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Closed geodesics with prescribed intersection numbers

YANN CHAUBET

Let .†; g/ be a closed oriented negatively curved surface, and fix a simple closed geodesic ?. We give
the asymptotic growth as L!C1 of the number of primitive closed geodesics of length less than L
intersecting ? exactly n times, where n is fixed positive integer. This is done by introducing a dynamical
scattering operator associated to the surface with boundary obtained by cutting † along ? and by using
the theory of Pollicott–Ruelle resonances for open systems.

37D40

1 Introduction

Let .†; g/ be a closed oriented connected negatively curved Riemannian surface, and denote by P the set
of its oriented primitive closed geodesics. For L> 0 define

N.L/D #f 2 P W `./6 Lg;

where, for  2P , we denote by `./ its length. Then a classical result obtained by Margulis [31] states that

N.L/�
ehL

hL
as L!1;

where h > 0 is the topological entropy of the geodesic flow of .†; g/.

Our purpose here is to provide a similar asymptotic result for closed geodesics satisfying certain intersection
constraints. Namely, let ? be a simple closed geodesic of .†; g/. For any  2 P , we denote by i.; ?/
the geometric intersection number between  and ? (see Section 2.1), and we set

N.n;L/D #f 2 P W `./6 L and i.; ?/D ng:

We first state a result assuming ? is not separating, in the sense that † n ? is connected.

Theorem 1 Assume that ? is not separating. Then there are c? > 0 and h? 2 �0; hŒ such that , for any
n> 1,

(1-1) N.n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!1:

The number h? in the above statement is the topological entropy of the geodesic flow .'t / of .†; g/
when restricted to the trapped set

K? D f.x; v/ 2 S† W �.'t .x; v// 2† n ? for t 2Rg;
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702 Yann Chaubet

where the closure is taken in S† and � W S†!† is the natural projection. Also, we provide in Section 7
a description of the constant c? in terms of the Pollicott–Ruelle resonant states of the geodesic flow of
the compact surface with boundary †? obtained by cutting † along ?.

By using a classical large deviation result by Kifer [25] and Bonahon’s intersection form [6], one is
able to show that a typical closed geodesic  satisfies i.; ?/� I?`./ for some I? > 0 not depending
on  (see Proposition 8.1 for a precise statement). In particular, Theorem 1 is a statement about very
uncommon closed geodesics.

The asymptotics (1-1) for nD 0 is well known and follows from the work of Dal’bo [12] and from the
growth rate of periodic orbits of axiom A flows obtained by Parry and Pollicott [35] (see Section 2.5).
However, to the best of our knowledge, the result is new for n > 0. Note that it would be tempting to sum
the right-hand side of (1-1) over n in order to recover the asymptotic growth of N.L/— for example, one
could hope that h?C c? D h— but if L is fixed, the left-hand side of (1-1) vanishes whenever n is large
enough, and it is very unlikely that such an equality holds.

If ? is separating then i.; ?/ is even, and we have the following result:

Theorem 2 Suppose that ? separates † in two surfaces , †1 and †2. Let hj 2 �0; hŒ denote the entropy
of the open system .†j ; gj†j / and set h? Dmax.h1; h2/. Then there is c? > 0 such that , for each n> 1,
as L!C1,

N.2n;L/�

8̂<̂
:
.c?L/

n

nŠ

eh?L

h?L
if h1 ¤ h2;

2
.c?L

2/n

.2n/Š

eh?L

h?L
if h1 D h2:

As before, the number hj is defined as the topological entropy of the geodesic flow restricted to the
trapped set

Kj D f.x; v/ 2 S† W �.'t .x; v// 2†j n ? for t 2Rg;

where the closure is taken in S†.

We also have an equidistribution result, as follows. Set

@? D f.x; v/ 2 S† W x 2 ?g and � D S?[fz 2 @? W 't .z/ 2 S† n @? for t > 0g;

where S? D f.x; v/ 2 @? W v 2 Tx?g. We define the scattering map S W @? n�! @? by

S.z/D '`.z/.z/; `.z/D infft > 0 W 't .z/ 2 @?g for z 2 @? n�:

For any n 2N>1 we set

�n D @? n fz 2 @? n� W S
k.z/ 2 @? n� for k D 1; : : : ; n� 1g;

which is a closed set of Lebesgue measure zero, and

`n.z/D `.z/C � � �C `.S
n�1.z// for z 2 @? n�n:

Geometry & Topology, Volume 28 (2024)



Closed geodesics with prescribed intersection numbers 703

Theorem 3 Assume that ? is not separating and let n> 1. For any f 2 C1.@?/, the limit

lim
L!C1

1

N.n;L/

X
2P

i.;?/Dn

1

#I?./

X
z2I?./

f .z/

exists , where , for any  2 P , the set I?./D f.x; v/ 2 S W x 2 ?g consists of the incidence vectors of
 along ?. This formula defines a probability measure �n on @?, whose support is contained in �n.

Of course, a similar statement holds even if ? is separating, though we will not explicitly state it here.
As for c?, we will provide a full description of �n in terms of the Pollicott–Ruelle resonant states of the
geodesic flow of .†?; g/ for the resonance h? in Section 7. Here, as before, †? is the compact surface
with boundary obtained by cutting † along ? (see Section 2.5).

Strategy of proof

A key ingredient used in the proof of Theorems 1, 2 and 3 is the scattering operator S.s/ W C1.@?/!
C1.@? n�/, which is defined by

S.s/f .z/D f .S.z//e�s`.z/ for z 2 @? n� and s 2C:

As a first step (which is of independent interest; see the corollary on page 714), we prove that, for any
�2C1c .@?nS?/, the family s 7!�S.s/� extends to a meromorphic family of operators S.s/ WC1.@?/!
D0.@?/ on the whole complex plane (here D0.@?/ denotes the space of distributions on @?), whose poles
are contained in the set of Pollicott–Ruelle resonances of the geodesic flow of the surface with boundary
.†?; g/; see Section 2.6 for the definition of those resonances. In this context, the existence of such
resonances follows from the work of Dyatlov and Guillarmou [15], and we relate S.s/ with the resolvent
of the geodesic flow (see Proposition 3.2). By using the microlocal structure of the resolvent of the
geodesic flow provided by [15], we are moreover able to prove that the composition .�S.s/�/n is well
defined for any n> 1, as well as its superflat trace (meaning that we also look at the action of S.s/ on
differential forms, see Section 3.4), which reads

(1-2) tr[s Œ.�S.s/�/n�D n
X

i.;?/Dn

`#./

`./
e�s`./

Y
z2I?./

�2.z/;

where the products runs over all closed geodesics (not necessarily primitive)  with i.; ?/Dn, and `#./

is the primitive length of  . This formula will be obtained by using the Atiyah–Bott trace formula [3],
though our scattering map S has singularities that we have to deal with. Furthermore, using a priori bounds
on the growth of N.n;L/ (obtained in Section 4 by purely geometric techniques coming from the theory
of CAT.�1/ spaces), we prove that s 7! tr[s Œ.�S.s/�/n� has a pole of order n at s D h? provided that �
has enough support. For this step, we crucially use the fact that the asymptotics for N.0;L/ is already
known, although we could recover it by using the modern techniques introduced in [15] without going

Geometry & Topology, Volume 28 (2024)



704 Yann Chaubet

through the scattering maps. Finally, letting the support of 1�� be very close to S?, and estimating the
growth of geodesics having n intersections with ? with at least one small angle, we are able to derive
Theorems 1 and 2 from a classical Tauberian theorem of Delange [14].

Related works

As mentioned before, the case nD 0 follows from work of Parry and Pollicott [35] which is based on
important contributions of Bowen [9; 10], as the geodesic flow on .†?; g/ can be seen as an axiom A
flow; see Lemma 2.5 below and [15, Section 6.1]. For counting results on noncompact Riemann surfaces,
see also the works of Sarnak [43], Guillopé [21] or Lalley [27]. We refer to the work of Paulin, Pollicott
and Schapira [37] for counting results in more general settings.

We also mention a result by Pollicott [39] which says that, if .†; g/ is of constant curvature �1 and if ?
is not separating,

(1-3)
1

N.L/

X
2P
`./6L

i.; ?/� I?L

for some I? > 0. Roughly speaking, this means that the average intersection number between ? and
closed geodesics of length not greater than L is about I?L. We will show that this result also holds in
our context (see Section 8.2).

Lalley [26], Pollicott [40] and Anantharaman [1] investigated the asymptotic growth of the number of
closed geodesics satisfying some homological constraints (see also Phillips and Sarnak [38] and Katsuda
and Sunada [24] for the constant curvature case). They showed that, for any homology class � 2H1.†;Z/,

#f 2 P W `./6 L and Œ�D �g � CehL=LgC1

for some C > 0 independent of � , where g is the genus of † and h > 0 is the topological entropy of the
geodesic flow of .†; g/. Such asymptotics are obtained by studying L–functions associated to some
characters of H1.†;Z/. However, our problem is very different in nature; indeed, fixing a constraint
in homology boils down to fixing algebraic intersection numbers, whereas here we are interested in
geometric intersection numbers. In particular, L–functions are not well suited for this situation.

In the context of hyperbolic surfaces (ie surfaces with constant negative curvature�1), Mirzakhani [32; 33]
computed the asymptotic growth of closed geodesics with prescribed self-intersection numbers. Namely,
for any k 2N,

#f 2 P W `./6 L and i.; /D kg � ckL
6.g�1/;

where i.; / denotes the self-intersection number of  ; see also Erlandsson and Souto [17].

Note that our scattering map S defined above shares some similarities with the Sinai billiard map [44].
Similarly to the map S , which is not defined on the singularity set � , the billiard map is not continuous
near some singular set consisting in grazing trajectories. In particular, it is plausible that recent functional
analytic techniques developed by Baladi, Demers and Liverani [5] (see also Baladi and Demers [4]), as

Geometry & Topology, Volume 28 (2024)



Closed geodesics with prescribed intersection numbers 705

the Sinai billiard map could be used to define an intrinsic spectrum of resonances for the transfer operator
associated to S (without going through the resolvent of the geodesic flow of S†?).

We finally mention that the techniques presented herein allow one to obtain the asymptotic growth of
closed geodesics for which several intersection numbers (with a family pairwise disjoint simple closed
curves) are prescribed. However, such an extension requires more work, and for simplicity we will focus
here on the case where we are given only one simple geodesic. The aforementioned generalization will
be the subject of subsequent work.

Organization of the paper

The paper is organized as follows. In Section 2 we introduce some geometric and dynamical tools. In
Section 3 we introduce the dynamical scattering operator, which is a central object in this paper, and we
compute its flat trace. In Section 4 we prove a priori bounds on N.n;L/. In Section 5 we use a Tauberian
argument to estimate certain quantities. In Section 6 we prove Theorems 1 and 2. In Section 7 we prove
Theorem 3. Finally, in Section 8 we show that a typical closed geodesic  satisfies i.; ?/� I?`./ for
some I? > 0.
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2 Geometric preliminaries

We recall here some classical geometric and dynamical notions, and introduce the Pollicott–Ruelle
resonances that will arise in our situation. Throughout the article, .†; g/ will denote a closed connected
oriented Riemannian surface of negative curvature.

2.1 Geometric intersection numbers

For any two loops ˛; ˇ WR=Z!†, the geometric intersection number between ˛ and ˇ is defined by

i.˛; ˇ/D inf
˛0�˛;ˇ 0�ˇ

j˛\ˇj;

where the infimum runs over all loops ˛0 and ˇ0 freely homotopic to ˛ and ˇ, respectively, and

j˛\ˇj D f.�; � 0/ 2 .R=Z/2 W ˛.�/D ˇ.� 0/g:

Geometry & Topology, Volume 28 (2024)



706 Yann Chaubet

It is well known that, in every nontrivial free homotopy class of loops c, there is a unique oriented closed
geodesic c 2 c which minimizes the length among curves in c. In fact, closed geodesics also minimize
intersection numbers, as follows:

Lemma 2.1 Let 1 and 2 be any two nontrivial oriented closed geodesics , and assume that 1 (resp. 2)
is not freely homotopic to a power of 2 (resp. 1). Then

i.1; 2/D j1\ 2j:

The above result is rather classical, but for the reader’s convenience we provide a proof in Appendix A.

2.2 Structural equations

Here we recall some classical facts from [45, Section 7.2] about geometry of surfaces. Denote by
M D S†D f.x; v/ 2 T† W kvkg D 1g the unit tangent bundle of †, and by X the geodesic vector field
on M , that is, the generator of the geodesic flow ' D .'t /t2R of .†; g/, acting on M . The Liouville
one-form ˛ on M is defined by

h˛.z/; �i D hd.x;v/�.�/; vi for z D .x; v/ 2M and � 2 T.x;v/M;

where � WM !† is the natural projection. Then ˛ is a contact form (that is, ˛^ d˛ is a volume form
on M ) and it turns out that X is the Reeb vector field associated to ˛, meaning that

�X˛ D 1 and �X d˛ D 0;

where � denotes the interior product.

We also set ˇ DR�
�=2
˛, where, for � 2R, R� WM !M is the rotation of angle � in the fibers. Finally

we denote by  the connection one-form, defined as the unique one-form on M satisfying

�V D 1; d˛ D  ^ˇ and dˇ D� ^˛;

where V is the vertical vector field, that is, the vector field generating .R� /�2R. Then .˛; ˇ;  / is a
global frame of T �M , and we denote by H the unique vector field on M such that .X;H; V / is the dual
frame of .˛; ˇ;  /. We then have the commutation relations

ŒV; X�DH; ŒV;H�D�X and ŒX;H�D .� ı�/V;

where � is the Gauss curvature of .†; g/.

2.3 The Anosov property

It is known, by the work of Anosov [2], that the flow .'t / is hyperbolic. That is, for any z 2M there is a
d't–invariant splitting

TzM DRX.z/˚Es.z/˚Eu.z/

Geometry & Topology, Volume 28 (2024)
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which depends continuously on z, and has the property that, for any norm k � k on TM , there exist C; � >0
such that

kd't .z/vk6 Ce��tkvk for v 2Es.z/; t > 0 and z 2M;
and

kd'�t .z/vk6 Ce��tkvk for v 2Eu.z/; t > 0 and z 2M:

In fact, Es.z/˚ Eu.z/ D ker˛.z/ and there exist two continuous functions r˙ W M ! R such that
˙r˙ > 0 and

Es.z/DR.H.z/C r�V.z// and Eu.z/DR.H.z/C rCV.z// for z 2M:

Moreover, the functions r˙ are differentiable along the flow direction, and they satisfy the Riccati equation

˙Xr˙C r
2
˙C � ı� D 0;

where � is the curvature of †.

We will denote by T �M DE�0 ˚E
�
s ˚E

�
u the splitting defined by

E�0 .Eu˚Es/D 0; E�s .Es˚E0/D 0; E�u.Eu˚E0/D 0:

(Here the bundle RX is denoted by E0.) Then we have E�0 DR˛ and

(2-1) E�s DR.r�ˇ� /; E�u DR.rCˇ� /:

Note that this decomposition does not coincide with the usual dual decomposition, but it is motivated by
the fact that covectors in E�s (resp. E�u ) are exponentially contracted in the future (resp. in the past) by
the symplectic lift ˆt of 't , which is defined by

(2-2) ˆt .z; �/D .'t .z/; d't .z/�> � �/ for .z; �/ 2 T �M and t 2R;

where �> denotes the inverse transpose. We have the following lemma:

Lemma 2.2 [13, Section 3.2] If t ¤ 0, we have �Vˆt .ˇ/¤ 0 and �Hˆt . /¤ 0.

2.4 A nice system of coordinates

In what follows, we write
@? D f.x; v/ 2M W x 2 ?g D S†j? :

Lemma 2.3 There exists a tubular neighborhood U of @? in M , and coordinates .�; �; �/ on U with

U ' .R=`?Z/� � .�ı; ı/� � .R=2�Z/� ;

where `? is the length of ?, and such that

j�.z/j D distg.�.z/; ?/ and Sz†D f.�.z/; �.z/; �/ W � 2R=2�Zg for z 2 U:

Moreover , in these coordinates , on f�D 0g,

X D cos.�/@� C sin.�/@�; H D�sin.�/@� C cos.�/@�; V D @� ;

and
˛ D cos.�/ d� C sin.�/ d�; ˇ D�sin.�/ d� C cos.�/ d�;  D d�:

Geometry & Topology, Volume 28 (2024)



708 Yann Chaubet

Proof For � 2R=`?Z we set .x� ; v� /D '� .?.0/; P?.0//. We now define, for ı > 0 small enough,

‰.�; �; �/DR���=2'�.x� ; �.x� // for .�; �; �/ 2R=`?Z� .�ı; ı/�R=2�Z;

whereR� WS†!S† is the rotation of angle � and �.x� /DR�=2v� . Then d‰.�; 0; �/ is injective for any �
and � . Indeed, @� .�ı‰/.�; 0; �/Dv� and @�.�ı‰/.�; 0; �/D�.x� /. Thus d‰.�; 0; �/ WR@�˚R@�!T†

is injective. Moreover, @� .� ı‰/.�; 0; �/D 0 and @�‰.�; 0; �/D V.‰.�; 0; �//¤ 0. Thus d‰.�; 0; �/
is injective for any � and � , and furthermore, if ı > 0 is small enough, ‰ W U !M is an immersion. In
particular, since .�; �/ 7!‰.�; 0; �/ is clearly injective, we obtain that ‰jU is a diffeomorphism onto its
image provided that ı is chosen small enough.

Because V D @� and �V ˛D �V ˇD 0, we may write ˛.�; 0; �/D a.�; �/ d�Cb.�; �/ d� and ˇ.�; 0; �/D
a0.�; �/ d� C b0.�; �/ d� for some smooth functions a, a0, b and b0. Now, since d˛ D  ^ˇ, we obtain
LV ˛ D �V d˛ D ˇ, and similarly LV ˇ D�˛. Thus, a0 D @�a, b0 D @�b and

@2�aC aD 0; @2�bC b D 0:

In consequence, a.�; �/ D a1.�/ cos � C a2.�/ sin � and b.�; �/ D b1.�/ cos � C b2.�/ sin � for some
smooth functions a1, a2, b1 and b2. Moreover, by definition of the coordinates .�; �; �/, one has

(2-3) X.�; 0; 0/D @� and X
�
�; 0; 1

2
�
�
D @�:

Therefore a1 D b2 D 1 and a2 D b1 D 0. We thus get the desired formulae for ˛ and ˇ. Now, writing
 D a00 d� C b00 d�C d� and using LV D 0, we obtain @�a00 D @�b00 D 0. As �X D 0 we obtain
a00 D b00 D 0 by (2-3). The formulae for X , H and V follow.

