Aijx

0
j /D 0:

Then, by Lemma 2.2(i) and (1),ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /

ˇ̌̌̌
D

ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /�

X
fj Wij2Eg

wij v.xi ; Aijxj /

ˇ̌̌̌
�

X
fj Wij2Eg

wijd.Aijxj ; Aijx
0
j /D

X
fj Wij2Eg

wijd.xj ; x
0
j /

� d.xi ; x
0
i /

X
fj Wij2Eg

wij :

By part (ii) of Lemma 2.2, (2), and the Cauchy–Schwartz inequality,

d.xi ; x
0
i / �

ˇ̌̌̌ X
fj Wij2Eg

wij v.xi ; Aijx
0
j /

ˇ̌̌̌
� v.xi ; x

0
i / �

X
fj Wij2Eg

wij v.xi ; Aijx
0
j /C v.x

0
i ; xi / �

X
fj Wij2Eg

wij v.x
0
i ; Aijx

0
j /

�

X
fj Wij2Eg

wij � d.xi ; x
0
i /
2:

Therefore, equality holds in both inequalities above. Then, for any neighbor j of i ,
d.xj ; x

0
j /D d.xi ; x

0
i /Dmaxk2V d.xk; x0k/, and Aijxj is on the geodesic determined

by xi and x0i . Hence, the one-ring neighborhood of p.xi / in 'Œx1; : : : ; xn�.T .1//
degenerates to a geodesic arc. By the connectedness of the surface we can repeat
the above argument and deduce that d.xj ; x0j / D d.xi ; x

0
i / for any j 2 V . Further,

'Œx1; : : : ; xn�.@�/ degenerates to a geodesic arc for any triangle � 2 F .

It is not difficult to extend 'Œx1; : : : ; xn� to a continuous map Q' from jT j toM such that
Q'.@�/D 'Œx1; : : : ; xn�.@�/ is the union of three geodesic arcs for any triangle � 2 F

It is also not difficult to prove that Q' is homotopic to  . Therefore, Q' is degree one
and surjective. This contradicts that Q'.jT j/ is a finite union of geodesic arcs.

2.2 Existence

Here we prove a stronger existence result:
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Theorem 2.3 Given a compact subset K of R
EE
>0 there exists a compact subset

K 0 D K 0.M; T;  ;K/ of zX such that , for any w 2 K, there exists a w–balanced
geodesic mapping ' 2K 0.

We first introduce the topological Lemma 2.4 and the key Lemma 2.5.

Lemma 2.4 Suppose BnDfx 2Rn W jxj � 1g is the unit ball in Rn, and f WBn!Rn

is a continuous map such that x¤f .x/=jf .x/j for any x 2@BnDSn�1 with f .x/¤0.
Then f has a zero in Bn.

Proof If not, g.x/D f .x/=jf .x/j is a continuous map from Bn to @Bn. Since Bn

is contractible, g.x/ is nullhomotopic, and thus gjSn�1 is also nullhomotopic. Since
g.x/¤ x, it is easy to verify that

H.x; t/D
tg.x/C .1� t /.�x/

jtg.x/C .1� t /.�x/j

is a homotopy between gjSn�1 and �id jSn�1 . This contradicts that �id jSn�1 is not
nullhomotopic.

Lemma 2.5 Fix an arbitrary point q 2 �M . If w 2R
EE
>0 and .x1; : : : ; xn/2M satisfies

(3) v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj /� 0

for any i 2 V , then X
i2V

d.xi ; q/
2 <R2

for some constant R > 0 which depends only on M , T ,  , q and

�w WD
maxij2E wij
minij2E wij

:

The vector in Figure 1,

ri D
X

fj Wij2Eg

wij v.xi ; Aijxj /;

is defined as the residue vector ri at xi of 'Œx1; : : : ; xn� with respect to the weight w.
Notice that a geodesic mapping ' is w–balanced if and only if all its residue vectors
vanish with respect to w. Lemma 2.5 means that, if all the residue vectors are dragging
the xi away from q, then all the xi must stay a bounded distance from q.
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ri

xi

q

Figure 1: The residue vector and Lemma 2.5.

Our notion of w–balancedness is closely related to the Riemannian center of mass
developed by Grove and Karcher [17]. In a w–balanced geodesic mapping, each point
can be viewed as the weighted center of mass of its neighboring points. The defining
formula of our residue vectors also appears in [5; 19]. A survey of Riemannian center
of mass by Karcher can be found in [20]. The definition of a residue vector is also
similar to the concept of a discrete tension field in [15].

