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Folding sequences
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Abstract Bestvina and Feighn showed that a morphism S → T between
two simplicial trees that commutes with the action of a group G can be
written as a product of elementary folding operations. Here a more gen-
eral morphism between simplicial trees is considered, which allow different
groups to act on S and T . It is shown that these morphisms can again
be written as a product of elementary operations: the Bestvina–Feighn
folds plus the so-called “vertex morphisms”. Applications of this theory
are presented. Limits of infinite folding sequences are considered. One
application is that a finitely generated inaccessible group must contain
an infinite torsion subgroup.
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1 Introduction

A morphism φ: S → T of finite trees can be written as a product of elementary
folds, in which two edges with a common vertex are folded together, and an
isomorphism. Bestvina and Feighn [1] have given a generalization of this result.
The case they consider is when S and T are (generally infinite) simplicial G–
trees for which G\S and G\T are finite graphs T is minimal, and G and the
edge stabilizers of T in G are finitely generated. The morphism now becomes a
product of equivariant folds and an isomorphism. In each such fold a whole orbit
of pairs of edges are folded together. Such an operation is easy to describe in
terms of its effect on the quotient graph G\S and the edge and vertex stabilizers
of S . These are specified in a graph of groups determined by a labelling of the
edges and vertices of G\S . In this paper a further generalization is given. We
now allow different groups to act on S and T . Thus S is a G–tree and T is an
H –tree and a morphism φ: S → T incorporates a homomorphism φ̃: G → H ,
so that if we regard T as a G–tree via φ̃ then φ is a morphism of G–trees. As
well as the basic folding operations of [1] it is also necessary to include vertex
morphisms each of which changes just one vertex label of the corresponding
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graph of groups. It is possible to generalize the Bestvina–Feighn result for the
case when φ̃ restricts to an injective homomorphism on point stabilizers of S .
Under similar restrictions to those specified for a G–morphism, φ is a product
of elementary folds, vertex morphisms and an isomorphism. A sequence of such
operations is called a folding sequence. We can think of each tree in the sequence
as the realization of a combinatorial tree. The folding and vertex morphisms
correspond to morphisms of the combinatorial trees. If we interpret our folding
sequence as a folding sequence of combinatorial trees then we also have to allow
subdivision operations. This is because two different combinatorial trees may
have isomorphic realizations as R–trees. However if this does happen, then the
two trees have isomorphic subdivisions.

Folding sequences are surprisingly useful. They yield theoretical results on
decompositions of groups and also provide a way of constructing groups with
strange properties.

A G–tree S is called reduced if for every edge e ∈ ES,Ge = Gιe implies ιe, τe
are in the same orbit. Let S be a reduced G–tree in which every edge group is
finite. Let S = G\S and let (G(−), S) be the corresponding graph of groups.
Put

η(S) =
∑
e∈ES

1/|G(e)|.

Linnell [12] proved that η(S) ≤ 2dG(ωQG)−1 where dG(ωQG) is the minimal
number of generators of the augmentation ideal ωQG as a QG–module. Lin-
nell’s argument uses norms in W ∗–algebras. Using a folding sequence argument
we show that η(S) ≤ d(G), the minimal number of generators of G. If all the
edge stabilizers of S are trivial, then η(S) = |ES| and so |ES| ≤ d(G). This is
a weak version of the Grushko–Neumann Theorem (see [4] or [16]). A stronger
version of the Grushko–Neumann Theorem is obtained by a closer examination
of the folding sequence. Stallings [16] has given a proof of this result using this
approach.

Let G be a group. In [8] and [9] I introduced the idea of a G–protree. A
splitting sequence of G–trees T1, T2, . . . is a sequence such that for each n there
is a surjective G–map Tn → Tn−1 obtained by contracting finitely many orbits
of edges. A G–protree P arises as the inverse limit of this sequence. As shown
in [9], if ETn is countable for all n, then P has a realization as an R–tree, on
which G acts by isometries. In this R–tree the set of branch points intersects
each segment in a nowhere dense subset. A finitely generated group G is said
to be inaccessible if there is a splitting sequence of reduced G–trees as above,
for which all edge groups are finite and the number of G–orbits of V Tn (or
ETn ) tends to infinity. In this case we obtain a G–protree P with infinitely
many orbits of edges.
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We prove in Section 3 that if G is finitely generated and P is a G–protree with
countably many edges then the realization of P is a direct limit of a folding
sequence of simplicial R–trees. If the Gn–tree Sn is the n–th term of the
sequence, then there is a surjective homomorphism ρ̃n: Gn → Gn+1 and G is
the direct limit of this system of homomorphisms in the category of groups.
This description of G gives information as to the subgroup structure of G.
In particular either G ∼= Gn for all sufficiently large n or G must contain a
subgroup which is the union of a properly ascending chain of finitely generated
subgroups each of which is contained in an edge stabilizer of P . It follows
that an inaccessible group must contain an infinite locally finite subgroup. If
every edge stabilizer of Sn in G is cyclic (not necessarily finite), then G must
contain a non-cyclic subgroup that is locally cyclic. It also follows that if G has
an infinite splitting sequence then for any integer k there is an integer n such
that G contains a nontrivial element which fixes an edge path in Tn of length
at least k . This is also implied by Sela’s results on acylindrical accessibility
[14].

