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We prove that for any Fano manifold X , the special R–test configuration that minimizes the H NA–
functional is unique and has a K–semistable Q–Fano central fiber .W; �/. Moreover there is a unique
K–polystable degeneration of .W; �/. As an application, we confirm the conjecture of Chen, Sun and
Wang about the algebraic uniqueness for Kähler–Ricci flow limits on Fano manifolds, which implies
that the Gromov–Hausdorff limit of the flow does not depend on the choice of initial Kähler metrics.
The results are achieved by studying algebraic optimal degeneration problems via new functionals for
real valuations over Q–Fano varieties, which are analogous to the minimization problem for normalized
volumes.
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1 Introduction

Let X be a smooth Fano manifold. It is now known that X admits a Kähler–Einstein metric if and
only if X is K–polystable; see Berman [5], Chen, Donaldson and Sun [25; 26; 27] and Tian [67; 68].
In this paper, we are interested in the case when X is not K–polystable. If X is strictly K–semistable,
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540 Jiyuan Han and Chi Li

then X admits a unique K–polystable degeneration by Li, Wang and Xu [55]. If X is K–unstable
(ie not K–semistable), several kinds of optimal degenerations have been studied which are related to
continuity methods or geometric flows in the analytic study of canonical metrics. For example, related
to Aubin’s continuity method, there is a (not necessarily unique) special degeneration whose associated
valuation minimizes the ı invariant; see Blum, Liu and Zhou [16] and Székelyhidi [65]. There is also a
unique destabilizing geodesic ray which arises in the study of inverse Monge–Ampère flow (resp. Calabi
flow) and whose associated non-Archimedean metric minimizes an L2–normalized non-Archimedean
Ding invariant (resp. L2–normalized radial Calabi functional); see Donaldson [33], Hisamoto [42] and
Xia [77]. In this paper we are interested in optimal degenerations that arise in the study of Hamilton–Tian
conjecture about the long time behavior of Kähler–Ricci flows. The latter conjecture states that starting
from any Kähler metric ! 2 c1.X /, the normalized Kähler–Ricci converges in the Gromov–Hausdorff
sense to a Kähler–Ricci soliton on a Q–Fano variety X1. The Hamilton–Tian conjecture has been
solved (see Bamler [4], Chen and Wang [29] and Tian and Zhang [70]) and applied to give a proof of the
Yau–Tian–Donaldson conjecture in Chen, Sun and Wang [28].

It is known that X1 coincides with X if and only if there is already a Kähler–Ricci soliton on X ; see
Dervan and Székelyhidi [31] and Tian and Zhu [72]. In general, Chen, Sun and Wang [28] proved the
following phenomenon. The metric degeneration from X to X1 induces a finitely generated filtration F
on RD

L
m H 0.X;�mKX /, and there is a two-step degeneration:

(i) The filtration F as an R–test configuration (see Definition 2.8) degenerates X to a normal Fano
variety W with a torus T–action generated by a holomorphic vector field � . For simplicity, we call
this step the semistable degeneration.

(ii) There is a T–equivariant test configuration of .W; �/ to .X1; �/. We call this step the polystable
degeneration.

As explained in Chen, Sun and Wang [28], this picture is a global analogue of the picture in Donaldson
and Sun’s study [34] of metric tangent cones on Gromov–Hausdorff limits of Fano Kähler–Einstein
manifolds. In [34], Donaldson and Sun conjectured that metric tangent cones depend only on the algebraic
structure near the singularity. This conjecture has been confirmed in a series of works of the second
author with his collaborators (see Li [51], Li and Xu [58; 57] and Li, Wang and Xu [55]), which depends
on the study of the minimization problem of a normalized volume functional over the space of valuations
centered at the singularity; see Li, Liu and Xu [54] for a survey. Analogous to this conjecture on metric
tangent cones, the following conjecture was proposed in [28]:

Conjecture 1.1 The data F , W and X1 depend only on the algebraic structure of X but not on the
initial metric for the Kähler–Ricci flow.

In this paper we will confirm Conjecture 1.1. The idea and method to prove this conjecture are in some
sense parallel to the study of minimizing normalized volumes. However, the correct framework for
achieving this goal has not been established until now. So the second purpose of this paper is to study
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Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties 541

an analogous minimization problem in the global setting, which can be studied for all Q–Fano varieties
possibly singular, and prove various results about it.

The functional we want to minimize is called the H NA–functional of R–test configurations.1 Tian, Zhang,
Zhang and Zhu [69, Proposition 5.1] first introduced the H NA–functional for holomorphic vector fields
in their study of Kähler–Ricci flow on Fano manifolds. This invariant was generalized to any special
R–test configuration by Dervan and Székelyhidi [31], who then used the results of Chen and Wang [29],
Chen, Sun and Wang [28] and He [40] to prove that the semistable degeneration mentioned above
minimizes the H NA–functional among all special R–test configurations; see Remark 2.44. For general
test configurations, such an H NA–functional is a nonlinear version of the non-Archimedean Berman–Ding
functional, and was first explicitly used by Hisamoto in [43] to reprove Dervan and Székelyhidi’s result
using pluripotential theory. Note that in this paper, for the convenience of our argument and comparison
with the case of the ı invariant (or with the ˇ invariant, see equation (107)), we will use the negative of
the sign convention in these previous works.

Conjecture 1.1 follows from two purely algebrogeometric statements for each step of the semistable and
polystable degenerations.

Theorem 1.2 For any Q–Fano variety , the special R–test configuration that minimizes H NA is unique
and its central fiber .W; �/ is K–semistable (Definition 2.49).

Theorem 1.3 If .X; �/ is K–semistable , then there exists a unique K–polystable degeneration.

Corollary 1.4 Conjecture 1.1 is true for any smooth Fano manifold. In particular , the Gromov–Hausdorff
limit X1 for the Kähler–Ricci flow does not depend on the initial metric of the flow.

To prepare for the proof of such results, we will first carry out an algebraic study of the H NA–functional,
which is analogous to the study of the minimization problem for normalized volume or the ı invariant.
We will prove a new interesting fact in Theorem 3.5, that the MMP process devised in [56] decreases the
H NA invariant of test configurations. This requires us to derive new intersection formulas (see (121)) and
derivative formulas for the H NA invariant. The proof of such formulas depends on a fibration technique
in the study of equivariant cohomology. This technique is partly motivated by some construction from
our previous work [39], although there are key differences which require more concrete calculations; see
Remark 3.2.

We will then introduce the following ž–functional on Val.X / the space of valuations on X : for any
v 2 Val.X / with AX .v/ <C1, we define

(1) ž.v/DAX .v/C log
�

1

.�KX /�n

Z
R

e��.�dvol.F .�/v //

�
:

1We will mostly use the notation of non-Archimedean functionals, as advocated in Boucksom, Hisamoto and Jonsson [19].
However, note that H NA here is not the non-Archimedean entropy functional used in [19]. We will not use the non-Archimedean
entropy in this article.
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542 Jiyuan Han and Chi Li

See Section 4 for details. If AX .v/DC1, then we define ž.v/DC1. The transition from H NA to the
ž–functional is similar to the transition from Ding–Tian’s generalized Futaki invariant to the ˇ–functional
in the literature of K–stability (as first appeared in Li [50], where it was called ‚, and in Fujita [37]).
In other words, ž is a nonlinear version of ˇ and could also be considered as a global analogue of the
normalized volume. Unlike the case of normalized volume functional, the ž invariant is not invariant
under rescaling of valuations. Indeed, we find the following new phenomenon: when restricted to the
ray of multiples of a fixed valuation v 2 Val.X / with A.v/ <C1, it is strictly convex and proper and
its derivative at the origin is exactly ˇ.v/. As a consequence there is a unique minimizer along the ray,
which is nontrivial if and only if ˇ.v/ < 0 (Proposition 4.6). The above MMP result implies that the
minimum can be approached by a sequence of special divisorial valuations. As a consequence, one can
adapt the method developed in [14] to show that there is minimizing valuation which is quasimonomial;
see Theorem 4.10. On the other hand, the H NA invariant for special test configurations is expressed as
the ž invariant; see Lemma 4.2. Combining these discussions, we will prove (see Sections 2.2 and 2.5 for
relevant notation):

Theorem 1.5 For any Q–Fano variety X , we have the identity

(2) inf
F filtration

H NA.F/D inf
.X ;L;a�/ special

.H NA.X ;L; a�//D inf
v2Val.X /

ž.v/:

Moreover , the last infimum is achieved by a quasimonomial valuation.

As in the cases of normalized volume, we conjecture that the minimizer is unique and induces a special
R–test configuration (see Conjecture 4.11)2 whose central fiber (with the induced vector field) must then
be K–semistable by the following result. When X is smooth, by the result of Dervan and Székelyhidi [31]
the existence of such special minimizing valuation is implied by the work of Chen and Wang [29] and
Chen, Sun and Wang [28]. We also note that optimal degenerations (of various kinds) in the toric case
are well studied; see Wang and Zhu [75] for the toric result for Kähler–Ricci flow.

Theorem 1.6 (Theorem 5.2) A special R–test configuration minimizes H NA if and only if its central
fiber is K–semistable.

The uniqueness in Theorem 1.2 about the semistable degeneration is nothing but the result on the
uniqueness of the minimizer of ž among all quasimonomial valuations associated to special R–test
configurations. The proof of this fact uses the technique of initial term degeneration, again motivated
by study of normalized volumes; see Li [50] and Li and Xu [58; 57]. This process essentially reduces
the question to the uniqueness of minimizer of H NA (actually a variant of H NA after the work of Xu
and Zhuang [79]) along an interpolation between a fixed filtration and a weight filtration (induced by a
holomorphic vector field) on the central fiber. The interpolation is constructed by using the rescaling of

2This has recently been confirmed by Blum, Liu, Xu and Zhuang [15].
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twist of the fixed filtration (the twist of filtration is in the sense of Li [52] generalizing Hisamoto [41]),
which we can deal with using the technique of Newton–Okounkov bodies and Boucksom and Jonsson’s
work on the characterization of asymptotically equivalent filtrations. Our valuative formulation is useful
because filtrations associated to valuations are asymptotically equivalent if and only if they are the same
(Corollary 2.28 and Lemma 2.29). Again unlike the case of normalized volumes or the case of the ı
invariant in Blum, Liu and Zhou [16], the minimizing valuation in the current global setting is expected
to be absolutely unique, not just up to rescaling or twisting. This is because of a strict convex property of
the H NA–functional, which goes back to Tian and Zhu’s work in [71] on the uniqueness of Kähler–Ricci
vector fields from the Lie algebra of a torus.

To deal with the polystable step, we first introduce the equivariant version of normalized volumes. Most
results about normalized volumes can be generalized for the equivariant version. Finally we complete the
proof of Theorem 1.3 by adapting the argument in Li, Wang and Xu [55] about uniqueness of K–polystable
degeneration of K–semistable Fano varieties.

To end this introduction, the following table summarizes the quantities used in each of the two steps:

degenerations semistable polystable

valuations Val.X / ValC
��T

C;o

antiderivative H NA, ž cvolg
derivative DNA

�
, Fut� DNA

�
, ˇg

derivative formula (172) (191)

Postscript After we finished the paper, we were informed by F Wang and X Zhu that they use analytic
methods to prove related uniqueness results for Kähler–Ricci flow limits based on their recent work on
the Hamilton–Tian conjecture; see [73; 74].

After this paper appeared, there have been several important developments. In Li and Li [59], based on
the minimization setup and uniqueness results in this paper, the authors calculated nontrivial examples of
limits of Kähler–Ricci flows on some unstable Fano varieties which are compactifications of homogeneous
varieties under some complex reductive group. Very recently, the paper of Blum, Liu, Xu and Zhuang [15]
continues and completes the algebraic study of minimization problem proposed in this paper, based on
the recent breakthrough on the high-rank finite generation conjecture. In particular, Conjecture 4.11 in
our paper is now confirmed in [15].
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thank a referee for the careful reading and useful suggestions for improving the paper.
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2 Preliminaries

2.1 Some notation

Let X be a Q–Fano variety. In this paper for the simplicity of notation, we assume that �KX is Cartier.
The modification to the general Q–Cartier case is straightforward; see eg [52]. For any m; ` 2N, set

Rm WD H 0.X;�mKX /; RD

C1M
mD0

Rm;(3)

Nm D dim Rm; V D .�KX /
�n
D lim

m!C1

Nm

mn=n!
;(4)

R.`/
m WDH 0.X;�m`KX /; R.`/

D

C1M
mD0

R.`/
m :(5)

We will denote by Val.X / the space of real valuations on C.X /, by VVal.X / the set of real valuations v
with AX .v/ <C1, and by X div

Q the set of divisorial valuations, ie the valuations of the form a � ordE

with a � 0 and E a prime divisor over X . A valuation v 2 Val.X / is quasimonomial if there exist a
birational morphism Y !X and a simple normal crossing divisors E D

Sd
iD1 Ei � Y such that v is a

monomial valuation on Y with respect to the local coordinates defining Ei , whose center of v over Y is
an irreducible component of

T
i2J Ei , where J � f1; : : : ; dg is a subset. We denote by QM.Y;E/ the

set of such quasimonomial valuations. We refer to [35; 44] for more details about such quasimonomial
(or equivalently the Abhyankar) valuations.

In this paper, T denotes a complex torus .C�/r D ..S1/r /C that acts effectively on a Q–Fano variety X .
There is a canonical action of T on (any multiple of) �KX . Set

(6) NZ D Hom.C�;T /; NR DNZ˝Z R; MZ D Hom.T ;C�/; MR DMZ˝Z R:

For any � 2NR, we have a valuation wt� 2 Val.X / as follows. For any f 2C.X /D
L
˛2MZ

C.X /˛ ,

(7) wt�.f /Dmin
�
h˛; �i

ˇ̌̌
f D

X
˛

f˛; f˛ ¤ 0

�
:

Moreover, for any m 2 N, we have a weight decomposition induced by the canonical T–action on
.X;�mKX /:

(8) Rm D

M
˛2MZ

.Rm/˛ D .Rm/˛.m/
1

˚ � � �˚ .Rm/˛.m/
Nm

:

Moreover, we will use the following notation for any Q–Fano variety. Let e�z' be an .S1/r –invariant
smooth positively curved Hermitian metric on �KX (eg as the restriction of a Fubini–Study metric under
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an equivariant embedding of X into projective space). We identify any � 2NR with the corresponding
holomorphic vector field on X . Because T–action canonically lifts to an action on �KX , we can set

(9) �z'.�/D�
L�e
�z'

e�z'
:

Then �z'.�/ is a Hamiltonian function of � with respect to ddc z' D .
p
�1=2�/@x@z' � 0:

(10) ��ddc
z' D

p
�1

2�
x@�z'.�/:

Moreover, .z; �/ 7! �z'.�/.z/ is equivalent to the moment map mz' WX !MR whose image is the moment
polytope P of T–action on .X;�KX / which does not depend on the choice of z'. It is known that the
measure

(11)
n!

mn

X
i

dim.Rm/˛.m/
i

� ı
˛
.m/

i
=m

converges weakly to the Duistermaat–Heckman measure .mz'/�.ddc z'/n; see [23] or [8, Proposition 4.1].

For any subset S �Rn, we will use dyS or just dy to denote the Lebesgue measure of S .

2.2 R–test configuration and filtrations

We will use extensively the language of filtrations:

Definition 2.1 [17] A filtration F WD FR� of the graded C–algebra R D
LC1

mD0 Rm consists of a
family of subspaces fF�Rmgx of Rm for each m� 0 with the following properties:

� Decreasing F�Rm � F�0Rm if �� �0.

