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We construct geometric maps from the cyclic homology groups of the (compact or
wrapped) Fukaya category to the corresponding S1–equivariant (Floer/quantum or
symplectic) cohomology groups, which are natural with respect to all Gysin and
periodicity exact sequences and are isomorphisms whenever the (nonequivariant)
open–closed map is. These cyclic open–closed maps give constructions of geometric
smooth and/or proper Calabi–Yau structures on Fukaya categories, which in the
proper case implies the Fukaya category has a cyclic A1 model in characteristic 0,
and also give a purely symplectic proof of the noncommutative Hodge–de Rham
degeneration conjecture for smooth and proper subcategories of Fukaya categories of
compact symplectic manifolds. Further applications of cyclic open–closed maps, to
counting curves in mirror symmetry and to comparing topological field theories, are
the subject of joint projects with Perutz and Sheridan, and with Cohen.
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1 Introduction

This paper concerns the compatibility between chain level S1–actions arising in two
different types of Floer theory on a symplectic manifold M . The first of these C��.S

1/–
actions1 is induced geometrically on the Hamiltonian Floer homology chain complex

1We will use a cohomological grading convention, so singular chain complexes are negatively graded.
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3462 Sheel Ganatra

CF�.M /, formally a type of Morse complex for an action functional on the free loop
space, through rotating free loops. The homological action of ŒS1� is known as the BV
operator Œ��, and the C��.S

1/–action can be used to define S1–equivariant Floer2

homology theories; see eg Bourgeois and Oancea [6] and Seidel [51]. The second
C��.S

1/–action lies on the Fukaya category of M , and has discrete or combinatorial
origins, coming from the hierarchy of compatible cyclic Z=kZ–actions on cyclically
composable chains of morphisms between Lagrangians. A (categorical analogue of a)
fundamental observation of Connes [13], Tsygan [63] and Loday and Quillen [42] is
that such a structure, which exists on any category C, can be packaged into a C��.S

1/–
action on the Hochschild homology chain complex CH�.C/ of the category; see also
Keller [32] and McCarthy [43]. The associated operation of multiplication by (a cycle
representing) ŒS1� is frequently called the Connes B operator, and the corresponding
S1–equivariant homology theories are called cyclic homology groups.

A relationship between the Hochschild homology of the Fukaya category F and Floer
homology on M is provided by the so-called open–closed string map

(1-1) OC W CH�.F/! CF�Cn.M /I

see Abouzaid [1]. Our main result is about the compatibility of OC with C��.S
1/–

actions. Namely, we prove — under technical hypotheses detailed below the main
result — that OC can be made (coherently homotopically) C��.S

1/–equivariant:

Theorem 1.1 Suppose that M, its Fukaya category and CF�.M / satisfy the technical
assumptions (?). Then the map OC admits a geometrically defined S 1–equivariant
enhancement , to an A1 homomorphism of C��.S

1/–modules ,

fOC 2 RHomn
C��.S1/

.CH�.F/;CF�.M //:

Remark 1.2 Theorem 1.1 implies (but is not implied by) the statement (Theorem 5.14)
that ŒOC� intertwines homological actions of ŒS1�.

Remark 1.3 In the geometric settings considered here OC does not a priori strictly
intertwine the C��.S

1/–actions (due to a priori nonequivariant perturbations made to
moduli spaces to define operations, and further due to the potential nontriviality of �,
which — as� is defined using moduli spaces but B is defined using algebra — imply that

2Sometimes S1–equivariant Floer theory is instead defined as Morse theory of an action functional on the
S1–Borel construction of the loop space. For a comparison between these two definitions, see [6].

Geometry & Topology, Volume 27 (2023)
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OCıB and�ıOC involve moduli spaces of maps from differing domains). In particular,
the homomorphism fOC involves extra data recording coherently higher homotopies
between the two C��.S

1/–actions. This explains our use of the term “enhancement”.

Remark 1.4 It can be shown using usual invariance arguments that the enhancementfOC we define in this paper is uniquely determined up to homotopy: while the geometric
chain-level construction requires a number of auxiliary choices (of perturbation data
on moduli spaces), any two sets of such choices produce homotopic enhancements.

To explain the consequences of Theorem 1.1 to cyclic homology and equivariant
Floer homology, recall that there are a variety of S1–equivariant homology chain
complexes (and homology groups) that one can associate functorially to an A1

C��.S
1/–module P . For instance, denote by

(1-2) PhS1 ; P hS1

; P Tate

the homotopy orbit complex, homotopy fixed-point complex and Tate complex construc-
tions of P , described in Section 2.2. When applied to the Hochschild complex CH�.C/,
the constructions (1-2) by definition recover complexes computing (positive) cyclic
homology, negative cyclic homology and periodic cyclic homology groups of C, respec-
tively; see Section 3.2. Similarly the group H�.CF�.M /hS1/ is the S1–equivariant
Floer cohomology studied (for the symplectic homology Floer chain complex); see eg
Bourgeois and Oancea [6], Seidel [51] and Viterbo [64]. The groups H�.CF�.M /hS1

/

and H�.CF�.M /Tate/ have also been studied in recent work in Floer theory; see
Albers, Cieliebak and Frauenfelder [4], Seidel [56] and Zhao [66]. Functoriality of
the constructions (1-2) and homotopy-invariance properties of C��.S

1/–modules (see
Corollary 2.18 and Proposition 2.19) immediately imply:

Corollary 1.5 Let HF�;C=�=1
S1 .M / denote the (cohomology of the) homotopy orbit

complex, fixed-point complex, and Tate complex construction applied to CF�.M /, and
let HCC=�=1.C/ denote the corresponding positive/negative/periodic cyclic homology
groups. Under the hypotheses (?) of Theorem 1.1, fOC induces cyclic open–closed
maps

(1-3) ŒfOCC=�=1� W HCC=�=1� .F/! HF�Cn;C=�=1

S1 .M /;

which are naturally compatible with respect to the various periodicity/Gysin exact
sequences, and which are isomorphisms whenever OC is.

Geometry & Topology, Volume 27 (2023)



3464 Sheel Ganatra

The map (1-1) is frequently an isomorphism, allowing one to recover in these cases
closed string Floer/quantum homology groups from open string, categorical ones; see
Abouzaid, Fukaya, Oh, Ohta and Ono [2], Bourgeois, Ekholm and Eliashberg [5],
Ganatra [24] and Ganatra, Perutz and Sheridan [27]. In such cases, Theorem 1.1 and
Corollary 1.5 allow one to further categorically recover the C��.S

1/ as well as the
associated equivariant homology groups (in terms of the cyclic homology groups of
the Fukaya category).

Remark 1.6 There are other S1–equivariant homology functors to which our results
apply tautologically as well. For instance, consider the contravariant functor P 7!

.PhS1/_; when applied to CH�.C/ this produces the cyclic cohomology chain complex
of C.

We have been deliberately vague about which Fukaya category and which Hamiltonian
Floer homology groups Theorem 1.1 applies to, as it applies in several different
geometric (compact and noncompact) settings. To keep this paper a manageable length,
we implement the map fOC and prove Theorem 1.1 in the technically simplest of such
settings — our technical hypotheses are detailed in (?) below — for which the moduli
spaces appearing in the constructions can be shown to be well behaved by classical
methods. That being said, we should remark that our methods and arguments are
orthogonal to the usual analytic difficulties faced in constructing Fukaya categories and
open–closed maps in more general contexts, and we expect they should extend relatively
directly to other settings. For instance, in the setting of relative Fukaya categories of
compact projective Calabi–Yau manifolds (not considered here), an adapted version of
our construction will appear in joint work with Perutz and Sheridan [26].

(?) Assumptions on M , F and CF�.M /

In our main results we make technical assumptions, explained in detail in Section 3.3
for M and its Fukaya category and in Sections 4.1.1–4.1.2 for the corresponding
Hamiltonian Floer homology chain complexes, which broadly encapsulate the following
situations:

(1) If M is compact and satisfies suitable technical hypotheses such as being mono-
tone or symplectically aspherical (see Section 3.3.1), one could take F to be the
usual Fukaya category (or a summand thereof) of those compact Lagrangians
also satisfying suitable technical hypotheses such as being monotone or not
bounding disks with symplectic area. In this case CF�.M /, the Hamiltonian

Geometry & Topology, Volume 27 (2023)
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Floer complex of any (sufficiently generic) Hamiltonian, is quasi-isomorphic to
the quantum cohomology ring with its trivial C��.S

1/–action.

(2) If M is noncompact and Liouville, one could take F DW to be the wrapped
Fukaya category and CF�.M / D SC�.M / to be the symplectic cohomology
cochain complex with its (typically highly nontrivial) C��.S

1/–action.

(3) If M is noncompact and Liouville, one could take F �W to be the Fukaya
category of compact exact Lagrangians. When restricted to CH�.F/, the map
OC to SC�.M / of (2) factors through H�.M; @1M /, the relative (or compactly
supported) cohomology group with its trivial C��.S

1/–action. In fact, as re-
viewed in Section 5.6.2, OC further factors through the symplectic homology
chain complex SC�.M / Š .SC�.M //_Œ�2n�. One could take any of these
groups (SC�.M /, H�.M; @1M / or SC�.M /) to be CF�.M / here. For the
main portion of the paper we use CF�.M / WDH�.M; @1M /.

For example, in case (2) above, when the relevant ŒOC� map is an isomorphism,
Corollary 1.5 computes various S1–equivariant symplectic cohomology groups3 in
terms of cyclic homology groups of the wrapped Fukaya category.

Remark 1.7 For the Fukaya subcategory of a single Lagrangian in a compact symplec-
tic manifold M over a characteristic-zero (Novikov) field containing R, a variant of the
(positive) cyclic open–closed map has also been constructed by Fukaya, Oh, Ohta and
Ono [23] (and will be generalized to multiple Lagrangians in Abouzaid, Fukaya, Oh,
Ohta and Ono [2]). Their construction, which requires the target group (H�.M /) to
have trivial C��.S

1/–action, uses Connes’ small (“coinvariants of cyclic group action
bar”) complex for (in characteristic zero only) positive cyclic homology, along with
cyclically symmetric (necessarily virtual) perturbations of all moduli spaces (building
on work of Fukaya [20] described in Remark 1.14), to directly construct a geometric
map bypassing the higher A1 C��.S

1/–action homotopies constructed here. It does
not seem possible to generalize the methods of [23] to the (possibly noncompact M with
arbitrary coefficients, eg integral/rational/finite characteristic) settings considered here;
see for instance the discussion in Remark 1.11. Also, the perspective of C��.S

1/–
modules taken here makes it simpler to talk about (and describe) all cyclic homology
theories at once, as well to study the compatibility of additional structures, eg exact
sequences, semi-infinite/noncommutative Hodge structures.

3In particular, it computes the usual equivariant symplectic cohomology SH�
S1.M /DH�.SC�.M /hS1/;

see Bourgeois and Oancea [6] but note differing conventions, eg regarding homology vs cohomology.
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Remark 1.8 There are other settings in which Fukaya categories are now well studied,
for instance Fukaya categories of Lefschetz fibrations (and more general LG models), or
more generally partially wrapped Fukaya categories (such as wrapped Fukaya categories
of Liouville sectors). We do not discuss these situations in our paper, but expect suitable
versions of Theorem 1.1 to hold in such settings too. We do note however that the
target of the open–closed map from Hochschild homology in such settings is usually
more subtle than in the cases discussed here, eg it does not typically have the structure
of a unital ring.

Remark 1.9 One can consider variations on Theorem 1.1. As a notable example,
let M denote a (noncompact) Liouville manifold, and F the Fukaya category of
compact exact Lagrangians in M . Then there is a nontrivial refinement of the map
HH�.F/!H�.M; @1M /, which can be viewed as a pairing HH�.F/�H�.M /!k,
to a pairing

CH�.F/˝ SC�.M /! k:

(Symplectic cohomology does not satisfy Poincaré duality, so this is not equivalent to
a map to symplectic cohomology.) Our methods also imply that this pairing admits an
S1–equivariant enhancement, with respect to the diagonal C��.S

1/–action on the left
and the trivial action on the right. Passing to adjoints, we obtain cyclic open–closed
maps from S1–equivariant symplectic cohomology to cyclic cohomology groups of F ,
and from cyclic homology of F to equivariant symplectic homology. See Section 5.6.2
for more details.

Beyond computing equivariant Floer cohomology groups in terms of cyclic homology
theories, we describe in the following subsection two applications of Theorem 1.1 to
the structure of Fukaya categories.

Remark 1.10 We anticipate additional concrete applications of Theorem 1.1 and its
homological shadow, Theorem 5.14. For instance, one can study the compatibility of
open–closed maps with dilations in the sense of Seidel and Solomon [58], which are
elements B in SH�.M / satisfying Œ��B D 1 — the existence of dilations strongly con-
strains intersection properties of embedded Lagrangians; see Seidel [55]. Theorem 5.14,
or rather the variant discussed in Remark 1.9, implies that if there exists a dilation ,
eg an element x 2 SH1.M / with Œ��x D 1, then on the Fukaya category of compact
Lagrangians F , there exists x0 2 .HHnC1.F//_ with x0 ı ŒB� D Œtr�, where tr is the
geometric weak proper Calabi–Yau structure on the Fukaya category; see Section 1.1.

Geometry & Topology, Volume 27 (2023)
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1.1 Calabi–Yau structures on the Fukaya category

Calabi–Yau structures are a type of cyclically symmetric duality structure on a dg or
A1 category C generalizing the notion of a nowhere-vanishing holomorphic volume
form on a complex algebraic variety X in the case C D perf.X /. As is well understood,
there are two (in some sense dual) types of Calabi–Yau structures on A1 categories:

(1) Proper Calabi–Yau structures (Kontsevich and Soibelman [37]) These can
be associated to proper categories C (those which have cohomologically finite-
dimensional morphism spaces), abstract and refine the notion of integration
against a nowhere-vanishing holomorphic volume form. For C D perf.X / with
X a proper n–dimensional variety, the resulting structure in particular induces
the Serre duality pairing with trivial canonical sheaf Ext�.E ;F/�Ext�.F ; E/!
kŒ�n�. Roughly, a proper Calabi–Yau structure on C (of dimension n) is a map
Œetr� W HCC� .C/! kŒ�n� satisfying a nondegeneracy condition.

(2) Smooth Calabi–Yau structures (Kontsevich, Takeda and Vlassopoulos [39])
These can be associated to smooth categories C (those with perfect diagonal
bimodule), and abstract the notion of the nowhere-vanishing holomorphic volume
form itself, along with the induced identification (by contraction against the
volume form) of polyvectorfields with differential forms. Roughly, a smooth
Calabi–Yau structure on C (of dimension n) is a map Œecotr� W kŒn�! HC�� .C/, or
equivalently an element Œe�� or “ŒvolC �” in HC��n.C/, satisfying a nondegeneracy
condition.

In both cases, the nondegeneracy condition can be phrased purely in terms of the
underlying nonequivariant shadow of the map, eg in the first case on the induced map
Œtr� W HH�.C/ ! HCC.C/ Œztr�

�! kŒ�n�. Precise definitions are reviewed in Section 6.
When C is simultaneously smooth and proper, it is a folk result that the notions are
equivalent; see [27, Proposition 6.10].

In general, Calabi–Yau structures may not exist and when they do, there may be a
nontrivial space of choices; see Menichi [45] for an example. A Calabi–Yau structure
in either form induces nontrivial identifications between Hochschild invariants of the
underlying category C.4 Moreover, categories with Calabi–Yau structures (should) carry
induced 2–dimensional chain level TQFT operations on their Hochschild homology

4In the proper case, there is an induced isomorphism between Hochschild cohomology and the linear dual
of Hochschild homology. In the smooth case, there is an isomorphism between Hochschild cohomology
and homology without taking duals.

Geometry & Topology, Volume 27 (2023)



3468 Sheel Ganatra

chain complexes, associated to moduli spaces of Riemann surfaces with marked points;
see Costello [14] and Kontsevich and Soibelman [37] in the proper case, and Kontsevich,
Takeda, and Vlassopoulos in the smooth case [39; 38]. If the category is proper and
nonsmooth (resp. smooth nonproper) the resulting TQFT is incomplete in that every
operation must have at least one input (resp. output). In the smooth and proper case in
particular, Calabi–Yau structures play a central role in the mirror symmetry motivated
question of recovering Gromov–Witten invariants from the Fukaya category and to the
related question of categorically recovering Hamiltonian Floer homology with all of its
(possibly higher homotopical) operations. See Costello [14; 15] and Kontsevich [35]
for work around these questions in the setting of abstract topological field theories,
and Ganatra, Perutz and Sheridan [27] for applications of Calabi–Yau structures to
recovering genus-0 Gromov–Witten invariants from the Fukaya category.

Remark 1.11 A closely related to (1), and well studied, notion is that of a cyclic A1

category: this is an A1 category C equipped with a chain level perfect pairing

h�;�iW hom.X;Y /� hom.Y;X /! kŒ�n�

such that the induced correlation functions

h�d .�;�; : : : ;�/;�i

are strictly (graded) cyclically symmetric for each d ; see for instance Cho and Lee [9],
Costello [14] and Fukaya [20]. Although the property of being a cyclic A1 structure
is not a homotopy-invariant notion (ie not preserved under A1 quasi-equivalences),
cyclic A1 categories and proper Calabi–Yau structures turn out to be weakly equivalent
in characteristic 0, in the following sense. Any cyclic A1 category carries a canonical
proper Calabi–Yau structure, and Kontsevich and Soibelman [37, Theorem 10.7] proved
that a proper Calabi–Yau structure on any A1 category C determines a (canonical up to
quasi-equivalence) quasi-isomorphism between C and a cyclic A1 category zC. When
char.k/¤ 0, the two notions of proper Calabi–Yau and cyclic A1 differ in general,
due to group cohomology obstructions to imposing cyclic symmetry. In such instances,
it seems that the notion of a proper Calabi–Yau structure is the “correct” one (as it is a
homotopy-invariant notion and, by Theorem 1.12, the compact Fukaya category always
has one).

As a first application of Theorem 1.1, we verify the longstanding expectation that
various compact Fukaya categories possess geometrically defined canonical Calabi–
Yau structures.

Geometry & Topology, Volume 27 (2023)
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Theorem 1.12 The Fukaya category of compact Lagrangians has , under technical
hypotheses (?), a canonical geometrically defined proper Calabi–Yau structure over
any ground field k (over which the Fukaya category and fOC are defined ).

In fact, this proper Calabi–Yau structure is easy to describe in terms of the cyclic
open–closed map (cf Corollary 1.5): it is the composition of the map5

fOCC W HCC� .F/!H�Cn.M; @M /..u//=uH�Cn.M; @M /ŒŒu��

with the linear map to k which sends the top class PD.pt/ � u0 2H 2n.M; @M / to 1,
and all other generators ˛ �u�i to 0. See Section 6 for more details.

As a consequence of the discussion in Remark 1.11, specifically [37, Theorem 10.7],
we deduce that

Corollary 1.13 If char.k/ D 0, then any Fukaya category of compact Lagrangians
satisfying (?) admits a (canonical up to equivalence) cyclic A1 (minimal ) model.

Remark 1.14 In the case of compact symplectic manifolds and over kD a Novikov
field containing R, Fukaya [20] constructed a cyclic A1 model of the Floer cohomology
algebra of a single compact Lagrangian, which will be extended to multiple objects by
Abouzaid, Fukaya, Oh, Ohta and Ono [2].

Remark 1.15 In order to construct (chain level) 2d–TFTs on the Hochschild chain
complexes of categories, Kontsevich and Soibelman [37] partly show (on the closed
sector) that a proper Calabi–Yau structure can be used instead of the (weakly equivalent
in characteristic 0) cyclic A1 structures considered in Costello [14]. One might
similarly hope that, for applications of cyclic A1 structures to disc-counting/open
Gromov–Witten invariants developed in Fukaya [21], a proper Calabi–Yau structure is
in fact sufficient. See Cho and Lee [9] for related work.

Turning to smooth Calabi–Yau structures, in Section 6.2, we will establish the following
existence result for smooth Calabi–Yau structures, which applies to wrapped Fukaya
categories of noncompact (Liouville) manifolds as well as to Fukaya categories of
compact manifolds.

5Recall that C�.M; @M / has the trivial C��.S
1/–module structure; the homology of the associated

homotopy orbit complex is H�Cn.M; @M /..u//=uH�Cn.M; @M /ŒŒu��, where juj D 2, as described in
Section 2.
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Theorem 1.16 Under the technical hypotheses (?), suppose further that our sym-
plectic manifold M is nondegenerate in the sense of [24], meaning that the map
ŒOC� W HH��n.F/ ! HF�.M / hits the unit 1 2 HF�.M /. Then , its (compact or
wrapped ) Fukaya category F possesses a canonical , geometrically defined strong
smooth Calabi–Yau structure.

Once more, the cyclic open–closed map gives an efficient description of this structure:
it is the unique element HC��n.F/ mapping via fOC� to the geometrically canonical
lift z1 2H�.CF�.M /hS1

/ of the unit 1 2 CF�.M / described in Section 4.4.6

Remark 1.17 In contrast to compact Fukaya categories or wrapped Fukaya cate-
gories of Liouville manifolds, the Fukaya categories of noncompact Lagrangians
discussed in Remark 1.8 are typically not Calabi–Yau in either sense,7 even if they
are smooth or proper categories; indeed they typically arise as homological mirrors to
perfect/coherent complexes on non-Calabi–Yau varieties. Instead, one might expect
such categories to admit pre-Calabi–Yau structures in the sense of Kontsevich, Takeda
and Vlassopoulos [38] (see also Yeung [65] and Seidel [57] for a construction of related
structures), or relative Calabi–Yau structures in the sense of Brav and Dyckerhoff [7].

The notion of a smooth Calabi–Yau structure, or sCY structure, will be studied further
in forthcoming joint work with R Cohen [12], and used to compare the wrapped Fukaya
category of a cotangent bundle and string topology category of its zero section as
categories with sCY structures (in order to deduce a comparison of topological field
theories on both sides).

1.2 Noncommutative Hodge–de Rham degeneration for smooth and proper
Fukaya categories

For a C��.S
1/–module P , there is a canonical Tor spectral sequence converging to

H�.PhS1/ with first page H�.P /˝k H�.khS1/ Š H�.P /˝k H�.CP1/. When
applied to the Hochschild complex P DCH�.C/ of a (dg/A1) category C, the resulting
spectral sequence, from (many copies of) HH�.C/ to HCC.C/ is called the Hochschild-
to-cyclic or noncommutative Hodge–de Rham (ncHDR) spectral sequence. The latter
name comes from the fact that when C D perf.X / is perfect complexes on a complex

6As shown in [24; 27], if ŒOC� hits 1, then ŒOC� is an isomorphism, and hence by Corollary 1.5, ŒfOC�� is
too. Hence one can speak about the unique element.
7One manifestation of this is the failure of the target of the open–closed map to have a distinguished unit
element, as also discussed in Remark 1.8.

Geometry & Topology, Volume 27 (2023)



Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures 3471

variety X , this spectral sequence is equivalent (via Hochschild–Kostant–Rosenberg
(HKR) isomorphisms) to the usual Hodge-to-de Rham spectral sequence from Hodge
cohomology to de Rham cohomology

H�.X; ��X /)H�dR.X /;

which degenerates (as we are in characteristic 0) whenever X is smooth and proper.
Motivated by this, Kontsevich [37; 35] formulated the noncommutative Hodge–de Rham
(ncHDR) degeneration conjecture: for any smooth and proper category C in charac-
teristic 0, its ncHDR spectral sequence degenerates. A general proof of this fact for
Z–graded categories was recently given by Kaledin [30; 29], following earlier work
establishing it in the coconnective case.

Using the cyclic open–closed map, we can give a purely symplectic proof of the ncHDR
degeneration property for those smooth and proper C arising as Fukaya categories,
including in non-Z–graded cases:

Theorem 1.18 Let A � F.M / be a smooth and proper subcategory of any Fukaya
category of any compact symplectic manifold satisfying the technical assumptions (?),
over any field k (over which the Fukaya category and the cyclic open–closed map
are defined ). Then , the noncommutative Hodge–de Rham spectral sequence for A
degenerates.

Proof The noncommutative Hodge–de Rham spectral sequence for A degenerates at
page 1 if and only if P DCH�.A/ is isomorphic (in the category of C��.S

1/–modules)
to a trivial C��.S

1/–module, for instance, if the C��.S
1/–action is trivializable; see

Dotsenko, Shadrin and Vallette [16, Theorem 2.1]. For compact symplectic mani-
folds M , recall that CF�.M /ŠH�.M / has a canonically trivial(izable) C��.S

1/–
action. (See Corollary 4.16; this comes from, for instance, the fact that we can choose a
C 2–small Hamiltonian to compute the complex, all of the orbits of which are constant
loops on which geometric rotation acts trivially. Or more directly, we can modify the
definition of fOC to give a map directly to H�.M / with its trivial C��.S

1/–action, as
described in Section 5.6.1.)

By earlier work [27; 25], whenever A is smoooth, OCjA is an isomorphism from
HH��n.A/ onto a nontrivial summand S of HF�.M / Š QH�.M /; the C��.S

1/–
action on this summand is trivial too. Theorem 1.1 shows that fOCjA induces an
isomorphism in the category of C��.S

1/–modules between CH�.A/ and S Œn� with its
trivial action, so we are done.
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Remark 1.19 Theorem 1.18 holds for a field k of any characteristic over which
the Fukaya category and relevant structures (satisfy (?) and) are defined, for any
grading structure that can be defined on the given Fukaya category; eg it holds for the
Z=2–graded Fukaya category of a monotone symplectic manifold over a field of any
characteristic. In contrast, for an arbitrary smooth and proper Z=2–graded dg category
in characteristic zero, the noncommutative Hodge–de Rham degeneration is not yet
established (though it is expected). And it is not always true in finite characteristic.

An incomplete explanation for the degeneration property holding for finite characteristic
smooth and proper Fukaya categories may be that the Fukaya category over a charac-
teristic p field k (whenever Lagrangians are monotone or tautologically unobstructed
at least) may always admit a lift to second Witt vectors W2.k/.8

As is described in joint work (partly ongoing) with Perutz and Sheridan [27; 26],
the cyclic open–closed map fOC� can further be shown to be a morphism of semi-
infinite Hodge structures, a key step (along with the above degeneration property and
construction of Calabi–Yau structure) in recovering Gromov–Witten invariants from
the Fukaya category and enumerative mirror predictions from homological mirror
theorems.

1.3 Outline of paper

In Section 2, we recall a convenient model for the category of A1–modules over
C��.S

1/ and various equivariant homology functors from this category. In Section 3,
we review the (compact and wrapped) Fukaya category along with C��.S

1/–action
on its (and more generally, any cohomologically unital A1 category’s) nonunital
Hochschild chain complex (a variant on usual cyclic bar complex that has usually
appeared in the symplectic literature, eg in Abouzaid [1]). In Section 4, we recall
the construction of the A1 C��.S

1/–module structure on the (Hamiltonian) Floer
chain complex, following Bourgeois and Oancea [6] and Seidel [51]; note that our
technical setup is slightly different, though equivalent. Then we prove our main results
in Section 5. Some technical and conceptual variations on the construction of fOC
(including Remark 1.9) are discussed at the end of this section; see Section 5.6. Finally,
in Section 6 we apply our results to construct proper and smooth Calabi–Yau structures,
proving Theorems 1.12 and 1.16.

8The author wishes to thank Mohammed Abouzaid for discussions regarding this point.
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1.4 Conventions

We work over a ground field k of arbitrary characteristic, though we note that all of
our geometric constructions are valid over an arbitrary ring, eg Z. All chain complexes
will be graded cohomologically, including singular chains of any space, which hence
have negative the homological grading and are denoted by C��.X /. All gradings are
either in Z or Z=2 (in the latter case, degrees of maps are implicitly mod 2).

Acknowledgements I’d like to thank Paul Seidel for a very helpful conversation and
Nick Sheridan for several helpful discussions about technical aspects of this paper such
as signs. I would also like to thank Zihong Chen and Yasin Uskuplu for corrections.
Part of this work was revised during a visit at the Institut Mittag-Leffler in 2015, which
I’d like to thank for its hospitality. Finally, I’d like to thank a referee for a number of
helpful suggestions, comments and corrections which improved the exposition of this
article.

The author was partially supported by the National Science Foundation through a
postdoctoral fellowship (grant DMS-1204393) and agreement DMS-1128155. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science
Foundation.

2 Complexes with circle action

In this section, we review a convenient model for the category of A1 C��.S
1/–modules,

for which the A1 C��.S
1/–action can be described by a single hierarchy of maps

satisfying equations. We also describe various equivariant homology complexes in this
language in terms of simple formulae. This model appears elsewhere in the literature
as1–mixed complexes or S1–complexes or multicomplexes (we will sometimes adopt
the second term); see eg [6; 66; 16], but note that the first and third references use
homological grading conventions.

2.1 Definitions

Let C��.S
1/ denote the dg algebra of chains on the circle with coefficients in k, graded

cohomologically, with multiplication induced by the Pontryagin product S1�S1!S1.
This algebra is formal, or quasi-isomorphic to its homology, an exterior algebra on one
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generator ƒ of degree �1 with no differential. Henceforth, by abuse of notation we
take this exterior algebra as our working model for C��.S

1/,

(2-1) C��.S
1/ WD kŒƒ�=ƒ2; where jƒj D �1;

and use the terminology C
sing
�� .S

1/ to refer to usual singular chains on S1.

Definition 2.1 A strict S1–complex, or a chain complex with strict/dg S1–action, is a
unital differential graded module over kŒƒ�=ƒ2.

Let .M; d/ be a strict S1–complex; by definition .M; d/ is a cochain complex (recall
our conventions for complexes from Section 1.4) and the unital dg kŒƒ�=ƒ2–module
structure is equivalent to the data of the single additional operation of multiplying by ƒ,

(2-2) �Dƒ � �WM�!M��1;

which must square to zero and anticommute with d . In other words, .M; d; �/ is what
is known as a mixed complex; see eg [8; 31; 41].

We will need to work with the weaker notion of an A1–action, or rather an A1–module
structure over C��.S

1/DkŒƒ�=ƒ2. Recall that a (left) A1–module M [33; 52; 50; 24]
over the associative graded algebra AD kŒƒ�=ƒ2 is a graded k–module M equipped
with maps

(2-3) �kj1
WA˝k

˝M !M; for k � 0;

of degree 1� k, satisfying the A1–module equations described in [50] or [24, (2.35)].
Since AD kŒƒ�=ƒ2 is unital, we can work with modules that are also strictly unital
(see [50, (2.6)]); this implies that all multiplications by a sequence with at least one
unit element is completely specified,9 and hence the only nontrivial structure maps to
define are the operators

(2-4) ık WD �
kj1
M
.ƒ; : : : ; ƒ„ ƒ‚ …

k copies

;�/ WM !M Œ1� 2k� for k � 0:

The A1–module equations are equivalent to the relations

(2-5)
sX

iD0

ıiıs�i D 0

for (2-4), for each s � 0. We summarize the discussion so far with the following
definition.
9More precisely, �1j1.1;m/Dm and �kj1. : : : ; 1; : : : ;m/D 0 for k > 1.
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Definition 2.2 An S1–complex, or a chain complex with an A1 S1–action, is a strictly
unital (left) A1–module M over kŒƒ�=ƒ2. Equivalently, it is a graded k–module M

equipped with operations fık WM !M Œ1� 2k�gk�0 satisfying, for each s � 0, the
hierarchy of equations (2-5).