Remark 2.4 If Q@D f�D 0g, then, for any z D .�; 0; �/ 2 @,

Tz Q@DRV.z/˚R.cos.�/X.z/� sin.�/H.z// and N �z
Q@DR.sin.�/˛.z/C cos.�/ˇ.z//:

2.5 Cutting the surface along ?

As mentioned in the introduction, we may see † n ? as the interior of a compact surface †? with
boundary consisting of two copies of ?. By gluing two copies of the annulus U obtained in the preceding
subsection on each component of the boundary of †?, we construct a slightly larger surface †ı �†?
whose boundary is identified with the boundary of U (see Figure 1).

Lemma 2.5 The surface †ı has strictly convex boundary, in the sense that the second fundamental form
of the boundary @†ı with respect to its outward normal pointing vector is strictly negative.

Proof In the coordinates .�; �/ given by Lemma 2.3, the metric g has the form

(2-4) d�2Cf .�; �/ d�2

for some f > 0 satisfying @�f .�; 0/D 0. Indeed, if r is the Levi-Civita connection, one has

d
d�
h@�; @� i D hr@�@�; @� iC h@�;r@�@� i D h@�;r@�@�i D

1

2

d
d�
h@�; @�i D 0;

Geometry & Topology, Volume 28 (2024)
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†

�D�ı�D ı

†ı

?

Figure 1: The surfaces † (on the left) and †ı (on the right) in the case where ? is not separating.
In †, the darker region corresponds to the neighborhood �.U / of ?.

since r@�@�D 0 (indeed, � 7! .�; �/ is a geodesic curve). Thus h@� ; @�i D h@� ; @�ij�D0D 0. In particular,
g has the form (2-4) with f .�; �/D h@� ; @� i, and we have @�f .�; 0/D @�h@� ; @� i D 2@� h@�; @� ij�D0D 0
(indeed, since � 7! .�; 0/ is a geodesic curve, r@�@� D 0 on f� D 0g). In those coordinates, the scalar
curvature reads

�.�; �/D
�@2�f .�; �/

f .�; �/
:

As � < 0, we get @2�f > 0, which gives ˙@�f > 0 on f˙� > 0g. The second fundamental form of @†ı
with respect to @� is defined by

hr@�@� ; @�i D �
1
2
@�f .�; �/;

which concludes the proof, since @� is outward pointing (resp. inward pointing) on f� D ıg (resp.
f�D�ıg).

Lemma 2.6 In the coordinates given by Lemma 2.3,

˙X2� > 0 on f˙� > 0g:

Proof Since, in the coordinates .�; �/, the metric g has the form (2-4), the Christoffel symbols of g are
given by

���� D �
�
�� D 0 and ���� D�

1
2
@�f:

In particular, if t 7! .�.t/; �.t// is a geodesic path,

R�.t/� 1
2
@�f .�.t/; �.t//D 0:

Because @�f .�; 0/D 0 and �@2�f=f D � < 0, we obtain that ˙@�f > 0 whenever ˙� > 0.

2.6 The resolvent of the geodesic flow for open systems

In what follows, we denote by ��.Mı/ the set of differential forms on Mı and by ��c.Mı/ the elements
of ��.Mı/ whose support is contained in the interior of Mı . Here Mı D S†ı is the unit tangent bundle

Geometry & Topology, Volume 28 (2024)
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of †ı . The set of currents on Mı , denoted by D0�.Mı/, is defined as the topological dual of ��c.Mı/.
Note that we have an inclusion ��.Mı/ ,! D0�.Mı/ via the pairing

hu; vi D

Z
Mı

u^ v for u; v 2��.Mı/:

The geodesic flow ' on M induces a flow on Mı D S†ı , which we still denote by '. We set

@˙Mı D f.x; v/ 2 @Mı W ˙hv; �ı.x/i> 0g and @0Mı D f.x; v/ 2 @Mı W ˙hv; �ı.x/i D 0g;

where �ı.x/ is the unit vector orthogonal to @†ı , based at x, and pointing outward. Next, define

`˙;ı.z/D infft > 0 W '˙t .z/ 2 @Mıg for z 2 int.Mı/[ @�Mı ;

and `˙;ı.z/D 0 for z 2 @˙Mı [@0Mı , where int.Mı/ denotes the interior of Mı . The numbers `˙;ı.z/
are the first exit times of z in the future and in the past. We also set

�̇ ;ı D fz 2Mı W `�.z/DC1g and Kı D �
C

ı
\��ı ;

and we define the operators R˙;ı.s/ by

(2-5) R˙;ı.s/!.z/D˙

Z `�;ı.z/

0

'��t!.z/e
�ts dt for z 2Mı and ! 2��c.Mı/;

which are well defined as operators from ��c.Mı/ to C
�
Mı ;

V
�
T �Mı

�
whenever Re.s/� 1, where

C
�
Mı ;

V
�
T �Mı

�
denotes the space of continuous differential forms on Mı . Note that our convention

of R˙;ı.s/ differs from that of [18]. The operator RC;ı.s/ (resp. R�;ı.s/) is the resolvent of LX in the
future (resp. in the past) for the spectral parameter s. More precisely,

(2-6) .LX ˙ s/R˙;ı.s/D Id��c.Mı/;

and for any .u; v/ 2��c.Mı n��;ı/��
�

c.Mı n�C;ı/,

(2-7)
Z
Mı

.RC;ı.s/u/^ v D�

Z
Mı

u^R�;ı.s/v:

Indeed, for such u and v, there is L> 0 such that

(2-8) supp.u/� f`C;ı 6 Lg and supp.v/� f`�;ı 6 Lg:

In particular, the forms RC;ı.s/u and R�;ı.s/v are smooth up to the boundary of Mı . Indeed, (2-8)
implies that, for any z 2Mı and t 2 Œ0; `�;ı.z/�,

'��tu.z/¤ 0 D) t 6 L:

Therefore, for any z 2Mı ,

RC;ı.s/u.z/D

Z `�;ı.z/

0

'��tu.z/e
�ts dt D

Z min.`�;ı.z/;LC1/

0

'��tu.z/e
�ts dt;

and thus RC;ıu is smooth, since '��tu.z/D 0 if L6 t 6 `�;ı.z/. Similarly, R�;ı.s/v is smooth. Finally,
note that supp.RC;ı.s/u/\ @Mı � @CMı and supp.R�;ı.s/v/\ @Mı � @�Mı . In particular, Stokes’
formula and (2-6) imply (2-7).
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Because the boundary of †ı is strictly convex, it follows from [15, Proposition 6.1] that the family of
operators R˙.s/ extends to a meromorphic family of operators

R˙;ı.s/ W�
�

c.Mı/! D0�.Mı/

satisfying

(2-9) WF0.R˙;ı.s//��.T
�Mı/[‡˙;ı [ .E

�
˙;ı �E

�
�;ı/;

where �.T �Mı/ is the diagonal in T �Mı �T
�Mı ,

‡˙;ı D f.ˆt .z; �/; .z; �// 2 T
�.Mı �Mı/ W 06˙t 6 `˙;ı.z/ and hX.z/; �i D 0g;

and where
E�
C;ı DE

�
u j�C

ı

; E�
�;ı DE

�
s j�
�
ı
:

Here, we write

WF0.R˙;ı.s//D f.z; �; z
0; � 0/ 2 T �.Mı �Mı/ W .z; �; z

0;�� 0/ 2WF.R˙;ı.s//g;

where WF is the classical Hörmander wavefront set [23, Section 8]. In fact, by (2-9) we mean that
s 7!R˙.s/ is meromorphic as a map C!D0� 0

˙
.Mı�Mı/— we identifyR˙.s/ and its Schwartz kernel —

where �̇ is given by the right-hand side of (2-9), � 0
˙
D f.z; �; z0;�� 0/ W .z; �; z0;�� 0/ 2 �̇ g, and where

D0
� 0
˙

.Mı �Mı/D fR 2 D0.Mı �Mı/ WWF.R/� � 0˙g

is endowed with its natural topology; see [23, Definition 8.2.2].

Near any s0 2C, we have the expansion

R˙;ı.s/D Y˙;ı.s/C

J.s0/X
jD1

.X ˙ s0/
j�1…˙;ı.s0/

.s� s0/j
;

where Y˙;ı.s/ is holomorphic near s D s0 and …˙;ı.s0/ is a finite-rank projector satisfying

WF0.…˙;ı.s0//�E
�
˙;ı �E

�
�;ı and supp.…˙;ı.s0//� �

˙
ı ��

�

ı
;

where we identified …˙;ı.s0/ and its Schwartz kernel.

2.7 Restriction of the resolvent on the geodesic boundary

For any " > 0, define the open sets

A˙;" D f`˙;ı > "g\ f`�;ı > 0g � int.Mı/;

and notice that, if " is small, Mı=2 � A˙;". Then we have diffeomorphisms '˙" W A˙;"! A�;", which
induce maps

'�˙" W D0�.A�;"/! D0�.A˙;"/:
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Using a slight abuse of notation, we will still denote by '�
˙" W D0�.Mı/! D0�.A˙;"/ the composition of

'�
˙" with the inclusion D0�.Mı/ ,! D0�.A�;"/, which is given by the restriction. Let

@D @.S†?/D f.x; v/ 2Mı W x 2 ? t ?g

and @0 D S? tS? � @.

Lemma 2.7 For any " > 0 small enough , we have

WF.'��"R˙;ı.s//\N
�.@� @/D∅;

where
N �.@� @/D f.z0; � 0; z; �/ 2 T �.Mı �Mı/ W h�

0; Tz0@i D h�; Tz@i D 0g:

Proof We prove the statement for RC;ı.s/. By (2-9) and multiplicativity of wavefront sets (see
[23, Theorem 8.2.14]),

(2-10) WF0.'��"RC;ı.s//��"[‡
"
C;ı [ .E

�
C;ı �E

�
�;ı/;

where
�" D f.ˆ".z; �/; .z; �// W .z; �/ 2 T

�Mıg

and
‡"
C;ı D f.ˆt .z; �/; .z; �// W "6 t 6 `C;ı.z/; hX.z/; �i D 0g:

Now assume that there is „D .z0; � 0; z; �/ lying in

N �.@� @/\ .�"[‡
"
C;ı [ .E

�
C;ı �E

�
�;ı//:

If „ 2�", then necessarily z; z0 2 @0, because '".@ n @0/\ @D ∅ whenever " > 0 is smaller than the
injectivity radius of the manifold.1 We thus have � 2N �z @DRˇ.z/ by Remark 2.4; now ˆ".ˇ.z// does
not lie in Rˇ.'".z// by Lemma 2.2, and therefore � D 0.

If„2‡"
C;ı

, then there is T > " such thatˆT .z; �/D .z0; � 0/with h�; X.z/iD0. However, by Remark 2.4,
if .z; �/ 2N �z @ and h�; X.z/i D 0, then z 2 @0. Thus by what precedes, � D 0.

Finally, (2-1) and Remark 2.4 imply that N �@\E�
˙;ı
� f0g. Thus we have shown that

WF0.'��"RC;ı.s//\N
�.@� @/D∅;

which is equivalent to the conclusion of the lemma.2

Remark 2.8 This estimate together with [23, Theorem 8.2.4] imply that the operator ���X'��"RC;ı.s/��
is well defined and satisfies

WF.���X'��"RC;ı.s/��/� d.�� �/>WF.'��"RC;ı.s//;

1Let x 2 @†. If .x; v/ 2 @ n @0 satisfies that .y; w/D '".x; v/ 2 @, then the exponential map at x is not injective on the closed
ball B.0; "/ � Tx† of radius ", since �.'"0.x; v0//D y for some v0 2 Sx† tangent to @† and some "0 2 Œ0; "�. This follows
from the fact that @† is totally geodesic.
2Since the set f.z; �; z0; � 0/ W .z; �; z0;�� 0/ 2N �.@� @/g coincides with N �.@� @/, we may use WF or WF0 interchangeably.
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where � W @ ,! Mı and � � � W @ � @ ,! Mı �Mı are the inclusions. Indeed, the Schwartz kernel of
���X'

�
�"RC;ı.s/�� coincides with the pullback by �� � of the kernel of �X'��"RC;ı.s/. It also follows

from [23, Theorem 8.2.14] that the operator ���X'��"RC;ı.s/ maps

D0�N�@.Mı/! D0�.@/
continuously.

Here the pushforward �� W��.@/!D0�C1.Mı/ is defined as follows. If u 2�k.@/, we define the current
��u 2 D0kC1.Mı/ by

h��u; vi D

Z
@

u^ ��v; v 2�n�k�1.Mı/:

3 The scattering operator

In this section we introduce the dynamical scattering operator S˙.s/ associated to our problem. By
relating the scattering operator to the resolvent described above, we are able to compute its wavefront set.
In consequence, the composition .�S˙.s//n is well defined for � 2 C1c .@ n @0/, and we give a formula
for its flat trace.

For each x 2 @†?, let �.x/ be the normal outward pointing vector to the boundary of †?, and set

@˙ D f.x; v/ 2 @ W ˙h�.x/; vig > 0g:

3.1 First definitions

We define the exit times in the future and in the past by

`˙.z/D infft > 0 W '˙t .z/ 2 @g for z 2M n .@˙[ @0/;

and we declare that `˙.z/D1 whenever z 2 @˙[ @0. Then we set

�̇ D fz 2M W `�.z/DC1g:

The set �C (resp. ��/ is the set of points of M which are trapped in the past (resp. in the future). The
scattering map S˙ W @� n��! @˙ n �̇ is defined by

S˙.z/D '˙`˙.z/.z/ for z 2 @� n��;

and satisfies S˙ ıS� D Id@˙n�̇ . For s 2C, the scattering operator

S˙.s/ W��c.@� n��/!��c.@˙ n �̇ /

is given by
S˙.s/! D .S��!/e�s`�. � / for ! 2��c.@� n��/:

Remark 3.1 If Re.s/ is large enough, S˙.s/ extends as a map

C 0
�
@;
V
�
T �@

�
! C 0

�
@;
V
�
T �@

�
;

Geometry & Topology, Volume 28 (2024)



714 Yann Chaubet

where C 0
�
@;
V
�
T �@

�
is the space of continuous forms on @, by declaring that

S˙.s/!.z/D S��!.z/e�s`�.z/ if z 2 @˙ n �̇

and S˙.s/!.z/D 0 otherwise. Indeed, by Lemma 3.8 and (3-16), there is C > 0 such that

kS��!.z/k6 CeC`�.z/k!k1 for z 2 @˙ n �̇ and ! 2��.M/;

where k!k1 is the uniform norm on C 0
�
M;

V
�
T �M

�
.

3.2 The scattering operator via the resolvent

In this section we will see that S˙.s/ can be computed in terms of the resolvent. More precisely, we have
the following result:

Proposition 3.2 For any Re.s/ large enough ,

S˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/��

as maps ��c.@ n @0/! D0�.@/, where N W��.@/!N is the degree operator. That is , N.w/D k if w is a
k–form.

As a consequence of this proposition, Remark 2.8 and the continuity of the pullback [23, Theorem 8.2.4],

.�� �/� W D0��̇ ;"
.Mı �Mı/! D0�.@� @/;

where �̇ ;" is the right-hand side of (2-10), we get:

Corollary The scattering operator s 7! S˙.s/ W��.@ n @0/! D0�.@/ extends as a meromorphic family
of s 2C with poles of finite rank , with poles contained in the set of Pollicott–Ruelle resonances of LX ,
that is , the set of poles of s 7!R˙;ı.s/.

Before proving Proposition 3.2, we start with an intermediate result:

Lemma 3.3 We have S˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/�� as maps

��c.@� n��/! D0�.@˙ n �̇ /:

Remark 3.4 (i) Proposition 3.2 is not a direct consequence of Lemma 3.3. Indeed, the operator
Q";˙.s/D .�1/N e˙"s���X'��"R˙;ı.s/�� could hide some singularities near �̇ ; Proposition 3.2
tells us that this is not the case, at least far from @0.

(ii) A consequence of Proposition 3.2 is that Q";˙.s/ is identically zero on @˙ (in the sense that
Q";˙.s/uD 0 whenever supp.u/� @˙), as is the case for S˙.s/. This can be seen directly from
using the fact that

supp.'��"R˙;ı.s/��u/� f't .z/ W z 2 supp.u/ and "6˙t 6 `˙;ı.z/g:
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Proof Let u2��c.@�n��/, and U 0� @� be a neighborhood of suppu such that U 0 does not intersect @0.
Let " > 0 be small enough that

z 2 @� D) `C.z/ > ":

The existence of such an " follows from the fact that, for each x2@†, the exponential map expx WTx†!†

is injective on B.0; "/ � Tx† whenever " > 0 is small enough (independent of x). Note also that, for
every z 2 @�,

�.'t .z// 2†ı n†? for � `�;ı.z/ < t < 0;

by Lemma 2.6. Next, let us set

U D f.t; z/ 2R�U 0 W �`�;ı.z/ < t < "g:

Then U is diffeomorphic to a tubular neighborhood of U 0 in Mı via .t; z/ 7! 't .z/.3 Let � 2 C1.R/ be
such that �� 1 near ��1; 0� and �� 0 on

�
1
2
";C1

�
. Set, in the above coordinates,

 .t; z/D �.t/e�tsu.z/ 2
V
�
T �.t;z/Mı ;

where we see u.z/ as a form in T �
.t;z/

M by declaring �@tu.z/D 0. We extend  by 0 on M , and we set

� D  �RC;ı.s/.LX C s/ :

Then � is smooth by (2-5), since supp \�� D∅. Moreover .LX C s/� D 0, and we have

�j@� D u and �j@C D SC.s/u;

where SC.s/D SC.s/j��c.@�n��/. Let h 2��c.Mı n�C;ı/, so that R�;ı.s/h is smooth (see the discussion
following (2-7)). We have, by (2-6) and (2-7),Z

Mı
� ^ hD

Z
Mı
 ^ h�

Z
Mı
RC;ı.s/.LX C s/ ^ hD

Z
Mı
 ^ hC

Z
Mı
.LX C s/ ^R�;ı.s/h

D

Z
Mı
 ^ h�

Z
Mı
 ^ .LX � s/R�;ı.s/hC

Z
@Mı

�X . ^R�;ı.s/h/

D

Z
@Mı

�X . ^R�;ı.s/h/D .�1/
deg 

Z
@�;ı

 ^ �XR�;ı.s/h;

since �X D 0 and  has no support near @C;ı . Now we let ˆ W @� ! @�;ı be defined by ˆ.z/ D
'�`�;ı.z/.z/. Assume that the support of h does not intersect U . Then a change of variable gives

ˆ�.�XR�;ı.s/h/j@�;ı D �XR�;ı.s/he
�s`�;ı. � /:

As we have ˆ�. j@�;ı /D . j@�/e
Cs`�;ı. � / D ueCs`�;ı. � / by definition of  , we obtain

(3-1)
Z
Mı
� ^ hD .�1/degu

Z
@�
u^ ��.�XR�;ı.s/h/:

Now because .LX � s/R�;ı.s/h D h, we get .LX � s/R�;ı.s/h D 0 near U , and thus '�"R�;ı.s/h D
e"sR�;ı.s/h near U . Let v 2��c.@C n�C/. Then U \ supp.v/D ∅ (because supp.v/ � @C n�C). As

3The map G W .t; z/ 7! 't .z/ is clearly smooth on U . By Lemma 2.6, t 7! �.'t .z// is strictly increasing for z 2 @�. Therefore,
by uniqueness of the integral curves of X , we see that G is injective. The inverse of G is given by G�1.z0/D .t.z0/; z.z0//,
where t .z0/D infft > 0 W 't .z

0/ 2 @g and z.z0/D '�t.z0/.z0/, which is smooth on G.U / by the implicit function theorem.
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WF.��v/�N �@, we may find hn 2��c.Mı n�C;ı/, for n 2N, such that hn! ��v in D0�
N�@

.Mı/, and
with the property that supp.hn/\U D∅.4 Then applying (3-1) to hD hn and letting n!1 yields5Z

@C

.SC.s/u/^ v D .�1/degue�"s
Z
@�

u^ ���X'
�
"R�;ı.s/��v;

because �j@C D SC.s/u. Since
R
@C

SC.s/u^ v D
R
@�
u^S�.s/v, we obtain

S�.s/D .�1/degue�"s���X'
�
"R�;ı.s/��

as maps��c.@Cn�C/!��c.@�n��/. We can replaceX by�X to obtain the desired formula for SC.s/.