Infinite folding sequences were used first by Bestvina and Feighn [2] to give an
example of a finitely generated group which had an infinite splitting sequence
in which all edge groups are free abelian of rank 2. Subsequently [7], [8], [9] I
gave a number of examples of inaccessible groups all of which were constructed
(essentially) by means of folding sequences.

Martin and Skora [13] have obtained some results on accessible convergence
groups acting on S2 . It is not hard to show that an infinite locally finite
group cannot act as a convergence group on S2 . Hence by Theorem 4.5 a
finitely generated convergence group acting on S2 must be accessible. Thus
the accessibility condition in the results of Martin and Skora can be removed
(or replaced by a finite generation condition). In particular it follows that if
G ⊂ Hom(S2) is an orientation preserving convergence group, then there is a
simplicial G–tree T such that G\T is a finite graph, all edge stabilizers are
finite, and if v ∈ V T , then the ordinary set O(Gv) is simply connected.

2 Folding

We recall and modify some of the terminology of [6] or [15].

Let G be a group. A G–tree T is an R–tree with G acting on the left by
isometries. A G–tree is minimal if it has no proper G–subtree.

Given an R–tree T and x ∈ T , define Bx = {[x, y]|y ∈ T − x}. Define an
equivalence relation on Bx by
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[x, y] ∼ [x, z] if [x, y] ∩ [x, z] = [x,w] for some w ∈ T − x.

A direction at x is an element of Bx/∼. There is a bijection between directions
at x and the components of T − x. A point of reflection x of a G–tree T is
a point with two directions for which there exists g ∈ G which fixes x and
transposes the two directions at x. We say that x ∈ T is an ordinary point
if there are exactly two directions at x but x is not a point of reflection. A
branch point is a point x with more than two directions or equivalently for
which T − x has more than two components. A vertex is a point which is not
an ordinary point.

An R–tree is simplicial if the set of vertices is discrete. For each x ∈ T , let
d(v) denote the number of directions at x.

A morphism from a G–tree S to a G–tree T is a G–map φ: S → T such that
for each segment [x, y] of S there is a segment [x,w] ⊂ [x, y] such that φ|[x,w]

is an isometry.

Alternatively ([6]) φ: S → T is a morphism if every segment has a finite subdi-
vision such that φ restricts to an isometry on each segment of the subdivision.

We generalize the notion of morphism to allow different groups to act on domain
and codomain. Thus if S is a G–tree and T is an H –tree, a morphism φ: S → T
is a homomorphism φ̃: G → H , and a map φ: S → T such that if we regard
T as a G–tree via φ̃ then φ is a morphism when regarded as a morphism of
G–trees. Such morphisms are discussed in unpublished work of Skora.

A simplicial R–tree T can be regarded as the realization of a simplicial com-
plex, which is a (combinatorial) tree. This will also be denoted T . Thus V T
will correspond to a non-empty closed discrete subset of the R–tree containing
all branch points and ET will be the set of closures of components of T − V T ,
where VT is such that each element of ET is a closed segment the endpoints of
which are elements of V T . As a combinatorial tree the vertices of the edge e
are denoted ιe, τe. When regarded as a protree the edges of a tree are regarded
as directed pairs. Usually an edge of a tree is not directed.

Bestvina and Feighn [1] have shown that any morphism of simplicial G–trees
is a product of subdivisions and folds (which are described as operations on the
corresponding combinatorial G–trees). Folds are classified according to their
effect on the quotient graph. The quotient graph X = G\T , together with
a labelling by subgroups of G which are the stabilizers of a lift of a maximal
subtree X0 of X , is known as a graph of groups (G(−),X). See [4] for an
account of this theory. The basic folds of Type I, II and III are shown below in
Figure 1. These are denoted Type IA, IIA and IIIA in [1]. Bestvina and Feighn
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⇒

Figure 1

list other basic folds (Type IB,IIB, IIIB and IIIC ). But as they remark, each
of these is equivalent to a combination of Type A folds and subdivisions.