� Left continuous F�Rm D
T
�0<� F�

0

Rm.

� Multiplicative F�Rm �F�
0

Rm0 � F�C�0RmCm0 for any �; �0 2R and m;m0 2 Z�0.

� Linearly bounded There exist e�; eC 2 Z such that Fme�Rm DRm and FmeCRm D 0 for all
m 2 Z�0.

Similarly one defines filtration on R.`/ for any `� 1 2N.

Example 2.2 Given any valuation v 2 VVal.X /, we have an associated filtration F D Fv:

(12) F�vRm WD fs 2Rm j v.s/� �g:

In particular, if there is a T–action on X , for any � 2 NR, we have a filtration Fwt� associated to the
valuation wt� in (7).

The trivial filtration Ftriv is the filtration associated to the trivial valuation: Fx
trivRm is equal to Rm if

x � 0, and is equal to 0 if x > 0.

Geometry & Topology, Volume 28 (2024)



546 Jiyuan Han and Chi Li

Example 2.3 For any filtration F , we will denote by FZ the filtration defined by F�ZRm D Fd�eRm.

Definition 2.4 [45; 46; 49] We say a valuation v WC.X /!Zn (where Zn is ordered lexicographically)
is a faithful valuation if v.C.X //Š Zn. Note that such a valuation always has at most one-dimensional
leaves (in the sense of [45]): if v.f / D v.g/ for f;g 2 C.X /, then there exists c 2 C� satisfying
v.f C cg/ > v.f /.

Fix such a faithful valuation v. For any t 2R, define the Newton–Okounkov body of the graded linear
series

(13) F .t/ WD F .t/R� WD fF tmRmg

as the closed convex hull of unions of rescaled values of elements from F .t/:

(14) �.F .t//D
C1[
mD1

1

m
v.F tmRm/:

By the theory of Newton–Okounkov bodies [62; 49; 46], we know that

(15) n! � vol.�.F .t///D vol.F .t/R�/D lim
m!C1

dimC FmtRm

mn=n!
:

When t � 0,

(16) �.F .t//DW�v.X;�KX /D�.X /

is associated to the complete graded linear series fRmgm. Following [17], define the concave transform

(17) GF
W�.X /!R; GF .y/D supft j y 2�.F .t//g:

Given any filtration F D fF�Rmg�2R and m 2 Z�0, the successive minima on Rm is the decreasing
sequence

�.m/max D �
.m/
1
� � � � � �

.m/
Nm
D �

.m/
min

defined by
�
.m/
j Dmaxf� 2R j dimC F�Rm � j g:

Theorem 2.5 [17] (i) The function x 7! vol.F .x/R�/1=n is concave on .�1; �max/ and vanishes
on .�max;C1/.

(ii) As m!C1, the Dirac-type measure

(18) �m D
n!

mn

X
i

ı
�
.m/

i
=m
D�

d

dt

dimC FmtH 0.Z;m`0L/

mn=n!

converges weakly to a measure with total mass V D .�KX /
�n:

(19) DH.F/ WD n! � .GF /� dy D�dvol.F .t//;

where dy is the Lebesgue measure on �.X /.
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(iii) The support of the measure DH.F/ is given by supp.DH.F//D Œ�min; �max�, with

�min:D �min.F/ WD infft 2R j vol.F .t// < V g;(20)

�max:D �max.F/ WD lim
m!C1

�
.m/
max

m
D sup

m�1

�
.m/
max

m
:(21)

Moreover , DH.F/ is absolutely continuous with respect to the Lebesgue measure , except perhaps
for a point mass at �max.

Example 2.6 If v 2 Val.X / is quasimonomial, it is shown in [22] that DH is absolutely continuous with
respect to the Lebesgue measure on R, ie there is no Dirac mass at �max.Fv/.

Definition 2.7 Let F be any filtration. For any a> 0 the a–rescaling of F is given by

(22) .aF/�Rm D F�=aRm:

For any b 2R, the b–shift is given by

(23) F.b/�Rm D F��bmRm:

Set

(24) aF.b/D .aF/.b/D a.F.b=a//; ie aF.b/xRm D F .x�bm/=aRm:

We have the easy identities

(25) �.aF.b/.t//D�.F ..t�b/=a//; GaF.b/ D aGF C b; vol.aF.b/.t//D vol.F ..t�b/=a//:

For any fm 2Rm, set

(26) xvF .fm/D supf� j fm 2 F�Rmg Dmaxf�Ifm 2 F�Rmg;

and for any f D
P

m fm 2RD
L

m Rm with fm 2Rm, set

(27) xvF

�X
m

fm

�
DminfxvF .fm/ j fm ¤ 0 2Rmg:

Then xvF is a semivaluation on RD
L

m Rm, satisfying

(28) xvF .f Cg/�minfxvF .f /; xvF .g/g and xvF .fg/� xvF .f / � xvF .g/:

Set

(29) �C.F/ WD f�.m/i jm� 0; 1� i �Nmg:

Denote by �.F/ the group of R generated by �C.F/.

Geometry & Topology, Volume 28 (2024)
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Definition 2.8 � The extended Rees algebra and associated graded algebra of a filtration F are
defined as

R.F/D
M
m�0

M
�2�.F/

t��F�Rm;(30)

Gr.F/D
M
m�0

M
�2�.F/

t��F�Rm=F>�Rm;(31)

where F>�Rm D ff 2Rm j vF .f / > �g.

� If R.F/ is finitely generated, we say that F is finitely generated and call F an R–test configuration.
In this case, �.F/ is a finitely generated free Abelian group: �.F/ Š Zrk.F/ for some positive
integer rk.F/ 2 Z>0, and we will call rk.F/ the rank of F . Moreover, Gr.F/ is also finitely
generated, and we call the projective scheme Proj.Gr.F//DWXF;0 the central fiber of F .

There is an induced filtration F jXF;0 WD F 0R0 D fF 0R0mg on R0 WD Gr.F/, the homogeneous
coordinate ring of the central fiber:

(32) F 0�R0m D
M
�
.m/

i
��

F�
.m/

i Rm=F>�
.m/

i Rm:

The �.F/ grading of Gr.F/ corresponds to a holomorphic vector field �D �F on the central fiber,
which generates an action by a complex torus of dimension rk.F/.

� We say an R–test configuration F is special if its central fiber XF;0 is a Q–Fano variety and there
is an isomorphism Gr.F/ŠR.XF;0;�KXF;0/DWR

0. In this case, there is a � 2R such that

(33) F 0R0 D F 0wt�R
0.��/:

Remark 2.9 We can naturally extend the above definition to filtrations on R.`/ for any ` 2N�1. Indeed
we will actually identify two filtrations if they induce the same non-Archimedean metric on .X NA;LNA/

with LD�KX . See Definition 2.17.

There are two equivalent geometric descriptions of R–test configurations, which we now explain.

(I) Geometric R–TC I Let � WX ! PN` be a Kodaira embedding by a basis of R` DH 0.X; `.�KX //

for some ` > 0, and let � be a holomorphic vector field on PN`�1 D P .H 0.X; `.�KX /
�/ that generates

an effective holomorphic action on PN`�1 by a torus T of rank r . Then we get a weight decomposition
R` D

L
˛2Zr R`;˛ and a filtration on R` by setting

(34) F�R` D

M
h˛;�i��

R`;˛:

The filtration FR` generates a filtration on FR.`/, which is an R–test configuration F . The following
lemma generalizes the well-known fact for test configurations; see [33; 76; 64].

Geometry & Topology, Volume 28 (2024)



Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties 549

Lemma 2.10 Any R–test configuration , which by definition is a finitely generated filtration , is obtained
in this way.

Proof To see this, we assume again that F is generated by FR`. For simplicity of notation, set V DR`

and �i D �
.`/
i . By shifting the filtration, we can normalize �N` D 0 and assume that we have the relation

�1 D � � � D �i1
DW w1 > �i1C1 D � � � D �i2

DW w2
:::
> �ik�2C1 D � � � D �ik�1

DW wk�1

> �ik�1C1 D � � � D �N` DW wk D 0:

In other words, fw1; : : : ; wkg is the set of distinct values of successive minima and we have a usual
filtration,

(35) f0g¨ Fw1V ¨ Fw2V ¨ � � �¨ Fwk D V:

In other words, we can equivalently describe an R–filtration by the language of weighted flags. Fixing a
reference Hermitian inner product H0 on V DR`, we can assign to the flag (35) a decomposition

(36) V D V1˚V2˚ � � �˚Vk ;

where V1 D Fw1V and Vj is the H0–orthogonal complement of Fwj�1V inside FwjV , which has
dimension ij � ij�1 DW dj .

Fix a maximal Q–linearly independent subset of fw1; : : : ; wkg to be

(37) 0>w2 DW �1 > � � �>wpr
DW �r :

So for eachwj we can find a vector of rational numbers ErjD .rj1; : : : ; rjr /2Q such thatwjD
Pr

pD1 rjp�p .
Finding a common multiple D of the denominators of frjp j 1� j � k; 1� p � rg, we set �D �=D and

j̨ DDErj , so that

(38) wj D

rX
pD1

j̨p�p D h j̨ ; �i:

In this way we get a .C�/r representation V , whose weight decomposition is given by (36), where Vj

consists of elements of weight j̨ , and

F�V D
M
h j̨ ;�i�a

Vj D

�
v D

kX
jD1

vj

ˇ̌̌
minfh j̨ ; �i j vj ¤ 0g � �

�
:

From another point of view, let IX � CŒZ1; : : : ;ZN` �D S be the homogeneous ideal of X . For each
d 2N, the T–action induces a representation of T on Sd , the set of degree-d homogeneous polynomials.
The holomorphic vector field � induces an order on the weights of these T–representations. Choosing
a set of homogeneous generators of IX , the initial term with respect to this order generates the ideal
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of XF;0. If �� denotes the one-parameter R–group generated by �, we have the convergence of algebraic
cycles (or schemes)

(39) lim
s!C1

��.s/ ı ŒX �D ŒXF;0�:

So we say that the R–action generated by � degenerates X into a projective scheme XF;0.

By perturbing � 2NR, we can find a sequence of rational vector �k 2NQ converging to �. For k� 1,
�k induces an R–test configuration of rank one with the same central fiber XF;0.

(II) Geometric R–TC II This description is essentially contained in [66, Section 2]. For any R–test
configuration, we set B D Spec.C.�C.F//ŠCr . Then there is a flat family

(40) X D ProjCr .R.F//! B

such that the generic fiber is isomorphic to X and a special fiber isomorphic to XF;0. Set L to be the relative
ample line bundle OX=Cr .1/. Fix m� 0. For any � 2R, we set d�e Dminf�.m/i j �

.m/
i � �g D h˛; �F i

for ˛ 2MZ. Then for any � D .�1; : : : ; �r / 2Cr , we set ��d�e D
Qr

iD1 �
˛i

i , to get

(41) F�Rm D fs 2Rm j �
�d�e
xs extends to a holomorphic section of mL! X g;

where xs is the meromorphic section of mL defined as the pullback of s via the projection .X ;L/�B.C
�/rŠ

.X;�KX /� .C
�/r !X .

Lemma 2.11 If Gr.F/ is an integral domain , then the semivaluation xvF in (26) defines a valuation on the
quotient field of R. Denote by vF the restriction of xvF to C.X /: for f D s1=s2 2C.X / with s1; s2 2Rm,
set

(42) vF .f /D xvF .s1/� xvF .s2/:

Then there exists � > 0 such that F DFvF .��/. In particular , this statement applies to any special R–test
configuration.

Proof Fix any two homogeneous elements si 2 Rmi
for i D 1; 2. Assume that xvF .fi/ D si . Then

s0i 2 R0mi ;xi
. Because Gr.F/ is integral, s0

1
s0
2
¤ 0 2 R0m1Cm2;x1Cx2

, which implies that xvF .s1s2/ D

x1Cx2 D xvF .s1/CxvF .s2/. From this, we easily see that xvF is a real valuation.

Assume f D s1=s2 D zs1=zs2. Then s1 � zs2 D s2 � zs1 and hence xvF .s1/� xvF .s2/D xvF .zs1/� xvF .zs2/. So
vF in (42) is well defined.

For any si ¤ 0 2 Rm with i D 1; 2, by construction xvF .s1/� vF .s1/ D xvF .s2/� xv.s2/. This means
bm WD vF�xvF is constant on Rmnf0g. It is easy to see that �m1

�m2
D�m1Cm2

. So we can set � D�m=m

to get the conclusion.

An R–test configuration with rk.F/D 1 is, up to rescaling, associated to the usual test configuration, a
notion that plays a basic role in the subject of K–stability.
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Definition 2.12 [67; 32; 56] A test configuration of .X;L/ is a triple .X ;L; �/, sometimes just denoted
by .X ;L/, that consists of

� a variety X admitting a C�–action generated by a holomorphic vector field � and a C�–equivariant
morphism � WX!C, where the action of C� on C is given by the standard multiplication generated
by �t@t , and

� a C�–equivariant �–semiample Q–Cartier Q–divisor L on X such that there is an C�–equivariant
isomorphism i� W .X ;L/j��1.Cnf0g/ Š .X;L/�C�.

We denote by . xX ; xL/ the natural compactification of .X ;L/ obtained by adding a trivial fiber at infinity
using the isomorphism i�.

.XC; .�KX /C; �triv/ WD .X �C;�KX �C;�t@t / is called the trivial test configuration. .X ;L; �/ is a
normal test configuration if X is a normal variety.

A normal test configuration .X ;L; �/ is a special test configuration (resp. weakly special) if .X ;X0/ is plt
(resp. if .X ;X0/ is log canonical) and L D �KX C cX0 for some c 2 Q. By inversion of adjunction,
.X ;L; �/ being special is equivalent to the condition that .X0;�KX0

/ is Q–Fano.

Two test configurations .Xi ;Li/ for i D 1; 2 are equivalent if there exists a test configuration .X 0;L0/ and
two C�–equivariant birational morphisms �i W X 0! Xi such that ��

1
L1 D L0 D ��

2
L2.

Assume that G is a reductive complex Lie group acting on .X;L/. A G–equivariant test configuration of
.X;L/ is a test configuration .X ;L; �/ with the following property:

� There is a G–action on .X ;L/ that commutes with the C�–action generated by � and the action

of G on .X ;L/�C C�
i�
Š .X;L/�C� coincides with the fiberwise action of G on (the first factor

of) .X;L/�C�.

As mentioned above, by the work of [76; 65; 19], for any R–test configuration F with rk.F/D 1, there
exists a test configuration .X ;L; �/ and a> 0, such that �.F/Š aZ and F D aF.X ;L;�/. In this case, we
will also denote the R–test configuration F by .X ;L; a�/ and set

(43) F.X ;L;a�/ WD aF.X ;L;�/:

The identity (40) becomes

(44) X D ProjCŒt �

�M
m�0

M
j2Z

t�ajFj Rm

�
:

Conversely, assume .X ;L/ is a test configuration of .X;L WD �KX /. Then we associate to it a filtration
F D F.X ;L/ as in (41); so s 2 F�Rm if and only if t�d�exs extends to a holomorphic section of mL. In
particular, such a construction sets up a one-to-one correspondence between test configurations .X ;L/
with ample L, and R–test configurations F with �.F/� Z; see [19, Proposition 2.15].
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Now assume that .X ;L/ is normal and there is a C�–equivariant birational morphism � WX!XC WDX�C.
Write L D ��LC CD, where LC D p�

1
L. Then by [19, Lemma 5.17], the filtration F has the more

explicit description

(45) F�Rm D

\
E

fs 2H 0.X;mL/ j r.ordE/.s/Cm`0 ordE.D/� xbEg;

where E runs over the irreducible components of the central fiber X0, and bE D ordE.X0/D ordE.t/

while r.ordE/ denotes the restriction of ordE to C.Z/ under the inclusion C.Z/�C.X �C�/DC.X /.