Proof of Theorem 2.3 Fix an arbitrary basepoint q 2 �M . Then by Lemma 2.5 we can
pick a sufficiently large constant RDR.M; T; ;K/ > 0 such that, if

nX
iD1

d.xi ; q/
2
DR2;

there exists i 2 V such that

v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj / > 0:

We will prove that the compact set

K 0 D

�
'Œx1; : : : ; xn�

ˇ̌̌ nX
iD1

d.xi ; q/
2
�R2

�
is satisfactory.

For x 2 �M let Px W Tx �M ! Tq �M be the parallel transport along the geodesic x;q . Set

B D

�
.v1; : : : ; vn/ 2 .Tq �M/n

ˇ̌̌ nX
iD1

jvi j
2
� 1

�
;
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a Euclidean 2n–dimensional unit ball, and construct a map F W B! .Tq �M/n in three
steps: Firstly, we define n points x1; : : : ; xn 2 �M by xi .v1; : : : ; vn/ D expq.Rvi /:
Secondly, we compute the residue vector at each xi as

ri D
X

fj Wij2Eg

wij v.xi ; Aijxj / 2 Txi
�M:

Lastly, we pull back the residues to Tq �M via F.v1; : : : ; vn/D .Px1.r1/; : : : ; Pxn.rn//.

Notice that the map .v1; : : : ; vn/ 7! 'Œx1; : : : ; xn� is a homeomorphism from B to K 0,
and F.v1; : : : ; vn/ D 0 if and only if the corresponding 'Œx1; : : : ; xn� in K 0 is a
w–balanced map. Hence, it suffices to prove that F has a zero in B . By Lemma 2.4, it
suffices to prove that, for any .v1; : : : ; vn/ 2 @B ,

.v1; : : : ; vn/¤
F.v1; ::; vn/

jF.v1; : : : ; vn/j
:

Suppose .v1; : : : ; vn/ is an arbitrary point on @B . Then it suffices to prove that there
exists i 2 V such that vi �Fi .v1; : : : ; vn/D vi �Pxi .ri / < 0.

Notice that x1.v1; : : : ; vn/; : : : ; xn.v1; : : : ; vn/ satisfy that
Pn
iD1 d.q; xi /

2 DR2, so,
by our assumption on R, there exists i 2 V such that

v.xi ; q/ �
X

fj Wij2Eg

wij v.xi ; Aijxj /D v.xi ; q/ � ri > 0;

and thus

vi �Pxi .ri /D�
1

d.q; xi /
Pxi .v.xi ; q// �Pxi .ri /D�

1

d.q; xi /
v.xi ; q/ � ri < 0:

In the rest of this subsection we will prove Lemma 2.5 by contradiction. Let us first
sketch the idea of the proof. Assume

P
i2V d.xi ; q/

2 is very large. Then by a standard
compactness argument there exists a long edge ij in the geodesic mapping 'Œx1; : : : ; xn�.
Assume d.q; xi / � d.q; xj /. Then the corresponding long edge xi ;Aijxj in �M is
pulling xi towards q. This implies that there exists another long edge xi ;Aikxk
dragging xi away from q, otherwise the residue vector ri would not drag xi away
from q. It can be shown that d.q; xk/ > d.q; xi /. Repeating the above steps, we can
find an arbitrarily long sequence of vertices such that the distance from each of these
vertices to q is increasing. This is impossible as we only have finitely many vertices.

Here is a list of useful properties, where (a), (e), (f), (g) and (h) serve directly as
building blocks of the proof of Lemma 2.5, (b) and (d) are used to prove (e), and (c)
is used to prove (h). The three triangles in Figure 2, from left to right, illustrate the
geodesic triangles appearing in (b), (c) and (d) of Lemma 2.6, respectively.
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q

Aij q Aijxj

C2

q

y

x

q

y

C4
x

Figure 2: Triangles in (b), (c) and (d).