Remark 2.3 If X is a topological space with S1–action, then C��.X / carries a dg
C

sing
�� .S

1/–module structure, with module action induced by the action S1 �X !X .
Under the A1 equivalence C

sing
�� .S

1/ Š kŒƒ�=ƒ2, it follows that C��.X / carries
an A1 (not necessarily dg) kŒƒ�=ƒ2–module structure, which can further be made
strictly unital, by [40, Theorem 3.3.1.2] or by passing to normalized chains. If one
wishes, one can then appeal to abstract strictification results to produce a dg kŒƒ�=ƒ2–
module which is quasi-isomorphic as A1 kŒƒ�=ƒ2–modules to C��.X /. More directly,
it turns out [12] that one can find an equivalent dg kŒƒ�=ƒ2–module by taking a
suitable quotient of the normalized singular chain complex C��.X / to form unordered
normalized singular chains of X (identifying simplices differing by permuting vertices
and quotienting by those that are degenerate).

Remark 2.4 There are multiple sign conventions for A1–modules over an A1–
algebra; the most common two conventions appear in [50, (2.6)] and [52, (1j)], as well
as many other places. These conventions are completely irrelevant for strictly unital
A D kŒƒ�=ƒ2–modules, as the reduced degree of any element in xA D spank.ƒ/ is
zero; hence the (Koszul) signs in various formulae are C1 in either convention.

For sD 0, equation (2-5) says simply that the differential d D ı0 squares to 0; for sD 1,
equation (2-5) implies ı WD ı1 anticommutes with d , and for sD2, .ı/2D�.dı2Cı2d/,
or that ı2 is chain-homotopic to zero, but not strictly zero, as measured by the chain
homotopy ı2.

S1–complexes, as strictly unital A1–modules over the augmented algebra A D

kŒƒ�=ƒ2, are the objects of a dg category, which we will call

(2-6) S1–mod WD uA–mod;

whose morphisms and compositions we now recall.10 Denote by � W A ! k the
augmentation map, and xAD ker � D spank.ƒ/ the augmentation ideal. Let M and N

be two strictly unital A1 A–modules. A unital premorphism of degree k from M to N

10For the definition of this category compare [50, pages 90, 94], where it is called mod.A/Dmod.A;k/.
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is a collection of maps Fd j1 W xA˝d˝M!N for d �0, of degree k�d , or equivalently,
since dimk. xA/D 1 in degree �1, a collection of operators

(2-7) F D fFd
gd�0; Fd

WD Fd j1.ƒ; : : : ; ƒ„ ƒ‚ …
d copies

;�/ WM !N Œk � 2d �:

If T . xAŒ1�/ D
L

d�0
xAŒ1�˝d denotes the tensor algebra of xAŒ1�, then F can be alter-

natively packaged into the data of a single map F WD
L

d�0 Fd W T xAŒ1�˝M ! N

of degree k. The space of premorphisms of each degree form the graded space of
morphisms in S1–mod, which we will denote by RhomS1.�;�/:

(2-8) RhomS1.M;N / WD
M
k2Z

Rhomk
S1.M;N /

WD

M
k2Z

homgrVect.T . xAŒ1�/˝M;N Œk�/

D

�M
k2Z

homgrVect

�M
d�0

M Œ2d �;N Œk�

��
:

There is a differential @ on (2-8) described in [50, page 90]; in terms of the simplified
form of premorphisms (2-7), one has

(2-9) .@F /s D

sX
iD0

F i
ı ıM

s�i � .�1/deg.F /
sX

jD0

ıN
s�j ıFj :

An A1 kŒƒ�=ƒ2–module homomorphism, or S1–complex homomorphism, is a pre-
morphism F D fFdg which is closed, ie @F D 0. In particular, F is an A1–module
homomorphism if the following equations are satisfied for each s:

(2-10)
sX

iD0

F i
ı ıM

s�i D .�1/deg.F /
sX

jD0

ıN
s�j ıFj :

Note that the s D 0 equation reads F0 ı ıM
0
D .�1/deg.F /ıN

0
ı F0, so (if @F D 0)

F0 induces a cohomology level map ŒF0� W H�.M / ! H�Cdeg.F /.N /. A module
homomorphism (or closed morphism) F is said to be a quasi-isomorphism if ŒF0� is
an isomorphism on cohomology. A strict module homomorphism F is one for which
Fk D 0 for k > 0.

Remark 2.5 There is an enlarged notion of a nonunital premorphism (used for
modules which are not necessarily strictly unital), which is a collection of maps
f yFd W A˝d ˝M ! N gd instead of fFd W xA˝d ˝M ! N gd . Any premorphism
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F D fFdgd as we have defined it extends to a nonunital premorphism yF D f yFdg by
declaring yFd . : : : ; 1; : : : ;m/D 0. For strictly unital modules, the resulting inclusion
from the complex of premorphisms to the complex of nonunital premorphisms is a
quasi-isomorphism.

Remark 2.6 When M and N are dg modules, or strict S1–complexes, the complex
RhomS1.M;N / is a reduced bar model of the chain complex of derived kŒƒ�=ƒ2–
module homomorphisms, which is one of the reasons we have adopted the terminology
“Rhom”. In the A1 setting, we recall that there is no sensible “nonderived” notion of a
kŒƒ�=ƒ2–module map; compare [50].

The composition in the category S1–mod,

(2-11) RhomS1.N;P /˝RhomS1.M;N /! RhomS1.M;P /;

is defined by

(2-12) .G ıF /s D

sX
jD0

Gs�j
ıFj :

Remark 2.7 If M is any S1–complex, then its endomorphisms RhomS1.M;M /,
equipped with composition, form a dg algebra. As an example, consider M D k,
with trivial module structure determined by the augmentation � W kŒƒ�=ƒ2! k. It is
straightforward to compute that, as a dga,

(2-13) RhomS1.k;k/Š kŒu�; with juj D 2:

In terms of the definition of morphism spaces (2-8), u corresponds to the unique
morphism G D fGdgd�0 of degree C2 with G1 D id and Gs D 0 for s ¤ 1.

In addition to taking the morphism spaces, one can define the (derived) tensor product of
S1–complexes N and M : using the isomorphism AŠAop coming from commutativity
of AD kŒƒ�=ƒ2, first view N as a right A1 A–module (see [50, pages 90, 94], where
the category of right A–modules is called mod.k;A/, see also [52, (1j)] and [24,
Section 2]), and then take the usual (necessarily derived) tensor product of N and M

over A (see [50, page 91] or [24, Section 2.5]). The resulting chain complex — which
we will, by abuse of notation, indicate as the derived tensor product over S1 — has
underlying graded vector space

(2-14) N ˝L
S1 M WDN ˝L

A M WD
M
d�0

N ˝ xAŒ1�˝d
˝M D

M
d�0

.N ˝k M /Œ2d �;
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where the degree s part is
L

d�0

L
t Nt˝MsC2d�t . Let us refer to an element n˝m

of the d th summand of this complex by suggestive notation

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d times

˝m

as in the first line of (2-14). With this notation, the differential on (2-14) acts as

(2-15) @.n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝m/

D

dX
iD0

�
.�1/jmjıN

i n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�i

˝mC n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�i

˝ ıM
i m

�
:

Here our sign convention follows [24, Section 2.5] rather than [50], though the sign
difference is minimal.

Remark 2.8 Analogously to Remark 2.6, if M and N are unital dg modules over
ADkŒƒ�=ƒ2, the chain complex described above computes their derived tensor product,
whose homology is TorA.M;N /. While we have therefore opted for the notation
N ˝L

A
M , or rather the abbreviation N ˝L

S1 M , we note that the (derived) tensor
product of A1–modules is often written in the A1 literature without the superscript L

as simply N ˝A M ; compare [50, equation (2.6)].

The pairing (2-14) is suitably functorial with respect to morphisms of the S1–complexes
involved, meaning that �˝S1 N and M ˝S1� both induce dg functors from S1–mod
to chain complexes; compare [50, page 92]. For instance, if F D fFj gWM0!M1 is
a premorphism of S1–complexes, then there are induced maps

F] WN ˝
L
S1 M0!N ˝L

S1 M1;

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝m 7!

dX
jD0

n˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�j

˝Fj .m/;
(2-16)

F] WM0˝
L
S1 N !M1˝

L
S1 N;

m˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d

˝ n 7!

dX
jD0

.�1/deg.F /�jnjFj .m/˝ƒ˝ � � �˝ƒ„ ƒ‚ …
d�j

˝ n;
(2-17)

which are chain maps if @.F /D 0.

Hom and tensor complexes of S1–complexes, as in any category of A1–modules,
satisfy the following strong homotopy-invariance properties.
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Proposition 2.9 (homotopy invariance) If F WM !M 0 is any quasi-isomorphism of
S1–complexes (meaning @.F /D0 and ŒF0� WH�.M / Š�!H�.M 0/ is an isomorphism),
then composition with F induces quasi-isomorphisms of hom and tensor complexes:

F ı � W RhomS1.M 0;P / ��! RhomS1.M;P /;

� ıF W RhomS1.P;M / ��! RhomS1.P;M 0/;

F] WN ˝
L
S1 M ��!N ˝L

S1 M 0;

F] WM ˝
L
S1 N ��!M 0

˝
L
S1 N:

(2-18)

The proof is a standard argument (though we do not know a specific reference): one
exhibits acyclicity of the cone of each of the above maps by studying the spectral
sequence with respect to the length filtration (with respect to the number of xA˝d

factors in the bar model of the complexes); the first page of the associated spectral
sequence is the cone of the map associated to the derived homs/tensor products of
the associated homology-level modules by the homology level map ŒF0�, which is
acyclic by hypothesis; hence the second page vanishes and the cone is acyclic; compare
analogous arguments in [52, Lemma 2.12] or [24, Proposition 2.2].

Let .P; fıP
i g/ and .Q; fıQ

j gj / be S1–complexes, and f W P ! Q a chain map of
some degree deg.f / (with respect to the ıP

0
and ıQ

0
differentials). An S1–equivariant

enhancement of f is a degree deg.f / homomorphism F DfF igi�0 of S1–complexes —
eg a closed morphism, so F satisfies (2-10) — with ŒF 0�D Œf �.

Remark 2.10 There are a series of obstructions to the existence of an S1–equivariant
enhancement of a given chain map f ; for instance, a first necessary condition is the
vanishing of the cohomology class Œf � ı ŒıP

1
�� Œı

Q
1
� ı Œf �.

Finally, we note that, just as the product of S1–spaces X � Y possesses a diagonal
action, the (linear) tensor product of S1–complexes is again an S1–complex.

Lemma 2.11 If�
M; ıM

eq D

1X
iD0

ıM
j uj

�
and

�
N; ıN

eq D

1X
iD0

ıN
i ui

�
are S1–complexes , then the graded vector space M ˝N is naturally an S1–complex
with ıM˝N

eq D
P1

iD0 ı
M˝N
k

uk , where

(2-19) ıM˝N
k

.m˝n/ WD .�1/jnjıM
k m˝nCm˝ ıN

k n:

We call the resulting S1–action on M ˝N the diagonal S1–action.
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Proof We compute

(2-20) ıM˝N
j ıM˝N

k
.m˝n/

DıM
j ıM

k m˝nC.�1/jnjC1ıM
j m˝ıN

k nC.�1/jnjıM
k m˝ıN

j nCm˝ıN
j ı

N
k n:

Summing over all j Ck D s, the middle two terms cancel in pairs and the sums of the
leftmost terms (resp. rightmost) terms respectively vanish because M (resp. N ) is an
S1–complex.

Definition 2.12 Let M WD .M; d/ be a chain complex over k. The pullback of M

along the (augmentation) map kŒƒ�=ƒ2! k is called the trivial S1–complex, or chain
complex with trivial S1–action associated to M , and denoted by M triv. Concretely,
M triv WD .M; ı0 D d; ık D 0 for k > 0/.

2.2 Equivariant homology groups

Let M be an S1–complex. Let kD ktriv denote the strict trivial rank-1 S1–complex
concentrated in degree 0.

Definition 2.13 The homotopy orbit complex of M is the (derived) tensor product of
M with k over C��.S

1/:

(2-21) MhS1 WD k˝L
S1 M:

The (strict) morphism of S1–complexes � W kŒƒ�=ƒ2 ! k (here kŒƒ�=ƒ2 comes
equipped with structure maps ık D 0 for k¤ 1, and ı1Dƒ ��) induces by functoriality
a chain map from M to MhS1 called the projection to homotopy orbits,

(2-22) pr WM Š kŒƒ�=ƒ2
˝

L
S1 M ! k˝L

S1 M DMhS1 :

Remark 2.14 When M D C��.X /, with S1–complex induced by a topological
S1–action on X as in Remark 2.3, the complex (2-21) computes the Borel equivari-
ant homology of X , by the following reasoning: first, the A1 equivalence between
kŒƒ�=ƒ2 and C

sing
�� .S

1/ induces an equivalence

MhS1 ' C��.pt/˝L
C

sing
�� .S

1/
C��.X /:

Next, one observes that C��.ES1/!C��.pt/ is a quasi-isomorphism of dg C
sing
�� .S

1/–
modules, where the C

sing
�� .S

1/–actions are induced by the S1–actions on ES1 and pt,
respectively. Hence, there is a quasi-isomorphism of derived tensor products

C��.pt/˝L
C

sing
�� .S

1/
C��.X /' C��.ES1/˝L

C
sing
�� .S

1/
C��.X /:
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Finally, it is a standard fact in algebraic topology (used in the construction of Eilenberg–
Moore-type spectral sequences, eg [44, Theorem 7.27] and [17, Proposition 6.13]) that,
as ES1 is a principal S1–bundle,

C��.ES1/˝L
C

sing
�� .S

1/
C��.X /' C��.ES1

�S1 X /D C��.XhS1/;

which is the usual chain complex computing (Borel) equivariant homology. This gives
some justification for the usage of the subscript hS1 notation in Definition 2.13.

Definition 2.15 The homotopy fixed-point complex of M is the chain complex of
morphisms from k to M in the category of S1–complexes,

(2-23) M hS1

WD RhomS1.k;M /:

The morphism of modules � W kŒƒ�=ƒ2! k induces a chain map M hS1

!M , called
the inclusion of homotopy fixed points,

(2-24) � WM hS1

D RhomS1.k;M /! RhomS1.kŒƒ�=ƒ2;M /ŠM:

Remark 2.16 To motivate the usage “homotopy fixed points”, in the topological
category, the usual fixed points of a G–action can be described as MapsG.pt;X /.
When M D C��.X / for X an S1–space, there is a canonical map C��.X

hS1

/!

.C��.X //
hS1

. However, in contrast to the case of homotopy orbits discussed in
Remark 2.14, this map need not be an equivalence.

Composition in the category S1–mod induces a natural action of

(2-25) RhomS1.k;k/D kŒu� with juj D 2

DH�.BS1/

on the homotopy fixed-point complex. There is a third important equivariant homology
complex, called the periodic cyclic, or Tate complex of M , defined as the localization
of M hS1

away from uD 0,

(2-26) M Tate
WDM hS1

˝kŒu� kŒu;u
�1�:

The Tate construction sits in an exact sequence between the homotopy orbits and fixed
points.

Remark 2.17 (Gysin sequences) It is straightforward from the viewpoint of A1

C��.S
1/–modules to explain the appearance of various Gysin and periodicity sequences.

Take for instance the Gysin exact triangle

M
pr
�!MhS1 !MhS1 Œ2�

Œ1�
�!M:
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This is a manifestation of a canonical exact triangle of objects in S1–mod,

kŒƒ�=ƒ2 �
�! k

u
�! kŒ2�

Œ1�
�! kŒƒ�=ƒ2

(recall in Remark 2.7 it was shown that RhomS1.k;k/Š kŒu�), pushed forward by the
functor .�/˝L

S1 M . The other exact sequences arise similarly.

As a special case of the general homotopy-invariance properties of A1–modules stated
in Proposition 2.9, we have:

Corollary 2.18 If F W M ! N is a homomorphism of S1–complexes (meaning a
closed morphism), it induces chain maps between equivariant theories:

F hS1

WM hS1

!N hS1

;(2-27)

FhS1 WMhS1 !NhS1 ;(2-28)

FTate
WM Tate

!N Tate:(2-29)

If F is a quasi-isomorphism of S1–complexes (meaning simply that ŒF0� is a homology
isomorphism), then (2-27)–(2-29) are quasi-isomorphisms of chain complexes.

Functoriality further tautologically implies:

Proposition 2.19 If F W M ! N is a homomorphism of S1–complexes , then the
various induced maps (2-27)–(2-29) intertwine all of the long exact sequences for
(equivariant homology groups of ) M with those for N .

2.3 u–linear models for S 1–complexes

It is convenient to package the data described in the previous two sections into “u–linear
generating functions”, in the following way: Let u be a formal variable of degree C2.
Let us use the abuse of notation

M ŒŒu�� WDM b̋k kŒu�

for the u–adically completed tensor product in the category of graded vector spaces;
in other words M ŒŒu�� WD

L
k M ŒŒu��k , where M ŒŒu��k D

˚P1
iD0 miu

i jmi 2Mk�2i

	
.

Then, we frequently write an S1–complex .M; fıkgk�0/ as a k–module M equipped
with a map

(2-30) ı.M /
eq D

1X
iD0

ıM
i ui
WM !M ŒŒu��
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of total degree 1, satisfying ı2
eq D 0. Here we are implicitly conflating ıeq with its

u–linear extension to a map M ŒŒu��!M ŒŒu�� in order to u–linearly compose and obtain
a map M !M ŒŒu��.

Premorphisms from M to N of degree k can similarly be recast as maps Feq DP1
iD0 Fiu

i W M ! N ŒŒu�� of pure degree k (so each Fi has degree k � 2i). The
differential on premorphisms can be described u–linearly as

(2-31) @.Feq/D Feq ı ı
M
eq � .�1/deg.F /ıN

eq ıFeq;

and composition is simply the u–linear composition Geq ıFeq (again, one implicitly
u–linearly extends Geq and then u–linearly composes); explicitly,�X

i�0

Giu
i

�
ı

�X
j�0

Fj uj

�
D

X
k�0

� X
iCjDk

Gi
ıFj

�
uk :

With respect to this packaging, the formulae for various equivariant homology chain
complexes can be given the more readable forms

MhS1 D .M ..u//=uM ŒŒu��; ıeq/;(2-32)

M hS1

D .M ŒŒu��; ıeq/;(2-33)

M Tate
D .M ..u//; ıeq/;(2-34)

where, again, we use the abuse of notation M ..u//DM ŒŒu��˝kŒu� kŒu;u
�1�. (On the

other hand, note that (2-32) is not completed.) As before, any homomorphism (that is,
closed morphism) of S1–complexes FeqD

P1
iD0 F iui induces a kŒu�–linear chain map

between homotopy fixed-point complexes by u–linearly extended composition, and
hence, by tensoring over kŒu� with k..u//=ukŒŒu�� or k..u//, chain maps between homo-
topy orbit and Tate complex constructions. With respect to these explicit complexes,
the projection to homotopy orbits (2-22) and inclusion of fixed points (2-24) chain
maps have simple explicit descriptions

pr WM !MhS1 ; ˛ 7! ˛ �u0;(2-35)

� WM hS1

!M;

1X
iD0

˛iu
i
7! ˛0:(2-36)

Remark 2.20 This u–linear lossless packaging of the data describing an S1–complex
is a manifestation of Koszul duality; in the case of AD kŒƒ�=ƒ2, it posits that there
is a fully faithful embedding, Rhom.k;�/ D .�/hS1

from A–modules into B WD

RhomA.k;k/D kŒu�–modules.

Geometry & Topology, Volume 27 (2023)



3484 Sheel Ganatra

From the u–linear point of view, it is easier to observe that the exact triangle of kŒu�–
modules kŒŒu��!k..u//!k..u//=kŒŒu��D u�1.k..u//=ukŒŒu��/ induces an exact triangle
(functorial in M ) between equivariant homology chain complexes

M hS1

!M Tate
!MhS1 Œ2�

Œ1�
�!M hS1

:

3 Circle action on the open sector

3.1 The usual and nonunital Hochschild chain complex

Recall that an A1 category over k, C is specified by the following data:

� A collection of objects ob C.
� For each pair of objects X;X 0, a graded vector space homC.X;X

0/ over k.
� For any set of dC1 objects X0; : : : ;Xd , higher multilinear (over k) composition

maps

(3-1) �d
W homC.Xd�1;Xd /� � � � � homC.X0;X1/! homC.X0;Xd /

(sometimes equivalently viewed as a map from the tensor product) of degree
2� d , satisfying for each k > 0 the (quadratic) A1 relations

(3-2)
X
i;l

.�1/zi�k�lC1
C .xk ; : : : ;xiClC1; �

l
C.xiCl ; : : : ;xiC1/;xi ; : : : ;x1/D 0;

with sign

(3-3) zi WD kx1kC � � �C kxik;

where jxj denotes degree and kxk WD jxj � 1 denotes reduced degree.

The first two equations of (3-2) imply that �1 is a differential, and the cohomology
level maps Œ�2� are a genuine composition for the (nonunital) category H�.C/ with the
same objects and morphisms,

(3-4) HomH �.C/.X;Y / WDH�.homC.X;Y /; �
1/:

We say that C is cohomologically unital if there exist cohomology-level identity mor-
phisms ŒeX � 2 HomH �.C/.X;X / for each object X , making H�.C/ into a genuine
category. We say that C is strictly unital if there exist elements eC

X
2 homC.X;X /, for

every object X , satisfying

(3-5)

8̂<̂
:
�1.eC

X
/D 0;

.�1/jyj�2.eC
X1
;y/D y D �2.y; eC

X0
/ for any y 2 homC.X0;X1/;

�d . : : : ; eC
X
; : : :/D 0 for d > 2:
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We call such elements the chain-level, or strict, identity elements.

The Hochschild chain complex, or cyclic bar complex, of an A1 category C is the
direct sum of all cyclically composable sequences of morphism spaces in C,

(3-6) CH�.C/ WDM
k�0

Xi0
;:::;Xik

2ob C

homC.Xik
;Xi0

/˝ homC.Xik�1;Xik
/˝ � � �˝ homC.Xi0

;Xi1
/:

The (cyclic bar) differential b acts on Hochschild chains by summing over ways to
cyclically collapse elements by any of the A1 structure maps:

(3-7) b.xd ˝xd�1˝ � � �˝x1/

D

X
.�1/#

d
k�d�i.xk ; : : : ;x1;xd ;xd�1; : : : ;xkCiC1/˝xkCi ˝ � � �˝xkC1

C

X
.�1/z

s
1xd ˝ � � �˝�

j .xsCjC1; : : : ;xsC1/˝xs˝ � � �˝x1;

with signs

zk
i WD

kX
jDi

kxik;(3-8)

#d
k WDzk

1 � .1Czd
kC1/Czd�1

kC1C 1:(3-9)

In this complex, Hochschild chains are (cohomologically) graded as

(3-10) deg.xd˝xd�1˝� � �˝x1/ WD deg.xd /C

d�1X
iD1

deg.xi/�dC1Djxd jC

d�1X
iD1

kxik:

Remark 3.1 Frequently the notation CH�.C; C/ is used for (3-6) to emphasize that
Hochschild homology is taken here with diagonal coefficients, rather than coefficients
in another bimodule.

If C is a strictly unital A1 category, then the chain complex (3-6) carries a strict S1–
action B W CH�.C/! CH��1.C/, involving summing over ways to cyclically permute
chains and insert identity morphisms; see Remark 3.7 below. However, there is a
quasi-isomorphic nonunital Hochschild complex of C which always carries a strict
S1–action (even if C is not strictly unital), which we will now describe.

As a graded vector space, the nonunital Hochschild complex consists of two copies of
the cyclic bar complex, the second copy shifted down in grading by 1:

(3-11) CHnu
� .C/ WD CH�.C/˚CH�.C/Œ1�:
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With respect to the decomposition (3-11), we sometimes refer to elements as � WD .{̨; y̌/,
with the notation {̨ or y̌ indicating that a given element ˛ and ˇ belong to the left or
right factor respectively. Similarly, we refer to the left and right factors as the check
factor and the hat factor, respectively.

Let b0 denote a version of the differential (3-7) omitting the “wrap-around terms” (often
simply called the bar differential):

(3-12) b0.xd ˝xd�1˝ � � �˝x1/

D

X
.�1/z

s
1xd ˝ � � �˝xsCjC1˝�

j .xsCj ; : : : ;xsC1/˝xs˝ � � �˝x1

C

X
.�1/z

d�j

1 �j .xd ;xd�1; : : : ;xd�jC1/˝xd�j ˝ � � �˝x1:

For an element y̌ D xd ˝ � � �˝x1 in the hat (right) factor of (3-11), define an element
d^_. y̌/ in the check (left) factor of (3-11) by

(3-13) d^_. y̌/ WD .�1/z
d
2Ckx1k�z

d
2C1x1˝xd˝� � �˝x2C .�1/z

d�1
1 xd˝� � �˝x1:

In this language, the differential on the nonunital Hochschild complex can be written

(3-14) bnu
W .{̨; y̌/ 7! .b.{̨/C d^_. y̌/; b

0. y̌//;

or equivalently can be expressed via the matrix

(3-15) bnu
D

�
b d^_
0 b0

�
:

The left factor CH�.C/ ,! CHnu
� .C/ is by definition a subcomplex. Moreover, since

the quotient complex is the standard A1 bar complex with differential b0, which is
acyclic for cohomologically unital C (by a standard length-filtration spectral sequence
argument, compare [52, Lemma 2.12] or [24, Proposition 2.2]), it follows that:

Lemma 3.2 The inclusion map � W CH�.C/ ,! CHnu
� .C/ is a quasi-isomorphism (when

C is cohomologically unital ).

Remark 3.3 The nonunital Hochschild complex of C can be conceptually explained in
terms of cyclic bar complexes as follows; cf [41, Section 1.4.1; 61, Section 3.5]. First,
augment the category C by adjoining strict units; meaning, consider the A1 category
CC with ob CC D ob C and

(3-16) homCC.X;Y /D

�
homC.X;Y / when X ¤ Y;

homC.X;X /˚kheC
X
i when X D Y;
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whose A1 structure maps are completely determined by the fact that C is an A1

subcategory, and the elements eC
X

act as strict units in the sense of (3-5). Next, consider
the normalized (or reduced) Hochschild complex of the strictly unital category CC,
CHred
� .CC/, by definition the quotient of CH�.CC/ by the acyclic subcomplex consisting

of eC terms in any position but the first. Now, take the further quotient of CHred
� .CC/

by the subcomplex of length one Hochschild chains of the form eC
X

for some X . The
resulting complex, denoted by fCH�.CC/, can be identified as a chain complex with
CHnu
� .C/ via the map

(3-17)

f W fCH�.CC/ Š�! CHnu
� .C/;

yk ˝ � � �˝y1 7�!

�
.0;yk�1˝ � � �˝y1/ if yk D eC

X
for some X;

.yk ˝ � � �˝y1; 0/ otherwise.

In particular, the differential in CHnu.C/ on a Hochschild chain y̌ in the right factor (of
the decomposition (3-11)) agrees with the (usual cyclic bar) Hochschild differential
applied to eC

X
˝ˇ under the correspondence f .

3.2 Circle action on the Hochschild complex

The S1–action on the nonunital (or usual) Hochschild complex is built out of several
intermediate operations. First, let t W CH�.C/! CH�.C/ denote the (signed) cyclic
permutation operator on the cyclic bar complex generating the Z=kZ cyclic action on
the length-k expressions

(3-18) t W xk ˝ � � �˝x1 7! .�1/kx1k�z
k
2Ckx1kCkxkkx1˝xk ˝ � � �˝x2:

(This is not a chain map.)

Let N denote the norm of this operation; that is, the sum of all powers of t (this depends
on k, the length of a given Hochschild chain),

(3-19) N W xk ˝ � � �˝x1 D � 7! .1C t C t2
C � � �C tk�1/�:

Let snu W CHnu
� .C/! CHnu

��1.C/ be the linear map which sends check chains to the
corresponding hat chains, and hat chains to zero:

(3-20) snu.xd ˝ � � �˝x1;yt ˝ � � �˝y1/ WD .�1/z
d
1Ckxd kC1.0;xd ˝ � � �˝x1/:

(Again, this is not a chain map.)
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Finally define Bnu W CHnu
� .C/! CHnu

��1.C/ by

(3-21) Bnu.xk ˝ � � �˝x1;yl ˝ � � �˝y1/

WD

kX
iD1

.�1/z
i
1z

k
iC1CkxkkCz

k
1C1.0;xi ˝ � � �˝x1˝xk ˝ � � �˝xiC1//

D snu.N.xk ˝ � � �˝x1/;yl ˝ � � �˝y1/

D

k�1X
iD0

snu.t i.xk ˝ � � �˝x1/;yl ˝ � � �˝y1/:

Lemma 3.4 We have .Bnu/2 D 0 and bnuBnuCBnubnu D 0. That is , CHnu
� .C/ is a

strict S1–complex, with the action of ƒD ŒS1� given by Bnu.

Let beq D bnuCuBnu be the strict S1–complex structure on the nonunital Hochschild
complex CHnu

� .C/, u–linearly packaged as in Section 2.3. Using this, we can define
cyclic homology groups, as follows.

Definition 3.5 The (positive) cyclic chain complex, the negative cyclic chain complex,
and the periodic cyclic chain complexes of C are the homotopy orbit complex, homo-
topy fixed-point complex, and Tate constructions of the S1–complex .CHnu

� .C/; beq/,
respectively. That is,

CCC� .C/ WD .CHnu
� .C//hS1 D .CHnu

� .C/˝k k..u//=ukŒŒu��; beq/;(3-22)

CC�� .C/ WD .CHnu
� .C//hS1

D .CHnu
� .C/ b̋k kŒŒu��; beq/;(3-23)

CC1� .C/ WD .CHnu
� .C//Tate

D .CHnu
� .C/ b̋k k..u//; beq/;(3-24)

with grading induced by setting juj D C2, and where, as in Section 2.3, b̋ refers to
the u–adically completed tensor product in the category of graded vector spaces. The
cohomologies of these complexes, denoted by HCC=�=1� .C/, are called the (positive),
negative and periodic cyclic homologies of C, respectively.