When F D F.X ;�KX ;�/ is associated to a special test configuration, Lemma 2.11 applies. In fact, by [19],
vF D vX0

D r.ordX0
/ and by [50], � DAX .vX0

/, so F.X ;�KX ;�/ D FvX0
.�A.vX0

//. As a consequence,
for any a> 0, by (24) we have the identity

(46) F.X ;�KX ;a�/ D FavX0
.�A.avX0

//:

Note that following Definition 2.8, for any a> 0 we say that .X ;L; a�/ is a special (resp. normal) R–test
configuration if .X ;L; �/ is a special (resp. normal) test configuration.

Note that we use the negative sign �t@t in our Definition 2.12. This sign convention will be convenient
for our subsequent computations, as illustrated in the following simple example.

Example 2.13 Consider the product test configuration .X ;L/ of .P1;OP1.1// induced by the C�–action

t ı ŒZ0;Z1�D ŒZ0; tZ1�:

Let si for i D 0; 1 be two holomorphic sections of H 0.P1;O.1// corresponding to the homogeneous
coordinates Zi for i D 0; 1. Then t acts on the holomorphic sections by t � s0 D s0 and t ı s1 D t�1s1.
The corresponding filtration is given by

(47) F�Rm D Spanfsm�i
0 si

1 j 0� �i � �gI

cf (34). The natural compactification xX can be identified with the Hirzebruch surface P .OP1.1/˚OP1/,
and xL is given by O xX .D1/, where D1 is the divisor at infinity; see [56, Example 3]. The successive
minima are given by f�.m/i g D f�m;�mC 1; : : : ; 0g. In particular, we have

(48)
X

i

�
.m/
i D�

1
2
m2
�

1
2
mD 1

2
xL2m2

C
�

1
2
K�1
xX �
xL� 1

�
m:

Moreover, �D�z @=@z, whose Hamiltonian function is given by �.�/D�jZ1j
2=.jZ1j

2CjZ2j
2/. Note

that �.�/�!FS D dyŒ�1;0� D DH.F/.

Example 2.14 If F is an R–test configuration, then aF.b/ is an R–test configurations for any .a; b/ 2
R>0 �R.

Assume F D F.X ;L;�/ for a test configuration .X ;L; �/. Then as mentioned above, for simplicity of
notation we will identify aF.b/ with the data .X ;LC bX0; a�/.
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For any d > 0 2N, we can consider the normalization of the base change,

(49) .X ;L; �/.d/ WD ..X ;L; �/�C;t!td C/norm
DW .X .d/;L.d/; �.d//:

On the other hand, Zd D he
2�
p
�1=d i ,!C� naturally acts on the .X ;L/ and we can take a quotient

(50) .X ;L; �/=Zd
D .X .1=d/;L.1=d/; �.1=d//

to get a test configuration with a nonreduced central fiber in general.

With this notation, for any a> 0 2Q we then have the natural identification

(51) F.X ;L;�/.a/ D a �F.X ;L;�/ D F.X ;L;a�/:

For a filtration FR�, choose e� and eC as in Definition 2.1. For convenience, we can choose eC D

d�max.FR/e 2 Z. Set e D eC� e� and define (fractional) ideals

Im;� WD IF
m;� WD Image.F�Rm˝OX .�mL/!OX /;(52)

zIm WD zIF
m WD IF

.m;meC/
t�meCCIF

.m;meC�1/t
1�meCC� � �CIF

.m;me�C1/t
�me��1

COX �t
�me� ;(53)

Im WD IF.eC/
m D zIF

m �t
meC D IF

.m;meC/
CIF

.m;meC�1/t
1
C� � �CIF

.m;me�C1/t
me�1

C.tme/�OXC :(54)

Definition–Proposition 2.15 [36, Lemma 4.6] With the above notation , for m sufficiently divisible ,
define the mth approximating test configuration .{XF

m ; {LF
m/ as follows:

(i) {XF
m is the normalization of blowup of X �C along the ideal sheaf IF.eC/

m .

(ii) The semiample Q–divisor is given by

(55) {LF
m D �

�..�KX /�C/�
1

m
EmC eC {X0;

where Em is the exceptional divisor of the normalized blowup.

For simplicity of notation , we also denote the data by .{Xm; {Lm/ if the filtration is clear.

It is easy to see that the filtration F.{Xm;{Lm/
on R.m/ is induced by FZRm under the canonical map

SkRm!Rkm. By [20, Proof of Theorem 4.13], we have the following approximation result.

Proposition 2.16 [20, Proof of Theorem 4.13] With notation as in Definition–Proposition 2.15, the
Duistermaat–Heckmann measures DH.{Xm; {Lm/ converge weakly to DH.F/ as m!C1.

Following Boucksom and Jonsson, it is very convenient to use the non-Archimedean metric defined
by filtrations. Any filtration (in the sense of Definition 2.1) defines a non-Archimedean metric on
LNA!X NA. If we denote by �triv the non-Archimedean metric associated to the trivial filtration, then
any non-Archimedean metric � on LNA is represented by the real valued function � ��triv on X div

Q .
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Definition 2.17 Let F D FR� be a filtration. For any w 2 VVal.X /, define the non-Archimedean metric
associated to F by

.�F
m��triv/.w/D�

1

m
G.w/.zIF

m/D�
1

m
G.w/.IF.eC/

m t�meC/D�
1

m
G.w/.IF.eC/

m /C eC;(56)

.�F
��triv/.w/D�G.w/.zIF

�
/D lim

m!C1
�F

m.w/:(57)

In particular, if v 2 VVal.Z/ and F D Fv, then we write �v D �Fv .

Note that �F
m D �F.{Xm;{Lm/

converges to � as m!C1. Moreover, if (for simplicity) we assume that
SkRm!Rkm is surjective for all k;m� 1, then it is an increasing sequence in the sense that if m1 jm2,
then �F

m1
� �F

m2
. If �F is continuous, then �m converges to � uniformly by Dini’s theorem.

The following transformation rule can be easily verified.

Lemma 2.18 For any filtration F and any .a; b/ 2R>0 �R and v 2X div
Q ,

(58) .�aF.b/��triv/.v/D a.�F ��triv/
�
v

a

�
C b:

2.3 Twist of filtrations

Let F D FR� be a T–equivariant filtration, which means that F�Rm is a T–invariant subspace of Rm

for any x 2R. For ˛ 2MZ DN _Z , denote the weight space by

(59) .Rm/˛ D fs 2Rm j � ı s D �˛s for all � 2 .C�/r g:

Then we have

(60) .F�Rm/˛ WD fs 2 F�Rm j � ı s D �˛sg D F�Rm\ .Rm/˛;

and the decomposition

(61) F�Rm D

M
˛2MZ

.F�Rm/˛:

Definition 2.19 [52] For any � 2NR, the �–twist of F is the filtration F�R� defined by

(62) F�� Rm D

M
˛2MZ

.F�� Rm/˛; where .F�� Rm/˛ WD .F��h˛;�iRm/˛:

Example 2.20 If F is a T–equivariant R–test configuration, then F� is also an R–test configuration.

If F D F.X ;L;a�/ for a test configuration, then we can identify the data F� with the data .X ;L; a�C �/;
see [41]. If � 2 NZ, then .X ;L; a�C �/ is equivalent to the birational image of the .X ;L/ via the
birational transform �� W X Ü X , .z; t/! .��.t/ � z; t/; see [52].

Moreover, if we start with the trivial filtration Ftriv D F.XC;.�KX /C;�t@t /, then .Ftriv/� is equal to Fwt� .
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Definition 2.21 We say that a faithful valuation v in the sense of Definition 2.4 is adapted to the torus
action if for any f 2C.X /˛ we have v.f /D .˛; vrC1.f /; : : : ; vn.f // 2 Zr �Zn�r .

There always exists a faithful valuation that is adapted to the torus action. This can be constructed as
follows. First we choose a T–invariant Zariski-open set U of X as in [3]. Then by the theory of affine
T –varieties as developed in [2], there exists a variety Y of dimension n� r and a polyhedral divisor D
such that

(63) U D Spec˛2MZ
H 0.Y;O.D.˛///:

We can choose a faithful valuation vY on Y (for example via a flag of varieties as in [49]) and define, for
any f 2H 0.Y;O.D.˛//,

(64) v.f /D .˛; vY .f //:

Let v be such a valuation and �D�v.X;�KX / � Rn be the associated Newton–Okounkov body. If
p WRn DRr �Rn�r !Rr denotes the natural projection, then we have

(65) p.�/D P Dmoment map of the T–action on .X;�KX /:

The following lemma was already observed in [81], in which a faithful valuation adapted to the torus
action was constructed using equivariant infinitesimal flags in the sense of [49]. Here we give a different
and direct proof for the reader’s convenience.

For simplicity of notation, we write y D .y1; : : : ;yn/D .y
0;y00/ 2Rr �Rn�r and set

(66) hy0; �i D

rX
iD1

y0i�
i
DW hy; �i:

In the last identity, we identify � 2NR DRr with .�; 0/ 2Rn.

Lemma 2.22 [81] If v is a Zn–valued valuation adapted to the torus action , then for any y 2�.�KX /,

(67) GF� .y/DGF .y/Chy
0; �i:

Proof For any t >GF .y/D �, there exists � > 0 such that y 62�.F .t��//. Let ı1 D dist.y; �.F .t��///.
Choose any f 2 F .tChy

0;�i/m

�
Rm;˛ D F .tChy0;�i/m�h˛;�iRm;˛. Consider two cases:

(i) h˛=m; �i � hy0; �i< �. Then v.f / 2�.t��/, so jv.f /=m�yj � ı1.

(ii) h˛=m; �i � hy0; �i � �. Then jv.f /=m�yj � j˛=m�y0j � �=j�j.

The two cases together imply that y 62�.F .tChy
0;�i/

�
/. So we get the inequality GF� �GF Chy

0; �i.

On the other hand, since F D .F�/�� , we also get GF �GF� �hy
0; �i. So we get the desired identity.

2.4 Asymptotically equivalent filtrations

In this section we recall Boucksom and Jonsson’s characterization in [20; 21] of asymptotically equivalent
filtrations; see also [1].
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For a filtration FRm of Rm, we say that a basis B D fs1; : : : ; sNm
g of Rm is compatible with FRm if

for any � 2R there exists a subset of B that spans F�Rm.

Let Fi D fFiRmg for i D 0; 1 be two filtrations. For each m, we can find a basis B WD fs1; : : : ; sNm
g

of Rm that is compatible with both FiRm with i D 0; 1. We refer to [1; 18] and the discussion in Section 5
for more details. Assume that for each i D 0; 1, we have sk 2 F

�k;i

i nF>�k;i . Then B is an orthogonal
basis for the non-Archimedean norm k � km;i corresponding to Fi : for any s D

P
k aksk 2Rm,

(68) kskm;i D e�maxf�js2F�Rmg Dmax
k
jak j0e��k;i ;

where j � j0 is the trivial norm on C.

Following [24; 20], we define the set of successive minima of F1 with respect to F0 to be the set
f�k;1��k;0g. The following result was proved in [18; 24].

Theorem 2.23 [18; 24] As m!C1, the measures

(69)
n!

mn

NmX
kD1

ı.�k;1��k;0/=m

converge weakly as m!C1 to a relative limit measure , denoted by d� WD d�.F0;F1/.

Corollary 2.24 For any p 2 Œ1;1/, the limit

(70) dp.F0;F1/ WD lim
m!C1

�
n!

mn

NmX
kD1

m�1
j�k;1��k;0j

p

�1=p

exists and is given by

(71) dp.F0;F1/D

�Z
R
j�jp d�.�/

�1=p

:

Definition 2.25 [20, Section 3.6] F0 and F1 are asymptotically equivalent if d2.F0;F1/D 0.

In fact, by [20] the dp are comparable to each other for all p 2 Œ1;1/, and the above equivalence can be
defined by using any p 2 Œ1;C1/.

Theorem 2.26 [20, Theorem 4.16] Assume that X is smooth. Let F0 and F1 be two filtrations on R.
Then F0 and F1 are asymptotically equivalent if and only if �F1

D �F2
.

We also need:

Proposition 2.27 If Fvi
for i D 0; 1 are two R–test configurations associated to two valuations vi 2

VVal.X / for i D 0; 1, then �Fv1
D �Fv2

C c for a constant c 2 R if and only if v1 D v2 (and hence
Fv1
D Fv2

).
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Proof Recall that �Fvi
D limm!C1 �

Fvim is an increasing limit along the subsequence mD 2k , where
for any w 2 Val.X /,

(72) �
Fvi
m .w/D�

1

m
G.w/

�X
�2N

I
Fvi

m;�
t��

�
;

where I
Fvi

m;�
is the base ideal of the sublinear system F�vi

Rm. Note that it is easy to see that v1 D v2 if
and only if a�.v1/D a�.v2/ for any � 2N, where a�.vi/D ff 2OX j vi.f /� �g.

For any d 2N, by choosing m� 1 we can assume that mL˝ad .v1/ is globally generated. Then we get
I
Fv1

m;d
D ad .v1/. From this it is also clear that �Fvi

.vi/D 0. So we get

�cD��Fv1
.v2/���

Fv1

2k .v2/D
1

2k
G.v2/

�X
�

I
Fv1

2k ;�
t��

�
�

1

2k

�
v2.I

Fv1

2k ;d
/�d

�
D

1

2k

�
v2.ad .v1//�d

�
:

Since k can be arbitrarily large, we get �c � 0, ie c � 0. Switching v1 and v2 in the above argument,
we get c � 0. So c D 0. We then have the inequality v2.ad .v1//� d for any d 2N. This easily implies
v2 � v1. Switching v1 and v2, we get v1 � v2. Hence v1 D v2, as required.

Corollary 2.28 Assume that X is smooth. With the same notation as above , if Fv1
is asymptotically

equivalent to Fv2
, then v1 D v2.

More recently, this result has been proved for any Q–Fano variety:

Lemma 2.29 [15, Lemma 3.16; 21, Theorem C] For any Q–Fano variety , if vi for i D 1; 2 are two
valuations in VVal.X / such that Fv1

is asymptotically equivalent to Fv2
, then v1 D v2.

Remark 2.30 In the first version of this paper, Corollary 2.28 was stated for any Q–Fano variety.
However, it has been pointed out by experts that the validity of Theorem 2.26 from [20] for singular
Q–Fano varieties depends on a still conjectural property called continuity of envelopes. Fortunately,
recently, in [15; 21], the result in Lemma 2.29 has been given a direct proof without using the continuity
of envelopes.

2.5 Non-Archimedean invariants of filtrations

For any filtration F on RDR.X;�KX /, we set

LNA.�F /DLNA.F/DLNA
X .F/D inf

v2X div
Q

�
AX .v/C .�F ��triv/.v/

�
;(73)

zS NA.�F /D zS NA.F/D zS NA
X .F/D�log

�
1

V

Z
R

e�� DH.F/
�
D�log

�
n!

V

Z
�

e�GF .y/ dy

�
;(74)

ENA.�F /DENA.F/DENA
X .F/D 1

V

Z
R
� �DH.F/D n!

V

Z
�

GF .y/ dy;(75)

H NA.�F /DH NA.F/DH NA
X .F/DLNA.F/� zS NA.F/;(76)

DNA.�F /DDNA.F/DDNA
X .F/DLNA.F/�ENA.F/:(77)

Geometry & Topology, Volume 28 (2024)



558 Jiyuan Han and Chi Li

The above functionals are by now well known, and we use notation following that in [19; 43]. The
formula involving GF follows from Theorem 2.5(ii).

