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Introduction

This volume is a result of the conference on higher local fields in Münster, August 29–
September 5, 1999, which was supported by SFB 478 “Geometrische Strukturen in
der Mathematik”. The conference was organized by I. Fesenko and F. Lorenz. We
gratefully acknowledge great hospitality and tremendous efforts of Falko Lorenz which
made the conference vibrant.

Class field theory as developed in the first half of this century is a fruitful generaliza-
tion and extension of Gauss reciprocity law; it describes abelian extensions of number
fields in terms of objects associated to these fields. Since its construction, one of the
important themes of number theory was its generalizations to other classes of fields or
to non-abelian extensions.

In modern number theory one encounters very naturally schemes of finite type over
Z. A very interesting direction of generalization of class field theory is to develop a
theory for higher dimensional fields — finitely generated fields over their prime subfields
(or schemes of finite type over Z in the geometric language). Work in this subject,
higher (dimensional) class field theory, was initiated by A.N. Parshin and K. Kato
independently about twenty five years ago. For an introduction into several global
aspects of the theory see W. Raskind’s review on abelian class field theory of arithmetic
schemes.

One of the first ideas in higher class field theory is to work with the Milnor K -groups
instead of the multiplicative group in the classical theory. It is one of the principles of
class field theory for number fields to construct the reciprocity map by some blending of
class field theories for local fields. Somewhat similarly, higher dimensional class field
theory is obtained as a blending of higher dimensional local class field theories, which
treat abelian extensions of higher local fields. In this way, the higher local fields were
introduced in mathematics.

A precise definition of higher local fields will be given in section 1 of Part I; here
we give an example. A complete discrete valuation field K whose residue field is
isomorphic to a usual local field with finite residue field is called a two-dimensional
local field. For example, fields Fp((T ))((S)), Qp((S)) and

Qp{{T}} =

{
+∞∑
−∞

aiT
i : ai ∈ Qp, inf vp(ai) > −∞, lim

i→−∞
vp(ai) = +∞

}
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iv Invitation to higher local fields

( vp is the p-adic valuation map) are two-dimensional local fields. Whereas the first
two fields above can be viewed as generalizations of functional local fields, the latter
field comes in sight as an arithmetical generalization of Qp .

In the classical local case, where K is a complete discrete valuation field with finite
residue field, the Galois group Gal(Kab/K) of the maximal abelian extension of K is
approximated by the multiplicative group K∗; and the reciprocity map

K∗ −→ Gal(Kab/K)

is close to an isomorphism (it induces an isomorphism between the group K∗/NL/KL∗

and Gal(L/K) for a finite abelian extension L/K , and it is injective with everywhere
dense image). For two-dimensional local fields K as above, instead of the multiplicative
group K∗, the Milnor K -group K2(K) (cf. Some Conventions and section 2 of Part I)
plays an important role. For these fields there is a reciprocity map

K2(K) −→ Gal(Kab/K)

which is approximately an isomorphism (it induces an isomorphism between the group
K2(K)/NL/KK2(L) and Gal(L/K) for a finite abelian extension L/K , and it has
everywhere dense image; but it is not injective: the quotient of K2(K) by the kernel of
the reciprocity map can be described in terms of topological generators, see section 6
Part I).

Similar statements hold in the general case of an n-dimensional local field where
one works with the Milnor Kn-groups and their quotients (sections 5,10,11 of Part I);
and even class field theory of more general classes of complete discrete valuation fields
can be reasonably developed (sections 13,16 of Part I).

Since K1(K) = K∗, higher local class field theory contains the classical local class
field theory as its one-dimensional version.

The aim of this book is to provide an introduction to higher local fields and render
the main ideas of this theory. The book grew as an extended version of talks given at the
conference in Münster. Its expository style aims to introduce the reader into the subject
and explain main ideas, methods and constructions (sometimes omitting details). The
contributors applied essential efforts to explain the most important features of their
subjects.

Hilbert’s words in Zahlbericht that precious treasures are hidden in the theory of
abelian extensions are still up-to-date. We hope that this volume, as the first collection
of main strands of higher local field theory, will be useful as an introduction and guide
on the subject.

The first part presents the theory of higher local fields, very often in the more
general setting of complete discrete valuation fields.

Section 1, written by I. Zhukov, introduces higher local fields and topologies on their
additive and multiplicative groups. Subsection 1.1 contains all basic definitions and is
referred to in many other sections of the volume. The topologies are defined in such a
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way that the topology of the residue field is taken into account; the price one pays is
that multiplication is not continuous in general, however it is sequentially continuous
which allows one to expand elements into convergent power series or products.

Section 2, written by O. Izhboldin, is a short review of the Milnor K -groups and
Galois cohomology groups. It discusses p-torsion and cotorsion of the groups Kn(F )
and Kt

n(F ) = Kn(F )/∩l>1 lKn(F ), an analogue of Satz 90 for the groups Kn(F ) and
Kt
n(F ), and computation of Hn+1

m (F ) where F is either the rational function field in
one variable F = k(t) or the formal power series F = k((t)).

Appendix to Section 2, written by M. Kurihara and I. Fesenko, contains some
basic definitions and properties of differential forms and Kato’s cohomology groups
in characteristic p and a sketch of the proof of Bloch–Kato–Gabber’s theorem which
describes the differential symbol from the Milnor K -group Kn(F )/p of a field F of
positive characteristic p to the differential module Ωn

F .
Section 4, written by J. Nakamura, presents main steps of the proof of Bloch–Kato’s

theorem which states that the norm residue homomorphism

Kq(K)/m→ Hq(K,Z/m (q))

is an isomorphism for a henselian discrete valuation field K of characteristic 0 with
residue field of positive characteristic. This theorem and its proof allows one to simplify
Kato’s original approach to higher local class field theory.

Section 5, written by M. Kurihara, is a presentation of main ingredients of Kato’s
higher local class field theory.

Section 6, written by I. Fesenko, is concerned with certain topologies on the Milnor
K -groups of higher local fields K which are related to the topology on the multiplicative
group; their properties are discussed and the structure of the quotient of the Milnor
K -groups modulo the intersection of all neighbourhoods of zero is described. The latter
quotient is called a topological Milnor K -group; it was first introduced by Parshin.

Section 7, written by I. Fesenko, describes Parshin’s higher local class field theory
in characteristic p, which is relatively easy in comparison with the cohomological
approach.

Section 8, written by S. Vostokov, is a review of known approaches to explicit
formulas for the (wild) Hilbert symbol not only in the one-dimensional case but in
the higher dimensional case as well. One of them, Vostokov’s explicit formula, is of
importance for the study of topological Milnor K -groups in section 6 and the existence
theorem in section 10.

Section 9, written by M. Kurihara, introduces his exponential homomorphism for
a complete discrete valuation field of characteristic zero, which relates differential
forms and the Milnor K -groups of the field, thus helping one to get an additional
information on the structure of the latter. An application to explicit formulas is discussed
in subsection 9.2.

Section 10, written by I. Fesenko, presents his explicit method to construct higher
local class field theory by using topological K -groups and a generalization of Neukirch–
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Hazewinkel’s axiomatic approaches to class field theory. Subsection 10.2 presents
another simple approach to class field theory in the characteristic p case. The case
of characteristic 0 is sketched using a concept of Artin–Schreir trees of extensions (as
those extensions in characteristic 0 which are twinkles of the characteristic p world).
The existence theorem is discussed in subsection 10.5, being built upon the results of
sections 6 and 8.

Section 11, written by M. Spieß, provides a glimpse of Koya’s and his approach
to the higher local reciprocity map as a generalization of the classical class formations
approach to the level of complexes of Galois modules.

Section 12, written by M. Kurihara, sketches his classification of complete discrete
valuation fields K of characteristic 0 with residue field of characteristic p into two
classes depending on the behaviour of the torsion part of a differential module. For
each of these classes, subsection 12.1 characterizes the quotient filtration of the Milnor
K -groups of K , for all sufficiently large members of the filtration, as a quotient of
differential modules. For a higher local field the previous result and higher local class
field theory imply certain restrictions on types of cyclic extensions of the field of
sufficiently large degree. This is described in 12.2.

Section 13, written by M. Kurihara, describes his theory of cyclic p-extensions of an
absolutely unramified complete discrete valuation field K with arbitrary residue field
of characteristic p. In this theory a homomorphism is constructed from the p-part of
the group of characters of K to Witt vectors over its residue field. This homomorphism
satisfies some important properties listed in the section.

Section 14, written by I. Zhukov, presents some explicit methods of constructing
abelian extensions of complete discrete valuation fields. His approach to explicit equa-
tions of a cyclic extension of degree pn which contains a given cyclic extension of
degree p is explained.

Section 15, written by J. Nakamura, contains a list of all known results on the
quotient filtration on the Milnor K -groups (in terms of differential forms of the residue
field) of a complete discrete valuation field. It discusses his recent study of the case of
a tamely ramified field of characteristic 0 with residue field of characteristic p by using
the exponential map of section 9 and a syntomic complex.

Section 16, written by I. Fesenko, is devoted to his generalization of one-dimensional
class field theory to a description of abelian totally ramified p-extensions of a complete
discrete valuation field with arbitrary non separably- p-closed residue field. In particular,
subsection 16.3 shows that two such extensions coincide if and only if their norm groups
coincide. An illustration to the theory of section 13 is given in subsection 16.4.

Section 17, written by I. Zhukov, is a review of his recent approach to ramification
theory of a complete discrete valuation field with residue field whose p-basis consists
of at most one element. One of important ingredients of the theory is Epp’s theorem on
elimination of wild ramification (subsection 17.1). New lower and upper filtrations are
defined (so that cyclic extensions of degree p may have non-integer ramification breaks,
see examples in subsection 17.2). One of the advantages of this theory is its compatibility
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with the reciprocity map. A refinement of the filtration for two-dimensional local fields
which is compatible with the reciprocity map is discussed.

Section 18, written by L. Spriano, presents ramification theory of monogenic exten-
sions of complete discrete valuation fields; his recent study demonstrates that in this case
there is a satisfactory theory if one systematically uses a generalization of the function
i and not s (see subsection 18.0 for definitions). Relations to Kato’s conductor are
discussed in 18.2 and 18.3.

These sections 17 and 18 can be viewed as the rudiments of higher ramification
theory; there are several other approaches. Still, there is no satisfactory general ramifi-
cation theory for complete discrete valuation fields in the imperfect residue field case;
to construct such a theory is a challenging problem.

Without attempting to list all links between the sections we just mention several
paths (2 means Section 2 and Appendix to Section 2)

1→ 6→ 7 (leading to Parshin’s approach in positive characteristic),

2→ 4→ 5→ 11 (leading to Kato’s cohomological description

of the reciprocity map and generalized class formations),

8.3→ 6→ 10 (explicit construction of the reciprocity map),

5→ 12→ 13→ 15, (structure of the Milnor K-groups of the fields

1→ 10→ 14, 16 and more explicit study of abelian extensions),

8, 9 (explicit formulas for the Hilbert norm symbol

and its generalizations),

1→ 10→ 17, 18 (aspects of higher ramification theory).

A special place in this volume (between Part I and Part II) is occupied by the work of
K. Kato on the existence theorem in higher local class field theory which was produced
in 1980 as an IHES preprint and has never been published. We are grateful to K. Kato
for his permission to include this work in the volume. In it, viewing higher local fields
as ring objects in the category of iterated pro-ind-objects, a definition of open subgroups
in the Milnor K -groups of the fields is given. The self-duality of the additive group of
a higher local field is proved. By studying norm groups of cohomological objects and
using cohomological approach to higher local class field theory the existence theorem
is proved. An alternative approach to the description of norm subgroups of Galois
extensions of higher local fields and the existence theorem is contained in sections 6
and 10.

The second part is concerned with various applications and connections of higher
local fields with several other areas.

Section 1, written by A.N. Parshin, describes some first steps in extending Tate–
Iwasawa’s analytic method to define an L-function in higher dimensions; historically
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the latter problem was one of the stimuli of the work on higher class field theory. For
generalizing this method the author advocates the usefulness of the classical Riemann–
Hecke approach (subsection 1.1), his adelic complexes (subsection 1.2.2) together
with his generalization of Krichever’s correspondence (subsection 1.2.1). He analyzes
dimension 1 types of functions in subsection 1.3 and discusses properties of the lattice
of commensurable classes of subspaces in the adelic space associated to a divisor on an
algebraic surface in subsection 1.4.

Section 2, written by D. Osipov, is a review of his recent work on adelic constructions
of direct images of differentials and symbols in the two-dimensional case in the relative
situation. In particular, reciprocity laws for relative residues of differentials and symbols
are introduced and applied to a construction of the Gysin map for Chow groups.

Section 3, written by A.N. Parshin, presents his theory of Bruhat–Tits buildings over
higher dimensional local fields. The theory is illustrated with the buildings for PGL(2)
and PGL(3) for one- and two-dimensional local fields.

Section 4, written by E.-U. Gekeler, provides a survey of relations between Drinfeld
modules and higher dimensional fields of positive characteristic. The main new result
stated is the expression of vanishing orders of certain modular forms through partial
zeta values.

Section 5, written by M. Kapranov, sketches his recent approach to elements of
harmonic analysis on algebraic groups over functional two-dimensional local fields.
For a two-dimensional local field subsection 5.4 introduces a Hecke algebra which
is formed by operators which integrate pro-locally-constant complex functions over a
non-compact domain.

Section 6, written by L. Herr, is a survey of his recent study of applications of
Fontaine’s theory of p-adic representations of local fields ( Φ− Γ-modules) to Galois
cohomology of local fields and explicit formulas for the Hilbert symbol (subsections 6.4–
6.6). The two Greek letters lead to two-dimensional local objects (like OE(K) introduced
in subsection 6.3).

Section 7, written by I. Efrat, introduces recent advances in the zero-dimensional
anabelian geometry, that is a characterization of fields by means of their absolute
Galois group (for finitely generated fields and for higher local fields). His method
of construction of henselian valuations on fields which satisfy some K -theoretical
properties is presented in subsection 10.3, and applications to an algebraic proof of the
local correspondence part of Pop’s theorem and to higher local fields are given.

Section 8, written by A. Zheglov, presents his study of two dimensional local skew
fields which was initiated by A.N. Parshin. If the skew field has one-dimensional residue
field which is in its centre, then one is naturally led to the study of automorphisms of
the residue field which are associated to a local parameter of the skew field. Results on
such automorphisms are described in subsections 8.2 and 8.3.

Section 9, written by I. Fesenko, is an exposition of his recent work on noncommu-
tative local reciprocity maps for totally ramified Galois extensions with arithmetically
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profinite group (for instance p-adic Lie extensions). These maps in general are not
homomorphisms but Galois cycles; a description of their image and kernel is included.

Section 10, written by B. Erez, is a concise survey of Galois module theory links
with class field theory; it lists several open problems.

The theory of higher local fields has several interesting aspects and applications
which are not contained in this volume. One of them is the work of Kato on applica-
tions of an explicit formula for the reciprocity map in higher local fields to calculations
of special values of the L-function of a modular form. There is some interest in
two-dimensional local fields (especially of the functional type) in certain parts of math-
ematical physics, infinite group theory and topology where formal power series objects
play a central role.

Prerequisites for most sections in the first part of the book are small: local fields and
local class field theory, for instance, as presented in Serre’s “Local Fields”, Iwasawa’s
“Local Class Field Theory” or Fesenko–Vostokov’s “Local Fields and Their Extensions”
(the first source contains a cohomological approach whereas the last two are cohomology
free) and some basic knowledge of Milnor K -theory of discrete valuation fields (for
instance Chapter IX of the latter book). See also Some Conventions and Appendix to
Section 2 of Part I where we explain several notions useful for reading Part I.

We thank P. Schneider for his support of the conference and work on this volume.
The volume is typed using a modified version of osudeG style (written by Walter
Neumann and Larry Siebenmann and available from the public domain of Department
of Mathematics of Ohio State University, pub/osutex); thanks are due to Larry for his
advice on aspects of this style and to both Walter and Larry for permission to use it.

Ivan Fesenko Masato Kurihara September 2000
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Some Conventions

The notation X ⊂ Y means that X is a subset of Y .
For an abelian group A written additively denote by A/m the quotient group

A/mA where mA = {ma : a ∈ A} and by mA the subgroup of elements of order
dividing m. The subgroup of torsion elements of A is denoted by TorsA.

For an algebraic closure F alg of F denote the separable closure of the field F
by F sep; let GF = Gal(F sep/F ) be the absolute Galois group of F . Often for a
GF -module M we write Hi(F,M ) instead of Hi(GF ,M ).

For a positive integer l which is prime to characteristic of F (if the latter is non-zero)
denote by µl = 〈ζl〉 the group of l th roots of unity in F sep.

If l is prime to char (F ), for m > 0 denote by Z/l(m) the GF -module µ⊗ml and
put Zl(m) = lim←− r Z/lr(m); for m < 0 put Zl(m) = Hom(Zl,Zl(−m)).

Let A be a commutative ring. The group of invertible elements of A is denoted
by A∗ . Let B be an A-algebra. Ω1

B/A denotes as usual the B-module of regular

differential forms of B over A; Ωn
B/A = ∧nΩ1

B/A . In particular, Ωn
A = Ωn

A/Z1A
where 1A is the identity element of A with respect to multiplication. For more on
differential modules see subsection A1 of the appendix to the section 2 in the first part.

Let Kn(k) = KM
n (k) be the Milnor K -group of a field k (for the definition see

subsection 2.0 in the first part).
For a complete discrete valuation field K denote by O = OK its ring of integers,

by M = MK the maximal ideal of O and by k = kK its residue field. If k is of
characteristic p, denote by R the set of Teichmüller representatives (or multiplicative
representatives) in O. For θ in the maximal perfect subfield of k denote by [θ] its
Teichmüller representative.

For a field k denote by W (k) the ring of Witt vectors (more precisely,Witt p-vectors
where p is a prime number) over k. Denote by Wr(k) the ring of Witt vectors of
length r over k. If char (k) = p denote by F:W (k) → W (k), F:Wr(k) → Wr(k)
the map (a0, . . . ) 7→ (ap0 , . . . ).

Denote by vK the surjective discrete valuation K∗ → Z (it is sometimes called the
normalized discrete valuation of K ). Usually π = πK denotes a prime element of K :
vK (πK ) = 1.

Denote by Kur the maximal unramified extension of K . If kK is finite, denote by
FrobK the Frobenius automorphism of Kur/K .

For a finite extension L of a complete discrete valuation field K DL/K denotes
its different.

If char (K) = 0, char (kK) = p, then K is called a field of mixed characteristic. If
char (K) = 0 = char (kK ), then K is called a field of equal characteristic.

If kK is perfect, K is called a local field.
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1. Higher dimensional local fields

Igor Zhukov

We give here basic definitions related to n-dimensional local fields. For detailed
exposition, see [P] in the equal characteristic case, [K1, §8] for the two-dimensional
case and [MZ1], [MZ2] for the general case. Several properties of the topology on the
multiplicative group are discussed in [F].

1.1. Main definitions

Suppose that we are given a surface S over a finite field of characteristic p, a curve
C ⊂ S , and a point x ∈ C such that both S and C are regular at x. Then one can

attach to these data the quotient field of the completion (̂ÔS,x)C of the localization at C

of the completion ÔS,x of the local ring OS,x of S at x. This is a two-dimensional local
field over a finite field, i.e., a complete discrete valuation field with local residue field.
More generally, an n-dimensional local field F is a complete discrete valuation field
with (n − 1)-dimensional residue field. (Finite fields are considered as 0-dimensional
local fields.)

Definition. A complete discrete valuation field K is said to have the structure of an
n-dimensional local field if there is a chain of fields K = Kn,Kn−1, . . . ,K1,K0
where Ki+1 is a complete discrete valuation field with residue field Ki and K0 is a
finite field. The field kK = Kn−1 (resp. K0 ) is said to be the first (resp. the last)
residue field of K .

Remark. Most of the properties of n-dimensional local fields do not change if one
requires that the last residue K0 is perfect rather than finite. To specify the exact
meaning of the word, K can be referred to as an n-dimensional local field over a finite
(resp. perfect) field. One can consider an n-dimensional local field over an arbitrary
field K0 as well. However, in this volume mostly the higher local fields over finite
fields are considered.
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6 I. Zhukov

Examples. 1. Fq((X1)) . . . ((Xn)). 2. k((X1)) . . . ((Xn−1)), k a finite extension of
Qp .

3. For a complete discrete valuation field F let

K = F {{T}} =

{+∞∑
−∞

aiT
i : ai ∈ F, inf vF (ai) > −∞, lim

i→−∞
vF (ai) = +∞

}
.

Define vK (
∑
aiT

i) = min vF (ai). Then K is a complete discrete valuation field with
residue field kF ((t)).

Hence for a local field k the fields

k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), 0 6 m 6 n− 1

are n-dimensional local fields (they are called standard fields).

Remark. K ((X)) {{Y }} is isomorphic to K ((Y )) ((X)).

Definition. An n-tuple of elements t1, . . . , tn ∈ K is called a system of local param-
eters of K , if tn is a prime element of Kn, tn−1 is a unit in OK but its residue in
Kn−1 is a prime element of Kn−1, and so on.