The C��.S
1/–module structure on CHnu

� .C/ is suitably functorial, in the following
sense. Let F W C! C0 be an A1 functor. There is an induced chain map on nonunital
Hochschild complexes

(3-25) F nu
] W CHnu

� .C/! CHnu
� .C0; C0/; .x;y/ 7! .F].x/;F

0
].y//;
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where

F 0].xk ˝ � � �˝x0/ WD
X

i1;:::;is

F i1.xk � � � /˝ � � �˝F is .� � �x0/;(3-26)

F].xk ˝ � � �˝x0/ WD
X

i1;:::;is ;j

F jC1Ci1.xj ; : : : ;x0;xk ; : : : ;xk�i1C1/(3-27)

˝F i2.� � � /˝ � � �˝F is .xjCis
; : : : ;xjC1/;

which is an isomorphism on homology if F is a quasi-isomorphism (indeed, even a
Morita equivalence). This functoriality preserves S1 structures:

Proposition 3.6 F nu
]

gives a strict morphism of strict S1–complexes , meaning

F nu
] ı bnu

D bnu
ıF nu

] and F nu
] ıBnu

D Bnu
ıF nu

] :

In other words , the premorphism of A1 kŒƒ�=ƒ2–modules defined as

(3-28) F d
� .ƒ; : : : ; ƒ„ ƒ‚ …

d

; �/ WD

�
F nu
]
.�/ if d D 0;

0 if d � 1;

is closed , ie an A1–module homomorphism.

Sketch of proof It is well known that F nu
]

is a chain map, so it suffices to verify that
F nu
]
ıBnu D Bnu ıF nu

]
, or in terms of (3-25),

(3-29) F 0] ı snuN D snuN ıF]:

We leave this an exercise, noting that applying either side to a Hochschild chain
xk ˝ � � �˝x1, the sums match identically.

Remark 3.7 If C is strictly unital, one can also define an operator B W CH�.C/!
CH��1.C/ on the usual cyclic bar complex by

B D .1� t/sN;

where, up to a sign, s denotes the operation of inserting, at the beginning of a chain,
the unique strict unit eC

X
preserving cyclic composability:

(3-30) s W xk ˝ � � �˝x1 7! .�1/kxkkCz
k
1C1eC

Xik

˝xk ˝ � � �˝x1;

where xk 2 homC.Xik
;Xi0

/. It can be shown that B2D 0 and BbCbBD 0, CH�.C/ is
a strict S1–complex; moreover that the quasi-isomorphism CH�.C/Š CHnu

� .C/ is one
of S1–complexes. In fact, B descends to the reduced Hochschild complex CHred

� .C/
described in Remark 3.3, where it takes the simpler form

Bred
D sN;
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as applying tsN results in a Hochschild chain with a strict unit not in the first position,
which becomes zero in CHred

� .C/. If C was not necessarily strictly unital, following
Remark 3.3 one can still consider the quotient of the reduced Hochschild complex of
the augmented category CC, which we called fCH�.CC/. The discussion here equips
this complex with an S1–action zBred. Under the bijection f of (3-17), zBred is sent to
Bnu and s is sent to snu.

Remark 3.8 Continuing Remark 3.3, suppose we have constructed CHnu
� .C/ asfCH�.C/ WD CHred

� .CC/=
L

X kheC
X
i, the quotient of the reduced Hochschild complex

of the augmented category CC. Given any F as above, extend F to an augmented
functor FC by mandating that

(3-31) .FC/1.eC
X
/D eC

F X
and .FC/d . : : : ; eC

X
; : : :/D 0:

It is easy to see that the map .FC/� W CH�.CC/! CH�..C0/C/ descends to a mapeF W fCH�.CC/! fCH�..C0/C/. Under the bijection (3-17), this precisely corresponds
to F nu

]
described above. In particular, the fact that strictly unital functors induce

strict S1–morphisms between (usual) Hochschild complexes immediately implies
Proposition 3.6.

Remark 3.9 There are options besides the nonunital Hochschild complex for seeing
the C��.S

1/–action on a Hochschild complex of the Fukaya category. For instance,
one could:

(1) Perform a strictly unital replacement (via homological algebra as in [52, Section 2]
or [40, Theorem 3.2.1.1]), and work with the Hochschild complex of the replacement.
However, this doesn’t retain a relationship between the A1 operations and geometric
structure, and hence is difficult to use with open–closed maps.

(2) Geometrically construct a strictly unital structure on the Fukaya category via
constructing homotopy units [22], which roughly involves building a series of geo-
metric higher homotopies between the operation of A1 multiplying by a specified
geometrically defined cohomological unit, and the operation of A1 multiplying by a
strict unit (which is algebraically defined, but may also be geometrically characterized
in terms of forgetful maps). From this one defines a strictly unital A1 category Fhu

with homFhu.X;X /D homF .X;X /˚kheC
X
; fX i and homFhu.X;Y /D homF .X;Y /

for X ¤ Y , extending the A1 structure on F , such that each eC
X

is a strict unit and
�1.fX / D eC

X
� eX for eX a chosen a cohomological unit. The geometric higher

Geometry & Topology, Volume 27 (2023)



Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures 3491

homotopies alluded to above give operations used to define for instance, �k of a
sequence of elements containing one or more fX terms.

Remark 3.7 then equips the usual Hochschild complex CH�.Fhu;Fhu/ with a strict
S1–action. Using this one can construct a cyclic open–closed map with source
CH�.Fhu;Fhu/, in a manner completely analogous to the construction of Fhu and
the cyclic open–closed map here. This option is equivalent to the one we have chosen
(and has some benefits), but requires additional technicalities/moduli spaces beyond
the route taken here — both in constructing and defining the category Fhu, and then in
defining further “higher homotopies” between inserting a cohomological unit asymptotic
and imposing a strict unit (ie forgettable) constraint into the cyclic open–closed map in
various places, which give operations that correspond to applying the cyclic open–closed
map to a Hochschild chain with one or more fX terms.

A construction of homotopy units was introduced in the work of Fukaya, Oh, Ohta
and Ono [22, Chapter 7, Section 3.1]. See [24] for an implementation in the (possibly
wrapped) exact (or otherwise tautologically unobstructed), multiple Lagrangians setting.

3.3 The Fukaya category

The goal of this subsection is to review (under simplifying technical hypotheses)
the definition of the Fukaya category of a symplectic manifold. The outcome, a
(homologically unital but not necessarily strictly unital) A1 category, will in particular
carry a circle action on its nonunital Hochschild complex.

In Section 3.3.1 below, we detail a set of simplifying assumptions imposed on all
of the moduli spaces of Floer curves considered in this paper (mostly pertaining
to transversality and compactness), and recall examples of the variety of geometric
situations in which they are satisfied. Such assumptions are in particular satisfied in the
technically simplest cases in which (compact or wrapped) Fukaya categories can be
defined, namely exact (Liouville) and monotone or aspherical symplectic manifolds. In
Section 3.3.2 we will quickly review the construction of the Fukaya category under such
hypotheses. The initial thread of discussion will focus on compact Lagrangians, but
immediately extends to wrapped Fukaya categories of Liouville manifolds as described
in a series of remarks; here we are using the framework of quadratic Hamiltonians as
defined in [1] for wrapped Fukaya categories, whose construction is nearly as simple
as that of compact Fukaya categories and requires only a few minor modifications.
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3.3.1 Geometric setup and assumptions about moduli spaces of Floer trajectories
To simplify technicalities, the main assumption we make about moduli spaces in this
paper is as follows.

Assumption 3.10 (main assumption about moduli spaces) All (semistably compacti-
fied) moduli spaces of Floer trajectories considered in this paper of virtual dimension�1

are — for generic choices of complex structure and Hamiltonian (“perturbation data”) —
compact transversally cut-out manifolds with boundary of dimension equal to virtual
dimension. Moreover, the union of any such moduli space with fixed “input” asymptotic
conditions over all possible “output” asymptotic conditions remains compact, and in
particular is empty for all but finitely many possible output conditions (vacuous when
there are only finitely many possible outputs).

Let M D .M 2n; !/ denote our target symplectic manifold and fix a collection of
(always properly embedded) Lagrangian submanifolds fLig in M , which we wish
to be the objects of our Fukaya category. We will call any M , fLig, and choices of
Floer perturbation data used to define moduli spaces for which Assumption 3.10 holds
admissible. We will say M and/or M; fLig are admissible if they possess an ample
supply of Floer data for which Assumption 3.10 holds for the moduli spaces considered
below involving these targets. Examples of admissible M include:

� Any Liouville manifold (in particular noncompact), which is to say that ! is
exact with a fixed choice of primitive �, such that flowing out by the Liouville
vector field Z (defined by �Z! D �) induces a diffeomorphism

(3-32) M n VM Š @M � Œ0;1/

for some codimension-zero manifold-with-boundary M , called a Liouville do-
main whose completion is M .

� Any compact symplectic manifold which is either monotone, ie Œ!�D 2�c1.M /

for some constant � > 0, or symplectically aspherical, ie !.�2.M //D 0.

If M is Liouville, we henceforth fix a cylindrical end (3-32), and use r to refer to
the corresponding Œ0;1/ coordinate. Examples of (properly embedded) admissible
Lagrangian submanifolds L�M in admissible M include:

� In Liouville M , one can take any exact L, ie with �LD df , equipped with fixed
choice of primitive which vanishes outside a compact set, which implies, as in
(3-32), that L is modeled on the cone of a Legendrian near infinity.
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� In (compact) monotone M , one can take monotone L, in the sense that !.�/D
��L.�/ WH2.M;L/!R for some constant � > 0, where ! is symplectic area
and �L is the Maslov class.

� In (compact) symplectically aspherical M one can take L to be tautologically
unobstructed, ie L bounds no J–holomorphic discs for some J , which holds for
all J if !.�2.M;L//D 0.

The conditions above on M and L serve to rule out “bad” (unstable) breakings (such
as J–holomorphic sphere bubbles in M or J–holomorphic disc bubbles in M with
boundary on L) from arising in the limit of a sequence of curves in the moduli
spaces considered, which could obstruct compactness and/or simultaneously complicate
transversality arguments.

Remark 3.11 (more general examples of admissible M and L) More generally, one
could impose that the possible noncompactness of M and (if M is noncompact) L must
be of the geometrically tame variety and that M /L have no/bound no J–holomorphic
spheres/discs, or if they do, that such spheres/discs can either be shown (using classical
methods) either not to arise in the compactifications of virtual one-dimensional moduli
spaces, or to arise but only contribute canceling contributions to the resulting algebraic
formulae.

For noncompact M and fLig, on any given moduli space of trajectories considered,
further (nongeneric) assumptions on the profile of Floer perturbation data near1 are
required to ensure Assumption 3.10 holds, to preclude sequences of curves escaping
to1 so that usual Gromov compactness techniques apply, and also to obtain the second
finiteness statement of Assumption 3.10, which is trivial in the compact case due to there
being a finite list of outputs. We will say a few words about this in Remarks 3.15–3.18;
the verification of Assumption 3.10 for the A1 structure maps (by citing established
works) appears in Lemma 3.19. The verification of Assumption 3.10 for other moduli
spaces considered in the paper is identical and hence omitted. However, we will in
various places point out that the restrictions are needed on Floer data in noncompact
cases to preclude curves escaping to infinity and obtain finiteness along the lines of
Lemma 3.19.

3.3.2 Admissible Fukaya categories For an admissible M , we review the definition
of the Fukaya category associated to an admissible collection of Lagrangians in M ,
which we will term an admissible Fukaya category. Examples of admissible Fukaya
categories, in light of the examples given above, include:
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(1) In a compact aspherical M , the Fukaya category of tautologically unobstructed
Lagrangians.

(2) In a monotone M , the Fukaya category of monotone Lagrangians.

(3) In Liouville M , the Fukaya category of compact exact Lagrangians.

(4) In Liouville M , the wrapped Fukaya category of exact (cylindrical at infinity)
Lagrangians.

Fix first an underlying ground field k and grading structure (Z or Z=2 here, but see
Remark 3.12) that we wish to use when defining the category. If 2c1.M /D 0 and we
wish to define a Z–graded category, we begin by equipping M with a grading structure,
which is a trivialization of the square of the canonical bundle .ƒn

CT �M /˝2. Next,
one equips the Lagrangian submanifolds under consideration with some extra structure
depending on the ground field k and the grading structure. Concretely, we say an
admissible Lagrangian brane consists of a properly embedded admissible Lagrangian
submanifold L�M which is equipped with the following extra two optional pieces of
data (which are only required if one wants to work with char k¤ 2 or with Z–gradings,
respectively, the latter in particular is always excluded in the monotone case):

an orientation and Spin structure, and(3-33)

a grading in the sense of [48] (with respect to the fixed grading structure

on M ).

(3-34)

These choices of extra data respectively require L to be Spin and satisfy 2c1.M;L/D 0,
where c1.M;L/ 2H 2.M;L/ is the relative first Chern class.

Remark 3.12 There are other possible grading structures on M and L that one can
use to equip the Fukaya category with suitable gradings (under geometric hypotheses),
for instance Z=2k–gradings, homology class gradings or hybrids thereof; cf [48; 59].
We suppress discussion of these, but, seeing as such matters are largely orthogonal to
our arguments, note that our results apply in such contexts as well.

Henceforth, by abuse of notation all Lagrangians are implicitly admissible Lagrangian
branes. Denote by obF a finite collection of such (admissible) Lagrangians. Choose a
(potentially time-dependent) Hamiltonian H DHt WM !R satisfying the following
genericity condition:

Assumption 3.13 All time-1 chords of XHt
between any pair of Lagrangians in obF

are nondegenerate.
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Remark 3.14 It is straightforward to adapt all of our constructions to larger collections
of Lagrangians by, for instance, choosing a different Hamiltonian HL0;L1

for each pair
of Lagrangians L0, L1 (as well as a different H for closed orbits), and by choosing
Floer perturbation data depending on corresponding sequences of objects; see eg
[52, Section 9j]. We have opted to use a single Ht simply to keep the notation simpler.

Remark 3.15 (admissible Hamiltonians in the Liouville case) When M is Liouville,
we need to impose further restrictions on the profile of H near1 in order to satisfy
Assumption 3.10. If obF consists solely of compact exact Lagrangians, it suffices to
impose that H is compactly supported, or more generally of the form f .r/ near infinity
for some function with nonnegative first and second derivatives. If obF contains any
noncompact Lagrangians, we will impose, following [1], that H satisfies the following
quadratic at1 condition: H D r2 on the cylindrical end (3-32), outside a compact
subset.

For any pair of Lagrangians L0;L1 2 obF the set �.L0;L1/ of time-1 Hamiltonian
flow lines of H from L0 to L1 can be thought of as the critical points of an action
functional PL0;L1

on the path space from L0 to L1; this functional is, a priori, multi-
valued, but it is certainly R–valued in the presence of primitives � for ! and fi for �jLi

.
Given a choice of grading structure on M and grading for each Li above, elements of
�.L0;L1/ can be graded by the Maslov index

(3-35) deg W �.L0;L1/! Z:

In the absence of grading structures this is always well defined mod 2, provided our
Lagrangians are oriented, which is automatic if they are Spin. As a graded k–module,
the morphism space in the Fukaya category between L0 and L1, also known as the
(wrapped if M is Liouville) Floer homology cochain complex of L0 and L1 with
respect to H , has one (free) generator for each element of �.L0;L1/; concretely,

(3-36) homi
F .L0;L1/D CF�.L0;L1;Ht ;Jt / WD

M
x2�.L0;L1/

deg.x/Di

joxjk;

where the orientation line ox is the real vector space associated to x by index theory11

and for any one-dimensional real vector space V and any ring k, the k–normalization

(3-37) jV jk

11See [52, Section 11h]; a priori, ox depends on a choice of trivialization of x�TM compatible with
the grading structure. However, there is a unique such choice in the presence of a Z–grading, and in the
Z=2–graded case any two choices made induce canonically isomorphic orientation lines.
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is the k–module generated by the two possible orientations on V , with the relationship
that their sum vanishes. If one does not want to worry about signs, note that jV jZ=2 Š
Z=2 canonically.

The A1 structure maps arise as counts of parametrized families of (suitably coherently
perturbed) solutions to Floer’s equation with source a disc with d inputs and one output.
We will quickly summarize the definition and relevant choices required, referring the
reader to standard references for more details. The basic reference we follow is [52]
for Fukaya categories of compact exact Lagrangians in Liouville manifolds; see also
[60] for the mostly straightforward generalization to the monotone case. In the main
body of exposition, we focus on the (slightly simpler) case of compact (admissible)
Lagrangians in compact (admissible) symplectic manifolds; we detail the additional
data and variations required for Fukaya categories of exact Lagrangians in Liouville
manifolds (which are simpler if one is working only with compact exact Lagrangians)
in Remarks 3.15–3.18.

For d � 2, we use the notation Rd for the (Deligne–Mumford compactified) moduli
space of discs with d C 1 marked points modulo reparametrization, with one point z�

0

marked as negative and the remainder zC
1
; : : : ; zC

d
(labeled counterclockwise from z�

0
)

marked as positive. Orient the open (interior) locus Rd as in [52, Section 12g] and [1].
Rd can be given the structure of a manifold-with-corners, and its higher strata are trees
of stable discs with a total of d exterior positive marked points and 1 exterior negative
marked point. Denote the positive and negative semi-infinite strips by

ZC WD Œ0;1/� Œ0; 1�;(3-38)

Z� WD .�1; 0�� Œ0; 1�:(3-39)

One first equips the spaces Rd for each d with a consistent collection of strip-like
ends S; that is, for each component S of Rd , a collection of maps �˙

k
WZ˙! S all

with disjoint image in S , chosen so that positive/negative strips map to neighborhoods
of positively/negatively labeled boundary marked points respectively, smoothly varying
with respect to the manifold-with-corners structures and compatible with choices made
on boundary and corner strata, which are products of lower-dimensional copies of
spaces Rk .

In order to associate transversely cut out moduli spaces of such maps, one studies a
parametric family of solutions to Floer’s equation depending on a choice of “Floer (or
perturbation) data” over the parameter space. Concretely, a Floer datum for a family of
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domains (in this case Rd ) is a choice, for each domain S in the parametric family, of

� an S–dependent (domain-dependent) almost-complex structure JS and Hamil-
tonian HS ,

� a one-form ˛ on S ,

which depend (smoothly) on the particular domain in Rd (and the position in that
domain), and are compatible with strip-like ends, meaning ˛ pulls back to dt and
.HS ;JS / pull back to a fixed choice .Ht ;Jt / in coordinates (3-38)–(3-39). One
inductively chooses a Floer datum for the A1 structure, which is a choice of Floer
data for the collection of domains fRdgd�2 which is consistent, meaning that the Floer
data chosen on a given family of domains Rd agree smoothly along the boundary and
corners (which are products of lower-dimensional spaces Rk) with previous choices of
Floer data made. Such consistent choices exist essentially because spaces of Floer data
are contractible.

Remark 3.16 (Floer data for compact exact Lagrangians in Liouville manifolds) If
M is Liouville and we are studying the Fukaya category of compact exact Lagrangians,
there is an additional requirement imposed on any Floer datum one uses; namely
one requires that JS be of contact type in a neighborhood of infinity in the sense of
[52, (7.3)], and HS be either 0 or of the form f .r/ near infinity for some function
with nonnegative first and second derivatives. The more restrictive types of Floer data
chosen for wrapped Fukaya categories in Remark 3.17 of course suffice as well.

Remark 3.17 (Floer data for wrapped Fukaya categories) Following [1], we recall
the additional information and constraints appearing in Floer data for wrapped Floer
theory (with quadratic Hamiltonians). If M is a Liouville manifold let  � WM !M

denote the time log.�/ (outward) Liouville flow. One fixes for each S , in addition to
.HS ;JS ; ˛S /, a collection of constants wk 2 R>0 for each end, called weights (so
wk is the weight associated to the k th end), and a map �S W @S ! R>0, called the
time-shifting map, where:

(1) �S should be constant and equal to the weight wk on the k th strip-like end.

(2) The one-form ˛S should be subclosed (meaning d˛S � 0), equal to wk dt in
the local coordinates on each strip-like end, and 0 when restricted to @S . By
Stokes’ theorem, this condition implies the sum of weights over all negative ends
is greater than or equal to the sum of weights over all positive ends, and there
should therefore be at least one negative end always (in this case there is one).
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(3) The Hamiltonian should be quadratic at infinity and pull back to H ı wk=w2
k

in coordinates on each end. Note that such a Hamiltonian is quadratic if H is,
by an elementary computation [1, Lemma 3.1].

(4) The almost-complex structure should be of contact type at infinity and equal to
. wk /�Jt in coordinates on each end.

There is a rescaling action by .R>0; � / on the space of such surface dependent data,
which sends

.�S ; fwkg; ˛S ;HS ;JS / 7!

�
��S ; f�wkg; �˛S ;

HS ı 
�

�2
; . �/�JS

�
for � 2R>0:

Using this action, one also relaxes the consistency requirement imposed: The Floer
datum on Rd must agree smoothly, on a boundary or corner stratum, with some
rescaling of the previously made choice; compare [1, Definition 4.1].

Given our choices of Floer data, we can define the moduli spaces appearing in the
A1 operations. First for any pair of objects L0, L1, and any pair of chords x0;x1 2

�.L0;L1/, define eR1
.x0Ix1/ to be the moduli space of maps u WRs�Œ0; 1�t!M with

boundary condition and asymptotics u.s; 0/2L0, u.s; 1/2L1, lims!C1 u.s; t/D x1

and lims!�1 u.s; t/D x0 satisfying Floer’s equation for .Ht ;Jt /,

(3-40) .du�X ˝ dt/0;1 D 0;

where X is the Hamiltonian vector field associated to Ht and .0; 1/ is taken with respect
to Jt . The translation action on Rs descends to a map on this moduli space (as the
equation satisfied is s–independent), and we define the moduli space of (unparametrized)
Floer strips to be

(3-41) R1.x0Ix1/ WD eR1
.x0Ix1/=R;

with the added convention that whenever we are in a component of eR1
.x0Ix1/ with

expected dimension 0, this quotient is replaced by the empty set. Now for d � 2 let
L0; : : : ;Ld be objects of F and fix any sequence of chords Ex D fxk 2 �.Lk�1;Lk/g

as well as another chord x0 2 �.L0;Ld /. We write Rd .x0I Ex/ for the space of maps

u W S !M

with source an arbitrary element S 2Rd , satisfying boundary conditions and asymp-
totics

(3-42)
�

u.z/ 2Lk if z 2 @S lies between zk and zkC1;

lim
s!˙1

u ı �k.s; � /D xk ;
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where the limit above is taken as s!C1 if the k th end is positive and �1 if it is
negative, and differential equation

(3-43) .du�XS ˝˛S /
0;1
D 0;

where XS is the Hamiltonian vector field associated to HS and where 0; 1 is taken
with respect to the complex structure JS (for the choice of consistent Floer datum we
have fixed).

The consistency condition imposed on Floer data over the abstract moduli spaces Rd ,
along with the compatibility with strip-like ends, implies that the (Gromov-type)
compactification of the space of maps Rd .x0I Ex/ can be formed by adding the images
of the natural inclusions of products of lower-dimensional such moduli spaces,

(3-44) Rd2.yI Ex2/�Rd1.x0I Ex1/!Rd .x0I Ex/;

where y agrees with one of the elements of Ex1 and Ex is obtained by removing y from
Ex1 and replacing it with the sequence Ex2. Here, we let d1 range from 1 to d , with
d2D d�d1C1, with the stipulation that d1D 1 or d2D 1 is the semistable case (3-41).

Remark 3.18 (operations for wrapped Fukaya categories) In the setting of the
wrapped Fukaya category (continuing Remark 3.17), one needs to incorporate the
map �S into the Lagrangian boundary conditions and asymptotics specified in Floer’s
equation; namely, instead of (3-42), we require the moving boundary condition u.z/ 2

. �S .z//�Lk if z 2 @S lies between zk and zkC1, where . �/�Li denotes the pullback
by  � (or application of . �/�1 D  1=�). We similarly impose that on the k th end,
lims!˙1 u ı �k.s; � /D . �S .z/WDwk /�xk . The point is that Liouville flow for time
log.�/ defines a canonical identification between Floer complexes,

(3-45) CF�.L0;L1IH;Jt /' CF�
�
. �/�L0; . 

�/�L1I
H

�
ı �; . �/�Jt

�
:

The right-hand object is equivalently the (wrapped) Floer complex for

.. �/�L0; . 
�/�L1/

for a strip with one-form � dt using Hamiltonian .H=�2/ı � and . �/�Jt . Up to Liou-
ville flow, the Floer equation and boundary conditions satisfied on the k th strip-like end
therefore coincides with the usual Floer equation for .Ht ;Jt / between Lk�1 and Lk .
In light of this condition and the weakened consistency requirement for Floer data
described in Remark 3.17, one can again deduce (3-44), that lower-dimensional strata
of the Gromov bordification of the space of maps can be identified (now possibly using
a nontrivial Liouville rescaling) with products of previously defined moduli spaces.
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In the graded setting, every connected component of the moduli space Rd .x0I Ex/ has
expected (or virtual) dimension deg.x0/C d � 2�

P
1�k�d deg.xk/; more generally,

this moduli space consists of components of varying expected dimension (a number
which can be computed using index theory in terms of the underlying homotopy class
of u) all of whose mod 2 reductions are deg.x0/C d � 2�

P
1�k�d deg.xk/. The

following lemma is the prototypical method of verifying Assumption 3.10 for the
various moduli spaces considered throughout the paper.

Lemma 3.19 Assumption 3.10 holds for the moduli spaces Rd .x0I Ex/ for admissible
M , fLig and generic choices of a Floer datum for the A1 structure (satisfying the
constraints detailed in Remarks 3.15–3.17 in the Liouville case). Namely: components
of these moduli spaces of virtual dimension � 1 are (for generic choices) compact
manifolds-with-boundary of the given expected dimension. Moreover , given a fixed Ex
these moduli spaces are empty for all but finitely many x0; this is automatic if there
are only finitely many possible x0 to begin with , for instance if all of the Lagrangians
being considered are compact.

Proof If M is compact (and admissible), these assertions (the last of which is au-
tomatic) follow from standard Gromov compactness and transversality methods as
in [52, (9k), (11h) and Proposition 11.13]. In the case that M and possibly also its
Lagrangians are noncompact, there is an additional concern that solutions could escape
to infinity in the target. To address this one can, for instance, appeal to the integrated
maximum principle (compare [3, Lemma 7.2] or [1, Section B]), which implies that
elements of R.x0I Ex/ have image contained in a compact subset of M dependent on x0

and Ex, from where one can again appeal to standard Gromov compactness techniques.
(This is strongly dependent on the form of H , J and ˛ chosen for our Floer data as
in Remarks 3.15–3.17.) The same result can be used to show that solutions do not
exist for x0 of sufficiently negative action compared to Ex (with our conventions, action
is bounded above and there are finitely many x0 with action above any fixed level),
verifying the last assertion.

Choose a generic Floer datum for the A1 structure satisfying Lemma 3.19 and let
u 2Rd .x0I Ex/ be a rigid curve, meaning for us an element of the virtual dimension-0
component (which has dimension 0 in this case). By [52, (11h), (12b),(12d)], given the
fixed orientation12 of Rd , any such element u2Rd .x0I Ex/ determines an isomorphism

12In the case d � 2, that is. For d D 1, one instead needs to “orient the operation of quotienting by R” as
in [52, (12f)].
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of orientation lines

(3-46) Rd
u W oxd

˝ � � �˝ ox1
! ox0

:

Now for any one-dimensional vector spaces V1; : : : ;Vk and W , an isomorphism

f W Vk ˝ � � �˝V1!W

induces a canonical map between k–normalizations,

jV1jk˝ � � �˝ jVk jk Š jV1˝ � � �˝Vk jk! jW jk;

which by abuse of notation, to simplify notation, we also call f (rather than jf jk).
Using this, for d � 1 define the d th A1 operation

(3-47) �d
W hom�F .Ld�1;Ld /˝ � � �˝ hom�F .L0;L1/! hom�F .L0;Ld /

as a sum

(3-48) �d .Œxd �; : : : ; Œx1�/ WD
X

u2Rd .x0I Ex/ rigid

.�1/Fd Rd
u .Œxd �; : : : ; Œx1�/;

where Œxi �2 joxi
jk is an arbitrary element, Rd

u is the map (on k–normalizations induced
by) (3-46), and the sign is given by

(3-49) Fd D

dX
iD1

i � deg.xi/:

Note that this sum is finite by Lemma 3.19. An analysis of the codimension-1 boundary
of one-dimensional moduli spaces along with their induced orientations establishes
that the maps �d satisfy the A1 relations; see [52, Proposition 12.3].

We record here two abuses of notation which will systematically appear in definitions
and usage of operations such as �d . First, as above, we will frequently use the same
symbol for a multilinear map F W V1 � � � � �Vk !W and its corresponding linear map
F W V1˝ � � � ˝ Vk !W . Second, we will frequently use xi to refer to the arbitrary
element Œxi � 2 joxi

jk to simplify expressions; for instance, above we might write
�d .xd ; : : : ;x1/ in place of �d .Œxd �; : : : ; Œx1�/.

4 Circle action on the closed sector

4.1 Floer cohomology and symplectic cohomology

Let M be admissible as in Section 3.3.1. Given a (potentially time-dependent) Hamil-
tonian H WM !R, Hamiltonian Floer cohomology when it is defined is formally the
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Morse cohomology of the H–perturbed action functional AH W LM !R on the free
loop space LM of M . If ! is exact and comes with a fixed primitive �, this functional
can be written as

x 7! �

Z
x

�C

Z 1

0

Ht .x.t// dt:

In general, AH may be multivalued, but dAH is always well defined, leading at least
to a Morse–Novikov-type theory. Recall that the set of critical points of AHt

(when
Ht is implicit) is precisely the set O of time-1 orbits of the associated (time-dependent)
Hamiltonian vector field XH , and we assume Ht is chosen sufficiently generically that:

Assumption 4.1 The elements of O are nondegenerate.

Optionally, given the data of a grading structure on M in the sense of Section 3.3.2
one can define an absolute Z–grading on orbits by deg.y/ WD n�CZ.y/, where CZ is
the Conley–Zehnder index of y (and such a grading is always well defined mod 2).

Fix a (potentially S1–dependent) almost-complex structure Jt . In the formal picture,
this induces a metric on LM . A Floer trajectory is formally a gradient flowline of AHt

using the metric induced by Jt ; concretely it is a map u W .�1;1/�S1!M satisfying
Floer’s equation (3-40) (which is formally the gradient flow equation for AHt

), and
converging exponentially near ˙1 to a pair of specified orbits y˙ 2O. In standard
coordinates s; t on the cylinder (ie s 2R, t 2R=ZD S1) this reads as

(4-1) @suD�Jt .@tu�X /:

The space of nonconstant Floer trajectories between a fixed yC and y� modulo the
free R–action given by translation in the s direction is denoted by M.y�IyC/. As in
Morse theory, one should compactify this space by allowing broken trajectories,

(4-2) M.y�IyC/D
a

M.yk
IyC/�M.yk�1

Iyk/�� � ��M.y1
Iy2/�M.y�Iy1/:

In the graded situation, every component of M.y�IyC/ has expected/virtual dimension
deg.y�/� deg.yC/� 1; in general, M.y�IyC/ has components of varying virtual
dimension, of fixed parity deg.y�/�deg.yC/�1, depending on the underlying homo-
topy class of the cylinder. By Assumption 3.10 for M.y�IyC/, for generic choices
of (time-dependent) Jt , the virtual dimension � 1 components of the moduli spaces
M.y�IyC/ are compact manifolds (with boundary) of the given expected dimension;
fix such a Jt .
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Putting this all together, the Floer cochain complex for .Ht ;Jt / over k has generators
corresponding to orbits of Ht ,

(4-3) CFi.M / WD CFi.M IHt ;Jt / WD
M
y2O

deg.y/Di

joy jk;

where the orientation line oy is a real vector space associated to every orbit in O via index
theory13 (see eg [1, Section C.6]), and jV jk is the k–normalization of V as in (3-37).