In [9] I introduced vertex morphisms. A vertex morphism is a morphism θ: S →
T of simplicial R–trees for which the only change in the corresponding graph
of groups is a change in the label of one of the vertices. Thus if the label U
is changed to V then there is a surjective homomorphism θU : U → V which
restricts to the identity map on subgroups which label incident edges. For vertex
morphisms the group G acting on S is different from the group H acting on
T . We now generalize the Bestvina–Feighn result to allow different groups to
act on domain and codomain.

Theorem 2.1 Let S, T be simplicial R–trees. Let G act by isometries on S
and let H act by isometries on T so that G\S is finite, and all edge stabilizers
of T in H are finitely generated. Also T is a minimal H –tree. Let φ: S → T
be a morphism, such that the corresponding homomorphism φ̃: G → H is
surjective, and restricts to an injective map on each point stabililizer, then φ
can be written as a product of basic folds and vertex morphisms.

Proof We adapt the proof of the Proposition in Section 2 of [1].

Step 0 We show that if K is a finite simplicial subtree of S , then we can factor
φ as γβ where β is a product of folds and vertex morphisms and γ restricted
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to β(K) is an embedding. Also γ̃ is injective on all point stabilizers. If φ|K is
not already an embedding then we can perform a basic fold φ1: S → S1 folding
together edges e1, e2 of S so that φ(e1) = φ(e2) and e1, e2 are distinct edges of
X . The basic fold φ1 produces at most one new edge group and one new vertex
group. The new edge group is a subgroup of an existing vertex group. It follows
that φ̃1 restricts to an injective homomorphism on the stabilizers of all except
one orbit of vertices of S1 and on the stabilizers of all edges. Thus there is a
vertex morphism ν1: S1 → T1 such that φ: S → T factors φ = φ(1)ν1φ1 as a
morphism of R–trees (regarding T as an H –tree), and also φ̃(1): G1 → H , the
homomorphism corresponding to φ(1) , retricts to an injective homomophism
on all point stabilizers. Note that ν1φ1(K) has fewer edges than K . We can
therefore proceed by induction on the number of edges of K .

Step 1 We now claim that we can factor φ as γβ so that γ induces a home-
omorphism of quotient graphs, γ̃ is injective on point stabilizers and β is a
product of basic folds and vertex morphisms. This follows exactly as in the
corresponding argument in [1]. The fact that T is a minimal H –tree and φ̃ is
surjective, together imply that the induced morphism G\S → H\T is a surjec-
tive simplicial map. One then uses an induction argument based on the number
of edges of G\S , using Step 0.

Step 2 Since edge stabilizers in T are finitely generated, we can use the
argument of [1] to show that φ can be factored φ = γβ as in Step 1 and in
addition γ̃ induces an isomorphism on all edge stabilizers.

Step 3 It follows as in [1] that the γ obtained in Step 2 is an isomorphism.

We say that in the G–tree S an edge e ∈ ES is compressible if Gιe = Ge
and ιe and τe lie in different G–orbits. We say that S is reduced if it has
no compressible edges. For any G–finite G–tree S there is a reduced G–tree
S∗ for which V S∗ is a G–retract of S : S∗ is obtained from S by compressing
compressible edges. The retraction is not, in general, uniquely determined. The
retraction is determined by a compressing forest F defined as follows:

(1) F is a subgraph of G\S = S .

(2) The edges of F are oriented (given arrows) so that each vertex v ∈ V F
has at most one arrow pointing away from it.

(3) If e ∈ EF then G(e) = G(ιe), where the arrow on e points from ιe to τe.

(4) F is maximal with respect to properties (1), (2) and (3). In particular
V F = V S .

In each component c of F there is exactly one vertex vc which has no arrow
pointing away from it. The retraction S → S∗ corresponding to F induces a
retraction ρ: S → S

∗
, ρ(v) = vc, v ∈ c.
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It is often convenient to work with reduced trees. We know that it is possible
to factorize a morphism of reduced trees as a product of subdivisions, folds and
vertex morphisms. Unfortunately subdividing a tree always produces compress-
ible edges. We introduce some modified folding operations which allow us to
factorize a morphism of reduced trees so that the intermediate trees obtained
are also reduced. These modified folds are shown in Figures 2 ,3 and 4.

Every morphism of G–trees is a product of subdivisions and folds of types I, II
and III. Let φ: S → T be such a fold. Given a compressing forest F in S , we
will describe how to construct a compressing forest F ′ in T and describe the
corresponding induced morphism φ∗: S∗ → T ∗ . Again these are best described
by their effect on the labelled quotient graphs.

Subdivision induces an isomorphism on the corresponding reduced trees, since
one enlarges the compressing forest to include half the subdivided edge. Thus a
morphism of reduced trees can always be written as a product of isomorphisms
and the morphisms φ∗: S∗ → T ∗ induced by type I, II and III folds. These are
discussed in detail below.