For example, for K = k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), a convenient system
of local parameter is T1, . . . , Tm, π, Tm+2, . . . , Tn , where π is a prime element of k.

Consider the maximal m such that char (Km) = p; we have 0 6 m 6 n. Thus,
there are n + 1 types of n-dimensional local fields: fields of characteristic p and fields
with char (Km+1) = 0, char (Km) = p, 0 6 m 6 n−1. Thus, the mixed characteristic
case is the case m = n− 1.

Suppose that char (kK) = p, i.e., the above m equals either n− 1 or n. Then the
set of Teichmüller representatives R in OK is a field isomorphic to K0.

Classification Theorem. Let K be an n-dimensional local field. Then
(1) K is isomorphic to Fq((X1)) . . . ((Xn)) if char (K) = p;
(2) K is isomorphic to k((X1)) . . . ((Xn−1)), k is a local field, if char (K1) = 0;
(3) K is a finite extension of a standard field k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn))

and there is a finite extension of K which is a standard field if char (Km+1) = 0,
char (Km) = p.

Proof. In the equal characteristic case the statements follow from the well known
classification theorem for complete discrete valuation fields of equal characteristic. In
the mixed characteristic case let k0 be the fraction field of W (Fq) and let T1, ..., Tn−1 , π
be a system of local parameters of K . Put

K ′ = k0 {{T1}} . . . {{Tn−1}} .
Then K ′ is an absolutely unramified complete discrete valuation field, and the (first)
residue fields of K ′ and K coincide. Therefore, K can be viewed as a finite extension
of K ′ by [FV, II.5.6].
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Part I. Section 1. Higher dimensional local fields 7

Alternatively, let t1, . . . , tn−1 be any liftings of a system of local parameters of kK .
Using the canonical lifting ht1,...,tn−1 defined below, one can construct an embedding
K ′ ↪→ K which identifies Ti with ti .

To prove the last assertion of the theorem, one can use Epp’s theorem on elimination
of wild ramification (see 17.1) which asserts that there is a finite extension l/k0 such
that e

(
lK/lK ′

)
= 1. Then lK ′ is standard and lK is standard, so K is a subfield of

lK . See [Z] or [KZ] for details and a stronger statement.

Definition. The lexicographic order of Zn : i = (i1, . . . , in) 6 j = (j1, . . . , jn) if and
only if

il 6 jl, il+1 = jl+1, . . . , in = jn for some l 6 n .
Introduce v = (v1, . . . , vn):K∗ → Zn as vn = vKn , vn−1(α) = vKn−1 (αn−1)

where αn−1 is the residue of αt−vn(α)
n in Kn−1, and so on. The map v is a valuation;

this is a so called discrete valuation of rank n. Observe that for n > 1 the valuation
v does depend on the choice of t2, . . . , tn . However, all the valuations obtained this
way are in the same class of equivalent valuations.

Now we define several objects which do not depend on the choice of a system of
local parameters.

Definition.
OK = {α ∈ K : v(α) > 0}, MK = {α ∈ K : v(α) > 0}, so OK/MK ' K0.

The group of principal units of K with respect to the valuation v is VK = 1 +MK .

Definition.

P (il, . . . , in) = PK (il, . . . , in) = {α ∈ K : (vl(α), . . . , vn(α)) > (il, . . . , in)}.

In particular, OK = P
(
0, . . . , 0︸ ︷︷ ︸

n

)
, MK = P

(
1, 0, . . . , 0︸ ︷︷ ︸

n−1

)
, whereas OK = P (0),

MK = P (1). Note that if n > 1, then

∩iM i
K = P

(
1, 0, . . . , 0︸ ︷︷ ︸

n−2

)
,

since t2 = ti−1
1 (t2/t

i−1
1 ).

Lemma. The set of all non-zero ideals of OK consists of all

{P (il, . . . , in) : (il, . . . , in) > (0, . . . , 0) , 1 6 l 6 n}.

The ring OK is not Noetherian for n > 1.
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8 I. Zhukov

Proof. Let J be a non-zero ideal of OK . Put in = min{vn(α) : α ∈ J}. If
J = P (in), then we are done. Otherwise, it is clear that

in−1 := inf{vn−1(α) : α ∈ J, vn(α) = in} > −∞.
If in = 0, then obviously in−1 > 0. Continuing this way, we construct (il, . . . , in) >
(0, . . . , 0), where either l = 1 or

il−1 = inf{vl−1(α) : α ∈ J, vn(α) = in, . . . , vl(α) = il} = −∞.
In both cases it is clear that J = P (il, . . . , in).

The second statement is immediate from P (0, 1) ⊂ P (−1, 1) ⊂ P (−2, 1) . . . .

For more on ideals in OK see subsection 3.0 of Part II.

1.2. Extensions

Let L/K be a finite extension. If K is an n-dimensional local field, then so is L.

Definition. Let t1, . . . , tn be a system of local parameters of K and let t
′

1, . . . , t
′

n

be a system of local parameters of L. Let v,v′ be the corresponding valuations. Put

E(L|K) :=
(
v
′

j(ti)
)
i,j

=


e1 0 . . . 0
. . . e2 . . . 0
. . . . . . . . . 0
. . . . . . . . . en

 ,

where ei = ei(L|K) = e(Li|Ki), i = 1, . . . , n. Then ei do not depend on the choice
of parameters, and |L : K| = f (L|K)

∏n
i=1 ei(L|K), where f (L|K) = |L0 : K0| .

The expression “unramified extension” can be used for extensions L/K with
en(L|K) = 1 and Ln−1/Kn−1 separable. It can be also used in a narrower sense,
namely, for extensions L/K with

∏n
i=1 ei(L|K) = 1. To avoid ambiguity, sometimes

one speaks of a “semiramified extension” in the former case and a “purely unramified
extension” in the latter case.

1.3. Topology on K

Consider an example of n-dimensional local field

K = k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)).

Expanding elements of k into power series in π with coefficients in Rk , one can write
elements of K as formal power series in n parameters. To make them convergent power
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Part I. Section 1. Higher dimensional local fields 9

series we should introduce a topology in K which takes into account topologies of the
residue fields. We do not make K a topological field this way, since multiplication is
only sequentially continuous in this topology. However, for class field theory sequential
continuity seems to be more important than continuity.

1.3.1.

Definition.
(a) If F has a topology, consider the following topology on K = F ((X)). For a

sequence of neighbourhoods of zero (Ui)i∈Z in F , Ui = F for i � 0, denote
U{Ui} =

{∑
aiX

i : ai ∈ Ui
}

. Then all U{Ui} constitute a base of open neigh-

bourhoods of 0 in F ((X)). In particular, a sequence u(n) =
∑
a(n)
i Xi tends to 0

if and only if there is an integer m such that u(n) ∈ XmF [[X]] for all n and the
sequences a(n)

i tend to 0 for every i.

Starting with the discrete topology on the last residue field, this construction is used
to obtain a well-defined topology on an n-dimensional local field of characteristic
p.

(b) Let Kn be of mixed characteristic. Choose a system of local parameters t1, . . . , tn
= π of K . The choice of t1, . . . , tn−1 determines a canonical lifting

h = ht1,...,tn−1 : Kn−1 → OK
(see below). Let (Ui)i∈Z be a system of neighbourhoods of zero in Kn−1,
Ui = Kn−1 for i� 0. Take the system of all U{Ui} =

{∑
h(ai)πi, ai ∈ Ui

}
as

a base of open neighbourhoods of 0 in K . This topology is well defined.
(c) In the case char (K) = char (Kn−1) = 0 we apply constructions (a) and (b) to

obtain a topology on K which depends on the choice of the coefficient subfield of
Kn−1 in OK .

The definition of the canonical lifting ht1,...,tn−1 is rather complicated. In fact, it is
worthwhile to define it for any (n − 1)-tuple (t1, . . . , tn−1) such that vi(ti) > 0 and
vj(ti) = 0 for i < j 6 n. We shall give an outline of this construction, and the details
can be found in [MZ1, §1].

Let F = K0((t1)) . . . ((tn−1)) ⊂ Kn−1. By a lifting we mean a map h : F → OK
such that the residue of h(a) coincides with a for any a ∈ F .

Step 1. An auxiliary lifting Ht1,...,tn−1 is uniquely determined by the condition

Ht1,...,tn−1

(p−1∑
i1=0

· · ·
p−1∑
in−1=0

t1
i1 . . . tn−1

in−1api1,...,in−1

)

=
p−1∑
i1=0

· · ·
p−1∑
in−1=0

t
i1
1 . . . t

in−1
n−1 (Ht1,...,tn−1(ai1,...,in−1 ))p.
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10 I. Zhukov

Step 2. Let k0 be the fraction field of W (K0). Then K ′ = k0{{T1}} . . . {{Tn−1}}
is an n-dimensional local field with the residue field F . Comparing the lifting H =
HT1,...,Tn−1 with the lifting h defined by

h
( ∑
r∈Zn−1

θrT1
r1 . . . Tn−1

rn−1
)

=
∑

r∈Zn−1

[θr]T r1
1 . . . T

rn−1
n−1 ,

we introduce the maps λi : F −→ F by the formula

h(a) = H(a) + pH(λ1(a)) + p2H(λ2(a)) + . . .

Step 3. Introduce ht1,...,tn−1 : F −→ OK by the formula

ht1,...,tn−1 (a) = Ht1,...,tn−1 (a) + pHt1,...,tn−1 (λ1(a)) + p2Ht1,...,tn−1(λ2(a)) + . . . .

Remarks. 1. Observe that for a standard field K = k {{T1}} . . . {{Tn−1}} , we have

hT1,...,Tn−1 :
∑

θiT1
i1 . . . Tn−1

in−1 7→
∑

[θi]T
i1
1 . . . T

in−1
n−1 ,

where Tj is the residue of Tj in kK , j = 1, . . . , n− 1.
2. The idea of the above construction is to find a field k0{{t1}} . . . {{tn−1}} isomor-

phic to K ′ inside K without a priori given topologies on K and K ′. More precisely,
let t1, . . . , tn−1 be as above. For a =

∑∞
−∞ pih(ai) ∈ K ′ , let

ft1,...,tn−1 (a) =
∞∑
−∞

piht1,...,tn−1 (ai)

Then ft1,...,tn−1 : K ′ −→ K is an embedding of n-dimensional complete fields such
that

ft1,...,tn−1(Tj ) = tj , j = 1, . . . , n− 1

(see [MZ1, Prop. 1.1]).
3. In the case of a standard mixed characteristic field the following alternative

construction of the same topology is very useful.
Let K = E{{X}}, where E is an (n− 1)-dimensional local field; assume that the

topology of E is already defined. Let {Vi}i∈Z be a sequence of neighbourhoods of
zero in E such that
(i) there is c ∈ Z such that PE(c) ⊂ Vi for all i ∈ Z;
(ii) for every l ∈ Z we have PE(l) ⊂ Vi for all sufficiently large i.

Put

V{Vi} =
{∑

biX
i : bi ∈ Vi

}
.

Then all the sets V{Vi} form a base of neighbourhoods of 0 in K . (This is an easy but
useful exercise in the 2-dimensional case; in general, see Lemma 1.6 in [MZ1]).

4. The formal construction of ht1,...,tn−1 works also in case char (K) = p, and
one need not consider this case separately. However, if one is interested in equal
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Part I. Section 1. Higher dimensional local fields 11

characteristic case only, all the treatment can be considerably simplified. (In fact, in
this case ht1,...,tn−1 is just the obvious embedding of F ⊂ kK into OK = kK[[tn]]. )

1.3.2. Properties.
(1) K is a topological group which is complete and separated.
(2) If n > 1, then every base of neighbourhoods of 0 is uncountable. In particular,

there are maps which are sequentially continuous but not continuous.
(3) If n > 1, multiplication in K is not continuous. In fact, UU = K for every open

subgroup U , since U ⊃ P (c) for some c and U 6⊂ P (s) for any s. However,
multiplication is sequentially continuous:

αi → α, 0 6= βi → β 6= 0 =⇒ αiβ
−1
i → αβ−1.

(4) The map K → K, α 7→ cα for c 6= 0 is a homeomorphism.
(5) For a finite extension L/K the topology of L = the topology of finite dimensional

vector spaces over K (i.e., the product topology on K |L:K| ). Using this property
one can redefine the topology first for “standard” fields

k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn))

using the canonical lifting h, and then for arbitrary fields as the topology of finite
dimensional vector spaces.

(6) For a finite extension L/K the topology of K = the topology induced from L.
Therefore, one can use the Classification Theorem and define the topology on K
as induced by that on L, where L is taken to be a standard n-dimensional local
field.

Remark. In practical work with higher local fields, both (5) and (6) enables one to use
the original definition of topology only in the simple case of a standard field.

1.3.3. About proofs. The outline of the proof of assertions in 1.3.1–1.3.2 is as follows.
(Here we concentrate on the most complicated case char (K) = 0, char (Kn−1) = p;
the case of char (K) = p is similar and easier, for details see [P]).

Step 1 (see [MZ1, §1]). Fix first n − 1 local parameters (or, more generally, any
elements t1, . . . , tn−1 ∈ K such that vi(ti) > 0 and vj(ti) = 0 for j > i ).

Temporarily fix πi ∈ K ( i ∈ Z ), vn(πi) = i, and ej ∈ PK(0), j = 1, . . . , d, so
that {ej}dj=1 is a basis of the F -linear space Kn−1. (Here F is as in 1.3.1, and α

denotes the residue of α in Kn−1. ) Let {Ui}i∈Z be a sequence of neighbourhoods of
zero in F , Ui = F for all sufficiently large i. Put

U{Ui} =
{∑
i>i0

πi ·
d∑
j=1

ejht1,...,tn−1(aij) : aij ∈ Ui, i0 ∈ Z
}
.

The collection of all such sets U{Ui} is denoted by BU .
Step 2 ([MZ1, Th. 1.1]). In parallel one proves that
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12 I. Zhukov

– the set BU has a cofinal subset which consists of subgroups of K ; thus, BU is
a base of neighbourhoods of zero of a certain topological group Kt1,...,tn−1 with the
underlying (additive) group K ;

– Kt1,...,tn−1 does not depend on the choice of {πi} and {ej};
– property (4) in 1.3.2 is valid for Kt1,...,tn−1 .
Step 3 ([MZ1, §2]). Some properties of Kt1,...,tn−1 are established, in particular,

(1) in 1.3.2, the sequential continuity of multiplication.
Step 4 ([MZ1, §3]). The independence from the choice of t1, . . . , tn−1 is proved.

We give here a short proof of some statements in Step 3.
Observe that the topology of Kt1,...,tn−1 is essentially defined as a topology of a

finite-dimensional vector space over a standard field k0{{t1}} . . . {{tn−1}}. (It will be
precisely so, if we take {πiej : 0 6 i 6 e − 1, 1 6 j 6 d} as a basis of this vector
space, where e is the absolute ramification index of K , and πi+e = pπi for any i. )
This enables one to reduce the statements to the case of a standard field K .

If K is standard, then either K = E((X)) or K = E{{X}}, where E is of smaller
dimension. Looking at expansions in X , it is easy to construct a limit of any Cauchy
sequence in K and to prove the uniqueness of it. (In the case K = E{{X}} one should
use the alternative construction of topology in Remark 3 in 1.3.1.) This proves (1) in
1.3.2.

To prove the sequential continuity of multiplication in the mixed characteristic case,
let αi → 0 and βi → 0, we shall show that αiβi → 0.

Since αi → 0, βi → 0, one can easily see that there is c ∈ Z such that vn(αi) > c,
vn(βi) > c for i > 1.

By the above remark, we may assume that K is standard, i.e., K = E{{t}}. Fix an
open subgroup U in K ; we have P (d) ⊂ U for some integer d. One can assume that
U = V{Vi} , Vi are open subgroups in E . Then there is m0 such that PE(d− c) ⊂ Vm
for m > m0. Let

αi =
∞∑
−∞

a(r)
i tr, βi =

∞∑
−∞

b(l)
i t

l, a(r)
i , b(l)

i ∈ E.

Notice that one can find an r0 such that a(r)
i ∈ PE(d − c) for r < r0 and all i.

Indeed, if this were not so, one could choose a sequence r1 > r2 > . . . such that
a

(rj )
ij

/∈ PE(d− c) for some ij . It is easy to construct a neighbourhood of zero V ′rj in

E such that PE(d− c) ⊂ V ′rj , a(rj )
ij

/∈ Vrj . Now put V ′r = E when r is distinct from
any of rj , and U ′ = V{V ′r} . Then aij /∈ U ′ , j = 1, 2, . . . The set {ij} is obviously
infinite, which contradicts the condition αi → 0.

Similarly, b(l)
i ∈ PE(d − c) for l < l0 and all i. Therefore,

αiβi ≡
m0∑
r=r0

a(r)
i tr ·

m0∑
l=l0

b(l)
i t

l mod U,
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Part I. Section 1. Higher dimensional local fields 13

and the condition a(r)
i b(l)

i → 0 for all r and l immediately implies αiβi → 0.

1.3.4. Expansion into power series. Let n = 2. Then in characteristic p we have
Fq ((X)) ((Y )) = {

∑
θijX

jY i}, where θij are elements of Fq such that for some i0
we have θij = 0 for i 6 i0 and for every i there is j(i) such that θij = 0 for j 6 j(i).

On the other hand, the definition of the topology implies that for every neighbourhood
of zero U there exists i0 and for every i < i0 there exists j(i) such that θXjY i ∈ U
whenever either i > i0 or i < i0, j > j(i).

So every formal power series has only finitely many terms θXjY i outside U .
Therefore, it is in fact a convergent power series in the just defined topology.

Definition. Ω ⊂ Zn is called admissible if for every 1 6 l 6 n and every jl+1, . . . , jn
there is i = i(jl+1, . . . , jn) ∈ Z such that

(i1, . . . , in) ∈ Ω, il+1 = jl+1, . . . , in = jn ⇒ il > i.

Theorem. Let t1, . . . , tn be a system of local parameters of K . Let s be a section of
the residue map OK → OK/MK such that s(0) = 0. Let Ω be an admissible subset
of Zn. Then the series∑

(i1,...,in)∈Ω

bi1,...,int
i1
1 . . . t

in
n converges (bi1,...,in ∈ s(OK/MK))

and every element of K can be uniquely written this way.

Remark. In this statement it is essential that the last residue field is finite. In a more
general setting, one should take a “good enough” section. For example, for K =
k {{T1}} . . . {{Tm}} ((Tm+2)) . . . ((Tn)), where k is a finite extension of the fraction
field of W (K0) and K0 is perfect of prime characteristic, one may take the Teichmüller
section K0 → Km+1 = k {{T1}} . . . {{Tm}} composed with the obvious embedding
Km+1 ↪→ K .

Proof. We have∑
(i1,...,in)∈Ω

bi1,...,int
i1
1 . . . t

in
n =

∑
b∈s(OK/MK )

(
b ·

∑
(i1,...,in)∈Ωb

t
i1
1 . . . t

in
n

)
,

where Ωb = {(i1, . . . , in) ∈ Ω : bi1,...,in = b}. In view of the property (4), it
is sufficient to show that the inner sums converge. Equivalently, one has to show
that given a neighbourhood of zero U in K , for almost all (i1, . . . , in) ∈ Ω we
have t

i1
1 . . . t

in
n ∈ U . This follows easily by induction on n if we observe that

t
i1
1 . . . t

in−1
n−1 = ht1,...,tn−1(t1i1 . . . tn−1

in−1 ).
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To prove the second statement, apply induction on n once again. Let r = vn(α),
where α is a given element of K . Then by the induction hypothesis

t−rn α =
∑

(i1,...,in−1)∈Ωr

bi1,...,in
(
t1
)i1 . . . (tn−1

)in−1 ,

where Ωr ⊂ Zn−1 is a certain admissible set. Hence

α =
∑

(i1,...,in−1)∈Ωr

bi1,...,int
i1
1 . . . t

in−1
n−1 t

r
n + α′,

where vn(α′) > r. Continuing this way, we obtain the desired expansion into a sum
over the admissible set Ω = (Ωr × {r}) ∪ (Ωr+1 × {r + 1}) ∪ . . .

The uniqueness follows from the continuity of the residue map OK → Kn−1.

1.4. Topology on K∗

1.4.1. 2-dimensional case, char (kK) = p .

Let A be the last residue field K0 if char (K) = p, and let A = W (K0) if
char (K) = 0. Then A is canonically embedded into OK , and it is in fact the subring
generated by the set R.

For a 2-dimensional local field K with a system of local parameters t2, t1 define a
base of neighbourhoods of 1 as the set of all 1 + ti2OK + tj1A[[t1, t2]], i > 1, j > 1.
Then every element α ∈ K∗ can be expanded as a convergent (with respect to the just
defined topology) product

α = ta2
2 t

a1
1 θ
∏

(1 + θijt
i
2t
j
1)

with θ ∈ R∗, θij ∈ R, a1, a2 ∈ Z. The set S = {(j, i) : θij 6= 0} is admissible.

1.4.2. In the general case, following Parshin’s approach in characteristic p [P], we
define the topology τ on K∗ as follows.

