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The goal of [1, Section 3] was to prove that Theorem 1.1 (the main result of the
paper) holds for arbitrary sutured, depth—one foliated manifolds M provided
that it holds for completely reduced ones such that 0, M has no toral or annular
components. This was essential for the application of the Handel-Miller theory
in Section 5. The proof was by induction on the cardinality r of a maximal
reducing family {71,...,7,} for (M,d,M) [1, Definition 3.2]. This number will
be called the “reducing rank”.

Lemma 1 At each step of the induction, no generality is lost by assuming
that each component of 0.M is neither a torus nor an annulus.

This is essentially Lemma 3.6 of [1] and was proven by pointing out that, in
either case, a small perturbation makes F transverse to the toral or annular
component N of 0;M and does not increase the reducing rank. In the case
that N is a torus, this simply makes N a component of 9nM without changing
the foliated cohomology class. There is no problem here as the resulting foli-
ated manifold remains tautly foliated and sutured. In the case of an annulus,
however, the resulting foliation is not taut and (M,~v) = (M, 9+M) does not
satisfy the definition of a sutured manifold. The correct strategy for avoiding
annular components of d;M depends on a strengthening of Lemma 3.5 of [1].
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Recall that, in the statement of Lemma 3.5, a connected manifold M’ is ob-
tained from M by excising the interior of a normal neighborhood

N(T) =T x [-1,1]

of a reducing surface T' C M, T being a properly imbedded torus or annulus.
When T is an annulus, it is required that one component of 9T lie on an
inwardly oriented component of 9, M, the other on an outwardly oriented one.
The strengthened version of Lemma 3.5 follows.

Lemma 2 If M’ is connected, the conclusion of Theorem 1.1 holds for M’ if
and only if it holds for M .

The “only if” part of this lemma is the content of [1, Lemma 3.5]. The proof
was omitted, but here we will give the complete proof of Lemma 2. First we
use it as follows.

Proof of Lemma 1 The only problem is in the case that a component N
of 0;M is an annulus. In this case, N is flanked by two annular sutures
(components of M) on which F induces the foliation by spirals. Gluing
these together so as to match the foliations produces a tautly foliated, sutured
manifold (M*, F*), having a toral component of 0,M* and one new properly
imbedded annular reducing surface 7;41. The maximal reducing family is now
{T1,...,T;,T,4+1}. Furthermore, (M, F) is obtained from (M*, F*) by remov-
ing an open normal neighborhood of 7T,;;. By Lemma 2, Theorem 1.1 will
hold for M if it holds for M™*. If we perturb F* to be transverse to the new
toral component of 9;M*, the annulus 7,41 is no longer a reducing surface.
Any of the T, 1 < j < r, with one boundary on N will no longer be a re-
ducing surface, and no additional reducing surfaces will have been introduced.
Hence, the maximal reducing family in the new foliated manifold is a (possibly
proper) subset of {T1,...,T,}, but the tangential boundary has one less annu-
lar component. Finitely many repetitions of this procedure removes all annular
components but does not affect the induction on the reducing rank. a

The proof of Lemma 2 will use the Mayer—Vietoris sequence
HY(M;R) & HY(M';R) @ H'(N(T);R) & HY(N_;R) & H'(N;R), ()
where

N_=Tx[-1,-1/2]
Ny =T x[1/2,1].
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Denote by O(M) and O(M’) the open sets of foliated classes in H'(M;R) and
H'(M';R) respectively. Hereafter, we will omit the coefficient field R from the
notation for homology and cohomology.

Claim 1 The Poincaré dual [ar] of [T] € H*(M,0M) spans keri = ker ¢,
where ¢ : H*(M) — H*'(M') is the restriction map.

Proof Examining the degree 0 terms of the Mayer—Vietoris sequence reveals
that ¢ has 1-dimensional kernel. The Poincaré dual of [T] is represented by a
closed 1-form ap, chosen to have compact support in 7' x (—1/2,1/2). Since
T does not separate M, 0 # [ar] € HY(M;R). Since T does separate N(T),
(0,0) = ([ap|M'], [ap|N(T)]) and the assertion for keri follows. If

p:H'(M';)® H'(N(T);) — H'(M';)

is projection onto the first summand, we write ¢ = p o¢ and prove that p is
one-to—one on imi. By exactness of (%), imi = kerj, so an element of imi
annihilated by p must be of the form (0, []), where

0=4(0, []) = (=nINy], =[nIN-]).

Since the inclusions Ny < N(T') are homotopy equivalences, [n] = 0. O

Claim 2 For ¢ : H'(M) — H'(M') as above,
p(O(M)) = O(M')
P (O(M')) = O(M).