Lemma 2.6 (a) For any constant C >0 there is a constant C1DC1.M; T;  ; C />0
such that , if X

i2V

d.xi ; q/
2
� C1;

then
max
ij2E

d.xi ; Aijxj /� C:

(b) There exists a constant C2 D C2.M; T;  / > 0 such that , if

d.Aijxj ; q/� C2;

then
†.Aj iq/xj q D†q.Aijxj /.Aij q/�

1
8
�:

(c) There exists a constant C3 > 0 such that , if x; y 2 �M satisfy

d.y; q/� d.x; q/CC3;

then
†xyq � 1

4
�:

(d) There exists a constant C4 > 0 such that , if x; y 2 �M satisfy

d.x; y/� C4 and d.x; q/� d.y; q/;

then
†yxq � 1

8
�:

(e) For any constant C >0 there is a constant C5DC5.M; T;  ; C />0 such that , if

max
ij2E

d.xi ; Aijxj /� C5;

then there exists ij 2E such that

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /� C:
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xk.h/
.f /

xi
.e/

xj

q

Figure 3: Vertices leaving the point q.

(f) For any constant C > 0 there is a constant C6 D C6.M; T;  ; �w ; C / > 0 such
that , if

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /� C6

for some edge ij 2E, then there exists ik 2E such that

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/� �C:

(g) For any constant C >0 there is a constant C7DC7.M; T;  ; C />0 such that , if

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/� �C7;

then
d.xk; q/� d.xi ; q/CC:

(h) For any constant C >0 there is a constant C8DC8.M; T;  ; C />0 such that , if

d.xj ; q/� d.xi ; q/CC8;

then
v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /� C:

Proof of Lemma 2.5 assuming Lemma 2.6 For any C > 0 there exists a sufficiently
large constant zC D zC.M; T; ; �w ; C / determined by (a), (e), (f) and (g) in Lemma 2.6
such that, if X

i2V

d.xi ; q/
2
� zC ;

then there exist three vertices xi , xj and xk , shown in Figure 3, with

d.xk; q/� d.xj ; q/CC:
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Moreover, by (h), (f) and (g) of Lemma 2.6, we can find another vertex xl such that

d.xl ; q/� d.xk; q/CC � d.xj ; q/C 2C

if the constant zC.M; T; ; �w ; C / is sufficiently large.

Inductively, we can find a sequence i1; : : : ; inC1 2 V such that

d.xi1 ; q/ > d.xi2 ; q/ > � � �> d.xinC1 ; q/:

This contradicts the fact that V only has n different elements.

Proof of Lemma 2.6 (a) By a standard compactness argument, the set

f' 2 zX W max
ij2E

length.'ij .Œ0; 1�//� C g

is a compact subset of zX . Notice that .x1; : : : ; xn/ 7! 'Œx1; : : : ; xn� is a homeo-
morphism from M to zX , and

length.'ij .Œ0; 1�//D d.xi ; Aijxj /:
Therefore ˚

.x1; : : : ; xn/ 2M W max
ij2E

d.xi ; Aijxj /� C
	

is compact, and the conclusion follows.

(b) We claim that the constant C2 determined by

sinhC2 D
maxij2E sinh d.Aij q; q/

sin 1
8
�

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.Aijxj ; q/; b D d.Aijxj ; Aij q/ and c D d.Aij q; q/:

Since �M is a CAT.�1/ space, it suffices to show that †C � 1
8
� . By the hyperbolic

law of sine,

sin†C D
sinh c � sin†A

sinh a
�

maxij2E sinh d.Aij q; q/ � 1
sinhC2

D sin 1
8
�:

(c) We claim that the constant C3 determined by

sinhC3 D
1

sin 1
8
�

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.x; y/; b D d.y; q/ and c D d.x; q/:
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q

xi

Aijxj

xi

q

Aj i
Aijxj

Aj iq

xj

Aj ixi

Figure 4: Triangles in (e).

Since �M is a CAT.�1/ space it suffices to show that †C � 1
8
� . By the hyperbolic law

of sine,

sin†C D
sinh c � sin†B

sinh b
�

sinh c
sinh b

�
sinh c

sinh.cCC3/
�

sinh c
sinh c � sinhC3

D sin 1
8
�:

(d) We claim that the constant C4 determined by

sin2 1
8
� � coshC4 D 2

is satisfactory. Let 4ABC be the hyperbolic triangle with corresponding edge lengths

aD d.x; y/; b D d.y; q/ and c D d.x; q/:

Since �M is a CAT.�1/ space it suffices to show that †B � 1
8
� . By the hyperbolic law

of cosine,
cosAD�cosB cosC C sinB sinC cosh a:

Then

2� sinB sinC cosh a � sinB sinC coshC4 D 2 �
sinB sinC

sin2 1
8
�
� 2 �

sin2B

sin2 1
8
�
:

Thus, †B � 1
8
� .