Definition. If char (Kn−1) = p, then define the topology τ on

K∗ ' VK × 〈t1〉 × · · · × 〈tn〉 × R∗

as the product of the induced from K topology on the group of principal units VK and
the discrete topology on 〈t1〉 × · · · × 〈tn〉 × R∗ .

If char (K) = char (Km+1) = 0, char (Km) = p, where m 6 n− 2, then we have a
canonical exact sequence

1 −→ 1 + PK
(
1, 0, . . . , 0︸ ︷︷ ︸

n−m−2

)
−→ O∗K −→ O∗Km+1

−→ 1.
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Define the topology τ on K∗ ' O∗K × 〈t1〉 × · · · × 〈tn〉 as the product of the discrete
topology on 〈t1〉 × · · · × 〈tn〉 and the inverse image of the topology τ on O∗Km+1

.

Then the intersection of all neighbourhoods of 1 is equal to 1 +PK
(
1, 0, . . . , 0︸ ︷︷ ︸

n−m−2

)
which

is a uniquely divisible group.

Remarks. 1. Observe that Km+1 is a mixed characteristic field and therefore its
topology is well defined. Thus, the topology τ is well defined in all cases.

2. A base of neighbourhoods of 1 in VK is formed by the sets

h(U0) + h(U1)tn + ... + h(Uc−1)tc−1
n + PK (c),

where c > 1, U0 is a neighbourhood of 1 in VkK , U1, . . . , Uc−1 are neighbourhoods
of zero in kK , h is the canonical lifting associated with some local parameters, tn is
the last local parameter of K . In particular, in the two-dimensional case τ coincides
with the topology of 1.4.1.

Properties.
(1) Each Cauchy sequence with respect to the topology τ converges in K∗.
(2) Multiplication in K∗ is sequentially continuous.
(3) If n 6 2, then the multiplicative group K∗ is a topological group and it has a

countable base of open subgroups. K∗ is not a topological group with respect to
τ if m > 3.

Proof. (1) and (2) follow immediately from the corresponding properties of the topol-
ogy defined in subsection 1.3. In the 2-dimensional case (3) is obvious from the
description given in 1.4.1. Next, let m > 3, and let U be an arbitrary neighbourhood
of 1. We may assume that n = m and U ⊂ VK . From the definition of the topology
on VK we see that U ⊃ 1 + h(U1)tn + h(U2)t2n , where U1, U2 are neighbourhoods of
0 in kK , tn a prime element in K , and h the canonical lifting corresponding to some
choice of local parameters. Therefore,

UU + P (4) ⊃ (1 + h(U1)tn)(1 + h(U2)t2n) + P (4)

= {1 + h(a)tn + h(b)t2n + h(ab)t3n : a ∈ U1, b ∈ U2} + P (4).

(Indeed, h(a)h(b) − h(ab) ∈ P (1). ) Since U1U2 = kK (see property (3) in 1.3.2), it
is clear that UU cannot lie in a neighbourhood of 1 in VK of the form 1 + h(kK)tn +
h(kK)t2n + h(U ′)t3n +P (4), where U ′ 6= kK is a neighbourhood of 0 in kK . Thus, K∗

is not a topological group.

Remarks. 1. From the point of view of class field theory and the existence theorem
one needs a stronger topology on K∗ than the topology τ (in order to have more open
subgroups). For example, for n > 3 each open subgroup A in K∗ with respect to the
topology τ possesses the property: 1 + t2nOK ⊂ (1 + t3nOK)A.
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16 I. Zhukov

A topology λ∗ which is the sequential saturation of τ is introduced in subsection 6.2;
it has the same set of convergence sequences as τ but more open subgroups. For
example [F1], the subgroup in 1 + tnOK topologically generated by 1 + θtinn . . . t

i1
1

with (i1, . . . , in) 6= (0, 0, . . . , 1, 2), in > 1 (i.e., the sequential closure of the subgroup
generated by these elements) is open in λ∗ and does not satisfy the above-mentioned
property.

One can even introduce a topology on K∗ which has the same set of convergence
sequences as τ and with respect to which K∗ is a topological group, see [F2].

2. For another approach to define open subgroups of K∗ see the paper of K. Kato
in this volume.

1.4.3. Expansion into convergent products. To simplify the following statements
we assume here char kK = p. Let B be a fixed set of representatives of non-zero
elements of the last residue field in K .

Lemma. Let {αi : i ∈ I} be a subset of VK such that

(∗) αi = 1 +
∑
r∈Ωi

b(i)
r t

r1
1 . . . trnn ,

where b ∈ B, and Ωi ⊂ Zn+ are admissible sets satisfying the following two conditions:
(i) Ω =

⋃
i∈I Ωi is an admissible set;

(ii)
⋂
j∈J Ωj = ∅, where J is any infinite subset of I .

Then
∏
i∈I αi converges.

Proof. Fix a neighbourhood of 1 in VK ; by definition it is of the form (1 + U ) ∩
VK , where U is a neighbourhood of 0 in K . Consider various finite products of
b(i)
r t

r1
1 . . . trnn which occur in ( ∗ ). It is sufficient to show that almost all such products

belong to U .
Any product under consideration has the form

(∗∗) γ = bk1
1 . . . bkss t

l1
1 . . . t

ln
n

with ln > 0, where B = {b1, . . . , bs}. We prove by induction on j the following
claim: for 0 6 j 6 n and fixed lj+1, . . . , ln the element γ almost always lies in U
(in case j = n we obtain the original claim). Let

Ω̂ = {r1 + · · · + rt : t > 1, r1, . . . , rt ∈ Ω}.

It is easy to see that Ω̂ is an admissible set and any element of Ω̂ can be written as a
sum of elements of Ω in finitely many ways only. This fact and condition (ii) imply
that any particular n-tuple (l1, . . . , ln) can occur at the right hand side of ( ∗∗ ) only
finitely many times. This proves the base of induction ( j = 0 ).

For j > 0, we see that lj is bounded from below since (l1, . . . , ln) ∈ Ω̂ and
lj+1, . . . , ln are fixed. On the other hand, γ ∈ U for sufficiently large lj and arbitrary
k1, . . . , ks, l1, . . . , lj−1 in view of [MZ1, Prop. 1.4] applied to the neighbourhood of
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Part I. Section 1. Higher dimensional local fields 17

zero t
−lj+1
j+1 . . . t−lnn U in K . Therefore, we have to consider only a finite range of values

c 6 lj 6 c′ . For any lj in this range the induction hypothesis is applicable.

Theorem. For any r ∈ Zn+ and any b ∈ B fix an element

ar,b =
∑

s∈Ωr,b

br,bs t
s1
1 . . . tsnn ,

such that br,br = b, and br,bs = 0 for s < r. Suppose that the admissible sets

{Ωr,b : r ∈ Ω∗, b ∈ B}

satisfy conditions (i) and (ii) of the Lemma for any given admissible set Ω∗ .
1. Every element a ∈ K can be uniquely expanded into a convergent series

a =
∑
r∈Ωa

ar,br ,

where br ∈ B, Ωa ⊂ Zn is an admissible set.
2. Every element α ∈ K∗ can be uniquely expanded into a convergent product:

α = tann . . . t
a1
1 b0

∏
r∈Ωα

(
1 + ar,br

)
,

where b0 ∈ B, br ∈ B, Ωα ⊂ Z+
n is an admissible set.

Proof. The additive part of the theorem is [MZ2, Theorem 1]. The proof of it is parallel
to that of Theorem 1.3.4.

To prove the multiplicative part, we apply induction on n. This reduces the statement
to the case α ∈ 1+P (1). Here one can construct an expansion and prove its uniqueness
applying the additive part of the theorem to the residue of t−vn(α−1)

n (α−1) in kK . The
convergence of all series which appear in this process follows from the above Lemma.
For details, see [MZ2, Theorem 2].

Remarks. 1. Conditions (i) and (ii) in the Lemma are essential. Indeed, the infinite

products
∞∏
i=1

(1 + ti1 + t−i1 t2) and
∞∏
i=1

(1 + ti1 + t2) do not converge. This means that the

statements of Theorems 2.1 and 2.2 in [MZ1] have to be corrected and conditions (i)
and (ii) for elements εr,θ (r ∈ Ω∗) should be added.

2. If the last residue field is not finite, the statements are still true if the system
of representatives B is not too pathological. For example, the system of Teichmüller
representatives is always suitable. The above proof works with the only ammendment:
instead of Prop. 1.4 of [MZ1] we apply the definition of topology directly.
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18 I. Zhukov

Corollary. If char (Kn−1) = p, then every element α ∈ K∗ can be expanded into a
convergent product:

(∗ ∗ ∗) α = tann . . . t
a1
1 θ
∏

(1 + θi1,...,int
i1
1 . . . t

in
n ), θ ∈ R∗, θi1,...,in ∈ R,

with {(i1, . . . , in) : θi1,...,in 6= 0} being an admissible set. Any series ( ∗ ∗ ∗ ) converges.
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2. p-primary part of the Milnor K -groups and
Galois cohomologies of fields of characteristic p

Oleg Izhboldin

2.0. Introduction

Let F be a field and F sep be the separable closure of F . Let F ab be the maximal
abelian extension of F . Clearly the Galois group Gab = Gal(F ab/F ) is canonically
isomorphic to the quotient of the absolute Galois group G = Gal(F sep/F ) modulo the
closure of its commutant. By Pontryagin duality, a description of Gab is equivalent to
a description of

Hom cont
(
Gab,Z/m

)
= Hom cont

(
G,Z/m

)
= H1(F,Z/m).

where m runs over all positive integers. Clearly, it suffices to consider the case where
m is a power of a prime, say m = pi . The main cohomological tool to compute the
group H1(F,Z/m) is a pairing

( , )m:H1(F,Z/m)⊗Kn(F )/m→ Hn+1
m (F )

where the right hand side is a certain cohomological group discussed below.
Here Kn(F ) for a field F is the n th Milnor K -group Kn(F ) = KM

n (F ) defined
as

(F ∗)⊗n/J

where J is the subgroup generated by the elements of the form a1⊗ ...⊗ an such that
ai + aj = 1 for some i 6= j . We denote by {a1, ..., an} the class of a1 ⊗ ... ⊗ an .
Namely, Kn(F ) is the abelian group defined by the following
generators: symbols {a1, ..., an} with a1, ...,an ∈ F ∗
and relations:

{a1, ..., aia
′
i, ...an} = {a1, ..., ai, ...an} + {a1, ..., a

′
i, ...an}

{a1, ..., an} = 0 if ai + aj = 1 for some i and j with i 6= j.
We write the group law additively.
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20 O. Izhboldin

Consider the following example (definitions of the groups will be given later).

Example. Let F be a field and let p be a prime integer. Assume that there is an
integer n with the following properties:
(i) the group Hn+1

p (F ) is isomorphic to Z/p,
(ii) the pairing

( , )p:H1(F,Z/p)⊗Kn(F )/p→ Hn+1
p (F ) ' Z/p

is non-degenerate in a certain sense.
Then the Z/p-linear space H1(F,Z/p) is obviously dual to the Z/p-linear space
Kn(F )/p. On the other hand, H1(F,Z/p) is dual to the Z/p-space Gab/(Gab)p .
Therefore there is an isomorphism

ΨF,p:Kn(F )/p ' Gab/(Gab)p.

It turns out that this example can be applied to computations of the group Gab/(Gab)p

for multidimensional local fields. Moreover, it is possible to show that the homomor-
phism ΨF,p can be naturally extended to a homomorphism ΨF :Kn(F ) → Gab (the
so called reciprocity map). Since Gab is a profinite group, it follows that the homomor-
phism ΨF :Kn(F ) → Gab factors through the homomorphism Kn(F )/DKn(F ) →
Gab where the group DKn(F ) consists of all divisible elements:

DKn(F ) := ∩m>1mKn(F ).

This observation makes natural the following notation:

Definition (cf. section 6 of Part I). For a field F and integer n > 0 set

Kt
n(F ) := Kn(F )/DKn(F ),

where DKn(F ) :=
⋂
m>1 mKn(F ).

The group Kt
n(F ) for a higher local field F endowed with a certain topology (cf.

section 6 of this part of the volume) is called a topological Milnor K -group K top(F )
of F .

The example shows that computing the group Gab is closely related to computing
the groups Kn(F ), Kt

n(F ), and Hn+1
m (F ). The main purpose of this section is to

explain some basic properties of these groups and discuss several classical conjectures.
Among the problems, we point out the following:
• discuss p-torsion and cotorsion of the groups Kn(F ) and Kt

n(F ),
• study an analogue of Satz 90 for the groups Kn(F ) and Kt

n(F ),
• compute the group Hn+1

m (F ) in two “classical” cases where F is either the rational
function field in one variable F = k(t) or the formal power series F = k((t)).

We shall consider in detail the case (so called “non-classical case”) of a field F of
characteristic p and m = p.
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Part I. Section 2. K -groups and Galois cohomologies of fields of characteristic p 21

2.1. Definition of Hn+1
m (F ) and pairing ( , )m

To define the group Hn+1
m (F ) we consider three cases depending on the characteristic

of the field F .

Case 1 (Classical). Either char (F ) = 0 or char (F ) = p is prime to m.
In this case we set

Hn+1
m (F ) := Hn+1(F, µ⊗nm ).

The Kummer theory gives rise to the well known natural isomorphism F ∗/F ∗m →
H1(F, µm). Denote the image of an element a ∈ F ∗ under this isomorphism by (a).
The cup product gives the homomorphism

F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸
n

→ Hn(F, µ⊗nm ), a1 ⊗ · · · ⊗ an → (a1, . . . , an)

where (a1, . . . , an) := (a1)∪ · · ·∪ (an). It is well known that the element (a1, . . . , an)
is zero if ai + aj = 1 for some i 6= j . From the definition of the Milnor K -group we
get the homomorphism

ηm:KM
n (F )/m→ Hn(F, µ⊗nm ), {a1, . . . , an} → (a1, . . . , an).

Now, we define the pairing ( , )m as the following composite

H1(F,Z/m)⊗Kn(F )/m
id ⊗ηm−−−−→ H1(F,Z/m)⊗Hn(F, µ⊗nm )

∪−→ Hn+1
m (F, µ⊗nm ).

Case 2. char (F ) = p 6= 0 and m is a power of p.
To simplify the exposition we start with the case m = p. Set

Hn+1
p (F ) = coker

(
Ωn
F

℘−→ Ωn
F /dΩn−1

F

)
where

d (adb2 ∧ · · · ∧ dbn) = da ∧ db2 ∧ · · · ∧ dbn,

℘
(
a
db1

b1
∧ · · · ∧ dbn

bn

)
= (ap − a)

db1

b1
∧ · · · ∧ dbn

bn
+ dΩn−1

F

(℘ = C−1−1 where C−1 is the inverse Cartier operator defined in subsection 4.2).
The pairing ( , )p is defined as follows:

( , )p:F/℘(F )×Kn(F )/p→ Hn+1
p (F ),

(a, {b1, . . . , bn}) 7→ a
db1

b1
∧ · · · ∧ dbn

bn

where F/℘(F ) is identified with H1(F,Z/p) via Artin–Schreier theory.
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22 O. Izhboldin

To define the group Hn+1
pi (F ) for an arbitrary i > 1 we note that the group Hn+1

p (F )

is the quotient group of Ωn
F . In particular, generators of the group Hn+1

p (F ) can be
written in the form adb1 ∧ · · · ∧ dbn. Clearly, the natural homomorphism

F ⊗ F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸
n

→ Hn+1
p (F ), a⊗ b1 ⊗ · · · ⊗ bn 7→ a

db1

b1
∧ · · · ∧ dbn

bn

is surjective. Therefore the group Hn+1
p (F ) is naturally identified with the quotient

group F ⊗F ∗⊗ · · ·⊗F ∗/J . It is not difficult to show that the subgroup J is generated
by the following elements:

(ap − a)⊗ b1 ⊗ · · · ⊗ bn ,
a⊗ a⊗ b2 ⊗ · · · ⊗ bn ,
a⊗ b1 ⊗ · · · ⊗ bn , where bi = bj for some i 6= j .

This description of the group Hn+1
p (F ) can be easily generalized to define Hn+1

pi (F )

for an arbitrary i > 1. Namely, we define the group Hn+1
pi (F ) as the quotient group

Wi(F )⊗ F ∗ ⊗ · · · ⊗ F ∗︸ ︷︷ ︸
n

/J

where Wi(F ) is the group of Witt vectors of length i and J is the subgroup of
Wi(F )⊗ F ∗ ⊗ · · · ⊗ F ∗ generated by the following elements:

(F(w) − w)⊗ b1 ⊗ · · · ⊗ bn ,
(a, 0, . . . , 0)⊗ a⊗ b2 ⊗ · · · ⊗ bn ,
w ⊗ b1 ⊗ · · · ⊗ bn , where bi = bj for some i 6= j .

The pairing ( , )pi is defined as follows:

( , )p:Wi(F )/℘(Wi(F ))×Kn(F )/pi → Hn+1
pi (F ),

(w, {b1, . . . , bn}) 7→ w ⊗ b1 ⊗ · · · ⊗ bn
where ℘ = F − id :Wi(F ) → Wi(F ) and the group Wi(F )/℘(Wi(F )) is identified
with H1(F,Z/pi) via Witt theory. This completes definitions in Case 2.

Case 3. char (F ) = p 6= 0 and m = m′pi where m′ > 1 is an integer prime to p and
i > 1.

The groups Hn+1
m′ (F ) and Hn+1

pi (F ) are already defined (see Cases 1 and 2). We

define the group Hn+1
m (F ) by the following formula:

Hn+1
m (F ) := Hn+1

m′ (F )⊕Hn+1
pi (F )

Since H1(F,Z/m) ' H1(F,Z/m′) ⊕ H1(F,Z/pi) and Kn(F )/m ' Kn(F )/m′ ⊕
Kn(F )/pi , we can define the pairing ( , )m as the direct sum of the pairings ( , )m′
and ( , )pi . This completes the definition of the group Hn+1

m (F ) and of the pairing
( , )m .
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Remark 1. In the case n = 1 or n = 2 the group Hn
m(F ) can be determined as

follows:

H1
m(F ) ' H1(F,Z/m) and H2

m(F ) ' m Br(F ).

Remark 2. The group Hn+1
m (F ) is often denoted by Hn+1(F,Z/m (n)).

2.2. The group Hn+1(F )

In the previous subsection we defined the group Hn+1
m (F ) and the pairing ( , )m for

an arbitrary m. Now, let m and m′ be positive integers such that m′ is divisible by
m. In this case there exists a canonical homomorphism

im,m′ :H
n+1
m (F )→ Hn+1

m′ (F ).

To define the homomorphism im,m′ it suffices to consider the following two cases:

Case 1. Either char (F ) = 0 or char (F ) = p is prime to m and m′ .
This case corresponds to Case 1 in the definition of the group Hn+1

m (F ) (see sub-
section 2.1). We identify the homomorphism im,m′ with the homomorphism

Hn+1(F, µ⊗nm )→ Hn+1(F, µ⊗nm′ )

induced by the natural embedding µm ⊂ µm′ .

Case 2. m and m′ are powers of p = char (F ).
We can assume that m = pi and m′ = pi

′
with i 6 i′ . This case corresponds to

Case 2 in the definition of the group Hn+1
m (F ). We define im,m′ as the homomorphism

induced by

Wi(F )⊗ F ∗ ⊗ . . . F ∗ →Wi′(F )⊗ F ∗ ⊗ . . . F ∗,

(a1, . . . , ai)⊗ b1 ⊗ · · · ⊗ bn 7→ (0, . . . , 0, a1, . . . , ai)⊗ b1 ⊗ · · · ⊗ bn.

The maps im,m′ (where m and m′ run over all integers such that m′ is divisible
by m ) determine the inductive system of the groups.

Definition. For a field F and an integer n set

Hn+1(F ) = lim−→mH
n+1
m (F ).

Conjecture 1. The natural homomorphism Hn+1
m (F )→ Hn+1(F ) is injective and the

image of this homomorphism coincides with the m-torsion part of the group Hn+1(F ).
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This conjecture follows easily from the Milnor–Bloch–Kato conjecture (see subsec-
tion 4.1) in degree n. In particular, it is proved for n 6 2. For fields of characteristic
p we have the following theorem.

Theorem 1. Conjecture 1 is true if char (F ) = p and m = pi .

2.3. Computing the group Hn+1
m (F ) for some fields

We start with the following well known result.

Theorem 2 (classical). Let F be a perfect field. Suppose that char (F ) = 0 or char (F )
is prime to m. Then

Hn+1
m

(
F ((t))

)
' Hn+1

m (F )⊕Hn
m(F )

Hn+1
m

(
F (t)

)
' Hn+1

m (F )⊕
∐

monic irred f (t)

Hn
m

(
F [t] /f (t)

)
.

It is known that we cannot omit the conditions on F and m in the statement of
Theorem 2. To generalize the theorem to the arbitrary case we need the following nota-
tion. For a complete discrete valuation field K and its maximal unramified extension
Kur define the groups Hn

m,ur(K) and H̃n
m(K) as follows:

Hn
m,ur(K) = ker (Hn

m(K)→ Hn
m(Kur)) and H̃n

m(K) = Hn
m(K)/Hn

m,ur(K).