Proof of Proposition 3.2 Let u 2 ��.@ n @0/ and write uD u.�; �/ 2 T �
.�;�/

@. Let � 2 C1c .R; Œ0; 1�/
be such that

R
R �D 1, �.0/¤ 0, �� 0 on R n

�
�
1
2
ı; 1
2
ı
�

and � > 0 on
�
�
1
2
ı; 1
2
ı
�
. For n 2N>1 we set

�n D n�.n � /, so that �n converges to the Dirac measure on R as n!C1. We define un 2��c.Mı/ in
the .�; �; �/ coordinates by

un D �n.�/u.�; �/^ d�:

Then un! .�1/N ��u in D0
N�@

.Mı/, since @D f�D 0g. In particular, setting

fn D �
�'��"�XRC;ı.s/un for n> 1;

Remark 2.8 gives that fn! .�1/N ��'��"�XRC;ı.s/��u in D0�.@/. Moreover, if Re.s/ is large enough, then
for any n 2N, we have .�1/N ��'��"�XRC;ı.s/un 2 C

0
�
Mı ;

V
�
T �Mı

�
and thus fn 2 C 0

�
@;
V
�
T �@

�
.

Then we claim that fn! SC.s/u is in D0�.@ n @0/ when n!C1, where we recall that

SC.s/u.z/D
�
S��u.z/e

�s`�.z/ if z 2 @C n�C;
0 if not:

Let F D
˚
j�j6 1

2
ı
	
. Since the neighborhood

˚
j�j< 1

2
ı
	

is strictly convex, there exists L> 0 such that,
for any z 2 F and T > 0 with '�T .z/ 2 F , we have

(3-2) '�t .z/ … F for all t 2 �0; T Œ D) T > L:

Next, take z 2 @C n�C. Then the set ft 2 Œ"; `�;ı.z/� W '�t .z/ 2 F g is a finite union of closed intervals,
say

ft > " W '�t .z/ 2 F g D

K.z/[
kD0

Œak.z/; bk.z/�;

with ak.z/ 6 bk.z/ 6 C1 and bk.z/ < akC1.z/ for every k. We set �.t/ D �.'�t .z// for any t > 0,
and we take any smooth norm k � k on

V
�
T �Mı . Note that un D �n.�/u1. Moreover, if z 2Mı and

t < `�ı.z/, we have

(3-3) k'��tu1.z/k6 Cku1.'�tz/k exp.C jt j/

4For example, we may take hn.�; �; �/D �n.�/v.�; �/^ d�, where �n 2 C1c .��ı; ıŒ/ converges to the Dirac measure.
5Here we use that ���X'�"R�;ı .s/hn! ���X'

�
"R�;ı .s/��v in D0�.@/ as n!1 by Remark 2.8, since hn! ��v in D0�

N�@
.Mı /.
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for some C > 0. Let �0 > 0 small and h 2 C1.Mı ; Œ0; 1�/ such that hD 1 on suppu1 and

(3-4) h.�; �; �/D 0 when dist.�; �Z/ < �0:

(Such an h exists if �0 is small enough, since u 2 ��.@ n @0/.) Then there is c D c.�0/ > 0 such that
jX�j> c on supp h, by Lemma 2.3. In particular, if Re.s/ > C , then, by (3-3) and (3-4),

kfn.z/k6
Z `�;ı.z/

"
.�n ı �/.'�t .z//k'

�
�t .�Xu1/.z/ke

�ts dt

6 Ckuk1
K.z/P
kD0

e.C�s/ak.z/
Z bk.z/

ak.z/
�n.�.t//h.'�t .z// dt

6 Cc�1kuk1
K.z/P
kD0

e.C�s/ak.z/
Z bk.z/

ak.z/
�n.�.t//jX�.'�t .z//j dt:

Of course, for t < `�;ı.z/, we have X�.'�t .z//D �0.t/. Moreover, by Lemma 2.6, ˙X2� > 0 if˙� > 0.
Thus we may separate each interval Œak.z/; bk.z/� into two subintervals on which j�0j> 0, and change
variables to get Z bk.z/

ak.z/
�n.�.t//j�

0.t/j dt 6 2
Z

R
�n.�/ d� 6 2:

By (3-2), ak.z/> kL for any k. Therefore we obtain

(3-5) kfn.z/k6
2kuk1

1� e.C�Re.s//L
for z 2 @C n�C and n> 1:

Moreover, if z 2 @�, we have that t 7! �.'�t .z// is strictly increasing for any z 2 @� by Lemma 2.6.
Thus we may reproduce the argument made above to obtain that (3-5) also holds for z 2 @�. Finally, it is
shown in [18, Section 2.4] that Leb.�C\ @C/D 0.6 In particular, since each fn is a continuous, (3-5)
holds for any z 2 .@C[ @�/ n�C D @.

Next, let v 2��.@/. By Lemma 2.6, the set f'�t .z/ W t > "g is included in f�> �.'�".z//g for any z 2 @�.
In particular, as supp.un/! @ when n!1, we have fn.z/! 0 for z 2 @�. By dominated convergence
we get, as n!1, Z

@�
fn ^ v! 0:

Next, let � > 0, and �˙ 2 C1c .@˙ n �̇ / such that

(3-6) �� � 1 on supp.�C ıSC/ and vol.supp.1��C// < �:

Such functions exist, as Leb.�C\ @/D 0. We haveZ
@C
fn ^ v D

Z
@C
�Cfn ^ vC

Z
@C
.1��C/fn ^ v:

6Actually, Section 2.4 of [18] says that Leb.�C;ı \ @C;ı /D 0. However, Jı W z 7! '`C;ı.z/.z/ realizes a local diffeomorphism
@C! Jı .@C;ı /, and we have Jı .�C/� �C;ı .
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Note that fnD Qfn on supp�C, where Qfn is defined exactly as fn, replacing u by QuD��u2��.@�n��/.
By Lemma 3.3, Q";C.s/ QuD SC.s/ Qu, and since Qfn!Q";C.s/ Qu, we haveZ

@C

�Cfn ^ v D

Z
@C

�C Qfn ^ v!

Z
@C

�CSC.s/ Qu^ v D
Z
@C

�CSC.s/u^ v;

where we used that SC.s/uD SC.s/ Qu on supp�C. On the other hand, as the forms fn are uniformly
bounded by (3-5) and the discussion below, there is C > 0 such that, for any n> 1,ˇ̌̌̌Z

@C

.1��C/SC.s/u^ v
ˇ̌̌̌
< C� and

ˇ̌̌̌Z
@C

.1��C/fn ^ v

ˇ̌̌̌
< C�;

where we used the second part of (3-6). Summarizing the above facts, we obtain that, for n> 1 big enough,ˇ̌̌̌Z
@

fn ^ v�

Z
@

SC.s/u^ v
ˇ̌̌̌
6 4C�:

Thus, fn! SC.s/u in D0�.@/.

3.3 Composing the scattering maps

Recall that @ has two connected components @.1/ and @.2/ that we can identify in a natural way. We denote
by  W @! @ the map exchanging those components via this identification (in particular,  .@˙/D @�),
and we set

zS˙.s/D  � ıS˙.s/:

Also we denote by ‰ D T �@! T �@ the symplectic lift of  to T �@; that is,

‰.z; �/D . .z/; d �>z �/ for .z; �/ 2 T �@:

Lemma 3.5 Let � 2 C1c .@ n @0/. Then for any n > 1, the composition .�zS˙.s/�/n, which is well
defined from C 0

�
@;
V
�
T �@

�
to C 0

�
@;
V
�
T �@

�
for Re.s/ large and holomorphic with respect to s by

Remark 3.1, admits a meromorphic continuation as a family of operators ��.@/! D0�.@/.

Proof We prove the lemma for SC.s/. First, assume that nD 2. According to [23, Theorem 8.2.14], it
suffices to show that A1\B1 D∅, where for n> 1 we set

(3-7)
An D f.z; �/ W .z

0; 0; z; �/ 2WF0
�
.�zS˙.s//n

�
for some z0 2 @g;

Bn D f.z; �/ W .z; �; z
0; 0/ 2WF

�
.�zS˙.s//n

�
for some z0 2 @g:

By Proposition 3.2 and Remark 2.8,

(3-8) WF0.�SC.s/�/jsupp.���/ � d.�� �/>.�"[‡"C;ı [ .E
�
C;ı �E

�
�;ı//;

where �" and ‡"
C;ı

are defined as in the proof of Lemma 2.7. Note that in the coordinates of Lemma 2.3,
�.z/D .�; 0; �/ 2 @ for any z D .�; �/ 2 @, and thus

d�>.z; �/D �� d� C �� d� for �D �� d� C �� d�C �� d� 2 T �z M:
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As � is supported far from @0, we have .'".z0/; z0/…@�@ for any z02 supp� (see for example Lemma 2.6),
and, for any � 2 T �z0Mı such that hX.z0/; �i D 0, we have

(3-9) d�>.z0; �/D 0 D) �D 0

by Lemma 2.3, since @0 D f.�; 0; �/ W � 2 �Zg. This implies that A1 is contained in E�
�;@

, while B1
is contained in ‰.E�

C;@
/ where E�

C;@
D .d�/>.E�

C;ı
/. Now we claim that ‰.E�

C;@
/\E�

�;@
� f0g far

from @0. By Lemma 2.3 and Section 2.3, for any z D .�; 0; �/ 2 @.j /\ �̇ ,

E�
C;@.z/DR.d�/>z .rC.z/ˇ.z/� .z//DR.�sin.�/rC.z/ d� � d�/;

since �.�; �/ D .�; 0; �/. Then rC. .z// ¤ r�.z/ for all z. Indeed, the contrary would mean that
Es.z

0/\Eu.z
0/¤ f0g for some z0 2M (represented by both z and  .z/ in Mı ), which is not possible.

Now we have sin.�/ ¤ 0 for z … @0. As a consequence, (3-7) is true, since supp� \ @0 D ∅. This
concludes the case nD 2, and by [23, Theorem 8.2.14] we also have the bound

WF0
�
.�zSC.s/�/2

�
�
�
WF0.�zSC.s/�/ ıWF0.�zSC.s/�/

�
[ .B1 � 0/[ .0�A1/;

where 0 denotes the zero section in T �@, with A1 �E��;@ and B1 �‰.E�C;@/, and where, for any conical
subsets ‡1; ‡2 � T �.M �M/, we write

‡1 ı‡2 D f.x1; �1; x2; �2/ W .x1; �1; y; �/ 2 ‡1 and .y; �; x2; �2/ 2 ‡2 for some .y; �/g:

Note that, if we set
E�s;@˙

D d�>.E�s j@˙/ and E�u;@˙
D d�>.E�u j@˙/;

we have A1 �E�s;@� and B1 �‰.E�u;@C/DE
�
u;@�

.

We proceed by induction, assuming that, for some n> 2, the composition .�zS˙.s//n is well defined with
the bound

(3-10) WF0
�
.�zSC.s//n

�
�
�
WF0.�zSC.s/�/n�1 ıWF0.�zSC.s/�/

�
[ .Bn�1 � 0/[ .0�A1/;

and that An�1 �E�s;@� and Bn�1 �E�u;@� . This formula implies that the set An is included in˚
.z;�/2T �@ W.z0;0;z00;�/2WF0

�
.�zSC.s/�/n�1

�
and .z00;�;z;�/2WF0.�zSC.s/�/ for some z0;z002@

	
[A1:

We have An�1 � E�s;@� , and note that ‰.E�
C;@
/ � E�

u;@�
and E�

u;@�
\ E�

s;@�
D f0g. Moreover, as

mentioned above, '".z0/ … @ whenever z0 2 supp.�/. Thus we obtain, by (3-8),

An � f.z; �/ W .z
00; �; z; �/ 2 d.�� �/>.‡"

C;ı/ for some � 2‰.E�s;@�/g[A1:

Now suppose .z00; �; z; �/ 2 d.�� �/>.‡"
C;ı
/ with z00; z 2 supp�. Note that ‰.E�

s;@�
/DE�

s;@C
and thus,

if � 2 ‰.E�
s;@�

/\ d�.z00/> kerX.z00/, then � D d�.z00/> Q� for some Q� 2 E�s .z
00/ by (3-9). Since E�s is

preserved by ˆ�t , we obtain .z; �/ 2 d�>.E�s /. In particular, this yields An �E�s;@� . Reversing the roles
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of .�zSC.s//n�1 and �zSC.s/ in (3-10), we get that Bn is included in

f.z;�/2T �@ W.z;�;z0;��/2WF.�zSC.s/�/ and .z0;�;z00;0/2WF
�
.�zSC.s/�/n�1

�
for some z0;z002@g

[B1:

Proceeding as above, one gets Bn � E�u;@� . Finally, Bn \ A1 D ∅, since E�
u;@�
\ E�

s;@�
on supp�

by (3-9). As a consequence, the composition .�zSC.s/�/nC1 D .�zSC.s/�/n ı .�zSC.s/�/ is well defined
by [23, Theorem 8.2.14], and (3-10) holds with n replaced by nC 1.

Remark 3.6 Using (3-10) inductively, one can actually show that WF0
�
.�zSC.s/�/n

�
is contained in

d.O�� O�/>z�";C, where

z�";C D f. ŷ t .z; �/; .z; �// W z; O't .z/ 2 S†j? \ O�.supp�/; hX.z/; �i D 0; t > "g[ .E�u �E
�
s /jsupp.���/:

Here (and only here), in order to avoid confusion, we denote by O' (resp. ŷ t ) the complete geodesic flow
on M D S† (resp. the symplectic lift of the geodesic flow on T �M ), and by O� W @! S†j? ,!M the
identification of both components of @.

3.4 The flat trace of the scattering operator

Let A W��.@/! D0�.@/ be an operator such that WF0.A/\�.T �@/D∅, where �.T �@/ is the diagonal
in T �.@� @/. Then by [23, Theorem 8.2.4], the pullback ���KA is well defined, where �� W z 7! .z; z/ is
the diagonal inclusion and KA 2 D03.@� @/ is the Schwartz kernel of A, defined byZ

@

Au^ v D

Z
@�@

KA ^�
�
1u^�

�
2 v for u; v 2��.@/;

where �j W @� @! @ is the projection on the j th factor (for j D 1; 2). We then define the (super)flat trace
of A by

�tr[sAD h�
�
�KA; 1i:

In fact, one can show that

(3-11) �tr[s.A/D
2X
kD0

.�1/k tr[.Ak/;

where tr[ is the transversal trace of Atiyah and Bott [3] and Ak is the operator

Ak W C
1
�
@;
Vk

T �@
�
! D0

�
@;
Vk

T �@
�

induced by A on the space of k–forms (see also [16, Section 2.4] for an introduction to the flat trace).

The purpose of this section is to compute the flat trace of S˙.s/. In what follows, for any closed geodesic
 WR=`Z!†, we will write

I?./D fz 2 S†j? W z D ..�/; P.�// for some � 2R=`Zg

for the set of incidence vectors of  along ?, and

I?;˙./D p
�1
? .I?.//\ @�;

where p? W S†?! S† is the natural projection.

Geometry & Topology, Volume 28 (2024)



Closed geodesics with prescribed intersection numbers 721

Proposition 3.7 Let � 2 C1c .@ n @0/. For any n > 1, the operator .�zS˙.s//n has a well-defined flat
trace , and for Re.s/ big enough ,

(3-12) tr[s
�
.�zS˙.s/�/n

�
D n

X
i.;?/Dn

`#./

`./
e�s`./

� Y
z2I?;˙./

�2.z/

�̀ ./=`#./

;

where the sum runs over all (not necessarily primitive) closed geodesics  of .†; g/ such that i.; ?/Dn.
Here `./ is the length of  and `#./ its primitive length.

This formula should be compared with the formula

tr[s..�f
��/n/D

X
2Pern.f /

m#./ sgn.det.1�P //
�Y
z2

�2.z/

�n=m#./

;

which is valid for any smooth Anosov diffeomorphism f WZ!Z of a closed manifoldZ and �2C1.Z/.
Here f � W C1.Z/! C1.Z/ is the pullback operator, Pern.f / is the set of n–periodic orbits of f ,
m#./ is the minimal period of  and P is the linearized Poincaré map of  (that is, P D df .z/
for z 2 ). Note that the above sum is finite, unlike the sum in (3-12). This is due to the fact that S˙ is
singular at �̇ , which allows S˙ to have an infinite number of n–periodic points.

Proof The proof that the intersection

(3-13) WF0
�
.�zS˙.s/�/n

�
\�.T �@/

is empty follows from the estimate in Remark 3.6, since E�u \E
�
s D f0g and dO�.z/> W kerX.O�.z//! T �z @

is injective for any z 2 supp.�/.

