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The local (co)homology theorems for equivariant bordism

MARCO LA VECCHIA

We generalize the completion theorem for equivariant MUG–module spectra for finite extensions of a
torus to compact Lie groups using the splitting of global functors proved by Schwede. This proves a
conjecture of Greenlees and May.

55N91, 55P91, 55Q91, 57R85

1 Overview

1.1 Introduction

A completion theorem establishes a close relationship between equivariant cohomology theory and its
nonequivariant counterpart. It takes various forms, but in favourable cases it states that

.E�G/
^
JG
ŠE�.BG/;

where E is a G–spectrum, E�
G

is the associated equivariant cohomology theory and JG is the augmentation
ideal (Definition 3.6).

The first such theorem is the Atiyah–Segal completion theorem for complex K-theory [4]. This is especially
favourable because the coefficient ring KU �G DR.G/Œv; v�1� is well understood, and in particular it is
Noetherian, and so in this case we can view the theorem as the calculation of the cohomology of the
classifying space. The good behaviour for all groups permits one to make good use of naturality in the
group, and indeed [4] uses this to give a proof for all compact Lie groups G. Previous partial results were
proved by Atiyah and Hirzebruch in [2; 3]. The result raised the question of what other theories enjoy a
completion theorem, and the case of equivariant complex cobordism was considered soon afterwards,
with Löffler giving a proof in the abelian case [16]. The fact that the coefficient ring MU �G is not known
explicitly means that this cannot be viewed as a computation of the cohomology of the classifying space.
The fact that the coefficient ring is unknown and not Noetherian was an obstacle to extensions. Despite
the algebraic complexity of the coefficients, Segal made the remarkable conjecture that stable cohomotopy
should satisfy the completion theorem, and this was proved for finite groups by Carlsson [6], building on
important earlier work (see eg Adams, Gunawardena and Miller [1], Carlsson [5], Laitinen [13], Lin [14],
Lin, Davis, Mahowald and Adams [15], Ravenel [20], Segal and Stretch [24] and Stretch [25]).
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628 Marco La Vecchia

In this case, the conclusion can only be viewed as a calculation of the cohomotopy of classifying spaces
in degrees 0 and below, but the structural content in positive degrees is equally striking. In the course of
understanding this, there was a focus on understanding completion in various ways. From a homotopical
point of view this led to the connection between completion and local cohomology and the definition of
local homology (see Greenlees and May [9]), which is the derived version of completion. More precisely,
for a Noetherian ring R and an ideal I , the local homology (resp. cohomology) groups H I

� .RIM /

(resp. H�
I
.RIM /) of an R–module M calculate the left (resp. right) derived functors of completion

(resp. I–power torsion); see [9] (resp. Hartshorne [12]). This derived approach led to a new proof of
the Atiyah–Segal completion theorem and also its counterpart in homology; see Greenlees [8]. This in
turn reopened the question of the completion theorem and local cohomology theorem for MU , but now
with the challenges shifted from the formal behaviour to the algebraic behaviour: the formal structure of
the proof of the local cohomology theorem for KU applies precisely for MU , but the difficulty is that,
since MU �G is not Noetherian, it is not clear that the relevant ideals are finitely generated. Accordingly,
Greenlees and May [10] isolated the formal argument and observed that if one could find a “sufficiently
large” finitely generated ideal (Definition 3.8) of MU �G , the local cohomology and completion theorems
would hold for MU . They went on to codify and use the structure of MU as a global spectrum to define
and apply multiplicative norm maps, and hence construct “sufficiently large” finitely generated ideals in
the case when the identity component of G is a torus. This led to the proof of local cohomology and
completion theorems for MU for these groups. Much more recently, Schwede has studied global spectra
more systematically [21], and in particular used the global structure of MU in a more sophisticated way
to show that tautological unitary Euler classes are regular and give rise to various splittings [22].