Note that for a field K = F ((t)) we obviously have Kur = F sep((t)). We also note that
under the hypotheses of Theorem 2 we have Hn(K) = Hn

m,ur(K) and Hn(K) = 0.
The following theorem is due to Kato.

Theorem 3 (Kato, [K1, Th. 3 §0]). Let K be a complete discrete valuation field with
residue field k. Then

Hn+1
m,ur(K) ' Hn+1

m (k)⊕Hn
m(k).

In particular, Hn+1
m,ur (F ((t))) ' Hn+1

m (F )⊕Hn
m(F ).

This theorem plays a key role in Kato’s approach to class field theory of multidi-
mensional local fields (see section 5 of this part).

To generalize the second isomorphism of Theorem 2 we need the following notation.
Set

Hn+1
m,sep(F (t)) = ker (Hn+1

m (F (t))→ Hn+1
m (F sep(t))) and

H̃n+1
m (F (t)) = Hn+1

m (F (t))/Hn+1
m,sep(F (t)).

If the field F satisfies the hypotheses of Theorem 2, we have
Hn+1
m,sep(F (t)) = Hn+1

m (F (t)) and H̃n+1
m (F (t)) = 0.

In the general case we have the following statement.
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Theorem 4 (Izhboldin, [I2, Introduction]).

Hn+1
m,sep (F (t)) ' Hn+1

m (F )⊕
∐

monic irred f (t)

Hn
m

(
F [t]/f (t)

)
,

H̃n+1
m (F (t)) '

∐
v

H̃n+1
m (F (t)v)

where v runs over all normalized discrete valuations of the field F (t) and F (t)v
denotes the v-completion of F (t).

2.4. On the group Kn(F )

In this subsection we discuss the structure of the torsion and cotorsion in Milnor
K -theory. For simplicity, we consider the case of prime m = p. We start with the
following fundamental theorem concerning the quotient group Kn(F )/p for fields of
characteristic p.

Theorem 5 (Bloch–Kato–Gabber, [BK, Th. 2.1]). Let F be a field of characteristic p.
Then the differential symbol

dF :Kn(F )/p→ Ωn
F , {a1, . . . , an} 7→

da1

a1
∧ · · · ∧ dan

an

is injective and its image coincides with the kernel νn(F ) of the homomorphism ℘ (for
the definition see Case 2 of 2.1). In other words, the sequence

0 −−−−→ Kn(F )/p
dF−−−−→ Ωn

F

℘−−−−→ Ωn
F /dΩn−1

F

is exact.

This theorem relates the Milnor K -group modulo p of a field of characteristic p
with a submodule of the differential module whose structure is easier to understand.
The theorem is important for Kato’s approach to higher local class field theory. For a
sketch of its proof see subsection A2 in the appendix to this section.

There exists a natural generalization of the above theorem for the quotient groups
Kn(F )/pi by using De Rham–Witt complex ([BK, Cor. 2.8]).

Now, we recall well known Tate’s conjecture concerning the torsion subgroup of the
Milnor K -groups.

Conjecture 2 (Tate). Let F be a field and p be a prime integer.
(i) If char (F ) 6= p and ζp ∈ F , then pKn(F ) = {ζp} ·Kn−1(F ).
(ii) If char (F ) = p then pKn(F ) = 0.

This conjecture is trivial in the case where n 6 1. In the other cases we have the
following theorem.
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Theorem 6. Let F be a field and n be a positive integer.
(1) Tate’s Conjecture holds if n 6 2 (Suslin, [S]),
(2) Part (ii) of Tate’s Conjecture holds for all n (Izhboldin, [I1]).

The proof of this theorem is closely related to the proof of Satz 90 for K -groups.
Let us recall two basic conjectures on this subject.

Conjecture 3 (Satz 90 for Kn ). If L/F is a cyclic extension of degree p with the
Galois group G = 〈σ〉 then the sequence

Kn(L)
1−σ−−→ Kn(L)

NL/F−−−→ Kn(F )

is exact.

There is an analogue of the above conjecture for the quotient group Kn(F )/p. Fix
the following notation till the end of this section:

Definition. For a field F set

kn(F ) = Kn(F )/p.

Conjecture 4 (Small Satz 90 for kn ). If L/F is a cyclic extension of degree p with
the Galois group G = 〈σ〉, then the sequence

kn(F )⊕ kn(L)
iF/L⊕(1−σ)
−−−−−−−→ kn(L)

NL/F−−−→ kn(F )

is exact.

The conjectures 2,3 and 4 are not independent:

Lemma (Suslin). Fix a prime integer p and integer n. Then in the category of all
fields (of a given characteristic) we have

(Small Satz 90 for kn ) + (Tate conjecture for pKn ) ⇐⇒ (Satz 90 for Kn ).

Moreover, for a given field F we have

(Small Satz 90 for kn ) + (Tate conjecture for pKn ) ⇒ (Satz 90 for Kn )

and

(Satz 90 for Kn ) ⇒ (small Satz 90 for kn ).

Satz 90 conjectures are proved for n 6 2 (Merkurev-Suslin, [MS1]). If p = 2,
n = 3, and char (F ) 6= 2, the conjectures were proved by Merkurev and Suslin [MS]
and Rost. For p = 2 the conjectures follow from recent results of Voevodsky. For fields
of characteristic p the conjectures are proved for all n:
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Theorem 7 (Izhboldin, [I1]). Let F be a field of characteristic p and L/F be a cyclic
extension of degree p. Then the following sequence is exact:

0→ Kn(F )→ Kn(L)
1−σ−−→ Kn(L)

NL/F−−−→ Kn(F )→ Hn+1
p (F )→ Hn+1

p (L)

2.5. On the group Kt
n(F )

In this subsection we discuss the same issues, as in the previous subsection, for the
group Kt

n(F ).

Definition. Let F be a field and p be a prime integer. We set

DKn(F ) =
⋂
m>1

mKn(F ) and DpKn(F ) =
⋂
i>0

piKn(F ).

We define the group Kt
n(F ) as the quotient group:

Kt
n(F ) = Kn(F )/DKn(F ) = Kn(F )/

⋂
m>1

mKn(F ).

The group Kt
n(F ) is of special interest for higher class field theory (see sections 6,

7 and 10). We have the following evident isomorphism (see also 2.0):

Kt
n(F ) ' im

(
Kn(F )→ lim←−mKn(F )/m

)
.

The quotient group Kt
n(F )/m is obviously isomorphic to the group Kn(F )/m. As

for the torsion subgroup of Kt
n(F ), it is quite natural to state the same questions as for

the group Kn(F ).

Question 1. Are the Kt-analogue of Tate’s conjecture and Satz 90 Conjecture true for
the group Kt

n(F )?

If we know the (positive) answer to the corresponding question for the group Kn(F ),
then the previous question is equivalent to the following:

Question 2. Is the group DKn(F ) divisible?

At first sight this question looks trivial because the group DKn(F ) consists of all
divisible elements of Kn(F ). However, the following theorem shows that the group
DKn(F ) is not necessarily a divisible group!

Theorem 8 (Izhboldin, [I3]). For every n > 2 and prime p there is a field F such
that char (F ) 6= p, ζp ∈ F and
(1) The group DKn(F ) is not divisible, and the group DpK2(F ) is not p-divisible,
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(2) The Kt-analogue of Tate’s conjecture is false for Kt
n:

pK
t
n(F ) 6= {ζp} ·Kt

n−1(F ).

(3) The Kt-analogue of Hilbert 90 conjecture is false for group Kt
n(F ).

Remark 1. The field F satisfying the conditions of Theorem 8 can be constructed as
the function field of some infinite dimensional variety over any field of characteristic
zero whose group of roots of unity is finite.

Quite a different construction for irregular prime numbers p and F = Q(µp) follows
from works of G. Banaszak [B].

Remark 2. If F is a field of characteristic p then the groups DpKn(F ) and DKn(F )
are p-divisible. This easily implies that pK

t
n(F ) = 0. Moreover, Satz 90 theorem

holds for Kt
n in the case of cyclic p-extensions.

Remark 3. If F is a multidimensional local fields then the group Kt
n(F ) is studied in

section 6 of this volume. In particular, Fesenko (see subsections 6.3–6.8 of section 6)
gives positive answers to Questions 1 and 2 for multidimensional local fields.
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A. Appendix to Section 2

Masato Kurihara and Ivan Fesenko

This appendix aims to provide more details on several notions introduced in section 2,
as well as to discuss some basic facts on differentials and to provide a sketch of the
proof of Bloch–Kato–Gabber’s theorem. The work on it was completed after sudden
death of Oleg Izhboldin, the author of section 2.

A1. Definitions and properties of several basic notions
(by M. Kurihara)

Before we proceed to our main topics, we collect here the definitions and properties of
several basic notions.

A1.1. Differential modules.

Let A and B be commutative rings such that B is an A-algebra. We define Ω1
B/A

to be the B-module of regular differentials over A. By definition, this B-module
Ω1
B/A is a unique B-module which has the following property. For a B-module

M we denote by DerA(B,M ) the set of all A-derivations (an A-homomorphism
ϕ:B → M is called an A-derivation if ϕ(xy) = xϕ(y) + yϕ(x) and ϕ(x) = 0 for
any x ∈ A ). Then, ϕ induces ϕ: Ω1

B/A → M (ϕ = ϕ ◦ d where d is the canonical

derivation d:B → Ω1
B/A ), and ϕ 7→ ϕ yields an isomorphism

DerA(B,M ) →̃ HomB(Ω1
B/A,M ).

In other words, Ω1
B/A is the B-module defined by the following

generators: dx for any x ∈ B
and relations:

d(xy) = xdy + ydx

dx = 0 for any x ∈ A .
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32 M. Kurihara and I. Fesenko

If A = Z, we simply denote Ω1
B/Z by Ω1

B .

When we consider Ω1
A for a local ring A, the following lemma is very useful.

Lemma. If A is a local ring, we have a surjective homomorphism

A⊗Z A∗ −→ Ω1
A

a⊗ b 7→ ad log b = a
db

b
.

The kernel of this map is generated by elements of the form

k∑
i=1

(ai ⊗ ai)−
l∑
i=1

(bi ⊗ bi)

for ai , bi ∈ A∗ such that Σki=1ai = Σli=1bi .

Proof. First, we show the surjectivity. It is enough to show that xdy is in the image of
the above map for x, y ∈ A. If y is in A∗ , xdy is the image of xy ⊗ y. If y is not
in A∗ , y is in the maximal ideal of A, and 1 + y is in A∗ . Since xdy = xd(1 + y),
xdy is the image of x(1 + y)⊗ (1 + y).

Let J be the subgroup of A⊗ A∗ generated by the elements

k∑
i=1

(ai ⊗ ai)−
l∑
i=1

(bi ⊗ bi)

for ai , bi ∈ A∗ such that Σki=1ai = Σli=1bi . Put M = (A ⊗Z A∗)/J . Since it is clear
that J is in the kernel of the map in the lemma, a⊗ b 7→ ad log b induces a surjective
homomorphism M → Ω1

A , whose injectivity we have to show.
We regard A⊗ A∗ as an A-module via a(x ⊗ y) = ax⊗ y. We will show that J

is a sub A-module of A⊗A∗ . To see this, it is enough to show

k∑
i=1

(xai ⊗ ai)−
l∑
i=1

(xbi ⊗ bi) ∈ J

for any x ∈ A. If x 6∈ A∗ , x can be written as x = y + z for some y, z ∈ A∗ , so we
may assume that x ∈ A∗ . Then,

k∑
i=1

(xai ⊗ ai)−
l∑
i=1

(xbi ⊗ bi)

=
k∑
i=1

(xai ⊗ xai − xai ⊗ x)−
l∑
i=1

(xbi ⊗ xbi − xbi ⊗ x)

=
k∑
i=1

(xai ⊗ xai)−
l∑
i=1

(xbi ⊗ xbi) ∈ J.
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Thus, J is an A-module, and M = (A⊗A∗)/J is also an A-module.
In order to show the bijectivity of M → Ω1

A , we construct the inverse map
Ω1
A → M . By definition of the differential module (see the property after the defini-

tion), it is enough to check that the map

ϕ:A −→M x 7→ x⊗ x (if x ∈ A∗)
x 7→ (1 + x)⊗ (1 + x) (if x 6∈ A∗)

is a Z-derivation. So, it is enough to check ϕ(xy) = xϕ(y) + yϕ(x). We will show this
in the case where both x and y are in the maximal ideal of A. The remaining cases
are easier, and are left to the reader. By definition, xϕ(y) + yϕ(x) is the class of

x(1 + y)⊗ (1 + y) + y(1 + x)⊗ (1 + x)

= (1 + x)(1 + y)⊗ (1 + y)− (1 + y)⊗ (1 + y)

+ (1 + y)(1 + x)⊗ (1 + x)− (1 + x)⊗ (1 + x)

= (1 + x)(1 + y)⊗ (1 + x)(1 + y)− (1 + x)⊗ (1 + x)

− (1 + y)⊗ (1 + y).

But the class of this element in M is the same as the class of (1 +xy)⊗ (1 +xy). Thus,
ϕ is a derivation. This completes the proof of the lemma.

By this lemma, we can regard Ω1
A as a group defined by the following

generators: symbols [a, b} for a ∈ A and b ∈ A∗
and relations:

[a1 + a2, b} = [a1, b} + [a2, b}
[a, b1b2} = [a, b1} + [a2, b2}
k∑
i=1

[ai, ai} =
l∑
i=1

[bi, bi} where ai’s and bi’s satisfy
k∑
i=1

ai =
l∑
i=1

bi.

A1.2. n-th differential forms.

Let A and B be commutative rings such that B is an A-algebra. For a positive
integer n > 0, we define Ωn

B/A by

Ωn
B/A =

∧
B

Ω1
B/A.

Then, d naturally defines an A-homomorphism d: Ωn
B/A → Ωn+1

B/A , and we have a
complex

... −→ Ωn−1
B/A −→ Ωn

B/A −→ Ωn+1
B/A −→ ...

which we call the de Rham complex.
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For a commutative ring A, which we regard as a Z-module, we simply write Ωn
A

for Ωn
A/Z . For a local ring A, by Lemma A1.1, we have Ωn

A =
∧n
A((A ⊗ A∗)/J ),

where J is the group as in the proof of Lemma A1.1. Therefore we obtain

Lemma. If A is a local ring, we have a surjective homomorphism

A⊗ (A∗)⊗n −→ Ωn
A/Z

a⊗ b1 ⊗ ...⊗ bn 7→ a
db1

b1
∧ ... ∧ dbn

bn
.

The kernel of this map is generated by elements of the form

k∑
i=1

(ai ⊗ ai ⊗ b1 ⊗ ... ⊗ bn−1)−
l∑
i=1

(bi ⊗ bi ⊗ b1 ⊗ ...⊗ bn−1)

(where Σki=1ai = Σli=1bi )
and

a⊗ b1 ⊗ ... ⊗ bn with bi = bj for some i 6= j .

A1.3. Galois cohomology of Z/pn(r) for a field of characteristic p > 0 .

Let F be a field of characteristic p > 0. We denote by F sep the separable closure
of F in an algebraic closure of F .

We consider Galois cohomology groups Hq(F,−) := Hq(Gal(F sep/F ),−). For an
integer r > 0, we define

Hq(F,Z/p(r)) = Hq−r(Gal(F sep/F ),Ωr
F sep,log)

where Ωr
F sep,log is the logarithmic part of Ωr

F sep , namely the subgroup generated by
d log a1 ∧ ... ∧ d logar for all ai ∈ (F sep)∗ .

We have an exact sequence (cf. [I, p.579])

0 −→ Ωr
F sep,log −→ Ωr

F sep
F−1−−−→ Ωr

F sep/dΩr−1
F sep −→ 0

where F is the map

F(a
db1

b1
∧ ... ∧ dbr

br
) = ap

db1

b1
∧ ... ∧ dbr

br
.

Since Ωr
F sep is an F -vector space, we have

Hn(F,Ωr
F sep ) = 0

for any n > 0 and r > 0. Hence, we also have

Hn(F,Ωr
F sep/dΩr−1

F sep ) = 0

for n > 0. Taking the cohomology of the above exact sequence, we obtain

Hn(F,Ωr
F sep,log) = 0
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for any n > 2. Further, we have an isomorphism

H1(F,Ωr
F sep,log) = coker(Ωr

F
F−1−−−→ Ωr

F/dΩr−1
F )

and

H0(F,Ωr
F sep,log) = ker(Ωr

F
F−1−−−→ Ωr

F /dΩr−1
F ).

Lemma. For a field F of characteristic p > 0 and n > 0, we have

Hn+1(F,Z/p (n)) = coker(Ωn
F

F−1−−−→ Ωn
F /dΩn−1

F )

and

Hn(F,Z/p (n)) = ker(Ωn
F

F−1−−−→ Ωn
F /dΩn−1

F ).

Furthermore, Hn(F,Z/p (n− 1)) is isomorphic to the group which has the following
generators: symbols [a, b1, ..., bn−1} where a ∈ F , and b1 , ..., bn−1 ∈ F ∗
and relations:

[a1 + a2, b1, ..., bn−1} = [a1, b1, ..., bn−1} + [a2, b1, ..., bn−1}
[a, b1, ...., bib

′
i, ...bn−1} = [a, b1, ...., bi, ...bn−1} + [a, b1, ...., b

′
i, ...bn−1}

[a, a, b2, ...., bn−1} = 0

[ap − a, b1, b2, ...., bn−1} = 0

[a, b1, ...., bn−1} = 0 where bi = bj for some i 6= j.

Proof. The first half of the lemma follows from the computation of Hn(F,Ωr
F sep,log)

above and the definition of Hq(F,Z/p (r)). Using

Hn(F,Z/p (n− 1)) = coker(Ωn−1
F

F−1−−−→ Ωn−1
F /dΩn−2

F )

and Lemma A1.2 we obtain the explicit description of Hn(F,Z/p (n− 1)).

We sometimes use the notation Hn
p (F ) which is defined by

Hn
p (F ) = Hn(F,Z/p (n− 1)).

Moreover, for any i > 1, we can define Z/pi (r) by using the de Rham–Witt
complexes instead of the de Rham complex. For a positive integer i > 0, following
Illusie [I], define Hq(F,Z/pi(r)) by

Hq(F,Z/pi(r)) = Hq−r(F,WiΩr
F sep,log)

where WiΩr
F sep,log is the logarithmic part of WiΩr

F sep .
Though we do not give here the proof, we have the following explicit description of

Hn(F,Z/pi (n− 1)) using the same method as in the case of i = 1.
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Lemma. For a field F of characteristic p > 0 let Wi(F ) denote the ring of Witt
vectors of length i, and let F:Wi(F )→Wi(F ) denote the Frobenius endomorphism.
For any n > 0 and i > 0, Hn(F,Z/pi (n− 1)) is isomorphic to the group which has
the following
generators: symbols [a, b1, ..., bn−1} where a ∈Wi(F ), and b1 , ..., bn−1 ∈ F ∗
and relations:

[a1 + a2, b1, ..., bn−1} = [a1, b1, ..., bn−1} + [a2, b1, ..., bn−1}
[a, b1, ...., bjb

′
j , ...bn−1} = [a, b1, ...., bj , ...bn−1} + [a, b1, ...., b

′
j , ...bn−1}

[(0, ..., 0, a, 0, ..., 0), a, b2 , ...., bn−1} = 0

[F(a) − a, b1, b2, ...., bn−1} = 0

[a, b1, ...., bn−1} = 0 where bj = bk for some j 6= k.

We sometimes use the notation

Hn
pi(F ) = Hn(F,Z/pi (n− 1)).

A2. Bloch–Kato–Gabber’s theorem (by I. Fesenko)

For a field k of characteristic p denote

νn = νn(k) = Hn(k,Z/p (n)) = ker(℘: Ωn
k → Ωn

k/dΩn−1
k ),

℘ = F− 1:
(
a
db1

b1
∧ · · · ∧ dbn

bn

)
7→ (ap − a)

db1

b1
∧ · · · ∧ dbn

bn
+ dΩn−1

k .

Clearly, the image of the differential symbol

dk:Kn(k)/p→ Ωn
k , {a1, . . . , an} 7→

da1

a1
∧ · · · ∧ dan

an

is inside νn(k). We shall sketch the proof of Bloch–Kato–Gabber’s theorem which
states that dk is an isomorphism between Kn(k)/p and νn(k).

A2.1. Surjectivity of the differential symbol dk:Kn(k)/p→ νn(k) .

It seems impossible to suggest a shorter proof than original Kato’s proof in [K, §1].
We can argue by induction on n; the case of n = 1 is obvious, so assume n > 1.

Definitions–Properties.
(1) Let {bi}i∈I be a p-base of k ( I is an ordered set). Let S be the set of all strictly

increasing maps

s: {1, . . . , n} → I.

For two maps s, t: {1, . . . , n} → I write s < t if s(i) 6 t(i) for all i and
s(i) 6= t(i) for some i.
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(2) Denote d log a := a−1da. Put

ωs = d log bs(1) ∧ · · · ∧ d log bs(n).