The differential d W CF�.M IHt ;Jt / ! CF�.M IHt ;Jt / counts rigid elements of
the compactified moduli spaces (4-2). To fix sign issues, we recall that for a rigid
element u 2M.y0Iy1/ (meaning u belongs to a component of virtual, hence actual,
dimension 0) there is a natural isomorphism between orientation lines induced by index
theory (see eg [52, (11h), (12b),(12d)] and [1, Lemma C.4]),

(4-4) �u W oy1
! oy0

:

Then, one defines the differential as

(4-5) d.Œy1�/D
X

u2M.y0Iy1/ rigid

.�1/deg.y1/�u.Œy1�/;

where Œy1� 2 joy1
jk is an arbitrary element and �u is the map (on k–normalizations

induced by) (4-4). One can show that d2 D 0 (under the assumptions made), and we
call the resulting cohomology group HF�.Ht ;Jt /.

If M is compact (and admissible), Assumption 3.10 holds for all (suitably generic) Jt ,
and all Ht whose time-1 orbits are nondegenerate as in Assumption 4.1. If M is
noncompact and admissible then further hypotheses are needed on the profile of .Ht ;Jt /

at1 to obtain admissibility, in particular to prevent curves from escaping to1 in M

and ensure compactness of
S

y�M.y�IyC/; we recall the two most relevant possible
hypotheses for our purposes in Sections 4.1.1–4.1.2, which can lead to distinct Floer
cohomology groups. For simplicity, the discussion in Section 4.1.2 subsumes the case
of compact M as well.

Remark 4.2 Our (cohomological) grading convention for Floer cohomology follows
[51; 47; 1; 24].

4.1.1 Symplectic cohomology Symplectic cohomology [10; 11; 19; 64], the target of
the open–closed map for wrapped Fukaya categories, is Hamiltonian Floer cohomology

13As before, this index-theoretic definition a priori depends on a choice of trivialization of y�TM

compatible with the grading structure, but any two choices induce isomorphic lines.
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for a particular class of Hamiltonians on noncompact convex symplectic manifolds.
There are several methods for defining this group. We define it here by making the
following specific choices of target, Hamiltonian, and almost-complex structure:

� M is a Liouville manifold equipped with a conical end, meaning that it comes
equipped with a choice of (3-32). (This serves primarily as a technical device;
the resulting invariants are independent of the specific choice.)

� The Hamiltonian term Ht is a sum H C Ft of an autonomous Hamiltonian
H WM !R which is quadratic at1, namely

(4-6) H jMnM .r;y/D r2;

and a time-dependent perturbation Ft such that on the collar (3-32) of M , we
have:

(4-7) For any r0� 0, there exists an R > r0 such that F.t; r;y/ vanishes in a
neighborhood of R.

For instance, Ft could be supported near nontrivial orbits of H , where it is
modeled on a Morse function on the circle. We denote by H.M / the class of
Hamiltonians satisfying (4-6).

� The almost-complex structure should belong to the class J .M / of complex struc-
tures which are (rescaled) contact type on the cylindrical end (3-32), meaning
that for some c > 0,

(4-8) � ıJ D f .r/ dr;

where f is any function with f .r/ > 0 and f 0.r/� 0.

A well-known result [47; 1] asserts that Assumption 3.10 holds for the resulting spaces
of broken Floer trajectories (4-2). Hence if M , Ht and Jt are as above, one has a
well-defined Floer chain complex CF�.M;Ht ;Jt /, which we refer to as the symplectic
cochain complex SC�.M /; this will be the Floer chain complex we use when working
with wrapped Fukaya categories. We call the resulting cohomology group symplectic
cohomology SH�.M /.

4.1.2 Relative cohomology We review here the Floer cohomology group that is the
target of the open–closed map for an admissible symplectic manifold M when working
with a Fukaya category of compact admissible Lagrangian submanifolds in the sense
of Section 3.3.1. Fix a (nondegenerate, generic) pair .Ht ;Jt / which is arbitrary for
compact M and which satisfies the following additional properties if M is Liouville:
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� H is linear of very small negative slope near infinity:

(4-9) Ht jMnM .r;y/D��r;

where r is the cylindrical coordinate and �� 1 is a sufficiently small number
(smaller than the length of any Reeb orbit on @M ).

� Jt is (rescaled) contact type near infinity as before.

It is well known that Assumption 3.10 holds for the moduli spaces (4-2) for generic
.Ht ;Jt / as above [47], and also that:

Proposition 4.3 For generic .Ht ;Jt / as above , there is an isomorphism

HF�.Ht ;Jt /ŠH�.M ; @M /:

H�.M ; @M / equals H�.M / in the case that M is compact , using the convention then
that M DM and @M D∅).

The isomorphism can be realized in one of two ways:

� Choose Ht as above to be a C 2–small (time-independent) Morse function, in
which case a well-known argument of Floer [18] equates HF�.Ht ;Jt / with the
Morse complex of H by showing that all Floer trajectories must in fact be Morse
trajectories of H jM (which in turn, as H is inward pointing near M , compute
the relative cohomology).

� Construct a geometric PSS morphism [46]

PSS WH�.M ; @M /ŠH2n��.M /! HF�.Ht ;Jt /:

4.2 The cohomological BV operator

The first-order BV operator is a Floer analogue of a natural operator that exists on
the Morse cohomology of any manifold with a smooth S1–action. Like the case of
ordinary Morse theory, this operator exists even when the Hamiltonian and complex
structure (cf Morse function and metric) are not S1–equivariant.

For p 2 S1, consider the collection of cylindrical ends on R�S1

(4-10)
�Cp W .s; t/ 7! .sC 1; t Cp/ for s � 0;

��p W .s; t/ 7! .s� 1; t/ for s � 0:

Pick K W S1 � .R�S1/�M !R dependent on p, satisfying

(4-11) .�˙p /
�K.p; s; � ; � /DH.t;m/;
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meaning that

(4-12) Kp.s; t;m/D

�
H.t Cp;m/ if s � 1;

H.t;m/ if s � �1;

so, in the range �1 � s � 1, Kp.s; t;m/ interpolates between HtCp.m/ and Ht .m/

(and outside of this interval is independent of s).

Similarly, pick a family of almost-complex structures J W S1 � .R� S1/�M ! R

satisfying

(4-13) .�˙p /
�J.p; s; t;m/D J.t;m/:

Now, for xC;x� 2O, define

(4-14) M1.x
�
IxC/

to be the parametrized moduli space of Floer cylinders

(4-15)
˚
.p;u/ j p 2 S1;u W S !M is such that lim

s!˙1
.�˙p /

�u.s; � /D x˙ and

.du�XK ˝ dt/0;1 D 0
	
:

There is a natural bordification by adding broken Floer cylinders to either end,

(4-16) M1.x
�
IxC/

D

a
M.a0Ix

C/� � � � �M.ak I ak�1/�M1.b1I ak/�M.b2I b1/� � � �

�M.x�I bl/:

Remark 4.4 (choices of K and J when M is noncompact) When M is noncompact
and Liouville, further constraints on the profile of K and J are required near1 (beyond
genericity) in order to satisfy Assumption 3.10. In the case of symplectic cohomology
described in Section 4.1.1, it suffices to choose K carefully as follows. Given that
Ht .M /DH CFt is a sum of an autonomous term and a time-dependent term that is
zero at infinitely many levels tending towards infinity, we can ensure that

(4-17) at infinitely many levels tending towards infinity, Kp.s; t;m/ is equal to r2;

and in particular is autonomous. In the setting of Section 4.1.2 (when M is noncompact),
we can similarly ensure a version of (4-17) with r2 replaced by ��r (in this case we
could also more simply ensure that Kp.s; t;m/D��r outside a compact set). In either
case, one can take J to be (rescaled) contact type on the cylindrical end. As usual, the
verification of Assumption 3.10 for the moduli spaces (4-16) on Liouville M follows
by combining the results [1, Section B] or [3, Lemma 7.2] — which prevent curves
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escaping to1 and ensure M1.x
C;x�/ is empty for all but finitely many x� given the

constraints near1 fixed in this remark — with classical transversality and compactness
arguments.

As before, M1.x
�IxC/ contains components of varying expected dimension depending

on the underlying homotopy class ˇ of a map. Due to the fact that we are studying
one-parameter families of domains and not quotienting by R, the relevant expected
dimension is 2 more than the expected dimension of the components of M.x�IxC/

underlying the same homotopy class ˇ. In particular, in the graded case, this expected
dimension is deg.xC/ � deg.x�/ C 1 for every component. By Assumption 3.10
for admissible choices of the above data, ie generic choices satisfying Remark 4.4
in the noncompact case, every component of M1.x

�IxC/ of virtual dimension � 1

is a compact manifold-with-boundary of dimension equal to its virtual dimension.
(In particular, the boundary of the one-dimensional components consists of the once-
broken trajectories in (4-16).) In the usual fashion, counting rigid elements of this
compactified moduli space of maps with the right sign (explained more carefully in the
next section) gives an operation ı1 W CF�.M /! CF��1.M / satisfying

dı1C ı1d D 0;

which comes from the fact that the codimension-1 boundary of M1.x
�IxC/ isa

y

M.yIxC/�M1.x
�
Iy/[M1.yIx

C/�M.x�Iy/:

It would be desirable for ı1 to square to zero on the chain level, which would give
.CF�.M /; ı0Dd; ı1/ the structure of a strict S1–complex, or mixed complex. However,
the S1–dependence of our Hamiltonian and almost-complex structure prevent this, in a
manner we now explain.

Typically, one attempts to prove that a geometric/Floer-theoretic operation (such as ı2
1

)
is zero by exhibiting that the relevant moduli problem has no zero-dimensional solutions
(due to, say, extra symmetries in the equation), or otherwise arises as the boundary
of a one-dimensional moduli space. To that end, we first describe a moduli space
parametrized by S1 �S1 which looks like two of the previous parametrized spaces
naively superimposed, leading us to call the associated operation ınaive

2
. The extra

symmetry involved in this definition will allow us to easily conclude:

Lemma 4.5 The operation ınaive
2

is the zero operation.
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For .p1;p2/ 2 S1 �S1, consider the collection of cylindrical ends

(4-18)
�C
.p1;p2/

W .s; t/ 7! .sC 1; t Cp1Cp2/ for s � 0;

��.p1;p2/
W .s; t/ 7! .s� 1; t/ for s � 0:

Pick K W .S1 �S1/� .R�S1/�M !R dependent on .p1;p2/, satisfying

(4-19) �˙.p1;p2/
K.p1;p2; s; � ; � /DH.t;m/;

meaning that

(4-20) K.p1;p2/.s; t;m/D

�
H.t Cp1Cp2;m/ if s � 1;

H.t;m/ if s � �1;

so in the range �1� s � 1, Kp1Cp2
.s; t;m/ interpolates between HtCp1Cp2

.m/ and
Ht .m/.

Similarly, pick a family of almost-complex structures J WS1�S1�.R�S1/�M !R,

(4-21) �˙.p1;p2/
J.p1;p2; s; t;m/D J.t;m/;

such that

(4-22) J only depends on the sum p1Cp2:

Now, for xC;x� 2O, define

(4-23) Mnaive
2 .x�IxC/

to be the parametrized moduli space of Floer cylinders

(4-24)
˚
.p1;p2;u/ j .p1;p2/ 2 S1

�S1;u W S !M is such that

lim
s!˙1

.�˙.p1;p2/
/�u.s; � /D x˙ and .du�XK ˝ dt/0;1 D 0

	
:

For generic choices of K and J (again bearing in mind the extra impositions of
Remark 4.4 in the noncompact case), this moduli space, suitably compactified by adding
broken trajectories, will be (for components of virtual dimension � 1) a manifold with
boundary of the correct (expected) dimension; the dimension agrees mod 2 in the
Z=2–graded case and exactly in the graded case with deg.xC/� deg.x�/C 2. The
details are similar to the previous section, and will be omitted. Counts of rigid elements
in this moduli space will thus, in the usual fashion, give a map of degree �2, which we
call ınaive

2
.
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Proof of Lemma 4.5 Let .p1;p2;u/ be an element of Mnaive
2

.x�IxC/. Then, for any
r 2 S1, .p1 � r;p2C r;u/ is an element too, as the equation satisfied by the map u

only depends on the sum p1Cp2. We conclude that elements of Mnaive
2

.x�IxC/ are
never rigid, and thus that the resulting operation ınaive

2
is zero.

We would like ınaive
2

to be genuinely equal to ı2
1

, which would imply that ı2
1
D 0.

However, this is only true on the homology level; the lack of S1 invariance of our
Hamiltonian and almost-complex structure, and the corresponding family of choices
of homotopy between ��Ht and Ht , over varying � 2 S1, breaks symmetry and
ensures that ı2

1
¤ ınaive

2
as geometric chain maps. However, there is a geometric chain

homotopy, ı2, between ı2
1

and ınaive
2

, along with a hierarchy of higher homotopies ık
forming the S1–complex structure on CF�.M /, which we define in the next section.
See in particular Lemma 4.11 for the proof of the S1–complex equations, one of which
recovers the chain homotopy between ı2

1
and ınaive

2
D 0.

4.3 The A1 circle action

We turn to a “coordinate-free” definition of the relevant parametrized moduli spaces,
which will help us incorporate the construction into open–closed maps.

Definition 4.6 An r–point angle-decorated cylinder consists of a semi-infinite or
infinite cylinder C � .�1;1/ � S1, along with a collection of auxiliary points
p1; : : : ;pr 2 C , satisfying

(4-25) .p1/s � � � � � .pr /s;

where .a/s denotes the s 2 .�1;1/ coordinate. The heights associated to this data
are the s coordinates

(4-26) hi D .pi/s for i D 1; : : : ; r;

and the angles associated to C are the S1 coordinates

(4-27) �i WD .pi/t for i 2 1; : : : ; r:

The cumulative rotation of an r–point angle-decorated cylinder is the first angle:

(4-28) � WD �.C;p1; : : : ;pr /D �1:

The i th incremental rotation of an r–point angle-decorated cylinder is the difference
between the i th and i�1st angles,

(4-29) �inc
i WD �i � �iC1; where �rC1 D 0:
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Inductively, each �i can be expressed as a sum of all incremental rotations from i to r ,

(4-30) �i D

rX
jDi

�inc
j :

Definition 4.7 The moduli space of r–point angle-decorated cylinders

(4-31) Mr

is the space of r–point angle-decorated infinite cylinders, modulo translation.

Remark 4.8 (orientation for Mr ) The space Cr of all r–point angle-decorated
infinite cylinders (not modulo translation) has a canonical complex orientation. Thus, to
orient the quotient space Mr WDCr=R it is sufficient to give a choice of trivialization of
the action of R on Cr . We choose @s to be the vector field inducing said trivialization.

For an element of this moduli space, the angles and relative heights of the auxiliary
points continue to be well defined, so there is a noncanonical isomorphism

(4-32) Mr ' .S
1/r � Œ0;1/r�1:

The moduli space Mr thus possesses the structure of an open manifold-with-corners,
with boundary and corner strata given by the various loci where heights of the auxiliary
points pi are coincident.14 Given an arbitrary representative C of Mr with associated
heights h1; : : : ; hr , we can always find a translation zC satisfying zhr D�

zh1; we call
this the standard representative associated to C .

Given a representative C of this moduli space, and a fixed constant ı, we fix a positive
cylindrical end around C1,

(4-33) �C W Œ0;1/�S1
! C; .s; t/ 7! .sC hr C ı; t/;

and a negative cylindrical end around �1 (note the angular rotation in t !),

(4-34) �� W .�1; 0��S1
! C; .s; t/ 7! .s� .h1� ı/; t C �1/:

These ends are disjoint from the pi and vary smoothly with C ; via thinking of C as
a sphere with two points with asymptotic markers removed, these cylindrical ends
correspond to the positive asymptotic marker having angle 0 and the negative asymptotic
marker having angle �1 D �

inc
1
C �inc

2
C � � �C �inc

r .

14We allow the points pi themselves to coincide; one alternative is to first Deligne–Mumford compactify,
and then collapse all sphere bubbles containing multiple points pi . That the result still forms a smooth
manifold-with-corners is a standard local calculation near any such stratum.
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There is a compactification of Mr consisting of broken r–point angle-decorated
cylinders,

(4-35) Mr D

a
s

a
j1;:::;js

ji>0;
P

jiDr

Mj1
� � � � �Mjs

:

The stratum consisting of s–fold broken configurations lies in the codimension-s
boundary, with the manifold-with-corners structure explicitly defined by local gluing
maps using the ends (4-33) and (4-34). The gluing maps, which rotate the bottom
cylinder of the gluing in order to match its top end (4-33) with the bottom end (4-34) of
the upper cylinder, induce cylindrical ends on the glued cylinders, which agree with the
choices of ends made in (4-33)–(4-34). Concretely, for a 1–fold broken configuration
of the form Mr�k �Mk , the gluing map, for any choice of sufficiently small gluing
parameter, has the following effect on angles:

(4-36)
�
.�1; : : : ; �r�k/; .x�1; : : : ; x�k/

�
7!
�
x�1C�1; x�2C�1; : : : ; x�kC�1; �1; : : : ; �r�k

�
;

where we have denoted coordinates in the second, bottom factor by x�j for 1� j � k,
and in the first, top factor by �i for 1 � i � r � k; see Figure 1. More simply, in the
glued surface, the list of incremental angles .�inc;glued

1
; : : : ; �

inc;glued
r / is equal to the

concatenation of the lists of incremental angles of the original bottom and top surfaces,
.x�inc

1
; x�inc

2
; : : : ; x�inc

k
; �inc

1
; �inc

2
; : : : ; �inc

r�k
/.

The compactification Mr thus has codimension-1 boundary covered by the images of
the natural inclusion maps

Mr�k �Mk ! @Mr for 0< k < r;(4-37)

Mi;iC1
r ! @Mr for 1� i < r;(4-38)

where Mi;iC1
r denotes the compactification of the locus where i th and iC1st heights

are coincident,

(4-39) Mi;iC1
r WD fC 2Mr j hi D hiC1g:

With regards to the above stratum, for r > 1 there is a projection map which will be
relevant, a version of the forgetful map which remembers only the first of the angles
with coincident heights:

(4-40)

�i WMi;iC1
r !Mr�1;

.h1; : : : ;hi ;hiC1D hi ;hiC2; : : : ;hr / 7! .h1; : : : ;hi ;hiC2; : : : ;hr /;

.�1; : : : ;�i ;�iC1; : : : ;�r / 7! .�1; : : : ;�i�1;�i ; y�iC1;�iC2; : : : ;�r /:
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angle x�1 D . xp1/t

Figure 1: The gluing map for an angle-decorated cylinder rotates all of the
angles of the bottom cylinder by the first angle of the top cylinder as in (4-36).

The map �i is compatible with the choice of positive and negative ends (4-33)–(4-34)
and hence �i extends to compactifications

(4-41) �i WMi;iC1
r !Mr�1:

We will equip each r–point angle-rotated cylinder zC WD .C;p1; : : : ;pr / with perturba-
tion data for Floer’s equation or a Floer datum in the sense of the last section, which
consists of

� the positive and negative cylindrical ends on �˙ W C˙! C chosen in (4-33)–
(4-34),

� the one-form on C given by ˛ D dt ,

� a surface-dependent Hamiltonian H zC W C !H.M / compatible with the positive
and negative cylindrical ends, meaning that

(4-42) .�˙/�H zC DHt ;
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where Ht was the previously chosen Hamiltonian, and

� a surface-dependent almost-complex structure J zC WC !J1.M / also compatible
with �˙, meaning that

(4-43) .�˙/�J zC D Jt

for our previously fixed choice Jt .

A choice of Floer data for the S1–action is an inductive (smoothly varying) choice of
Floer data, for each r and each representative S D .C;p1; : : : ;pr / of Mr , satisfying
the following consistency conditions at boundary strata:

At a boundary stratum (4-37), the datum chosen coincides with the product of
Floer data already chosen on lower-dimensional spaces.

(4-44)

At a boundary stratum (4-38), the Floer data coincides with the pullback, via
the forgetful map �i defined in (4-41) of the Floer data chosen on Mr�1.

(4-45)

Inductively, since the space of choices at each level is nonempty and contractible (and
since the consistency conditions are compatible along overlapping strata), universal
and consistent choices of Floer data exist. From the gluing map, a representative S

sufficiently near the boundary strata (4-37) inherits cylindrical regions, also known as
thin parts, which are the surviving images of the cylindrical ends of lower-dimensional
strata. Together with the cylindrical ends of S , this determines a collection of cylindrical
regions.

Definition 4.9 Given a fixed positive constant ı, the (ı–spaced) rotated cylindrical
regions for an r–point angle-decorated cylinder .C;p1; : : : ;pr / consist of the following
cylindrical ends and finite cylinders, where hi D .pi/s and �i D .pi/t :

� The top cylinder �C W Œ0;max.top.C /� .hr C ı/; 0/��S1! C , defined by

(4-46) .s; t/ 7!
�
min.sC hr C ı; top.C //; t

�
:

� The bottom cylinder �� W Œmin.bottom.C /�.h1�ı/; 0/; 0��S1!C , defined by

.s; t/ 7!
�
max.s� .h1� ı/; bottom.C //; t C �1

�
D

�
max.s� .h1� ı/; bottom.C //; t C

rX
jD1

�i

�
:

� For any 1� i � r � 1 satisfying hiC1� hi > 2ı, the i th thin part is

(4-47) �i W Œhi C ı; hiC1� ı��S1
! C; .s; t/ 7! .s; t C �i/:
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Note that a given r–point angle-decorated cylinder may not have an i th thin part for a
given i 2 Œ1; r �1�, and indeed may not have any thin parts. The consistency conditions
at boundary strata can be ensured in particular by requiring that for any (ı–spaced)
rotated cylindrical region � W C 0! C of sufficiently large length (greater than some
fixed L, say LD 3ı) associated to .C;p1; : : : ;pr / and ı, we have that

(4-48) ��.KC ;JC /D .Kt ;Jt /:

Given the cylindrical regions of Definition 4.9, this would imply the following condition
on .KC ;JC / (assuming L� 3ı): for z D .s; t/ 2 C ,

(4-49) .Kz;Jz/D

8<:
.Kt ;Jt / for s> hrCı;

.��/�.Kt ;Jt /D .KtC�1
;JtC�1

/ for s< h1�ı;

��i .Kz;Jz/D .KtC�i
;JtC�i

/ if hiC1�hi > 3ı

and s 2 ŒhiCı; hiC1�ı�:

Given a choice of Floer data for the S1–action and a pair of asymptotics .xC;x�/ 2O
for each k � 1, there is an associated parametrized moduli space of Floer cylinders
with source an arbitrary element of S 2Mr , where the Floer equation is with respect
to the Hamiltonian HS and JS , with asymptotics .xC;x�/:

(4-50) Mr .x
�
IxC/ WD˚

S D .C;p1; : : : ;pr / 2Mr ; u W C !M j lim
s!˙1

.�˙/�u.s; � /D x˙ and

.du�XHS
˝ dt/.0;1/S D 0

	
:

The consistency condition imposes that the boundary of the Gromov bordification
Mr .x

�IxC/ is covered by the images of the natural inclusions

Mr�k.yIx
C/�Mk.x

�
Iy/! @Mr .x

�
IxC/;(4-51)

Mi;iC1
r .x�IxC/! @Mr .x

�
IxC/;(4-52)

along with the usual semistable strip-breaking boundaries

(4-53)
M.yIxC/�Mr .x

�
Iy/! @Mr .x

�
IxC/;

Mr .yIx
C/�M.x�Iy/! @Mr .x

�
IxC/:

Remark 4.10 (Floer data in the Liouville case) Continuing Remark 4.4, when M is
Liouville we impose the following further constraint on Floer data:

(4-54) H zC is equal to r2 or ��r (depending on whether we are in the setting of
Section 4.1.1 or Section 4.1.2) at infinitely many levels of r tending to1, and
J zC is (rescaled) contact type near1.
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(In fact, in the setting of Section 4.1.2 we can take H zC to be simply equal to ��r for
all r outside of a compact set.) By [3, Lemma 7.2] or [1, Section B], this hypothesis
implies that sequences of curves with fixed asymptotics cannot escape to 1 in M ,
and that Mr .x

�IxC/ given a fixed xC is nonempty for only finitely many x�, both
necessary inputs to verifying Assumption 3.10.

In the Z–graded case, the virtual dimension of (every component of) Mr .x
�IxC/ is

(4-55) deg.xC/� deg.x�/C .2r � 1/;

while in the Z=2–graded case every component has virtual dimension of the above
parity. By Assumption 3.10, for a generic fixed choice of Floer data for the S1–action
(satisfying Remark 4.10 in the Liouville case), the components of virtual dimension � 1

of the moduli spaces Mr .x
�IxC/ are compact manifolds-with-boundary of the correct

(expected) dimension. As usual, signed counts of rigid elements of this moduli space
for varying xC and x� (using induced maps on orientation lines, twisted as in the
differential by .�1/deg.xC/ — see (4-5)) give the matrix coefficients for the overall map

(4-56) ır W CF�.M /! CF��2rC1.M /:

In the degenerate case r D 0 we define ı0 to be the (already defined) differential,

(4-57) ı0 WD d W CF�.M /! CF�C1.M /:

Lemma 4.11 For each r ,

(4-58)
rX

iD0

ıiır�i D 0:

Proof The counts of rigid elements associated to the boundary of one-dimensional
components of @Mr .x

CIx�/, along with a description of this codimension-1 boundary
(4-51)–(4-53) immediately implies that

(4-59)
� rX

iD1

ıiır�i

�
C

�X
i

ıi;iC1
r

�
C .dır C ır d/D 0;

where ıi;iC1
r for each i is the operation associated to the moduli space of maps (4-52).

(Observe that ı1;2
2

is precisely the operation ınaive
2

from Section 4.2.) Note that the
consistency condition (4-45) implies that the Floer datum chosen for any element
S 2Mi;iC1

r only depends on �i.S/, where the forgetful map �i WMi;iC1
r !Mr�1 has

one-dimensional fibers. Hence given an element .S;u/ 2Mi;iC1
r .x�IxC/, it follows

that .S 0;u/ 2Mi;iC1
r .x�IxC/ for all S 0 2 ��1

i �i.S/. In other words, elements of
Mi;iC1

r .x�IxC/ are never rigid, so the associated operation ıi;iC1
r is zero.
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By definition we conclude:

Corollary 4.12 The pair .CF�.M IHt ;Jt /; fır gr�0/ as defined above forms an S1–
complex, in the sense of Definition 2.2.

By using continuation maps parametrized by various .S1/r � .0; 1�r (or equivalently,
by spaces of angle-decorated cylinders that are not quotiented by overall R–translation),
one can prove:

Proposition 4.13 Any continuation map f W CF�.M;H1/! CF�.M;H2/ enhances
to a homomorphism F of S1–complexes (which is , in particular , a quasi-isomorphism
if f is). Moreover , this homomorphism is canonical up to homotopy , in the sense
that any two homomorphisms F and F 0 enhancing f constructed geometrically from
parametrized continuation maps differ by an exact premorphism of S1–complexes (also
constructed geometrically).

We omit the proof, which is standard; see eg [66], but note some notational differences.
In particular, the S1–complex defined on the symplectic cochain complex SC�.M / or
the Hamiltonian Floer complex (with small negative slope if M is noncompact) is an
invariant of M , up to quasi-isomorphism.

Remark 4.14 (relation to earlier definitions in the literature) In [6], three different
definitions of S1–equivariant symplectic cohomology are considered and shown to be
equivalent. One of the definitions involves taking the S1–equivariant homology associ-
ated to a certain S1–complex defined on CF�.M /D SC�.M / [6, Proposition 2.19].
After normalizing for differing conventions (eg homological versus cohomological
conventions for Floer theory, and the fact that their u�1 is our u), it is direct to see that
the S1–complex constructed therein coincides up to equivalence with the one here —
and even agrees on the chain level, seeing as the choices of Floer data chosen in that
paper constitute a choice of Floer data for the S1–action in our sense; compare, for
instance, [6, Figure 1] with (4-49).

4.4 The circle action on the interior

From the formal point of view of Floer homology of M as the Morse homology of
an action functional on the free loop space LM , one would expect the contributions
coming from constant loops to be acted on trivially by the C��.S

1/–action, which
comes from rotation of free loops. This is indeed the case, as we now review.
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Suppose that the Hamiltonian Ht defining CF�.M / is chosen to be C 2–small, time-
independent, and Morse in the compact region of M (which equals M if M is compact).
Then, Floer [18] proved that all orbits of Ht inside M are (constant orbits at) Morse
critical points of H , and all Floer cylinders between such orbits which remain in M

are in fact Morse trajectories of H .

Let CMorse.H / denote the Morse complex of H . In the setting where H is as in
Section 4.1.2 (M can be Liouville or compact), all contributions to CF�.M / (both
orbits and cylinders) come from M , so Floer’s argument gives an isomorphisms

(4-60) CMorse.H /Š CF�.M /:

In the setting where H is quadratic at infinity (and M is Liouville) as in Section 4.1.1,
one can ensure the collection of orbits coming from M is an action-filtered sub-
complex — and, for instance, the integrated maximum principle will ensure that all
cylinders between such orbits lie in M . Hence, there is an inclusion of subcomplexes

(4-61) CMorse.H /! SC�.M /;

which, under smallness constraints on the Floer data for the S1–action gives an S1–
subcomplex [66, Lemma 5.4], meaning the operators ık preserve the subcomplex and
in fact the action filtration; hence a morphism of S1–complexes. We will discuss
both of the above cases at once: in either case, by considering a Hamiltonian which is
C 2–small on M , we obtain an inclusion of S1–subcomplexes

(4-62) CMorse.H /! CF�.M /

with the understanding that in the former case this inclusion is the whole complex.

Lemma 4.15 There exists a choice of Floer data for the S1–action so that CMorse.H /

becomes a trivial S1–subcomplex; meaning that the various operators ır , r � 1,
associated to the C��.S

1/–action strictly vanish on the subcomplex.

Proof By the integrated maximum principle, any Floer trajectory with asymptotics
along two generators in CMorse.H / remains in the interior of M . We can choose the
Hamiltonian term of our Floer data on Mr in this region of M to be autonomous
(ie t– and s–independent on the cylinder), C 2–small and Morse — in fact equal to H ;
then Floer’s theorem [18] again guarantees that any Floer trajectory in Mr .x

�IxC/

between Morse critical points x˙ is in fact a Morse trajectory of H . It follows that for
critical points xC;x� of H , any element uD .C; Ep/ in the parametrized moduli space
of maps Mr .x

�IxC/ solves an equation that is independent of the choice of parameter

Geometry & Topology, Volume 27 (2023)



3518 Sheel Ganatra

Ep 2 .S1/r � .0; 1�r�1. Namely, u lives in a family of solutions of dimension at least
2r � 1 (given by varying Ep), and hence u cannot be rigid. The associated operation ır ,
which counts rigid solutions, is therefore zero.