We consider the effect of folds on the quotient graph S and the quotient reduced
graph S

∗
. In the subsequent discussion, and in the diagrams of graphs of

groups, the group corresponding to a given edge or vertex is denoted with the
corresponding capital letter, eg the group corresponding to vertex v is V and
the group of e1 is E1 . For any vertex w , put ρ(w) = w∗ , which therefore has
the group W ∗ . Note that if W = W ∗ then we can change the arrows on F so
that w has no arrows pointing away from it (by reversing all the arrows on the
geodesic from w to w∗ ). A change like this has no effect on S

∗
.

We now list the different possibilities for the fold φ and the resulting induced
fold φ∗

Type I

e1, e2 ∈ F

We choose the new compressing forest F ′ to contain all x ∈ F, x 6= e1, e2 . Also
e1, e2 fold to form the edge 〈e1, e2〉, which is included in F ′ with an arrow
pointing away from pivot vertex v if and only if one of the edges e1, e2 has
arrow pointing away from v . It is easy to check that F ′ is a compressing forest
and φ induces an isomorphism on S∗ , since the folding takes place in a part of
the tree that is compressed both before and after the fold.
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Figure 2

e1 ∈ F, e2 /∈ F and v, y in different components of F

Suppose first that the arrow on e1 goes from x to v . Then X = E1 . After
the fold F ′ is obtained from F by deleting e1 . If X ≤ E2 , then φ∗ consists
of a composite of Type 1 folds for each edge e which has a vertex w in the
same component of F as v but for which the arrowed path from w to v∗

passes through x. It is important to note that in each such Type 1 fold E ≤
E2 . Assume then that X 6≤ E2 . If 〈X,E2〉 6= V ∗ then after folding the new
compressing forest is obtained by omitting the folded edge and also the edge
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Figure 3

originally pointing away from y if Y 6= Y ∗ . Note that 〈X,E2〉 6= 〈X,Y 〉, since
〈X,E2〉 is a subgroup of V ∗ but Y is not contained in V ∗ . Such a fold is called
a Type 2 fold. Note that we can assume E2 6= Y in a Type 2 fold, since if
E2 = Y , then because v, y are in different components of F we could get a
bigger compressing forest by adding e2 . If Y = Y ∗ , then the induced fold is
a combination of Type II folds. Similarly if 〈X,E2〉 = V ∗ (so that the folded
edge must be added to F ) and Y 6= Y ∗ , then the induced fold is a combination
of Type II folds. If 〈X,E2〉 = V ∗ and Y = Y ∗ then the induced fold is a Type
3 fold.

If the arrow on e1 goes from v to x, then the fold produces a compressible edge
which can be included in the the new compressing forest with arrow going from
v to 〈x, y〉. If there are arrows in F pointing away from x and y then these
edges must be omitted from the new compressing forest. If X 6= X∗(= V ∗)
and Y 6= Y ∗ , the effect on S

∗
is a Type 2 fold (with 〈X,E2〉 = X ). Note that
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Figure 4

E2 is a proper subgroup of X , since otherwise we could add e2 to F and get a
larger compressing forest in S∗ . The induced fold for X = X∗ and Y 6= Y ∗ is
a combination of Type II folds (with y as the pivot vertex instead of v). The
vertex which is initially labelled V ∗ finishes with label 〈V ∗, Y 〉 and the vertex
with label Y ∗ is unchanged. The folded edge becomes a vertex if X = X∗ and
Y = Y ∗ . Thus we have a Type 3 fold.

e1 ∈ F, e2 /∈ F and v, y in the same component of F

We can assume E2 6= Y , since if E2 = Y we could change F so that it included
both e1 and e2 which is a case already considered. To see this note that

M J Dunwoody

Geometry and Topology Monographs, Volume 1 (1998)

148



v∗ = y∗ . If there is no edge of F pointing away from y then v∗ = y and V = Y
and we can change arrows so that there is an edge in F pointing away from
y . Now change F so that it includes e2 and omits this edge. Thus we can
assume E2 6= Y . The analysis for this case is now similar to that when v, y are
in different components. The induced fold is of Type 4 if 〈X,E2〉 6= V ∗ and of
Type 5 if 〈X,E2〉 = V ∗ . Note that, since the part of the graph of groups we
are concerned with in this case is not a tree, it cannot be assumed that all the
edge labels are subgroups of the incident vertex labels. Thus in a Type 4 fold,
Y is not assumed to be a subgroup of V ∗—it is conjugate to a subgroup of V ∗ .
There is no analogous case to Type 3.