For any n> 1, we define the set z�n
˙
� @ by

{z�n˙ D fz 2 @ W . zS˙/
k.z/ is well defined for k D 1; : : : ; ng;

where zS D  ıS . Equivalently,

z�1˙ D �̇ and z�nC1
˙
D z�n˙\ .

zS�/
n.�̇ n z�n�/

for n> 1. Also, we set

(3-14) Q̀
˙;n.z/D `˙.z/C `˙. zS˙.z//C � � �C `˙. zS

n�1
˙ .z// for z 2 {z�n˙;

where `˙.z/D infft > 0 W '˙t .z/ 2 @g, with the convention that Q̀˙;n.z/DC1 if z 2 z�n
˙

. We will need
the following:

Lemma 3.8 Let n> 1. For any k > 1, there exists Ck;n > 0 such that

kdk`˙;n.z/k6 Ck;n exp.Ck;n`˙;n.z// for z 2 {z�n˙:

Proof By induction on n, using (3-14) and the fact that S˙.{z�n˙/ D {z�n�1
˙

, we see that the lemma
reduces to proving the estimate

(3-15) kdk`˙.z/k6 Ck exp.Ck`˙.z// for z 2 {z�1˙:
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In what follows, Ck is a constant depending only on k, which may change at each line. First, notice that
kdk't .z/k 6 Cke

Ck jt j for any t 2 R and z 2Mı such that 't .z/ 2Mı , for some constant Ck; see for
example [8, Proposition A.4.1]. Moreover,

dS˙.z/D dŒ'`˙.z/�.z/CX.S˙.z// d`˙.z/ for z 2 {z�1˙:

By induction we obtain that, for any k,

(3-16) kdkS˙.z/k6 Ck exp.Ck`˙.z//CCk
kX

jD1

kdj `˙.z/kmj with mj 2N for j D 1; : : : ; k

for any z 2 {z�1
˙

. Let .�; �; �/ be the coordinates defined near @ given by Lemma 2.3. Then �.S˙.z//D 0
for z 2 z�˙1 , and thus

(3-17) .X�/.S˙.z// d`˙.z/D�d�.S˙.z// ı dŒ'`˙.z/�.z/ for z 2 {z�1˙:

Let z … z�˙1 ; Lemma 2.3 gives

(3-18) .X�/.S˙.z//D sin
�
�.S˙.z//

�
:

Set z0 D S˙.z/, and write .�.t/; �.t// D �.'�t .z0//, so that �.0/ D 0. By the proof of Lemma 2.6,
t 7! j�.t/j is strictly increasing (indeed z … z�˙1 and thus P�.0/D˙X�.z0/¤ 0), and whenever j�.t/j6 1

2
ı,

(3-19) R�.t/DG.�.t/; �.t//

for some smooth function G 2 C1
�
.R=`?Z/� �

�
�
1
2
ı; 1
2
ı
�
�

�
satisfying G.�; 0/D 0 and @�G.�; �/ > 0.

If D D supj@�Gj, we have jG.�; �/j 6 Dj�j and thus j R�.t/j 6 Dj�.t/j, with �.0/ D R�.0/ D 0 and
P�.0/D˙X�.S˙.z//. By comparing the solution of (3-19) with the solutions of Ry.t/DDy.t/, we obtain

j�.t/j6 jX�.z0/j sh.Dt/:

In particular, j�.t/j< 1
2
ı whenever jX�.S˙.z//j sh.Dt/ < 1

2
ı, and thus sh.D`�.z0//> 1

2
ıjX�.z0/j. By

(3-18), we conclude that there is C > 0 such that

(3-20)
ˇ̌
sin
�
�.S˙.z//

�ˇ̌
> C exp.�C`˙.z// for z 2 {z�1˙:

We therefore obtain, for any z 2 z�˙1 ,

kd`˙.z/k6 C�1 exp.C`˙.z//kd�.S˙.z//k � kdŒ'`˙.z/�.z/k6 CeC`˙.z/:

Now, repeatedly using (3-16), (3-17) and (3-20), we obtain (3-15) by induction on k.

Consider Q� 2 C1.R; Œ0; 1�/ such that Q� � 1 on ��1; 1� and Q� � 0 on Œ2;C1Œ, and set Q�L.z/ D
Q�.`˙;n.z/�L/ for z 2 @. Then Q�L 2 C1c .@ n z�

n
˙
/, and by (3-11) we see that the Atiyah–Bott trace

formula [3, Corollary 5.4] reads in our case

(3-21) h���K�;˙;n.s/; Q�Li D
X

. zS�/n.z/Dz

e�s`˙;n.z/ Q�L.z/

n�1Y
kD0

�2.. zS�/
k.z//;
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where K�;˙;n.s/ is the Schwartz kernel of .�S˙.s//n. Indeed, a simple computation (for example in the
spirit of [16, Appendix B]7) shows that, for any diffeomorphism f W @! @ with isolated nondegenerate
fixed points,

(3-22) tr[.Fk/D
X

f .z/Dz

tr
Vk df .z/

jdet.1� df .z//j
;

where Fk W �k.@/ ! �k.@/ is defined by Fk! D f �! and
Vk df .z/ is the map induced by df .z/

on
Vk

T �z @. Since
P
k.�1/

k tr
�Vk df .z/

�
D det.1� df .z//, it holds that

(3-23) tr[s.F /D
X
k

.�1/kC1 tr[.Fk/D�
X

f .z/Dz

sgn det.1� df .z//:

Now note that Q�L.�zS˙.s/�/n is by definition the operator given by

(3-24) ! 7! Q�L. � /

� nY
kD1

.� ı . zS�/
k/.� ı . zS�/

k�1/

�
e�s`˙;n. � /. zS�/

n�w:

Moreover, sgn det.1�d. zS�/n.z//D�1 for any z such that . zS�/n.z/Dz. Indeed, for such a z, d. zS�/n.z/
is conjugated to the linearized Poincaré map

Pz D d.'`˙;n.z//.z/jEu.z/˚Es.z/;

which satisfies det.1�Pz/ < 0 as the matrix of Pz in the decomposition Eu.z/˚Es.z/ reads
�
�
0

0
��1

�
for

some � > 1 (since 't preserves the volume form ˛^ d˛). Finally, by (3-13), the pairing in the left-hand
side of (3-21) is well defined; moreover, the proof of (3-22) can be revisited for the operator (3-24) thanks
to the introduction of our cutoff functions Q�L and �, yielding (3-21).

As L!C1, the right-hand side of (3-21) converges to

n
X

i.;?/Dn

`#./

`./
e�s`./

� Y
z2I?;˙./

�2.z/

�̀ ./=`#./

;

since for any closed geodesic  WR=Z!† such that i.; ?/D n,

#fz 2 @ W z D ..�/;  0.�// for some �g D n
`#./

`./
:

Note that the sum converges whenever Re.s/ is large enough by Margulis’ asymptotic formula, given in the
introduction. It remains to see that hi��K�;˙;n.s/; 1� Q�Li! 0 as L!C1. Note that Lemma 3.8 gives

(3-25) kdk Q�Lk6 Cke
CkL:

By Remark 3.1, if s0 > 0 is large enough, one has S˙.s0/ W��.@/!C 0
�
@;
V
�
T �@

�
. Also, for any s 2C

with Re.s/ > 0,

(3-26) S˙.s0C s/w D .S˙.s0/w/e�s`˙. � / for w 2��.@/:

7Actually, in the aforementioned reference, the authors deal with flows, but the diffeomorphism case is even simpler.
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Let N 2 N such that ���K�;˙;n.s0/ extends as a continuous linear form on CN .@/. Then applying
Lemma 3.8, we see that if Re.s/ is large enough, the function exp.�s`˙;n. � // lies in CN .@/. Thus, the
product e�s`˙;n. � /���K�;˙;n.s0/ is well defined and by (3-25) we have

jhe�s`˙;n. � /���K�;˙;n.s0/; .1� Q�L/ij D jh�
�
�K�;˙;n.s0/; .1� Q�L/e

�s`˙;n. � /ij

6 Ck.1� Q�L/e
�s`˙;n. � /kCN .@/ 6 CN e

.CN�Re.s//L;

since `˙;n >L on supp.1� Q�L/. Therefore, to obtain that hi��K�;˙;n.s0C s/; 1� Q�Li! 0 as L!C1,
it suffices to show that

e�s`˙;n. � /���K�;˙;n.s0/D �
�
�K�;˙;n.s0C s/:

This equality is a consequence of (3-26) and Lemma B.1, since we can take s arbitrarily large.

Recall from Remark 3.6 that s 7! .�zS˙.s/�/n admits a meromorphic continuation in D03
� 0
";˙

.@�@/, where
� 0";˙ does not intersect the conormal to the diagonal in @� @. In particular:

Corollary The function s 7! �˙;�;n.s/ defined for Re.s/� 1 by the right-hand side of (3-12) extends to
a meromorphic function on the whole complex plane.

To prove Theorem 1, we wish to use a standard Tauberian argument near the first pole of �˙;�;n to obtain
the growth of N.n;L/. Indeed, it is known (see Section 5) that s 7!R˙;ı.s/ has a simple pole at s D h?.
However, since �˙;�;n is given by the trace of the nth self-composition of the restriction of R˙;ı to @,
it is not clear a priori that �˙;�;n will have a singularity at s D h?. In the next section we obtain some
a priori bounds on N.n;L/; this will imply that �˙;�;n indeed has a pole at s D h?, of order n.

4 A priori bounds on the growth of geodesics with fixed intersection number
with ?

The purpose of this section is to get a priori bounds on N.1;L/— and N.2;L/ in the case where ? is
separating — using Parry and Pollicott’s bound for axiom A flows [35].

Choose some point x? 2 ?. Let g be the genus of † and .a1; b1; : : : ; ag; bg/ be a basis of generators
of †, so that the fundamental group of † is the finitely presented group given by

(4-1) �1.†/D ha1; b1; : : : ; ag; bg; Œa1; b1� � � � Œag; bg�D 1i;

where we set �1.†/D �1.†; x?/ for some choice of x? 2 ? (see Figure 2 for the case where ? is not
separating, and Figure 4 otherwise).
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x?

b1 b2

† a2

a1 †?
b1

a2
x?

a1 Nx?

Figure 2: The generators a1; b1; : : : ; ag; bg of �1.†/ (on the left) and the generators a1; b1; : : : ; ag

of �1.†?/ (on the right) when gD 2. Here ? is assumed to be not separating and is represented
by a2 in �1.†/.

4.1 The case ? is not separating

Up to applying a diffeomorphism to †, we may assume that ? is represented by ag 2 �1.†/. The
cut surface †? is a topological surface of genus g� 1 with 2 punctures, and the fundamental group8

�1.†?/D �1.†?; x?/ is the free group given by ha1; b1; : : : ; agi, which follows from the fact that †? is
homotopically equivalent to a connected sum of 2g� 1 circles. We refer to Figure 2 for a picture of the
generators and the choice of x?. By the presentation of �1.†/ given above, we have

(4-2) bgagb
�1
g D a

0
g where a0g D Œa1; b1� � � � Œag�1; bg�1�ag;

and note that a0g also defines an element of �1.†?/.

Lemma 4.1 The map q? W†?!† given by the identification of the boundary components of †? induces
a map q?;� W �1.†?/! �1.†/, which is injective.

Proof Let hagi (resp. ha0gi) be the infinite cyclic subgroup of �1.†?/ generated by ag (resp. a0g). Then
by (4-1) and (4-2), the group �1.†/ is the HNN9 extension �1.†?/�� of �1.†?/ with respect to the
isomorphism � W ha0gi ! hagi given by �.a0g/ D ag, that is, �1.†?/�� is the finitely presented group
defined by

�1.†?/�� D ha1; b1; : : : ; ag; t W t
�1a0gt D agiI

see [30, Section IV.2]. Now the map q?;� W �1.†?/! �1.†/ coincides with the natural map �1.†?/!
�1.†?/�� , and this map is injective by [30, Theorem IV.2.1].

We may see the cut surface †? as the convex core of a complete, noncompact, negatively curved
surface, with funnels. Indeed, by Lemma 4.1, the group �1.†?/ can be thought of as a subgroup
of �1.†/, and the convex core of the infinite surface †e? D �1.†?/nz† is canonically isometric to †?
(here z† is a universal cover of †). Another way to obtain this is by gluing two arbitrary funnels as
follows. Recall that near each connected component of the boundary @†? � †ı we have coordinates

8Here, in order not to burden the notation, we still denote by x? 2 †? a lift of x? 2 † by the natural map q? W †?! †; see
Figure 2.
9HNN refers to the authors Graham Higman, Bernhard Neumann and Hanna Neumann [22].
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.�; �/ 2 R=`?Z� � Œ�ı; ı�� given by Lemma 2.3, for which @†? D f� D 0g and @†ı D f� D ıg. In
those coordinates, the metric has the form d�2 C f .�; �/ d�2 for some smooth function f satisfying
@�f .�; 0/D 0 and �.�; �/D�@2�f .�; �/=f .�; �/. Then we arbitrarily extend f to a smooth function on
.R=`?Z/� � Œ�ı;C1Œ so that, for some constants c; C > 0,

c 6
@2�f

f
6 C:

By gluing the funnels .R=`?Z/� Œ0;1Œ and †? along the corresponding connected components, we
obtain a complete negatively curved surface†e?, whose metric in the funnels is given by d�2Cf .�; �/ d�2.
We will again denote by .'t / the geodesic flow on the unit tangent bundle S†e? of †e?.

Let z†? denote the universal cover of †e? and let Qx? 2 z†? be such that �. Qx?/D x?, where � W z†?!†e?
is the natural projection. Then �1.†e?; x?/ D �1.†?/ acts on z†? by deck transformations so that
†e? ' �1.†?/n

z†?. Moreover, Lemma 2.6 implies that the recurrent set of the geodesic flow on S†e? is
compact and included in S†?; thus �1.†?/ is convex–cocompact in the sense of [12]. The aforementioned
lemma also implies that every closed geodesic in †e? which is not contained in @†? is actually contained
in the interior of †?.

It is well known that there is a one-to-one correspondence between oriented closed geodesics on †e? (all
of them belonging to †?) and the set of free homotopy classes of loops in †e?. The latter set is itself in
one-to-one correspondence with the set of conjugacy classes of �1.†?/. We set

`?.w/D dist. Qx?; w Qx?/ for w 2 �1.†?/;

where the distance comes from the metric ��g on z†?. For any w 2 �1.†?/, we denote by Œw� the
associated conjugacy class of �1.†?/. Note that if Œw� denotes the unique geodesic in the free homotopy
class of w (which is represented by the conjugacy class Œw�), we have `.Œw�/6 `?.w/. We also denote by

(4-3) wl.w/Dminfn> 0 W w D ˛1 � � �˛n with j̨ 2Lg n fbg; b
�1
g gg

the word length of an element w 2 �1.†?/, where Lg D
Sg
kD1
fak; a

�1
k
; bk; b

�1
k
g. We will say that a

word ˛1 � � �˛k with j̨ 2Lg is reduced if j̨ ¤ . j̨C1/
�1 for any j D 1; : : : ; k � 1. As �1.†?/ is free,

for each w 2 �1.†?/, there is exactly one reduced word ˛1 � � �˛n such that nD wl.w/; see [30, page 4].
It follows from the Milnor–Švarc lemma [11, Proposition I.8.19] that, for some constant D > 0,

(4-4) 1

D
wl.w/�D 6 `?.w/6Dwl.w/CD for w 2 �1.†?/:

Also, as �1.†?/ is convex cocompact, we have the classical orbital counting (see [42, paragraphe 1.F
and corollaire 2])

(4-5) #fw 2 �1.†?/ W `?.w/6 Lg � Aeh?L as L!1

for some A > 0, where h? > 0 is the topological entropy of the geodesic flow of .†e?; g/ restricted to the
trapped set

Ke? D f.x; v/ 2 S†
e
? W 't .x; v/ 2 S†? for t 2Rg:
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In fact, h? > 0 also coincides with the entropy of the geodesic flow of .†; g/ restricted to the trapped set
K? mentioned in the introduction,

K? D f.x; v/ 2 S† W �.'t .x; v// 2† n ? for t 2Rg;

where the closure is taken in S† and Ke? D p
�1
? .K?/, where p? W S†?! S† is the natural map given

by the identification of both components of @S†?.

4.1.1 Lower bound In this section we will prove:

Proposition 4.2 If ? is not separating , then there is C > 0 such that , for any L large enough ,

N.1;L/> C
eh?L

L
:

Note that Theorem 1 actually gives N.1;L/� c?eh?L, so Proposition 4.2 is not sharp. We could obtain
a better bound with the methods presented in Section 4.2, which deals with the separating case; however,
Proposition 4.2 will be sufficient for our purposes (see Remarks 5.2, 5.3 and 5.4).

Lemma 4.3 Take w;w0 2 �1.†?/. Then Œwbg�D Œw
0bg� as conjugacy classes of �1.†/ if and only if

w D angw
0a0�ng in �1.†?/ for some n 2 Z.

Proof If w D angw
0bga

�n
g b�1g , then clearly wbg and w0bg are conjugate in �1.†; x?/. Reciprocally,

assume that Œwbg�D Œw
0bg�. We may find smooth paths  and  0 representing respectively the elements

wbg and w0bg, with i.; ?/ D i. 0; ?/ D 1 and such that the intersections  \ ? and  0 \ ? are
transverse. As Œwbg�D Œw

0bg�, the loops  and  0 lie in the same free homotopy class. Thus there is a
smooth homotopy H W Œ0; 1��R=Z!† such that H.0; � /D  and H.1; � /D  0. We may assume that
H is transverse to ? (see for example [20, Corollary, page 73]) in the sense that

dH.s; �/.T.s;�/.Œ0; 1��R=Z//CTH.s;�/? D TH.s;�/† for H.s; �/ 2 ?:

In particular, H�1.?/ is a smooth submanifold of Œ0; 1��R=Z. As  and  0 intersect ? transversally
exactly once, H�1.?/\ .fj g�R=Z/D fj g�fŒ0�g for j D 0; 1 (here Œ0� is sent to x? by both  and  0).
Thus, necessarily, there exists an embedding F W Œ0; 1�! Œ0; 1��R=Z such that Im.F /�H�1.?/ and
F.j /D .j; Œ0�/ for j D 0; 1 (see Figure 3). Write F D .S; T /, and define

zH.s; t/DH
�
S.s/; ŒT .s/C t �

�
for .s; t/ 2 Œ0; 1�� Œ0; 1�:

It is immediate to check that zH realizes a homotopy between  and  0, and we have zH.s;0/DH.F.s//2?
for any s 2 Œ0; 1�. For any s, let us denote by cs the path Œ0; 1� 3 u 7! zH.su; 0/ which links x? to
H
�
S.s/; ŒT .s/�

�
within ?. The continuous family of paths s 7! s , where s is given by the concatenation

c�1s
zH.s; � /cs , realizes a continuous interpolation between 0 D  and 1 D c�11  0c1. As S.1/D 1 and

T .1/D Œ0� we have c1.0/D c1.1/D x?, and since c1.u/ 2 ? for each u 2 Œ0; 1� we get c1 D a�ng for
some n 2Z. This yields wbgD a

n
gw
0bga

�n
g in �1.†/, and thus wD angw

0a0�ng , where the equality stands
in �1.†/. By Lemma 4.1, this equality actually holds in �1.†?/.
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H�1.?/

f0g �R=Z

f1g �R=Z

Figure 3: Proof of Lemma 4.3. The path linking .0; Œ0�/ 2 f0g �R=Z to .1; Œ0�/ is the image of F .