(e) We claim that the constant C5 determined by

C5 DmaxfC4; 2C2;
p
2C g

is satisfactory. Assume ij 2 E and d.xi ; Aijxj / � C5. Then we have the two cases
shown in Figure 4.

If d.xi ; q/� d.Aijxj ; q/, then, by (d),

†.Aijxj /xiq �
1
8
� � 1

4
�;
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and
v.xi ; q/

jv.xi ; q/j
� v.xi ; Aijxj /D cos.†.Aijxj /xiq/ � d.xi ; Aijxj /�

1
p
2
C5 � C:

If d.xi ; q/� d.Aijxj ; q/, then d.Aijxj ; q/� C2. By (b) and (d),

†.Aj iq/xj q �
1
8
� and †.Aj iq/xj .Aj ixi /D†q.Aijxj /xi �

1
8
�;

and †qxj .Aj ixi /� 1
4
� . Therefore,

v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /D cos.†.Aj ixj /xj q/ � d.xj ; Aj ixi /�

1
p
2
C5 � C:

(f) We claim that the constant C6 determined by

C6 D n�w �C

is satisfactory. If not, for any ik 2E,

v.xi ; q/

jv.xi ; q/j
� v.xi ; Aikxk/ > �C:

Then

0�
v.xi ; q/

jv.xi ; q/j
�

X
ik2E

wikv.xi ; Aikxk/ > wijC6C
X
ik2E

wik.�C/

� wijC6C
X
ik2E

�wwij .�C/� wij .C6�n�wC/� 0;

which is a contradiction.

(g) We claim that C7 D C Cmaxij2E d.Aij q; q/ is satisfactory. Notice that

d.Aijxj ; q/D d.xj ; Aj iq/� d.xj ; q/C d.q; Aj iq/� d.xj ; q/C max
ij2E

d.Aij q; q/:

By Lemma 2.2(i),

d.Aijxj ; q/� jv.xi ; Aijxj /� v.xi ; q/j � �.v.xi ; Aijxj /� v.xi ; q// �
v.xi ; q/

jv.xi ; q/j

D C7Cjv.xi ; q/j D C7C d.xi ; q/:

Then
d.xj ; q/� d.xi ; q/� C7� max

ij2E
d.Aij q; q/D C:

(h) We claim that the constant C8 determined by

C8 DmaxfC3;
p
2C gC max

ij2E
d.Aij q; q/
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is satisfactory. Notice that

d.xj ; q/� d.xi ; q/CC8 � d.xi ; Aij q/� d.Aij q; q/CC8

� d.Aj ixi ; q/CmaxfC3;
p
2C g:

Then, by (c), †.Aj ixi /xj q � 1
4
� , and by the triangle inequality,

d.xj ; Aj ixi /� d.xj ; q/� d.Aj ixi ; q/�
p
2C:

Therefore,
v.xj ; q/

jv.xj ; q/j
� v.xj ; Aj ixi /D cos.†.Aj ixi /xj q/ � d.xj ; Aj ixi /�

1
p
2
�
p
2C D C:

2.3 Continuity

Proof of continuity in Theorem 1.5 If ˆ is not continuous, there exists � > 0, a
weight w and a sequence of weights w.k/ such that

(i) the w.k/ converge to w, and

(ii) d zX .ˆ.w
.k//; ˆ.w//� � for any k � 1.

By the stronger existence result Theorem 2.3, the sequence ˆ.w.k// is in some fixed
compact subset K 0 of zX . By picking a subsequence, we may assume that ˆ.w.k//
converges to some ' 2 zX . Since ˆ.w.k// is w.k/–balanced, then, by the continuity
of the residue vectors ri , ' is w–balanced and thus ˆ.w/D ', which contradicts that
ˆ.w.k// does not converge to ˆ.w/.

3 Proof of Theorem 1.6

3.1 Setup and preparation

Assume ' 2 zX isw–balanced for some weightw. We will prove that ' is an embedding.
Recall that qi D '.i/ for each i 2 V , and denote by lij the length of 'ij .Œ0; 1�/ for any
ij 2E. It is not difficult to show that ' has a continuous extension Q' defined on jT j
such that for any triangle � 2 F a continuous lifting map ˆ� of Q'j� from � to �M will
map � to

(i) a geodesic triangle in �M homeomorphically if '.@�/ does not degenerate to a
geodesic, and

(ii) ˆ� .@�/ if '.@�/ degenerates to a geodesic.