By invariance of the S1–complex structure on CF�.M / (up to homotopically canonical
quasi-isomorphism as in Proposition 4.13), we conclude:

Corollary 4.16 For M compact and admissible , or Liouville with .H;J / as in
Section 4.1.2, CF�.M / is quasi-isomorphic to a trivial S1–complex , canonically
up to homotopy.

Corollary 4.17 For M Liouville with .H;J / as in Section 4.1.1, the inclusion chain
map

(4-63) C �Morse.M /! SC�.M /

lifts (cohomologically) canonically to a chain map

(4-64) (CMorse.H /ŒŒu��; dMorse/D .CMorse.H //hS1

! .SC�.M //hS1

D .SC�.M /ŒŒu��; ıeq/;

inducing a cohomological map

(4-65) H�.M /ŒŒu��!H�.SC�.M /hS1

/:

Remark 4.18 Another possibly more direct way of producing the map H�.M /ŒŒu��!

H�.SC�.M /hS1

/ is via an S1–equivariant enhancement ePSS of the PSS morphism
PSS WC �.M /! SC�.M /. We omit a further description here, and simply note that the
resulting map can be shown to coincide cohomologically with the map defined above.

Since the S1–complex structure on C �Morse.H / is trivial, one can (canonically) split the
inclusion of homotopy fixed points map (2-36) H�.C �Morse.H /hS1

/!H�.C �Morse.H //

by the map

(4-66) H�.M /
Œx 7!x�1�
�����!H�.M /ŒŒu��:

The associated composition

(4-67) H�.M /
Œx 7!x�1�
�����!H�.M /ŒŒu��!H�.SC�.M /hS1

/
Œ��
�! SH�.M /

coincides with the usual map H�.M /! SH�.M /. In particular, we note that the
homotopy fixed-point complex of SC�.X / possesses a canonical (geometrically defined)
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cohomological element,

(4-68) z1 2H�.SC�.M /hS1

/;

lifting the usual unit 1 2 SH�.M / (under the map Œ��), defined as the image of 1 under
the map (4-65).

5 Cyclic open–closed maps

5.1 Open–closed Floer data

Here we review the sort of Floer perturbation data that needs to be specified on the
domains appearing in the open–closed map and their cyclic analogues. The main body
of our treatment, following Section 3.3, consists of a (slightly modified) simplification
of the setup from [1] tailored to the case of Fukaya categories of compact admissible M ;
in Remarks 5.1 and 5.2 below we will indicate the modifications we need to make —
following [1] and building on Remarks 3.15–3.18 above — in the case of compact
Fukaya categories of Liouville manifolds (minor modifications) or wrapped Fukaya
categories (slightly more involved modifications). There is one notable deviation
from [1], in that we allow our interior marked point to have a varying asymptotic
marker and choose Floer data depending on this choice, as is done in constructions of
BV-type operations in Hamiltonian Floer theory involving such asymptotic markers;
see eg [58; 55].

Let S be a disc with d boundary punctures z1; : : : ; zd (labeled in counterclockwise
order) marked as positive, and an interior marked point p removed, marked as either
positive or negative; for the main body of the construction p is negative. We also equip
the interior marked point p with an asymptotic marker, that is, a half-line �p 2 TpS

(or equivalently an element of the unit tangent bundle, defined with respect to some
metric). Call any such S D .S; z1; : : : ; zd ;p; �p/ an open–closed framed disc.

In addition to the notation for semi-infinite strips (3-38)–(3-39), we use the following
notation to refer to the positive and negative semi-infinite cylinder:

AC WD Œ0;1/�S1;(5-1)

A� WD .�1; 0��S1:(5-2)

A Floer datum on a stable open–closed framed disc S consists of the following choices
on each component:
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(1) A collection of strip-like or cylindrical ends S around each boundary or interior
marked point, of sign matching the sign of the marked point; strip-like ends were
defined in Section 3.3 and a positive (resp. negative) cylindrical end is a map

ı˙j WA˙! S:

(So for the main body of the construction, we use a negative cylindrical end
around p.) All of the strip-like ends around each of the zi should be positive, and
all (strip-like or cylindrical) ends should have disjoint image in S . The cylindrical
end around p should further should be compatible with the asymptotic marker,
meaning the points with angle zero should asymptotically approach the marker,

(5-3) lim
s!˙1

ı˙.s; 0/D �p:

(2) A one-form ˛S on S , an S–dependent Hamiltonian function HS on M , and an
S–dependent almost-complex structure JS on M , such that on each strip-like
end these data pull back to a given fixed .dt;Ht ;Jt /, (which we used to define
Lagrangian Floer homology chain complexes) and on the cylindrical end this
data pulls back to a given fixed .dt;H

cyl
t ;J

cyl
t / which we used to define our

Hamiltonian Floer homology chain complex. (Note that in many cases we could
further simplify and choose .H cyl

t ;J
cyl
t /D .Ht ;Jt /, given a sufficiently generic

choice of .Ht ;Jt /.)

Given a stable open–closed framed disc S equipped with a Floer datum FS , a collec-
tion of Lagrangians fL0; : : : ;Ld�1g and asymptotics fx1; : : : ;xd Iyg with xi a chord
between Li�1 and Li mod d , a map u W S !M satisfies Floer’s equation for FS with
boundary fL0; : : : ;Ld�1g and asymptotics fx1; : : : ;xd Iyg if

(5-4) .du�XS ˝˛S /
0;1
D 0 using the Floer data given by FS

(meaning XS is the Hamiltonian vector field associated to HS , and 0; 1 parts are taken
with respect to JS ), and

(5-5)

8̂̂̂<̂
ˆ̂:

u.z/2Li if z2@S lies counterclockwise from zi , clockwise from ziC1 mod d ;

lim
s!C1

uı�k.s; � /Dxk ;

lim
s!�1

uıı.s; � /Dy:

Here �k denotes the k th strip-like end, ı denotes the cylindrical end, and the sign � in
the last line is � if ı is a negative end — which is the case for the main body of the
construction — and C if ı is a positive end.
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Remark 5.1 (Floer data for compact Lagrangians in Liouville manifolds) If M is
Liouville and we are studying the Fukaya category of compact exact Lagrangians, then
we take H

cyl
t ;J

cyl
t (the data required to define Floer cohomology) as in Section 4.1.2 and

we again impose the additional requirements on Floer data described in Remark 3.16,
As before the H

cyl
t ;J

cyl
t and more restrictive types of Floer data chosen for wrapped

Fukaya categories in Remark 5.2 below would also work. The ability to choose H
cyl
t

and J
cyl
t as in Section 4.1.2 is indicative of a more general freedom in the Floer data

here, which also will allow us later to define operations in which the interior marked
point (and all boundary marked points) are positive; see Section 5.6.2.

Remark 5.2 (Floer data and Floer’s equation for wrapped Fukaya categories) Almost
exactly as in Remark 3.17, and following [1], in order to associate operations between
the wrapped Fukaya category and symplectic cohomology one needs to make the
following modifications to the notion of Floer data. First, one takes H

cyl
t ;J

cyl
t to be the

data defining the symplectic cochain complex as in Section 4.1.1. Then one equips S

with strip-like and cylindrical ends as above. Let  � as before denote the time log.�/
Liouville flow on M . The modifications to the Floer data are:

� Extra choices of weights and time-shifting maps Exactly as in Remark 3.17,
one associates a weight wk 2 R>0 to each boundary or interior marked point
and a time-shifting map �S W @S!R>0 agreeing with wk near the k th strip-like
end.

� Modified requirements on the one-form The one-form ˛S should be sub-
closed, meaning d˛S � 0, should restrict to 0 along @S , and restrict to wk dt on
each (strip-like or cylindrical) end, as in Remark 3.17(2). It follows by Stokes’
theorem that the weight at the (output) cylindrical end should be greater than the
sum of weights over all (input) strip-like ends. In particular, it is not possible for
˛S to be subclosed and restrict to 0 along @S , conditions necessary to appeal to
the integrated maximum principle if the interior marked point were also positive.
(This is a reflection of the fact that wrapped Fukaya categories do not admit
geometric operations with no outputs.)

� Modified requirements on Hamiltonians, as in Remark 3.17(3) The Hamil-
tonian term should pull back to H ı wk=w2

k
along any strip-like end, and to

H cyl ı wk=w2
k

along the cylindrical end. The Hamiltonian term should also be
quadratic at infinitely many levels of (3-32) tending to infinity. (This is a slight
weakening of Remark 3.17 coming from the fact that the Hamiltonian used to
define SC�.X / is not quadratic at every level near infinity due to (4-7).)

Geometry & Topology, Volume 27 (2023)



3522 Sheel Ganatra

� Modified requirements on almost-complex structures, as in Remark 3.17(4)
The almost-complex structure should be contact type at infinity and pull back to
. wk /�Jt along each strip-like end and . wk /�J

cyl
t along the cylindrical end.

Exactly as in Remark 3.17, there is a rescaling action on the space of such Floer data,
and we will relax any consistency requirement imposed on Floer data to allow for an
arbitrary rescaling when equating different choices of Floer data. Finally, we note the
slight modifications to the boundary and asymptotic conditions of Floer’s equation (5-5),
following Remark 3.18: on the boundary component of @S lying counterclockwise
from zi and clockwise from ziC1 mod d we impose the moving boundary condition
u.z/ 2 . �S .z//�Li , on the k th strip-like end we impose lims!C1 u ı �k.s; � / D

. wk /�xk , and on the cylindrical end we impose lims!�1 u ı ı.s; � / D . w/�y,
where w is the weight associated to the interior puncture p.

Exactly as in the proof of Lemma 3.19, the constraints to Floer data in the Liouville
case made in the above two remarks help ensure Assumption 3.10 holds for associated
moduli spaces.

5.2 Nonunital open–closed maps

We begin by constructing a variant of the open–closed map of [1] with source the
nonunital Hochschild complex of (3-11), which we call the nonunital open–closed map
and indicate by OC or OCnu:

(5-6) OC WDOCnu
W CHnu

��n.F/! CF�.M /:

This map actually has a straightforward explanation from the perspective of Remark 3.3:
we define the map OC from fCH�.FC/ by counting discs with an arbitrary number of
boundary punctures and one interior puncture asymptotic to an orbit, as in [1], with the
proviso that we treat the formal elements eC

L
as “fundamental class ŒL� point constraints

(ie empty constraints)”: we fill back in the relevant boundary puncture and impose no
constraints on that marked point. With respect to the decomposition (3-11), we define
a pair of maps

(5-7) {OC˚ yOC W CH�.F/˚CH�.F/Œ1�! CF�.M /

giving the left and right components of the nonunital open–closed map

(5-8) OC W CHnu
��n.F/! SC.M /; .x;y/ 7! {OC.x/C yOC.y/:

Since the left (check) factor is equal to the usual cyclic bar complex for Hochschild
homology, {OC will be defined exactly as the open–closed map is defined in [1] (briefly
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recalled below), and the new content is the map yOC. We will define yOC below (and
recall the definition of {OC) and prove, extending [1]:

Lemma 5.3 OC is a chain map of degree n.

We note a notational difference from [1], which uses OC to refer to what we call
here {OC; in contrast, in this paper we use OC exclusively to refer to the (nonunital)
open–closed map OC D OCnu WD {OC ˚ yOC with domain the nonunital Hochschild
complex. Of course, the two maps OC and {OC are homologically the same. That is,
assuming Lemma 5.3:

Corollary 5.4 As homology-level maps , ŒOC�D Œ {OC�.

Proof By construction, the chain level map {OC constructed in [1] factors as

(5-9) CH��n.F/� CHnu
��n.F/

OC
�! CF�.M /:

The first inclusion is a quasi-isomorphism by Lemma 3.2, since F is known to be
cohomologically unital.

The moduli space controlling the operation {OC, denoted by

(5-10) {R1
d ;

is the (Deligne–Mumford compactification of the) abstract moduli space of discs with
d boundary positive punctures z1; : : : ; zd labeled in counterclockwise order and one in-
terior negative puncture zout, with an asymptotic marker �out at zout pointing towards zd .
The space (5-10) has a manifold-with-corners structure, with boundary strata described
in [1, Section C.3] — there, the space is called R1

d
— in short, codimension-one strata

consist of disc bubbles containing any cyclic subsequence of k inputs attached to an
element of {R1

d�kC1
at the relative position of this cyclic subsequence. Orient the top

stratum {R1
d

by trivializing it, sending ŒS � to the unit disc representative S with zd and
zout fixed at 1 and 0, and taking the orientation induced by the (angular) positions of
the remaining marked points:

(5-11) �dz1 ^ � � � ^ dzd�1:

The moduli space controlling the new map yOC is nearly identical to {R1
d

, but there is
additional freedom in the direction of the asymptotic marker at the interior puncture zout.
The top (open) stratum is easiest to define: let

(5-12) R1;free
d
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zout

z1

z4

z3

z2

Figure 2: A representative of an element of the moduli space {R1
4

with special
points at 0 (output), �i .

be the moduli space of discs with d positive boundary punctures and one interior
negative puncture as in {R1

d
, but with the asymptotic marker �out pointing anywhere

between z1 and zd .

Remark 5.5 There is a delicate point in naively compactifying R1;free
d

: on any formerly
codimension-one stratum in which z1 and zd bubble off, the position of �out becomes
fixed too, and so the relevant stratum actually should have codimension two (and hence
does not contribute to the codimension-one boundary equation for yOC; moreover, there
is no nice corner chart near this stratum). For technical convenience, we pass to an
alternative, larger (blown-up) model for the compactification in which these strata have
codimension one but consist of degenerate contributions.

In light of Remark 5.5, we use (5-12) as motivation and instead define

(5-13) yR1
d

to be the abstract moduli space of discs with d C 1 boundary punctures zf , z1, . . . , zd

and an interior puncture zout with asymptotic marker �out pointing towards the boundary
point zf , modulo automorphism. We mark zf as “auxiliary”, but otherwise the space is
abstractly isomorphic to {R1

dC1
. Identifying yR1

d
with the space of unit discs with zout

and zf fixed at 1 and 0, the remaining (angular) positions of z1; : : : ; zd determine an
orientation

(5-14) �dz1 ^ � � � ^ dzd :

The forgetful map

(5-15) �f W yR1
d !R1;free

d

puts back in the point zf and forgets it. Since the point zf is recoverable from the
direction of the asymptotic marker at zout, we get:
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zout

z1

z2

z3

z4

Š
zout

z1

z2

z3

z4

zf

Figure 3: A representative of an element of the moduli space R1
4;free and the

corresponding element of yR1
4.

Lemma 5.6 The map �f is a diffeomorphism.

The perspective of the former space (5-13) gives us a model for the compactification

(5-16) R1;free
d

as the ordinary Deligne–Mumford compactification

(5-17) yR1
d :

We call a component T of a representative S of (5-17) the main component if it contains
the interior marked point, and a secondary component if its output is attached to the main
component. As a manifold with corners, (5-17) is equal to the compactification {R1

dC1

except from the point of view of assigning Floer datum, as we will be forgetting the
point zf instead of fixing asymptotics for it. It is convenient therefore (for the purpose
of indicating choices of Floer data made) to name components of strata containing zf

differently. At any stratum:

� We treat the main component (containing zout and k boundary marked points) as
belonging to yR1

k�1
if it contains zf and {R1

k
otherwise.

� If the i th boundary marked point of any nonmain component was zf , we view it
as an element of Rk;fi , the space of discs with one output and k input marked
points removed from the boundary, with the i th point marked as “forgotten,”
constructed in Section A.2.

� We treat any other nonmain component as belonging to Rk as usual.

Thus, the codimension-one boundary of the Deligne–Mumford compactification is
covered by the natural inclusions of the strata

Rm
�i yR1

d�mC1; with 1� i < d �mC 1;(5-18)

Rm;fk �d�mC1
{R1

d�mC1; with 1� j �m; 1� k �m;(5-19)
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Figure 4: A schematic of the two distinct types of codimension-one boundary
strata of (5-17) in codimension one. On the left side, corresponding to (5-18),
a disc bubble forms involving any collection of boundary marked points not
including zf . On the right side, corresponding to (5-19), a disc bubble forms
involving the point zf .

where the notation �j means that the output of the first component is identified with
the j th boundary input of the second. See Figure 4.

The forgetful map �f extends to a map x�f from the compactification yR1
d

(to the space
of stable framed open–closed discs with d marked points) as follows: x�f puts the
auxiliary point zf back in, eliminates any component which is not main or secondary
and which has only one nonauxiliary marked point p, and labels the positive marked
point below this component by p. Given a representative S of yR1

d
, we call x�f .S/

the associated reduced surface. We will study maps from the associated reduced
surfaces x�f .S/, parametrized by S . To this end, define a Floer datum on a stable disc
S in yR1

d
to consist of a Floer datum for the underlying reduced surface x�f .S/ in the

sense of Section 5.1.

First, in Section A.2 we describe an inductive construction of Floer data for (the
underlying reduced surfaces of) the compactified moduli space of discs with a forgotten
point Rd;fi , for every d and i , with the following properties:

(5-20)

8̂̂<̂
:̂

For d > 2, the choice of Floer datum on Rd;fi should be pulled back from
the forgetful map Rd;fi !Rd�1.

For d D 2, the Floer datum on the surface S (with zi forgotten) should be
translation invariant.

Next, we choose a Floer datum for the nonunital open–closed map, which is an inductive
set of choices .D {OC;D yOC/, for each d � 1 and every representative S 2 {R1

d
, T 2 yR1

d
,

of a Floer datum for S and (the associated reduced surface of) T , respectively. As
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usual, these choices should be smoothly varying, and restrict smoothly to previously
chosen Floer data on boundary strata. Note that for a given d the boundary strata
have components that are either {R1

d 0
or yR1

d 0
for d 0 < d , a stratum Rd 0 (over which

we have chosen a Floer datum for the A1 structure), or a stratum Rd;fi where we
have chosen a Floer datum in Section A.2 as described above. (As usual for Liouville
manifolds we use the notion of Floer data and consistency described in Remark 5.1 or
Remark 5.2 in the wrapped case.) Contractibility of the space of choices at every stage
(and consistency of the compatibility conditions imposed at corners) ensures as usual
that a Floer datum for the nonunital open–closed map exists.

Fixing such a choice, we obtain, for any d–tuple of Lagrangians L0; : : : ;Ld�1, and
asymptotic conditions Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d / and yout 2O, a
pair of moduli spaces

{R1
d .youtI Ex/;(5-21)

yR1
d .youtI Ex/;(5-22)

of parametrized families of solutions to Floer’s equation,˚
.S;u/ j S 2 {R1

d ;u W S !M such that .du�X ˝˛/0;1 D 0(5-23)
using the Floer datum given by D {OC.S/

	
;˚

.S;u/ j S 2 yR1
d ;u W �f .S/!M such that .du�X ˝˛/0;1 D 0(5-24)

using the Floer datum given by D yOC.S/
	
;

satisfying asymptotic and boundary conditions (in either case) as in (5-5), with the
modification for wrapped Fukaya categories involving Liouville rescalings described
in Remark 5.2. The expected dimensions of every component of (5-21) and (5-22),
respectively, in the Z–graded case are

deg.yout/� nC d � 1�

dX
kD1

deg.xk/;(5-25)

deg.yout/� nC d �

dX
kD1

deg.xk/;(5-26)

and mod 2 these in the Z=2–graded case.

As usual there are Gromov-type bordifications

{R1
d .youtI Ex/;(5-27)

yR1
d .youtI Ex/;(5-28)

Geometry & Topology, Volume 27 (2023)



3528 Sheel Ganatra

which allow semistable breakings, as well as maps from strata corresponding to the
boundary strata of {R1

d
and yR1

d
.

By Assumption 3.10, for generic choices of Floer datum for the nonunital open–closed
map, the components of (5-27) and (5-28) of virtual dimension � 1 are compact
manifolds-with-boundary of dimension agreeing with virtual dimension. Fix such a
Floer datum. At a rigid element u of each of the above moduli spaces, we obtain, using
the fixed orientations of moduli spaces of domains (5-11)–(5-14) and [1, Lemma C.4],
isomorphisms of orientation lines

.{R1
d /u W oxd

˝ � � �˝ ox1
! oyout ;(5-29)

.yR1
d /u W oxd

˝ � � �˝ ox1
! oyout :(5-30)

These isomorphisms in turn define the joyout jk component of the check and hat compo-
nents of the nonunital open–closed map with d inputs in the lines joxd

jk; : : : ; jox1
jk,

up to a sign twist:

(5-31) {OCd .Œxd �; : : : ; Œx1�/ WD
X

u2{Rd
1
.yIxd ;:::;x1/ rigid

.�1/{?d .{R1
d /u.Œxd �; : : : ; Œx1�/;

where {?d WD deg.xd /C
Pd

kD1 k deg.xk/, and

(5-32) yOCd .Œxd �; : : : ; Œx1�/ WD
X

u2yR1
d
.youtI Ex/ rigid

.�1/y?d .yR1
d /u.Œxd �; : : : ; Œx1�/;

where y?d WD
Pd

iD1 i � deg.xi/.

By analyzing the boundary of one-dimensional components of the moduli spaces
{R1

d
.youtI Ex/, the consistency condition imposed on Floer data, and a sign analysis, in

[1] it was proved that:

Lemma 5.7 [1, Lemma 5.4] The map OC WD {OC is a chain map of degree n; that is ,
.�1/ndCF ı {OC D {OC ı b.

Similarly, we prove the following, completing the proof of Lemma 5.3:

Lemma 5.8 The following equation holds:

(5-33) .�1/ndCF ı yOC D {OC ı d^_C yOC ı b0:
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Proof The consistency condition imposed on Floer data implies that the boundary of
the one-dimensional components of {R1

d
.yI Ex/ are covered by the images of the natural

inclusions of the rigid (zero-dimensional) components of the moduli spaces of maps
coming from the boundary strata (5-18) and (5-19) along with (the rigid components of)
semistable breakings,

yR1
d .y1I Ex/�M.youtIy1/! @{R1

d .youtI Ex/;(5-34)

R1.xIxi/� yR1
d .youtI

zEx/! @{R1
d .youtI Ex/;(5-35)

where zEx denotes the collection of inputs Ex with xi replaced with x. Let �d;i be the
operation associated to the space of discs with i th point marked as forgotten Rd;fi ,
which is described in detail in Section A.2. The operation �d;i takes a composable
sequence of d � 1 inputs, separated into an i � 1 tuple and a d � i tuple; in line with
Remark 3.3 we will use the suggestive notation15

(5-36) �d .xd ; : : : ;xiC1; e
C;xi�1; : : : ;x1/ WD �

d;i.xd ; : : : ;xiC1Ixi�1; : : : ;x1/:

(Recall the abuse of notation xi WD Œxi �.) Then, up to sign, by the standard codimension-
one boundary principle for Floer-theoretic operations, we have shown that

(5-37) 0D dCF yOC.xd ; : : : ;x1/

�

X
i;j

.�1/z
i
1 yOC.xd ; : : : ;xiCjC1; �

j .xiCj ; : : : ;xiC1/;xi ; : : : ;x1/

�

X
i;j ;k

.�1/]
k
j {OC

�
�jCkC1.xj ; : : : ;x1; e

C;xd ; : : : ;xd�kC1/;

xd�k ; : : : ;xjC1

�
;

with desired signs

zn
m D

nX
jDm

kxik;(5-38)

]k
j Dzj

1
zd

jC1Czd
jC1C 1:(5-39)

However, as shown in Section A.2,

(5-40) �jCkC1.xj ; : : : ;x1; e
C;xd ; : : : ;xd�kC1/D

8<:
x1 if j D1; kD0;

.�1/jxd jxd if j D0; kD1;

0 otherwise.

15In fact, when the Fukaya category is equipped with homotopy units, one can ensure that there is a strict
unit element eC in each self-hom space for which �k with an eC element admits a geometric description
as above. See eg [22] or [24].
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(In this manner, eC, though a formal element, behaves as a strict unit.) So if equation
(5-37) held, it would follow that

(5-41) dCF ı yOC.xd ˝ � � �˝x1/

D .�1/kx1kz
d
2Cz

d
2C1 {OC.x1˝xd ˝ � � �˝x2/

C .�1/jxd jCz
d
1C1 {OC.xd ˝ � � �˝x1/C yOC ı b0.xd ˝ � � �˝x1/

D {OC..�1/z
d
1Ckxd k.1� t/.xd ˝ � � �˝x1//C yOC ı b0.xd ˝ � � �˝x1/

D . {OC ı d^_C yOC ı b0/.xd ˝ � � �˝x1/:

So we are done if we establish that the signs are exactly (5-38)–(5-39).

Using the notation

(5-42) OC.eC˝xd ˝ � � �˝x1/ WD yOC.xd ˝ � � �˝x1/;

where again eC is simply a formal symbol referring to the position of the auxiliary
(forgotten) input point, we observe that the equation (5-37) is exactly the equation for
OC being a chain map on inputs of the form .eC˝xd ˝ � � �˝x1/, where we treat an
“eC” input as an auxiliary unconstrained point on our domain. The sign verification
therefore follows from that of {OC being a chain map (in [1, Lemma 5.4]), for we have
used identical orientations on the abstract moduli space yR1

d
as on {R1

dC1
(identifying

zf with zdC1), and on Rd;fi as on Rd , and we can even insert a formal degree zero
orientation line oeC into the procedure for orienting moduli spaces of open–closed maps
(see [1, Section C.6]), corresponding to the marked point (obtained by filling in) zf .
Note that oeC , being of degree zero, commutes with everything, and is just used as a
placeholder as if we had an asymptotic condition at zf .

Proof of Lemma 5.3 As {OC is already known to be a chain map by [1, Lemma 5.4],
repeated as Lemma 5.7 above, the new part to check is that

.�1/ndCF ı yOC D {OCd^_C yOC ı b0:

This is the content of Lemma 5.8 above.

5.3 An auxiliary operation

It will be technically convenient to define an auxiliary operation

(5-43) OCS1

W CH��n.F/! CH�C1.M /

from the left factor of the nonunital Hochschild complex to Floer cochains, in which
the asymptotic marker �out varies freely around the circle. This operation is more easily
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comparable to the BV operator on Floer cohomology, and moreover, we will show that
OCS1

(and yOC) can be chosen to satisfy the following crucial identity:

Proposition 5.9 There is an equality of chain-level operations ,

(5-44) OCS1

D yOC ıBnu:

To define (5-43), let

(5-45) RS1

d

be the abstract moduli space of discs with d boundary positive punctures z1; : : : ; zd

labeled in counterclockwise order and one interior negative puncture zout, with an
asymptotic marker �out at zout (or choice of real half-line in TzoutD) which is free to
vary. Equivalently,

(5-46) RS1

d
is the space of discs with z1; : : : ; zd and zout as before, and an extra

auxiliary interior marked point p1 such that, for a representative with .zout; z1/

fixed at .0;�i/, jp1j D
1
2

, and the asymptotic marker �out points towards p1.

By using a representative with fixed .zout; z1/ as above, the argument of p1 produces
an abstract identification

(5-47) RS1

d D
{R1

d �S1:

Using this identification, fix an orientation of (5-47) given by negative the product
orientation of (5-11) with the standard counterclockwise orientation on S1. The
Deligne–Mumford-type compactification can thus be thought of as

(5-48) RS1

d D
{R1

d �S1:

Given an element S of RS1

d
and a choice of marked point zi on the boundary of S , we

say that �out points at zi , if, when S is reparametrized so that z1 fixed at �i and zout

fixed at 0, the vector �out is tangent to the straight line from zout to zi . Equivalently, for
this representative, zout, p1 and zi are colinear. For each i , the locus where �out points
at zi forms a codimension-one submanifold, denoted by

(5-49) RS1
i

d
:

The notion compactifies well; if zi is not on the main component of (5-48), we say that
�out points at zi if it points at the root of the bubble tree zi is on. This compactified
locus RS1

i
d

can be identified with R1
d

via the map

(5-50) �i WR
S1

i

d
!R1

d
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which cyclically permutes the labels of the boundary marked points so that zi is now
labeled zd .

In a similar fashion, we have an invariant notion of what it means for �out to point
between zi and ziC1; this is a codimension-zero submanifold with corners of (5-47),
denoted by

(5-51) RS1
i;iC1

d
:

The compactification has some components that are codimension-one submanifolds
with corners of (5-48), when zi and ziC1 both lie on a bubble tree.

Finally, there is a free Zd –action generated by the map

(5-52) � WRS1

d !RS1

d

which cyclically permutes the labels of the boundary marked points; for concreteness,
� changes the label zi to ziC1 for i < d , and zd to z1. Note that if, on a given S ,
�out points between zi and ziC1, then on �.S/, �out points between ziC1 mod d and
ziC2 mod d .

Lemma 5.10 The action generated by (5-52) is free and properly discontinuous.

Sketch The basic observation arises on the level of uncompactified moduli spaces:
since any element of RS1

d
has a unit disk representative with .zout;p1/ fixed at

�
0; 1

2

�
,

the positions of the remaining points identify RS1

d
with the space of tuples .z1; : : : ; zd /

of disjoint (cyclically ordered) points on S1 (without any further quotienting by auto-
morphism). The action of �, which cyclically permutes the labels z1; : : : ; zd in this
identification, evidently acts freely and properly discontinuously on this locus. Similarly,
an element of a boundary stratum consists of an element of RS1

k
for some k � d with

some collection of stable disc bubble trees attached to some or all of the marked points
of RS1

k
, so that there are d leaf (nonnodal) boundary marked points, along with a

counterclockwise ordered labeling of these marked points by z1; : : : ; zd (note that
there is a well-defined cyclic counterclockwise ordering of boundary marked points
on any such stable configuration). By using a representative of the main component
RS1

k
with .zout;p1/ fixed at

�
0; 1

2

�
, an explicit analysis shows that the action of (5-52)

remains free and properly discontinuous — for instance, to see free, note that there is a
well-defined “first boundary nonnodal marked point at or counterclockwise from the
argument of p1”; the action of (5-52) freely permutes the label of this first boundary
marked point hence cannot have a fixed point.
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The quotient of the action of � consists of the space of discs with zout and p1 as
before,16 equipped with d cyclically unordered or unlabeled boundary marked points.
Note that on the open-locus VRS1

d
, where �out does not point at a boundary marked point,

one can choose a labeling by setting the boundary point immediately clockwise of
where �out points to be zd . This induces a diffeomorphism

(5-53) VRS1

d =� ŠR1;free
d

:

Similarly, on the complementary locus where �out points at a boundary marked point,
we can similarly choose a labeling by declaring this boundary marked point to be zd ,
giving a diffeomorphism (of this locus) with {R1

d
.