Proof of Proposition 4.2 In what follows, C is a constant that may change at each line. For any
w 2 �1.†?/ and n 2 Z, by (4-4),

(4-6) `?.a
n
gwa

0�n
g /> 1

D
wl.angwa

0�n
g /�D:

Let w0 be the unique reduced word such that w0 D wa0�ng . Then write w0 D a�kg w00 for some w00, where
jkj is maximal, and note that necessarily jkj6 wl.w/C 1, since a0g D Œa1; b1� � � � Œag�1; bg�1�ag. Then

wl.angwa
0�n
g /D jnj � jkjCwl.w00/D jnj � 2jkjCwl.w0/> jnj � 2.wl.w/C 1/Cwl.w0/:

Now the triangle inequality for wl gives .4.g� 1/C 1/jnj Dwl.a0�ng /6 wl.w0/Cwl.w�1/, and thus we
obtain wl.angwa

0�n
g />C jnj�C wl.w/�C for each n. Injecting this in (4-6) yields (for some different C )

`?.a
n
gwa

0�n
g /> C jnj �C wl.w/�C for n 2 Z:

In particular, for any L and w such that `?.w/6 L, by (4-4),

(4-7) jfn 2 Z W `?.a
n
gwa

0�n
g /6 Lgj6 CLCC:

Now, for w 2�1.†?/ set Cw Dfangwa0�ng W n2Zg��1.†?/, and denote by C the set fCw Ww 2�1.†?/g.
For C 2 C , we set `?.C/D infw2C `?.w/. Then by Lemma 4.3, we have a well-defined and injective map

fC 2 C W `?.C/6 Lg ! f 2 P1 W `./6 LCC g; Cw 7! Œwbg�;

where P1 denotes the set of primitive geodesics  such that i.; ?/D 1.10 In particular we get, with
(4-7) and (4-5),

(4-8) N.1;L/> jfC 2 C W `?.C/6 L�C gj> 1

CLCC

X
C2C

`?.C/6L�C

jfw 2 C W `?.w/6 L�C gj

D
1

CLCC
jfw 2 �1.†?/ W `?.w/6 L�C gj> 1

CLCC
exp.h?.L�C//;

where the equality comes from the fact that �1.†?/ is the disjoint union of the subsets C with C 2 C .

10Each class Œwbg� defines a geodesic in P1. Indeed, it follows from Lemma 2.1 that i.Œwbg�; ?/6 1. On the other hand, the
absolute value of the algebraic intersection number between wbg and ag is 1, and this implies that there is at least one intersection
point between Œwbg� and ?, since the algebraic intersection number is preserved by free homotopies.
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x?

a1
b2

a2

?
†1

†2

b1

Figure 4: The generators a1; b1; : : : ; ag; bg of �1.†/. Here ? is assumed to be separating and
g1 D g2 D 1.

4.1.2 Upper bound Each  2 P1 with `./ 6 L lies in the free homotopy class of w0b˙1g for some
w0 2 �1.†?; x?/ and `?.w/6 LCC . In particular, (4-5) gives the bound

N.1;L/6 C exp.h?L/

for large L. Now let  2 P2 with `./6L. Then we may find a deformation of the loop  into a loop  0

which is represented by the conjugacy class of wb˙1g w0b˙1g in �1.†/ for some w;w0 2 �1.†?/. This
deformation can be made so that `?.w/C `?.w0/6 LCC . Thus,

N.2;L/6 C
X

w;w 02�1.†?/
`?.w/C`?.w

0/6LCC

16
LCCX
kD0

C exp.h?k/C exp.h?.LCC � k//6 C 0L exp.h?L/:

Iterating this process, we finally get, for large L,

N.n;L/6 CLn�1 exp.h?L/:

4.2 The case ? is separating

In this section we assume ? is separating, and we write † n ? D†1 t†2, where the surfaces †j are
connected. Up to applying a diffeomorphism to †, we may assume that ? represents the class

(4-9) Œa1; b1� � � � Œag1 ; bg1 �D Œag; bg�
�1
� � � Œag1C1; bg1C1�

�1
2 �1.†/

(see Figure 4). Here g1 is the genus of the surface †1, and the genus g2 of †2 satisfies g1C g2 D g.

We set �1.†/D �1.†; x?/ and �1.†j /D �1.†j ; x?/ for j D 1; 2 (we see †j as a compact surface with
boundary ? so that x? lives on both surfaces). Then �1.†1/ and �1.†2/ are the free groups generated
by a1; b1; : : : ; ag1 ; bg1 and ag1C1; bg1C1; : : : ; ag; bg, respectively, and we denote by w?;1 and w?;2 the
two natural words given by (4-9) representing ? in �1.†1/ and �1.†2/, respectively. Note that we have
a well-defined map

�1.†1/��1.†2/! �1.†/; .w1; w2/ 7! w2w1;

given by the composition of two curves.
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Lemma 4.4 For j D 1; 2, the map qj;� W �1.†j /! �1.†/ induced by the inclusion †j ,!† is injective.

Proof For j D 1; 2 let hw?;j i be the infinite cyclic group of �1.†j / generated by w?;j , and let
� W hw?;1i! hw?;2i be the isomorphism given by �.w?;1/Dw?;2. By (4-1), the group �1.†/ is the free
product with amalgamation �1.†1/�� �1.†2/, that is, the finitely presented group given by

�1.†1/�� �1.†2/D fa1; b1; : : : ; ag; bg W w?;1 D �.w?;1/gI

see [30, Section IV.2]. With this representation, the map qj;� coincides with the natural map �1.†j /!
�1.†1/�� �1.†2/, which is injective by [30, Theorem IV.2.6].

For any w 2 �1.†/, we will denote by Œw� its conjugacy class and by w the unique geodesic of †
such that w is isotopic to any curve in w (in fact we will often identify Œw� and w ). Let .z†; Qg/ be the
universal cover of .†; g/, and choose Qx? 2 z† some lift of x?. Then �1.†/ acts as deck transformations
on z† and we will write

`?.w/D distz†. Qx?; w Qx?/ for w 2 �1.†/:

As in the preceding subsection, we have the orbital counting

(4-10) #fwj 2 �1.†j / W `?.wj /6 Lg � Aj e
hjL as L!1 for j D 1; 2

for some A1; A2 > 0, where hj > 0 is the topological entropy of the geodesic flow restricted to the
trapped set

Kj D f.x; v/ 2 S†
ı
j W 't .x; v/ 2 S†

ı
j for t 2Rg;

where †ıj D†j n @†j for j D 1; 2.

4.2.1 Lower bound Unlike the case where ? is not separating, we will need a better lower bound.
Namely, we prove here the following result:

Proposition 4.5 Assume that ? is separating and that h1 D h2 D h?. Then there is C > 0 such that , for
L large enough ,

(4-11) N.2;L/>
CLeh?L

log.L/4
:

If h1 ¤ h2 we have , for L large enough and h? Dmax.h1; h2/,

(4-12) N.2;L/>
Ceh?L

log.L/2
:

Note that Theorem 2 givesN.2;L/�CLeh?L if h1D h2 andN.2;L/�Ceh?L if h1¤ h2. In particular,
Proposition 4.5 gives a bound which is sharp up to a logarithmic loss, whereas in Proposition 4.2, we had
a linear loss. Indeed, obtaining a sharper bound is important here, because a linear defect would not be
sufficient to obtain Theorem 2 in the case h1 D h2 — at least with our methods. If h1 ¤ h2, a linear loss
would nevertheless be sufficient, but our proof of (4-11) actually gives (4-12) without too much effort.
We refer to Remarks 5.2, 5.3 and 5.4 for a more detailed discussion about the importance of (4-11).
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The strategy to prove Proposition 4.5 is the following. We wish to construct enough closed geodesics
intersecting ? exactly twice by considering conjugacy classes of the form Œw2w1� where wj 2�1.†j / for
j D 1; 2. Lemma 4.6 will tell us that, if wj is not a power of w?;j for j D 1; 2, then the closed geodesic
representing Œw2w1� indeed intersects ? exactly twice. Next, in Lemma 4.7, we describe the injectivity
defect of the map .w1; w2/ 7! Œw2w1�. Finally, in Proposition 4.8, we show that this injectivity defect is
not too harmful in the sense that there are not too many wj ; w0j 2 �1.†j / such that Œw2w1�D Œw02w

0
1�.

This will allow us to obtain the desired bound with a logarithmic loss.

Lemma 4.6 For two elements wj 2 �1.†j / for j D 1; 2, we have i.w2w1 ; ?/D 2 except if wj Dwk?;j
in �1.†j / for some k 2 Z and j 2 f1; 2g, in which case i.w2w1 ; ?/D 0.

Proof Let  WR=Z!† be a smooth curve in the free homotopy class of w2w1 such that

f� 2R=Z W .�/ 2 ?g D f�1; �2g for some �1 ¤ �2 2R=Z:

We may also choose  so that  jŒ�1;�2� (resp.  jŒ�2;�1�) is homotopic to some representative 1 W Œ0; 1�!†1

of w1 (resp. some representative 2 W Œ0; 1�!†2 of w2) relative to ?, meaning that there is a homotopy
between  jŒ�1;�2� and 1 with endpoints (not necessarily fixed) in ?. Here Œ�1; �2��R=Z is the interval
linking �1 and �2 in the counterclockwise direction.

As w2w1 minimizes the quantity i.; ?/ for  2 Œw2w1 � (see Lemma 2.1) we have either i.w2w1 ; ?/D0
or i.w2w1 ; ?/D 2. If i.w2w1 ; ?/D 0, then there exists a homotopy H W Œ0; 1��R=Z!† such that
H.0; � /D  and H.1; � /D  , so that H.1; �/ … ? for any � . As in the proof of Lemma 4.3, we may
assume that H is transverse to ?, in the sense that

dH.s; �/.T.s;�/.Œ0; 1��R=Z//CTH.s;�/? D TH.s;�/† for H.s; �/ 2 ?;

so that the preimage
H�1.?/� Œ0; 1��R=Z

is an embedded submanifold of Œ0; 1� �R=Z (see Figure 5). As H�1.?/ \ fs D 0g D f�1; �2g and
H�1.?/ \ fs D 1g D ∅, it follows that there is an embedding F W Œ0; 1� ! Œ0; 1� � R=Z such that
F.0/D .0; �1/, F.1/D .0; �2/ and

F.t/ 2H�1.?/ for t 2 Œ0; 1�:

As F is an embedding, F is homotopic (by a homotopy which preserves the endpoints) either to JŒ�1;�2�
or to JŒ�2;�1�, where JŒ�;� 0� W Œ0; 1�! Œ0; 1��R=Z is the natural map that sends Œ0; 1� to f0g � Œ�; � 0�. We
may assume without loss of generality that F � JŒ�1;�2�. In particular, writing F D .S; T /, the map T is
homotopic to IŒ�1;�2� D p2 ı JŒ�1;�2�, where p2 W Œ0; 1��R=Z!R=Z is the projection over the second
factor. This means that there is G W Œ0; 1�� Œ0; 1�!R=Z such that, for any s; t 2 Œ0; 1�,

G.s; 0/D �1; G.s; 1/D �2; G.0; t/D �1C t .�2� �1/ and G.1; t/D T .t/:
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H�1.?/

f0g �R=Z

f1g �R=Z

.0; �1/
.0; �2/

Figure 5: Proof of Lemma 4.6. The path linking .0; �1/ to .0; �2/ is the image of F .

Now we set zH.s; t/DH.sS.t/; G.s; t// for s; t 2 Œ0; 1�. Then

zH.0; t/D .�1C t .�2� �1// and zH.1; t/D .H ıF /.t/ for t 2 Œ0; 1�;

zH.s; 0/DH.0; �1/D x1 and zH.s; 1/DH.0; �2/D x2 for s 2 Œ0; 1�:

We conclude that t 7!  jŒ�1;�2�.�1C t .�2� �1//, and thus 1, is homotopic (relative to ?) to some curve
contained in ?. Thus w1Dwk? , for some k 2Z, in �1.†/. As the inclusion �1.†j /!�1.†/ is injective
by Lemma 4.4, the lemma follows.

Now, we need to understand when the geodesics given by Œw2w1� and Œw02w
0
1� are the same. This is the

purpose of the following:

Lemma 4.7 Take wj ; w0j 2 �1.†j / for j D 1; 2 such that i.Œw2w1�; ?/D 2. Then Œw2w1�D Œw02w
0
1�

as conjugacy classes of �1.†/ if and only if there are p; q 2 Z such that

(4-13) w2 D w
p
?;2w

0
2w

q
?;2 and w1 D w

�q
?;1w

0
1w
�p
?;1:

Proof Again, let  WR=Z!† be a smooth curve intersecting ? transversely such that

f� 2R=Z W .�/ 2 ?g D f�1; �2g for some �1 ¤ �2 2R=Z;

with .Œ�1; �2�/ � †1 and .Œ�2; �1�/ � †2. Let xj D .�j / for j D 1; 2, and chose arbitrary paths cj
contained in ? linking xj to x?. Note that all the preceding choices can be made so that the curve
1Dc2 jŒ�1;�2�c

�1
1 (resp. 2Dc1 jŒ�2;�1�c

�1
2 ) representswp?w1w

q
? (resp.w�q? w2w

�p
? ) for some p; q2Z.

We may proceed in the same way to obtain  0, � 01, � 02, c01, c02, p0 and q0 so that the same properties hold
with w1 and w2 replaced by w01 and w02. By hypothesis,  is freely homotopic to  0. Thus we may find a
smooth map H W Œ0; 1��R=Z!† such that H.0; � /D  and H.1; � /D  0. As in Lemma 4.6, H may
be chosen to be transverse to ?, so that

H�1.?/� Œ0; 1��R=Z
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is a finite union of smooth embedded submanifolds of Œ0; 1��R=Z. Let .x; �/ W†!R=Z� .�"; "/ be
coordinates near ? such that f� D 0g D ? and j�j D dist.?; � /, and such that f.�1/j�1� > 0g �†j .
As H�1.?/\fs D 0g D f�1; �2g and H�1.?/\fs D 1g D f� 01; �

0
2g, we have two smooth embeddings

F1; F2 W Œ0; 1�! Œ0; 1� �R=Z such that Fj .Œ0; 1�/ � H�1.?/ and Fj .0/ D .0; �j / for j D 1; 2, with
Fj .1/D �

0
1 or � 02 (indeed we have i.; ?/D 2 and thus there is a path in H�1.?/ linking fs D 0g to

fs D 1g, since otherwise we could proceed as in the proof of Lemma 4.6 to obtain that i.; ?/D 0). In
fact, F1.1/D .1; � 01/ and F2.1/D .1; � 02/, which we shall prove later. Set Fj D .Sj ; Tj / and

zH.s; t/DH
�
.1� t /S1.s/C tS2.s/; T1.s/C t .T2.s/�T1.s//

�
for s; t 2 Œ0; 1�:

Then

zH.0; t/D .�1C t .�2� �1// and zH.1; t/D  0.� 01C t .�
0
2� �

0
1// for t 2 Œ0; 1�;

zH.s; 0/DH.S1.s/; T1.s// and zH.s; 1/DH.S2.s/; T2.s// for s 2 Œ0; 1�:

For j D 1; 2, let cj .s/; s 2 Œ0; 1� be paths, contained in ? depending continuously on s and linking Tj .s/
to x?, such that cj .0/D cj . Then the construction of zH shows that

c2.0/ jŒ�1;�2�c1.0/
�1
� c2.1/

0
jŒ� 01;�

0
2�
c1.1/

�1;

and reversing the role of �1 and �2 in the constructions made above,

c1.0/ jŒ�2;�1�c2.0/
�1
� c1.1/

0
jŒ� 02;�

0
1�
c2.1/

�1:

Thus we obtain

w
p
?w1w

q
? D c2.1/c

0�1
2 w

p0

? w
0
1w

q0

? c
0
1c1.1/

�1 and w
�q
? w2w

�p
? D c1.1/c

0�1
1 w

�q0

? w2w
�p0

? c02c2.1/
�1;

which is the conclusion of Lemma 4.7 as the paths c1.1/c0�11 and c2.1/c0�12 are contained in ? (and,
again, the inclusions �1.†j /! �1.†/ for j D 1; 2 are injective).

Thus it remains to show that Fj .1/D .1; � 0j / for j D 1; 2. We extend � into a smooth function � W†!R

such that .�1/j�1� > 0 on †j n?. There exists a continuous path G W Œ0; 1�! .Œ0; 1��R=Z/nH�1.?/

such that

G.0/ 2 f0g � ��1; �2Œ and G.1/ 2 f1g � .R=Z n f� 01; �
0
2g/:

(Indeed, otherwise it would mean that there is a continuous path in Œ0; 1��R=Z linking .0; �1/ to .0; �2/,
which would imply, as in Lemma 4.6, that i.; ?/D 0.) In particular, �ıH ıG >0 since �.H.0; �// > 0
for � 2 ��1; �2Œ. Thus necessarily G.1/ 2 f1g � �� 01; �

0
2Œ, since �.H.1; �// < 0 for � 2 �� 02; �

0
1Œ. Now, as

Im.F1/\ Im.F2/D∅ (again, if the intersection was not empty we could find a path linking .0; �1/ to
.0; �2/), we have that G.1/ lies in �T1.1/; T2.1/Œ. Since .� ıH ıG/.1/ > 0, it follows that T1.1/D � 01
and T2.1/D � 02.

The above lemma motivates the next result:
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Proposition 4.8 There is a constant C > 0 such that the following holds. For any w 2 �1.†j / such that
w is not a power of w?;j , there are pw ; qw 2 Z such that if w0 D wpw?;jww

qw
?;j ,

(4-14) `?.w
p
?;jw

0w
q
?;j /> .jpjC jqj/`.?/C `?.w

0/�C for p; q 2 Z:

In what follows, for any x; y 2 z† we will denote by Œx; y� the unique geodesic segment joining x and y.
Before starting the proof of Proposition 4.8, we state a classical result valid in negatively curved spaces:

Lemma 4.9 For each ı > 0 there exists a constant C > 0 such that the following holds. For any sequence
of geodesic segments Œx0; x1�; Œx1; x2�; Œx2; x3� in z† such that dist.x1; x2/ > ı and such that the angle
between Œxj�1; xj � and Œxj ; xjC1� is equal to˙1

2
� for j D 1; 2,

(4-15) dist.x0; x3/> dist.x0; x1/C dist.x1; x2/C dist.x2; x3/�C:

We will need the following intermediate result:

Fact 4.10 For any " > 0 there is C > 0 such that , for any pairwise distinct points x; y; z 2 z† such that
the absolute value of the angle (taken in ���; ��) between Œx; y� and Œy; z� is not smaller than ", we have

dist.x; z/> dist.x; y/C dist.y; z/�C:

Proof We prove the result by comparing z† with a model space of constant curvature, as follows. Let
a D dist.x; y/, b D dist.y; z/, c D dist.x; z/ and  D †.Œx; y�; Œy; z�/. Let z†k be a simply connected
complete Riemannian surface with constant curvature �k2 < 0 such that � 6 �k2 everywhere for some
k > 0 (recall that � is the curvature of †). Consider any points Nx; Ny; Nz 2 z†k such that

distk. Nx; Ny/D a; distk. Ny; Nz/D b and †.Œ Nx; Ny�; Œ Ny; Nz�/D ;

where distk is the distance in z†k , and set Nc D distk.x; z/. Then by a classical trigonometric formula for
spaces of constant negative curvature (see [11, I.2.7]),

ch.k Nc/D ch.ka/ ch.kb/� sh.ka/ sh.kb/ cos./:

As  2 ���; �� n ��"; "Œ, we have cos./6 1� � for some � 2 �0; 1Œ depending on ". Thus

ch.k Nc/> � ch.ka/ ch.kb/:

Using 1
2

exp.t/6 ch.t/6 exp.t/ for t > 0, one gets

Nc > aC bC
log
�
1
4
�
�

k
:

As the scalar curvature of z† is everywhere not greater than �k2, the space z† is a CAT.�k2/ space; see
[11, Theorem II.4.1]. In particular, by comparison, one obtains c > Nc (see [11, Proposition II.1.7]), which
concludes the proof.
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x0

x3

x1

x2

ˇ

� k2D

˛

Figure 6: Proof of Lemma 4.9.