Proposition 2.31 (see [37; 20; 52]) For a filtration F , with the notation from Definition 2.17, we have
the following convergence: the sequence from Definition–Proposition 2.15 satisfies , for any F 2 f zS ;Eg,

(78) lim
m!C1

F NA.�F
m/D F NA.�F /:

Moreover , we have

(79) lim
m!C1

LNA.�F
m/�LNA.�F /:

Proof By Proposition 2.16 we know that DH.F.Xm;Lm;�m// converges weakly to DH.F/ as m!C1,
from this we easily get the convergence of zS NA and ENA.

The inequality (79) follows easily from the inequality �F
m � �

F .

For our later argument, we will use a different formulation of the LNA–functional studied in [80; 15]. For
any filtration F , denote by IF.x/

�
D fIF

m;mxg the graded sequence of base ideals defined in (52). In [79],
Xu and Zhuang introduced the functional

(80) yLNA.F/D supfx 2R j lct.X I IF.x/
�

/� 1g;

and proved that yLNA.F/�LNA.F/. More recently it has been shown that in fact the two functionals are
identical to each other. More specifically, we will need the following comparison results.

Proposition 2.32 [79, Proposition 4.2 and Theorem 4.3; 15, Lemma 3.8] For any filtration F , we have:

(i) AX .E/ � yL
NA.FordE

/ for any prime divisor E over X , with equality holding if ordE induces a
weakly special test configuration.

(ii) yLNA.F/DLNA.F/ for any filtration F .

For later purposes, we also introduce, for any a> 0,

ENA
k .F/D 1

V

Z
R

xk DH.F/D lim
m!C1

1

Nm

X
i

�
�
.m/
i

m

�k

;(81)

Q.a/.F/D 1

V

Z
R

e�ax DH.F/D 1

V

C1X
kD0

.�1/k

k!
akENA

k .F/;(82)

Q.F/ WDQ.1/.F/:(83)

Note that ENA
1
.F/DENA.F/ and zS NA.F/D�log Q.F/.

For any v2 VVal.X / (resp. test configuration .X ;L; a�/), we will often write F NA.v/ (resp. F NA.X ;L; a�/)
for the above various functionals F NA.F/ with F being the corresponding filtration.
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Example 2.33 If .X ;L; a�/ is a normal R–test configuration, then we have

ENA.X ;L; a�/D a �
xL�nC1

.nC 1/V
;(84)

LNA.X ;L; a�/D a � .lct.X ;�KX �LIX0/� 1/:(85)

If .X ;X0/ has log canonical singularities and KX CLD
P

i eiEi (which is centered at X0), then

(86) LNA.X ;L; a�/D a �min
i

ei :

Example 2.34 Let F be a special R–test configuration and let .X0; �/D .XF;0; �F / be the corresponding
central fiber. Assume that F jX0

DF 0wt�R
0.��/; see (33). Let z' be any .S1/r –invariant smooth positively

curved Hermitian metric on �KX . Then with the notation as in the paragraph containing (9), we have

LNA
X .F/DLNA

X0
.F jX0

/D

R
X0
�z'.�/e

�z'R
X0

e�z'
� � D��;(87)

ENA
X .F/DENA

X0
.F jX0

/D
1

V

Z
X0

�z'.�/.ddc
z'/n� �;(88)

zS NA
X .F/D zS NA

X0
.F jX0

/D�log
�

1

V

Z
X0

e���.ddc
z'/n
�
� �:(89)

The above identity is well known if F comes from a special test configuration. For more general F , one
can use a sequence of special test configuration to approximate and get the above formula.

Corresponding to (58), we have the following simple transformation rule, which can be checked easily
from the defining expressions of the functionals.

Lemma 2.35 For any .a; b/ 2R>0 �R, we have

LNA.aF.b//D yLNA.aF.b//D aLNA.F/C b;(90)

zS NA.F.b//D zS NA.F/C b;(91)

H NA.F.b//DH NA.F/:(92)

We also note:

Lemma 2.36 The function a 7!H NA.aF/ is a convex function on R�0.

Proof Since LNA.aF/ is linear in a by (90), we just need to show that f .a/ WD � zS NA.aF/ is convex
in a 2R�0. By (25) and (74), we get

f .a/D log
�

n!

V

Z
�

e�aG.y/ dy

�
;
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where G DG.y/DGF .y/. So we can calculate

f 00.a/D

R
�G2e�aG dyR
� e�aG dy

�

�R
�Ge�aG dy

�2�R
� e�aG dy

�2 � 0

by Hölder’s inequality.

Note the first identity in (90) comes from Proposition 2.32. Moreover, combining [52, Lemma 3.10] and
Proposition 2.32, we have the following invariance property under the twisting.

Lemma 2.37 Let F be a T–equivariant filtration. For any � 2NR, we have

(93) LNA.F�/D yLNA.F�/DLNA.F/:

As a consequence , we have

(94) LNA.Fwt� /D
yLNA.Fwt� /D 0:

The following lemma is a prototype uniqueness result in this paper, and can be seen as a generalization
of the uniqueness of Kähler–Ricci soliton vector fields shown by Tian and Zhu [71] (the case when
F D Ftriv). See Section 2.6 for more discussion.

Lemma 2.38 Let F be a T–equivariant filtration. Then the function � 7!H NA.F�/ on NR admits a
unique minimizer.

Proof By (93), LNA.F�/ is constant in �. Using the identity (67) and (74),

� zS NA.F�/D log
�

n!

V

Z
�

e
�GF� .y/ dy

�
D log

�
n!

V

Z
�

e�GF .y/�hy;�i dy

�
:

It is easy to use this expression to show that f .�/ WD � zS NA.F�/ is strictly convex in � 2 NR, which
implies the uniqueness of minimizer. To prove the existence of minimizer, we need to show that f .�/ is
proper, ie limj�j!C1 f .�/DC1. To see this, recall that we have the vanishing

(95)
Z

X

�z'.�/e
�z'
D�

Z
X

L�e
�z'
D 0:

This implies that 0> infX �z'.�/D inf�hy; �i if � ¤ 0, which indeed implies the properness.

Definition 2.39 We say that a filtration F is normalized if

(96) LNA.F/D 0:

A test configuration .X ;L; a�/ is normalized if F.X ;L;a�/ is normalized.

With the above discussion, the following lemma is easy to prove.
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Lemma 2.40 (i) Any special test configuration .X ;�KX / is normalized. More generally, a special
R–test configuration F (see Definition 2.8) if and only if � D 0 in (33).

(ii) For any filtration F , the shift F.�LNA.F// is normalized. If F is normalized , then so are aF for
any a> 0, and any twist F� .

As a consequence of this approximation result in Proposition 2.31, it is convenient for us to introduce:

Definition–Proposition 2.41 For any Q–Fano variety X , we define

(97) h.X /D inf
.X ;L;a�/

H NA.X ;L; a�/D inf
F

H NA.F/;

where .X ;L; a�/ ranges over all test configurations , and F ranges over all filtrations or R–test configura-
tions.

The following lemma is similar to [31, Lemma 2.5].

Lemma 2.42 For any filtration F , we have

(98) zS NA.F/�ENA.F/ and H NA.F/�DNA.F/:

The identities hold true if and only if F.c/ is asymptotically equivalent to the trivial filtration for some
c 2R; see Definition 2.25.

Proof The first inequality, which implies the second, follows from the concavity of the logarithmic func-
tion. When the identity holds, the DH measure DH.F/ is a Dirac measure V �ıc . Then d2.F.c/;Ftriv/D 0,
which by Definition 2.25 means that F.c/ is asymptotically equivalent to the trivial filtration.

Based on the work in [29; 28; 40], Dervan and Székelyhidi proved:

Theorem 2.43 [31] Assume that X is a smooth Fano manifold. There is an identity

(99) h.X / WD inf
.X ;L;a�/ special

H NA.X ;L; a�/D� inf
!2c1.X /

Z
X

h!eh!!n;

where ! ranges over smooth Kähler metrics from c1.X / and h! is the normalized Ricci potential of !.
Moreover , the infimum is achieved by a special test configuration constructed via the Gromov–Hausdorff
limit Kähler–Ricci soliton from [29; 28].

More recently, Hisamoto [43] gave a different proof of (99) based on the destabilizing geodesic rays
constructed from [30].

Remark 2.44 Our sign convention differs from that of Dervan–Székelyhidi and Hisamoto by a minus.
Dervan and Székelyhidi defined a non-Archimedean functional for general R–test configuration by
mimicking Tian’s CM weight (or the so-called Donaldson–Futaki invariant). But in such generality, their
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normalization seems imprecise. Differently from their definition, for any test configuration .X ;L; a�/
one could define

(100) zH NA.X ;L; a�/D a

V
.K xX=P1 � xL�nC xL�nC1/� zS NA.X ;L; a�/:

By the same argument as [19, Proposition 7.32], we have

(101) H NA.X ;L; �/� zH NA.X ;L; �/;

with strict inequality if .X ;L; �/ is anticanonical. Moreover, by (98) we also get

(102) zH NA.X ;L; �/� CM.X ;L; �/D 1

V

�
K xX=P1 � xLn

C
n

nC1
xL�nC1

�
;

with the identity being true only if .X ;L; �/ is trivial. One advantage of H NA over zH NA is that the
former can be defined for any filtration, not necessarily finitely generated. Due to this reason, we will not
use zH NA in this paper.

2.6 g–Ding-stability and Kähler–Ricci solitons

Let F be a T–equivariant filtration. For any � 2R, we have a (finite) decomposition

(103) F�Rm D

M
˛2MZ

F�Rm;˛:

Let P be the moment polytope of .X;�KX / with respect to the T–action. Let g be a smooth positive
function on P . Fix a faithful Zn–valuation that is adapted to the torus action (see Definition 2.21) and let
��Rn be the Okounkov body that satisfies (65): p.�/DP , where p WRn!Rr is the natural projection.
Still denote by g the function p�g on �. Define the g–volume of graded linear series fF .t/Rmg as

volg.F .t// WD lim
m!C1

X
˛

g
�
˛

m

�dimFmtRm;˛

mn=n!
D n! �

Z
�.F.t//

g.y/ dyLeb DW n! � volg.�.F .t///:

Then, as in the g � 1 case, we have the convergence

DHg.F/ WD lim
m!C1

X
˛

g
�
˛

m

�
ı
�
.m;˛/

i
=m
D�dvolg.F .t//D n! � .GF /�.g.y/ dyLeb/:

We also set

Vg WD n! � volg.�/D n! �

Z
�

g.y/ dyLeb D

Z
R

DHg.F/;(104)

ENA
g .F/ WD n!

Vg

Z
�

GF .y/g.y/ dyLeb D
1

Vg

Z
R
� �DHg.F/;(105)

DNA
g .F/ WDLNA.F/�ENA

g .F/:(106)

If .X ;L; �/ is a test configuration, then we set DNA
g .X ;L; �/DDNA

g .F.X ;L;�//.
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Definition 2.45 .X; �/ is g–Ding-semistable if DNA
g .X ;L; �/�0 for any T–equivariant test configuration

.X ;L; �/ of .X;�KX /.

.X; �/ is g–Ding-polystable if it is g–Ding-semistable, and DNA
g .X ;L; �/D 0 for a T–equivariant weakly

special test configuration (see Definition 2.12) only if .X ;L; �/ is a product test configuration.

The following result was proved by adapting the techniques of MMP from [56; 37; 7].

Theorem 2.46 (see [39]) To test the g–Ding-semistability, or the g–Ding-polystability, of .X; �/, it
suffices to test over all special test configurations.

We have the following valuative criterion:

Theorem 2.47 [39] X is g–Ding-semistable if and only if for any v 2 .X div
Q /T , we have

(107) ˇg.v/ WDAX .v/�
1

Vg

Z C1
0

volg.F .t/v / dt � 0:

Now we use our notation to reformulate the holomorphic invariants of Tian and Zhu [71] in the study of
Kähler–Ricci solitons. We refer to [71; 8; 39] for more details and references. Let X be a Q–Fano variety
with an effective T–action. We use the same notation, such as an .S1/r –invariant smooth Hermitian
metric z' on �KX , a moment polytope P �MR, a function �z'.�/D L�e

�z'=e�z' , etc. We identify any
� 2NR with the corresponding holomorphic vector field on X .

A Kähler–Ricci soliton on .X; �/ is a positively curved bounded Hermitian metric e�' on �KX that
satisfies the equation

(108) e'.ddc'/n D e�'.�/;

where �'.�/D �z'.�/C �.' � z'/. Over X reg, ' is smooth [6; 39] and satisfies the identity

(109) Ric.ddc'/� ddc' D�ddc�'.�/:

As a consequence, the family of metrics '.s/ WD ��.s/�' satisfies the normalized Kähler–Ricci flow,

(110) d

ds
ddc'.s/D�Ric.ddc'.s//C ddc'.s/:

For any � 2NR, we set g�.x/D e�hx;�i D e�
Pr

iD1 �
i xi , which is a smooth positive function on P , and

write Fg� as F� for F 2 fL;Dg etc, and V� WDVg� . Tian and Zhu [71] defined a modified Futaki invariant
as an obstruction to the existence of Kähler–Ricci solitons on .X; �/: for any � 2NR,

(111) Fut�.�/ WD �
1

V�

Z
X

�z'.�/e
��z'.�/.ddc

z'/n DDNA
� .wt�/;

where V� D
R
X e��z'.�/.ddc z'/n. The second identity follows by noting that DNA

�
.wt�/ D �ENA

�
.wt�/

because of the vanishing LNA.wt�/D 0.

Remark 2.48 Again, here we have used the negative sign convention compared to [71].
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Fut� does not depend on the choice of z' and .X; �/ admits a KR soliton only if Fut� � 0 on NR.
Moreover, by [71, Lemma 2.2] the soliton vector field is a priori uniquely determined by minimizing the
strictly convex functional (Tian and Zhu didn’t use the logarithm) on NR (see Lemma 2.38), which is the
antiderivative of � 7! Fut�.�/,

(112) � 7! log
�

1

V

Z
X

e��z'.�/.ddc
z'/n
�
D log

�
1

V

Z
R

e�� DH.Fwt� /

�
D� zS NA.wt�/:

Recall also that LNA.wt�/D yLNA.wt�/� 0 on NR; see (94). Combining these discussions we get the
derivative identity

(113) d

ds
H NA.wt�Cs�/D

d

ds
H NA.wt�Cs�/DDNA

� .wt�/D Fut�.�/:

For simplicity of notation, we introduce:

Definition 2.49 We say that .X; �/ is K–semistable (resp. K–polystable) if X is g�–Ding-semistable
(resp. g�–Ding-polystable).

Remark 2.50 Since by Theorem 2.46 it is enough to test the stability on special test configurations,
this definition coincides with the original modified K–(poly)stability adopted by Tian as well as Berman,
Witt and Nyström, and others. To respect the original notation, we will just call .X; �/ K–(poly)stable,
although we will also freely use the notion of Ding-(poly)stability.

By [8; 31], when X is smooth, the Yau–Tian–Donaldson conjecture is true, ie K–polystability is equivalent
to the existence of Kähler–Ricci solitons. For singular X , we proved in [39] a version of the Yau–Tian–
Donaldson conjecture involving Aut.X; �/0–uniform Ding-stability.