We now choose Floer perturbation data for the family of moduli spaces RS1

d
; in fact, it

will be helpful to rechoose Floer data for the moduli spaces appearing in the nonunital
open–closed map to have extra compatibility. To that end, a BV compatible Floer datum
for the nonunital open–closed map is an inductive choice .D {OC;D yOC;DS1/ of Floer
data where D {OC and D yOC is a universal and consistent choice of Floer data for the
nonunital open–closed map as before, and DS1 consists of, for each d � 1 and every
representative S 2RS1

d
, a Floer datum for S varying smoothly over the moduli space.

Again, these satisfy the usual consistency condition with respect to previously made
choices along lower-dimensional strata. Moreover, there are two additional inductive
constraints on the Floer data chosen:

On the codimension-one loci RS1
i

d
where �out points at zi , the Floer datum

should agree with the pullback by �i of the existing Floer datum for the (check)
open–closed map.

(5-54)

The Floer datum should be �–equivariant, where � is the map (5-52).(5-55)

Also, there is a final a posteriori constraint on the Floer data for the nonunital open–
closed map D yOC: for S 2 yR1

d
:

(5-56) The Floer datum on the main component S0 of x�f .S/ should coincide with
the existing datum chosen on S0 2R1;free

d
�RS1

d
.

By an inductive argument as before, a BV compatible Floer datum for the nonunital
open–closed map exists.

To explain the way choices are made (which ensures both existence at every stage
and that the requirements above are satisfied): we choose the data for RS1

d
prior to

16Meaning zout is a negative interior puncture, and p1 is an auxiliary interior marked point such that for
any representative with zout fixed at 0, jp1j D

1
2

.
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choosing that of yR1
d

and note that the condition (5-56) specifies the Floer datum on
yR1

d
entirely. In particular, the conditions (5-20) required on the latter Floer datum are

compatible with consistency and the condition (5-54). With regards to choosing the
data for RS1

d
, the equivariance constraint (5-55), which is compatible with both (5-54)

(a �–equivariant condition) and with the consistency condition, is also unproblematic
in light of Lemma 5.10: one can pull back a Floer datum from the quotient of RS1

d

by �.

Fixing a BV compatible Floer datum for the nonunital open–closed map we obtain, for
any d–tuple of Lagrangians L0; : : : ;Ld�1, and asymptotics Ex D .xd ; : : : ;x1/ with
xi 2 �.Li�1;Li mod d /, and yout 2O, a moduli space

(5-57) RS1

d .youtI Ex/

of parametrized families of solutions to Floer’s equation, with respect to the Floer data
chosen,

(5-58) f.S;u/ j S 2RS1

d ;u W �f .S/!M such that .du�X ˝˛/0;1 D 0g;

satisfying asymptotic and boundary conditions as in (5-5) (again with the modifications
of Remarks 5.1 or 5.2 for compact or wrapped Fukaya categories of Liouville manifolds).
Generically the Gromov–Floer compactifications

(5-59) RS1

d .youtI Ex/

of the components of virtual dimension � 1 are compact manifolds-with-boundary
of the expected dimension; this dimension coincides (mod 2 or exactly depending on
whether we are in a Z=2– or Z–graded setting) with

(5-60) deg.yout/� nC d �

dX
kD1

deg.xk/:

Each rigid u 2RS1

d
.youtI Ex/ gives by the orientation from (5-48) and [1, Lemma C.4]

an isomorphism of orientation lines

(5-61) .RS1

d /u W oxd
˝ � � �˝ ox1

! oyout ;

which gives the joyout jk component of the S1 open–closed map with d inputs in the
lines joxd

jk; : : : ; jox1
jk, up to a sign twist given below: define

(5-62) OCS1

.Œxd �; : : : ; Œx1�/ WD
X

u2RS1

d
.youtI Ex/ rigid

.�1/|d .RS1

d /u.Œxd �; : : : ; Œx1�/;

where |d D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.
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The proof of Proposition 5.9, which equates OCS1

with yOC ıBnu, appears below and
is composed of two steps. First, we decompose the moduli space RS1

d
into sectors in

which �out points between a pair of adjacent boundary marked points. It will follow
that the sum of the corresponding “sector operations” is exactly OCS1

. The sector
operations in turn can be compared to yOC via cyclically permuting inputs and an
orientation analysis.

We begin by defining the relevant sector operations: For i 2 Z=.d C 1/Z, define

(5-63) yR1
d;�i

to be the abstract moduli space of discs with d C 1 boundary punctures z1; : : : ; zi ,
zf , ziC1; : : : ; zd arranged in counterclockwise order and interior puncture zout with
asymptotic marker pointing towards the boundary point zf , which is also marked as
“auxiliary”. There is a bijection

(5-64) �i W yR1
d;�i
' yR1

d

given by cyclically permuting labels, inducing a model for the compactification yR1
d;�i

.
However, we will use a different orientation than the one induced by pullback: on a
slice with fixed position of zd and zout, we take the volume form

(5-65) dz1 ^ � � � ^ dzd�1 ^ dzf :

By construction, the induced “forgetful map”

(5-66) � i
f W
yR1

d;�i
!RS1

i;iC1

is an oriented diffeomorphism that extends to a map between compactifications. Note
as before that strictly speaking this map does not forget any information, at least on the
open locus.

Remark 5.11 In the case i D 0, this orientation agrees with the previously chosen
orientation (5-14) on yR1

d
. We previously defined the orientation on yR1

d
in terms of

a different slice of the group action. To compare the forms dz1 ^ � � � ^ dzd�1 ^ dzf

(coming from the slice with fixed zd and zout) and �dz1 ^ � � � ^ dzd (coming from the
slice with fixed zf and zout), note that either orientation is induced by the following
procedure:

� Fixing an orientation on the space of discs as above with fixed position of zout

(but not zf or zd ): we shall fix the canonical orientation dz1 ^ � � � ^ dzd ^ dzf .
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� Fixing a choice of trivializing vector field for the remaining S1–action on this
space of discs with fixed zout: we shall fix S D .�@zf � @z1

� � � � � @zd
/.

� Fixing a convention for contracting orientation forms along slices of the action:
to determine the orientation on a slice of an S1–action, we will contract the
orientation on the original space on the right by the trivializing vector field.

Moreover, this data induces an orientation on the quotient by the S1–action, and also
an oriented isomorphism between the induced orientation on any slice and that of the
quotient. It follows that on the quotient, the orientation �dz1 ^ � � � ^ dzd (from the
slice where zf is fixed) and the orientation dz1 ^ � � � ^ dzd�1 ^ dzf (from the slice
where zd is fixed) agree. We conclude that these two orientations agree. The author
thanks Nick Sheridan for relevant discussions about orientations of moduli spaces.

Choose as a Floer datum for each R1
d;�i

the Floer datum pulled back from yR1
d

via
(5-64); this system of choices is automatically inductively consistent with choices made
on lower strata, inheriting this property from the Floer data on the collection of yR1

d
.

Using this choice, for any d–tuple of Lagrangians L0; : : : ;Ld�1, and asymptotic
conditions Ex D .xd ; : : : ;x1/, with xi 2 �.Li�1;Li mod d /, and yout 2O, we obtain a
moduli space

(5-67) R1
d;�i

.youtI Ex/D yR1
d .youtI .xi�1; : : : ;x1;xd ; : : : ;xi//

of parametrized families of solutions to Floer’s equation,

(5-68)
˚
.S;u/ j S 2 yR1

d ;u W �f .S/!M is such that .du�X ˝˛/0;1 D 0

using the Floer datum for �f .S/
	
;

satisfying asymptotic and boundary conditions as in (5-5) (with the modifications as in
Remarks 5.1 or 5.2 in the Liouville case), as well as its Gromov–Floer compactification

(5-69) R1
d;�i

.youtI Ex/ WD yR1
d .youtI .xi ; : : : ;x1;xd ; : : : ;xiC1//;

whose components of virtual dimension � 1 (at least) are compact manifolds-with-
boundary of the correct dimension, coinciding (exactly in the graded case and mod 2
in the Z=2–graded case) with deg.yout/� nC d �

Pd
jD0 deg.xj /.

Each rigid element u 2R1
d;�i

.youtI Ex/ gives, by (5-65) and [1, Lemma C.4], an isomor-
phism of orientation lines

(5-70) .R1
d;�i

/u W oxd
˝ � � �˝ ox1

! oyout ;
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zout

z1

z2

Š

zout

z1

zf

z2
t

z1

z2

zf

zout

p1

Figure 5: The diffeomorphism between yR1
2;�0
[ yR1

2;�1
and the open dense part

of RS1

2 given by RS1
0;1

2 [RS1
1;2

2 . The former spaces can in turn be compared
to yR1

2
via cyclic permutation of labels.

which defines the joyout jk component of an operation yOCd;�i
, with d inputs in the lines

joxd
jk; : : : ; jox1

jk, up to the following sign twist:

(5-71) yOCd;�i
.Œxd �; : : : ; Œx1�/ WD

X
u2yR1

d;�i
.youtI Ex/ rigid

.�1/|d .yR1
d;�i

/u.Œxd �; : : : ; Œx1�/;

where |d D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.

Lemma 5.12 As chain-level operations ,

(5-72) OCS1

D

X
i

yOCd;�i
:

Proof For each d , there is an embedding of abstract moduli spaces

(5-73)
a

i

yR1
d;�i

`
i �

i
f

���!

a
i

RS1
i;iC1

d
,!RS1

d :

See Figure 5.

By construction, this map is compatible with Floer data (this uses the fact that the Floer
data on RS1

i;iC1 agrees with the data on yR1
d

via the reshuffling map ��i by (5-55)),
and covers all but a codimension-one locus in the target. Since, after perturbation, zero-
dimensional solutions to Floer’s equation can be chosen to come from the complement
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of any codimension-one locus in the source abstract moduli space, we conclude that
the two operations in the lemma, which arise from either side of (5-73), are identical
up to sign. To fix the signs, note that (5-73) is in fact an oriented embedding, and all
the sign twists defining the operations yOCd;�i

are chosen to be compatible with the
sign twist in the operation OCS1

.

Next, because the Floer data used in the constructions are identical, we have that
yOCd;�i

.xd ˝ � � �˝x1/ WD yOCd;�i
.xd ; : : : ;x1/ (recall the abuse of notation xi WD Œxi �)

agrees with yOC.xi˝� � �˝x1˝xd˝� � �˝xiC1/ WD yOC.xi ; : : : ;x1;xd ; : : : ;xiC1/ up to a
sign difference coming from orientations of abstract moduli spaces, cyclically reordering
inputs, and sign twists. The following proposition computes the sign difference, and
hence completes the proof of Proposition 5.9:

Lemma 5.13 There is an equality

(5-74) yOCd;�i
.xd ˝ � � �˝x1/D yOCd .snu.t i.xd ˝ � � �˝x1///;

where snu is the operation (3-20) arising from changing a check term to a hat term with
a sign twist.

Proof It is evident that yOCd;�i
agrees with yOCd ı snu ı t i up to sign, as the Floer data

used in the two constructions are identical. By an inductive argument it suffices to
verify the equalities of signed operations

yOCd;�0
D yOCd ı snu;(5-75)

yOCd;�1
D yOCd;�0

ı t;(5-76)

the remaining sign changes being entirely incremental. For the equality (5-75), we
simply note that the signs appearing in the operations yOCd;�0

.Œxd �; : : : ; Œx1�/ and
yOCd .Œxd �; : : : ; Œx1�/ differ in the following fashions:

� The abstract orientations on the moduli space of domains agree, as in Remark 5.11.

� The difference in sign twists is given by

|d � y?d D

dX
iD1

jxi jC jxd jC d � 1D

� dX
iD1

kxik

�
C 1Cjxd j Dzd

1 Ckxdk:

All together, the parity of difference in signs is zd
1 Ckxdk, which accounts for the

sign in the algebraic operation snu (see (3-20)); this verifies (5-75).
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Next, the sign difference between the two operations in the equality (5-76) is a sum of
three contributions:

� The two orientations of abstract moduli spaces17 from �dz1 ^ � � � ^ dzd to
dz2 ^ � � � ^ dzd ^ dz1 differ by a sign change of parity

d � 1:

� For a given collection of inputs, the change in sign twisting data from |d DPd
iD1.iC1/ � jxi jCjxd jCd �1 to

Pd�1
iD1 .iC1/jxiC1jC .dC1/jx1jCjx1jC

d � 1 D
Pd

iD2 i jxi j C d jx1j C d � 1 (|d for the sequence .x2; : : : ;xd ;x1/)
induces a sign change of parity

dX
iD2

jxi jC jxd jC d jx1j D

dX
iD1

jxi jC jxd jC .d � 1/jx1j

D

dX
iD1

kxikC .d � 1/kx1kCkxdk

Dzd
1 C .d � 1/kx1kCkxdk:

� Finally, the reordering of determinant lines of the inputs induces a sign change
of parity

jx1j �

� dX
iD2

jxi j

�
D kx1k �

� dX
iD2

kxik

�
C

dX
iD2

kxikC .d � 1/kx1kC .d � 1/

D kx1kzd
2 Czd

1 C dkx1kC .d � 1/:

The cumulative sign parity is congruent mod 2 to

kx1kzd
2 Ckx1kCkxdk;

which is precisely the sign appearing in t (see (3-18)). This verifies (5-76).

Proof of Proposition 5.9 Combine Lemmas 5.12 and 5.13; note the definition of Bnu

given in (3-21).

5.4 Compatibility of homology-level BV operators

Before diving into the statement of chain-level equivariance, we prove a homology-level
statement. The theorem below is insufficient for studying, say, equivariant homology
groups, but may be of independent interest.

17On the slice where zf and zout are fixed; see Remark 5.11.
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Theorem 5.14 The homology-level open–closed map ŒOC� intertwines the Hochchild
and symplectic cohomology BV operators; that is ,

(5-77) ŒOC� ı ŒBnu�D Œı1� ı ŒOC�:

Theorem 5.14 is an immediate consequence of the following chain-level statement:

Proposition 5.15 The following diagram homotopy commutes:

(5-78)

CH��n.F ;F/

{OC
��

� � �

�
// CHnu

��n.F ;F/
Bnu
// CHnu

��n�1.F ;F/

OC
��

CF�.M /
ı1

// CF��1.M /

where � is the inclusion onto the left factor , which is a quasi-isomorphism by Lemma 3.2.
More precisely , there exists an operation {OC1 WCH��n.F ;F/!CF��2.M / satisfying

(5-79) .�1/nC1d {OC1
C {OC1b D yOCBnu�� .�1/nı1 {OC:

Proof of Theorem 5.14 Proposition 5.15 implies that Œı1� ı Œ {OC�D ŒOC� ı ŒBnu� ı Œ��,
where � W CH��n.F ;F/! CHnu

��n.F ;F/ is the inclusion of chain complexes. But by
Lemma 3.2, Œ�� is an isomorphism and by Corollary 5.4, Œ {OC�D ŒOC�.

To define {OC1, consider

(5-80) 1
{R1

d ;

the moduli space of discs with d positive boundary marked points z1; : : : ; zd labeled in
counterclockwise order, one interior negative puncture zout equipped with an asymptotic
marker, and one additional interior marked point p1 (without an asymptotic marker),
marked as auxiliary. Also, with respect to the unit disc representative of any element
of this moduli space fixing zd at 1 and zout at 0 on the unit disc, p1 should lie inside
the circle of radius 1

2
, so

(5-81) 0< jp1j<
1
2
:

Using the above representative, one can talk about the angle, or argument of p1

(5-82) �1 WD arg.p1/:

We require that with respect to the above representative:

(5-83) The asymptotic marker on zout points in the direction �1.
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For every representative S 2
1
{R1

d
:

(5-84) Fix a negative cylindrical end around zout not containing p1, compatible with
the direction of the asymptotic marker, or equivalently compatible with the
angle �1.

We orient (5-80) as follows: pick, on a slice of the automorphism action which fixes
the position of zd at 1 and zout at 0, the volume form

(5-85) �r1 dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dr1 ^ d�1:

The compactification of (5-80) is a real blow-up of the ordinary Deligne–Mumford
compactification, in the sense of [34] (see [58] for a first discussion in the context
of Floer theory), reviewed in Section A.1; this is the case k D 1 of the more general
description therein. The result of this discussion is that the codimension-one boundary
of the compactified check moduli space

1
{R1

d
is covered by the images of the natural

inclusions of the following strata:

Rs
� 1
{R1

d�sC1;(5-86)

{R1
d �M1;(5-87)

{RS1

d :(5-88)

The stratum (5-88) describes the locus which jp1j D
1
2

, which is exactly the locus we
defined to be the auxiliary moduli space RS1

d
inducing the operation OCS1

. The strata
(5-86)–(5-87) have manifold-with-corners structure given by standard local gluing maps
using fixed choices of strip-like ends near the boundary. For (5-86) this is standard, and
for (5-87), the local gluing map uses the cylindrical ends (5-84) and (4-33) — in other
words, one rotates the 1–pointed angle cylinder by an amount commensurate to the
angle of the marked point zd on the disk before gluing; see Section A.1, particularly
(A-12). See Figure 6 for a schematic of (5-80) and two out of the three types of strata
(5-87)–(5-88).

We will as usual fix a Floer datum for the BV homotopy, meaning an inductive choice,
for every d � 1, of Floer data for every representative S 2

1
{R1

d
varying smoothly in S ,

which on boundary strata is smoothly equivalent to a product of Floer data inductively
chosen on lower-dimensional moduli spaces. Such a system of choices exist again by
a contractibility argument, and for any such choice, one obtains, for any d–tuple of
Lagrangians L0; : : : ;Ld�1 and asymptotic conditions

(5-89) Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d / and yout 2O;
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zout

zout

zout

zint zint

p1

p1

p1

jzj D 1
2

jp1j !
1
2

jp1j ! 0

zd

zd

zd

Figure 6: A schematic of an element of (5-80) on the left and a schematic of
two of its three types of degenerations on the right, (5-88) (above) and (5-87)
(below). The remaining type of degeneration (5-86), omitted from the figure,
occurs when some boundary marked points coalesce into a disc bubble.

a compactified moduli space

(5-90) 1
{R1

d .yout; Ex/

of maps into M with source an arbitrary element S of the moduli space (5-80),
satisfying Floer’s equation using the Floer datum chosen for the given S as in (5-4)
with asymptotics and boundary conditions as in (5-5), with the usual modifications in
the Liouville case detailed in Remarks 5.1 and 5.2. The virtual dimension of every
component of

1
{R1

d
.yout; Ex/ coincides (mod 2 or exactly depending on whether we are

in a Z=2– or Z–graded setting) with

(5-91) deg.yout/� nC d C 1�

dX
iD1

deg.xi/:
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By Assumption 3.10, for generic choices of Floer data, the Gromov–Floer compactifica-
tion of the components of virtual dimension � 1 of (5-90) are compact manifolds-with-
boundary of expected dimension. For rigid elements u of the moduli spaces (5-90), the
orientations (5-85) and [1, Lemma C.4] induce isomorphisms of orientation lines

(5-92) .1
{R1

d /u W oxd
˝ � � �˝ ox1

! oy :

As usual “counting rigid elements u”, ie summing application of these isomorphisms
over all u, defines the joyout jk component of an operation {OC1, up to a sign twist which
we specify:

(5-93) {OC1.Œxd �; : : : ; Œx1�/ WD
X

u2k {R1
d
.youtI Ex/ rigid

.�1/{?d .k {R1
d /u.Œxd �; : : : ; Œx1�/;

where the sign is given by

(5-94) {?d D deg.xd /C
X

i

i � deg.xi/:

A codimension-one analysis of the moduli spaces (5-90) reveals:

Proposition 5.16 The following equation is satisfied :

(5-95) .�1/nı1 {OCC .�1/nd {OC1
DOCS1

C {OC1b:

Proof The boundary of the one-dimensional components of (5-90) are covered by the
rigid components of the following types of strata:

� Spaces of maps with domain lying on the codimension-one boundary of the
moduli space, ie in (5-86)–(5-88).

� Semistable breakings, namely those of the form

1
{R1

d .y1I Ex/�M.youtIy1/;(5-96)

R1.xIxi/� 1
{R1

d .youtI
zEx/;(5-97)

where zEx denotes the collection of inputs Ex with xi replaced with x.

All together, this implies, up to signs, that

(5-98) .�1/nı1 {OCC .�1/nd {OC1
DOCS1

C {OC1b:

Geometry & Topology, Volume 27 (2023)



3544 Sheel Ganatra

Equation (5-98) is of course a shorthand for saying, for any d and any tuple of d

cyclically composable morphisms xd ; : : : ;x1, that

(5-99) .�1/n
X

i2f0;1g

ıi {OCk�i
d .xd ; : : : ;x1/

DOCS1

d .xd ; : : : ;x1/

C

X
i;s

.�1/z
s
1 {OC1

d�iC1.xd ; : : : ;xsCiC1; �
i.xsCi ; : : : ;xsC1/;xs; : : : ;x1/

C

X
i;j

.�1/]
i
j {OC1

d�i�j

�
�iCjC1.xi ; : : : ;x1;xd ; : : : ;xd�j /;

xd�j�1; : : : ;xiC1

�
:

(Recall the abuse of notation xi WD Œxi �.) Thus, it suffices to verify that the signs
coming from the codimension-one boundary are exactly those appearing in (5-98) — in
particular, that the terms in, for instance, {OC1b appear with the right sign.

Let us recall broadly how the signs are computed. For any operator g defined above,
such as OC, OCS1

, �, d , ı1 etc, we let gut denote the untwisted version of the same
operator, for instance, the operator whose matrix coefficients come from the induced
isomorphism on orientation lines, without any sign twists by the degree of the inputs.
So, for instance, �d .xd ; : : : ;x1/D .�1/

Pd
iD1 i deg.xi /�d

ut.xd ; : : : ;x1/, and so on. The
methods described in [52, Proposition 12.3] and elaborated upon in [1, Section C.3,
Lemma 5.3] and [24, Section B], when applied to the boundary of the one-dimensional
component of the moduli space of maps, {R1

d
.yout; Ex//, imply the signed equality

(5-100) 0D dut {OC1
ut.xd ; : : : ;x1/C .ı1/ut {OCut.xd ; : : : ;x1/�OCS1

ut .xd ; : : : ;x1/

C .�1/fd {OC1b.xd ; : : : ;x1/;
where

(5-101) fd WD
X

i

.i C 1/ deg.xi/C deg.xd /D {?d Czd � d

is an auxiliary sign.

To explain equation (5-100), we note first that the signs appearing in all terms but the
last are simply induced by the boundary orientation on the moduli space of domains.
The sign appearing in the first term also follows from a standard boundary orientation
analysis for Floer cylinders, which we omit (but see eg [52, (12.19-012.20)] for a version
close in spirit). The signs for the first two terms are also exactly as in Lemma 4.11.
Finally, in the last term, the sign .�1/fd {OC1b.xd ˝ � � �˝x1/ (compare [52, (12.25)]
and [24, (B.59)]) appears as a cumulative sum of:
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� The sign twists which turn the untwisted operations {OC1
ut and �s

ut into the usual
operations {OC1 and �s .

� The Koszul sign appearing in the Hochschild differential b.

� The boundary orientation sign appearing in the relevant (untwisted) term of
{OC1b, for instance {OC1

ut.xd ; : : : ;xnCmC1; �
m
ut .xnCm; : : : ;xnC1/;xn; : : : ;x1/,

which itself is as a sum of two different contributions:

(a) The comparison between the boundary (of the chosen) orientation and the
product (of the chosen orientation) on the moduli of domains.

(b) Koszul reordering signs, which measure the signed failure of the method of
orienting the moduli of maps (in terms of orientations of the domain and
orientation lines of inputs and outputs) to be compatible with passing to
boundary strata.

See [52, (12d)] for more details in the case of the A1 structure, and [1, Section C] as
well as [24, Section C] for the case of these computations for the open–closed map. We
note in particular that the forgetful map F1 W 1

{R1
d
! {R1

d
which forgets the point p1 (and

changes the direction of the asymptotic marker to point at zd ) has complex oriented
fibers (in which just the marked point p1 varies). So the boundary analysis of these
“ {OC1 ı b” strata appearing here is identical to the analysis strata appearing in [1; 24]
for the “OC ı b” strata, which is why we have not repeated it here.

Multiplying all terms of (5-100) by .�1/{?dCzd�dC1 and noting that, for instance,
zd � d C 1C n� 2D deg. {OC1.xd ˝ � � �˝x1//, so that

(5-102) .�1/{?dCzd�dC1.ı1/ut {OC1
ut.xd ; : : : ;x1/

D .�1/deg. {OC1.xd ;:::;x1//�n.ı1/ut.�1/{?d {OC1
ut.xd ; : : : ;x1/

D ı1 {OC1.xd ; : : : ;x1/;

and similarly for the d ıOC1 term, it follows that

(5-103) 0D .�1/nı1 {OC.xd ; : : : ;x1/C .�1/nd {OC1.xd ; : : : ;x1/

� {OC1b.xd ; : : : ;x1/� .�1/{?dCzd�dC1OCS1

ut .xd ; : : : ;x1/;

but {?d Czd � d C 1D|d , and hence the last term above is �OCS1

.xd ; : : : ;x1/, as
desired.

Proof of Proposition 5.15 The “sector decomposition” performed in Proposition 5.9
which compares OCS1

to yOCıBnuı�, along with Proposition 5.16, immediately implies
the result.
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5.5 The main construction

We now turn to the definition of the (closed) morphism of S1–complexes, and the proof
of Theorem 1.1 and Corollary 1.5. The required data takes the form

(5-104) fOC D
M
k�0

kŒƒ�=ƒ2˝k
˝CHnu

� .F/! CF�.M /Œn�;

which is equivalent, as recalled in Section 2.1, to defining the collection of mapsfOC D fOCkgk�0, or u–linearly (see Section 2.3) fOC D
P1

kD0 OCkuk , where

(5-105) OCk
D . {OCk

C yOCk/ WDfOCkj1.ƒ; : : : ; ƒ;�/ WCHnu
� .F/!CF�Cn�2k.M /:

(Recall from Section 2.1 that kŒƒ�=ƒ2 is our small model for C��.S
1/, and S1–

complexes are by definition strictly unital A1–modules over kŒƒ�=ƒ2.) By definition,
the case k D 0 is already covered:

(5-106) OC0
D . {OC0

˚ yOC0/D . {OC˚ yOC/DOC:

To handle the general case (k � 0), for each d we will associate operations, for each d ,
to compactifications of three moduli spaces of domains, in the order

k
{R1

d ;(5-107)

kR
S1

d ;(5-108)

k
yR1

d :(5-109)

The moduli space (5-108) will induce an auxiliary operation useful for the proof,
whereas (5-107) and (5-109) will lead to the desired operations. For k D 0, these
moduli spaces are simply {R1

d
, RS1

d
and yR1

d
as defined earlier, and the k D 1 case of

(5-107) was defined in (5-80). Inductively, we will construct and study operations
from (5-107) and (5-108) simultaneously, and then finally construct (5-109). Using
these moduli spaces, we will construct the maps {OCk and yOCk , as well as an auxiliary
operation OCS1;k (which we compare to yOCk�1 ıBnu in Proposition 5.20 below), and
then prove:

Proposition 5.17 The following equations hold , for each k � 0:

.�1/n
kX

i�0

ıi {OCk�i
D yOCk�1Bnu

C {OCkb;(5-110)

.�1/n
kX

i�0

ıi yOCk�i
D yOCkb0C {OCk.1� t/:(5-111)
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All at once , writing

OCk
D . {OCk

C yOCk/; fOC D
1X

iD0

OCiui ; ıeq D

1X
jD0

ıCF
j uj ; beq D bnu

CuBnu;

as in Section 2.3, we have that

(5-112) .�1/nıeq ıfOC D fOC ı beq:

This will also directly imply our main theorems, as spelled out at the end of this
subsection.

The space (5-107) is the moduli space of discs with d positive boundary marked
points z1; : : : ; zd labeled in counterclockwise order, one interior negative puncture zout

equipped with an asymptotic marker, and k additional interior marked points p1; : : : ;pk

(without asymptotic markers), marked as auxiliary. Also, on the unit disc representative
of any element of this moduli space which fixes zd at 1 and zout at 0, the pi should be
strictly radially ordered with norms in

�
0; 1

2

�
; that is,

(5-113) 0< jp1j< � � �< jpk j<
1
2
:

Using the above representative, one can talk about the angle, or argument, of each
auxiliary interior marked point,

(5-114) �i WD arg.pi/:

We require that with respect to the above representative:

(5-115) The asymptotic marker on zout points in the direction �1 (or towards zd if
k D 0).

(Equivalently one could define �kC1 D 0, so that �1 is always defined.) See Figure 7
for a depiction. For every representative S 2 k

{R1
d

:

(5-116) Fix a negative cylindrical end around zout not containing any pi , compatible
with the direction of the asymptotic marker, or equivalently compatible with
the angle �1.

The second moduli space (5-108) is the moduli space of discs with d positive boundary
marked points z1; : : : ; zd labeled in counterclockwise order, 1 interior negative puncture
zout equipped with an asymptotic marker, and kC 1 additional interior marked points
p1; : : : ;pk ;pkC1 (without asymptotic markers), marked as auxiliary. With respect to
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z1

z2

z3

z4

z5

p1

p2

p3

zout

Figure 7: A representative of an element of the moduli space
3
{R1

5
.

the unit disc representative of any element this moduli space fixing zd at 1 and zout at 0,
the pi should again be strictly radially ordered, this time with norms lying in

�
0; 1

2

�
and with pkC1 lying on the circle of radius 1

2
,

(5-117) 0< jp1j< � � �< jpk j< jpkC1j D
1
2
:

The asymptotic marker on zout for this representative again satisfies condition (5-115).
Abstractly we have that kRS1

d
Š�k

{R1
d
�S1, where the S1 parameter is given by the

position of pkC1. See Figure 8 for a depiction of
k�1
{RS1

d
.

The compactification of (5-107) is a real blow-up of the ordinary Deligne–Mumford
compactification, in the sense of [34] (see [58] for a first discussion in the context of
Floer theory), reviewed in more detail in Section A.1. The result of the discussion there
is that the codimension-one boundary of the compactified check moduli space

k
{R1

d
is

jzj D 1
2

p1

p2

pk�1
pk

zd
jpk j D

1
2

zout

Figure 8: A representative of an element of the moduli space
k�1
{RS1

d
, which

also arises as the boundary stratum (5-120) of
k
{R1

d
.
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zout

p1

p2

piC1

pi

pk

zd

jzj D 1
2

jpi j D jpiC1j

Figure 9: A representative of an element of the stratum (5-121).

covered by the images of the natural inclusions of the strata

Rs
� k
{R1

d�sC1;(5-118)

s
{R1

d �Mk�s;(5-119)

k�1
{RS1

d ;(5-120)

i;iC1
k
{R1

d :(5-121)

The strata (5-120)–(5-121), in which jpk j D
1
2

(Figure 8) and jpi j D jpiC1j (Figure 9),
respectively, describe the boundary loci of the ordering condition (5-113) and hence
come equipped with a natural manifold-with-corners structure. The strata (5-118)–
(5-119) have manifold-with-corners structure given by standard local gluing maps using
fixed choices of strip-like ends near the boundary. For (5-118), depicted in Figure 10,
this is standard, and for (5-119), depicted in Figure 11, the local gluing map uses the
cylindrical ends (5-116) and (4-33) — in other words, one rotates the .k�s/–pointed
angle cylinder by an amount commensurate to the angle of the first marked point
pk�sC1 on the disk before gluing — as also described in Section A.1.