Proof If [w] € O(M), we assume that w is a foliated form and let F be
the corresponding foliation. By a theorem of Roussarie and Thurston [4, 5, 2],
an isotopy moves T x {£1} to a position everywhere transverse to F (fixing
OT x {+1} in the case that T is an annulus). Thus, [w|M'] = p[w] is a foliated
class.

Now let [w'] € O(M'), where ' is a foliated form. Let F’ be the foliation
defined by ’. Since T4 = T x {1} and T = T x {—1} are homologous in
M’ we see that the forms |7y induce cohomologous forms on 7. If T is
an annulus, the foliations F|Ty and F|T_ are either both product foliations
or both foliations by spirals. In either case, F’ extends across N x [—1,1] to
provide a taut foliation of M with foliated class [w] such that p[w] = [w']. In the
case that T' is a torus, the theorem of Laudenbach and Blank [3] implies that,
after an isotopy in M’ supported near Ty, F' again extends across N x [—1,1]
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and provides the foliated class [w] such that ¢[w] = [w']. Together with the
previous paragraph, this proves that

p(O(M)) = O(M')
O(M) C ¢~ (O(M")).

Finally we must show that, if plw] = [w'] € O(M’), then [w] € O(M). Write
ilw] = ([w'],[n]) and choose the representative form w’ to be foliated. After
an isotopy, we can also assume that T x {1} is transverse to w’. Exactness of
the sequence () implies that w’ and 7 restrict to cohomologous forms on Ny .
Replacing 1 with a cohomologous form n + df, we can assume without loss
of generality that n|N, = &'|N;. By an isotopy within N(T'), we compress
N(T) into a neighborhood of N; where 7 is nonsingular, keeping N, itself
pointwise fixed and carrying 7' x {—1} to a position transverse to 7. Reversing
this isotopy, we see that no generality is lost in assuming that 7 is a foliated
form on N(T). As above, there is an isotopy of 7, supported in a neighborhood
of N_ in N(T), to a form n’ agreeing with w’ on Ny. Then ' and 1’ assemble
to a foliated form w on M and

i([@]) = (W], [n']) = i([w])
By Claim 1, [w] = [@] + c[ar], where ¢ € R and the class [ar] is Poincaré dual
to [T] = [T x {—1}]. Since w is transverse to T' x {—1}, we can choose ar to
be compactly supported near 7' x {—1} and to vanish identically on a vector
field v (on M\ 0;M ) such that w(v) > 0 everywhere. That is, the closed form
@ = W + cay is nonsingular. Also, ap is bounded, implying that & also blows
up nicely at 0, M and [w] = [&] is a foliated class. O

Let {7 C H'(M) be the one-dimensional subspace spanned by the class [ar].

Claim 3 If U is a connected component of O(M), then {r C U.

Proof Indeed, let w be a foliated form representing an element of U. As in
the previous proof, ar can be chosen to vanish identically on a vector field v
such that w(v) > 0 everywhere. Thus, for each c[ay] € {7, the line segment

tlw] + (1 —t)clar], 0<t<1,

connects clar] to [w] and lies in U for ¢ > 0. O

Proof of Lemma 2 First we eliminate trivial cases. By Claim 2, 0 € O(M)
if and only if 0 € O(M’). By [1, Proposition 3.7], 0 is a foliated class if and
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only if the manifold is a product S x I of a compact surface .S and a compact
interval I. In turn, this is the case if and only if the entire cohomology space
is the unique foliation cone and satisfies Theorem 1.1 of [1] trivially. Thus, we
assume that neither M nor M’ is a product. Claim 2 also allows us to assume
that neither O(M) nor O(M’) are empty.

Since O(M’) is open in the vector space H'(M’), Claim 2 implies that the
linear map
p: HY (M) — H' (M)

is surjective. If Theorem 1.1 holds on M’, we can use this surjection to pull
the cone structure back to H'(M) and use Claim 2 to verify that Theorem 1.1
holds on M . For the converse, suppose the theorem holds on M. If C ¢ H'(M)
is a foliation cone, the fact that it is neither empty nor the entire vector space
implies that it is defined by a finite set of nontrivial linear inequalities 6; > 0,
1 <i<gq. By Claim 3, ¢7 C C, hence 6;|¢7 > 0 and this implies that 0¢|€T~E 0.
By Claim 1, the linear functionals 6; pass to nontrivial linear functionals 6; on
H L(M"). The convex, polyhedral cone C’' defined by the linear inequalities
0; > 0 is precisely the image of C under ¢ and has C as its entire pre-image.
By Claim 2, Theorem 1.1 follows easily for M’. ad
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