3 H NA invariant and MMP

3.1 An intersection formula for higher moments

Let .X ;L; �/ be any normal ample test configuration. Choose a smooth (semipositive) curvature form !

in c1.LjX0
/. Let � be the Hamiltonian function for � with respect to !, so ��! D .

p
�1=2�/ x@� . By the

equivariant Riemann–Roch formula, we get

ENA
k .X ;L/ WDENA

k .F.X ;L//D lim
m!C1

1

Nm

X
i

�
�
.m/
i

m

�k

D
1

V

Z
X0

�k!n:

To motivate our calculations, we will first give a direct proof of two identities which can already be
derived from the above discussion.

Lemma 3.1 We have

ENA
k .X ;L/D 1

V

Z
R

xk DH.F .x//;(114)

ENA.X ;L/DENA
1 .X ;L/D 1

V

xL�nC1

nC 1
:(115)
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Proof When we change L to LC dX0, F is changed to F.d/, and both sides of the above identities
have d added to them. So we can assume that xL is very ample over xX . Then we have

(116) xX D Proj
�M

m�0

C1M
jD0

t�jFj Rm

�
and xLd DO xX .1/.

For simplicity of notation, we write

(117) fk.m/D

NmX
iD1

.�
.m/
i /k D

X
jD0

j k.dimFj Rm� dimFjC1Rm/

D

X
jD1

.j k
� .j � 1/k/ dimFj Rm D

X
jD1

.kj k�1
CO.j k�2// dimFj Rm:

We easily get the identity

(118) ENA
k D

1

V
lim

m!C1

n!

mnCk
fk.m/D

1

V

Z 1
0

kxk�1 vol.F .x/R�/ dx D
1

V

Z
R

xk.�dvol.F .x///:

Moreover, we have the dimension formula

Nm WD h0. xX ;mxL/D
C1X
jD0

dimFj Rm D
mnC1

n!

Z C1
0

vol.F .x/R�/ dxCO.mn/;

which, by the Riemann–Roch formula, gives the identity

(119) 1

V

xL�nC1

nC 1
D

1

V

Z C1
0

vol.F .x/R�/ dx D
1

V

Z C1
0

x DH.F/:

The formula (115) goes back to Mumford’s study of GIT [61], and has also been used in the study of
K–stability. The following result is a generalization of it to higher moments. We will use the following
notation as in [39]. Let C�!CkC1 n f0g ! Pk be the principal C�–bundle and set

(120) . xX Œk�; xLŒk�/ WD .. xX ; xL/� .CkC1
n f0g//=C�:

Remark 3.2 Since the C�–action on xX moves the fiber xX ! P1, the situation here is different from the
situation in [19, Corollary 3.4] or [39], where a similar fiber construction with respect to a vertical torus
action is used.

Proposition 3.3 Let .X ;L/ be a normal ample test configuration. For any k � 1, we have the intersection
formula

(121) ENA
k .X ;L/D 1

V

k!n!

.nC 1/!
.xL Œk�1�/�nCk :
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Proof We use the notation from the above proof and without loss of generality assume that xL is very
ample over xX .

The weights f�˛ j ˛ D 1; : : : ;Nmg and multiplicities of C�–action on H 0. xX ; xL/ are given according to
the isomorphism (44). By the identity (117), the weight of C� on det H 0. xX ;mL/ is given by

(122)
NmX
˛D1

�k�1
˛ D

C1X
jD0

j k�1 dimFj Rm D k�1fk.m/CO.mnCk�1/:

Choose a smooth Kähler metric � 2 c1.xL/ on xX and let ‚ be the Hamiltonian function for �. Then by
the equivariant Riemann–Roch formula, we get

(123) lim
m!C1

.nC 1/!

mnC1

X
˛

�
�˛

m

�k�1

D

Z
xX
‚k�1�nC1

D
.k � 1/!.nC 1/!

.kC n/!

Z
xX Œk�1�

.�C‚t/nCk

D
.k � 1/!.nC 1/!

.kC n/!
.xLŒk�1�/�nCk :

Combining (118), (122) and (123), we get

ENA
k D

1

V
lim
k!

n!

mnCk
k
X
˛

�k�1
˛ D

1

V

k

nC1

.k � 1/!.nC 1/!

.kC n/!
.xLŒk�1�/�nCk

D
1

V

k!n!

.kC n/!
.xLŒk�1�/�nCk :

Recall from (82) that zS NA.X ;L; a�/D�log Q.a/, where

Q.a/
D

1

V

Z
X0

e�a�!n
D

1X
kD0

.�1/kak 1

V

Z
X0

�k

k!
!n
D

X
k

.�1/k
ak

k!
ENA

k :

Proposition 3.4 Let .X ;L�; a�/�2.��;�/ be a family of normal test configurations of .X;�KX /, with a
fixed total space and varying polarization. Assume that X0 D

P
i biEi for irreducible components Ei ,

and that L� is differentiable with respect to �. Then we have the derivative formula

(124) d

d�
zS NA.X ;L; a�/D a

P
i eiQ

.a/
i

Q.a/
;

where Q
.a/
i D .1=V /

R
Ei

e�a�!n.

Proof We use the intersection formula (121) to get

V �
d

d�
ENA

k D
d

d�

k!n!

.kC n/!
.xLŒk�1�/�nCk

D
k!n!

.kC n� 1/!
.xLŒk�1�/�nCk�1

�
PxLŒk�1�

D
k!n!

.kC n� 1/!

X
i

ei

Z
E
Œk�1�

i

.�C‚t/nCk�1
D k

X
i

ei

Z
Ei

�k�1!n;
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where E
Œk�1�
i D .Ei �Ck�1 n f0g/=C�. So we get the desired formula

d

d�
Q.a/

D

X
k

.�1/k
ak

k!

d

d�
ENA

k D

X
kD1

.�1/k
ak

.k � 1/!

X
i

ei
1

V

Z
Ei

�k�1!n

D�a
X

i

ei
1

V

Z
Ei

X
jD0

.�1/j

j !
.a�/j!n

D�a
X

i

ei
1

V

Z
Ei

e�a�!n
D�a

X
i

Q
.a/
i :

The termwise differentiation and the change of summation are valid because of absolute convergence.

3.2 Decreasing of H NA along MMP

Theorem 3.5 Let G be a reductive group and .X ;L; a�/ be a G–equivariant normal test configuration.
There exists a G–equivariant special test configuration .X s;Ls; as�s/ such that

(125) H NA.X ;L; a�/�H NA.X s;Ls; as�s/:

Moreover , if X0 is reduced , then the identity holds true if X is already a special test configuration.

Proof For simplicity of notation, we assume G is trivial. The general case is obtained by running the
G–equivariant MMP in the following arguments.

Step 1 Choose a semistable reduction of X ! C. By this, we mean that there is an integer d and a
G–equivariant log resolution of singularities zX ! X .d1/ WD .X �C;t!td1 C/norm (see (49)) such that
.zX ; zX0/ is simple normal crossing. In particular, X .d1/

0
is reduced. By using the identity (51) and

Lemma 2.35 we easily get

(126) H NA.X .d1/;L.d1/; a�.d1/=d1/DH NA.X ;L; a�/:

Step 2 In this step, we show that there exist d1 2Z>0, a projective birational C�–equivariant morphism
� W X lc! X .d1/ and a normal, ample test configuration .X lc;Llc/=C for .X;L/, such that

(127) H NA.X .d1/;L.d1/; a�.d1/=d1/�H NA.X lc;Llc; a�lc=d1/:

Moreover, if the equality holds, then .X .d1/;L.d1// is isomorphic to .X lc;Llc/, and hence .X ;X0/ is
already log canonical.

We run a C�–equivariant MMP to get a log canonical modification � lc W X lc! X .d1/ such that .X lc;X lc
0
/

is log canonical and KX lc is relatively ample over X .d1/. Set E DKX lc C .� lc/�LD
Pk

iD1 eiX0;i with
e1 � e2 � � � � � ek and Llc

�
D .� lc/�L.d1/C �E. Then since E is relatively ample over X .d1/, L� is

ample over X lc for 0< �� 1. So

LNA.X lc;Llc
� ; a�

lc=d1/D
a

d1
LNA.X lc;Llc

� ; �
lc/D

a

d1
.1C�/e1:

By definition (76), we have

zS NA.X lc;Llc
� ; a�

lc=d1/D�log Q.ad�1
1
/; H NA.X lc;Llc

� ; a�
lc=d1/D

a.1C�/e1

d1

C log Q.ad�1
1
/:
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We then use (124) to calculate

d

d�
H NA.X lc;Llc

� ; a�
lc=d1/D

ae1

d1

�
a

d1

P
i eiQ

.ad�1
1
/

iP
i Q

.ad�1
1
/

i

D�
a

d1

P
i.ei � e1/Q

.ad�1
1
/

i

Q.ad�1
1
/

� 0:

The last identity holds if and only if ei � e1, and hence .X .d1/;L.d1// Š .X lc;Llc/. In this case,
.X .d1/;X .d1/

0
/ is log canonical, which implies that .X ;X0/ is already log canonical, by the pullback

formula for the log differential; see [56, page 210].

Step 3 With the .X lc;Llc/ obtained from the first step, we run a relative MMP with scaling to get a
normal, ample test configuration .X ac;Lac/=P1 for .X;�KX / with .X ac;X ac

0
/ log canonical such that

�KX ac �Q;C Lac. More concretely, we take q � 1 such that Hlc D Llc � .q C 1/�1.Llc CKX lc/ is
relatively ample. Set X 0 D X lc, L0 D Llc, H0 D Hlc and �0 D qC 1. Then KX0 C �0H0 D qL0. We
run a sequence of KX0–MMP over C with scaling of H0. Then we obtain a sequence of models

X 0 Ü X 1 Ü � � �Ü X k

and a sequence of critical values

�iC1 Dminf� jKX i C�Hi is nef over Cg

with qC 1D �0 � �1 � � � � � �k > �kC1 D 1. For any �i � � � �iC1, we let Hi be the pushforward
of H to X i and set

(128) Li
� D

1

��1
.KX i C�Hi/D

1

��1
.KX i CHi/CHi

DW
1

��1
ECHi :

Write E D
Pk

jD1 ejX i
0;j

with e1 � e2 � � � � � ek . Then we have .d=d�/Li
�
D�.1=.�� 1/2/E and

LNA.X i ;Li ; a�i=d1/D
a�

��1
e1:

So we can again use (124) to calculate

d

d�
H NA

�
X i ;Li

�;
a�i

d1

�
D�

a

d1.�� 1/2
e1C

a

d1.�� 1/2

P
i eiQ

.ad�1
1
/

i

Q.ad�1
1
/

D
a

d1.�� 1/2

P
i.ei � e1/Q

.a/
i

Q.a/
� 0:

The last identity holds only if ei � e1, which implies .X lc;Llc/Š .X ac;LacC e1X ac
0
/.

Step 4 With the test configuration .X ac;Lac/ obtained from Step 2, there exists a d22Z>0 and a projective
birational TC �C�–equivariant birational map .X ac/.d2/ Ü X s over P1 such that .X s;�KX s / is a
special test configuration and

(129) H NA
�
X ac;Lac;

a�

d1d2

�
�H NA

�
X s;Ls;

a�s

d1d2

�
:
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As in [56], this is achieved by doing a base change and running an MMP. Let ED�KX s=P1�.�KX 0=P1/.
Then E � 0 by the negativity lemma. So L0

�
D�KX 0=P1 C�E, and

(130) lct
�
X 0;L0�;

a�0

d1d2

�
D

a

d1d2
�e1:

So, as before, we get

d

d�
H NA

�
X 0;L0�;

a�0

d1d2

�
D

a

d1d2
e1�

a

d1d2

P
i eiQ

.ad�1
1
/

i

Q.ad�1
1
/
D�

a

d1d2

P
i.ei � e1/Q

.ad�1
1
/

i

Q.ad�1
1
/

� 0:

The last identity holds only if ei � e1 which implies .X ac;Lac/Š .X s;Ls/.

Corollary 3.6 We have the identity

(131) h.X /D inf
.X ;L;a�/ special

H NA.X ;L; a�/:

Lemma 3.7 For any normal test configuration .X ;L; �/, there exists a unique a� > 0 such that

(132) H NA.X ;L; a��/D inf
c>0

H NA.X ;L; a�/DWH NA
� .X ;L/:

As a consequence , we have

(133) h.X /D inf
.X ;�KX / special

H NA
� .X ;L/:

Proof By taking normalization of a fiber product, without loss of generality we can assume that X
dominates XC WDX �C by a C�–equivariant birational morphism � W X !XC .

Choose a C�–equivariant resolution of singularities � W zX ! X such that the pair .zX ; zX red
0
/ has simple

normal crossing singularities. Set z�D � ı�. Then we can write

KzX D z�
�KXC C

X
i

aiEi C

X
j

a0j E0j ; ��X0 D

X
i

biEi ; ��LD z��.�KXC /C
X

i

ciEi ;

where fEig are irreducible components of zX0 and fE0j g are horizontal exceptional divisors. Then we
have the identity (see [19, Proposition 7.29])

LNA.X ;L/D lct.X ;�.KX CL/IX0/� 1

Dmin
i

�
b�1

i A.X�C;X�f0g/.Ei/C b�1
i ordEi

�X
k

ckEk

��
Dmin

i

1C ai C ci

bi
� 1:

Because H NA is translation-invariant, by adding a multiple of X0 to L we can normalize � D �F to
satisfy LNA.�/D 0. So we get

(134) ci � bi � 1� ai

and, without loss of generality, c1 D b1� 1� a1. So

(135) �min Dmin
i

ci

bi
�

c1

b1

D 1�
a1C 1

b1

D 1�AXC .b
�1
1 ordE1

/D�AX .vE1
/� 0;
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where vE1
WD r.b�1

1
ordE1

/ is the restriction of the valuation ordE1
to the function field C.X /. Here we

used the identity between log discrepancies from [19, Proposition 4.11] and the assumption that X has
log terminal singularities.

Set F D F.X ;L;�/. Then according to (43), we have F.X ;L;a�/ D aF.X ;L;�/. Moreover, by (74), (76)
and (90), we get the expression

f .a/ WDH NA.aF/D aLNA.F/C log
�

1

V

Z C1
�min

e�a� DH.F/
�
:

By Lemma 2.36, f .a/ is convex in a 2 Œ0;C1/. If �min < 0, then f .a/ diverges to C1 as a!C1 by
the above expression. So f .a/ admits a unique minimum over Œ0;C1/.

If �min D 0, then by (135) AX .vE1
/D 0, which implies that vE1

is trivial so that

�max D ordE1

�X
k

ckEk

�
D c1 D 0D �min:

See [19, Theorem 5.16]. This implies that the normal test configuration .X ;L/ is equivalent to a trivial
test configuration and hence H NA.X ;L; a�/� 0.

4 A minimization problem for real valuations

In this section, we will introduce a minimization problem for valuations analogous to the normalized
volume functional in the local setting [51].

Definition 4.1 For any v 2 Val.X /, define

(136) ž.v/D

�
AX .v/� zS

NA.Fv/ if AX .v/ <C1;

C1 otherwise.