Proof of Lemma 4.9 Let x0, x1, x2 and x3 be as in the statement. For j D 0; 1; 2 we set dj D
dist.xj ; xjC1/. We first assume one of the numbers d0 or d2 is not greater than ı, say d0 6 ı. Then
Fact 4.10 (applied with x D x1, y D x2 and z D x3) yields dist.x1; x3/> d1C d2�C , and thus

dist.x0; x3/> dist.x1; x3/� dist.x0; x1/> d1C d2CC � d0 > d0C d1C d2CC � 2ı:

Therefore we may assume that d0; d2 > ı. Applying Fact 4.10 for the points x0, x1 and x2 yields

(4-16) dist.x0; x2/> d0C d1�C:

For any pairwise distinct x; y; z 2 z†, we denote by �.x; y; z/ the triangle generated by x, y and z. Then
as d0; d1 > ı, the triangle �.x0; x1; x2/ contains some triangle �.x; y; z/ with a right angle at y and
dist.x; y/D dist.y; z/D ı (namely, y D x1, x 2 Œx1; x0� and z 2 Œx1; x2�). Clearly the area j�.x; y; z/j
of �.x; y; z/ is bounded from below by some constant D>0 depending only on ı > 0 (indeed, it suffices
to verify this property for x, y and z lying in a compact set given by a finite union of fundamental
domains of †). Therefore, j�.x0; x1; x2/j>D. Let ˛ and ˇ be the angles of �.x0; x1; x2/ at x0 and x2,
respectively (see Figure 6). Let Q�g bet the Riemannian measure of z†, and Q� its scalar curvature. Then,
by the Gauss–Bonnet formula [29, Theorem 9.3],Z

�.x0;x1;x2/

Q� d Q�g C 1
2
� C .� �˛/C .� �ˇ/D 2�:

This gives

ˇ 6 1
2
� �˛� k2j�.x0; x1; x2/j6 1

2
� � k2D:

Therefore the angle between Œx0; x2� and Œx2; x3� is not smaller than k2D. In particular, we may apply
Fact 4.10 to get dist.x0; x3/> dist.x0; x2/C d2�C for some C depending only on k2D. Combining
this with (4-16), we conclude the proof.

Proof of Proposition 4.8 We fix j 2 f1; 2g and write w?Dw?;j for simplicity. Let w 2 �1.†j / be such
that w ¤ wk? for any k. Then w is not the trivial element, and thus it is hyperbolic. Recall that .z†; Qg/ is
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w
�p
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ww
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? Qx?

Figure 7: Proof of Proposition 4.8.

the universal cover of .†; g/ and that �1.†/ acts by deck transformations on z†. For any u 2 �1.†/nf1g,
we denote by

u˙ D lim
k!C1

u˙k.z/

the two distinct fixed points of u in the boundary at infinity @1 z† of z† (here z denotes any point
in z†). We also denote by Au the translation axis of u, that is, the unique complete geodesic of .z†; Qg/
converging towards uC (resp. u�) in the future (resp. in the past). Note that Aww?w�1 D wAw? . As
the conjugacy classes Œww?w�1� and Œw?� both represent the geodesic ?, we have either Aw? D wAw?
or Aw? \wAw? D ∅. Since w is not a power of w?, we necessarily have Aw? \wAw? D ∅. Write
? D f's.z?/ W s 2 Œ0; `.?/�g for some z? D .x?; v?/ 2M . By hyperbolicity of the geodesic flow, there
is ı > 0 such that the following holds. For any z 2M such that infs2R distM .z; 's.z?//6 ı,

(4-17) '`.?/.z/D z D) z D 's.z?/ for some s 2R:

As `.Œww?w�1�/D `.Œw?�/D `.?/, we obtain

(4-18) dist.Aw? ; wAw?/> ı:

Let Qx 2 Aw? and Qy 2 wAw? be the unique points such that dist. Qx; Qy/ D dist.Aw? ; wAw?/, and take
p; q 2Z. Then dist. Qx; Qy/> ı by (4-18), and thus we may apply Lemma 4.9 with the sequence of geodesic
segments Œw�p? Qx?; Qx�, Œ Qx; Qy�, Œ Qy;ww

q
? Qx?� to obtain

dist.wwq? Qx?; w
�p
? Qx?/> dist.wwq? Qx?; Qy/C dist. Qy; Qx/C dist. Qx;w�p? Qx?/�C

for some C > 0 independent of w, p and q (see Figure 7). Next, let pw ; qw 2 Z such that

dist. Qx;w�pw? Qx?/ < `.?/ and dist. Qy;wwqw? Qx?/ < `.?/:

Then, for any p; q 2 Z,

dist. Qx;w�p? Qx?/> jp�pw j`.?/� `.?/ and dist. Qy;wwq? Qx?/> jq� qw j`.?/� `.?/;
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which yields

dist.wp?ww
q
? Qx?; Qx?/> .jp�pw jC jq� qw j/`.?/C dist. Qx; Qy/�C � 2`.?/:

Finally, we note that

dist. Qx; Qy/> dist.wwqw? Qx?; w
�pw
? Qx?/� 2`.?/D `?.w

pw
? ww

qw
? /� 2`.?/:

Building on Lemmata 4.6 and 4.7 and Proposition 4.8, we prove Proposition 4.5:

Proof of Proposition 4.5 In what follows, C is a positive constant independent of L that may change
at each line. First, assume that h1 D h2 D h?. For j D 1; 2 we denote by hw?;j i D fwn?;j W n 2 Zg the
infinite cyclic subgroup of �1.†j / generated by w?;j , and we set �1.†j /? D �1.†j / n hw?;j i. Since
`?.w

n
?;j /D jnj`.?/, there is C such that, for any large L,

(4-19) C�1eh?L 6N?;j .L/6 Ceh?L

by (4-10), where N?;j .L/D #fw 2 �1.†j /? W `?.w/6 Lg. For w 2 �1.†j /?, we set

Cw D fwp?wwq? W p; q 2 Zg � �1.†j /?;

and we define Cj D fCw W w 2 �1.†j /?g. Note that the elements C 2 Cj are pairwise disjoint, and thus
we have a partition

F
C2Cj

C of �1.†j /?. We also write

`?.C/D inff`?.w/ W w 2 Cg for C 2 Cj with j D 1; 2:

Then Proposition 4.8 yields

#fw 2 C W `?.w/6 Lg6 C.L� `?.C/CC/2

for any C 2 Cj such that `?.C/6 L. Thus

N?;j .L/D
X
C2Cj

`?.C/6L

#fw 2 C W `?.w/6 Lg6 C
X
C2Cj

`?.C/6L

.L� `?.C/CC/2:

Let ˇ > 0 be a large number. Then

(4-20)
X
C2Cj

`?.C/6L�ˇ logL

.L� `?.C/CC/2 6 .LCC/2 #fC 2 Cj W `?.C/6 L�ˇ logLg:

However, using (4-19), we obtain

#fC 2 Cj W `?.C/6 L�ˇ logLg6N?;j .L�ˇ logL/6 CL�h?ˇeh?L:

In particular, if h?ˇ > 2, and if Aˇ .L/ denotes the left-hand side of (4-20), we have the bound Aˇ .L/�
N?;j .L/ as L!1. Thus, for large L,

C�1N?;j .L/6
X
C2Cj

`?.C/2ŒL�ˇ logL;L�

.L� `?.C/CC/2 6 .ˇ logLCC/2 #fC 2 Cj W "L6 `.C/6 Lg;
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where " > 0 is any small number. This finally yields, for any large L,

(4-21) #fC 2 Cj W "L6 `.C/6 Lg>
C�1eh?L

.ˇ logLCC/2
:

For any C 2 Cj , we choose some wC 2 C such that `?.wC/D `?.C/. Then Lemmata 4.6 and 4.7 imply
that we have a well-defined and injective map

C1 �C2! f 2 P W i.; ?/D 2g; .C1; C2/ 7! ŒwC2wC1 �� wC2wC1
:

Obviously, `.w2w1/6 `?.w1/C `?.w2/ for any w1 and w2, and thus we get, for large L,

N.2;L/> #f.C1; C2/2C1�C2 W `?.C1/C`?.C2/6L and `?.C1/; `?.C2/> "Lg

>
X

C12C1
"L6`?.C1/6L

#fC2 2C2 W "L6 `?.C2/6L�`?.C1/g>
X

C12C1
"L6`?.C1/6L

C�1eh?.L�`?.C1//�
ˇ log.L�`?.C1//CC

�2 :
For simplicity, in what follows we will use the notation f .`/DC�1eh?`=.ˇ log.`/CC/2 andN.C1; L/D
#fC 2 Cj W "L6 `.C/6Lg. Fix some large number �> 0. Note that, if � is large enough, there is C > 0
(depending on �) such that, for any large `,

(4-22) f .`C�/�f .`/> C�1f .`/:

There holds

(4-23) N.2;L/> C�1
X

k2Œ"L=�;L=��

�
N.C1; k�/�N.C1; .k� 1/�/

�
f .L� .k� 1/�/

> C�1
X

k2Œ"L=�C1;L=��1�

N.C1; k�/
�
f .L� .k� 1/�/�f .L� k�/

�
�N.C1; "LC�/f .L� "L/;

where we used an Abel transformation in the last inequality. Next, note that by (4-19), one hasN.C1; L/6
N?;1.L/6 Ceh?L. This yields

(4-24) N.C1; "LC�/f .L� "L/DO.eh?L/

as L!1. On the other hand, (4-22) gives, for any large L,X
k2Œ"L=�C1;L=��1�

N.C1; k�/
�
f .L� .k� 1/�/�f .L� k�/

�
>

X
k2Œ"L=�C1;L=��1�

N.C1; k�/f .L� k�/

> C�1
X

k2Œ"L=�C1;L=��1�

eh?k�

.ˇ log.k�/CC/2
eh?.L�k�/

.ˇ log.L� k�/CC/2
>
C�1Leh?L.1� "/

2�.log.L/CC/4
:

We conclude the proof of Proposition 4.5 for the case h1D h2 by combining this last estimate with (4-23)
and (4-24).

Geometry & Topology, Volume 28 (2024)



Closed geodesics with prescribed intersection numbers 739

If h1 ¤ h2, say h1 > h2 (the case h1 < h2 is identical), one is able to obtain the desired bound by
considering, for example, the injective map C1! f 2 P W i.; ?/D 2g given by C 7! ŒagwC� and by
using (4-21).

4.2.2 Upper bound Clearly, each  2 P2 with `./6 L may be represented by the conjugacy class of
w1w2 for some wj 2 �1.†j / with `?.w1/C `?.w2/6 LCC . Therefore, (4-5) implies

N.2;L/6 #f.w1; w2/ 2 �1.†1/��1.†2/ W `?.w1/C `?.w2/6 LCC g

6
LCCX
kD0

C exp.h1k/ exp.h2.L� kCC//;

which gives, for large L, if h? Dmax.h1; h2/,

N.2;L/6
�
CL exp.h?L/ if h1 D h2;
C exp.h?L/ if h1 ¤ h2:

Iterating this process we obtain (with C depending on n)

N.2n;L/6
�
CL2n�1 exp.h?L/ if h1 D h2;
CLn�1 exp.h?L/ if h1 ¤ h2:

4.3 Relative growth of closed geodesics with a small intersection angle

For xD ?.�/2 Im.?/, we let v?.x/D P?.�/. For any �>0 small, we consider the numberN.n; �; L/D
#P�;n.L/, where P�;n.L/ is the set of closed geodesics  WR=`./Z!† of length not greater than L,
intersecting ? exactly n times, and such that there is t 2R=`./Z with .t/ 2 Im.?/ and

angle
�
P.t/; v?..t//

�
< � or angle

�
P.t/;�v?..t//

�
< �:

The purpose of this section is to prove the following estimate:

Lemma 4.11 Let n > 1. For any "; L0 > 0, there exists �0 > 0 such that , for any � 2 �0; �0Œ and any
large L,

(4-25) N.1; �; L/6 4N.1;L�L0/ and N.n; �; L/6 "Ln�1 exp.h?L/

if ? is not separating , and

(4-26) N.2; �; L/6 4N.2;L�L0/ and N.2n; �; L/6
�
"L2n�1 exp.h?L/ if h1 D h2;
"Ln�1 exp.h?L/ if h1 ¤ h2;

if ? is separating.

Proof We first prove the lemma when ? is assumed not separating. Let  W Œ0; `./�!† be an element
of P�;n.L/ parametrized by arc length. Let 06 t1 < t2 < � � �< tn < `./ be such that .tj / 2 Im.?/. For
every j D 1; : : : ; n, we choose a path cj contained in Im.?/ of length not greater than `.?/ that links
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xj D .tj / to x?. Recall that we have a map q? W †?! † given by the identification of the boundary
components of †?. Write q�1? .x?/D fx?; Nx?g, where we chose some x? 2†? with q?.x?/D x?, as in
Section 4.1. Then  is freely homotopic to the composition

w1w2 � � �wn; where wj D cjC1 jŒtj ;tjC1�c
�1
j 2 �1.†/ for j D 1; : : : ; n;

with the convention that tnC1 D `./ and cnC1 D c1. Note also that

`?.wj /6 jtjC1� tj jC 2`.?/:

In fact, the elements wj actually define elements of the space �1.†?; fx?; Nx?g/, that is, the space of
equivalence classes of paths c W Œ0; 1�!†? with c.0/; c.1/ 2 fx?; Nx?g, where two paths are equivalent if
they are homotopic via a homotopy preserving the endpoints. The space �1.†?; fx?; Nx?g/ is not a group
(we may not be able to concatenate two paths); however, we have a natural map �1.†?; fx?; Nx?g/!�1.†/.
In particular, for any u1; : : : ; un 2 �1.†?; fx?; Nx?g/, the composition un � � �u1 is well defined in �1.†/.
For any u 2 �1.†?; fx?; Nx?g/, we will denote by `?.u/ the infimum of the lengths of curves in the
equivalence class u.

Up to reparametrizing of  , we may assume that t1D 0, and either †.v; v?/ < � or †.v;�v?/ < �, where
we set xD .0/, v?D v?.x/ and vD P.0/. We will first assume that †.v; v?/ < �. Let L0 > 0 be a large
number and " > 0 be small. By continuity of the geodesic flow .'t /, there is �0 > 0 such that, if � < �0,

distM .'t .v/; 't .v?//6 " for t 2 Œ0; L0�:

Let K be a positive integer such that K 2 ŒL0=`.?/� 1;L0=`.?/�, so that

dist†
�
�.'K`.?/.v//; x

�
< ":

Let cK be a path in † of length not greater than " linking �.'K`.?/.v// and x. Then, if " > 0 is small
enough,11

c1cK jŒ0;K`.?/�c
�1
1 D a

K
g in �1.†/:

In particular, w1 D w01a
K
g in �1.†/, where w01 D c2 jŒK`.?/;t2�c

�1
K c�11 . Note also that

`?.w
0
1/6 jt2�K`.?/jC 2`.?/C ";

where w01 is seen as an element of �1.†?; fx?; Nx?g/. Note that if we had assumed †.v;�v?/ < �, we
would have obtained the same factorization with a�Kg instead of aKg . Next, let

AK;n.L/D

�
.w1; : : : ; wn/ 2 �1.†?; fx?; Nx?g/

n
W

nX
jD1

`?.wj /6 LC .2n�K/`.?/C "

�
;

11If " > 0 is small enough, we have the following property. For any x 2† and L> 0, if we are given two paths c; c0 W Œ0; L�!†

such that c.0/D c0.0/D c.L/D c0.L/D x and dist†.c.t/; c0.t// < ", then c and c0 define the same element in �1.†; x/.
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and consider the map ‰K;n;˙ W AK;n.L/ ! P given by .w1; : : : ; wn/ 7! Œw1 � � �wna
˙K
g �. Then the

discussion above shows that

P�;n.L/� Im.‰K;n;C/[ Im.‰K;n;�/:

In particular, N.n; �; L/ 6 2 #AK;n.L/. Next, we obtain a bound on AK;n.L/ as follows. Let c? be a
path connecting Nx? and x? in †?, so that the image of c�1? in �1.†/ is bg (see Figure 2). Then it is not
hard to see that, for any w 2 �1.†?; fx?; Nx?g/, there is u 2 �1.†?; x?/ such that w can be written as

u; c?u; uc�1? or c?uc
�1
?

(depending on the endpoints of w), with `?.u/6 `?.w/C 2`.c?/. This immediately gives

#AK;1.L/6 4 #fu 2 �1.†?/ W `?.u/6 Lg6 C exp.h?L/:

As in Section 4.1.2, we obtain, for some Cn > 0 depending only n,

#AK;n.L/6 CnL
n�1 exp.h?.L�L0//;

where we used that K`.?/> L0� `.?/. This proves the second part of (4-25). For the first part, we
proceed as follows. With the notation of the proof of Proposition 4.5, one has well-defined maps

‰K;1;˙;r ; ‰K;1;˙;l W fC 2 C W `?.w/6 L�K`.?/g ! f 2 P1 W `./6 LC 2C g;

given respectively by C 7! Œa˙Kg wbg� and C 7! Œb�1g wa˙Kg �, where w is any element of C. Next, we
remark that the above discussion implies that every  2 P�;1.L/ can be written as

Œa˙Kg wbg� or Œb�1g wa˙Kg �

for some w 2 �1.†?/ with `?.w/ 6 L�K`.?/CC . Therefore the union of the images of the maps
‰K;1;˙;r and ‰K;1;˙;l contains P�.LC 2C /, and thus

N.1; �; L/6 4 #fC 2 C W `?.w/6 L�K`.?/C 2C g6 4N.1;L�K`.?/C 3C /;

where we used the first inequality of (4-8). This gives the first part of (4-25).