More precisely, he proves that for every n we have a short sequence

0!MU ��2n
U.n/

eU.n/.�n/
������!MU �U.n/

resU.n/

U.n�1/
������!MU �U.n�1/! 0

which is split exact, and, denoting by pk W U.k/�U.n� k/! U.k/ the projection to the first factor, the
composite

MU �U.k/
p�

k
��!MU �U.k/�U.n�k/

trU.n/

U.k/�U.n�k/
���������!MU �U.n/

is split injective when restricted to the kernel of the restriction map

MU �U.k/!MU �U.k�1/:

These two facts together imply that the augmentation ideal JU.n/ can be explicitly described as generated
by the elements s

U.n/

U.k/
.eU.k/.�k// for k D 1; : : : n (Corollary 4.1), where s

U.n/

U.k/
WMU �U.k/!MU �U.n/ is a

section of resU.n/

U.k/
. Our contribution is to show that, for every compact Lie group G that embeds in U.n/,

the finitely generated ideal resU.n/
G

.JU.n// � MU �G is “sufficiently large” (Corollary 5.2). This is a
consequence of Schwede’s results as we will see in Section 5. Working in the highly structured category
of G–equivariant MUG–modules guarantees that we can define (Definition 3.3) a homotopical version of
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The local (co)homology theorems for equivariant bordism 629

the stable Koszul complex for the ideal I D resU.n/
G

.JU.n//�MU �G , which we denote by K1.I/, and
for an MUG–module M we set

�I .M /DK1.I/^R M

(Definition 3.4). By a formal argument, we can then construct a morphism

� WEGC ^M ! �I .M /

(Construction 3.7) of G–equivariant MUG–modules.

Theorem 1.1 Let G be a compact Lie group with a faithful representation of dimension n, and M an
MUG–module. Then the canonical map

� WEGC ^M ! �I .M /

is an equivalence of G–equivariant MUG–module spectra.

This proves [10, Conjecture 1.4]. As a corollary, we obtain a local cohomology theorem which can be
interpreted as a “derived completion theorem” for every compact Lie group.

Corollary 1.2 Let G be a compact Lie group with a faithful representation of dimension n, M an
MUG–module , X a based G–space and I D resU.n/

G
.JU.n//�MU �G . Then there are spectral sequences

H�I .M
G
� .X //)M G

� .EGC ^X / and H I
� .M

�
G.X //)M �

G.EGC ^X /:

Since I has n generators , the local cohomology and homology are concentrated in degrees � n.

Organization

We start with a preliminary section where we introduce the notation and some basic facts of equivariant
and global orthogonal spectra. In Section 3 we review the classical statement. This section is only needed
to recall basic constructions and state the main theorem that we will prove in Section 5. In Section 4
we review Schwede’s splitting [22, Theorem 1.4, page 5] and his corollary that ensures the regularity of
certain Euler classes [22, Corollary 3.2, page 10]. Finally, in Section 5 we prove that the augmentation
ideal JU.n/ is sufficiently large. This will imply the completion theorem [10, Theorem 1.3, page 514] for
U.n/ and for any compact Lie group G.
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630 Marco La Vecchia

2 Notation, conventions and facts

2.1 Spaces

By a space we mean a compactly generated space as introduced in [18]. We will denote by T (resp. T�)
the category of spaces (resp. pointed spaces) with continuous maps (resp. based maps). For a compact
Lie group G, TG denotes the category of G–spaces and G–equivariant maps. (Equivariant) mapping
spaces and (based) homotopy classes of (based) maps are defined as usual, and are denoted by map. � ; � /
and Œ � ; � �, respectively.

2.1.1 Universal spaces A family of subgroups of a group G is a collection of subgroups closed under
conjugation and taking subgroups. When G is a compact Lie group, a universal G–space for a family F

of closed subgroups is a G–CW–complex EF such that:

� All isotropy groups of EF belong to the family F.

� For every H 2 F the space EFH is weakly contractible.