Associated to the stratum (5-121) where pi and piC1 have coincident magnitudes,
there is a forgetful map

(5-122) {�i W
i;iC1
k
{R1

d ! k�1
{R1

d

which simply forgets the point piC1. Since the norm of piC1 and pi agree on this
locus, this amounts to forgetting the argument of piC1 (in particular, the fibers of {�i

are one-dimensional).

The compactification of the S1 moduli space (5-108) can be modeled abstractly by

k
{R1

d
�S1. However, it is again preferable to give an explicit description of the boundary
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jzj D 1
2

p1

p2

pk

zd

zout

Figure 10: A representative of an element of the boundary stratum (5-118) in
which a disc bubble forms (such a disc bubble is allowed to include the “first”
point — zd by our convention — but need not, and does not in the figure).

strata, which are covered in codimension one by the strata

Rs
� kR

S1

d�sC1;(5-123)

sRS1

d �Mk�s;(5-124)
i;iC1
k

RS1

d :(5-125)

zint

zout

p1

pk�s

pk�sC1

pk

jzj D 1
2

zint

zd

Figure 11: A representative of an element of the boundary stratum (5-119).
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Here, (5-123) and (5-124) are just versions of the degenerations (5-118) and (5-119),
in which a collection of boundary points bubbles off, or a collection of auxiliary points
converges to zout and bubbles off; the fact that the latter occurs in codimension one is
part of the “real blow-up phenomenon” already discussed. The stratum (5-125) is the
locus where jpi j D jpiC1j, for i � k; so when i D k, jpk j D jpkC1j D

1
2

.

As in (5-122), on the stratum (5-125), where pi and piC1 have coincident magnitudes,
define the map

(5-126) �S1

i W
i;iC1
k

RS1

d ! k�1R
S1

d

to be the one forgetting the point piC1. As before, this map has one-dimensional fibers.

For an element S 2
k
RS1

d
, we say that pkC1 points at a boundary point zi if, for

any unit disc representative of S with zout at the origin, the ray from zout to pkC1

intersects zi . The locus where pkC1 points at zi is denoted by

(5-127) kR
S1

i

d
:

Similarly, we say that pkC1 points between zi and ziC1 (modulo d , so this includes
the case of pointing between zd and z1) if for such a representative, the ray from zout to
pkC1 intersects the portion of @S between zi and ziC1. The locus where pkC1 points
between zi and ziC1 is denoted by

(5-128) kR
S1

i;iC1

d
:

As before in (5-52), there is a free and properly discontinuous Zd –action

(5-129) � W k.R1
d
/S

1
! k.R1

d
/S

1

which cyclically permutes the labels of the boundary marked points; as before, � changes
the label zi to ziC1 for i < d , and zd to z1; compare Lemma 5.10.

Finally, we come to the third moduli space (5-109), the moduli space of discs with
d C 1 positive boundary marked points z1; : : : ; zd ; zf labeled in counterclockwise
order, one interior negative puncture zout equipped with an asymptotic marker, and k

additional interior marked points p1; : : : ;pk (without an asymptotic marker), marked as
auxiliary, satisfying a strict radial ordering condition as before: for any representative
element with zf fixed at 1 and zout at 0, we require (5-113) to hold, as well as condition
(5-115). The boundary marked point zf is also marked as auxiliary, but apart from this
designation we see, identifying zf with zdC1, that

k
yR1

d
Š

k
{R1

dC1
. See Figure 12.
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z1

z2

z3

z4

zf

p1

p2

p3

p4

zout

Figure 12: A representative of an element of the moduli space
4
yR1

4
.

In codimension one, the compactification
k
yR1

d
has boundary covered by inclusions of

the strata

Rs
� k
yR1

d�sC1;(5-130)

Rm;fk �d�mC1 k
{R1

d�mC1; where 1� k �m;(5-131)

s
yR1

d �Mk�s;(5-132)

k�1
yRS1

d ;(5-133)

i;iC1
k
yR1

d :(5-134)

Once more, on strata (5-134) where pi and piC1 have coincident magnitudes, depicted
in Figure 13, left, define the map

(5-135) y�i W
i;iC1
k
yR1

d ! k�1
yR1

d

to be the one forgetting the point piC1. Again, this map has one-dimensional fibers.
On the stratum (5-133), which is the locus where jpk j D

1
2

(Figure 13, right), there is
also a map of interest

(5-136) y�boundary W k�1
yRS1

d ! k�1R
S1

d

which forgets the position of the auxiliary boundary point zf . The stratum (5-132),
depicted in Figure 14, is the locus where some subcollection of interior auxiliary points
p1; : : : ;pk�s tend to zero and split off an angle-decorated cylinder (in the manner
again described in Section A.1 for (5-119)). The strata (5-130) and (5-131), depicted
in Figure 15 on the left and right, respectively, are the loci where a disc bubble forms
involving some boundary marked points (not including or including zf , respectively).
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jzj D 1
2

p1

p2

pi

piC1
pk

zf
jpi j D jpiC1j

zout

jzj D 1
2

zout

zf
jpk j D

1
2

pk

p1

p2

pk�1

Figure 13: A representative of an element of the stratum (5-134), left, and a
representative of an element of the boundary stratum (5-133), right.

Denote by
k
R1;free

d
WD

k
RS1

d;1

d
the sector of the moduli space

k
RS1

d
where pkC1 points

between zd and z1. The auxiliary-rescaling map

(5-137) �f W k
yR1

d ! kR
1;free
d

(our replacement of the “forgetful map”) can be described as follows: given a repre-
sentative S in

k
yR1

d
with zout fixed at the origin, there is a unique point p with jpj D 1

2

between zout and zf . The element �f .S/ is the element of
k
RS1

d
obtained from S

by setting pkC1 equal to this point p and deleting zf . Of course, zf is not actually
forgotten, because it is determined by the position of pkC1. In particular, (5-137) is a
diffeomorphism. We extend this map to a map x�f from the compactification

k
yR1

d
as

in Section 5.2, by putting the auxiliary point zf back in, eliminating any component
which is not main or secondary which has only one (nonauxiliary) boundary marked
point q, and by labeling the positive marked point below this component by q.

zint

p1

pk�s

zint

pk�sC1

jzj D 1
2

pk

zout
zf

Figure 14: A representative of an element of the boundary stratum (5-132).
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jzj D 1
2

p1

p2

pk
zout

zf

jzj D 1
2

p1

p2

pk
zout

zf

Figure 15: Left: a representative of an element of the boundary stratum
(5-130) in which a disc bubble forms not including the auxiliary point zf .
Right: a representative of an element of the boundary stratum (5-131) in
which a disc bubble forms including the auxiliary point zf .

We orient the moduli spaces (5-107)–(5-109) as follows: pick, on a slice of the
automorphism action which fixes the position of zd at 1 and zout at 0, the volume
forms

� r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k ;(5-138)

r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ d�kC1 ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k ;(5-139)

r1 � � � rk dz1 ^ dz2 ^ � � � ^ dzd�1 ^ dzf ^ dr1 ^ d�1 ^ � � � ^ drk ^ d�k :(5-140)

Above, .ri ; �i/ denote the polar coordinate positions of the point pi . (We could
equivalently use Cartesian coordinates .xi ;yi/ and substitute dxi ^ dyi for every
instance of ri dri ^ d�i , but polar coordinates are straightforwardly compatible with
the boundary stratum where jpk j D

1
2

.)

A Floer datum on a stable disc S in
k
{R1

d
or a stable disc S in kRS1

d
is simply a Floer

datum for S in the sense of Section 5.1. A Floer datum on a stable disc S 2
k
yR1

d
is a

Floer datum for x�f .S/.
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Again we will make a system of choices of Floer data for the above moduli spaces. A
Floer datum for the cyclic open–closed map is an inductive sequence of choices, for
every k � 0 and d � 1, of Floer data for every representative

S0 2 k
{R1

d ; S1 2 kRS1

d and S2 2 k
yR1

d ;

varying smoothly in S0, S1 and S2, which satisfies the usual consistency condition:
the choice of Floer datum on any boundary stratum should agree with the previously
inductively chosen datum along any boundary stratum for which (it is possibly a product
of moduli spaces for) we have already inductively picked data. Moreover, this choice
should satisfy a series of additional requirements.

First, for S0 2 k
{R1

d
:

(5-141) At a boundary stratum of the form (5-121), the Floer datum for S0 is
equivalent to the one pulled back from k�1

{R1
d

via the forgetful map {�i .

Next, for S1 2 k
RS1

d
,

On the codimension-one loci
k
RS1

i

d
, where pkC1 points at zi , the Floer

datum should agree with the pullback by �i of the existing Floer datum for
the open–closed map.

(5-142)

The Floer datum should be �–equivariant, where � is the map (5-129).(5-143)

At a boundary stratum of the form (5-125), the Floer datum for S1 is
conformally equivalent to the one pulled back from

k�1
RS1

d
via the forgetful

map �S1

i .

(5-144)

Finally, for S2 2 k
yR1

d
:

The choice of Floer datum on strata containing Rd;fi components should
be constant along fibers of the forgetful map Rd;fi !Rd�1.

(5-145)

The Floer datum on the main component .S2/0 of x�f .S2/ should coincide
with the Floer datum chosen on .S2/0 2 k

R1;free
d
�

k
RS1

d
.

(5-146)

At a boundary stratum of the form (5-133), the Floer datum on the main
component of S2 is conformally equivalent to the one pulled back from

k
RS1

d
via the forgetful map y�boundary.

(5-147)

At a boundary stratum of the form (5-134), the Floer datum for S2 is
conformally equivalent to the one pulled back from k�1

yR1
d

via the forgetful
map y�i .

(5-148)
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The above system of requirements can be split into three broad categories: the first
type concerns the compatibility with forgetful maps of Floer data along the lower strata
which were not previously constrained, the second type concerns the equivariance
(under a free properly discontinuous action) of the Floer data on

k
RS1

d
as well as the

relationship between the Floer datum chosen here and the ones chosen on {R1
d

and
k
yR1

d
.

Proposition 5.18 A Floer datum for the cyclic open–closed map exists.

Proof Since the choices of Floer data at each stage are contractible, this follows from
the straightforward verification that, for a suitably chosen inductive order on strata,
the conditions satisfied by the Floer data at various strata do not contradict each other.
We use the following inductive order: first, say we have chosen a Floer datum for
the A1 structure as in Section 3.3, along with a BV compatible Floer datum for the
nonunital open–closed map following Section 5.3. In particular, we have chosen Floer
data for the moduli spaces Rd;fi (per Section A.2), for

0
{Rd , for the auxiliary moduli

space
0
RS1

d
, and (using the conditions above) we have induced a particular choice of

Floer datum on
0
yRd . Next, inductively assuming that we have made all choices at level

k�1 with k > 0, we first choose Floer data for
k
{Rd for each d , then kRS1

d
for each d

(by pulling back a choice of Floer datum on the quotient by � in order to satisfy the
equivariance condition), and finally note that a choice is fixed for k

yRd by the above
constraints.

Fixing a Floer datum for the cyclic open–closed map, we obtain, for any d–tuple of
Lagrangians L0; : : : ;Ld�1, and asymptotic conditions

(5-149)
�
Ex D .xd ; : : : ;x1/ with xi 2 �.Li�1;Li mod d /;

yout 2O;
Gromov–Floer compactified moduli spaces

k
{R1

d .yout; Ex/;(5-150)

kR
S1

d .yout; Ex/;(5-151)

k
yR1

d .yout; Ex/;(5-152)

of maps into M from an arbitrary element S of the moduli spaces (5-107), (5-108) and
(5-109) respectively (or rather from �f .S/ in the case of (5-109)) satisfying Floer’s
equation using the Floer datum chosen for the given S as in (5-4), with asymptotics
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and Lagrangian boundary conditions as in (5-5), again with the modifications as in
Remarks 5.1 or 5.2 for compact or wrapped Fukaya categories of Liouville manifolds.
The virtual dimension of each component of these moduli spaces coincides (mod 2 or
exactly, depending on whether we are Z=2– or Z–graded) with, respectively,

deg.yout/� nC d � 1�

dX
iD1

deg.xi/C 2k for k
{R1

d .yout; Ex/;(5-153)

deg.yout/� nC d �

dX
iD1

deg.xi/C 2k for kR
S1

d .yout; Ex/;(5-154)

deg.yout/� nC d �

dX
iD1

deg.xi/C 2k for k
yR1

d .yout; Ex/:(5-155)

By Assumption 3.10, for generic choices of Floer data, the Gromov–Floer compactifi-
cations of the components of virtual dimension � 1 of (5-150)–(5-152) are compact
manifolds-with-boundary of the expected dimension. For rigid elements u in the moduli
spaces (5-150)–(5-152), which occur for asymptotics .y; Ex/ satisfying

(5-153) D 0; (5-154) D 0 or (5-155) D 0;

respectively, the orientations (5-138)–(5-140) and [1, Lemma C.4] induce isomor-
phisms of orientation lines

.k
{R1

d /u W oxd
˝ � � �˝ ox1

! oy ;(5-156)

.kR
S1

d /u W oxd
˝ � � �˝ ox1

! oy ;(5-157)

.k
yR1

d /u W oxd
˝ � � �˝ ox1

! oy :(5-158)

Summing the application of these isomorphisms over all rigid u (or “counting rigid
elements”) defines the joyout jk component of three families of operations {OCk , OCS1;k

and yOCk , up to a sign twist specified below. Define

{OCk.Œxd �; : : : ; Œx1�/ WD
X

u2
k
{R1

d
.youtI Ex/ rigid

.�1/{?d .k {R1
d /u.Œxd �; : : : ; Œx1�/;(5-159)

OCS1;k.Œxd �; : : : ; Œx1�/ WD
X

u2
k
RS1

d
.youtI Ex/ rigid

.�1/?
S1

d .kR
S1

d /u.Œxd �; : : : ; Œx1�/;(5-160)

yOCk.Œxd �; : : : ; Œx1�/ WD
X

u2
k
yR1

d
.youtI Ex/ rigid

.�1/y?d .k
yR1

d /u.Œxd �; : : : ; Œx1�/;(5-161)
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where the signs are given by

{?d D deg.xd /C
X

i

i � deg.xi/;(5-162)

?S1

d D|d

dX
iD1

.i C 1/ � deg.xi/C deg.xd /C d � 1D {?d Czd � 1;(5-163)

y?d D

X
i

i � deg.xi/:(5-164)

A codimension-one analysis of the moduli spaces (5-150) and (5-152) reveals:

Proposition 5.19 The following equations hold for each k � 0:

(� 1/n
kX

iD0

ıi {OCk�i
DOCS1;k�1

C {OCkb;(5-165)

(� 1/n
kX

iD0

ıi yOCk�i
D yOCkb0C {OCk.1� t/:(5-166)

Proof The boundary of the one-dimensional components of (5-150) are covered by
the (rigid components of) the following types of strata:

� Spaces of maps with domain lying on the codimension-one boundary of the
moduli space, ie in (5-118)–(5-121).

� Semistable breakings, namely those of the form

k
{R1

d .y1I Ex/�M.youtIy1/;(5-167)

R1.xIxi/� k
{R1

d .youtI
zEx/;(5-168)

where again zEx denotes the collection of inputs Ex with xi replaced with x.

All together, this implies, up to sign, that

(5-169) .�1/n
kX

iD0

ıi {OCk�i
DOCS1;k�1

C {OCkbC

k�1X
iD1

{OCk;i;iC1;

where {OCk;i;iC1 is an operation corresponding with some sign twist to (5-121). Of
course equation (5-169) is a shorthand for saying, for a tuple of d cyclically composable
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morphisms xd ; : : : ;x1 (recalling the abuse of notation xi WD Œxi �), that

(5-170) .�1/n
kX

iD0

ıi {OCk�i
d .xd ; : : : ;x1/

DOCS1;k�1
d

.xd ; : : : ;x1/C

k�1X
iD1

{OCk;i;iC1
d

.xd ; : : : ;x1/

C

X
i;s

.�1/z
s
1 {OCk

d�iC1.xd ; : : : ;xsCiC1;�
i.xsCi ; : : : ;xsC1/;xs; : : : ;x1/

C

X
i;j

.�1/]
i
j {OCk.�iCjC1.xi ; : : : ;x1;xd ; : : : ;xd�j /;xd�j�1; : : : ;xiC1/:

We first note that in fact the operation {OCk;i;iC1 D
P

d
{OCk;i;iC1

d is zero, because
by condition (5-141), the Floer datum chosen for elements S in (5-121) are constant
along the one-dimensional fibers of {�i . Hence, elements of the moduli space with
source in (5-121) are never rigid; see Lemma 4.11 for an analogous and more detailed
explanation.

Thus, it suffices to verify that the signs coming from the codimension-one boundary
are exactly those appearing in (5-169). We can safely ignore studying any signs for
the vanishing operations such as yOCk;i;iC1. The remaining sign analysis is exactly
as in Proposition 5.16; more precisely, note that the forgetful map {Fk W k

{R1
d
!

1
{R1

d

which forgets p1; : : : ;pk�1 has complex oriented fibers, and in particular (since the
marked points pi contribute complex domain orientations and do not introduce any
new orientation lines) the sign computations sketched in Proposition 5.16 carry over
for any stratum whose domain is pulled back from a boundary stratum of

1
{R1

d
; in turn,

as described in Proposition 5.16, the sign computations for
1
{R1

d
largely reduce to those

for
0
{R1

d
. This verifies (5-169).

Similarly, for the hat moduli space, an analysis of the boundary of one-dimensional
moduli spaces of maps tells us, up to sign verification,

(5-171) .�1/n
kX

iD0

ıi yOCk�i
D yOCkb0C {OCk.1� t/C yOCk;k;kC1

C

k�1X
iD1

yOCk;i;iC1;

where yOCk;k;kC1 is an operation corresponding with some sign twist to (5-133), and
yOCk;i;iC1 is an operation corresponding with some sign twist to (5-134). The conditions

(5-147)–(5-148) similarly imply that yOCk;k;kC1 and yOCk;i;iC1 are zero, so it is not
necessary to even establish what the signs for these terms are.
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To verify signs for (5-171), we apply the principle discussed in the proof of Lemma 5.8,
in which by treating the auxiliary boundary marked point zf as possessing a “formal
unit element asymptotic constraint eC”, therefore viewing yOCk.xd ˝ � � � ˝ x1/ WD

yOCk.xd ; : : : ;x1/ formally as yOCk.eC˝xd ˝ � � �˝x1/, the signs for (5-171) applied
to strings .xd˝� � �˝x1/ of length d follow from the sign computations for {OC applied
to strings .eC ˝ xd ˝ � � � ˝ x1/ of length d C 1. This analysis applies to the term
yOCk;k;kC1 as well, which is the hat version of OCS1;k ; however, the former operation

happens to be zero because extra symmetries imply the moduli space controlling this
operation is never rigid.

Next, by decomposing the moduli space
k
RS1

d
into sectors, we can write the auxiliary

operation OCS1;j in terms of yOCj and Connes’ B operator.

Proposition 5.20 As chain-level operations ,

(5-172) OCS1;k
D yOCk

ıBnu:

Proof The proof directly emulates Proposition 5.9, and as such we will give fewer
details. We begin by defining, for i 2 Z=dZ, operations

(5-173) yOCk
d;�i

associated to various “sectors” of the kC1st marked point pkC1 of
k
RS1

d
. Once more,

to gain better control of the geometry of these sectors in the compactification (when the
sector size can shrink to zero), we pass to an alternative model for the compactification.
Define

(5-174) kR
1
d;�i

to be the abstract moduli space of discs with d C 1 boundary punctures, z1; : : : ; zi , zf ,
ziC1; : : : ; zd arranged in counterclockwise order, one interior negative puncture zout

with asymptotic marker, and k additional interior auxiliary marked points p1; : : : ;pk

which are strictly radially ordered with norms in
�
0; 1

2

�
for a representative fixing z0

at 1 and zout at 0, so

(5-175) 0< jp1j< � � �< jpk j<
1
2
:

Moreover, as before:

(5-176) The asymptotic marker on zout points in the direction �1 (or towards zf if
k D 0).
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There is a bijection

(5-177) �i W kR
1
d;�i
! k
yR1

d

given by cyclically permuting boundary labels, and in particular we also have an
auxiliary-rescaling map, as in (5-137),

(5-178) kR
1
d;�i
! kR

S1
i;iC1

d
;

which, for a representative with jzoutj D 0, adds a point pkC1 on the line between
zout and zf with jpkC1j D

1
2

and deletes zf . We choose orientations on
k
R1

d;�i
to be

compatible with (5-178); more concretely, for a slice fixing the positions of zout and zd ,
consider the top form

(5-179) r1 � � � rk dz1^dz2^ � � �^dzd�1^dzd ^dzf ^dr1^d�1^ � � �^drk ^d�k :

The compactification
k
R1

d;�i
is inherited from the identification (5-177); the salient

point is that we treat bubbled-off boundary strata containing the point zf as coming
from Rd;fi , the moduli space of discs with i th marked point forgotten (where the i th

marked point is zf ), constructed in Section A.2.

We choose as a Floer datum for
k
R1

d;�i
the pulled-back Floer datum from (5-177); it

automatically then exists and is universal and consistent as desired. Moreover we have
chosen orientations as in the case k D 0 so that the auxiliary rescaling map (5-178) is
an oriented diffeomorphism extending to a map between compactifications.

Thus, for a given a Lagrangian labeling fL0; : : : ;Ld�1g and compatible asymptotics
fx1; : : : ;xd Iyoutg we obtain a moduli space of maps satisfying Floer’s equation with
the chosen boundary and asymptotics,

(5-180) kR
1
d;�i

.youtI Ex/ WD k
yR1

d .youtIxi�1; : : : ;x1;xd ; : : : ;xi/;

which is (for components of virtual dimension � 1) a manifold of dimension equal to
the virtual dimension of the right-hand side, namely

deg.yout/� nC d �

dX
jD1

deg.xj /C 2k;

with Z–gradings or mod 2 if working with Z=2–gradings. The isomorphisms of
orientation lines

(5-181) .kR
1
d;�i

/u W oxd
˝ � � �˝ ox1

! oyout
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induced by elements u of the zero-dimensional components of (5-180) define the
joyout jk component of the operation yOCk

d;�i
, up to the sign twist

(5-182) yOCk
d;�i

.Œxd �; : : : ; Œx1�/ WD
X

u2k yR1
d;�i

.youtI Ex/ rigid

.�1/y?d .kR
1
d;�i

/u.Œxd �; : : : ; Œx1�/;

where ?S1

d
D
Pd

iD1.i C 1/ � deg.xi/C deg.xd /C d � 1.

Now, exactly as in Lemma 5.12, there is a chain-level equality of signed operations

(5-183) OCS1;k
d
D

d�1X
iD0

yOCk
d;�i

:

We recall the geometric statement underlying this: the point is that by construction
there is an oriented embedding

(5-184)
a

i

kR
1
d;�i

`
i �

i
f

���!

a
i

kR
S1

i;iC1

d
,! kRS1

d ;

compatible with Floer data, covering all but a codimension-one locus in the target, and
moreover all the sign twists defining the operations OCk

d;�i
are chosen to be compatible

with the sign twist in the operation OCS1;k — this uses the fact that the Floer data on

k
RS1

i;iC1 agrees with the data on k
yR1

d
via the cyclic permutation map ��i by (5-55).

After perturbation, zero-dimensional solutions to Floer’s equation can be chosen to
come from the complement of any codimension-one locus in the source abstract moduli
space, implying the equality (5-183).

Finally, all that remains is a sign analysis, whose conclusion is that

(5-185) yOCk
d;�i
D yOCk

d ı snu
ı t i ;

where snu is the operation arising from changing a check term to a hat term with a
sign twist (3-20). (The equality up to comparing signs is immediate, as the operations
are constructed with identical Floer data and hence involve counts of identical moduli
spaces.) The details of this sign comparison are exactly the same as in Lemma 5.13,
including with signs, since when orienting the moduli of maps, the additional marked
points p1; : : :pk only contribute complex orientations to the moduli spaces of domains
(and no additional orientation line terms).

Proof of Proposition 5.17 This is an immediate corollary of the previous two propo-
sitions.

We now collect all of this information to finish the proof of our main result.
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Proof of Theorem 1.1 The premorphism fOC 2Rhomn
S1.CHnu

� .F/;CF�.M //, written
u–linearly as

P
i OCkuk , where the OCk D {OCk ˚ yOCk are as constructed above,

satisfies @fOC D 0 by Proposition 5.17. Hence fOC is closed, or an S1–complex homo-
morphism, also known as an A1 C��.S

1/–module homomorphism; see Section 2.1.
Note that ŒOC0� D ŒOC� D Œ {OC�, where the first equality holds by definition and the
second holds by Corollary 5.4. Hence fOC is an enhancement of {OC, as defined in
Section 2.1.

Proof of Corollary 1.5 This is an immediate consequence of Theorem 1.1 and the
induced homotopy-invariance properties for equivariant homology groups discussed in
Section 2, particularly Corollary 2.18 and Proposition 2.19.

5.6 Variants of the cyclic open–closed map

5.6.1 Using singular (pseudo)cycles instead of Morse cycles Let M be Liouville or
compact and admissible (in which case by our convention M DM and @M D∅),18 and
let us consider the version of fOC with target the relative cohomology H�.M ; @M / as
in Section 4.1.2. Instead of using a C 2–small Hamiltonian to define the Floer complex
computing H�Cn.M ; @M / (which we only did for simultaneous compatibility with
the symplectic cohomology case), we can pass to a geometric cycle model for the
group, and then build a version of the map fOC with such a target, which simplifies
many of the constructions in the previous section, in the sense that the codimension-one
boundary strata of moduli spaces, and hence the equations satisfied by fOC, are strictly
a subset of the terms appearing above. As such, it will be sufficient to fix some notation
for the relevant moduli spaces, and state the relevant simplified results.

We let

k
{P1

d ;(5-186)

kP
S1

d ;(5-187)

k
yP1

d(5-188)

denote copies of the abstract moduli spaces (5-107)– (5-109), where the interior puncture
zout is filled in and replaced by a marked point xzout, without any asymptotic marker.
The compactifications of these moduli spaces are exactly as before, except that the

18Technically we should write QH�.M / in the latter case, but additively QH�.M / D H�.M /, and
correspondingly no sphere bubbling occurs in the moduli spaces we define here, so there is no difference
for the purposes of this discussion.
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auxiliary points p1; : : : ;pk are now allowed to coincide with xzout, without breaking off
an angle-decorated cylinder or element of Mr (in the language of Section 4.3). In other
words, the real blow-up of Deligne–Mumford compactifications at zout described in
Section A.1, which was responsible for the boundary strata containing Mr factors, no
longer occurs, but all other degenerations do occur. Correspondingly the codimension-
one boundaries of compactified moduli spaces have all of the strata as before except
for strata containing the Mr factors.

Inductively choose smoothly varying families Floer data as before on these moduli
spaces of domains, satisfying all of the requirements and consistency conditions as
before, except for any consistency conditions involving Mr moduli spaces, which no
longer occur on the boundary. For a basis ˇ1; : : : ; ˇs of smooth (pseudo)cycles in
homology H�.M / whose Poincaré duals Œˇ_i � generate the cohomology H�.M ; @M /,
one obtains moduli spaces

k
{P1

d .ˇi I Ex/;(5-189)

kP
S1

d .ˇi ; Ex/;(5-190)

k
yP1

d .ˇi ; Ex/(5-191)

of moduli spaces of maps into M with source an arbitrary element of the relevant
domain moduli space, satisfying Floer’s equation as before, with Lagrangian boundary
and asymptotics Ex as before, with the additional point constraint that xzout lie on the
cycle ˇi . As before, standard methods ensure that zero- and one-dimensional moduli
spaces are (for generic choices of perturbation data and/or ˇi) transversely cut-out
manifolds of the “right” dimension and boundary, which is all that we need.

Then, define the coefficient of Œˇ_i � 2 H�.M ; @M / in {OCk.xd ˝ � � � ˝ x1/ to be
given by signed counts (with the same sign twists as before) of the moduli spaces
(5-189); similarly for yOCk and OCS1;k using the moduli spaces (5-191) and (5-190).
A simplification of the arguments already given (in which the ık operations no longer
occur, but every other part of the argument carries through) implies:

Proposition 5.21 The premorphism

fOC D
1X

iD0

OCkuk
2 Rhomn

S1.CHnu
� .F ;F/;H�.M ; @M //

satisfies

(5-192) fOC ı beq D 0;
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where beq D bnuC uBnu. In other words , fOC is a homomorphism of S1–complexes
between CHnu

� .F ;F/ with its strict S1–action and H�.M ; @M / with its trivial S1–
action.

As usual this model of fOC again induces maps fOCC=�=1 between homotopy orbit
complexes, homotopy fixed-point complexes etc; note that the relevant equivariant
homology chain complexes are particularly simple for the latter H�.M ; @M /, seeing
as there is no differential and trivial circle action; for instance,

H�.M ; @M /hS1 D
�
H�.M ; @M /..u//=uH�.M ; @M /ŒŒu��; ıeq D 0

�
:

5.6.2 Compact Lagrangians in noncompact manifolds Now let us explicitly restrict
to the case of M a Liouville manifold, and denote by F �W the full subcategory
consisting of a finite collection of compact exact Lagrangian branes contained in the
compact region M . By Poincaré duality we may think of the map OC (and its cyclic
analogue, fOC) with target H�.M ; @M / as a pairing CHnu

� .F ;F/˝C �.M /! kŒn�.
In this case, there is a nontrivial refinement of this pairing to

(5-193) OCcpct W CH�.F/˝ SC�.M /! kŒ�n�;

where SC�.M / is the symplectic cohomology cochain complex.

Remark 5.22 The refinement (5-193) relies on extra flexibility in Floer theory for
compact Lagrangians compared to noncompact Lagrangians (compare Remarks 3.16
and 3.17), first alluded to in this form in [54]. This extra flexibility allows us to define
operations without outputs — and in particular study a version of the open–closed
map where the interior marked point and boundary marked points are all inputs — for
instance by Poincaré dually treating some boundary inputs as outputs with “negative
weight”.

One way to implement such operations, using the type of Floer data discussed in
Remark 3.17, is by allowing the subclosed one-form ˛S used in Floer-theoretic pertur-
bations to have complete freedom along boundary conditions corresponding to compact
Lagrangians; in contrast, along possibly noncompact Lagrangian boundary conditions,
˛S is required to vanish in order to appeal to the integrated maximum principle. In
particular, if we allow ˛S to be nonvanishing along boundary components, Stokes’
theorem no longer implies that ˛S being subclosed implies that the total “output”
weights must be greater than the total “input” weights.
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Remark 5.23 The existence of a map SC�.M / ! CH�.F/_Œ�n� is well known.
Namely, categories C with a weak proper Calabi–Yau structure19 of dimension n come
equipped with isomorphisms between the dual of Hochschild chains and Hochschild
cochains CH�.C/_Œ�n�' CH�.C/, and the existence of a map SC�.M /! CH�.F/
was observed in [49].