Next, assume that ? is separating. Then, as above, every  W Œ0; `./�!† such that  2P2n;�.L/ can be
written as a composition w1;1w1;2 � � �w1;nw2;n for some wk;j 2�1.†k/ for kD 1; 2 and j D 1; 2; : : : ; n,
with

nX
jD1

`?.w2;j /C `?.w1;j /6 `./C 4n`.?/:

Now, if � is small, we may proceed as before to obtain (up to reparametrization of  ) thatw1;1Dw˙K?;1 w
0
1;1

or w1;1 D w01;1w
˙K
?;1 for some w01;1 2 �1.†1/ with

`?.w
0
1;1/6 `?.w1;1/�K`.?/CC:
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Here K is a large number depending on � (ie such that K !1 as �! 0) and C > 0 is a constant
independent of  and K. Thus we get

N.2n; �; L/

6C #
�
.w1;1; w2;1; : : : ; w1;n; w2;n/ Wwk;j 2�1.†k/;

nX
jD1

`?.w1;j /C`?.w2;j /6L�K`.?/CCn
�
:

Then we obtain the second part of (4-26) by proceeding as in Section 4.2.2. For the first part of (4-26),
we proceed as follows. For wj 2 �1.†j /?, we define

Cw1;w2 D f.w01; w02/ W Œw01w02�D Œw1w2�g

and `?.Cw1;w2/D inff`?.w01/C `?.w
0
2/ W .w

0
1; w

0
2/ 2 C.w1;w2/g. We also introduce the notation C1;2 D

fCw1;w2 W wj 2 �1.†j /?g. By Lemmata 4.6 and 4.7, we have well-defined maps

‰K;1;˙;r ; ‰K;1;˙;l W fC 2 C1;2 W `?.Cw1;w2/6 L�K`.?/g ! f 2 P2 W `./6 Lg

given respectively by C 7! Œw1w
˙K
?;1 w2� and C 7! Œw˙K?;1 w1w2�. By the discussion above, the union of

the images of those maps contains P2;�.L/. Therefore

N.2; �; L/6 4 #fC 2 C1;2 W `?.Cw1;w2/6 L�K`.?/g6 4N.2;L�K`.?//;

where we used Lemmata 4.6 and 4.7 again in the last inequality. The first part of (4-26) follows.

5 A Tauberian argument

The goal of this section is to give an asymptotic growth of the quantity

N˙.n; �; t/D
X
2P

i.?;/Dn
`./6t

I?;˙.; �/

as t !C1, where � 2 C1c .@ n @0/ and I?;˙.; �/D
Q
z2I?;˙./

�2.z/.

5.1 The case ? is not separating

By [15, Theorem 3 and Section 6.2], the zeta function

�†?.s/D
Y
2P?

.1� e�s`.//

extends meromorphically to the whole complex plane, and moreover we may write

�0†?.s/

�†?.s/
D

2X
kD0

.�1/k tr[.e˙"s'��"R˙;ı.s/j�kc .Mı/\ker �X
/;

where the flat trace is computed on Mı . Here P? denotes the set of primitive closed geodesics of .†?; g/.
By [12], we may apply [35, Proposition 9] (see also [36, Theorem 9.1]) to obtain that �†? is holomorphic
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in fRe.s/ > h?g, except for a simple pole at s D h?, where h? > 0 is the topological entropy of the
geodesic flow of .†?; g/ restricted to its trapped set. Write the Laurent expansion given in Section 2.6 of
R˙;ı.s/ near s D h? as

R˙;ı.s/D Y˙;ı.s/C
…˙;ı.h?/

s� h?
C

J.h?/X
jD2

.X ˙ h?/
j�1…˙;ı.h?/

.s� h?/j
W��c.Mı/! D0�.Mı/:

By [15, (5.8)], we have tr[.e˙"h?'�
�"…˙;ı.h?//D rank…˙;ı.h?/ and

tr[.'��".X ˙ h?/
j…˙;ı.h?//D 0 for j D 1; : : : ; J.h?/� 1:

We write �k D �kc .Mı/ and �k0 D �k \ ker �X . Then, by [18, Propositions 2.4 and 4.4], the map
s 7!R˙;ı.s/j�00

has no pole in fRe.s/ > 0g. Since �20 D�
0
0 ^ d˛, and R˙;ı.s/j�20 DR˙;ı.s/j�00 ^ d˛

(because '�t ˛D ˛), it follows that s 7!R˙;ı.s/j�20
has no poles in fRe.s/ > 0g. In particular, the residue

of �0†?.s/=�†?.s/ at sD h? is given by rank.…˙;ı.h?/j�10/, and since �†?.s/ has a simple pole at sD h?,
this residue is equal to 1. Therefore,

rank.…˙;ı.h?/j�10/D 1:

In particular, .X ˙ h?/j…˙;ı D 0 for each j D 1; : : : ; J.h?/� 1. As R˙;ı.s/ commutes with �X , it
preserves the spaces �k0 . Writing �k D�k0 ˚˛^�

k�1
0 we have, for any w D uC˛^ v with �XuD 0

and �Xv D 0,

…˙;ı.h?/j�2.uC˛^ v/D…˙;ı.h?/j�20
.u/C˛^…˙;ı.h?/j�10

.v/:

Thus …˙;ı.h?/j�2 D ˛ ^ �X…˙;ı.h?/j�10
. By Proposition 3.2 and the fact that '�

˙"…˙;ı.h?/ D

e˙"h?…˙;ı.h?/, we have, near s D h?,

(5-1) �zS˙.s/�D �Y˙.s/�C
� ����X…˙;ı.h?/���

s� h?
;

where s 7! Y˙.s/ is holomorphic in a neighborhood of h?. We write

…˙;@ D  
����X…˙;ı.h?/�� W�

�.@/! D0�.@/:

Then, by what precedes, and since �X…˙;ı.h?/j�1 D 0, we obtain that rank.…˙;@/6 1. Finally, for any
� 2 C1c .@ n @0/, we set

c˙.�/D tr[s.�…˙;@�/:

Lemma 5.1 Let � 2 C1c .@ n @0/ be such that c˙.�/ > 0. Then

N˙.n; �; t/�
.c˙.�/t/

n

nŠ

eh?t

h?t
as t !C1:

Proof Because �…˙;@ is of rank one, it follows that tr[s..�…˙;@/
n/D c˙.�/

n for any n> 1 (since the
flat trace of a finite-rank operator coincides with its usual trace), and thus

tr[s
�
.�zS˙.s/�/n

�
D

c˙.�/
n

.s� h?/n
CO..s� h?/�nC1/ as s! h?:
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Note that here we implicitly used the fact that the flat trace of products of the form

(5-2) .�Y˙.s/�/
k1.�…˙;@�/

`1.�Y˙.s/�/
k2.�…˙;@�/

`2 � � �

makes sense. Indeed, note that both WF.�…˙;@�/ and WF.�Y˙.s/�/ are contained in WF.�zS˙.s/�/
by (5-1) and Cauchy’s integral formula. Thus we may reproduce the proofs of Lemma 3.5, Remark 3.6
and Proposition 3.7 to obtain that the composition (5-2) is well defined and that its flat trace makes sense.
Next, set �n;�.s/D tr[s

�
.�zS˙.s/�/n

�
and

gn;�.t/D
X
2P

i.;?/Dn

`#./
X
k>1

k`./6t

I?;˙.; �/
k for t > 0:

Now, if Gn;�.s/D
RC1
0 gn;�.t/e

�ts dt , a simple computation leads to

Gn;�.s/D
1

s

X
i.;?/Dn

`#./e�s`./I?;˙.; �/
`./=`#./

D�
�0n;�.s/

ns
;

where the last equality comes from Proposition 3.7. Using the expansion

�0n;�.s/D�nc˙.�/
n.s� h?/

�.nC1/
CO..s� h?/�n/ as s! h?;

we obtain
Gn;�.h?s/D

c˙.�/
n

hnC2? .s� 1/nC1
CO..s� h?/�n/ as s! h?:

Then, applying the Tauberian theorem of Delange [14, théorème III],

1

h?
gn;�

�
t

h?

�
�
c˙.�/

n

hnC2?

et

nŠ
tn as t !C1;

and so

(5-3) gn;�.t/�
.c˙.�/t/

n

nŠh?
exp.h?t /:

Now note that, if Pn is the set of primitive closed geodesics  with i.; ?/D n,

gn;�.t/6
X
2Pn
`./6t

`./

�
t

`./

�
I?;˙.; �/6 tN.n; �; t/:

As a consequence,

(5-4) lim inf
t!C1

N˙.n; �; t/
nŠh?t

.c˙.�/t/neh?t
> 1:

For the other bound, we use the a priori bound, obtained in Section 4.1.2,

(5-5) N˙.n; �; t/6N.n; t/6 Ctn

nŠ

eh?t

h?t

to deduce that, for any � > 1,

(5-6) lim sup
t!C1

N˙

�
n; �;

t

�

�nŠ
tn
h?t

eh?t
D 0:
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Now we may write

(5-7) N˙.n; �; t/DN˙

�
n; �;

t

�

�
C

X
2P

i.?;/Dn
t=�6`./6t

I?;˙.; �/

6N˙

�
n; �;

t

�

�
C
�

t

X
2P

i.?;/Dn
t=�6`./6t

I?;˙.; �/`./6N˙

�
n; �;

t

�

�
C
�

t
gn;�.t/;

which gives, with (5-3) and (5-6),

lim sup
t!C1

N˙.n; �; t/
nŠ

.c˙.�/t/n
h?t

eh?t
6 �:

As � > 1 is arbitrary, the lemma is proven.

Remark 5.2 If we assume that c˙.�/D 0, then with the notation of the above proof, the map s 7! �1;�.s/

has no pole on the line fRe.s/Dh?g. In particular, we may reproduce the arguments of the aforementioned
proof, replacing gn;�.t/ by gn;�.t/C exp.h?t /, to obtain that s 7!

R1
0 .gn;�.t/C exp.h?t // exp.�ts/ dt

has a pole of order 1 at s D h?, which implies that gn;�.t/C exp.h?t /� exp.h?t / as t !1. This gives
gn;�.t/�t!1 exp.h?t /, and hence

N˙.1; �; t/�
exp.h?t /

t
as t !1;

where we used the last line of (5-7) and (5-5). Note that this bound is incompatible with the one provided
by Proposition 4.2; this will help us to prove that c˙.�/ > 0, by showing that N.1; t/ can be controlled
by N˙.1; �; t/ whenever � has enough support (see Section 6.1).

5.2 The case ? is separating

In this case, †ı consists of two surfaces, †.1/
ı

and †.2/
ı

. We write Mı DM
.1/

ı
tM

.2/

ı
, where M .j /

ı
D

S†
.j /

ı
for j D 1; 2, and @D @.1/t @.2/ with @.j / �M .j /

ı
. Note that, if zS.j /˙ .s/ denotes the restriction of

zS˙.s/ to @.j /, we have

zS.1/˙ .s/ W��.@.1//! D0�.@.2// and zS.2/˙ .s/ W��.@.2//! D0�.@.1//:

As in Section 5.1,

�zS.j /˙ .s/�D �Y
.j /
˙
.s/�C

�…
.j /

˙;@
�

s� hj
as s! hj ;

with rank.….j /
˙;@
/D 1. Here Y .j /

˙
.s/ is holomorphic near s D hj and hj is the topological entropy of the

geodesic flow of †.j /
ı

. As before, fix � 2 C1c .@ n @0/.
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5.2.1 The case h1 ¤ h2 We may assume h1 > h2, and we define

c˙.�/D tr[s.�zS
.2/

˙ .h1/�
2…

.1/

˙;@
�/:

Because ….1/
˙;@

is of rank one, tr[s
�
.�zS.2/˙ .h1/�2…

.1/

˙;@
�/n

�
D c˙.�/

n for any n> 1, and thus, by cyclicity
of the flat trace (indeed the flat trace coincides with the real trace for operators of finite rank), as s! h1,

tr[s
�
.�zS˙.s/�/2n

�
D tr[s

�
.�zS.1/˙ .s/�2 zS

.2/

˙ .s/�/
n
C .�zS.2/˙ .s/�2 zS

.1/

˙ .s/�/
n
�

D
2c˙.�/

n

.s� h1/n
CO..s� h1/�nC1/:

Now we may proceed exactly as in Section 5.1 to obtain that, if c˙.�/ > 0,

N˙.2n; �; t/�
.c˙.�/t/

n

nŠ

eh?t

h?t
as t !C1:

Remark 5.3 (continuation of Remark 5.2) If h1 ¤ h2 and if we assume that c˙.�/D 0, then the map
s 7! tr[s

�
.�zS˙.s/�/2

�
has no pole on the line fRe.s/D h?g. As in Remark 5.2, this yields

(5-8) N˙.2; �; t/�
exp.h?t /

t
as t !1:

Again, the bound given in Proposition 4.5 is incompatible with (5-8) — in fact, even a weaker bound (say,
a lower bound with a linear loss with respect to Theorem 2) would be incompatible with (5-8) for the
case h1 ¤ h2 — and this will imply that c˙.�/ is positive.

5.2.2 The case h1 D h2 D h? In that case, by writing c˙.�/D tr[s.�…
.1/

˙;@
�…

.2/

˙;@
/, we have

tr[s
�
.�zS˙.s/�/2n

�
D

2c˙.�/
n

.s� h?/2n
CO..s� h?/�2nC1/ as s! h?:

Again, provided that c˙.�/¤ 0, we may proceed exactly as in Section 5.1 to obtain

N˙.2n; �; t/� 2
.c˙.�/t

2/n

.2n/Š

eh?t

h?t
:

Remark 5.4 (continuation of Remark 5.3) If h1 D h2 and c˙.�/ D 0, then the function s 7!

tr[s
�
.�zS˙.s/�/2

�
might have a pole at s D h?, of order at most 1. Therefore, reproducing the arguments

of Section 5.1, we obtain

(5-9) N˙.2; �; t/DO.exp.h?t // as t !1:

Note that here, assuming c˙.�/D 0 only wins us a factor of t for the bound on N˙.2; �; t/ (with respect
to the asymptotics of Theorem 2), whereas in Remarks 5.2 and 5.3 we could win a bit more. This is
why we need a lower bound on N.2;L/ which is sharp up to a sublinear loss for the case where h1 D h2
(see Proposition 4.5 and the comments below). Indeed, we will see that N.2; t/ can be controlled by
N˙.2; �; t/ whenever � has enough support; hence, Proposition 4.5 will contradict (5-9), yielding again
c˙.�/ > 0 (see Section 6.2).
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6 Proof of Theorems 1 and 2

In this section we prove Theorems 1 and 2. We will apply the asymptotic growth we obtained in the last
section to some appropriate sequence of functions in C1c .@ n @0/. Let F 2 C1.R; Œ0; 1�/ be an even
function such that F � 0 on Œ�1; 1� and F � 1 on ��1;�2�[ Œ2;C1Œ. For any small � > 0, set

F�.t/D
X
k2Z

F
�
t�k�

�

�
:

Then F� is 2�–periodic and it induces a function F� WR=2�Z!R>0. In the coordinates from Lemma 2.3,
we define

��.z/D F�.�/ for z D .�; 0; �/ 2 @:

Then �� 2 C1c .@ n @0/ for any � > 0 small; the function �� is introduced in order to forget about
trajectories passing at distance not greater than � from the “glancing set” S?.

6.1 The case ? is not separating

Recall from Section 4 that we have the a priori bounds

(6-1) C�1
eh?L

h?L
6N.1;L/6 Ceh?L

for L large enough. This estimate implies the following fact:12

8" > 0 9L0 > 0 8L1 > 0 9L> L1 N.1;L�L0/6 "N.1;L/:

In particular, we see with the first part of (4-25) in Lemma 4.11 that, for any � > 0 small enough,

(6-2) lim inf
L!C1

N.1; �; L/

N.1;L/
6 1

2
;

where N.1; �; L/ is as defined in Section 4.3.

For � > 0 small and L > 0, neither c˙.��/ nor N˙.n; ��; L/ (see Section 5.1) depend on ˙, since F
is an even function. We denote them simply by c.�/ and N.n; ��; L/, respectively. Then we claim that
c.�/ > 0 if � > 0 is small enough. Indeed, if c.�/D 0, then Remark 5.2 implies

(6-3) N.1; ��; L/�
exp.h?L/
h?L

as L!C1:

On the other hand, N.1;L/DN.1; ��; L/CR.�;L/ with

R.�;L/DN.1;L/�N.1; ��; L/6N.1; 2�;L/;

12If it does not hold, then there is an " > 0 such that, for any L0 > 0, there is an L1 such that, for any n > 0, it holds that
" < N.1;L1CnL0/=N.1;L1C .nC 1/L0/, which gives N.1;L1C .nC 1/L0/"n <N.1;L1/ for each n. Now, if L0 is large
enough, we see that (6-1) cannot hold, by making n!1.

Geometry & Topology, Volume 28 (2024)



748 Yann Chaubet

and thus, if � is small enough, (6-2) gives

lim sup
L!C1

N.1; ��; L/

N.1;L/
> 1

2
:

Since C�1 exp.h?L/=L6N.1;L/ for large L, (6-3) cannot hold, and thus c.�/ > 0.

In particular, we can apply Lemma 5.1 to get limLN.n; ��; L/.nŠ=.c.�/L/n/.h?L=eh?L/ D 1. As
N.n;L/>N.n; ��; L/, for L large enough,

C�1
Ln

nŠ

eh?L

h?L
6N.n;L/6 C

Ln

nŠ

eh?L

h?L

(the upper bound comes from Section 4.1.2). Let " > 0. Then the above estimate combined with the
second part of (4-25) in Lemma 4.11 implies that, for � > 0 small enough,

lim sup
L

R.n; �; L/
nŠ

Ln
h?L

eh?L
< ";

where R.n; �; L/DN.n;L/�N.n; ��; L/. Writing N.n; ��; L/6N.n;L/6N.n; ��; L/CR.n; �; L/,
we obtain

c.�/n 6 lim inf
L

N.n;L/
nŠ

Ln
h?L

eh?L
6 lim sup

L

N.n;L/
nŠ

Ln
h?L

eh?L
6 c.�/nC "

for any � small enough (depending on "Š). As " > 0 is arbitrary, we finally get

N.n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!C1;

where c? D lim�!0 c.�/ <C1 (the limit exists as � 7! c.�/ is nonincreasing and bounded by above
by (6-1)).

6.2 The case ? is separating

6.2.1 The case h1 ¤ h2 In this case, recall from Section 4 that we have the bound

C�1eh?L

log.L/2
6N.2;L/6 Ceh?L

for L large enough. In particular, using (4-26) in Lemma 4.11 and Remark 5.3, we may proceed exactly
as in Section 6.1 to obtain

N.2n;L/�
.c?L/

n

nŠ

eh?L

h?L
as L!C1;

where c? D lim�!0 c˙.��/.