Then {ωs : s ∈ S} is a basis of Ωn
k over k.

(3) For a map θ: I → {0, 1, . . . , p− 1} such that θ(i) = 0 for almost all i set

bθ =
∏

bθ(i)
i .

Then {bθωs} is a basis of Ωn
k over kp.

(4) Denote by Ωn
k (θ) the kp-vector space generated by bθωs, s ∈ S . Then Ωn

k (0) ∩
dΩn−1

k = 0. For an extension l of k, such that k ⊃ lp , denote by Ωn
l/k the

module of relative differentials. Let {bi}i∈I be a p-base of l over k. Define
Ωn
l/k(θ) for a map θ: I → {0, 1, . . . , p − 1} similarly to the previous definition.

The cohomology group of the complex

Ωn−1
l/k (θ)→ Ωn

l/k(θ)→ Ωn+1
l/k (θ)

is zero if θ 6= 0 and is Ωn
l/k(0) if θ = 0.

We shall use Cartier’s theorem (which can be more or less easily proved by induction
on |l : k| ): the sequence

0→ l∗/k∗ → Ω1
l/k → Ω1

l/k/dl

is exact, where the second map is defined as b mod k∗ → d log b and the third map is
the map ad log b 7→ (ap − a)d log b + dl.

Proposition. Let Ωn
k (<s) be the k-subspace of Ωn

k generated by all ωt for s > t ∈ S .
Let kp−1 = k and let a be a non-zero element of k. Let I be finite. Suppose that

(ap − a)ωs ∈ Ωn
k (<s) + dΩn−1

k .

Then there are v ∈ Ωn
k (<s) and

xi ∈ kp({bj : j 6 s(i)}) for 1 6 i 6 n
such that

aωs = v + d log x1 ∧ · · · ∧ d log xn.

Proof of the surjectivity of the differential symbol. First, suppose that kp−1 = k and
I is finite. Let S = {s1, . . . , sm} with s1 > · · · > sm . Let s0: {1, . . . , n} → I
be a map such that s0 > s1. Denote by A the subgroup of Ωn

k generated by
d log x1 ∧ · · · ∧ d log xn . Then A ⊂ νn. By induction on 0 6 j 6 m using the
proposition it is straightforward to show that νn ⊂ A + Ωn

k (<sj), and hence νn = A.
To treat the general case put c(k) = coker(kn(k)→ νn(k)). Since every field is the

direct limit of finitely generated fields and the functor c commutes with direct limits, it
is sufficient to show that c(k) = 0 for a finitely generated field k. In particular, we may
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assume that k has a finite p-base. For a finite extension k′ of k there is a commutative
diagram

kn(k′) −−−−→ νn(k′)

Nk′/k

y Tr k′/k

y
kn(k) −−−−→ νn(k).

Hence the composite c(k)→ c(k′)
Tr k′/k−−−−→ c(k) is multiplication by |k′ : k|. Therefore,

if |k′ : k| is prime to p then c(k)→ c(k′) is injective.
Now pass from k to a field l which is the compositum of all li where li+1 =

li( p−1
√
li−1), l0 = k. Then l = lp−1. Since l/k is separable, l has a finite p-base and

by the first paragraph of this proof c(l) = 0. The degree of every finite subextension in
l/k is prime to p, and by the second paragraph of this proof we conclude c(k) = 0, as
required.

Proof of Proposition. First we prove the following lemma which will help us later for
fields satisfying kp−1 = k to choose a specific p-base of k.

Lemma. Let l be a purely inseparable extension of k of degree p and let kp−1 = k.
Let f : l → k be a k-linear map. Then there is a non-zero c ∈ l such that f (ci) = 0
for all 1 6 i 6 p− 1.

Proof of Lemma. The l-space of k-linear maps from l to k is one-dimensional, hence
f = ag for some a ∈ l, where g: l = k(b)→ Ω1

l/k/dl →̃ k, x 7→ xd log b mod dl for

every x ∈ l. Let α = gd log b generate the one-dimensional space Ω1
l/k/dl over k.

Then there is h ∈ k such that gpd log b− hα ∈ dl. Let z ∈ k be such that zp−1 = h.
Then ((g/z)p−g/z)d log b ∈ dl and by Cartier’s theorem we deduce that there is w ∈ l
such that (g/z)d log b = d log w. Hence α = zd log w and Ω1

l/k = dl ∪ kd log l.

If f (1) = ad log b 6= 0, then f (1) = gd log c with g ∈ k, c ∈ l∗ and hence f (ci) = 0
for all 1 6 i 6 p− 1.

Now for s: {1, . . . , n} → I as in the statement of the Proposition denote

k0 = kp({bi : i <s(1)}), k1 = kp({bi : i 6 s(1)}), k2 = kp({bi : i 6 s(n)}).
Let |k2 : k1| = pr .

Let a =
∑

θ x
p
θbθ . Assume that a 6∈ k2. Then let θ, j be such that j > s(n) is the

maximal index for which θ(j) 6= 0 and xθ 6= 0.
Ωn
k (θ)-projection of (ap − a)ωs is equal to −xpθbθωs ∈ Ωn

k (<s)(θ) + dΩn−1
k (θ).

Log differentiating, we get

−xpθ
(∑
i

θ(i)d log bi
)
bθ ∧ ωs ∈ dΩn

k (<s)(θ)
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which contradicts −xpθθ(j)bθd log bj ∧ ωs 6∈ dΩn
k (<s)(θ). Thus, a ∈ k2.

Let m(1) < · · · < m(r − n) be integers such that the union of m ’s and s ’s is
equal to [s(1), s(n)] ∩ Z. Apply the Lemma to the linear map

f : k1 → Ωr
k2/k0

/dΩr−1
k2/k0

→̃ k0, b 7→ baωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n).

Then there is a non-zero c ∈ k1 such that

ciaωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

for 1 6 i 6 p− 1 .

Hence Ωr
k2/k0

(0)-projection of ciaωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) for 1 6 i 6
p− 1 is zero.

If c ∈ k0 then Ωr
k2/k0

(0)-projection of aωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) is
zero. Due to the definition of k0 we get

β = (ap − a)ωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

.

Then Ωr
k2/k0

(0)-projection of β is zero, and so is Ωr
k2/k0

(0)-projection of

apωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n),

a contradiction. Thus, c 6∈ k0.
From dk0 ⊂

∑
i<s(1) k

pdbi we deduce dk0 ∧ Ωn−1
k ⊂ Ωn

k (<s). Since k0(c) =

k0(bs(1)), there are ai ∈ k0 such that bs(1) =
∑p−1

i=0 aic
i. Then

ad log bs(1) ∧ · · · ∧d log bs(n) ≡ a′d log bs(2) · · · ∧d log bs(n) ∧d log c mod Ωn
k (<s).

Define s′: {1, . . . , n− 1} → I by s′(j) = s(j + 1). Then

aωs = v1 + a′ωs′ ∧ d log c with v1 ∈ Ωn
k (<s)

and cia′ωs′ ∧ d log c ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) ∈ dΩr−1
k2/k0

. The set

I ′ = {c} ∪ {bi : s(1) < i 6 s(n)}
is a p-base of k2/k0. Since cia′ for 1 6 i 6 p − 1 have zero k2(0)-projection with
respect to I ′ , there are a′0 ∈ k0, a′1 ∈ ⊕θ 6=0k1b

′
θ with b′θ =

∏
s(1)<i6s(n) b

θ(i)
i such

that a′ = a′0 + a′1.
The image of aωs ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n) with respect to the Artin–

Schreier map belongs to Ωr
k2/k0

and so is

(a′
p − a′)d log c ∧ ωs′ ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n)

which is the image of

a′d log c ∧ ωs′ ∧ d log bm(1) ∧ · · · ∧ d log bm(r−n).

Then a′
p − a′0, as k0(0)-projection of a′p − a′ , is zero. So a′ − a′p = a′1.

Note that d(a′1ωs′) ∧ d log c ∈ dΩn
k/k0

(<s) = dΩn−1
k/k0

(<s) ∧ d log c.
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Hence d(a′1ωs′ ) ∈ dΩn−1
k/k0

(<s) + d log c∧ dΩn−2
k/k0

. Therefore d(a′1ωs′ ) ∈ dΩn−1
k/k1

(<s)

and a′1ωs′ = α + β with α ∈ Ωn−1
k/k1

(<s), β ∈ ker(d: Ωn−1
k/k1
→ Ωn

k/k1
).

Since k(0)-projection of a′1 is zero, Ωn−1
k/k1

(0)-projection of a′1ωs′ is zero. Then

we deduce that β(0) =
∑
xt∈k1,t<s

′ x
p
tωt , so a′1ωs′ = α + β(0) + (β − β(0)). Then

β−β(0) ∈ ker(d: Ωn−1
k/k1
→ Ωn

k/k1
), so β−β(0) ∈ dΩn−2

k/k1
. Hence (a′−a′p)ωs′ = a′1ωs′

belongs to Ωn−1
k/k1

(<s′) + dΩn−2
k . By induction on n, there are v′ ∈ Ωn−1

k (<s′),
xi ∈ kp{bj : j 6 s(i)} such that a′ωs′ = v′ + d log x2 ∧ · · · ∧ d log xn . Thus,
aωs = v1 ± d log c ∧ v′ ± d log c ∧ d log x2 ∧ · · · ∧ d log xn .

A2.2. Injectivity of the differential symbol.

We can assume that k is a finitely generated field over Fp . Then there is a finitely
generated algebra over Fp with a local ring being a discrete valuation ring O such that
O/M is isomorphic to k and the field of fractions E of O is purely transcendental
over Fp .

Using standard results on Kn(l(t)) and Ωn
l(t) one can show that the injectivity of dl

implies the injectivity of dl(t) . Since dFp is injective, so is dE .
Define kn(O) = ker(kn(E) → kn(k)). Then kn(O) is generated by symbols and

there is a homomorphism

kn(O)→ kn(k), {a1, . . . , an} → {a1, . . . , an},
where a is the residue of a. Let kn(O,M) be its kernel.

Define νn(O) = ker(Ωn
O → Ωn

O/dΩn−1
O ), νn(O,M) = ker(νn(O)→ νn(k)). There

is a homomorphism kn(O)→ νn(O) such that

{a1, . . . , an} 7→ d log a1 ∧ · · · ∧ d log an.

So there is a commutative diagram

0 −−−−→ kn(O,M) −−−−→ kn(O) −−−−→ kn(k) −−−−→ 0

ϕ

y y dk

y
0 −−−−→ νn(O,M) −−−−→ νn(O) −−−−→ νn(k) .

Similarly to A2.1 one can show that ϕ is surjective [BK, Prop. 2.4]. Thus, dk is
injective.
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Sup.(4), 12(1979), 501–661.

[K] K. Kato, Galois cohomology of complete discrete valuation fields, In Algebraic K -theory,
Lect. Notes in Math. 967, Springer-Verlag, Berlin, 1982, 215–238.

Department of Mathematics Tokyo Metropolitan University
Minami-Osawa 1-1, Hachioji, Tokyo 192-03, Japan
E-mail: m-kuri@comp.metro-u.ac.jp

Department of Mathematics University of Nottingham
Nottingham NG7 2RD England
E-mail: ibf@maths.nott.ac.uk

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields





ISSN 1464-8997 (on line) 1464-8989 (printed) 43

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Part I, section 4, pages 43–51

4. Cohomological symbol
for henselian discrete valuation fields

of mixed characteristic

Jinya Nakamura

4.1. Cohomological symbol map

Let K be a field. If m is prime to the characteristic of K , there exists an isomorphism

h1,K :K∗/m→ H1(K,µm)

supplied by Kummer theory. Taking the cup product we get

(K∗/m)q → Hq(K,Z/m(q))

and this factors through (by [T])

hq,K :Kq(K)/m→ Hq(K,Z/m(q)).

This is called the cohomological symbol or norm residue homomorphism.

Milnor–Bloch–Kato Conjecture. For every field K and every positive integer m
which is prime to the characteristic of K the homomorphism hq,K is an isomorphism.

This conjecture is shown to be true in the following cases:
(i) K is an algebraic number field or a function field of one variable over a finite field

and q = 2, by Tate [T].
(ii) Arbitrary K and q = 2, by Merkur’ev and Suslin [MS1].
(iii) q = 3 and m is a power of 2, by Rost [R], independently by Merkur’ev and

Suslin [MS2].
(iv) K is a henselian discrete valuation field of mixed characteristic (0, p) and m is a

power of p, by Bloch and Kato [BK].
(v) (K , q ) arbitrary and m is a power of 2, by Voevodsky [V].

For higher dimensional local fields theory Bloch–Kato’s theorem is very important
and the aim of this text is to review its proof.
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Theorem (Bloch–Kato). Let K be a henselian discrete valuation fields of mixed char-
acteristic (0, p) (i.e., the characteristic of K is zero and that of the residue field of K
is p > 0 ), then

hq,K :Kq(K)/pn −→ Hq(K,Z/pn(q))

is an isomorphism for all n.

Till the end of this section let K be as above, k = kK the residue field of K .

4.2. Filtration on Kq(K)

Fix a prime element π of K .

Definition.

UmKq(K) =

{
Kq(K), m = 0

〈{1 +Mm
K} ·Kq−1(K)〉 , m > 0.

Put grmKq(K) = UmKq(K)/Um+1Kq(K).

Then we get an isomorphism by [FV, Ch. IX sect. 2]

Kq(k)⊕Kq−1(k)
ρ0−→ gr0Kq(K)

ρ0
(
{x1, . . . , xq} , {y1, . . . , yq−1}

)
= {x̃1, . . . , x̃q} + {ỹ1, . . . , ỹq−1, π}

where x̃ is a lifting of x. This map ρ0 depends on the choice of a prime element π of
K .

For m > 1 there is a surjection

Ωq−1
k ⊕Ωq−2

k

ρm−−→ grmKq(K)

defined by (
x
dy1

y1
∧ · · · ∧ dyq−1

yq−1
, 0

)
7−→{1 + πmx̃, ỹ1, . . . , ỹq−1} ,(

0, x
dy1

y1
∧ · · · ∧ dyq−2

yq−2

)
7−→{1 + πmx̃, ỹ1, . . . , ỹq−2, π} .

Definition.

kq(K) = Kq(K)/p, hq(K) = Hq(K,Z/p(q)),

Umkq(K) = im(UmKq(K)) in kq(K), Umh
q(K) = hq,K(Umkq(K)),

grmh
q(K) = Umh

q(K)/Um+1h
q(K).
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Proposition. Denote νq(k) = ker(Ωq
k

1−C−1

−−−−→ Ωq
k/dΩq−1

k ) where C−1 is the inverse
Cartier operator:

x
dy1

y1
∧ · · · ∧ dyq

yq
7−→ xp

dy1

y1
∧ · · · ∧ dyq

yq
.

Put e′ = pe/(p− 1), where e = vK (p).

(i) There exist isomorphisms νq(k) → kq(k) for any q; and the composite map
denoted by ρ̃0

ρ̃0: νq(k)⊕ νq−1(k) →̃ kq(k)⊕ kq−1(k) →̃ gr0kq(K)

is also an isomorphism.
(ii) If 1 6 m < e′ and p - m, then ρm induces a surjection

ρ̃m: Ωq−1
k → grmkq(K).

(iii) If 1 6 m < e′ and p | m, then ρm factors through

ρ̃m: Ωq−1
k /Zq−1

1 ⊕Ωq−2
k /Zq−2

1 → grmkq(K)

and ρ̃m is a surjection. Here we denote Zq1 = Z1Ωq
k = ker(d: Ωq

k → Ωq+1
k ).

(iv) If m = e′ ∈ Z, then ρe′ factors through

ρ̃e′ : Ωq−1
k /(1 + aC)Zq−1

1 ⊕Ωq−2
k /(1 + aC)Zq−2

1 → gre′kq(K)

and ρ̃e′ is a surjection.
Here a is the residue class of pπ−e , and C is the Cartier operator

xp
dy1

y1
∧ · · · ∧ dyq

yq
7→ x

dy1

y1
∧ · · · ∧ dyq

yq
, dΩq−1

k → 0.

(v) If m > e′ , then grmkq(K) = 0.

Proof. (i) follows from Bloch–Gabber–Kato’s theorem (subsection 2.4). The other
claims follow from calculations of symbols.

Definition. Denote the left hand side in the definition of ρ̃m by Gqm . We denote

the composite map Gqm
ρ̃m−−→ grmkq(K)

hq,K−−−→ grmhq(K) by ρm; the latter is also
surjective.
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4.3

In this and next section we outline the proof of Bloch–Kato’s theorem.

4.3.1. Norm argument.

We may assume ζp ∈ K to prove Bloch–Kato’s theorem.
Indeed, |K(ζp) : K| is a divisor of p − 1 and therefore is prime to p. There exists
a norm homomorphism NL/K :Kq(L) → Kq(K) (see [BT, Sect. 5]) such that the
following diagram is commutative:

Kq(K)/pn −−−−→ Kq(L)/pn
NL/K−−−−→ Kq(K)/pnyhq,K yhq,L yhq,K

Hq(K,Z/pn(q))
res−−−−→ Hq(L,Z/pn(q))

cor−−−−→ Hq(K,Z/pn(q))

where the left horizontal arrow of the top row is the natural map, and res (resp. cor )
is the restriction (resp. the corestriction). The top row and the bottom row are both
multiplication by |L : K|, thus they are isomorphisms. Hence the bijectivity of hq,K
follows from the bijectivity of hq,L and we may assume ζp ∈ K .

4.3.2. Tate’s argument.

To prove Bloch–Kato’s theorem we may assume that n = 1.
Indeed, consider the cohomological long exact sequence

· · · → Hq−1(K,Z/p(q))
δ−→ Hq(K,Z/pn−1(q))

p−→ Hq(K,Z/pn(q))→ . . .

which comes from the Bockstein sequence

0 −→ Z/pn−1 p−→ Z/pn mod p−−−→ Z/p −→ 0.

We may assume ζp ∈ K , so Hq−1(K,Z/p(q)) ' hq−1(K) and the following diagram
is commutative (cf. [T, §2]):

kq−1(K)
{∗,ζp}−−−−→ Kq(K)/pn−1 p−−−−→ Kq(K)/pn

mod p−−−−→ kq(K)yhq−1,K hq,K

y hq,K

y hq,K

y
hq−1(K)

∪ζp−−−−→ Hq(K,Z/pn−1(q))
p−−−−→ Hq(K,Z/pn(q))

mod p−−−−→ hq(K).

The top row is exact except at Kq(K)/pn−1 and the bottom row is exact. By induction
on n, we have only to show the bijectivity of hq,K : kq(K)→ hq(K) for all q in order
to prove Bloch–Kato’s theorem.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Part I. Section 4. Cohomological symbol for henselian discrete valuation field 47

4.4. Bloch–Kato’s Theorem

We review the proof of Bloch–Kato’s theorem in the following four steps.

I ρm: grmkq(K)→ grmhq(K) is injective for 1 6 m < e′ .

II ρ0: gr0kq(K)→ gr0h
q(K) is injective.

III hq(K) = U0h
q(K) if k is separably closed.

IV hq(K) = U0h
q(K) for general k.

4.4.1. Step I.

Injectivity of ρm is preserved by taking inductive limit of k. Thus we may assume
k is finitely generated over Fp of transcendence degree r < ∞. We also assume
ζp ∈ K . Then we get

gre′h
r+2(K) = Ue′h

r+2(K) 6= 0.

For instance, if r = 0, then K is a local field and Ue′h
2(K) = p Br(K) = Z/p. If

r > 1, one can use a cohomological residue to reduce to the case of r = 0. For more
details see [K1, Sect. 1.4] and [K2, Sect. 3].

For 1 6 m < e′ , consider the following diagram:

Gqm ×G
r+2−q
e′−m

ρm×ρe′−m−−−−−−−→ grmhq(K)⊕ gre′−mhr+2−q(K)

ϕm

y cup product

y
Ωr
k/dΩr−1

k → Gr+2
e′

ρe′−−−−→ gre′hr+2(K)

where ϕm is, if p - m, induced by the wedge product Ωq−1
k ×Ωr+1−q

k → Ωr
k/dΩr−1

k ,
and if p | m,

Ωq−1
k

Zq−1
1

⊕ Ωq−2
k

Zq−2
1

× Ωr+1−q
k

Zr+1−q
1

⊕ Ωr−q
k

Zr−q1

ϕm−−→ Ωq
k/dΩq−1

k

(x1, x2, y1, y2) 7−→ x1 ∧ dy2 + x2 ∧ dy1,

and the first horizontal arrow of the bottom row is the projection

Ωq
k/dΩq−1

k −→ Ωr
k/(1 + aC)Zr1 = Gr+2

e′

since Ωr+1
k = 0 and dΩq−1

k ⊂ (1 + aC)Zr1 . The diagram is commutative, Ωr
k/dΩr−1

k

is a one-dimensional kp-vector space and ϕm is a perfect pairing, the arrows in the
bottom row are both surjective and gre′hr+2(K) 6= 0, thus we get the injectivity of ρm .
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4.4.2. Step II.