e1 /∈ F, e2 /∈ F, v, x, y in distinct components of F

If either X = X∗ or Y = Y ∗ , then we can change the arrows on F so that
either x or y has no edges pointing away from it. Thus if F contains edges
pointing away from both x and y , then we can assume X 6= X∗ and Y 6= Y ∗ .
In this case we must omit at least one of these edges from F after the fold. If
〈X,Y 〉 6= X then we must omit the edge of F with initial vertex x. Similarly
if 〈X,Y 〉 6= Y then we must omit the edge of F with initial vertex y . If
〈X,Y 〉 = X = Y then we need only omit one of the two edges, and we can
choose either. First consider the case when both edges are omitted. The fold
in this case is a Type 6 fold if V ∗ 6= 〈E1, E2〉. Note that E1 6= X and E2 6= Y ,
since otherwise we could add e1 or e2 to F , contradicting its maximality. If
V ∗ = V = 〈E1, E2〉 then the folded edge is compressible and can be added
to F . The induced fold in this case is a combination of Type II folds: first
operating on the edge e1 by increasing E1 to X and V ∗ to 〈V ∗,X〉 and then
operating on the edge e2 by increasing E2 to Y and 〈V ∗,X〉 to 〈X,Y 〉. For
any edge of S that is not in F which has a vertex w for which the path from
w to w∗ passes through x or y it is necessary to carry out a Type 1 fold in the
reduced graph. Such an edge, which initially is incident with x∗ in S

∗
becomes

incident with 〈x, y〉 in T
∗
.

Consider now the case when only one edge is omitted. This happens for example
if X = X∗ and Y 6= Y ∗ then the induced fold is of Type 7. If X = X∗ and
Y = Y ∗ then the induced fold is just a Type I fold. If v, x, y are in different
components of F then both 〈X,Y 〉 6= X and 〈X,Y 〉 6= Y , since X ≤ Y implies
x, y are in the same component of F . It follows that the edges after the fold
cannot be added to F .

e1 /∈ F, e2 /∈ F, v, x, y not in distinct components of F

This case is similar to the previous case. We can still assume that E1 6= X and
E2 6= Y . For if say E1 = X , and v, x are in the same component of F , then
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either there is an edge in F pointing away from x or X = V = V ∗ and there
is an edge in F pointing away from v . We can then change F by removing
this edge and replacing it by e1 . Such a change induces an isomorphism on the
reduced graph. The fold will now involve an edge of F and has been considered
previously.

Suppose v, x, y are all in the same component of F so that V ∗ = X∗ = Y ∗ and
〈X,Y 〉 6= V ∗, 〈X,Y 〉 6= X, 〈X,Y 〉 6= Y . The induced fold is of Type 8. Again
it may be necessary to alter by Type 1 folds the incidence of edges to vertices
in S

∗
. The similarity with the case when v, x, y are in different components of

F is because in both cases F is altered in the same way; by omitting the edges
pointing away from the identified vertex 〈x, y〉. It may now be the case that
〈X,Y 〉 = X say. In this case there would be a compressible edge produced and
so we can add an extra edge to F and the induced fold is of Type 9.

Type II

e ∈ F
In such a fold V 6= E and so the arrow on e must point from x to v . We can
include the folded edge 〈e, g〉 in F ′ , with arrow pointing from 〈x, g〉 to v .

e /∈ F, v, x in different components of F

We obtain a Type 10 fold for the case when X 6= X∗ . Type 1 folds in S
∗

are
necessary corresponding to any edge of S − F joined to a vertex w for which
the path from w to w∗ passes through x. If X = X∗ then the induced fold is
just a Type II fold.

e /∈ F, v, x in the same component of F

This is the same as the previous case except that the vertices v∗ and x∗ are
identified before and after the folds. This gives rise to folds of Type 4 and 5.

Type III

e1, e2 /∈ F, v, x in different components.

We obtain a Type 11 fold when X 6= X∗ . Again Type 1 folds may be neccessary
corresponding to any edge of S − F joined to a vertex w for which the path
from w to w∗ passes through x. If X = X∗ then the induced fold is just a
Type III fold.

e1, e2 /∈ F, v, x in the same component of F

This produces a Type 12 fold if X = X∗(= V ∗), and a Type 13 fold if X 6= X∗ .
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e1 ∈ F, e2 /∈ F
In this case, since e2 has both its vertices in the same component of F it may
be the case that E2 = X . We obtain a Type 14 fold.

We see then that the induced folds in reduced trees may just be a Type I, II
or III fold, but it may be of a type which creates a new vertex. For example a
Type 6 fold creates a new vertex.

Theorem 2.1 can now be adapted for morphisms between reduced trees.

Theorem 2.2 Let S, T be simplicial reduced R–trees. Let G act by isome-
tries on S and let H act by isometries on T so that G\S is finite, and all
edge stabilizers of T in H are finitely generated. Also T is a minimal H –tree.
Let φ: S → T be a morphism, such that the corresponding homomorphism
φ̃: G → H is surjective, and restricts to an injective map on each point sta-
bililizer, then φ can be written as a product of folds of Type I, II and III or of
Types 1 – 14 and vertex morphisms and all the intermediate trees are reduced.

