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The goal of [1, Section 3] was to prove that Theorem 1.1 (the main result of the
paper) holds for arbitrary sutured, depth–one foliated manifolds M provided
that it holds for completely reduced ones such that ∂τM has no toral or annular
components. This was essential for the application of the Handel–Miller theory
in Section 5. The proof was by induction on the cardinality r of a maximal
reducing family {T1, . . . , Tr} for (M, ∂τM) [1, Definition 3.2]. This number will
be called the “reducing rank”.

Lemma 1 At each step of the induction, no generality is lost by assuming

that each component of ∂τM is neither a torus nor an annulus.

This is essentially Lemma 3.6 of [1] and was proven by pointing out that, in
either case, a small perturbation makes F transverse to the toral or annular
component N of ∂τM and does not increase the reducing rank. In the case
that N is a torus, this simply makes N a component of ∂⋔M without changing
the foliated cohomology class. There is no problem here as the resulting foli-
ated manifold remains tautly foliated and sutured. In the case of an annulus,
however, the resulting foliation is not taut and (M, γ) = (M, ∂⋔M) does not
satisfy the definition of a sutured manifold. The correct strategy for avoiding
annular components of ∂τM depends on a strengthening of Lemma 3.5 of [1].
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Recall that, in the statement of Lemma 3.5, a connected manifold M ′ is ob-
tained from M by excising the interior of a normal neighborhood

N(T ) = T × [−1, 1]

of a reducing surface T ⊂ M , T being a properly imbedded torus or annulus.
When T is an annulus, it is required that one component of ∂T lie on an
inwardly oriented component of ∂τM , the other on an outwardly oriented one.
The strengthened version of Lemma 3.5 follows.

Lemma 2 If M ′ is connected, the conclusion of Theorem 1.1 holds for M ′ if

and only if it holds for M .

The “only if” part of this lemma is the content of [1, Lemma 3.5]. The proof
was omitted, but here we will give the complete proof of Lemma 2. First we
use it as follows.

Proof of Lemma 1 The only problem is in the case that a component N
of ∂τM is an annulus. In this case, N is flanked by two annular sutures
(components of ∂⋔M ) on which F induces the foliation by spirals. Gluing
these together so as to match the foliations produces a tautly foliated, sutured
manifold (M∗,F∗), having a toral component of ∂τM

∗ and one new properly
imbedded annular reducing surface Tr+1 . The maximal reducing family is now
{T1, . . . , Tr, Tr+1}. Furthermore, (M,F) is obtained from (M∗,F∗) by remov-
ing an open normal neighborhood of Tr+1 . By Lemma 2, Theorem 1.1 will
hold for M if it holds for M∗ . If we perturb F∗ to be transverse to the new
toral component of ∂τM

∗ , the annulus Tr+1 is no longer a reducing surface.
Any of the Tj , 1 ≤ j ≤ r , with one boundary on N will no longer be a re-
ducing surface, and no additional reducing surfaces will have been introduced.
Hence, the maximal reducing family in the new foliated manifold is a (possibly
proper) subset of {T1, . . . , Tr}, but the tangential boundary has one less annu-
lar component. Finitely many repetitions of this procedure removes all annular
components but does not affect the induction on the reducing rank.

The proof of Lemma 2 will use the Mayer–Vietoris sequence

H1(M ; R)
i
−→ H1(M ′; R) ⊕ H1(N(T ); R)

j
−→ H1(N−; R) ⊕ H1(N+; R), (∗)

where

N− = T × [−1,−1/2]

N+ = T × [1/2, 1].
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Denote by O(M) and O(M ′) the open sets of foliated classes in H1(M ; R) and
H1(M ′; R) respectively. Hereafter, we will omit the coefficient field R from the
notation for homology and cohomology.

Claim 1 The Poincaré dual [αT ] of [T ] ∈ H2(M, ∂M) spans ker i = ker ϕ,

where ϕ : H1(M) → H1(M ′) is the restriction map.

Proof Examining the degree 0 terms of the Mayer–Vietoris sequence reveals
that i has 1–dimensional kernel. The Poincaré dual of [T ] is represented by a
closed 1–form αT , chosen to have compact support in T × (−1/2, 1/2). Since
T does not separate M , 0 6= [αT ] ∈ H1(M ; R). Since T does separate N(T ),
(0, 0) = ([αT |M

′], [αT |N(T )]) and the assertion for ker i follows. If

p : H1(M ′; ) ⊕ H1(N(T ); ) → H1(M ′; )

is projection onto the first summand, we write ϕ = p ◦ i and prove that p is
one–to–one on im i. By exactness of (∗), im i = ker j , so an element of im i
annihilated by p must be of the form (0, [η]), where

0 = j(0, [η]) = (−[η|N+],−[η|N−]).

Since the inclusions N± →֒ N(T ) are homotopy equivalences, [η] = 0.

Claim 2 For ϕ : H1(M) → H1(M ′) as above,

ϕ(O(M)) = O(M ′)

ϕ−1(O(M ′)) = O(M).