Let K ′ be a henselian discrete valuation field such that K ⊂ K ′ , e(K ′|K) = 1
and kK′ = k(t) where t is an indeterminate. Consider

gr0hq(K)
∪1+πt−−−−→ gr1h

q+1(K ′).

The right hand side is equal to Ωq
k(t) by (I). Let ψ be the composite

νq(k)⊕ νq−1(k)
ρ0−→ gr0h

q(K)
∪1+πt−−−−→ gr1h

q+1(K ′) ' Ωq
k(t).

Then

ψ

(
dx1

x1
∧ · · · ∧ dxq

xq
, 0

)
= t

dx1

x1
∧ · · · ∧ dxq

xq
,

ψ

(
0,
dx1

x1
∧ · · · ∧ dxq−1

xq−1

)
= ±dt ∧ dx1

x1
∧ · · · ∧ dxq−1

xq−1
.

Since t is transcendental over k, ψ is an injection and hence ρ0 is also an injection.

4.4.3. Step III.

Denote shq(K) = U0h
q(K) (the letter s means the symbolic part) and put

C(K) = hq(K)/shq(K).

Assume q > 2. The purpose of this step is to show C(K) = 0. Let K̃ be a henselian
discrete valuation field with algebraically closed residue field k

K̃
such that K ⊂ K̃ ,

k ⊂ k
K̃

and the valuation of K is the induced valuation from K̃ . By Lang [L], K̃
is a C1-field in the terminology of [S]. This means that the cohomological dimension
of K̃ is one, hence C(K̃) = 0. If the restriction C(K) → C(K̃) is injective then we
get C(K) = 0. To prove this, we only have to show the injectivity of the restriction
C(K)→ C(L) for any L = K(b1/p) such that b ∈ O∗K and b /∈ kpK .

We need the following lemmas.

Lemma 1. Let K and L be as above. Let G = Gal(L/K) and let shq(L)G (resp.
shq(L)G ) be G-invariants (resp. G-coinvariants ). Then

(i) shq(K)
res−→ shq(L)G

cor−→ shq(K) is exact.
(ii) shq(K)

res−→ shq(L)G
cor−→ shq(K) is exact.

Proof. A nontrivial calculation with symbols, for more details see ([BK, Prop. 5.4].

Lemma 2. Let K and L be as above. The following conditions are equivalent:

(i) hq−1(K)
res−→ hq−1(L)G

cor−→ hq−1(K) is exact.

(ii) hq−1(K)
∪b−→ hq(K)

res−→ hq(L) is exact.
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Proof. This is a property of the cup product of Galois cohomologies for L/K . For
more details see [BK, Lemma 3.2].

By induction on q we assume shq−1(K) = hq−1(K). Consider the following
diagram with exact rows:

hq−1(K)

∪b
y

0 −−−−→ shq(K) −−−−→ hq(K) −−−−→ C(K) −−−−→ 0

res

y res

y res

y
0 −−−−→ shq(L)G −−−−→ hq(L)G −−−−→ C(L)G

cor

y cor

y
0 −−−−→ shq(K) −−−−→ hq(K).

By Lemma 1 (i) the left column is exact. Furthermore, due to the exactness of the
sequence of Lemma 1 (ii) and the inductional assumption we have an exact sequence

hq−1(K)
res−→ hq−1(L)G −→ hq−1(K).

So by Lemma 2

hq−1(K)
∪b−→ hq(K)

res−→ hq(L)

is exact. Thus, the upper half of the middle column is exact. Note that the lower half of
the middle column is at least a complex because the composite map cor ◦ res is equal to
multiplication by |L : K| = p. Chasing the diagram, one can deduce that all elements
of the kernel of C(K) → C(L)G come from hq−1(K) of the top group of the middle
column. Now hq−1(K) = shq−1(K), and the image of

shq−1(K)
∪b−→ hq(K)

is also included in the symbolic part shq(K) in hq(K). Hence C(K)→ C(L)G is an
injection. The claim is proved.

4.4.4. Step IV.

We use the Hochschild–Serre spectral sequence

Hr(Gk, h
q(Kur)) =⇒ hq+r(K).

For any q,

Ωq
ksep ' Ωq

k ⊗k ksep, Z1Ωq
ksep ' Z1Ωq

k ⊗kp (ksep)p.
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Thus, grmhq(Kur) ' grmhq(K)⊗kp (ksep)p for 1 6 m < e′ . This is a direct sum of
copies of ksep, hence we have

H0(Gk, U1h
q(Kur)) ' U1h

q(K)/Ue′h
q(K),

Hr(Gk, U1h
q(Kur)) = 0

for r > 1 because Hr(Gk, ksep) = 0 for r > 1. Furthermore, taking cohomologies of
the following two exact sequences

0 −→ U1h
q(Kur) −→ hq(Kur) −→ νqksep ⊕ νq−1

ksep −→ 0,

0 −→ νqksep
C−→ Z1Ωq

ksep
1−C−1

−−−−→ Ωq
ksep −→ 0,

we have

H0(Gk, h
q(Kur)) ' shq(K)/Ue′h

q(K) ' kq(K)/Ue′k
q(K),

H1(Gk, h
q(Kur)) ' H1(Gk, ν

q
ksep ⊕ νq−1

ksep )

' (Ωq
k/(1− C)Z1Ωq

k)⊕ (Ωq−1
k /(1− C)Z1Ωq−1

k ),

Hr(Gk, h
q(Kur)) = 0

for r > 2, since the cohomological p-dimension of Gk is less than or equal to one (cf.
[S, II-2.2]). By the above spectral sequence, we have the following exact sequence

0 −→ (Ωq−1
k /(1 − C)Zq−1

1 )⊕ (Ωq−2
k /(1− C)Zq−2

1 ) −→ hq(K)

−→ kq(K)/Ue′kq(K) −→ 0.

Multiplication by the residue class of (1− ζp)p/πe
′

gives an isomorphism

(Ωq−1
k /(1− C)Zq−1

1 )⊕ (Ωq−2
k /(1− C)Zq−2

1 )

−→ (Ωq−1
k /(1 + aC)Zq−1

1 )⊕ (Ωq−2
k /(1 + aC)Zq−2

1 ) = gre′kq(K),

hence we get hq(K) ' kq(K).
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5. Kato’s higher local class field theory

Masato Kurihara

5.0. Introduction

We first recall the classical local class field theory. Let K be a finite extension of Qp
or Fq((X)). The main theorem of local class field theory consists of the isomorphism
theorem and existence theorem. In this section we consider the isomorphism theorem.

An outline of one of the proofs is as follows. First, for the Brauer group Br(K), an
isomorphism

inv: Br(K) →̃Q/Z
is established; it mainly follows from an isomorphism

H1(F,Q/Z) →̃Q/Z
where F is the residue field of K .

Secondly, we denote by XK = Homcont(GK ,Q/Z) the group of continuous homo-
morphisms from GK = Gal(K/K) to Q/Z. We consider a pairing

K∗ ×XK −→ Q/Z

(a, χ) 7→ inv(χ, a)

where (χ, a) is the cyclic algebra associated with χ and a. This pairing induces a
homomorphism

ΨK :K∗ −→ Gal(Kab/K) = Hom(XK ,Q/Z)

which is called the reciprocity map.
Thirdly, for a finite abelian extension L/K , we have a diagram

L∗
ΨL−−−−→ Gal(Lab/L)

N

y y
K∗

ΨK−−−−→ Gal(Kab/K)
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which is commutative by the definition of the reciprocity maps. Here, N is the norm
map and the right vertical map is the canonical map. This induces a homomorphism

ΨL/K :K∗/NL∗ −→ Gal(L/K).

The isomorphism theorem tells us that the above map is bijective.
To show the bijectivity of ΨL/K , we can reduce to the case where |L : K| is a

prime `. In this case, the bijectivity follows immediately from a famous exact sequence

L∗
N−→ K∗

∪χ−−→ Br(K)
res−→ Br(L)

for a cyclic extension L/K (where ∪χ is the cup product with χ, and res is the
restriction map).

In this section we sketch a proof of the isomorphism theorem for a higher dimensional
local field as an analogue of the above argument. For the existence theorem see the
paper by Kato in this volume and subsection 10.5.

5.1. Definition of Hq(k)

In this subsection, for any field k and q > 0, we recall the definition of the cohomology
group Hq(k) ([K2], see also subsections 2.1 and 2.2 and A1 in the appendix to section 2).
If char (k) = 0, we define Hq(k) as a Galois cohomology group

Hq(k) = Hq(k,Q/Z(q − 1))

where (q − 1) is the (q − 1) st Tate twist.
If char (k) = p > 0, then following Illusie [I] we define

Hq(k,Z/pn(q − 1)) = H1(k,WnΩq−1
ksep,log).

We can explicitly describe Hq(k,Z/pn(q − 1)) as the group isomorphic to

Wn(k)⊗ (k∗)⊗(q−1)/J

where Wn(k) is the ring of Witt vectors of length n, and J is the subgroup generated
by elements of the form

w ⊗ b1 ⊗ · · · ⊗ bq−1 such that bi = bj for some i 6= j , and
(0, . . . , 0, a, 0, . . . , 0)⊗ a⊗ b1 ⊗ · · · ⊗ bq−2, and
(F− 1)(w) ⊗ b1 ⊗ · · · ⊗ bq−1 ( F is the Frobenius map on Witt vectors).

We define Hq(k,Qp/Zp(q − 1)) = lim−→Hq(k,Z/pn(q − 1)), and define

Hq(k) =
⊕
`

Hq(k,Q`/Z` (q − 1))

where ` ranges over all prime numbers. (For ` 6= p, the right hand side is the usual
Galois cohomology of the (q − 1) st Tate twist of Q`/Z` . )
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Then for any k we have

H1(k) = Xk (Xk is as in 5.0, the group of characters),

H2(k) = Br(k) (Brauer group).

We explain the second equality in the case of char (k) = p > 0. The relation between
the Galois cohomology group and the Brauer group is well known, so we consider only
the p-part. By our definition,

H2(k,Z/pn(1)) = H1(k,WnΩ1
ksep,log).

From the bijectivity of the differential symbol (Bloch–Gabber–Kato’s theorem in sub-
section A2 in the appendix to section 2), we have

H2(k,Z/pn(1)) = H1(k, (ksep)∗/((ksep)∗)p
n

).

From the exact sequence

0 −→ (ksep)∗
pn−→ (ksep)∗ −→ (ksep)∗/((ksep)∗)p

n

−→ 0

and an isomorphism Br(k) = H2(k, (ksep)∗), H2(k,Z/pn(1)) is isomorphic to the
pn -torsion points of Br(k). Thus, we get H2(k) = Br(k).

If K is a henselian discrete valuation field with residue field F , we have a canonical
map

iKF :Hq(F ) −→ Hq(K).

If char (K) = char (F ), this map is defined naturally from the definition of Hq (for
the Galois cohomology part, we use a natural map Gal(Ksep/K) −→ Gal(Kur/K) =
Gal(F sep/F ) ) . If K is of mixed characteristics (0, p), the prime-to- p-part is defined
naturally and the p-part is defined as follows. For the class [w ⊗ b1 ⊗ · · · ⊗ bq−1] in
Hq(F,Z/pn(q − 1)) we define iKF ([w ⊗ b1 ⊗ · · · ⊗ bq−1]) as the class of

i(w) ⊗ b̃1 ⊗ · · · ⊗ b̃q−1

in H1(K,Z/pn(q − 1)), where i:Wn(F ) → H1(F,Z/pn) → H1(K,Z/pn) is the
composite of the map given by Artin–Schreier–Witt theory and the canonical map, and
b̃i is a lifting of bi to K .

Theorem (Kato [K2, Th. 3]). Let K be a henselian discrete valuation field, π be a
prime element, and F be the residue field. We consider a homomorphism

i = (iKF , i
K
F ∪ π):Hq(F )⊕Hq−1(F ) −→ Hq(K)

(a, b) 7→ iKF (a) + iKF (b) ∪ π

where iKF (b) ∪ π is the element obtained from the pairing

Hq−1(K)×K∗ −→ Hq(K)
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which is defined by Kummer theory and the cup product, and the explicit description
of Hq(K) in the case of char (K) > 0. Suppose char (F ) = p. Then i is bijective in
the prime-to- p component. In the p-component, i is injective and the image coincides
with the p-component of the kernel of Hq(K)→ Hq(Kur) where Kur is the maximal
unramified extension of K .

From this theorem and Bloch–Kato’s theorem in section 4, we obtain

Corollary. Assume that char (F ) = p > 0, |F : F p| = pd−1 , and that there is an
isomorphism Hd(F ) →̃Q/Z.

Then, i induces an isomorphism

Hd+1(K) →̃Q/Z.

A typical example which satisfies the assumptions of the above corollary is a d-di-
mensional local field (if the last residue field is quasi-finite (not necessarily finite), the
assumptions are satisfied).

5.2. Higher dimensional local fields

We assume that K is a d-dimensional local field, and F is the residue field of K ,
which is a (d − 1)-dimensional local field. Then, by the corollary in the previous
subsection and induction on d, there is a canonical isomorphism

inv:Hd+1(K) →̃Q/Z.

This corresponds to the first step of the proof of the classical isomorphism theorem
which we described in the introduction.

The cup product defines a pairing

Kd(K)×H1(K) −→ Hd+1(K) ' Q/Z.

This pairing induces a homomorphism

ΨK :Kd(K) −→ Gal(Kab/K) ' Hom(H1(K),Q/Z)

which we call the reciprocity map. Since the isomorphism inv:Hd(K) −→ Q/Z
is naturally constructed, for a finite abelian extension L/K we have a commutative
diagram

Hd+1(L)
invL−−−−→ Q/Z

cor

y y
Hd+1(K)

invK−−−−→ Q/Z.
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So the diagram

Kd(L)
ΨL−−−−→ Gal(Lab/L)

N

y y
Kd(K)

ΨK−−−−→ Gal(Kab/K)

is commutative where N is the norm map and the right vertical map is the canonical
map. So, as in the classical case, we have a homomorphism

ΨL/K :Kd(K)/NKd(L) −→ Gal(L/K).

Isomorphism Theorem. ΨL/K is an isomorphism.

We outline a proof. We may assume that L/K is cyclic of degree `. As in the
classical case in the introduction, we may study a sequence

Kd(L)
N−→ Kd(K)

∪χ−−→ Hd+1(K)
res−→ Hd+1(L),

but here we describe a more elementary proof.

First of all, using the argument in [S, Ch.5] by calculation of symbols one can obtain

|Kd(K) : NKd(L)| 6 `.

We outline a proof of this inequality.
It is easy to see that it is sufficient to consider the case of prime `. (For another

calculation of the index of the norm group see subsection 6.7).
Recall that Kd(K) has a filtration UmKd(K) as in subsection 4.2. We consider

grmKd(K) = UmKd(K)/Um+1Kd(K).
If L/K is unramified, the norm map N :Kd(L) → Kd(K) induces surjective ho-

momorphisms grmKd(L)→ grmKd(K) for all m > 0. So U1Kd(K) is in NKd(L).
If we denote by FL and F the residue fields of L and K respectively, the norm
map induces a surjective homomorphism Kd(FL)/`→ Kd(F )/` because Kd(F )/` is
isomorphic to Hd(F,Z/`(d)) (cf. sections 2 and 3) and the cohomological dimension
of F [K2, p.220] is d. Since gr0Kd(K) = Kd(F )⊕Kd−1(F ) (see subsection 4.2), the
above implies that Kd(K)/NKd(L) is isomorphic to Kd−1(F )/NKd−1(FL), which
is isomorphic to Gal(FL/F ) by class field theory of F (we use induction on d ).
Therefore |Kd(K) : NKd(L)| = `.

If L/K is totally ramified and ` is prime to char (F ), by the same argument (cf.
the argument in [S, Ch.5]) as above, we have U1Kd(K) ⊂ NKd(L). Let πL be a
prime element of L, and πK = NL/K (πL). Then the element {α1, ..., αd−1, πK}
for αi ∈ K∗ is in NKd(L), so Kd(K)/NKd(L) is isomorphic to Kd(F )/`, which
is isomorphic to Hd(F,Z/`(d)), so the order is `. Thus, in this case we also have
|Kd(K) : NKd(L)| = `.
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Hence, we may assume L/K is not unramified and is of degree ` = p = char (F ).
Note that Kd(F ) is p-divisible because of Ωd

F = 0 and the bijectivity of the differential
symbol.

Assume that L/K is totally ramified. Let πL be a prime element of L, and σ a
generator of Gal(L/K), and put a = σ(πL)π−1

L −1, b = NL/K (a), and vK (b−1) = i.
We study the induced maps grψ(m)Kd(L)→ grmKd(K) from the norm map N on the
subquotients by the argument in [S, Ch.5]. We have Ui+1Kd(K) ⊂ NKd(L), and can
show that there is a surjective homomorphism (cf. [K1, p.669])

Ωd−1
F −→ Kd(K)/NKd(L)

such that

xd log y1 ∧ ... ∧ d log yd−1 7→ {1 + x̃b, ỹ1, ..., ỹd−1}
( x̃, ỹi are liftings of x and yi ). Furthermore, from

NL/K (1 + xa) ≡ 1 + (xp − x)b (mod Ui+1K
∗),

the above map induces a surjective homomorphism

Ωd−1
F /

(
(F− 1)Ωd−1

F + dΩd−2
F

)
−→ Kd(K)/NKd(L).

The source group is isomorphic to Hd(F,Z/p(d − 1)) which is of order p. So we
obtain |Kd(K) : NKd(L)| 6 p.

Now assume that L/K is ferociously ramified, i.e. FL/F is purely inseparable of
degree p. We can use an argument similar to the previous one. Let h be an element of
OL such that FL = F (h) (h = h mod ML ). Let σ be a generator of Gal(L/K), and
put a = σ(h)h−1 − 1, and b = NL/K (a). Then we have a surjective homomorphism
(cf. [K1, p.669])

Ωd−1
F /

(
(F− 1)Ωd−1

F + dΩd−2
F

)
−→ Kd(K)/NKd(L)

such that

xd log y1 ∧ ... ∧ d log yd−2 ∧ d logNFL/F (h) 7→ {1 + x̃b, ỹ1, ..., ỹd−2, π}

(π is a prime element of K ). So we get |Kd(K) : NKd(L)| 6 p.

So in order to obtain the bijectivity of ΨL/K , we have only to check the surjectivity.
We consider the most interesting case char (K) = 0, char (F ) = p > 0, and ` = p. To
show the surjectivity of ΨL/K , we have to show that there is an element x ∈ Kd(K)
such that χ ∪ x 6= 0 in Hd+1(K) where χ is a character corresponding to L/K . We
may assume a primitive p-th root of unity is in K . Suppose that L is given by an
equation Xp = a for some a ∈ K \ Kp. By Bloch–Kato’s theorem (bijectivity of
the cohomological symbols in section 4), we identify the kernel of multiplication by p
on Hd+1(K) with Hd+1(K,Z/p(d)), and with Kd+1(K)/p. Then our aim is to show
that there is an element x ∈ Kd(K) such that {x, a} 6= 0 in kd+1(K) = Kd+1(K)/p.
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(Remark. The pairing K1(K)/p × Kd(K)/p → Kd+1(K)/p coincides up to a sign
with Vostokov’s symbol defined in subsection 8.3 and the latter is non-degenerate which
provides an alternative proof).

We use the notation of section 4. By the Proposition in subsection 4.2, we have

Kd+1(K)/p = kd+1(K) = Ue′kd+1(K)

where e′ = vK(p)p/(p − 1). Furthermore, by the same proposition there is an isomor-
phism

Hd(F,Z/p(d− 1)) = Ωd−1
F /

(
(F− 1)Ωd−1

F + dΩd−2
F

)
−→ kd+1(K)

such that

xd log y1 ∧ ... ∧ d log yd−1 7→ {1 + x̃b, ỹ1, ..., ỹd−1, π}

where π is a uniformizer, and b is a certain element of K such that vK(b) = e′. Note
that Hd(F,Z/p(d− 1)) is of order p.

This shows that for any uniformizer π of K , and for any lifting t1, ..., td−1 of a
p-base of F , there is an element x ∈ OK such that

{1 + πe
′
x, t1, ..., td−1, π} 6= 0

in kd+1(K).
If the class of a is not in U1k1(K), we may assume a is a uniformizer or a is a

part of a lifting of a p-base of F . So it is easy to see by the above property that there
exists an x such that {a, x} 6= 0. If the class of a is in Ue′k1(K), it is also easily seen
from the description of Ue′kd+1(K) that there exists an x such that {a, x} 6= 0.