The main tool we use to prove Theorem 1.6 is the Gauss–Bonnet formula. We will need
to define the inner angles for each triangle in '.T .1//, even for the degenerate triangles.
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A convenient way is to assign a “direction” to each edge, even for the degenerate edges
with zero length.

Definition 3.1 A direction field is a map v W EE! TM satisfying

(i) vij 2 TqiM for any .i; j / 2 EE, and

(ii) jvij j D 1 for any .i; j / 2 EE.

Given a direction field v, define the inner angle of the triangle � D4ijk at the vertex i
as

� i� D �
i
� .v/D†vij 0vik D arccos.vij � vik/;

where 0 is the origin and †vij 0vik is the angle between vij and vik in TqiM .

A direction field v assigns a unit tangent vector in TqiM to each directed edge starting
from i , even if their lengths are zero. It determines the inner angles in T .

Definition 3.2 A direction field v is admissible if

(i) vij D '
0
ij .0/=lij if lij > 0,

(ii) vij D�vj i in TqiM D TqjM if lij D 0,

(iii) for a fixed vertex i 2 V , if lij D 0 for every neighbor j of i , then there exist
neighbors k and k0 of i such that vik D�vik0 , and

(iv) if � D4ijk 2 F and lij D ljk D lik D 0, then � i� .v/C �
j
� .v/C �

k
� .v/D � .

An admissible direction field encodes the directions of the nondegenerate edges in
'.T .1//, and the induced angle sum of a degenerate triangle is always � . Then, for
any admissible v and triangle � 2 F , by the Gauss–Bonnet formula,

(4) � D
X
i2�

� i� .v/�

Z
ˆ� .�/

K dA�
X
i2�

� i� .v/�

Z
Q'.�/

K d QA:

Here dA (resp. d QA) is the area form on .M; g/ (resp. . �M; Qg/).

The concept of the direction field is similar to the discrete one-form defined in [16].

3.2 Proof of Theorem 1.6

The proof of Theorem 1.6 uses the four lemmas below. We will postpone their proofs
to the subsequent subsections.
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Lemma 3.3 If v is admissible and � D �.v/, then , for any i 2 V ,X
f� Wi2�g

� i� D 2�;

and Q'.�/\ Q'.� 0/ has area 0 for any �; � 0 2 F .

Based on Lemma 3.3, if admissible direction fields exist, the image of the star of each
vertex determined by Q' does not contain any flipped triangles overlapping with each
other. If Q'.�/ does not degenerate to a geodesic arc for any triangle � 2 F , then
Q' is locally homeomorphic and thus globally homeomorphic as a degree-one map.
Therefore, we only need to exclude the existence of degenerate triangles.

Define an equivalence relation on V as follows. Two vertices i and j are equivalent if
there exists a sequence of vertices iD i0; i1; : : : ; ikDj such that li0i1D� � �D lik�1ikD0.
This equivalence relation introduces a partition V D V1[� � �[Vm. Denote by yk 2M
the only point in '.Vk/. For any x 2M and u; v 2 TxM , write u k v if u and v are
parallel, ie there exists .˛; ˇ/¤ .0; 0/ such that ˛uCˇv D 0.

There are plenty of choices of admissible direction fields:

Lemma 3.4 For any v1 2 Ty1M; : : : ; vm 2 TymM , there exists an admissible v such
that vij k vk if i 2 Vk and lij D 0.

For any Vk with at least two vertices, the image of its “neighborhood” lies in a geodesic:

Lemma 3.5 If jVkj � 2, then there exists vk 2 TykM such that vk k'0ij .0/ if i 2 Vk
and lij > 0.

Now let vk be as in Lemma 3.5 if jVkj � 2, and arbitrary if jVkj D 1. Then construct
an admissible direction field v as in Lemma 3.4, with induced inner angles � i� D �

i
� .v/.

If the image of a triangle � under ' degenerates to a geodesic, then its inner angles � i�
are � or 0. Let F 0 ¤∅ be the set of degenerate triangles under '.

Lemma 3.6 If � 2 F 0, i 2 � and � i� D � , then � 0 2 F 0 for any � 0 in the star
neighborhood of the vertex i .