This result enables us to deduce certain bounds on the complexity of decompo-
sitions of finitely generated groups.

Let S be a G–tree with finite edge stabilizers. Define

η(S) =
∑
e∈ES∗

1/|G(e)|.

Theorem 2.3 Let G be a finitely generated group for which d(G) is the
minimal number of generators, then η(S) ≤ d(G).

Proof Let W be a free group of rank d(G) and let X be the W –tree with
one orbit of vertices on which W acts freely, and for which η(X

∗
) = d(G).

We regard both X and S as simplicial R–trees. A surjective homomorphism
α̃: W → G induces a morphism α: X → S . By Theorem 2.1 α is a product
of basic folds and vertex morphisms. We consider the induced folds on the
reduced trees. One can check without too much difficulty that η(S) does not
increase for each of the induced folds described above. For example, for a fold
of Type 6

η(S)− η(T ) =
1
|E1|

+
1
|E2|

− 1
|〈E1, E2〉|

− 1
|X| −

1
|Y | .

We can assume |E1| ≤ |E2|. Also we know that E1 < X and E2 < Y .
Thus 1

|X| ≤
1

2|E1| and 1
|Y | ≤

1
2|E2| ≤

1
2|E1| , so that 1

|X| + 1
|Y | ≤

1
|E1| . Also
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1
|〈E1,E2〉| ≤

1
|E2| . It is clear in this case that η(S)−η(T ) ≥ 0. Similar arguments

show that η(S) does not increase in each of the other cases. A vertex morphism
will leave edge groups unchanged and cannot increase η(S). The theorem is
proved.

Let us consider the case when G is a finitely generated group and S is a G–tree
with trivial edge stabilizers. In this case η(S) = |ES∗|), and so we see that the
number of edge orbits in a minimal reduced G–tree is bounded by d(G). In fact
we obtain stronger versions of the Grushko–Neumann Theorem by examining
the folding sequence in this case. Thus we obtain the following theorem, first
obtained in [4, I, 10.3].

Theorem 2.4 Let S be a G–tree and let T be a reduced minimal H –tree for
which G acts freely on ES and H acts freely on ET . Also suppose H is finitely
generated. Let α: S → T be a morphism. If α̃: G→ H is surjective then there
is a G–tree S′ and a morphism α′: S′ → T that induces an isomorphism
G\S′ → H\T and α̃′ induces a surjective homomorphism Gv → Hα′(v) for
each vertex v ∈ V S′ .

Proof We can carry out vertex morphisms on S and replace each vertex
stabilizer by its image under α̃. We will then have a Ĝ–tree Ŝ for which there
is a morphism φ̂: Ŝ → T for which the corresponding homomorphism Ĝ → H
is injective on all point stabilizers. By Theorem 2.1 φ̂ is a product of basic folds,
subdivisions and vertex morphisms. We consider the induced operations on the
corresponding reduced trees. Since all edge groups are trivial, the only possible
induced folds that can occur are Type I, III, 1, 3 and 5 (with E2 = X = {1}).
If we carry out the same sequence of induced folds on S∗ (leaving out all the
vertex morphisms), we will obtain the G–tree T ′ with the required properties.

3 Folding sequences

A folding sequence (Tn), is a sequence of combinatorial trees Tn , satisfying the
following conditions:

(a) Tn is a minimal Gn–tree, where Gn is finitely generated.

(b) Tn+1 can be obtained from Tn either by subdivision, or by a I, II or III
fold followed by a vertex morphism.

It is often the case that corresponding to a folding sequence (Tn) is a folding
sequence of simplicial R–trees, in which we replace each tree by a realization
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and the folding operations induce morphisms of R–trees. In this case we will
risk confusion by using Tn to denote both the tree and its realization as an
R–tree. There are examples of folding seqences which cannot be realized in
the above way. For example if for each n, G2n−1\T2n−1 is a tree with two
edges e2n−1, f2n−1 , and T2n is obtained from T2n−1 by subdividing e2n−1 into
two edges e2n and e2n+1 . Then T2n+1 is obtained from T2n by a Type I fold,
in which e2n and f2n−1 are folded together to form f2n+1 . We call such a
folding sequence reducible. Thus a folding sequence is reducible if it satisfies
the following condition:

There exists n, such that for each m ≥ n there is a proper subset Em ⊂ ETm
which is invariant under Gm and such that if the folding operation involves an
edge of Em then the resulting edges are in Em+1 .

Thus if the folding operation is subdivision of an edge of Em , then the resulting
edges are all in Em+1 ; and if the operation is a Type I fold in which one of the
edges is in Em , then the resulting edge is in Em+1 . In the the above example the
folding sequence is reducible since the sets E2m = E2m−1 = {f2m−1}, satisfy
the above condition. A folding sequence is irreducible if it is not reducible.