Note that by integration by parts we have

(137) e�
zS NA.Fv/ D

1

V

Z
R

e�x DH.Fv/D 1

V

Z C1
0

e�x.�dvol.F .x/v //

D 1�
1

V

Z C1
0

vol.F .x/v R�/e
�x dx � 1;

with identity if and only if v is trivial. So we can rewrite ž.v/ as

(138) ž.v/DAX .v/C log
�

1�
1

V

Z C1
0

e�x vol.F .x/v R�/ dx

�
:

Lemma 4.2 For any v 2X div
Q , we have the inequality

(139) H NA.Fv/� ž.v/:

Moreover , if .X ;�KX ; a�/ is a special test configuration , then equality holds for vD avX0
D a �r.ordX0

/.
(See Definition 2.12.)
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Proof The inequality follows immediately from

(140) inf
w
.A.w/C�v.w//�A.v/C�v.v/DA.v/:

When .X ;�KX ; a�/ is a special test configuration and v D avX0
, then

(141) LNA.X ;�KX ; a�/D aLNA.X ;�KX ; �/D a.lct.X IX0/� 1/D 0:

On the other hand, by (46),

(142) LNA.X ;�KX ; a�/DLNA.Fv.�A.v//DLNA.Fv/�A.v/:

So we get

(143) H NA.Fv/DLNA.Fv/� zS NA.Fv/DA.v/� zS NA.v/D ž.v/:

Lemma 4.3 For any � D �F and v 2X div
Q , we have the inequality

(144) zS .v/C�.v/� zS NA.�/:

Proof We use the same argument as in [52, Section 4.1]. Set  D �.v/. Then by the argument there, we
have �min D �min.F/�  and we can then estimate

e�
zS NA.�/

DQ.�/D
1

V

Z
R

e�x.�dvol.F .x///D e��min �
1

V

Z
�min

e�x vol.F .x/R�/ dx

� e� �
1

V

Z C1


e�x vol.F .x/R�/ dx � e� �
1

V

Z C1


e�x vol.F .x�a/
v / dx

D e� � e�
1

V

Z C1
0

e�x vol.F .t/v / dt D e�
1

V

Z C1
0

e�x.�dvol.F .t/v //

D e��.v/e�
zS NA.v/:

Proposition 4.4 For any Q–Fano variety, we have the identity

(145) h.X /D inf
v2X div

Q

ž.v/:

Proof For any test configuration .X ;L; a�/, by Theorem 3.5 there exists a special test configuration
.X s;Ls; as�s/ such that

(146) H NA.X ;L; a�/�H NA.X s;Ls; as�s/D ž.asvX s
0
/:

The last identity is from Lemma 4.2. This together with Corollary 3.6 implies identity (145).

Alternatively, recall that LNA.�/D infv2X div
Q
.AX .v/C �.v//. So for any � > 0 we can choose v such

that AX .v/C�.v/ <LNA.�/C �. We can then use v in (144) to get

LNA.�/� zS NA.�/�AX .v/C�.v/� �� .�.v/C zS .v//D ž.v/� �:

Since � is arbitrary, we can use (97) to get the identity (145).

Geometry & Topology, Volume 28 (2024)



572 Jiyuan Han and Chi Li

With the identity (145) and Proposition 2.32, we get:

Corollary 4.5 For any Q–Fano variety, we have the equality

(147) h.X /D inf
F

H NA.F/:

The next result should be compared to Lemma 3.7.

Proposition 4.6 For any v 2 VVal.X /, there exists a unique a� D a�.v/� 0 such that

(148) ž.a�v/D inf
a>0

ž.av/DW ž�.v/:

When ˇ.v/ � 0, then a� D 0, so that a�v is the trivial valuation and ž�.v/D 0. Otherwise , a�.v/ > 0

and ž�.v/ < 0.

Proof Consider the function defined on R�0 by

(149) f .a/DA.av/� zS NA.av/D aA.v/C log
�

1

V

Z C1
0

e�x DH.Fav/

�
D aA.v/C log

�
1

V

Z C1
0

e�ax DH.Fv/
�
:

We will show that a 7! f .a/ is convex and goes to C1 as a!C1. Now

f 0.a/DA.v/�

RC1
0 xe�ax DH.Fv/RC1
0 e�ax DH.Fv/

;

f 00.a/D

R
x2e�ax DHR
e�ax DH

�

� R
xe�ax DH

�2� R
e�ax DH

�2 D kx� xxk2L2.d�/
� 0;

where

(150) d� D
e�ax DHR
e�ax DH

and xx D

Z
x d�:

So f 00.a/D 0 if and only if av is trivial. Moreover, f 0.0/DA.v/� .1=V /
RC1

0 x DH.Fv/D ˇ.v/.
On the other hand, f .0/D 0 and we claim that lima!C1 f .a/DC1, which then implies the statement.
To prove this divergence, we set g.x/D V �1=n vol.F .x/R�/1=n. Then g.x/ is decreasing, and concave
on Œ0; �max� by Theorem 2.5. As a consequence, the subset fx 2 R�0 j g

0.x/ existsg is dense in R�0,
by Aleksandrov’s differentiability theorem for concave functions. Fix 0< �� �max such that g0.�/ exists
and g.�/ < g.0/D 1. Setting C D�g0.�/ > 0 and T D .1CC�/=C , define a function

(151) yg.x/D

8<:
1 if x 2 Œ0; ��;

1CC��Cx if x 2 .�;T �;

0 if x 2 .T;C1/:

Then yg.x/� g.x/ over Œ0;C1/, by concavity. Then we calculate to get

(152) a

Z C1
0

ygn.x/e�ax dx D 1� nC mn�1;
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where mk D
R T
� .1CC��Cx/ke�ax dx satisfies

mk D
1

a
e�a�

�
kC

a
mk�1 D

1

a
e�a�

�
kC

a

�
1

a
e�a�

�
.k�1/C

a
mk�2

�
:

Using induction we get mn�1 D a�1e�a�.1CO.a�1//. So

e�
zS NA
.Fav/D 1� a

Z C1
0

gn.x/e�ax dx � 1� a

Z C1
0

ygn.x/e�ax dx

D nC mn�1 D nCa�1e�a�.1CO.a�1//:

So we get � zS NA.Fav/� �log a� a�CO.1/, giving

(153) f .a/D ž.av/� .A.v/� �/a� log aCO.1/;

which approaches C1 as a!C1 if we choose 0< � <A.v/.

Remark 4.7 By the above proof, we get an estimate: for any C1 > 0, there exists a C2 D C2.C1; v/ > 0

such that for any w 2 Val.X / with w � C1v, we have

(154) a�.w/�
C2

A.v/
:

Corollary 4.8 We always have h.X /� 0, with equality holding if and only if h.X /D 0.

Proof By [37; 50], X is K–semistable if and only if ˇ.v/ � 0, which implies ž�.v/D 0. If X is not
K–semistable then there exists v0 such that ˇ.v0/ < 0. By Proposition 4.6, we then have ž�.v0/ < 0, which
implies h.X / < 0.

Lemma 4.9 If v computes h.X /, then v is the unique valuation , up to rescaling , that computes lct.a�.v//.

Proof Recall that lct.a�/D infw A.w/=w.a�.w//. For any w 2 Val.X /, assume that w.a�.v//D a> 0.
Then a�1w � v. By Proposition A.1, the function

w 7! zS NA.w/D�log 1

V

Z
R

e�� DH.Fw/

is strictly increasing on Val.X /. So we use the assumption to get
A.w/

w.a�.v//
DA.a�1w/DA.a�1w/� zS NA.a�1w/C zS NA.a�1w/

�A.v/� zS NA.v/C zS NA.v/DA.v/

D
A.v/

v.a�.v//
:

When the equality holds, then a�1w D v.

We now observe that the method developed in [14] can be used to prove:

Theorem 4.10 For any Q–Fano variety, there exists a minimizing valuation of ž which is quasi-
monomial.
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Since the argument is almost verbatim to [14] except for the continuity property of ž, we just give a
sketch of key points and explain the required continuity of ž in Section 8. Without the properties of ž.S/
explained in Section 8, the existence of a valuation calculating h.X / (but without the quasimonomial
property) can also be obtained using the argument in [11, Section 6].

Proof By Corollary 3.6, h.X /D infE
ž
�.E/, where E ranges over prime divisors over X that induce

special test configurations of .X;�KX /. By [14, Theorem A.2], we know that such an E is an lc place of
an N –complement D of X , where N depends only on the dimension n (this depends on the deep result
of Birkar about the boundedness of Q–complements). So we have

(155) h.X /D inf
v
ž
�.v/;

where v ranges over all divisorial valuations that are lc places of an N –complement. For such a valuation v,
there exists a D 2 .1=N /j�NKX j such that .X;D/ is lc and A.X ;D/.v/D 0. We then parametrize such
Q–divisors as in [14, Proof of Theorem 4.5]. Set W D P .H 0.X;OX .�NKX // and denote by H the
universal divisor on X �W parametrizing divisors in j�NKX j and set D WD .1=N /H . By the lower
semicontinuity of log canonical thresholds, the locus Z D fw 2W j lct.XwIDw/D 1g is locally closed
in W . For each z 2Z, set bz WD infv ž.v/, where v ranges over all v 2 Val.X / with A.X ;Dz /.v/D 0.

Let g W Yz!X be a log resolution of .X;Dz/. Write KY CDYz
D g�.KX CDz/. Consider the section

of the simplicial cone, S WD QM.Yz;DYz
/
T
fv 2 Val.X / jA.v/D 1g. By Proposition 4.6, we know that

for each v 2 S there exists a�.v/ such that infa>0
ž.av/ D ž.a�.v/v/ DW ž�.v/. By Izumi’s estimate

(see [48, Example 11.3.9; 44, Proposition 5.10] for the smooth case, and [51, Section 3] in the klt case),
we know that there exists C1 > 0 such that for any v 2 S we have v � C1 � ordF , where F D

T
i DYz ;i .

Now by the proof of Proposition 4.6 (see Remark 4.7), we know that a�.v/ is uniformly bounded for
any v 2 S. By Proposition A.2, we know that v 7! ž.v/ is continuous on QM.Yz;DYz

/ and hence is
uniformly continuous over compact subsets. We then get the continuity of v 7! ž�.v/ over the compact
set S. So we know that there exists v�z 2 S such that ž�.v�z /Dminv2S ž�.v/ and a�.v

�
z / � v

�
z is then a

minimizer of ž over QM.Yz;DYz
/.

Then as [14, Proof of Theorem 4.5], choose a locally closed decomposition Z D
Sr

iD1 Zi so that Zi is
smooth and there is an étale map Z0i!Zi such that .XZ 0

i
;DZ 0

i
/ admits fiberwise log resolutions. By the

same arguments as [14, Proof of Propositions 4.1 and 4.2], which depend on the deformation invariance of
log plurigenera in the work of Hacon, McKernan and Xu, we know that bz is independent of z 2Zi . So bz

takes finitely many values and there is a z0 2Z such that h.X /Dminz2Z bz D bz0
is computed by v�z0

.

As in the case of normalized volume, we expect the following:

Conjecture 4.11 The minimizer v� is unique , and is special , which means that Fv� is a special R–test
configuration.

Remark 4.12 As [11, Proposition 4.11], using Lemma 4.9 one can show that any divisorial (ie rational
rank one) minimizing valuation is primitive and plt.
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Besides the case of stability threshold treated in [14], in the local setting of normalized volumes, the
existence of quasimonomial minimizers is also known thanks to the work of Blum [10] and Xu [78].
Moreover, one might also be able to adapt the techniques in Xu and Zhuang [80] to the current global
setting to prove the uniqueness of minimizing valuations.3 We will prove in Section 6 the uniqueness of
special minimizers (in a similar spirit to the work in [58; 57; 55]).

5 Initial term degeneration of filtrations

Let F0 be a special R–test configuration of .X;�KX / with central fiber .W WD Proj.Gr.F0//; �0 WD �F0
/.

Let F1 be another filtration of R. We define a filtration on

(156) R0 WDR.W;�KW /D
M
m�0

M
�2�.F0/

t��F�0 Rm=F>�0 Rm DW

M
m�0

R0m

in the following way. Recall that we can write

(157) R0m D
M
˛2MZ

t�h˛;�0iF h˛;�0i

0
Rm=F>h˛;�0i

0
Rm:

For any f 2Rm, set

(158) inF0
.f /D .t�h˛;�i xf /.0/DW f 0 2 F h˛;�0i

0
Rm=F>h˛;�0i

0
Rm; where h˛; �0i D vF0

.f /:

For any � 2R, take the Gröbner base-type degeneration

(159) F 0�1 R0m D SpanCfinF0
.f / j f 2 F�1 Rmg �R0m:

Note that because R0 is integral, inF0
.fg/D inF0

.f / � inF0
.g/ if f 2Rm1

and g 2Rm2
. So in this way,

we get a T0–equivariant filtration

(160) F 0�1 R0m D
M
˛2Zr0

F 0�1 R0m;˛:

There is an equivalent way to describe F 0�
1

R0m, as follows. For any f 0 2R0m;˛ , we choose f 2Rm such
that f 0 D t�h˛;�0i xf .0/. Then we have

(161) F 0�1 R0m;˛ D ff
0
2R0m;˛ j f C h 2 F�1 Rm for some h 2 F>h˛;�0i

0
Rmg:

This is well defined since f is determined up to addition by elements from F>h˛;�0i

0
Rm.

Note that this construction allows us to find a basis B D fs1; : : : ; sNm
g of Rm that is compatible with

both F0Rm and F1Rm. Recall that this means that for any � 2R and i D 0; 1, there exists a subset of B
which depends on � and i and is a basis of F�i Rm. To find such a basis, we can first find a basis B0˛ of
R0m;˛ which is compatible with F 0

1
Rm;˛ . Then BD

S
˛ B˛ DW ff 01; : : : ; f 0Nm

g is a basis compatible with

3This has indeed been recently achieved in [15].
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both F 0
1
Rm and F 0wt�0

R0m. For each f 0
k
2R0m;˛k

, there exists �k 2R such that f 0
k
2F 0�k

1
R0mnF

0>�k

1
R0m.

Then by (161), there exists hk 2 F>h˛k ;�i
0

Rm such that sk WD fk C hk 2 F�k

1
Rm. Moreover, we have

sk 62 F>�k

1
Rm since otherwise in.sk/ D in.fk/ D f

0
k
2 F 0>�k R0m. It is easy to verify that fskg is the

desired basis. So the relative successive minima of F1 with respect to F0 (see [20]) is given by the set
f�k � h˛k ; �0ig, which is the same as the relative successive minima of F 0

1
WD F 0

1
R0 with respect to

F 0
0
WD F 0wt�0

R0. This immediately proves a useful fact:

Lemma 5.1 With the above constructions and notation , we have the identity

(162) dX
2 .F0;F1/D dW

2 .F 00;F 01/:

Since the initial term degeneration does not change the dimension of vector spaces, it is clear that the
successive minima of F1 and F 0

1
coincide. As a consequence, we get

(163) zS NA
X .F1/D zS

NA
W .F 01/:

On the other hand, consider the T0–equivariant graded filtration of the Rees algebra R0 WD R.F0/

(see (30)) given by

(164) F 0�R0m;˛ D fs D t�h˛;�i xf 2R0m;˛ j t�� xf 2R.F1/g:

Then F 0R0 coincides with FR on the generic fiber and coincides with F 0R0 on the central fiber. By the
lower semicontinuity of lct for a family, it is easy to see that yLNA in (80) is also lower semicontinuous for
a family. This is standard if F0 has rank one, which corresponds to a special test configuration; see [47,
Lemma 8.1; 13, Proof of Lemma 6.5]. In general, one can restrict to a generic curve passing through 0 in
the family in Teissier’s construction in the paragraph above Lemma 2.11; alternatively, see Remark 6.2.
So we can get

(165) LNA.F1/D yL
NA
X .F1/� yL

NA
W .F 01/DLNA.F 01/;

where the first and the last identity come from Proposition 2.32. Combining the above discussion, we get
the inequality

(166) H NA
X .F1/�H NA

W .F 01/:

Theorem 5.2 Assume v induces a special R–test configuration Fv of X . Then v is a minimizer of ž

over Val.X / if and only if v is Ding-semistable (or equivalently K–semistable).