We denote by zEF the reduced mapping cone of the collapse map EFC! S0 which sends EF to the
nonbasepoint of S0. Any two such universal G–spaces are G–homotopy equivalent; hence we will refer
to EF as the universal space for the family F. Note that Efeg DEG.

2.2 Algebra

For a graded commutative ring A and a finitely generated ideal I D .a1; : : : ; an/ of A, we let K�1.I/ be
the graded cochain complex O

iD1;:::;n

.A!AŒ1=ai �/;

where A and AŒ1=ai � sit in homological degrees 0 and 1, respectively, and the tensor product is over the
ring A. If N is a graded A–module, the local cohomology groups are defined as

H
s;t
I
.AIN /DH s;t .K�1.I/˝N /:

When A is Noetherian, the functor H�
I
.AI � / calculates the right derived functors of the torsion functor

�I .N /D fn 2N such that IknD 0 for some kg:

The main references for the theory of local cohomology are [11; 12]. Dually, we let the local homology
groups be

H I
s;t .AIN /DHs;t

�
Hom. zK�1.I/;N /

�
;

where zK�1.I/ is an A–free chain complex quasi-isomorphic to K�1.I/; see [9]. When A is Noetherian
and N is free or finitely generated, then the functor H I

k
.AI � / calculates the left derived functors of the

I–adic completion functor. In particular, under these assumptions

H I
k .AIN /Š

�
N ^

I
if k D 0;

0 otherwise:
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The local (co)homology theorems for equivariant bordism 631

2.3 Spectra

A spectrum will be an orthogonal spectrum, and we will denote by Sp the category of orthogonal spectra
as defined in [21, Definition 3.1.3, page 230]. The category Sp is closed symmetric monoidal with respect
to the smash product � ^ �. We will denote by map. � ; � / the right adjoint of the smash product. Sp is also
cotensored over T�, ie for every based space A and every spectrum X a mapping spectrum between these
two is defined. We will also use the notation map. � ; � / in this case. The definitions in the equivariant
case are similar.

2.4 Global and equivariant stable homotopy categories

We let GH and SHG denote respectively the global stable homotopy category and the G–equivariant
stable homotopy category for a compact Lie group G. The first can be realized as a localization of
the category of orthogonal spectra at the class of global equivalences [21, Definition 4.1.3, page 352]
as constructed in [21, Theorem 4.3.18, page 400], and the second as a localization at the class of ��–
isomorphisms of the category of G–orthogonal spectra as constructed in [17, Theorem 4.2, page 47].
Hence,

SHG Š SpG Œ.��–isos/�1� and GHŠ SpŒ.global equivalences/�1�:

Both global equivalences and ��–isomorphisms are weak equivalences of stable model structures; see [21,
Theorem 4.3.17, page 398] for the global case and [17, Theorem 4.2, page 47] for the equivariant one. This
implies that both categories GH and SHG come with a preferred structure of triangulated categories, and
we denote by † the shift functor in both cases. The derived smash product of Sp (resp. SpG) endows the
category GH (resp. SHG) with a closed symmetric monoidal structure. For every compact Lie group G

there is a forgetful functor .�/G W GH! SHG obtained from the point–set level functor of endowing
a global spectrum with the trivial G–action. This functor is strong symmetric monoidal and exact; see
[21, Theorem 4.5.24, page 450].

Homotopy groups are defined for equivariant spectra and for global spectra as usual [21, page 232]. In
both cases, for a fixed X and k, the system of homotopy groups f�H

k
.X /gH�G has a lot of additional

structure. For G–spectra, f�H
k
.X /gH�G is a Mackey functor [21, Definition 3.4.15, page 319]; for global

spectra, f�G
k
.X /gG compact Lie is a global functor [21, Definition 4.2.2, page 369].