Theorem 3.1 Let (Tn) be an irreducible folding sequence of combinatorial
trees. The sequence can be realized as a folding sequence of morphisms of
simplicial R–trees in which group actions are by isometries.

Proof For each n it is possible to realize the finite folding sequence T1, T2, . . . ,
Tn as a folding sequence of morphisms of simplicial R–trees in which the group
actions are by isometries. To produce such a realization one has to assign a
common length to the edges in each orbit of edges in such a way that the
lengths are compatible with subdivision and so that Type I and Type III folds
take place between edges of equal length. To achieve such a realization assign
lengths to the edges of Tn and work backwards, noting that the lengths of edges
of Ti are determined by the lengths of edges of Ti+1 . For each n = 1, 2, . . . , let
zn = (ξn1, ξn2, ξn3, . . . , ξnk) be the length of the edges e1, e2, . . . ek of G1\T1

in such a solution. We may assume that for each n, |zn| =
∑k
i=1 ξni = 1. By

compactness for the standard n−1–simplex |σn−1|, the sequence zn has a con-
vergent subsequence. Let w1 = (ξ1, ξ2, . . . ξk) be the limit point of a convergent
subsequence. Note that some of values ξi may be zero, but not all. We now
repeat the above process. For each term of the convergent subsequence for w1 ,
we can find a vector corresponding to a solution for the edges of G2\T2 . The
lengths of these vectors is bounded, since |w1| = 1. Again by compactness
there is a convergent subsequence converging to w2 and assigning the coeffi-
cients of w2 to G2\T2 will be consistent with assigning the coefficients of w1 to
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the lengths of the edges of G1\T1 . Note that if an edge has been assigned zero
length then when subdivided the parts have zero length and it can be part of a
Type I fold with another edge of zero length. Again repeating this process we
can eventually assign lengths to all the edges of Gn\Tn for every n which are
consistent with the folding process. If all these lengths are non-zero then we
have realized the folding sequence as a folding sequence of simplicial R–trees.
If some of the edges have zero length assigned to them, then it is easy to see
that the folding sequence is reducible. Thus we take Em ⊂ ETm to be the set
of edges assigned zero length.

It is easy to construct the limit of such a folding sequence of R–trees. Let
θn = ρnρn−1 . . . ρ1: T1 → Tn+1 . Let dn be the R–tree metric in Tn . We define
a pseudometric d in T1 by d(x, y) = limn→∞(dn(θn(x)), dn(θn(y))). We put
T = T1/ ∼, where x ∼ y if d(x, y) = 0. Clearly d induces a metric on T and
this metric space is called the limit of the folding sequence.

I am grateful to Brian Bowditch for supplying the proof of the following theo-
rem.

Theorem 3.2 The limit T of the folding sequence Tn is an R–tree.

Proof Let (S, d) be a metric space. In the terminology of [3], d is a path
metric if given any two points X,Y ∈ S and ε > 0 there is a rectifiable path
joining X and Y of length at most d(X,Y ) + ε. Each (Tn, dn) satisfies the
stronger condition that any two points X,Y ∈ Tn are joined by a path of
length d(X,Y ). Since for any x, y ∈ T1, (dn(θn(x)), dn(θn(y))) is a decreasing
sequence, it follows easily that d as defined above is a path metric on T . It now
follows from [3] Proposition 3.4.2 that T is an R–tree if given any four points
X,Y,Z,W they can be partitioned into two sets of two elements, without loss
of generality, {{X, y}, {Z,W}}, so that

d(X,Y ) + d(Z,W ) ≤ d(X,Z) + d(Y,W ) = d(Y,Z) + d(X,W ).

Since this condition is satisfied in each Tn , it must also be satisfied in T . Thus
T is an R–tree.

If G is the direct limit in the category of groups of the sequence of homo-
morphisms ρn: Gn → Gn+1 then there is an action of G on T via isometries.
Suppose in addition the folding sequence satisfies the following condition

(c) Two edges of Tn cannot be folded together if they arose as subdivided
parts of the same edge of Tm for some m < n.

In this case the natural map φn: Tn → T restricts to an isometry on each edge
of Tn and it is therefore a morphism of R–trees. It is easy to check that T
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is the direct limit of the sequence of folding morphisms in the category T of
R–trees and morphisms.

As noted above, it is best to describe folding operations in terms of their effect
on the quotient graphs Gn\Tn . Note that (c) applies to Tn and not to Gn\Tn .
Thus it is possible for the n-th fold in the folding sequence to fold together
edges that arose as subdivided edges of Gm\Tm for some m < n. An example
of this is given in [8]. What happens is that, in Tn , the edges folded together
occur as subdivided parts of different edges in the same Gm–orbit in Tm .