Proof If [ω] ∈ O(M), we assume that ω is a foliated form and let F be
the corresponding foliation. By a theorem of Roussarie and Thurston [4, 5, 2],
an isotopy moves T × {±1} to a position everywhere transverse to F (fixing
∂T ×{±1} in the case that T is an annulus). Thus, [ω|M ′] = ϕ[ω] is a foliated
class.

Now let [ω′] ∈ O(M ′), where ω′ is a foliated form. Let F ′ be the foliation
defined by ω′ . Since T+ = T × {1} and T− = T × {−1} are homologous in
M ′ , we see that the forms ω′|T± induce cohomologous forms on T . If T is
an annulus, the foliations F|T+ and F|T− are either both product foliations
or both foliations by spirals. In either case, F ′ extends across N × [−1, 1] to
provide a taut foliation of M with foliated class [ω] such that ϕ[ω] = [ω′]. In the
case that T is a torus, the theorem of Laudenbach and Blank [3] implies that,
after an isotopy in M ′ supported near T± , F ′ again extends across N × [−1, 1]
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and provides the foliated class [ω] such that ϕ[ω] = [ω′]. Together with the
previous paragraph, this proves that

ϕ(O(M)) = O(M ′)

O(M) ⊆ ϕ−1(O(M ′)).

Finally we must show that, if ϕ[ω] = [ω′] ∈ O(M ′), then [ω] ∈ O(M). Write
i[ω] = ([ω′], [η]) and choose the representative form ω′ to be foliated. After
an isotopy, we can also assume that T × {1} is transverse to ω′ . Exactness of
the sequence (∗) implies that ω′ and η restrict to cohomologous forms on N± .
Replacing η with a cohomologous form η + df , we can assume without loss
of generality that η|N+ = ω′|N+ . By an isotopy within N(T ), we compress
N(T ) into a neighborhood of N+ where η is nonsingular, keeping N+ itself
pointwise fixed and carrying T ×{−1} to a position transverse to η . Reversing
this isotopy, we see that no generality is lost in assuming that η is a foliated
form on N(T ). As above, there is an isotopy of η , supported in a neighborhood
of N− in N(T ), to a form η′ agreeing with ω′ on N± . Then ω′ and η′ assemble
to a foliated form ω̃ on M and

i([ω̃]) = ([ω′], [η′]) = i([ω]).

By Claim 1, [ω] = [ω̃] + c[αT ], where c ∈ R and the class [αT ] is Poincaré dual
to [T ] = [T × {−1}]. Since ω̃ is transverse to T × {−1}, we can choose αT to
be compactly supported near T × {−1} and to vanish identically on a vector
field v (on M r∂τM ) such that ω̃(v) > 0 everywhere. That is, the closed form
ω̂ = ω̃ + cαT is nonsingular. Also, αT is bounded, implying that ω̂ also blows
up nicely at ∂τM and [ω] = [ω̂] is a foliated class.

Let ℓT ⊂ H1(M) be the one–dimensional subspace spanned by the class [αT ].

Claim 3 If U is a connected component of O(M), then ℓT ⊂ U .

Proof Indeed, let ω be a foliated form representing an element of U . As in
the previous proof, αT can be chosen to vanish identically on a vector field v
such that ω(v) > 0 everywhere. Thus, for each c[αt] ∈ ℓT , the line segment

t[ω] + (1 − t)c[αT ], 0 ≤ t ≤ 1,

connects c[αT ] to [ω] and lies in U for t > 0.

Proof of Lemma 2 First we eliminate trivial cases. By Claim 2, 0 ∈ O(M)
if and only if 0 ∈ O(M ′). By [1, Proposition 3.7], 0 is a foliated class if and
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only if the manifold is a product S × I of a compact surface S and a compact
interval I . In turn, this is the case if and only if the entire cohomology space
is the unique foliation cone and satisfies Theorem 1.1 of [1] trivially. Thus, we
assume that neither M nor M ′ is a product. Claim 2 also allows us to assume
that neither O(M) nor O(M ′) are empty.

Since O(M ′) is open in the vector space H1(M ′), Claim 2 implies that the
linear map

ϕ : H1(M) → H1(M ′)

is surjective. If Theorem 1.1 holds on M ′ , we can use this surjection to pull
the cone structure back to H1(M) and use Claim 2 to verify that Theorem 1.1
holds on M . For the converse, suppose the theorem holds on M . If C ⊂ H1(M)
is a foliation cone, the fact that it is neither empty nor the entire vector space
implies that it is defined by a finite set of nontrivial linear inequalities θi ≥ 0,
1 ≤ i ≤ q . By Claim 3, ℓT ⊂ C , hence θi|ℓT ≥ 0 and this implies that θi|ℓT ≡ 0.
By Claim 1, the linear functionals θi pass to nontrivial linear functionals θ̃i on
H1(M ′). The convex, polyhedral cone C′ defined by the linear inequalities
θ̃i ≥ 0 is precisely the image of C under ϕ and has C as its entire pre–image.
By Claim 2, Theorem 1.1 follows easily for M ′ .
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