Suppose a ∈ Uik1(K) \ Ui+1k1(K) such that 0 < i < e′ . We write a = 1 + πia′

for a prime element π and a′ ∈ O∗K . First, we assume that p does not divide i. We
use a formula (which holds in K2(K) )

{1− α, 1 − β} = {1− αβ,−α} + {1− αβ, 1 − β} − {1− αβ, 1− α}

for α 6= 0, 1, and β 6= 1, α−1. From this formula we have in k2(K)

{1 + πia′, 1 + πe
′−ib} = {1 + πe

′
a′b, πia′}

for b ∈ OK . So for a lifting t1, ..., td−1 of a p-base of F we have

{1 + πia′, 1 + πe
′−ib, t1, ..., td−1} = {1 + πe

′
a′b, πi, t1, ..., td−1}

= i{1 + πe
′
a′b, π, t1, ..., td−1}

in kd+1(K) (here we used {1 + πe
′
x, u1, ..., ud} = 0 for any units ui in kd+1(K)

which follows from Ωd
F = 0 and the calculation of the subquotients grmkd+1(K) in

subsection 4.2). So we can take b ∈ OK such that the above symbol is non-zero in
kd+1(K). This completes the proof in the case where i is prime to p.
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Next, we assume p divides i. We also use the above formula, and calculate

{1 + πia′, 1 + (1 + bπ)πe
′−i−1, π} = {1 + πe

′−1a′(1 + bπ), 1 + bπ, π}
= {1 + πe

′
a′b(1 + bπ), a′(1 + bπ), π}.

Since we may think of a′ as a part of a lifting of a p-base of F , we can take some
x = {1 + (1 + bπ)πe

′−i−1, π, t1, ..., td−2} such that {a, x} 6= 0 in kd+1(K).

If ` is prime to char (F ), for the extension L/K obtained by an equation X` = a,
we can find x such that {a, x} 6= 0 in Kd+1(K)/` in the same way as above, using
Kd+1(K)/` = gr0Kd+1(K)/` = Kd(F )/`. In the case where char (K) = p > 0 we
can use Artin–Schreier theory instead of Kummer theory, and therefore we can argue
in a similar way to the previous method. This completes the proof of the isomorphism
theorem.

Thus, the isomorphism theorem can be proved by computing symbols, once we
know Bloch–Kato’s theorem. See also a proof in [K1].
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6. Topological Milnor K -groups of higher local fields

Ivan Fesenko

Let F = Kn, . . . ,K0 = Fq be an n-dimensional local field. We use the notation of
section 1.

In this section we describe properties of certain quotients K top(F ) of the Milnor
K -groups of F by using in particular topological considerations. This is an updated
and simplified summary of relevant results in [F1–F5]. Subsection 6.1 recalls well-
known results on K -groups of classical local fields. Subsection 6.2 discusses so
called sequential topologies which are important for the description of subquotients of
K top(F ) in terms of a simpler objects endowed with sequential topology (Theorem 1
in 6.6 and Theorem 1 in 7.2 of section 7). Subsection 6.3 introduces K top(F ), 6.4
presents very useful pairings (including Vostokov’s symbol which is discussed in more
detail in section 8), subsection 6.5–6.6 describe the structure of K top(F ) and 6.7 deals
with the quotients K(F )/l; finally, 6.8 presents various properties of the norm map on
K -groups. Note that subsections 6.6–6.8 are not required for understanding Parshin’s
class field theory in section 7.

6.0. Introduction

Let A be a commutative ring and let X be an A-module endowed with some topology.
A set {xi}i∈I of elements of X is called a set of topological generators of X if
the sequential closure of the submodule of X generated by this set coincides with X .
A set of topological generators is called a topological basis if for every j ∈ I and
every non-zero a ∈ A axj doesn’t belong to the sequential closure of the submodule
generated by {xi}i 6=j .

Let I be a countable set. If {xi} is set of topological generators of X then every
element x ∈ X can be expressed as a convergent sum

∑
aixi with some ai ∈ A (note

that it is not necessarily the case that for all ai ∈ A the sum
∑
aixi converges). This

expression is unique if {xi} is a topological basis of X ; then provided addition in X
is sequentially continuous, we get

∑
aixi +

∑
bixi =

∑
(ai + bi)xi .
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Recall that in the one-dimensional case the group of principal units U1,F is a
multiplicative Zp-module with finitely many topological generators if char (F ) = 0
and infinitely many topological generators if char (F ) = p (see for instance [FV, Ch. I
§6]). This representation of U1,F and a certain specific choice of its generators is quite
important if one wants to deduce the Shafarevich and Vostokov explicit formulas for
the Hilbert symbol (see section 8).

Similarly, the group VF of principal units of an n-dimensional local field F is
topologically generated by 1 + θtinn . . . t

i1
1 , θ ∈ µq−1 (see subsection 1.4.2). This

leads to a natural suggestion to endow the Milnor K -groups of F with an appropriate
topology and use the sequential convergence to simplify calculations in K -groups.

On the other hand, the reciprocity map

ΨF :Kn(F )→ Gal(F ab/F )

is not injective in general, in particular ker(ΨF ) ⊃
⋂
l>1 lKn(F ) 6= 0. So the Milnor

K -groups are too large from the point of view of class field theory, and one can pass
to the quotient Kn(F )/

⋂
l>1 lKn(F ) without loosing any arithmetical information

on F . The latter quotient coincides with K
top
n (F ) (see subsection 6.6) which is

defined in subsection 6.3 as the quotient of Kn(F ) by the intersection Λn(F ) of all
neighbourhoods of 0 in Kn(F ) with respect to a certain topology. The existence theorem
in class field theory uses the topology to characterize norm subgroups NL/FKn(L) of
finite abelian extensions L of F as open subgroups of finite index of Kn(F ) (see
subsection 10.5). As a corollary of the existence theorem in 10.5 one obtains that in fact⋂

l>1

lKn(F ) = Λn(F ) = ker(ΨF ).

However, the class of open subgroups of finite index of Kn(F ) can be defined without
introducing the topology on Kn(F ), see the paper of Kato in this volume which presents
a different approach.

6.1. K -groups of one-dimensional local fields

The structure of the Milnor K -groups of a one-dimensional local field F is completely
known.

Recall that using the Hilbert symbol and multiplicative Zp-basis of the group of
principal units of F one obtains that

K2(F ) ' TorsK2(F )⊕mK2(F ), where m = |TorsF ∗| , TorsK2(F ) ' Z/m

and mK2(F ) is an uncountable uniquely divisible group (Bass,Tate, Moore, Merkur’ev;
see for instance [FV, Ch. IX §4]). The groups Km(F ) for m > 3 are uniquely divisible
uncountable groups (Kahn [Kn], Sivitsky [FV, Ch. IX §4]).
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6.2. Sequential topology

We need slightly different topologies from the topology of F and F ∗ introduced in
section 1.

Definition. Let X be a topological space with topology τ . Define its sequential
saturation λ:
a subset U of X is open with respect to λ if for every α ∈ U and a convergent
(with respect to τ ) sequence X 3 αi to α almost all αi belong to U . Then
αi −→

τ
α⇔ αi −→

λ
α.

Hence the sequential saturation is the strongest topology which has the same conver-
gent sequences and their limits as the original one. For a very elementary introduction
to sequential topologies see [S].

Definition. For an n-dimensional local field F denote by λ the sequential saturation
of the topology on F defined in section 1.

The topology λ is different from the old topology on F defined in section 1 for
n > 2: for example, if F = Fp ((t1)) ((t2)) then Y = F \

{
ti2t
−j
1 + t−i2 tj1 : i, j > 1

}
is open with respect to λ and is not open with respect to the topology of F defined in
section 1.

Let λ∗ on F ∗ be the sequential saturation of the topology τ on F ∗ defined in
section 1. It is a shift invariant topology.

If n = 1, the restriction of λ∗ on VF coincides with the induced from λ.
The following properties of λ (λ∗ ) are similar to those in section 1 and/or can be

proved by induction on dimension.

Properties.
(1) αi, βi −→

λ
0⇒ αi − βi −→

λ
0;

(2) αi, βi −→
λ∗

1⇒ αiβ
−1
i −→

λ∗
1;

(3) for every αi ∈ UF , αp
i

i −→
λ∗

1;

(4) multiplication is not continuous in general with respect to λ∗;
(5) every fundamental sequence with respect to λ (resp. λ∗ ) converges;
(6) VF and F ∗m are closed subgroups of F ∗ for every m > 1;
(7) The intersection of all open subgroups of finite index containing a closed subgroup

H coincides with H .

Definition. For topological spaces X1, . . . ,Xj define the ∗-product topology on X1×
· · · ×Xj as the sequential saturation of the product topology.
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6.3. K top-groups

Definition. Let λm be the strongest topology on Km(F ) such that subtraction in
Km(F ) and the natural map

ϕ: (F ∗)m → Km(F ), ϕ(α1, . . . , αm) = {(α1, . . . , αm}

are sequentially continuous. Then the topology λm coincides with its sequential
saturation. Put

Λm(F ) =
⋂

open neighbourhoods of 0.

It is straightforward to see that Λm(F ) is a subgroup of Km(F ).

Properties.
(1) Λm(F ) is closed: indeed Λm(F ) 3 xi → x implies that x = xi +yi with yi → 0,

so xi, yi → 0, hence x = xi + yi → 0, so x ∈ Λm(F ).
(2) Put V Km(F ) = 〈{VF } ·Km−1(F )〉 (VF is defined in subsection 1.1). Since the

topology with V Km(F ) and its shifts as a system of fundamental neighbourhoods
satisfies two conditions of the previous definition, one obtains that Λm(F ) ⊂
V Km(F ).

(3) λ1 = λ∗ .
Following the original approach of Parshin [P1] introduce now the following:

Definition. Set

K top
m (F ) = Km(F )/Λm(F )

and endow it with the quotient topology of λm which we denote by the same notation.

This new group K
top
m (F ) is sometimes called the topological Milnor K -group of

F .
If char (Kn−1) = p then K

top
1 = K1.

If char (Kn−1) = 0 then K
top
1 (K) 6= K1(K), since 1 +MKn (which is uniquely

divisible) is a subgroup of Λ1(K).

6.4. Explicit pairings

Explicit pairings of the Milnor K -groups of F are quite useful if one wants to study
the structure of K top-groups.

The general method is as follows. Assume that there is a pairing

〈 , 〉:A×B → Z/m
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of two Z/m-modules A and B. Assume that A is endowed with a topology with
respect to which it has topological generators αi where i runs over elements of a totally
ordered countable set I . Assume that for every j ∈ I there is an element βj ∈ B such
that

〈αj , βj〉 = 1 mod m, 〈αi, βj〉 = 0 mod m for all i > j .

Then if a convergent sum
∑
ciαi is equal to 0, assume that there is a minimal j with

non-zero cj and deduce that

0 =
∑

ci〈αi, βj〉 = cj ,

a contradiction. Thus, {αi} form a topological basis of A.
If, in addition, for every β ∈ B \ {0} there is an α ∈ A such that 〈α, β〉 6= 0, then

the pairing 〈 , 〉 is obviously non-degenerate.
Pairings listed below satisfy the assumptions above and therefore can be applied to

study the structure of quotients of the Milnor K -groups of F .

6.4.1. “Valuation map”.
Let ∂:Kr(Ks) → Kr−1(Ks−1) be the border homomorphism (see for example

[FV, Ch. IX §2]). Put

v = vF :Kn(F )
∂−→ Kn−1(Kn−1)

∂−→ . . .
∂−→ K0(K0) = Z, v({t1, . . . , tn}) = 1

for a system of local parameters t1, . . . , tn of F . The valuation map v doesn’t depend
on the choice of a system of local parameters.

6.4.2. Tame symbol.
Define

t:Kn(F )/(q − 1)× F ∗/F ∗ q−1 −→ Kn+1(F )/(q − 1) −→ F ∗q → µq−1, q = |K0|
by

Kn+1(F )/(q − 1)
∂−→ Kn(Kn−1)/(q − 1)

∂−→ . . .
∂−→ K1(K0)/(q − 1) = F ∗q → µq−1.

Here the map F ∗q → µq−1 is given by taking multiplicative representatives.
An explicit formula for this symbol (originally asked for in [P2] and suggested in

[F1]) is simple: let t1, . . . , tn be a system of local parameters of F and let v =
(v1, . . . , vn) be the associated valuation of rank n (see section 1 of this volume). For
elements α1, . . . , αn+1 of F ∗ the value t(α1, α2, . . . , αn+1) is equal to the (q − 1) th
root of unity whose residue is equal to the residue of

α
b1
1 . . . α

bn+1
n+1 (−1)b

in the last residue field Fq , where b =
∑
s,i<j vs(bi)vs(bj)b

s
i,j , bj is the determinant

of the matrix obtained by cutting off the j th column of the matrix A = (vi(αj)) with
the sign (−1)j−1, and bsi,j is the determinant of the matrix obtained by cutting off the
i th and j th columns and s th row of A.
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6.4.3. Artin–Schreier–Witt pairing in characteristic p .
Define, following [P2], the pairing

( , ]r:Kn(F )/pr ×Wr(F )/(F− 1)Wr(F )→Wr(Fp) ' Z/pr

by ( F is the map defined in the section, Some Conventions)

(α0, . . . , αn, (β0, . . . , βr)]r = TrK0/Fp (γ0, . . . , γr)

where the i th ghost component γ(i) is given by resK0 (β(i)α−1
1 dα1 ∧ · · · ∧α−1

n dαn).
For its properties see [P2, sect. 3]. In particular,

(1) for x ∈ Kn(F )

(x,V(β0, . . . , βr−1)]r = V(x, (β0, . . . , βr−1)]r−1

where as usual for a field K

V:Wr−1(K)→Wr(K), V(β0, . . . , βr−1) = (0, β0, . . . , βr−1);

(2) for x ∈ Kn(F )

(x,A(β0, . . . , βr)]r−1 = A(x, (β0, . . . , βr)]r

where for a field K

A:Wr(K)→Wr−1(K), A(β0, . . . , βr−1, βr) = (β0, . . . , βr−1).

(3) If Tr θ0 = 1 then
(
{t1, . . . , tn}, θ0

]
1 = 1. If il is prime to p then(

{1 + θtinn . . . t
i1
1 , t1, . . . , t̂l, . . . , tn}, θ0θ

−1i−1
l t
−i1
1 . . . t−inn ]1 = 1.

6.4.4. Vostokov’s symbol in characteristic 0.
Suppose that µpr 6 F ∗ and p > 2. Vostokov’s symbol

V ( , )r:Km(F )/pr ×Kn+1−m(F )/pr → Kn+1(F )/pr → µpr

is defined in section 8.3. For its properties see 8.3.

Each pairing defined above is sequentially continuous, so it induces the pairing of
K

top
m (F ).

6.5. Structure of K top(F ). I

Denote V K top
m (F ) =

〈
{VF } ·K top

m−1(F )
〉

. Using the tame symbol and valuation v as
described in the beginning of 6.4 it is easy to deduce that

Km(F ) ' V Km(F )⊕ Za(m) ⊕ (Z/(q − 1))b(m)
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with appropriate integer a(m), b(m) (see [FV, Ch. IX, §2]); similar calculations are
applicable to K

top
m (F ). For example, Za(m) corresponds to ⊕〈{tj1 , . . . , tjm}〉 with

1 6 j1 < · · · < jm 6 n.
To study V Km(F ) and V K top

m (F ) the following elementary equality is quite useful

{1− α, 1 − β} =
{
α, 1 +

αβ

1− α
}

+
{

1− β, 1 +
αβ

1− α
}
.

Note that v(αβ/(1 − α)) = v(α) + v(β) if v(α),v(β) > (0, . . . , 0).
For ε, η ∈ VF one can apply the previous formula to {ε, η} ∈ K top

2 (F ) and using
the topological convergence deduce that

{ε, η} =
∑
{ρi, ti}

with units ρi = ρi(ε, η) sequentially continuously depending on ε, η.
Therefore V K top

m (F ) is topologically generated by symbols{
1 + θtinn . . . t

i1
1 , tj1 . . . , tjm−1

}
, θ ∈ µq−1.

In particular, K top
n+2(F ) = 0.

Lemma.
⋂
l>1 lKm(F ) ⊂ Λm(F ).

Proof. First,
⋂
lKm(F ) ⊂ V Km(F ). Let x ∈ V Km(F ). Write

x =
∑{

αJ , tj1 , . . . , tjm−1

}
mod Λm(F ), αJ ∈ VF .

Then

prx =
∑{

αp
r

J

}
·
{
tj1 , . . . , tjm−1

}
+ λr, λr ∈ Λm(F ).

It remains to apply property (3) in 6.2.

6.6. Structure of K top(F ). II

This subsection 6.6 and the rest of this section are not required for understanding
Parshin’s class field theory theory of higher local fields of characteristic p which is
discussed in section 7.

The next theorem relates the structure of V K top
m (F ) with the structure of a simpler

object.

Theorem 1 ([F5, Th. 4.6]). Let char (Kn−1) = p. The homomorphism

g:
∏
J

VF → V Km(F ), (βJ ) 7→
∑

J={j1,...,jm−1}

{
βJ , tj1 , . . . , tjm−1

}
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induces a homeomorphism between
∏
VF/g

−1(Λm(F )) endowed with the quotient of
the ∗-topology and V K

top
m (F ); g−1(Λm(F )) is a closed subgroup.

Since every closed subgroup of VF is the intersection of some open subgroups of
finite index in VF (property (7) of 6.2), we obtain the following:

Corollary. Λm(F ) =
⋂

open subgroups of finite index in Km(F ).

Remarks. 1. If F is of characteristic p, there is a complete description of the structure
of K top

m (F ) in the language of topological generators and relations due to Parshin (see
subsection 7.2).

2. If char (Kn−1) = 0, then the border homomorphism in Milnor K -theory (see for
instance [FV, Ch. IX §2]) induces the homomorphism

V Km(F )→ V Km(Kn−1)⊕ V Km−1(Kn−1).

Its kernel is equal to the subgroup of V Km(F ) generated by symbols {u, . . . } with
u in the group 1 +MF which is uniquely divisible. So

V K top
m (F ) ' V K top

m (Kn−1)⊕ V K top
m−1(Kn−1)

and one can apply Theorem 1 to describe V K top
m (F ).

Proof of Theorem 1. Recall that every symbol {α1, . . . , αm} in K
top
m (F ) can be

written as a convergent sum of symbols {βJ , tj1 , . . . , tjm−1} with βJ sequentially
continuously depending on αi (subsection 6.5). Hence there is a sequentially continu-
ous map f :VF × F ∗⊕m−1 →

∏
J VF such that its composition with g coincides with

the restriction of the map ϕ: (F ∗)m → K
top
m (F ) on VF ⊕ F ∗⊕m−1.

So the quotient of the ∗-topology of
∏
J VF is 6 λm , as follows from the definition

of λm . Indeed, the sum of two convergent sequences xi, yi in
∏
J VF /g

−1(Λm(F ))
converges to the sum of their limits.

Let U be an open subset in V Km(F ). Then g−1(U ) is open in the ∗-product of the
topology

∏
J VF . Indeed, otherwise for some J there were a sequence α(i)

J 6∈ g−1(U )
which converges to αJ ∈ g−1(U ). Then the properties of the map ϕ of 6.3 imply that
the sequence ϕ(α(i)

J ) 6∈ U converges to ϕ(αJ ) ∈ U which contradicts the openness of
U .

Theorem 2 ([F5, Th. 4.5]). If char (F ) = p then Λm(F ) is equal to
⋂
l>1 lKm(F )

and is a divisible group.

Proof. Bloch–Kato–Gabber’s theorem (see subsection A2 in the appendix to section 2)
shows that the differential symbol

d:Km(F )/p −→ Ωm
F , {α1, . . . , αm} 7−→

dα1

α1
∧ · · · ∧ dαm

αm
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is injective. The topology of Ωm
F induced from F (as a finite dimensional vector

space) is Hausdorff, and d is continuous, so Λm(F ) ⊂ pKm(F ).
Since V Km(F )/Λm(F ) '

∏
EJ doesn’t have p-torsion by Theorem 1 in subsec-

tion 7.2, Λm(F ) = pΛm(F ).

Theorem 3 ([F5, Th. 4.7]). If char (F ) = 0 then Λm(F ) is equal to
⋂
l>1 lKm(F )

and is a divisible group. If a primitive l th root ζl belongs to F , then lK
top
m (F ) =

{ζl} ·K top
m−1(F ).

Proof. To show that prV Km(F ) ⊃ Λm(F ) it suffices to check that prV Km(F ) is the
intersection of open neighbourhoods of prV Km(F ).

We can assume that µp is contained in F applying the standard argument by using
(p, |F (µp) : F |) = 1 and l-divisibility of V Km(F ) for l prime to p.

If r = 1 then one can use Bloch–Kato’s description of

UiKm(F ) + pKm(F )/Ui+1Km(F ) + pKm(F )

in terms of products of quotients of Ωj
Kn−1

(section 4). Ωj
Kn−1

and its quotients are

finite-dimensional vector spaces over Kn−1/K
p
n−1, so the intersection of all neigh-

borhoods of zero there with respect to the induced from Kn−1 topology is trivial.
Therefore the injectivity of d implies Λm(F ) ⊂ pKm(F ).

Thus, the intersection of open subgroups in V Km(F ) containing pV Km(F ) is
equal to pV Km(F ).

Induction Step.
For a field F consider the pairing

( , )r:Km(F )/pr ×Hn+1−m(F, µ⊗n−mpr )→ Hn+1(F, µ⊗npr )

given by the cup product and the map F ∗ → H1(F, µpr ). If µpr ⊂ F , then Bloch–
Kato’s theorem shows that ( , )r can be identified (up to sign) with Vostokov’s pairing
Vr( , ).