6.2.2 The case h1 D h2 D h? In this case, recall from Section 4 that we have the bound

C�1Leh?L

log.L/4
6N.2;L/6 CLeh?L
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for L large enough. In particular, using Lemma 4.11 and Remark 5.4, we may proceed exactly as in
Section 6.1 to obtain

N.2n;L/� 2
.c?L/

n

.2n/Š

eh?L

h?L
as L!C1;

where c? D lim�!0 c˙.��/.

7 A Bowen–Margulis type measure

7.1 Description of the constant c?

In this subsection we describe the constant c? in terms of Pollicott–Ruelle resonant states of the open
system .Mı ; 't /, assuming for simplicity that ? is not separating. By Section 2.6, since …˙;ı.h?/ is of
rank one (see Section 5.1), we may write

…˙;ı.h?/j�1.Mı/ D u˙˝ .˛^ s�/ for u˙ 2 D01E�
˙;ı

.Mı/ and s� 2 D01E�
�;ı

.Mı/;

with supp.u˙; s˙/� �̇ ;ı and u˙; s� 2 ker.�X /. Using the Guillemin trace formula [19] and the Ruelle
zeta function �†? , we see that the Bowen–Margulis measure �0 (see [9]) of the open system .Mı ; 't /,
which is given by Bowen’s formula

�0.f /D lim
L!C1

X
2Pı
`./6L

1

`./

Z `./

0

f ..�/; P.�// d� for f 2 C1c .Mı/;

coincides with the distribution f 7! tr[s.f …˙;ı.h//D
R
Mı
f u˙^˛^s�. Note that supp.u˙^˛^s�/�K?,

where K? � S†? is the trapped set. On the other hand, by definition of …˙;@,

c? D lim
�!0

tr[s.��…˙;@/D� lim
�!0

Z
@

�� 
���u˙ ^ �

�s�:

7.2 A Bowen–Margulis type measure

In what follows we set S?†D f.x; v/ 2 S† W x 2 ?g and, for any primitive geodesic  WR=`./Z!†,

I?./D fz 2 S?† W z D ..�/; P.�// for some �g:

For any n> 1, we define the set �n � S?† by

{�n D fz 2 S?† W . zS˙/k.z/ is well defined for k D 1; : : : ; ng:

Also, we set `n.z/Dmax.`C;n.z/; `�;n.z//, where

`˙;n.z/D `˙.z/C `˙. zS˙.z//C � � �C `˙. zS
n�1
˙ .z// for z 2 {�n;

and `˙.z/D infft > 0 W '˙t .z/ 2 S?†g.

We will now prove Theorem 3, which says that, for any f 2 C1.S?†/, the limit

(7-1) �n.f /D lim
L!C1

1

N.n;L/

X
2Pn

1

n

X
z2I?./

f .z/
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exists and defines a probability measure �n on S?† supported in �n. We will also prove that, in the
nonseparating case,

(7-2) �n.f /D c
�n
? lim

�!0
tr[s.f .��…˙;@��/

n/;

where c? > 0 is the constant appearing in Theorem 1. Note that here we identify f with its lift p�?f
(which is a function on @), so that the above formula makes sense (recall that p? W S†?! S† is the
natural projection which identifies both components of @S†? D @). Of course, a similar formula holds in
the nonseparating case, but we omit it here.

Proof of Theorem 3 Let f 2 C1.S?†/ be a nonnegative function. Then, reproducing the arguments
in the proof of Proposition 3.7, for Re.s/ big enough,

tr[s
�
f .�� zS˙.s/��/n

�
D

X
i.;?/Dn

� X
z2I?./

f .z/

�
e�s`./I?.; ��/;

where �� is as defined in Section 6 and I?.; ��/ D I?;˙.; ��/ (see Section 5; this does not depend
on ˙, as the function F used to construct �� is even). Now, as f is nonnegative, we may proceed exactly
as in Section 5, replacing gn;�.t/ by

gn;��;f .t/D
X
2P

i.;?/Dn

� X
z2I?./

f .z/

� X
k>1

k`./6t

I?.; ��/ for t > 0;

to obtain that

(7-3) lim
L!1

nŠ

Ln
h?L

eh?L

X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
I?.; ��/D RessDh? tr[s

�
f .�� zS˙.s/��/n

�
:

We denote by �n;�.f / the left-hand side of (7-3). Then � 7! �n;�.f / is a nonnegative and nonincreasing
function which is bounded by above by ncn?kf k1 by Theorem 1. In particular, the formula

�n.f /D lim
�!0

1

ncn?
�n;�.f / for f 2 C1.S?†;R>0/

defines a measure �n on S?† whose total mass is not greater than 1. In fact, its total mass is equal to 1,
since, by definition of c?,

�n.1/D lim
�!0

nc˙.��/
n

ncn?
D 1:

Let " > 0. Then, for each f 2 C1.S?†;R>0/, one has, by Lemma 4.11,X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
.1� I?.; ��//6 nN.n; �; L/kf k1 6 "nN.n;L/kf k1
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for large L whenever � is small enough. In particular, setting

�Cn .f /D lim sup
L

Af .n; L/

nN.n;L/
and ��n .f /D lim inf

L

Af .n; L/

nN.n;L/
;

where
Af .n; L/D

X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
;

we see that, for each " > 0 and � small depending on ",

j�˙n .f /� �n;�.f /j6 "kf k1:

Indeed, setting

Af .n; �; L/D
X
2P

i.?;/Dn
`./6L

� X
z2I?./

f .z/

�
I?.; ��/;

we have
lim sup
L

ˇ̌̌̌�
1

nN.n;L/
�

nŠLn

ncn?e
h?L

�
Af .n; �; L/

ˇ̌̌̌
D 0

by Theorem 1, since Af .n; �; L/6nN.n;L/. Now we may let �! 0 to get j�˙n .f /��n.f /j6 "kf k1;
since " is arbitrary, this yields �˙n .f /D �n.f /. This implies that the limit (7-1) exists, and moreover
(7-2) holds by (7-3) (provided that ? is not separating).

Next, take a general f 2C1.S?†/, which we no longer assume to be nonnegative. Choose some smooth
functions fı;˙, ı 2 �0; 1Œ with the property that kf � .fı;CC fı;�/k1 6 ı and ˙fı;˙ > 0, and write
fıDfıCCfı� . By nonnegativeness of˙fı;˙, the arguments above imply thatAfı .n; L/=.nN.n;L//!
�n.fı/ as L!1. On the other hand, jAf .n; L/�Afı .n; L/j6 Ajf �fı j.n; L/6 ınN.n;L/. Letting
L!1, this yields

�n.fı/� ı 6 lim inf
L

Af .n; L/

nN.n;L/
6 lim sup

L

Af .n; L/

nN.n;L/
6 �n.fı/C ı:

Since �n.fı/! �n.f / as ı! 0, (7-1) and (7-2) are valid for f .

Finally, if f 2 C1c .S?† n�n/ then there is L> 0 such that

`n.z/6 L for z 2 supp.f /:

In particular, for any  2 P such that i.; ?/D n and `./ > L, we have f .z/D 0 for any z 2 I?./.
This shows that �n.f /D 0, and the support condition for �n follows.

8 A large deviation result

The goal of this section, which is independent of the rest of the paper, is to prove the following result,
which is a consequence of a classical large deviation result by Kifer [25]:
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Proposition 8.1 There exists I? > 0 such that the following holds. For any " > 0, there are C; ı > 0 such
that , for large L,

(8-1)
1

N.L/
#
�
 2 P W `./6 L and

ˇ̌̌̌
i.; ?/

`./
� I?

ˇ̌̌̌
> "

�
6 C exp.�ıL/:

In fact, I? D 4i. xm; ı?/, where i is Bonahon’s intersection form [6], ı? is the Dirac measure on ? and
xm is the renormalized Bowen–Margulis measure on M (here we see the intersection form as a function
on the space of '–invariant measures on S†, as described below). Lalley [28] showed a similar result for
self-intersection numbers; see also [41] for self-intersection numbers with prescribed angles.

8.1 Bonahon’s intersection form

Let M'.S†/ be the set of finite positive measures on S† invariant by the geodesic flow, endowed with
the vague topology. For any closed geodesic  , we denote by ı 2M'.S†/ the Lebesgue measure of 
parametrized by arc length (thus of total mass `./). Let � 2M'.S†/ be the Liouville measure, that is,
the measure associated to the volume form 1

2
˛^ d˛.

Proposition 8.2 (Bonahon [7]; see also Otal [34]) There exists a continuous function

i WM'.S†/�M'.S†/!RC

which is additive and positively homogeneous with respect to each variable and such that i.�; �/ D
2� vol.†/ and

i.ı ; ı 0/D i.; 
0/ and i.�; ı /D 2`./;

for any closed geodesics  and  0.

Remark 8.3 (i) Actually, Bonahon’s intersection form is a pairing on the space of geodesic currents.
This space is naturally identified with the space of '–invariant measures on S† which are also
invariant by the flip R W .x; v/ 7! .x;�v/. By i.�; �0/ for general �; �0 2M'.S†/ we simply mean
i.ˆ.�/;ˆ.�0// where ˆ W � 7! �CR�� (note that 'tRDR'�t for t 2R).

(ii) The formulae for i.�; �/ and i.�; ı / differ from [7]; this is due to our convention, since here the
Liouville measure � corresponds to twice the Liouville current considered in [7].

8.2 Large deviations

For any � 2M'.S†/ we denote by h.�/ the measure-theoretical entropy of ' with respect to �. Then
we have the following result:

Proposition 8.4 (Kifer [25]) Let F �M1
'.S†/ be a closed set , where M1

'.S†/ is the set of '–
invariant probability measures on S†. Then

lim sup
L

1

L
log

1

N.L/
#
�
 2 P W `./6 L and

ı

`./
2 F

�
6 sup
�2F

h.�/� h;

where h is the entropy of the geodesic flow.

Geometry & Topology, Volume 28 (2024)



Closed geodesics with prescribed intersection numbers 753

Proof of Proposition 8.1 We denote by xm 2M1
'.S†/ the unique probability measure of maximal

entropy, that is,

xmD lim
L!C1

X
2P
`./6L

ı

`./
;

where the convergence holds in the weak sense. Let " > 0. Define

F" D f� 2M1
'.S†/ W ji.�; ı?/� i. xm; ı?/j> "g:

Then F" is closed in M1
'.S†/, and thus compact by the Banach–Alaoglu theorem, and xm 2 {F" so that

ı D h� sup�2F" h.�/ > 0. In particular, for large L,

1

N.L/
#
�
 2 P W ı

`./
2 F"

�
6 C exp.�ı0L/

for some 0<ı0<ı andC >0. Now, by Proposition 8.2, ı=`./2F" gives ji.; ?/=`./�i. xm; ı?/j>".
Let I? D i. xm; ı?/. Then it is a well-known fact that xm has full support in S†, which implies I? > 0 by
definition of i. xm; ı?/; see [34].

Remark 8.5 (i) It is not hard to see that Proposition 8.1 implies

1

N.L/

X
`./6L

i.; ?/� I?L

as L!C1. Thus we recover [39, Theorem 4].

(ii) If .†; g/ is hyperbolic, then xm is the renormalized Liouville measure and, with Proposition 8.2,
we find

I? D
`.?/

2�2.g� 1/
:

(iii) If " < I? then every closed geodesic  which does not intersect ? satisfies ı=`./ 2 F". In
particular, the right-hand side of (8-1) is bounded from below by C exp..h? � h/L/, where we
used that N.0;L/� exp.h?L/=h?L and N.L/� exp.hL/=hL as L!1.

Appendix A Closed geodesics minimize intersection numbers

In this section we prove Lemma 2.1. We proceed by contradiction and assume that i.1; 2/ < j1\ 2j.
As 1 and 2 are not powers of each other, the images of 1 and 2 intersect transversally (otherwise their
images would coincide by uniqueness of the geodesic equation). Since i.1; 2/ < j1\2j, we may find
loops j̨ WR=Z!† for j D 1; 2 with j̨ � j and j˛1\˛2j< j1\ 2j, and we may moreover assume
that ˛1 and ˛2 intersect transversally. Let Hj W Œ0; 1��R=Z! † for j D 1; 2 be smooth homotopies
between j and j̨ , and define H W Œ0; 1��R=Z�R=Z!†�† by setting

H.s; �1; �2/D .H1.s; �1/;H2.s; �2// for .s; �1; �2/ 2 Œ0; 1��R=Z�R=Z:
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Let �.†/D f.x; x/ W x 2†g be the diagonal in †. Then H.0; � / and H.1; � / are transverse to �.†/, in
the sense that, for every k D 0; 1 and .�1; �2/ 2R=Z�R=Z with H.k; �1; �2/ 2�.†/,

dH.k; �1; �2/T.k;�1;�2/.R=Z�R=Z/CTH.k;�1;�2/�.†/D TH.k;�1;�2/.†�†/:

In particular, by [20, Corollary page 73] we may assume that H is globally transverse to �.†/, so that
H�1.�.†// is a smooth 1–dimensional submanifold of Œ0; 1�� .R=Z/2. Now

j1\ 2j D jH
�1.�.†//\ .f0g � .R=Z/2/j and j˛1\˛2j D jH

�1.�.†//\ .f1g � .R=Z/2/j:

Since j1\ 2j> j˛1\˛2j and because H�1.�.†// is smooth, we may find a smooth path c W Œ0; 1�!
Œ0; 1�� .R=Z/2 such that c.0/¤ c.1/ and

Im.c/�H�1.�.†// and c.0/; c.1/ 2 f0g � .R=Z/2:

Write cD .S; T1; T2/ for some smooth functions S W Œ0; 1�! Œ0; 1� and Tj W Œ0; 1�!R=Z, and for u2 Œ0; 1�
define the path cu D .uS; T1; T2/ W Œ0; 1�! Œ0; 1�� .R=Z/2. Let xk DH.c.k// 2† for k D 0; 1. Then
define the paths

ǰ;u D �j ıH ı cu W Œ0; 1�!† for j D 1; 2 and u 2 Œ0; 1�;

where �1; �2 W†�†!† are the projections over the first and second factor, respectively. As c1D c and
Im.c/�H�1.�.†//, we have ˇ1;1 D ˇ2;1. In particular, the paths ˇ1;0 and ˇ2;0 are homotopic within
the space of curves linking x0 and x1, since for each u, one has ǰ;u.k/D xk for j D 1; 2 and k D 0; 1.
Moreover, the paths ˇ1;0 and ˇ2;0 are subpaths of 1 and 2, respectively, and are in particular geodesic
paths. Let z† be a universal cover of † and take Qx0 2 z† a lift of x0. For j D 1; 2, let Q̌j W Œ0; 1�! z† be
the unique lift of ǰ;0 starting at Qx0. Then Q̌1.1/D Q̌2.1/ since the paths ǰ;0 for j D 1; 2 are homotopic
in † via a homotopy preserving endpoints. In particular, we have found two distinct geodesic segments
of z† joining Qx0 and Q̌0.1/ (the image of the paths Q̌j;0 for j D 1; 2 cannot coincide since c.0/¤ c.1/
and the intersection 1 \ 2 is transverse). Thus the exponential map exp Qx0 W T Qx0 z†! z† at Qx0 is not a
diffeomorphism, and z† cannot be negatively curved by virtue of the Cartan–Hadamard theorem (see for
example [29, Theorem 11.5]). This completes the proof.

Appendix B An elementary fact about pullbacks of distributions

Lemma B.1 Let K 2D0.Rd �Rd / be a compactly supported distribution. We assume that WF.K/� � ,
where � � T �.Rd �Rd / is a closed conical subset such that

� \N ��D∅; where N ��D f.x; �; x;��/ W .x; �/ 2 T �Rd g:

In particular , the pullback i�K, where i W x 7! .x; x/, is well defined. Then , for N 2N>1 large enough ,
the following holds. Let u 2 CNc .R

d / and assume that the pullback i�.��1uK/ is well defined , where
�1 W .x; x/ 7! x is the projection on the first factor. Then

i�.��1u �K/D u � i
�K:
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Proof LetK" 2C1.Rd �Rd /; "2 �0; 1�, be a sequence of distributions supported in a fixed compact set
such that K"!K in D0�.Rd �Rd /. Let � 0 � T �.Rd �Rd / be an open conical subset containing N ��.
AsK" is compactly supported, we may assume that jt�qj>ı0 for any .t; q/2��� 0 such that jt jD jqjD1
for some ı0 > 0. By definition of the convergence in D0�.Rd �Rd / (see [23, Definition 8.2.2]), for every
N there is CN > 0 such that, for any " > 0 small enough,

(B-1) j yK".q/j6 CN hqi
�N for q 2 � 0:

Let � 00 � � 0 be another open conical subset containing N ��, and let ı > 0 be such that, for any q 2 � 00

and t 2R2d ,

(B-2) jt � qj< ıjqj D) t 2 � 0:

Then, for any q 2 � 00,

.2�/2d j2K"��1u.q/j6
Z

R2dt
j yK".t/j � j

b��1u.q� t /j dt

6
Z
jt�qj<ıjqj

j yK".t/j � j
b��1u.q� t /j dt C

Z
jt�qj>ıjqj

j yK".t/j � j
b��1u.q� t /j dt:

Let N1; N2 2N>1 and hti D
p
1Cjt j2. Then, using (B-1), (B-2) and Peetre’s inequality, and assuming

that u 2 CN2c .Rd / with N2 > 2d C 1,Z
jt�qj<ıjt j

j yK".t/j � j
b��1u.q� t /j dt 6 CN1;N2

Z
jt�qj<ıjqj

hti�N1hq� ti�N2 dt

6 C 0N1;N2hqi
�N1CN2

Z
Rd
hti�N2 dt:

On the other hand, if k is the order of K and N3 2N>1 is such that u 2 CN3c .Rd /, thenZ
jt�qj>ıjqj

j yK".t/j � j
b��1u.q� t /j dt 6 Ck;N3

Z
jt�qj>ıjqj

htikhq� ti�N3

6 C 0k;N3hqi
�N3C.kC2dC1/

Z
R2d
hti�2d�1 dt:

Therefore, if u 2 CN .Rd / with N D kC 2d C 1CN 0,

(B-3) .2�/2d j2K"��1u.q/j6 CN hqi
�N 0 for q 2 � 00:

Note that, for ' 2 C1c .R
d /,

hi�.K"�
�
1u/; 'i D

Z
Rdx
'.x/

Z
Rd
�
�Rd�

2K"��1u.�; �/eix.�C�/ d� d� dx:

Indeed, (B-3) shows that the integral in .�; �/ converges near N �� if N 0 > 2d C 1, and far from N ��

we can use the stationary phase method to get enough convergence in .�; �/, so the above integral makes
sense as an oscillatory integral and coincides with hi�.K"��1u/; 'i, since this formula is obviously true if
u is smooth. Moreover, all the above estimates are uniform in " and thus, letting "! 0, we obtain the
desired result, since obviously i�.K"��1u/D u.i

�K"/ for each " 2 �0; 1�.
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