The geometric moduli spaces used to establish our main result apply verbatim in this
case, with the interior marked point changed to an input, and the ordering of the
auxiliary marked points p1; : : : ;pk appearing in the cyclic open–closed map reversed.
In this case, the operations associated to such moduli spaces imply:

Proposition 5.24 Consider CHnu
� .F/˝ SC�.M / as an S1–complex with its diagonal

S1–action (see Lemma 2.11 in Section 2.1), and kD ktriv
2 S1–mod with its trivial

S1–complex structure. The map from CH�.F/˝ SC�.M / to k can be enhanced to a
homomorphism of S1–complexesfOCcpct 2 Rhomn

S1.CHnu
� .F/˝ SC�.M /;k/:

For example , fOCcpct satisfies @fOCcpctD0. In other words , in the notation of Section 2.3,
there exists a map

fOCcpct;eq D

1X
iD0

OCcpct;iu
i
W CHnu

� .F/˝ SC�.M /! kŒŒu��

of pure degree n, with ŒOCcpct;0�D ŒOCcpct�, such that

fOCcpct;eq ı
�
.�1/deg.y/beq.�/˝yC � ˝ ıSC

eq .y/
�
D 0:

To clarify the relevant moduli spaces used, we define the spaces

k
{R1

d;cpct;(5-194)

kR
S1

d;cpct;(5-195)

k
yR1

d;cpct;(5-196)

to be copies of the abstract moduli spaces (5-107)–(5-109) where the interior puncture
zout is now a positive puncture (still equipped with an asymptotic marker), and all of
the other inputs and auxiliary points are as before, except we’ve reversed the order

19Such as the Fukaya category of compact Lagrangians; see eg [52, (12j); 53, Proof of Proposition 5.1,
Step 1; 60, Section 2.8].
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of the labelings p1; : : : ;pk (for notational convenience), so the ordering constraints
all now read as 0 < jpk j < � � � < jp1j <

1
2

. The compactified moduli spaces have
boundary strata agreeing with the boundary strata of the compactified (5-107)–(5-109),
except now the Mr cylinders break “above” the

k�r
R1

d;cpct (equipped with {, y or S1

decoration) discs instead of “below”. The reversal of the ordering of auxiliary marked
points is designed to be compatible with the ordering of the auxiliary marked points
on the Mr moduli spaces when it breaks “above” (as in Mr , the label numbers of the
auxiliary marked points increase from top to bottom).

Equipping these moduli spaces with perturbation data satisfying the same consistency
conditions and other requirements as before, and counting solutions with sign twists as
before, defines the terms of the premorphism exactly as in the previous subsections, with
identical analysis to show that, for instance, the operation corresponding to

k
RS1

d;cpct

is the operation corresponding to
k�1
yR1

d;cpct composed with Connes’ B operator, the
boundary strata in which jpi j and jpiC1j are coincident contributes trivially, and so on.

6 Calabi–Yau structures

6.1 The proper Calabi–Yau structure on the Fukaya category

Here we review the notion of a proper Calabi–Yau structure, following Kontsevich
and Soibelman [37], and construct proper Calabi–Yau structures on Fukaya categories
of compact Lagrangians in a compact admissible or Liouville manifold. A proper
Calabi–Yau structure induces chain-level topological-field-theoretic operations on
the Hochschild chain complex of the given category, controlled by the open moduli
space of curves with marked points equipped with asymptotic markers, at least one of
which is an input [14; 37]. Note that Costello’s work [14] constructing field-theoretic
operations has the (a priori stronger) requirement that the underlying A1 category be
cyclic, but in characteristic zero any proper Calabi–Yau structure determines a unique
quasi-isomorphism between the underlying A1 category and a cyclic A1 category
[37, Theorem 10.7]; see Remark 1.11 for more discussion.

We say an A1 category A is proper (sometimes called compact) if its cohomological
morphism spaces H�.homA.X;Y // have total finite rank over k for each X;Y. Recall
that for any object X 2A, there is an inclusion of chain complexes

hom.X;X /! CH�.A/;
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inducing a map
Œi � WH�.hom.X;X //! HH�.A/:

Definition 6.1 Let A be a proper category. A chain map tr W CH�Cn.A/! k is called
a weak proper Calabi–Yau structure, or nondegenerate trace of dimension n if, for any
two objects X;Y 2 obA, the composition

(6-1) H�.homA.X;Y //˝H n��.homA.Y;X //
Œ�2

A�
��!H n.homA.Y;Y //

Œi�
�!HHn.A/

Œtr�
�! k

is a perfect pairing; this nondegeneracy property only depends on the homology class Œtr�.
A chain map from the nonunital Hochschild complex tr WCHnu

�Cn.A/!k is called a weak
proper Calabi–Yau structure if composition with the inclusion CH�Cn.A/�CHnu

�Cn.A/
is a weak proper Calabi–Yau structure in the sense above.

Remark 6.2 In the symplectic literature, weak proper Calabi–Yau structures of dimen-
sion n are sometimes defined as bimodule quasi-isomorphisms A� ��!A_Œn�, where
A� denotes the diagonal bimodule and A_ the linear dual diagonal bimodule; see
[52, (12j)] and Section 6.2 for brief conventions on A1–bimodules, see also [62]. To
explain the relationship between this definition and the one above, which has sometimes
been called a weakly cyclic structure or1–inner product [62; 60], note that for any
compact A1 category A, there are quasi-isomorphisms (with explicit chain-level
models)

(6-2) .CH�.A//_ D CH�.A;A_/ � � homA–A.A�;A_/;

where homA–A denotes morphisms in the category of A1–bimodules; see eg [50]
or [24]. Under this correspondence, nondegenerate morphisms from HH�.A/! k

as defined above correspond precisely (cohomologically) to weak Calabi–Yau struc-
tures, for instance, those bimodule morphisms from A� to A_ which are cohomology
isomorphisms.

Remember that the Hochschild chain complex of an A1 category A comes equipped
with a natural chain map to the (positive) cyclic homology chain complex, the projection
to homotopy orbits (2-22),

pr W CHnu
� .A/! CCC� .A/;

modeled on the chain level by the map that sends ˛ 7! ˛ �u0 for ˛ 2CHnu.A/; compare
with (2-35).
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Definition 6.3 (cf Kontsevich and Soibelman [37]) A (strong) proper Calabi–Yau
structure of degree n is a chain map

(6-3) ztr W CCC� .A/! kŒ�n�

from the (positive) cyclic homology chain complex of A to k of degree �n, such that
the induced map trD ztr ı pr W CHnu

� .A/! kŒ�n�— or equivalently the composition {tr
of tr with the inclusion CH�.A/� CHnu

� .A/— is a weak proper Calabi–Yau structure.

Via the model for cyclic chains given as

CCC� .A/ WD .CHnu
� .A/..u//=uCHnu

� .A/ŒŒu��; bCuBnu/;

such an element ztr takes the form

(6-4) ztr WD
1X

iD0

trk uk ;

where

(6-5) trk
WD .{trk

˚ ytrk/ W CHnu
� .A/! kŒ�n� 2k�:

We now complete the proof of Theorem 1.12 described and sketched in Section 1: first,
define the putative proper Calabi–Yau structure as the composition

(6-6) ztr W CCC� .F/
eOCC
��! C �Cn.M ; @M /˝k k..u//=ukŒŒu��! k;

where the last map (cohomologically) sends PD.pt/ �u0 2H 2n.M ; @M / to 1, and other
elements to 0; ie it projects to the u0 factor then integrates over ŒM �. Instead of using a
C 2–small Hamiltonian to define the Floer complex computing H�Cn.M ; @M /, which
we only did for simultaneous compatibility with the symplectic cohomology case, we
can pass to a geometric cycle model for fOCC (and therefore ztr), which as described in
Section 5.6.1 directly maps (on the chain level) to

H�Cn.M ; @M /˝k k..u//=ukŒŒu��:

With respect to this model, the map ztr involves counts of the moduli spaces de-
scribed there, where the interior marked point xzout is unconstrained, eg

k
{P1

d
.ŒM �I Ex/,

k
yP1

d
.ŒM �I Ex/ and

k
PS1

d
.ŒM �I Ex/; see Figure 16.

The following well-known lemma verifies the nondegeneracy property of the map ztr.
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z1

z2

z3

xzout

p1

p2

p3

z1

z2

z3

z4

zf

xzout

p1

p2

Figure 16: An image of representatives of moduli spaces
3
{P1

3
.ŒM �I Ex/ and

2
yP1

4 .ŒM �I Ex/, which appear in the map ztr.

Lemma 6.4 [52, (12j); 60, Lemma 2.4] The corresponding morphism

Œtr� W HH�Cn.F/! k

is a nondegenerate trace (or weak proper Calabi–Yau structure).

Sketch of proof This is an immediate consequence of Poincaré duality in Lagrangian
Floer cohomology; see the cited references. As a brief sketch, note that {tr0 ı�2 D

{tr ı �2 W hom.X;Y /˝ hom.Y;X /! k is chain homotopic (and hence equal in co-
homology) to a chain map which counts holomorphic discs with an interior marked
point satisfying an empty constraint, and two (positive) boundary asymptotics on p

and q, with corresponding Lagrangian boundary on x and y. Via a further homotopy
of Floer data, one can arrange that the generators of hom.X;Y / and hom.Y;X / are in
bijection (for instance if one is built out of time-1 flowlines of H and one out of time-1
flowlines of �H ), and the only such rigid discs are constant discs between p and the
corresponding p_.

Proof of Theorem 1.12 The above discussion constructs ztr and Lemma 6.4 verifies
nondegeneracy.

6.2 The smooth Calabi–Yau structure on the Fukaya category

We give an overview of (a categorical version of) the notion of a (strong) smooth
Calabi–Yau structure, and construct such smooth Calabi–Yau structures on wrapped or
compact Fukaya categories under the “nondegeneracy” hypotheses of [24]. Smooth
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Calabi-Yau structures were proposed by Kontsevich and Vlassopoulous [36] and later
comprehensively studied by Kontsevich, Takeda and Vlassopoulous [39]. Other expo-
sitions appear, for instance, in [27] and [7]; in the latter work the terminology “left”
is used instead of “smooth”, and “right” instead of “proper”. A smooth Calabi–Yau
structure (analogously to the proper case) induces chain-level topological field theory
operations on the Hochschild chain complex of the given category, controlled by the
open moduli space of curves with marked points equipped with asymptotic markers, at
least one of which is an output [39; 38].20

To state the relevant definitions, we make use of some of the theory of A1–bimodules
over a category C. We do so without much explanation, instead referring readers
to existing references [50; 62; 24]. An A1–bimodule P over C is a bilinear A1

functor from Cop� C to chain complexes, which is roughly the data of a chain complex
.P.X;Y /; �0j1j0/ for every pair of objects C, along with “higher multiplication maps”

�sj1jt
W homC.Xs�1;Xs/˝ � � �˝ homC.X0;X1/˝P.X0;Yt /

˝ homC.Yt�1;Yt /˝ � � �˝ homC.Y0;Y1/! P.Xs;Y0/

satisfying a generalization of the A1 equations. A1–bimodules over C form a dg
category C–mod–C, with morphisms denoted by hom�C–C.P;Q/. (For dg bimodules
over a dg category, this chain complex corresponds to a particular chain model for the
“derived morphism space” using the bar resolution.) The basic examples of bimodules
we require are:

� The diagonal bimodule C�, which associates to a pair of objects .K;L/ the
chain complex C�.K;L/ WD homC.L;K/.

� For any pair of objects A;B, there is a Yoneda bimodule Y l
A
˝k Yr

B
, which

associates to a pair of objects .K;L/ the chain complex Y l
A
˝k Yr

B
.K;L/ WD

homC.A;K/˝ homC.L;B/.

Yoneda bimodules are the analogues of the free bimodule A˝Aop in the category of
bimodules over an associative algebra A (which are the same as A˝Aop–modules).
Accordingly, we say a bimodule P is perfect if, in the category C–mod–C, it is split-
generated by (ie isomorphic to a retract of a finite complex of) Yoneda bimodules. We
say that a category C is (homologically) smooth if C� is a perfect C–bimodule.

Recall for what follows that for any bimodule P there is a cap product action

(6-7) \W HH�.C;P/˝HH�.C; C/! HH�.C;P/;
20In contrast, note that in the proper case all operations should have at least one input.
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and hence for any class Œ� � 2 HH�.C; C/ there is an induced map

(6-8) Œ\�� W HH�.C;P/! HH�Cdeg.�/.C;P/:

More generally, the cap products acts as HH�.C;P/˝HH�.C;Q/!HH�.C;P˝CQ/;
here we are considering QDC�, and then composing with the equivalence P˝CC�ŠP .
See for instance [24, Section 2.10] for explicit chain-level formulae in the variant case
that P D C�, which can be straightforwardly adapted to the general case and then
specialized to the case here.

Definition 6.5 Let C be a homologically smooth A1 category. A cycle � 2CH�n.C; C/
is said to be a weak smooth Calabi–Yau structure, or a nondegenerate cotrace if, for
any objects K;L, the operation of capping with � induces a homological isomorphism

(6-9) Œ\�� W HH�.C;Y l
K ˝k Yr

L/
Š�! HH��n.C;Y l

K ˝k Yr
L/'H�.homC.K;L//:

(This nondegeneracy property only depends on the homology class Œ� �.) A cycle in
the nonunital Hochschild complex � 2 CHnu

�n.C/ is said to be a weak smooth Calabi–
Yau structure if again Œ� � 2H�.CHnu

�n.C//Š HH�n.C/ is nondegenerate in the sense
of (6-9).

Remark 6.6 The second isomorphism HH��n.C;Y l
K
˝k Yr

L
/'H�.homC.K;L//

always holds for cohomologically unital categories, such as the Fukaya category; the
content is in the first.

Remark 6.7 Continuing Remark 6.2, there is an alternative perspective on Definition
6.5 using bimodules. Namely, for any bimodule P , there is a naturally associated
bimodule dual P !, defined for a pair of objects .K;L/ as the chain complex

P !.K;L/ WD hom�C–C.P;Y l
K ˝k Yr

L/:

The higher bimodule structure is defined in [24, Definition 2.40]; for an A–bimodule B,
it is an A1 analogue of defining B! WD RHomA˝Aop.B;A˝Aop/, where RHom is
taken with respect to the outer bimodule structure on A˝ Aop, and the bimodule
structure on B! comes from the inner bimodule structure; see eg [28, Section 20.5].

We abbreviate C! WD C!
�

and call C! the inverse dualizing bimodule, following [37].
(Observe that H�.C!.K;L// Š HH�.C;Y l

K
˝k Yr

L
/.) For a homologically smooth

category C, one notes that there is a quasi-isomorphism CH��n.C/'hom�C–C.C!
�
Œn�; C�/

(see [37, Remark 8.11] for the case of A1–algebras), where the equivalence associates
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to any element the bimodule morphism whose cohomology-level map is the cap product
operation (6-9). Nondegenerate cotraces in CH�n.C/ then correspond precisely to
bimodule quasi-isomorphisms C!Œn� ��! C�. Further discussion of these structures in
the A1 categorical setting will appear as part of forthcoming work with Cohen [12].

Let � W CC�� .C/ ! CHnu
� .C/ denote the “inclusion of homotopy fixed points” chain

map from (2-24); concretely, as described in (2-36), this is the chain map sendingP1
iD0 ˛iu

i 7! ˛0.

Definition 6.8 Let C be a homologically smooth A1 category. A (strong) smooth
Calabi–Yau structure is a cycle z� 2 CC��n.C/ such that the corresponding element
�.z�/ 2 CHnu

�n.C/ is a weak smooth Calabi–Yau structure.

Using these definitions and the cyclic open–closed map, we will now restate and prove
Theorem 1.16. We adopt the notation of wrapped Fukaya categories in the below result,
using W and SC�.M / in place of F and CF�.M /, with the understanding that for a
compact symplectic manifold, these are the same.

Theorem 6.9 (Theorem 1.16 above) Suppose a Liouville (or compact admissible
symplectic) manifold is nondegenerate in the sense of [24], meaning that the map
ŒOC� W HH��n.W/ ! SH�.M / hits 1. Then the Fukaya category W possesses a
(cohomologically) canonical geometrically defined smooth Calabi–Yau structure.

Proof In [24] it was proven, assuming nondegeneracy of M , that the map

ŒOC� W HH��n.W/! SH�.M /

is an isomorphism, W is homologically smooth, and moreover that the preimage Œ� � of 1

gives a weak smooth Calabi–Yau structure in the sense described above; see [25; 27; 26]
for a proof of some of these facts specifically tailored to the case of compact Lagrangians
in compact symplectic manifolds. Let us briefly recall how the nondegeneracy condition
(6-9) is proven (a fact which is left slightly implicit in [24]). First, a geometric morphism
of bimodules CY WW�!W !Œn� is constructed and shown in [24, Theorem 1.3] to be
a quasi-isomorphism under the given nondegeneracy hypotheses. Then, it is shown
that capping with Œ� � is a one-sided inverse to the homological map ŒCY �, and thus an
isomorphism also, by the following argument. We establish that the following diagram
is commutative (up to an overall sign of .�1/n.nC1/=2); it can be thought of as coming
from the compatibility of OC with module structures for Hochschild (co)homology
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with coefficients in Y l
K
˝kYr

L
, and can be extracted from the holomorphic curve theory

appearing in [24, Theorem 13.1]:

(6-10)

HH��n.W;W/
˝

H�.homW.K;L//

.id;ŒCY�/
//

.ŒOC�;id/
��

HH��n.W;W/
˝

HH�Cn.W;Y l
K ˝k Yr

L/

\

��SH�.M /
˝

H�.homW.K;L//

Œ�2.CO0.�/;�/�
//// H�.homW.K;L//

D HH�.W;Y l
K
˝k Yr

L
/

Here ŒCO0� is the length-zero part of the closed open map for the object L, map-
ping SH�.M / to H�.homW.L;L//. Plugging Œ� � into HH�.W;W/ and noting that
ŒOC�.Œ� �/D 1 and Œ�2.CO0.1/;�/�D Œ�

2�.ŒeL�;�/ is the identity map establishes, as
desired, that Œ� \ .CY.y//�D Œy�.

To lift the weak smooth Calabi–Yau structure to a (strong) smooth Calabi–Yau structure,
first we note that, because ŒOC� is an isomorphism, Corollary 1.5 implies that there is a
commutative diagram of isomorphisms

(6-11)

HC���n.W/
Œ��

//

ŒeOC��
��

HH��n.W/

ŒOC�
��

H�.SC�.M /hS1

/
Œ��
// SH�.M /

where the horizontal maps � are the “inclusion of homotopy fixed points” maps
� W P hS1

! P defined for any S1–complex P , sending
P1

iD0 ˛iu
i 7! ˛0.

In Section 4.4, and specifically (4-68), it was shown that there is a canonical geometri-
cally defined element z1 2H�.SC�.M /hS1

/ lifting the unit 1 2 SH�.M /; essentially
this is because the map 1 is in the image of the map H�.M /! SH�.M /, which on
the chain level (as this map comes from “the inclusion of constant loops into the free
loop space” and “constant loops are acted on by S1 trivially”) can be canonically lifted
to a map C �.M /! C �.M /hS1

D C �.M /ŒŒu��! SC�.M /hS1

.

Since ŒfOC�� is an isomorphism, it follows that there is a unique (cohomological)
element Œz�� 2HC���n.W/ hitting z1 via ŒfOC�. By (6-11), Œ��.Œz��/�D Œ� �, establishing that
(any cycle representing) Œz�� is a smooth Calabi–Yau structure.
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Appendix Moduli spaces and operations

A.1 A real blow-up of Deligne–Mumford space

We review, in a special case, the compactifications of moduli spaces of surfaces where
some interior marked points are equipped with asymptotic markers, which are a real
blow-up of Deligne–Mumford moduli space as constructed in [34]. In particular, we
show how boundary strata of the abstract compactifications in the sense of [34] can
be identified with the specific models of the moduli spaces we use in Section 5. The
appearance of the compactifications [34] in Floer theory is not new; see eg [58].

To begin, let

(A-1) M2;0

denote the space of spheres with two marked points z1; z2 removed and asymptotic
markers �1, �2 around the z1 and z2, modulo automorphism. Fixing the position of z1

and z2 and one of �1 or �2 gives a diffeomorphism

M2;0 Š S1:

On an arbitrary representative in M2;0, we can think of the map to S1 as coming
from the difference in angles between �1 and �2 — after, say, parallel transporting one
tangent space to the other along a geodesic path.

It is convenient to parametrize this difference by a point on the sphere itself, in the
following manner (though this will break symmetry between z1 and z2). Let

(A-2) M2;1

be the space of spheres with two marked points z1; z2 removed, an extra marked point p,
and asymptotic markers �1, �2 around the z1 and z2, modulo automorphism, such that,
for any representative with position of z1, z2 and p fixed, �2 is pointing towards p.
The remaining freedom in �1 once more gives a diffeomorphism M2;1 Š S1.

We can take a different representative for elements of M2;1: up to biholomorphism
any element of (A-2) is equal to a cylinder sending z1 to C1, z2 to �1, with fixed
asymptotic direction around C1 and an extra marked point p at fixed height freely
varying around S1, such that the asymptotic marker at �1 coincides with the S1

coordinate of p. Thus, we obtain an identification

(A-3) M2;1 ŠM1;

where M1 is the space in Definition 4.7, with p1 corresponding to p here.
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Now let

(A-4) kR
1
d

denote the moduli space of discs .S; z1; : : : ; zd ; zout; �zout ;p1; : : : ;pk/with d boundary
marked points z1; : : : ; zd arranged in counterclockwise order, an interior marked point
with asymptotic marker .zout; �zout/, and interior marked points with no asymptotic
markers p1; : : : ;pk satisfying two constraints to be described below, modulo automor-
phism. Up to automorphism, every equivalence class of the unconstrained moduli space
of such .S; z1; : : : ; zd ; zout; �zout ;p1; : : : ;pk/ admits a unique unit-disc representative
with zd fixed at 1 and zout at 0; call this the .zd ; zout/ standard representative, or simply
the standard representative. The positions of the asymptotic marker, remaining marked
points, and interior marked points identify this unconstrained moduli space with an
open subset of S1 �R2k �Rd . With respect to this identification, the space (A-4)
consists of those discs satisfying the (open) “ordering constraint” on the positions of
the interior marked points

(A-5) on the standard representative, 0< jp1j< jp2j< � � �< jpk j<
1
2

,

along with a (codimension-one) condition on the asymptotic marker,

(A-6) on the standard representative, �zout points at p1.

The condition (A-5), which cuts out a manifold with corners of the larger space in
which the pi are unconstrained, is technically convenient, as it reduces the types of
bubbles that can occur with zout. The compactification of interest, denoted by

(A-7) kR
1
d ;

differs from the Deligne–Mumford compactification in a couple of respects: firstly, we
allow points pi and piC1 to be coincident without bubbling off (alternatively, we can
Deligne–Mumford compactify and collapse the relevant strata). More interestingly,
(A-7) is a real blow-up of the usual Deligne–Mumford compactification along any
strata in which zout and pi points bubble off, as in [34]. We will proceed to describe
the codimension-one boundary strata of (A-7) along with (after identification with
the moduli spaces we introduce in this paper) the boundary chart gluing maps. Let
†D S0[z

C
intDz�int

S1 denote a nodal surface, where

� S0 is a sphere containing interior marked points .zout; �zout/, p1; : : : ;pj and
another marked point zCint, and
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� S1 is a disc with d boundary marked points z1; : : : ; zd and interior marked
points z�int, pjC1, . . . , pk .

To occur as a possible degenerate limit of (A-4), the relevant points pi on S0 and S1

must satisfy an ordering condition:

For any S 0
0

which is biholomorphic to S0, with zout and zCint at opposite poles,
we have 0< jp1j< � � �< jpj j< jz

C
intj, where jpj denotes the geodesic distance

from zout to p on S 0
0
.

(A-8)

For the .zd ; z
�
int/ standard representative of S1, 0< jpjC1j< � � �< jpk j<

1
2

.(A-9)

Also:

(A-10) For S 0
0

as in (A-8), the asymptotic marker �zout should point (geodesically)
towards p1.

The relevant codimension-one stratum of (A-7) consists of all (automorphism classes
of) such broken configurations S0 [z

C
intDz�int

S1 as above, equipped additionally with
a gluing angle at the node, which is a real positive line �zCint ;z

�
int

in TzCint
S0˝ Tz�int

S1,
or equivalently, a pair of asymptotic markers .�zCint

; �z�int
/ around each of zCint and z�int,

modulo the diagonal S1 rotation action. Note that the set of gluing angles (which is
allowed to vary) is S1, making this stratum codimension-1 (the corresponding stratum
in Deligne–Mumford space does not have gluing angles, and hence has real codimension
two). The gluing map takes, for a fixed pair of cylindrical ends around zCint and z�int
compatible with the pair of asymptotic markers in the sense of (5-3), the usual gluing
with respect to the chosen cylindrical ends. Note first that for a given gluing parameter,
if the cylindrical ends are chosen to simply rotate as .�zCint

; �z�int
/ vary, the result of gluing

after rotating �zCint
by �1 and �z�int

by �2 differs from the initial gluing by a rotation of the
bottom component by �2� �1. In particular, the glued surface indeed only depends on
the gluing angle associated to .�zCint

; �z�int
/, ie it is unchanged by simultaneously rotating

.�zCint
; �z�int

/.

We can recast this stratum by taking a slice of the quotient by the diagonal S1–action
appearing in the definition of gluing angle: First, note that z�int on S1 possesses a
canonical asymptotic marker .��zint

/canon, which (on the standard representative) points
towards pjC1; our convention is that psC1D zd , so ��zint

points at zd if j D s. Choosing
the representative .�zCint

; �z�int
/ of each gluing angle for which �z�int

is the canonical
asymptotic marker .��zint

/canon, we see that the stratum described above can be identified
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with the space of broken configurations S0[zCintDz�int
S1 (up to automorphism) of the

form:

� S1 is as above (ie satisfies (A-9)) but is additionally equipped with .��zint
/canon,

ie S1 2 k�j
Rd

1
.

� S0 is equipped with interior marked points with asymptotic markers .zout; �zout/,
.zCint; �zCint

/ and additional marked points p1; : : : ;pj satisfying (A-8) and (A-10).

Just as in (A-3), the space of such S0 up to biholomorphism is precisely Mj as in
Definition 4.7, ie given any S0, there is a one-dimensional space of biholomorphisms
to a cylinder sending zint and zout to1 and �1 while fixing the angle of �

z
C
int

to 1; any
two such biholomorphisms differ by translation.

Thus, we have identified this stratum with

(A-11) k�jR
d
1 �Mj ;

which will be useful in defining the relevant pseudoholomorphic curve counts. From this
perspective, the boundary chart gluing maps, defined with respect to the cylindrical ends
(4-33) and (4-34) on Mj and with respect to a smoothly varying choice of cylindrical
end over elements of k�jRd

1
compatible with .��zint

/canon, just as in (4-36), rotate the
(standard representative of the) angle-decorated cylinder S0 to match the angle of its
top asymptotic marker with the angle of .��zint

/canon, which coincides with the argument
of pjC1 on the standard representative. In other words, if we denote by �i the angle of
pi in S1 for j C 1� i � k — with respect to any standard representative of S1, with
the usual convention that �kC1 is the argument of zd on the standard representative, so
in particular �jC1 is well defined even if j D k — and denote by x�s the angle of ps

in S0 for 1 � s � j , the gluing of S0 and S1 for small gluing parameter has (on its
standard representative) marked points p1; : : : ;pk with the angles

(A-12) .arg.p1/; : : : ; arg.pk//

D .x�1C �jC1; x�2C �jC1; : : : ; x�j C �jC1; �jC1; �jC2; : : : ; �k/:

A.2 Operations with a forgotten marked point

We introduce auxiliary degenerate operations that will arise as the codimension-one
boundary of the open–closed map and equivariant structure. This subsection is a very
special case of the general discussion in [24].
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Let d � 2 and i 2 f1; : : : ; dg. The moduli space of discs with d marked points with i th

boundary point forgotten,

(A-13) Rd;fi ;

is exactly the moduli space of discs Rd , with i th boundary marked point labeled as
auxiliary.

The Deligne–Mumford compactification

(A-14) Rd;fi

is exactly the usual Deligne–Mumford compactification, along with the data of an
auxiliary label at the relevant boundary marked point.

For d > 2, the i–forgetful map

(A-15) Fd;i WRd;fi !Rd�1

associates to a surface S the surface obtained by putting the i th point back in and
forgetting it. This map admits an extension to the Deligne–Mumford compactification

(A-16) Fd;i WRd;fi !Rd�1

as follows: eliminate any nonmain components with only one nonauxiliary marked
point p, and label the positive marked point below this component by p. We say that
any component not eliminated is f–stable and any component eliminated is f–semistable.
The above map is only well defined for d > 2. In the semistable case d D 2, the space
R2;fi is a point so one can define an ad hoc map

(A-17) F ss
i WR2;fi ! pt;

which associates to a surface S the (unstable) strip †1 D .�1;1/� Œ0; 1� as follows:
take the unique representative of S which, after its three marked points are removed, is
biholomorphic to the strip †1 with an additional puncture .0; 0/. Then, forget/put back
in the point .0; 0/.

Definition A.1 A forgotten Floer datum for a stable disc with i th point auxiliary
S 2Rd;fi consists, for every component T of S , of

� a Floer datum for T , if T does not contain the auxiliary point,

� a Floer datum for Fj .T /, if T is f –stable and contains the auxiliary point as its
j th input,

� a Floer datum on F ss
i .T / which is translation invariant if T is f–semistable.
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By translation invariant, we mean the following: note that†1 has a canonical R–action
given by linear translation in the s coordinate. We require H , J and the time-shifting
map/weights to be invariant under this R–action, and in particular they should only
depend on t 2 Œ0; 1� at most.

In particular, this Floer datum should only depend on the point Fd;i.S/.

Proposition A.2 Let i 2 f1; : : : ; dg with d > 1. Then the operation associated to
Rd;fi is zero if d > 2, and the identity operation I. � / (up to a sign) when d D 2.

Sketch Suppose first that d > 2, and let u be any solution to Floer’s equation over the
space Rd;fi with domain S . Since the Floer data on S only depends on Fd;i.S/, we
see that maps from S 0 with S 0 2 F�1

d;i
.F

d;i
.S// also give solutions to Floer’s equation

with the same asymptotics. Moreover, the fibers of the map Fd;i are one-dimensional,
implying that u cannot be rigid, and thus the associated operation is zero.

Now suppose that d D 2. Then the forgetful map associates to the single point ŒS � 2
R2;fi the unstable strip with its translation-invariant Floer datum. Since nonconstant
solutions can never be rigid — as, by translating, one can obtain other nonconstant
solutions — it follows that the only solutions are constant ones, and the resulting
operation is therefore the identity.
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