If we fix a compact Lie group G and a G–spectrum X , the functor

�G
k W SHG! Ab

is corepresented by the pair .†kS; id/, ie we have a natural isomorphism

(1) SHG.†
kS;X /Š �G

k .X /:

A similar statement holds in the global setting; refer to [21, Theorem 4.4.3, page 412]. Finally, for a
G–spectrum X , we adopt the convention

X G
� D �

G
� .X /; X �G DX G

��:
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632 Marco La Vecchia

2.5 Global complex cobordism

Since our work concerns the complex bordism ring, we recollect here some facts about this theory. We
will write MU for the global Thom ring spectrum defined in [21, Example 6.1.53] which is a model
for the homotopical equivariant bordism MUG introduced by tom Dieck in [7] for every compact Lie
group G. The global theory MU has the structure of an ultracommutative ring spectrum in the sense of
[21, Definition 5.1.1, page 463]; this assures that, for every compact Lie group G, the category of MUG–
modules is symmetric monoidal. For every compact Lie group G and for every unitary representation V ,
a Thom class �G.V / 2MU 2n

G .SV / is defined, where nD dimC.V /. The Euler class eG.V / 2MU 2n
G is

by definition the image of the Thom class along the fixed point inclusion S0! SV . If V has nontrivial
G–fixed points, then the previous inclusion is G–nullhomotopic, and hence eG.V /D 0 if V G ¤ f0g. On
the other hand, tom Dieck showed that if V G D f0g then the Euler class eG.V / is a nonzero element in
MU 2n

G [7, Corollary 3.2, page 352].

The theory MU has an equivariant Thom isomorphism for every unitary representation V

(2) MU 0
G.S

kCV /ŠMU�k�2n
G

given by RO.G/–graded multiplication with the Thom class �G.V /, where n D dimC.V /. This iso-
morphism takes the multiplication by the class an defined in Section 4 to multiplication by the Euler class
of the representation V .

3 Classical statement

We recall some basic constructions that can be found in [10]. To make sense of them, we need to work
with highly structured equivariant ring spectra known as E1 ring G–spectra or commutative SG–algebras.
In particular, all the constructions below are well defined for RDMUG . We refer to [10, page 511] for
a more detailed explanation and bibliography.

Construction 3.1 Let R 2 SHG be a G–ring spectrum as explained above. By (1), every element of RG
n

specifies by adjunction a morphism ˛ W S!†�nR in SHG . We let

Q̨ WR!†�nR

be the composition
R ˛^R
���!†�nR^RŠ†�n.R^R/

†�n�
����!†�nR;

where � WR^R!R is the multiplication of R. This defines a morphism in SHG , and we let

(3) RŒ1=˛� WD telescope.R Q̨
�!†�nR †�n Q̨

����!†�2nR! � � � /

be the mapping telescope of the iterates of Q̨ .

Remark 3.2 The mapping telescope in Construction 3.1 models the sequential homotopy colimit in SHG .
For a discussion of homotopy colimits in SHG , refer to [19, Appendix C, page 160].
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The local (co)homology theorems for equivariant bordism 633

Definition 3.3 Let R and ˛ be as above and let I D .˛1; : : : ; ˛n/ be an ideal in RG
� . We define

K1.˛/ WD fib.R!RŒ1=˛�/ and K1.I/ WDK.˛1/^R � � � ^R K.˛n/:

Definition 3.4 Let M be an R–module and I �RG
� be a finitely generated ideal. Then we define

�I .M /DK1.I/^R M and .M /^I DmapR.K1.I/;M /:

Remark 3.5 There is a spectral sequence of local cohomology

H�I .R
G
� IM

G
� /) �I .M /G� ;

and there is a spectral sequence of local homology

H I
� .R

G
� IM

G
� /) ..M /^I /

�
G :

Note that when M DR we obtain the spectral sequence that computes K1.I/
G
� ; see [10].