Let � be a connected component of the interior of
S
f� W � 2 F 0g � jT j, and z� be the

completion of � under the natural path metric on �. Notice that z� could be different
from the closure of � in M .
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Since Q' is surjective F 0 ¤ F , �¤ jT j and z� has nonempty boundary. Then z� is a
connected surface with a natural triangulation T 0 D .V 0; E 0; F 0/, and

�. z�/D 2� 2� .genus of z�/� #fboundary components of z�g � 1:

Assume V 0I is the set of interior vertices, V 0B is the set of boundary vertices, E 0I is the
set of interior edges and E 0B is the set of boundary edges of z�. Then jV 0B j D jE

0
B j and,

by Lemma 3.6, if i 2 V 0B and i 2 � then � i� D 0. Therefore,

�jF 0j D
X
�2F 0

i2�

� i� D
X
i2V 0I

X
f�2F 0Wi2�g

� i� D 2�jV
0
I j:

Thus,
1� �. z�/D jV 0j � jE 0jC jF 0j D jV 0I jC jV

0
B j � jE

0
I j � jE

0
B jC jF

0
j

D jV 0B j � jE
0
I j � jE

0
B jC

3
2
jF 0j D �jE 0I jC

3
2
jF 0j

D �jE 0I jC
1
2
.jE 0B jC 2jE

0
I j/D

1
2
jE 0B j:

Therefore, jV 0B j D jE
0
B j � 2. Since z� has nonempty boundary, jE 0B j D 1 or 2. In either

case, it contradicts the fact that T is a simplicial complex. The proof of Theorem 1.6 is
now completed.

3.3 Proof of Lemma 3.3

We claim that, for any i 2 V , X
f� Wi2�g

� i� � 2�:

If lij D 0 for any neighbor j of i , this is a consequence of Definition 3.2(iii). If lij ¤ 0,
by the w–balanced condition, f'0ij .0/=lij W ij 2 Eg should not be contained in any
open half unit circle, and the angle sum around i should be at least 2� .

By the fact that Q' is surjective and (4),X
i2V

�
2� �

X
f� Wi2�g

� i�

�
C

X
�2F

Z
Q'.�/

K dA�
X
�2F

Z
Q'.�/

K dA�
Z
M

K dAD 2��.M/

andX
i2V

�
2� �

X
f� Wi2�g

� i�

�
C

X
�2F

Z
Q'.�/

K dA� 2�jV j �
X
�2F

�X
i2�

� i� �

Z
Q'.�/

K dA
�

D 2��.M/:
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Hence, the inequalities above are equalities. This fact implies thatX
i2V

�
2� �

X
f� Wi2�g

� i�

�
D 0:

Since each term in this summation is nonpositive,
P
f� Wi2�g �

i
� D 2� . The statement

on the area follows similarly.

3.4 Proof of Lemma 3.4

We claim that, for any k, there exists a map h W Vk!R such that

(i) h.i/¤ h.j / if i ¤ j , and

(ii) for a fixed i 2 Vk , if lij D 0 for any neighbor j of i , then there exist neighbors
j and j 0 of i in Vk such that h.j / < h.i/ < h.j 0/.

Given such h, set v as

vij D

�
sgnŒh.j /� h.i/� � vk if i 2 Vk and lij D 0;
'0ij .0/ if lij > 0;

where sgn is the sign function. It is easy to verify that v is satisfactory.

To construct h, we prove a more general statement:

Lemma 3.7 Assume G D .V 0; E 0/ is a subgraph of the 1–skeleton T .1/, and E 0 ¤E.
Define

int.G/D fi 2 V 0 W ij 2E) ij 2E 0g;

and @G D V 0� int.G/. Then there exists h W V 0!R such that

(i) h.i/¤ h.j / if i ¤ j , and

(ii) any i 2 int.G/ has neighbors j and j 0 in V 0 such that h.j / < h.i/ < h.j 0/.