Proof For simplicity of notation, set F0 D Fv and .W; �0/ WD .XFv;0; �F0
/ and let T0 be the torus

generated by �0.

We first prove that minimizer is Ding-semistable. Suppose .W; �0/ is not Ding-semistable. Then by
Theorem 2.46 from [39], there exists a T–equivariant special test configuration .W;�KW/ of .W;�KW /

with central fiber Y WDW0 such that

(167) DNA
g .W;�KW/D FutY;�.�/ < 0:
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We can now construct a family of valuations fv�g such that v� induces special test configurations with
central fiber Y and corresponds to a vector field �� D �0C �� on Y . This can be done by using the cone
construction to reduce to the situation in [58, Section 6] or [57, Proof of Theorem 2.64]. Alternatively,
one can use an argument involving the Hilbert scheme as in [55, Proof of Lemma 3.1].

Here we will use the Chow variety to explain this construction. Recall that the Chow point of a cycle
Z�PN�1 of degree d and dimension n corresponds to a divisor in the Grassmannian Gr.N �n�1;CN /

which is the zero scheme of a section:

CH.Z/ 2H 0.Gr.N � n� 1;CN /;O.d//DWM:

CH.Z/ is determined up to rescaling and we call it the Chow coordinate of Z. Let CH.X /, CH.W / and
CH.Y / be the Chow coordinates of X , W and Y , respectively. Denote by ŒCH.X /� the Chow point of X

in the projectivization P .M/, and similarly for Y and W . Since the T–action on PN�1 induces a weight
decomposition MD

L
˛ M˛, we have

(168) lim
s!C1

��.s/ ı ŒCH.X /�D ŒCH.W /� and lim
s!C1

��.s/ ı ŒCH.W /�D ŒCH.Y /�:

If we set

(169) CW�.X /Dminfh˛; �i j CH.X /˛ ¤ 0g and CW�.W /Dminfh˛; �i j CH.W /˛ ¤ 0g;

then

ŒCH.W /�D

� X
˛2IW

CH.X /˛

�
; where IW D f˛ j CH.X /˛ ¤ 0; h˛; �i D CW�.X /g;

ŒCH.Y /�D
� X
˛2IY

CH.W /˛

�
; where IY D f˛ j CH.W /˛ ¤ 0; h˛; �i D CW�.W /g:

Note that IY � IW . For any ˛ 2MZ with CH.X /˛ ¤ 0, we have that h˛; �i � CW�.X /, with equality
if and only if ˛ 2 IW . Similarly, for any ˛ 2MZ with CH.W /˛ ¤ 0 (and hence CH.X /˛ ¤ 0), we have
that h˛; �i �CW�.W /, with equality if and only if ˛ 2 IY . So when 0< �� 1 and for any CH.X /˛ ¤ 0,
we have that h˛; �C ��i � CW�.X /C �CW�.W /, with equality if and only if ˛ 2 IY . So we get

lim
t!0

��C��.t/ ı ŒCH.X /�D lim
t!0

�X
˛

t h˛;�C��iCH.X /˛

�
D ŒCH.Y /�:

So for 0< �� 1, �C �� induces an R–test configuration that degenerates X to Y . By Lemma 2.11, we
get the corresponding valuations v�.

Now we use the identity (113) to get

(170) d

d�

ˇ̌̌
�D0

ž.v�/D
d

d�
H NA

Y .Fwt�C��/D FutY;�.�/ < 0:

But this contradicts the assumption that v0 D v is the minimizer of ž.
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Conversely, we need to show that a Ding-semistable valuation is a minimizer. Let .X ;L; a�/ be any
special test configuration of .X;�KX / and F1 D F.X ;L;a�/ be the associated filtration. We consider the
initial term degeneration of F1 with respect to F0 defined as above. Then we can use (166) to get

H NA
X .F1/�H NA

W .F 01/�H NA
W .Fwt�0

/DH NA.F0/D ž.v/;

where the second inequality follows from the results in Lemma 6.1 in the next section and the assumption
that .W; �0/ is Ding-semistable.

6 Uniqueness of minimizing special R–test configurations

We prove Theorem 1.2 in this section. We first generalize the formula (113). Let .X;�KX ;T ; �/ be the
data as before and F be a T–equivariant filtration. We consider a family of T–equivariant filtrations

(171) Fs D sF..1�s/=s/� for s 2 .0; 1�; with F0 D Fwt� and F1 D F ;

which interpolates Fwt� and F .

Lemma 6.1 For the family of filtrations (171), the following statements hold true:

(i) The map s 7!H NA.Fs/ is smooth and convex. It is affine if and only if GF is a multiple of hx; �i.

(ii) We have the derivative formula

(172) d

ds

ˇ̌̌
sD0

H NA.Fs/D ˇ�.F��/:

To get (113) from (172), we just need to set F D Fwt�C� so that Fs D F�Cs�. Moreover, we fix a
faithful valuation that is adapted to the torus action (see Definition 2.21) and will freely use the associated
Newton–Okounkov body �D�.�KX / of .X;�KX /.

Proof By Lemma 2.22 and (25), as functions on �D�.�KX /, we have

(173) G.s;y/ WDGFs
.y/D .1� s/hy; �iC sGF .y/:

So, by using Lemma 2.35, we get

LNA.Fs/D sLNA.F/;(174)

� zS NA.Fs/D log
�

n!

V

Z
�

e�G.s;y/ dy

�
:(175)

LNA.Fs/ is linear in s and� zS NA.Fs/ is smooth in s. By Hölder’s inequality, � zS NA.Fs/ is strictly convex
in s unless GF is a multiple of hx; �i. This implies that H NA.Fs/DLNA�S NA is convex in s 2 Œ0; 1�.

To see (172), we calculate

d

ds

ˇ̌̌
sD0

H NA.Fs/DLNA.F/C
R
�.hy; �i �GF .y//e

�G.0;y/ dxR
� e�G.0;y/ dy

DLNA.F��/�
n!

V�

Z
�

GF�� .y/e
�hy;�i dy D ˇ�.F��/:
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Assume that there are two special R–test configurations Fi D fFiRmg for i D 0; 1 of .X;�KX / that
minimize H NA. By Theorem 5.2, the central fibers .W .i/ WD Proj.GrFi

/; �i D �Fi
/ are both Ding-

semistable. Now consider the initial term degeneration of F1 with respect to F0 as in the above section.
We get a T0–equivariant filtration F 0

1
on R0DR.W .0/;�KW .0// and by (166), H NA

X
.F1/�H NA

W .0/.F 01/.

Now, as at the beginning of this section, consider the family of filtrations that interpolates F 0
1

and
Fwt�0

R0 DW F 0wt�0
,

(176) F 0s WD sF 0..1�s/=s/�0
R0:

Applying Lemma 6.1 to .W .0/; �0;F 0s/, we know that D.s/ WDH NA.F 0s/ is convex in s 2 Œ0; 1�. Moreover
we have the relation

(177) D.0/DH NA
W .0/.Fwt�0

/DH NA
X .F0/DH NA

X .F1/�H NA.F 01/DD.1/:

The 3rd identity is by Theorem 5.2, that the Fi for i D 0; 1 both obtain the minimum of H NA.

On the other hand, by (172),
d

ds

ˇ̌̌
sD0

H NA.F 0s/D ˇ�0
.F 0
��0
/� 0:

The last inequality is because .W .0/; �0/ is Ding-semistable.

By convexity of D.s/, we conclude that D.s/ is constant in s and by Lemma 6.1 that GF 0
1
.y/� hy; �0i

for any y 2�0 D�.W .0/;�KW .0// (the Okounkov body of .W .0/;�KW .0//).

By the discussion in previous section, we know that the relative successive minima of F1 with respect to
F0 is the same as the relative successive minima of F 0

1
with respect to F 0wt�0

, which is the same as the
successive minima of F 0

��0
and is given by the difference �k � h˛k ; �0i with the notation there. So we

get by Lemma 5.1 that

d2.F0;F1/
2
D d2.F 00;F 01/D lim

m!C1

X
k

.�k � h˛k ; �0i/
2

m2
D lim

m!C1

X
i

�
.m/
i .F 0

��0
/2

m2

D

Z
R
�2 DH.F 0

��0
/2 D

Z
�0

G2
F 0
��0

dy D

Z
�0
.GF 0 � hy; �0i/

2 dy D 0:

By [20], we know that F0 is asymptotically equivalent to F1. By Lemmas 2.11 and 2.29 (see also
Proposition 2.27), we get F0 D F1.

Remark 6.2 Although here we are dealing with filtration of arbitrary ranks, the unique result in this
section (and minimization result in previous section) can also be proved by using r WD rk.F0/–step
degenerations to reduce to the rank-one case. To see this, we first choose f�1; : : : ; �r g 2NQŠQr (where
N D Hom.C�;T0/ as before) such that:

� SpanRf�1; : : : ; �r g DNR.

� For any 1� k � r , �k induces a special test configuration whose central fiber is the same as W .0/.
This is achieved by choosing �k satisfying j�k � �0j � 1.
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By abuse of notation, we denote by F 0
�0

(resp. F 0�1
) the filtration on R D R.X;�KX / corresponding

to the R–test configuration induced by �0 (resp. �1), and also the filtration on R0 DR.W .0/;�KW
.0/

0
/

corresponding to the weight filtration induced by �0 (resp. �k for 2 � k � r ). Set F 0.0/
1
D F1 and

inductively define F 0.k/
1

to be the initial term degeneration of F 0.k�1/
1

with respect to F 0�k
for 1� k � r .

By (166) for the rank-one case, we have

(178) H NA
X .F 0.0/

1
/�H NA

W .0/.F 0.1/1
/ and H NA

W .0/.F 0.k�1/
1

/�H NA
W .0/.F 0.k/1

/ for 2� k � r:

So if F1 D F 0.0/
1

obtains the minimum of H NA
X

, then F 0.k/ for any 1� k � r also obtains the minimum
of H NA

W .0/ . Now because F 0.r/ is T0–invariant and F 0
�0
D F 0wt�0

also obtains the minimum of H NA
W .0/ , we

can use Lemma 2.38 to conclude that F 0.r/ D F 0
�0

.

On the other hand, by Lemma 5.1, we get for 2� k � r that

dX
2 .F

0.0/
1
;F 0�1

/D dW .0/

2 .F 0.1/
1
;F 0�1

/ and dW .0/

2 .F 0.k�1/
1

;F 0�k
/D dW .0/

2 .F 0.k/
1

;F 0�k
/:

So for any 1� k � r , we get, by omitting the superscripts and using the triangle inequality,

d2.F 0.k�1/
1

;F 0�0
/� d2.F 0.k�1/

1
;F 0�k

/C d2.F 0�k
;F 0�0

/

D d2.F 0.k/1
;F 0�k

/C d2.F 0�k
;F 0�0

/

� d2.F 0.k/1
;F 0�0

/C 2d2.F 0�k
;F 0�0

/:

So we can inductively estimate

d2.F1;F0/D d2.F 0.0/1
;F 0�0

/� d2.F 0.1/1
;F 0�0

/C 2d2.F 0�1
;F 0�0

/

� d2.F 0.2/1
;F 0�0

/C 2.d2.F 0�2
;F 0�0

/C d2.F 0�1
;F 0�0

//
:::

� d2.F 0.r/1
;F 0�0

/C 2

rX
kD1

d2.F 0�k
;F 0�0

/

D 2

rX
kD1

d2.F 0�k
;F 0�0

/:

Now we can choose �k so that d2.F 0�k
;F 0
�0
/ is arbitrarily small for all 1 � k � r . So we indeed get

d2.F1;F0/D 0, as desired.

7 Cone construction and g–normalized volume

Let X be an n–dimensional Q–Fano variety and for simplicity of notation, assume that �KX is Cartier.
Recall that RD

L
m Rm D

L
H 0.X;m.�KX //. We define the cone

(179) C D C.X;�KX /D SpecCR; oDmD
M
m>0

Rm:

Then .C; o/ is a klt cone singularity.
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Since X admits a C� �T–action, we have a decomposition of the coordinate ring of R,

(180) RD
M
m�0

M
˛2Zr

Rm;˛:

For any T–invariant homogeneous primary ideal a D
L

m

L
˛ am;˛ � R, define the g–colength and

g–multiplicity of a by

coleng.a/D
X
m�0

X
˛

g
�
˛

m

�
dim Rm;˛=am;˛;(181)

multg.a/D lim
k!C1

coleng.a
k/

knC1=.nC 1/!
:(182)

See [63] for the study of such equivariant multiplicity. More generally, let a� D fakgk2N be a graded
sequence of C��T–invariant ideals. We define

(183) multg.a�/D lim
k!C1

coleng.ak/

knC1=.nC 1/!
:

One can use the techniques of Newton–Okounkov bodies to show that the limit exists. To see this, we
can adapt the argument in the work in [46] as follows. First choose a valuation v adapted to the T–action
on X (in the sense of Definition 2.21). We can construct a C��T–invariant ZnC1–valuation on C by

(184) V.f /D .m; v.f // for any f 2Rm:

Denote by C the strongly convex cone which is the closure of the convex hull of the value semigroup V.R/.
To each graded sequence of C��T–invariant ideals a�, one can associate a convex region xP WD xP .a�/�C

such that xP c WD Cn xP is bounded. If we still denote by g.y/ the pullback of function g by the projection
RnC1 DR�Rn!Rn, then multg is given by the weighted volume of the co-convex set xP c ,

(185) multg.a�/D .nC 1/!

Z
xPc

g.y/ dy:

Let ValC;o be the space of real valuations that are centered at o, and by ValC
��T

C;o the subset of C��T–
invariant real valuations in ValC;o. If zC ! C is the blowup of the vertex o 2 X , then the exceptional
divisor on zC is isomorphic to X , and we will denote by ordX the associated divisorial valuation contained
in ValC

��T
C;o .

Let xv 2 ValC
��T

C;o be any C��T–invariant valuation. Then for any � 2R, a�.xv/D ff 2R j xv.f / >mg

is a T–invariant homogeneous primary ideal. Set a�.xv/D am.xv/ and define (see [35] for the g D 1 case)

volg.xv/ WDmultg.a�.v//D lim
m!C1

coleng.a�.xv//

�nC1=.nC 1/!
:

We define the following equivariant version of normalized volume [51]:

cvolg W ValC
��T

C;o !R>0[fC1g; cvolg.xv/D
�

AC .xv/
nC1 � volg.xv/ when AC .xv/ <C1;

C1 otherwise.
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By using the same argument as in the study of normalized volumes, one can generalize almost all the
results about normalized volume to work for the g–normalized volume functional. Here we just write
down a few results that we need in the next section. We have the following equivariant version of an
identity from [60].

Lemma 7.1 With the above notation , we have the identity

(186) inf
xv

cvolg.xv/D inf
a

lct.a/n �multg.a/D inf
a�

lct.a�/n �multg.a�/;

where xv ranges over C��T–invariant valuations , and a (resp. a�) ranges over C��T–invariant ideals
(resp. graded sequences of C��T–invariant ideals).

This is proved by using exactly the same argument. For the reader’s convenience, we give the short proof.