Definition 3.6 Let G be a compact Lie group and R be an orthogonal G–spectrum. The augmentation
ideal JG of R at G is the kernel of

resG
1 WR

G
� !R�:

Construction 3.7 By construction of RŒ1=˛�, if ˛ 2 JG then

resG
1 RŒ1=˛�' 0:

Hence, applying the restriction to the fibre sequence

�̨ R!R!RŒ1=˛�;

we obtain a fibre sequence in which the third term is contractible. This implies, by the long exact sequence
in homotopy groups induced by a fibre sequence of spectra, that the canonical map

resG
1 .�̨ R/D �resG

1
.˛/ resG

1 R '
�! resG

1 R

is an equivalence. The same argument applies for an ideal I �RG
� , giving an equivalence

resG
1 .�I R/D �resG

1
.I / resG

1 R '
�! resG

1 R:

Smashing the above morphism with the universal G–space EGC, we obtain an equivalence

EGC ^�I R!EGC ^R

in SHG . Inverting this and composing with the collapse map EGC ^�I R
coll^�I R
������! S0 ^�I RŠ �I R,

we obtain a zigzag

EGC ^R EGC ^�I R �I R;
'

�

which defines a morphism of R–modules in SHG .
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634 Marco La Vecchia

We now turn our attention to MU (Section 2.5) and we recall what it means for an ideal of the ring
MU �G to be “sufficiently large”. This is the key property to assure that the E2–page of a specific spectral
sequence that appears in the proof of Theorem 3.10 is zero.

Definition 3.8 [10, Definition 2.4, page 517] An ideal I �MU �G is sufficiently large at H if there
exists a nonzero complex representation V of H such that V H Df0g and the Euler class eH .V /2MU 2n

H

is in the radical
p

resG
H
.I/, where nD dimC.V /. The ideal I is sufficiently large if it is sufficiently large

at all closed subgroups H ¤ 1 of G.

Remark 3.9 Being sufficiently large is transitive with respect to subgroup inclusion, ie if I �MU G
� is

sufficiently large then so is resG
H
.I/�MU �H .

Theorem 3.10 [10, Theorem 2.5, page 518] Let G be a compact Lie group. Then , for any sufficiently
large finitely generated ideal I � JG ,

� WEGC ^MUG! �I MUG

is an equivalence in SHG . Therefore ,

EGC ^M ! �I .M / and .M /^I !map.EGC;M /

are equivalences for any MUG–module M .

Proof Here, we only give a sketch of the argument, following the main reference. The point is that, if
I �MU �G is sufficiently large, then resG

H
I �MU �H is also sufficiently large. Moreover, since every

descending sequence of compact Lie groups stabilizes, we can use induction and assume that the theorem
holds for any proper closed subgroup of G. Passing to the cofibre of the map �, it is enough to show that

�G
� .
zEG ^�I MUG/D 0:

We then let P be the family of proper subgroups of G and let EP be the universal space associated to P.
Since

zEP^S0
! zEP^ zEG

is an equivalence, it suffices to show that zEP^K.I/ is contractible. Let U be a complete complex
G–universe and define U? to be the orthogonal complement of the G–fixed points UG in U. Then,

colimV 2U? SV

is a model for zEP. We can then compute

�G
� .
zEP^�I MUG/D �

G
� ..colimV 2U? SV /^�I MUG/Š colimV 2U? �

G
� .S

V
^�I MUG/

Š colimV 2U? �
G
��jV j.�I MUG/Š �

G
� .�I MUG/ŒfeG.V /

�1
gV 2U? �:

Localizing the spectral sequence in Remark 3.5,

H�I .MU G
� /) �G

� .�I MUG/;
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The local (co)homology theorems for equivariant bordism 635

away from the Euler classes, we obtain another spectral sequence

H�I .MU G
� /ŒfeG.V /

�1
gV 2U? �) �G

� .�I MUG/ŒfeG.V /
�1
gV 2U? �:

Since local cohomology of a ring at an ideal becomes zero when localized by inverting an element in that
ideal, we obtain that the E2–term of the spectral sequence is zero for I sufficiently large. This proves
the claim.