Proof We proceed by induction on the size of V 0. The case jV 0j D 1 is trivial. For
the case jV 0j � 2, first notice that j@Gj � 2 for any proper subgraph G of T .1/. Assign
distinct values Nh.i/ to each i 2 @G, then solve the discrete harmonic equationX

fj Wij2Eg

. Nh.j /� Nh.i//D 0 for all i 2 int.G/

with the given Dirichlet boundary condition on @G.
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Let s1 < � � � < sk be the distinct values that appear in f Nh.i/ W i 2 V 0g. Then consider
the subgraphs Gi D .V 0i ; E

0
i / defined by

V 0i D fj 2 V
0
W h.j /D sig and E 0i D fjj

0
2E 0 W j; j 0 2 V 0i g:

Notice that j@Gj � 2, so k � 2 and jV 0i j< jV
0j for any i D 1; : : : ; k. By the induction

hypothesis, there exists a function hi W V 0i !R such that

(i) hi .j /¤ hi .j
0/ if j ¤ j 0, and

(ii) any j 2 int.Gi / has neighbors j 0 and j 00 in V 0i such that hi .j 0/<hi .j /<hi .j 00/.

Define hi .j /D 0 if j … V 0i . Then, for sufficiently small positive �1; : : : ; �k ,

hD NhC

kX
iD1

�ihi

is the desired function.

3.5 Proof of Lemma 3.5

We must prove that if i; i 0 2Vk , ij; i 0j 0 2E, lij >0 and li 0j 0 >0, then '0ij .0/ k'
0
i 0j 0.0/.

Let
D D

� [
i;i 0;i 002Vk

4i i 0i 00
�
[

� [
i;i 02Vk

i i 0
�
;

which is a closed path-connected set in jT j. For any i 2 Vk , we have i 2 @D if and
only if there exists ij 2E with lij > 0. Therefore, it suffices to prove that

(i) '0ij .0/ k'
0
ij 0.0/ for any i 2 Vk and edges ij and ij 0 with lij > 0 and lij 0 > 0,

(ii) for any ij 2E satisfying ij � @D, there exists m 2 V �Vk such that4ijm 2F ,
and thus '0im.0/D '

0
jm.0/, and

(iii) @D is connected.

For part (i), if it is not true then there exists i 2Vk , ij 2E and ij 0 2E such that lij >0,
lij 0 > 0 and '0ij .0/ is not parallel to '0ij 0.0/. Assuming this claim, by the w–balanced
condition, there exists ij 00 2E with lij 00 > 0, and the three vectors '0ij .0/, '

0
ij 0.0/ and

'0ij 00.0/ are not contained in any closed half-space in TqiM . Assume im 2E, lim D 0
and, without loss of generality, ij , im, ij 0 and ij 00 are ordered counterclockwise in the
one-ring neighborhood of i in T . By Lemma 3.4, there exists an admissible v such that
vim k'

0
ij 00.0/. By possibly changing a sign, we may assume that vim D '0ij 00.0/=lij 00 .
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j 0 m

i

j 00 j

'

vim D vij 00

vij 0

vij

Figure 5: Overlapping triangles lead to angle surplus.

Then, as Figure 5 shows, a contradiction follows:

2� D
X
�i2�

� i� �†vij 0vimC†vim0vij 0 C†vij 00vij 00 C†vij 000vij

D 2†vij 0vij 00 C 2†vij 000vij 0 > 2�:

Part (ii) is straightforward, so we will prove part (iii). By our assumption on the
extension Q', Q'.D/ contains only one point. Then the embedding map iDD �1ı. jD/
from D to jT j is homotopic to the constant map  �1 ı . Q'jD/, meaning that D is
contractible in jT j. If @D contains at least two boundary components, then it is not
difficult to show that jT j �D has a connected component D0 homeomorphic to an
open disk. Let ˆD WD! �M be a lifting of Q'jD . Then ˆD.@D0/�ˆD.D/ contains
only a single point x 2 �M . So, by the w–balanced condition, it is not difficult to derive
a maximum principle and show that Q'jD0 equals the constant x. Then, by the definition
of D, it is easy to see that D0 should be a subset of D, which is a contradiction.

3.6 Proof of Lemma 3.6

Assume ij and ij 0 are two edges in � . If the conclusion is not true, then there exists
ik 2E such that lik > 0 and vik is not parallel to vij . Notice that vij D�vij 0 , and

2� D
X

f�2F Wi2�g

� i� �†vij 0vij 0 C†vij 0vikC†vij 00vik D 2�:

Thus, equality holds in the above inequality, and for any ik0 2E, vik0 should be on the
half circle that contains vij , vik and vij 0 . If vm is the midpoint of this half circle, then

vm �
X

fj Wij2Eg

wij lij vij � wiklikvm � vik > 0:

This contradicts the fact that ' is w–balanced.
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