Let G be a finitely generated group. Suppose we have an infinite folding se-
quence with limit T and suppose that φ̃n: Gn → G is not an isomorphism for
any n. This means that the folding sequence must have infinitely many vertex
morphisms. There is then an induced folding sequence of reduced trees. We
examine the induced folds listed above. For induced folds of type I, III and
3 there is a decrease in the number of orbits of edges. For a fold of type 12,
13 or 14 there is a decrease in the rank of H1(S

∗
) and for a fold of type 1

there is no change in vertex groups. Thus the sequence must contain infinitely
many induced folds of types other than I, III, 1, 3, 12, 13 or 14. However each
such induced fold, which is not an isomorphism, produces a new edge group
that properly contains one of the old edge groups. In the situation when the
maps φn: Tn → T are morphisms of R–trees, for example if condition (c) is
satisfied, each edge stabilizer of Tn fixes an arc of T . Since each Tn has finitely
many orbits of edges, using a graph theoretic argument (König’s Lemma) it is
possible to find a sequence of edge stabilizers from a subsequence of the Tn ’s
for which the inclusions are proper. It follows that G contains a subgroup H
that is not finitely generated but every finitely generated subgroup of H fixes
an arc of T . Thus we have the following result.

Theorem 3.3 Let the G–tree T be the direct limit in T of the folding
sequence Tn of simplicial trees, where T is a Gn–tree. Then either there exists
m such that G = Gn for all n ≥ m or G contains a subgroup H that is not
finitely generated but every finitely generated subgroup of H fixes an arc of T .

In [8] I introduced the concept of a G–protree. Protrees arise naturally in
studying inaccessible groups. Let G be a finitely generated group. Let B(G)
denote the Boolean ring consisting of all subsets a ⊂ G of almost invariant
sets. Thus a ∈ B(G) if and only if the sets a and ag are almost equal for
every g ∈ G. In [4] it is shown that there is a nested G–set E which generates
B(G) as a Boolean ring. The group G is accessible if and only if E can be
chosen to be G–finite, in which case E can be regarded as the edge set of a

Folding sequences

Geometry and Topology Monographs, Volume 1 (1998)

155



simplicial G–tree. If G is inaccessible then E is not G–finite. In this case E
is a combinatorial object called a nice G–protree, which has a realization (also
called a G–protree) as an R–tree in which the set of branch points intersects
each segment in a nowhere dense subset.

If G is finitely generated, then any G–tree T is a strong limit of a sequence
Tn of R–trees, where Tn is a Gn–tree and the action is geometric, ie it arises
from a foliation on a finite 2–complex. See [11] for a precise definition and a
proof of the above statement. However in a geometric action an orbit which is
nowhere dense must be discrete (see [11]). Thus if G is finitely generated and
T is a G–protree, then T is a strong limit of a folding sequence of simplicial
trees. This gives the following result.

Theorem 3.4 Let G be a finitely generated group and let P be a nice G–
protree. Then either

(i) there is a reduced G–tree T such that for every v ∈ V T,Gv is finitely
generated and fixes a vertex of P and for every e ∈ ET,Ge is finitely generated
and fixes an edge of P ,

or

(ii) the group G contains a subgroup H that is not finitely generated but
every finitely generated subgroup of H fixes an edge of P .

Note that if G is finitely presented then φ̃n must be an isomorphism for n large
and so (i) must hold. This can be used to give a proof that finitely presented
groups are accessible. This was first proved in [5]. We have seen that if G
is finitely generated then we can construct a G–protree P corresponding to a
nested set of generators of B(G). There is then a folding sequence which has
limit P . If the situation (i) of Theorem 3.4 prevails then for each v ∈ V T,Gv
will have at most one end and so G will be accessible. Thus if G is inaccessible
then condition (ii) must be satisfied giving the following result.

Theorem 3.5 Let G be a finitely generated inaccessible group. Then G
contains an infinite locally finite subgroup.

Proof This follows immediately from Theorem 3.4.

Corollary 3.6 Let G be a finitely generated discrete convergence group acting
on S2 . Then G is accessible.
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Proof By Theorem 3.5 it suffices to show that a locally finite discrete conver-
gence group must be finite. Suppose that H is an infinite locally finite discrete
convergence group acting on S2 . By [10] Theorem 5.11, L(H) (the set of limit
points of H ) consists of exactly one point x0 , which is fixed by H . A finite
group of homeomorphisms with a fixed point is conjugate in Hom(S2) to a
cyclic or dihedral group acting linearly on S2 . An increasing chain of such
groups would have to have two fixed points, contradicting the statement above
that there is a unique fixed point.
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