Proof For any xv 2 VValC;o, we have

(187) lct.a�.xv//n �multg.a�.xv//�
�

AC .xv/

xv.a�/

�n

volg.xv/DAC .xv/
n volg.xv/:

Conversely, for any graded sequence of ideals a�, let xw 2 VValC;o be the valuation that calculates lct.a�/,
which exists by [44]. By multiplying by a constant, we can assume 1 D xw.a�/ D infm xw.am/=m. So
am � am. xw/, which implies multg.a�/�multg.a�. xw//D volg. xw/. Then we get

(188) lct.a�/n �multg.a�/D
�

AC . xw/

xw.a�/

�n

�multg.a�/�AC . xw/
n
� volg. xw/Dcvolg. xw/:

For any v 2X div
Q and � > 0, we denote by xv� the C�–invariant valuation on C given by

(189) xv�

�X
i

fi t
i

�
Dmin

i
.v.fi/C � i/:

By using the same calculation as in [50], we get:

Theorem 7.2 The g–volume of xv� is given by the formula

(190) volg.xv� /D
1

�nC1
Vg � .nC 1/

Z C1
0

volg.FvR.x//
dx

.xC �/nC2
:

We have the following criterion for g–Ding-semistability, which generalizes the results in [50; 53; 58]
about normalized volumes.

Theorem 7.3 The pair .X; �/ is g–Ding-semistable if and only if ordX obtains the minimum of cvolg
over ValC

��T
C;o .
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Proof For any v 2 .X div
Q /T , consider ws WD .sv/.1�s/AX .v/ 2 ValC

��T
C;o . Then w0 D AX .v/xv0 and

w1 D v. We also have AC .ws/�AX .v/. Set

f .s/Dcvol.ws/DAC .ws/
nC1 volg.ws/

DAX .v/
nC1

�
Vg

.1� s/nC1AX .v/nC1
� .nC 1/

Z C1
0

volg.FvR.x//
s dx

.sxC .1� s/AX .v//nC2

�
DAX .v/

nC1

Z C1
0

�dvolg.FvR.x//

.sxC .1� s/AX .v//nC1
:

Then f .s/ is a convex function in s 2 Œ0; 1�. Its derivative at s D 0 is given by

(191) f 0.0/DAX .v/
nC1

�
.nC 1/

Vg

AX .v/nC1
� .nC 1/

Z C1
0

volg.FvR.x// dx
1

AX .v/nC2

�
D

nC 1

AX .v/Vg

�
AX .v/�

1

Vg

Z C1
0

volg.FvR.x// dx

�
D

nC 1

AX .v/Vg
�ˇg.v/:

With this and Theorem 2.47, we can easily derive the conclusion as in [50].

Remark 7.4 By the same argument as in the case of normalized volume [12; 78], one shows that
g–Ding-semistability is Zariski-open for a T–equivariant family of Fano varieties.

8 Uniqueness of polystable degeneration

In this section, we prove Theorem 1.3. The proof is verbatim the same as the proof of the existence and
uniqueness of K–polystable degenerations for any K–semistable Q–Fano varieties, as proved in [55];
see also [16]. Indeed, we just need to carry out the same argument by using the equivariant version of
normalized volume and the modified Futaki invariant Fut� , etc. To avoid redundancy, we only sketch the
key steps and refer to [55; 16] for more details.

Assume that .X; �/ is semistable and admits two polystable degenerations via two special test configura-
tions .X .i/;�KX .i// for i D 0; 1. Take cones fiberwise to get a special test configuration of Fano cones
.C.i//; �.i//, where �.i/ is the radial vector field.

Let Ek be the Kollár component (see [58] for the definition) obtained by blowing up the vertex of C.0/
with weight .k; 1/. Then we havecvolg.Ek/Dcvolg.ordX /CO.k�2/:

Set a� D fa`.Ek/g. Then

lct.a�/D
A.Ek/

ordEk
.a�/
DA.Ek/DW ck DO.k/; lct.X; a�/n �multg.a�/Dcvolg.Ek/:
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Consider the initial degeneration of a� with respect to C.1/,

(192) in.a`/D spanCfin.f /; f 2 a`.Ek/g:

Using the preservation of co-length under initial term degeneration, we get

lctn.C.1/
0
; in.a�//�

cvolg.ordX .1/
0
/

multg.in.a�//
D

Vg

multg.a�/

D
Vgcvolg.Ek/

lct.a�/n D
Vg

VgCO.k�2/
lct.a�/n

D .1CO.k�2//ck D ck CO.k�1/:

Let Zk ! C.0/ be the extraction of Ek , and let Zk �C� be the product along C.1/ n C.1/
0
Š C �C�

with exceptional divisor Ek . Let B� D fB`g be ideal on the total space C.1/ obtained by the above
degenerating a`. Then we have

A.C.1/; ck.1� �k
�1/B�; Ek/DA.C; ck.1� �k

�1/a�;Ek/D �k
�1ck D �O.1/;(193)

lct.C.1/
0
; ck.1� �k

�1/in.a�//� c�1
k .1� �k�1/.ck CO.k�1//D 1� �k�1

CO.k�2/:(194)

By inversion of adjunction,

(195) lct.C.1/; ck.1� �k
�1/B�/� 1� �k�1

CO.k�2/:

When 0< �� 1, by [9], we can extract the divisor Ek over C.1/. By the same argument as [55], we get
the commutative diagram

(196)

C
.1/
0

C0.1/

��

!!

C
C.1/ �Z.1/

k
 �E.1/

k
oo

C.0/ Zk EkDEk�A1

��

}}

Zk  Ek
oo

X
.1/
0

X 0.1/

��

X
X .1/
oo

X .0/

��

X 0
0

X
.0/
0

X 0.0/
oo

C 0
0

==

C
.0/
0C0.0/

oo

aa

Zk;0 Ek
oo

By the same argument as in [55], we know that both test configurations X 0.i/ for i D 0; 1 are weakly
special and have vanishing Fut� invariant. By [39], we know that both of them are special and hence
X
.1/
0
ŠX 0

0
ŠX

.0/
0

by the polystability of X
.i/
0

.

The existence part can again be proved by the similar arguments as in [55], which deals with the case
when � D 0. We just sketch the arguments. If .X; �/ is K–polystable, then we are done. Otherwise, we
can find a nontrivial T–equivariant special test configuration such that the central fiber (with the vector
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field �) has a vanishing Fut� invariant. By [55, Proof of Lemma 3.1], we know that the central fiber is
K–semistable, and has an effective action by a larger torus. If the central fiber is K–polystable, then we
are done again. Otherwise, we can continue this process, which must stop since the dimension of the
torus is bounded by the dimension of X .

Proof of Corollary 1.4 By the work of Chen, Sun and Wang in [28], which is based on the resolution of
the Hamilton–Tian conjecture [29], we get a special R–test configuration F ss with central fiber .W; �/,
and a special test configuration of .W; �/ with central fiber .X1; �/, which admits a Kähler–Ricci soliton
and hence is K–polystable. By the work of Dervan and Székelyhidi [31], F ss obtains the minimum h.X /.
The statement follows directly from Theorems 1.2 and 1.3.

Remark 8.1 The fact that F ss obtains the minimum also follows from the K–semistability of .W; �/

and Theorem 5.2. The K–semistability of .W; �/ follows from the same degeneration argument as used
in [58], or the Zariski-openness of K–semistability as pointed out in Remark 7.4.

Remark 8.2 As in the more general setting of [55] or [52], the algebraic results in this paper can be
generalized to the log Fano case in a straightforward way.

Appendix Properties of zS .v/

Recall that by (137), for any valuation v 2 VVal.X / we have

(197) Q.v/ WDQ.Fv/D e�
zS NA.Fv/ D 1�

1

V

Z T .v/

0

e�x vol.F .x/v R�/ dx DW 1�‰.v/;

where, for simplicity of notation, we have written

(198) T .v/D �max.Fv/ and ‰.v/D
1

V

Z T .v/

0

e�x vol.F .x/v R�/ dx:

Proposition A.1 The function v 7!‰.v/ is strictly increasing on VVal.X /. In other words , if v � w, then
‰.v/�‰.w/, with the identity true only if v D w. As a consequence , v 7! zS .v/ is strictly increasing on
Val.X /.

This is proved as in [11, Proof of Proposition 3.15] (which is based on an argument in the local case
from [58]). We sketch the argument for the reader’s convenience.

Proof First, by using Theorem 2.5, we can show that

(199) ‰.v/D lim
m!C1

1

mNm

X
j�1

e�j=m dimFj
vRm:

Suppose that v � w but v ¤ w. Then by rescaling v;w and LD�KX , we can assume that there exists
s 2H 0.X;L/ with w.s/D p 2N� and v.s/� p�1. Then, arguing as in [11, Proof of Proposition 3.15],
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we have

(200) dim.Fj
wRm=Fj

vRm/�
X

1�i�minfj=p;mg

dim.Fj�ip
v Rm=Fj�ipC1

v Rm�i/:

One the other hand, with C DmaxfT .v/;T .w/g, we getX
j�1

dim e�j=m.Fj
wRm�Fj

vRm/� e�C
X
j�1

.Fj
wRm�Fj

vRm/

� e�C
X

1�i�m

X
j�pi

.dimFj�ip
v Rm�i �Fj�ipC1

v Rm�i/

D e�C
X

1�i�m

dim Rm�i :

So we conclude
‰.v/�‰.w/� e�C lim

m!C1

1

mNm

X
1�i�m

dim Rm�i > 0:

Let � W Y ! X be a proper birational morphism with Y a regular and E D
P

i Ei a reduced simple
normal crossing divisor.

Proposition A.2 The function v 7!Q.v/ is continuous on QM.Y;E/.

We use the same strategy as [14, Proposition 2.4]. As noted in [38], for any v 2 Val.X /, we have
A.v/=T .v/� ˛.X / > 0, which implies, with C D ˛.X /�1,

(201) T .v/� CA.v/:

Lemma A.3 For any v 2 Val.X /, we have the inequality

(202) ‰.v/� CA.v/:

Proof Since vol.F .x/R�/� V , we immediately get

‰.v/�

Z T .v/

0

e�x dx D 1� e�T .v/
� T .v/� CA.v/;

where we used the inequality 1� e�x � x for any x 2R�0, and the inequality (201).

Similarly to [38; 11], we introduce the approximation

Qm.F/D 1

Nm

X
i

e��
.m/

i
=m
D

1

Nm

Z C1
0

e�x=md.� dimFxRm/(203)

D 1�
1

Nm

Z �
.m/
max .F/=m

0

e�x dimFxmRm dx DW 1�‰m.F/;(204)

where we set

(205) ‰m.v/D
1

Nm

Z �
.m/
max

0

e�x dimFxmRm dx D
1

Nm

Z T .v/

0

e�x dimFxmRm dx:
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Similarly to [38; 11], for any valuation v 2 Val.X / we have the identity

(206) Qm.v/DQm.Fv/Dmin
fsj g

1

Nm

NmX
jD1

e�v.sj /=m;

where the minimum is taken over all bases s1; : : : ; sNm
of H 0.X;�mKX /.

For any s WD fs1; : : : ; sNm
g 2H 0.X;�mKX /

Nm , define a function

(207) 's.v/ WD

NmX
jD1

e�v.sj /=m:

By the same argument as in [14, Proof of Lemma 2.5], the set of functions f's.v/js 2R
Nm
m g is finite. So

Qm is continuous on QM.Y;E/.

As in [14, Proof of Proposition 2.4], the continuity of ‰ and hence Q follows easily from the following
proposition, which we prove by using the techniques developed in [11; 13].

Lemma A.4 (i) For any v 2 Val.X / with A.v/ <C1, we have the convergence

(208) lim
m!C1

‰m.v/D‰.v/:

(ii) For any � > 0 and any C1 > 0, there exists C2 > 0 and m0 > 0 such that if v 2 Val.X / satisfies
A.v/ < C1, we have

(209) j‰m.Fv/�‰.Fv/j � �

for all m divisible by m0.

Proof The first statement follows from Theorem 2.5(ii). We focus on the second statement.

Note that e�G is convex and 0� e�G � 1. By [11, Lemma 2.2], for any �0 > 0 there exists m0.�
0/ such

that for any m�m0,

(210)
Z
�

e�G d�m �

Z
�

e�G dy � �0:

By the same argument as [11, Proof of Lemma 2.9], we get

(211) Qm.Fv/� mn

Nm

Z
�

e�G d�m:

Note that limm!C1mn=Nm D V . So for any � > 0 there exists m0 such that for any m�m0,

(212) Qm.Fv/� n!

V

Z
�

e�G dy � � DQ.Fv/� �:

We need to prove the other direction of inequality. Following [11], define a graded linear series

(213) zF .t/m;pRmp WDH 0
�
X;mpL˝ b.jFmtRmj/p

�
;
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where b.jFmtRmj/ is the base ideal of the sublinear system F tmRm. Set

(214) z‰m.F/D
Z T .v/

0

e�t vol.zF .t/m;�/ dt:

By [11, Proposition 5.13], there exists aD a.X;�KX / > 0 such that for all t 2Q>0 with mt > A.v/,
we have, with t 0 D t �m�1.at CA.v//,

(215)
�

m�a

m

�nC1
vol.F .t/

�
/�

1

mn
vol.zF .t 0/m;�/:

So we can estimate as in [11, Proof of Proposition 5.15] to get

z‰m.v/�
�

m�a

m

�nC1
�
‰.v/� e.aT .v/CA.v//=m

Z A.v/=.m�a/

0

vol.F .t//
V

e�tdt

�
�

�
m�a

m

�nC1�
‰.v/� eCA.v/=m A.v/

m�a

�
:

From this it is easy to get
‰.v/� z‰m.v/� C

A.v/

m
:

To compare with ‰m, we further set

(216) F .x/m;p D Im
�
SpFmxRm!H 0.X;pmL/

�
:

By [13, Propositions 5.14 and 3.2], there exists a positive constant C > 0 independent of v such that for
all x � T .v/�CA.v/=m, we have vol.F .x/m;�/D vol.zF .x/m;�/. So as in [13, Proof of Proposition 5.15], we
get

‰.v/� z‰m.v/CC
A.v/

m
D

1

V

Z T .v/

0

vol.zF .x/m;�/

mn
e�x dxC

CA.v/

m

�
1

V

Z T .v/�CA.v/=m

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m

�
1

V

Z T .v/

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m
:

For the second inequality we used the estimate that, as m!C1,Z T .v/

T .v/�CA.v/=m

e�x dx D e�.T .v/�CA.v/=m/
� e�T .v/

� eCA.v/=m
� 1DO

�
A.v/

m

�
:

Fixing any � > 0, by choosing m� 1 and p� 1 we have (see [13, equation (5.6)]):

(217)
ˇ̌̌̌
vol.F .x/m;�/

mnV
�

dimF .x/m;p

Nmp

ˇ̌̌̌
< �:

Finally we can estimate as in [13, Proof of Theorem 5.13]: for m� 1,

‰.v/�
1

V

Z T .v/

0

vol.F .x/m;�/

mn
e�x dxC

CA.v/

m
�

Z C1
0

dimF .x/m;p

Nmp
e�x dxC �T .v/C

CA.v/

m

�

Z C1
0

dimFpmxRm

Nmp
e�x dxC 2�A.v/D‰.v/C 2�A.v/:
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In the third inequality, we used again the inequality 1� e�T .v/ � T .v/. Since � > 0 is arbitrary, we get
the conclusion.
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[44] M Jonsson, M Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier
(Grenoble) 62 (2012) 2145–2209 MR Zbl

[45] K Kaveh, A G Khovanskii, Newton–Okounkov bodies, semigroups of integral points, graded algebras and
intersection theory, Ann. of Math. 176 (2012) 925–978 MR Zbl

[46] K Kaveh, A Khovanskii, Convex bodies and multiplicities of ideals, Proc. Steklov Inst. Math. 286 (2014)
268–284 MR Zbl

[47] S J Kovács, Z Patakfalvi, Projectivity of the moduli space of stable log-varieties and subadditivity of
log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017) 959–1021 MR Zbl

[48] R Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals,
Ergebnisse der Math. .3/ 49, Springer (2004) MR Zbl
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