Remark 3.11 As stated in [10, Theorem 2.5, page 518], the previous theorem holds more generally
for all commutative SG–algebras (or E1 ring G–spectra) which are equivariantly complex oriented and
have natural Thom isomorphisms for unitary G–representations. For example, the theorem holds for
equivariant K–theory.

The paper [10] proceeds by constructing a sufficiently large subideal of the augmentation ideal JG

whenever G is a finite group or a finite extension of a torus using “norm maps” [10, Section 3].

Here is where our approach differs from the classical one. In fact, we do not make use of norm maps, and
the strategy to construct a sufficiently large subideal of JG splits in two steps:

Step 1 We use Schwede’s splitting (4) to prove that JU.n/ is generated by “Euler classes”. Thanks to
this, we prove that JU.n/ is sufficiently large (Proposition 5.1).

Step 2 Using the fact that any compact Lie group embeds into a unitary group U.N / for N sufficiently
large, we conclude that resU.N /

G
JU.N / is a sufficiently large subideal of JG for any compact Lie

group G by Remark 3.9.

4 Schwede’s splitting

We recall that a global functor F associates to every compact Lie group G an abelian group F.G/, and
this association is contravariantly functorial with respect to continuous group homomorphisms. Moreover,
for every closed subgroup inclusion H < G, a transfer map trG

H
W F.H /! F.G/ is defined. This data

needs to satisfy some relations that can be found in [21, page 373]. In [22, Theorem 1.4, page 5], Schwede
proves that, for any global functor F , the restriction homomorphism

resU.n/

U.n�1/
W F.U.n//! F.U.n� 1//

is a split epimorphism. He then deduces a splitting of global functors when evaluated on the unitary
group U.n/. Explicitly, the splitting takes the form

(4) F.U.n//Š F.e/˚
M

kD1;:::;n

Ker
�
resU.k/

U.k�1/
W F.U.k//! F.U.k � 1//

�
:

The most important application of the splitting for us is when the global functor comes from the homotopy
groups of an orthogonal spectrum. In fact, for every global stable homotopy type X , that is, an object
in GH, we have a global functor

��.X /.G/D �
G
� .X /:
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636 Marco La Vecchia

The splitting then tells us that, for every k � n, the group �U.k/
� .X / is a natural summand of �U.n/

� .X /.
In this case, a more explicit description of the right-hand side of the splitting is available. In fact, let �n

be the tautological representation of U.n/ and let

an 2 �
U.n/
0

.†1S�n/

be the Euler class of �n, ie the element represented by the inclusion S0! S�n . Then the short sequence

0! �
U.n/
�C�n

.X /
an
�! �

U.n/
� .X /

resU.n/

U.n�1/
������! �

U.n�1/
� .X /! 0

is exact [22, Corollary 3.1, page 10].

When X DMU , the equivariant Thom isomorphism identifies the previous short exact sequence with
the following short exact sequence:

0!MU ��2n
U.n/

eU.n/.�n/
������!MU �U.n/

resU.n/

U.n�1/
������!MU �U.n�1/! 0:

Moreover, we have the following corollary:

Corollary 4.1 Let JU.n/ be the augmentation ideal of MU
U.n/
� (see Definition 3.6), and let s

U.n/

U.k/
be a

section of resU.n/

U.k/
(see [22, Construction 1.3, page 4]). Then

JU.n/ D
�
s

U.n/

U.k/
.eU.k/.�k// j k D 1; : : : ; n

�
;

and , in particular ,
resU.n/

U.k/
JU.n/ D JU.k/

for all k � n.

Proof This is just the combination of the splitting (4) and the short exact sequence above.

Remark 4.2 Since the forgetful functor .�/G W GH! SHG is strong symmetric monoidal and exact,
the global splitting (4) at the unitary group translates in a splitting in SHG .

Remark 4.3 Schwede [23, Definition 1.1] gives an explicit construction of the sections s
U.n/

U.k/
, and he

shows that the resulting elements

s
U.n/

U.1/
eU.1/.�1/; s

U.n/

U.2/
eU.2/.�2/; : : : ; s

U.n/

U.n�1/
eU.n�1/.�n�1/

are “genuine equivariant Chern classes”. In particular, they map to the classical Chern classes under the
bundling map

MU �U.n/!MU �.BU.n//;

and they have similar naturality properties [23, Theorem 1.3].

5 The main result

Proposition 5.1 JU.n/ �MUU.n/ is sufficiently large.
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Proof Let H be a closed subgroup of U.n/. We need to show that there exists a nonzero complex
H–representation with no nontrivial fixed points, the Euler class of which is in

p
resU.n/

H
.JU.n//. We

will actually show that there is no need to take radicals in this case. Consider

V D resU.n/
H

�n� .resU.n/
H

�n/
H ;

and let k D dimC.V /. Note that k D 0 if and only if H D 1. We claim that the Euler class eH .V / is in
resU.n/

H
JU.n/. If k D n, then V D resU.n/

H
�n and

eH .V /D resU.n/
H

.eU.n/�n/ 2 resU.n/
H

JU.n/;

and the claim holds.

Now let k > 0. We choose an orthonormal basis .x1; : : : ;xn�k/ of .resU.n/
H

�n/
H and a unitary matrix

g 2U.n/ that sends the canonical basis of Cn to any other orthonormal basis that has as last n�k vectors
.x1; : : : ;xn�k/. Then, for any h 2H ,

hg
D

0@ Qh 0

0 Idn�k

1A ;
where hg D g�1hg and Qh 2 U.k/.

This implies that V is conjugate to the H g–representation resU.k/
H g .�k/. Letting g? WMU �H g !MU �H be

the conjugation action (see the relations in [21, Definition 3.4.15, page 319]), we pass to Euler classes,
obtaining the relation

eH .V /D g?
�
eH g.resU.k/

H g .�k//
�
:

We then compute the right-hand side of the last equation:

g?
�
eH g.resU.k/

H g .�k//
�
D g?

�
resU.k/

H g .eU.k/.�k//
�
D g?

�
resU.n/

H g

�
s

U.n/

U.k/
.eU.k/.�k//

��
D resU.n/

H

�
s

U.n/

U.k/
.eU.k/.�k//

�
:

In the second equality we have used the chosen section s
U.n/

U.k/
(Corollary 4.1), and in the last one the formula

g? ı resU.n/
H g D resU.n/

H

(again, see the relations in [21, Definition 3.4.15, page 319]). By Corollary 4.1, it is clear that
resU.n/

H

�
s

U.n/

U.k/
.eU.k/.�k//

�
2 resU.n/

H
JU.n/, and hence we have proved the claim. Since, by construction,

eH .V / is nonzero, we conclude that JU.n/ is sufficiently large at H .

We now let G be any compact Lie group. Since every compact Lie group has a faithful representation,
G is isomorphic to a closed subgroup of U.n/ where n is the dimension of a chosen faithful representation
of G. Then we have the following corollary:

Corollary 5.2 The ideal resU.n/
G

JU.n/ � JG is a sufficiently large finitely generated ideal. Hence ,
Theorem 3.10 (the completion theorem) holds for any compact Lie group G if we choose ID resU.n/

G
JU.n/.

Geometry & Topology, Volume 28 (2024)
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Proof By transitivity of restrictions, the ideal resU.n/
G

JU.n/ is sufficiently large and is contained in JG .
The completion theorem then holds by the argument above.

Remark 5.3 Proposition 5.1 and Theorem 1.1 hold more generally for all global MU –modules.

Remark 5.4 The subideal J D resU.n/
G

JU.n/ of JG is not special. Indeed, if I is any other finitely
generated subideal of JG containing J , then

�I MUG ' �J MUG and .MUG/
^
I ' .MUG/

^
J :

In fact, Theorem 3.10 implies that the MUG–modules K1.I/ and �I M are independent of the choice
of I .
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