For χ ∈ Hn+1−m(F, µ⊗n−mpr ) put

Aχ = {α ∈ Km(F ) : (α,χ)r = 0}.

One can show [F5, Lemma 4.7] that Aχ is an open subgroup of Km(F ).
Let α belong to the intersection of all open subgroups of V Km(F ) which contain

prV Km(F ). Then α ∈ Aχ for every χ ∈ Hn+1−m(F, µ⊗n−mpr ).
Set L = F (µpr ) and ps = |L : F |. From the induction hypothesis we deduce that

α ∈ psV Km(F ) and hence α = NL/Fβ for some β ∈ V Km(L). Then

0 = (α,χ)r,F = (NL/F β, χ)r,F = (β, iF/Lχ)r,L

where iF/L is the natural map. Keeping in mind the identification between Vostokov’s
pairing Vr and ( , )r for the field L we see that β is annihilated by iF/LKn+1−m(F )
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with respect to Vostokov’s pairing. Using explicit calculations with Vostokov’s pairing
one can directly deduce that

β ∈ (σ − 1)Km(L) + pr−siF/LKm(F ) + prKm(L),

and therefore α ∈ prKm(F ), as required.
Thus prKm(F ) =

⋂
open neighbourhoods of prV Km(F ).

To prove the second statement we can assume that l is a prime. If l 6= p, then since
K

top
m (F ) is the direct sum of several cyclic groups and V K

top
m (F ) and since l-torsion

of K top
m (F ) is p-divisible and ∩rprV K top

m (F ) = {0}, we deduce the result.
Consider the most difficult case of l = p. Use the exact sequence

0→ µ⊗nps → µ⊗n
ps+1 → µ⊗np → 0

and the following commutative diagram (see also subsection 4.3.2)

µp ⊗Km−1(F )/p −−−−→ Km(F )/ps
p−−−−→ Km(F )/ps+1y y y

Hm−1(F, µ⊗mp ) −−−−→ Hm(F, µ⊗mps ) −−−−→ Hm(F, µ⊗m
ps+1).

We deduce that px ∈ Λm(F ) implies px ∈
⋂
prKm(F ), so x = {ζp}·ar−1 +pr−1br−1

for some ai ∈ K top
m−1(F ) and bi ∈ K top

m (F ).

Define ψ:K top
m−1(F )→ K

top
m (F ) as ψ(α) = {ζp} · α; it is a continuous map. Put

Dr = ψ−1(prK top
m (F )). The group D = ∩Dr is the kernel of ψ. One can show

[F5, proof of Th. 4.7] that {ar} is a Cauchy sequence in the space K top
m−1(F )/D which

is complete. Hence there is y ∈
⋂(

ar−1 +Dr−1
)
. Thus, x = {ζp} · y in K

top
m (F ).

Divisibility follows.

Remarks. 1. Compare with Theorem 8 in 2.5.
2. For more properties of K top

m (F ) see [F5].
3. Zhukov [Z, §7–10] gave a description of K

top
n (F ) in terms of topological

generators and relations for some fields F of characteristic zero with small vF (p).

6.7. The group Km(F )/l

6.7.1. If a prime number l is distinct from p, then, since VF is l-divisible, we deduce
from 6.5 that

Km(F )/l ' K top
m (F )/l ' (Z/l)a(m) ⊕ (Z/d)b(m)

where d = gcd(q − 1, l).
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6.7.2. The case of l = p is more interesting and difficult. We use the method described
at the beginning of 6.4.

If char (F ) = p then the Artin–Schreier pairing of 6.4.3 for r = 1 helps one to show
that K top

n (F )/p has the following topological Z/p-basis:{
1 + θtinn . . . t

i1
1 , tn, . . . , t̂l, . . . , t1

}
where p - gcd(i1, . . . , in), 0 < (i1, . . . , in), l = min {k : p - ik} and θ runs
over all elements of a fixed basis of K0 over Fp .

If char (F ) = 0, ζp ∈ F ∗, then using Vostokov’s symbol (6.4.4 and 8.3) one obtains
that K top

n (F )/p has the following topological Zp -basis consisting of elements of two
types:

ω∗(j) =
{

1 + θ∗t
pen/(p−1)
n . . . t

pe1/(p−1)
1 , tn, . . . , t̂j , . . . , t1

}
where 1 6 j 6 n, (e1, . . . , en) = vF (p) and θ∗ ∈ µq−1 is such that

1 + θ∗t
pen/(p−1)
n . . . t

pe1/(p−1)
1 doesn’t belong to F ∗p

and {
1 + θtinn . . . t

i1
1 , tn, . . . , t̂l, . . . , t1

}
where p - gcd(i1, . . . , in), 0 < (i1, . . . , in) < p(e1, . . . , en)/(p− 1),
l = min {k : p - ik}, where θ runs over all elements of a fixed basis of K0 over Fp .

If ζp 6∈ F ∗, then pass to the field F (ζp) and then go back, using the fact that the
degree of F (ζp)/F is relatively prime to p. One deduces that K top

n (F )/p has the
following topological Zp-basis:{

1 + θtinn . . . t
i1
1 , tn, . . . , t̂l, . . . , t1

}
where p - gcd(i1, . . . , in), 0 < (i1, . . . , in) < p(e1, . . . , en)/(p− 1),
l = min {k : p - ik}, where θ runs over all elements of a fixed basis of K0 over Fp .

6.8. The norm map on K top-groups

Definition. Define the norm map on K top
n (F ) as induced by NL/F :Kn(L)→ Kn(F ).

Alternatively in characteristic p one can define the norm map as in 7.4.

6.8.1. Put ui1,...,in = Ui1,...,in/Ui1+1,...,in .

Proposition ([F2, Prop. 4.1] and [F3, Prop. 3.1]). Let L/F be a cyclic extension of
prime degree l such that the extension of the last finite residue fields is trivial. Then
there is s and a local parameter ts,L of L such that L = F (ts,L). Let t1, . . . , tn
be a system of local parameters of F , then t1, . . . , ts,L, . . . , tn is a system of local
parameters of L.
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Let l = p. For a generator σ of Gal(L/F ) let

σts,L
ts,L

= 1 + θ0t
rn
n · · · trss,L · · · t

r1
1 + · · ·

Then
(1) if (i1, . . . , in) < (r1, . . . , rn) then

NL/F :ui1,...,in,L → upi1,...,is,...,pin,F

sends θ ∈ K0 to θp;
(2) if (i1, . . . , in) = (r1, . . . , rn) then

NL/F :ui1,...,in,L → upi1,...,is,...,pin,F

sends θ ∈ K0 to θp − θθp−1
0 ;

(3) if (j1, . . . , jn) > 0 then

NL/F :uj1+r1,...,pjs+rs,...,jn+rn,L → uj1+pr1,...,js+rs,...,jn+prn,F

sends θ ∈ K0 to −θθp−1
0 .

Proof. Similar to the one-dimensional case [FV, Ch. III §1].

6.8.2. If L/F is cyclic of prime degree l then

K top
n (L) =

〈
{L∗} · iF/LK top

n−1(F )
〉

where iF/L is induced by the embedding F ∗ → L∗ . For instance (we use the notations
of section 1), if f (L|F ) = l then L is generated over F by a root of unity of order
prime to p; if ei(L|F ) = l, then use the previous proposition.

Corollary 1. Let L/F be a cyclic extension of prime degree l. Then

|K top
n (F ) : NL/FK

top
n (L)| = l.

If L/F is as in the preceding proposition, then the element{
1 + θ∗t

prn
n · · · trss,F · · · t

pr1
1 , t1, . . . , t̂s, . . . , tn

}
,

where the residue of θ∗ in K0 doesn’t belong to the image of the map

OF
θ 7→θp−θθp−1

0−−−−−−−−→ OF −→ K0,

is a generator of K top
n (F )/NL/FK

top
n (L).

If f (L|F ) = 1 and l 6= p, then{
θ∗, t1, . . . , t̂s, . . . , tn

}
where θ∗ ∈ µq−1 \ µlq−1 is a generator of K top

n (F )/NL/FK
top
n (L).
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If f (L|F ) = l, then {
t1, . . . , tn

}
is a generator of K top

n (F )/NL/FK
top
n (L).

Corollary 2. NL/F (closed subgroup) is closed and N−1
L/F (open subgroup) is open.

Proof. Sufficient to show for an extension of prime degree; then use the previous
proposition and Theorem 1 of 6.6.

6.8.3.

Theorem 4 ([F2, §4], [F3, §3]). Let L/F be a cyclic extension of prime degree l with
a generator σ then the sequence

K top
n (F )/l ⊕K top

n (L)/l
iF/L⊕(1−σ)
−−−−−−−→ K top

n (L)/l
NL/F−−−→ K top

n (F )/l

is exact.

Proof. Use the explicit description of K top
n /l in 6.7.

This theorem together with the description of the torsion of K top
n (F ) in 6.6 imply:

Corollary. Let L/F be cyclic with a generator σ then the sequence

K top
n (L)

1−σ−−→ K top
n (L)

NL/F−−−→ K top
n (F )

is exact.
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7. Parshin’s higher local class field theory
in characteristic p

Ivan Fesenko

Parshin’s theory in characteristic p is a remarkably simple and effective approach to all
the main theorems of class field theory by using relatively few ingredients.

Let F = Kn, . . . ,K0 be an n-dimensional local field of characteristic p.
In this section we use the results and definitions of 6.1–6.5; we don’t need the results

of 6.6 – 6.8.

7.1

Recall that the group VF is topologically generated by

1 + θtinn . . . t
i1
1 , θ ∈ R∗, p - (in, . . . , i1)

(see 1.4.2). Note that

i1 . . . in{1 + θtinn . . . t
i1
1 , t1, . . . , tn} = {1 + θtinn . . . t

i1
1 , t

i1
1 , . . . , t

in
n }

= {1 + θtinn . . . t
i1
1 , t

i1
1 · · · t

in
n , . . . , t

in
n } = {1 + θtinn . . . t

i1
1 ,−θ, . . . , t

in
n } = 0,

since θq−1 = 1 and VF is (q − 1)-divisible. We deduce that

K
top
n+1(F ) ' F ∗q , {θ, t1, . . . , tn} 7→ θ, θ ∈ R∗.

Recall that (cf. 6.5)

K top
n (F ) ' Z⊕

(
Z/(q − 1)

)n ⊕ V K top
n (F ),

where the first group on the RHS is generated by {tn, . . . , t1}, and the second by
{θ, . . . , t̂l, . . . } (apply the tame symbol and valuation map of subsection 6.4).
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7.2. The structure of V K top
n (F )

Using the Artin–Schreier–Witt pairing (its explicit form in 6.4.3)

( , ]r:K top
n (F )/pr ×Wr(F )/(F− 1)Wr(F )→ Z/pr, r > 1

and the method presented in subsection 6.4 we deduce that every element of V K top
n (F )

is uniquely representable as a convergent series∑
aθ,in,...,i1{1 + θtinn . . . t

i1
1 , t1, . . . , t̂l, . . . , tn}, aθ,in,...,i1 ∈ Zp,

where θ runs over a basis of the Fp -space K0, p - gcd(in, . . . , i1) and
l = min {k : p - ik}. We also deduce that the pairing ( , ]r is non-degenerate.

Theorem 1 (Parshin, [P2]). Let J = {j1, . . . , jm−1} run over all (m − 1)-elements
subsets of {1, . . . , n}, m 6 n + 1. Let EJ be the subgroups of VF generated by
1 + θtinn . . . t

i1
1 , θ ∈ µq−1 such that p - gcd (i1, . . . , in) and min {l : p - il} /∈ J .

Then the homomorphism

h:
∗ –topology∏

J

EJ → V K top
m (F ), (εJ ) 7→

∑
J={j1,...,jm−1}

{
εJ , tj1 , . . . , tjm−1

}
is a homeomorphism.

Proof. There is a sequentially continuous map f :VF × F ∗⊕m−1 →
∏
J EJ such that

its composition with h coincides with the restriction of the map ϕ: (F ∗)m → K
top
m (F )

of 6.3 on VF ⊕ F ∗⊕m−1.
So the topology of

∏ ∗ –topology
J EJ is 6 λm , as follows from the definition of λm .

Let U be an open subset in V Km(F ). Then h−1(U ) is open in the ∗-product of the
topology

∏
J EJ . Indeed, otherwise for some J there were a sequence α(i)

J 6∈ h−1(U )

which converges to αJ ∈ h−1(U ). Then the sequence ϕ(α(i)
J ) 6∈ U converges to

ϕ(αJ ) ∈ U which contradicts the openness of U .

Corollary. K top
m (F ) has no nontrivial p-torsion; ∩prV K top

m (F ) = {0}.
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7.3

Put W̃ (F ) = lim−→Wr(F )/(F− 1)Wr(F ) with respect to the homomorphism

V: (a0, . . . , ar−1)→
(
0, a0, . . . , ar−1

)
. From the pairings (see 6.4.3)

K top
n (F )/pr ×Wr(F )/(F− 1)Wr(F )

( , ]r−−−→ Z/pr −→ 1
pr
Z/Z

one obtains a non-degenerate pairing

( , ]: K̃n(F )× W̃ (F )→ Qp/Zp

where K̃n(F ) = K top
n (F )/

⋂
r>1 p

rK
top
n (F ). From 7.1 and Corollary of 7.2 we deduce⋂

r>1

prK top
n (F ) = Torsp′ K

top
n (F ) = TorsK top

n (F ),

where Torsp′ is prime-to- p-torsion.
Hence

K̃n(F ) = K top
n (F )/TorsK top

n (F ).

7.4. The norm map on K top-groups in characteristic p

Following Parshin we present an alternative description (to that one in subsection 6.8)
of the norm map on K top-groups in characteristic p.

If L/F is cyclic of prime degree l, then it is more or less easy to see that

K top
n (L) =

〈
{L∗} · iF/LK top

n−1(F )
〉

where iF/L is induced by the embedding F ∗ → L∗ . For instance, if f (L|F ) = l then
L is generated over F by a root of unity of order prime to p; if ei(L|F ) = l, then there
is a system of local parameters t1, . . . , t′i, . . . , tn of L such that t1, . . . , ti, . . . , tn is
a system of local parameters of F .

For such an extension L/F define [P2]

NL/F :K top
n (L)→ K top

n (F )

as induced by NL/F :L∗ → F ∗. For a separable extension L/F find a tower of
subextensions

F = F0 − F1 − · · · − Fr−1 − Fr = L

such that Fi/Fi−1 is a cyclic extension of prime degree and define

NL/F = NF1/F0
◦ · · · ◦NFr/Fr−1

.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



78 I. Fesenko

To prove correctness use the non-degenerate pairings of subsection 6.4 and the
properties

(NL/Fα, β]F,r = (α, iF/Lβ]L,r

for p-extensions;

t
(
NL/Fα, β

)
F

= t(α, iF/Lβ)L

for prime-to- p-extensions ( t is the tame symbol of 6.4.2).

7.5. Parshin’s reciprocity map

Parshin’s theory [P2], [P3] deals with three partial reciprocity maps which then can be
glued together.

Proposition ([P3]). Let L/F be a cyclic p-extension. Then the sequence

0 −→ K̃n(F )
iF/L−−−→ K̃n(L)

1−σ−−→ K̃n(L)
NL/F−−−→ K̃n(F )

is exact and the cokernel of NL/F is a cyclic group of order |L : F |.

Proof. The sequence is dual (with respect to the pairing of 7.3) to

W̃ (F ) −→ W̃ (L)
1−σ−−→ W̃ (L)

TrL/F−−−−→ W̃ (F ) −→ 0.

The norm group index is calculated by induction on degree.

Hence the class of p-extensions of F and K̃n(F ) satisfy the classical class forma-
tion axioms. Thus, one gets a homomorphism K̃n(F )→ Gal(F abp/F ) and

Ψ(p)
F :K top

n (F )→ Gal(F abp/F )

where F abp is the maximal abelian p-extension of F . In the one-dimensional case
this is Kawada–Satake’s theory [KS].

The valuation map v of 6.4.1 induces a homomorphism

Ψ(ur)
F :K top

n (F )→ Gal(Fur/F ),

{t1, . . . , tn} → the lifting of the Frobenius automorphism of Ksep
0 /K0;

and the tame symbol t of 6.4.2 together with Kummer theory induces a homomorphism

Ψ(p′)
F :K top

n (F )→ Gal(F ( q−1
√
t1, . . . ,

q−1
√
tn)/F ).

The three homomorphisms Ψ(p)
F , Ψ(ur)

F , Ψ(p′)
F agree [P2], so we get the reciprocity

map

ΨF :K top
n (F )→ Gal(F ab/F )

with all the usual properties.
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Remark. For another rather elementary approach [F1] to class field theory of higher
local fields of positive characteristic see subsection 10.2. For Kato’s approach to higher
class field theory see section 5 above.
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8. Explicit formulas for the Hilbert symbol

Sergei V. Vostokov

Recall that the Hilbert symbol for a local field K with finite residue field which contains
a primitive pn th root of unity ζpn is a pairing

( , )pn :K∗/K∗p
n ×K∗/K∗ pn → 〈ζpn〉, (α, β)pn = γΨK (α)−1, γp

n

= β,

where ΨK :K∗ → Gal(Kab/K) is the reciprocity map.

8.1. History of explicit formulas for the Hilbert symbol

There are two different branches of explicit reciprocity formulas (for the Hilbert symbol).

8.1.1. The first branch (Kummer’s type formulas).

Theorem (E. Kummer 1858). Let K = Qp(ζp), p 6= 2. Then for principal units ε, η

(ε, η)p = ζ res(log η(X) d log ε(X)X−p)
p

where ε(X)|X=ζp−1 = ε, η(X)|X=ζp−1 = η, ε(X), η(X) ∈ Zp[[X]]∗ .

The important point is that one associates to the elements ε, η the series ε(X), η(X)
in order to calculate the value of the Hilbert symbol.

Theorem (I. Shafarevich 1950). Complete explicit formula for the Hilbert norm residue
symbol (α, β)pn , α, β ∈ K∗, K ⊃ Qp(ζpn ), p 6= 2, using a special basis of the group
of principal units.

This formula is not very easy to use because of the special basis of the group of
units and certain difficulties with its verification for n > 1. One of applications of this
formula was in the work of Yakovlev on the description of the absolute Galois group of
a local field in terms of generators and relations.

Complete formulas, which are simpler that Shafarevich’s formula, were discovered
in the seventies:
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Theorem (S. Vostokov 1978), (H. Brückner 1979). Let a local field K with finite
residue field contain Qp(ζpn) and let p 6= 2. Denote O0 = W (kK ), Tr = TrO0/Zp .
Then for α, β ∈ K∗

(α, β)pn = ζ
Tr res Φ(α, β)/s
pn , Φ(α, β) = l(β)α−1dα− l(α)

1
p
β−4dβ4

where α = θXm(1 + ψ(X)), θ ∈ R, ψ ∈ XO0[[X]], is such that α(π) = α,
s = ζpnp

n − 1,

l(α) =
1
p

log
(
αp/α4

)
,(∑

aiX
i
)4

=
∑

FrobK(ai)X
pi, ai ∈ O0.

Note that for the term X−p in Kummer’s theorem can be written as X−p =
1/(ζpp−1) mod p, since ζp = 1 +π and so s = ζpp−1 = (1 +X)p−1 = Xp mod p.

The works [V1] and [V2] contain two different proofs of this formula. One of them
is to construct the explicit pairing

(α, β)→ ζ
Tr res Φ(α, β)/s
pn

and check the correctness of the definition and all the properties of this pairing com-
pletely independently of class field theory (somewhat similarly to how one works with
the tame symbol), and only at the last step to show that the pairing coincides with the
Hilbert symbol. The second method, also followed by Brükner, is different: it uses
Kneser’s (1951) calculation of symbols and reduces the problem to a simpler one: to
find a formula for (ε, π)pn where π is a prime element of K and ε is a principal unit
of K . Whereas the first method is very universal and can be extended to formal groups
and higher local fields, the second method works well in the classical situation only.

For p = 2 explicit formulas were obtained by G. Henniart (1981) who followed to
a certain extent Brückner’s method, and S. Vostokov and I. Fesenko (1982, 1985).

8.1.2. The second branch (Artin–Hasse’s type formulas).

Theorem (E. Artin and H. Hasse 1928). Let K = Qp(ζpn), p 6= 2. Then for a principal
unit ε and prime element π = ζpn − 1 of K

(ε, ζpn)pn = ζ
Tr (− log ε)/pn
pn , (ε, π)pn = ζ

Tr (π−1ζpn log ε)/pn
pn

where Tr = TrK/Qp .

Theorem (K. Iwasawa 1968). Formula for (ε, η)pn where K = Qp(ζpn ), p 6= 2, ε, η
are principal units of K and vK(η − 1) > 2vK(p)/(p− 1).
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To some extent the following formula can be viewed as a formula of Artin–Hasse’s
type. Sen deduced it using his theory of continuous Galois representations which itself
is a generalization of a part of Tate’s theory of p-divisible groups. The Hilbert symbol
is interpreted as the cup product of H1.

Theorem (Sh. Sen 1980). Let |K : Qp| <∞, ζpn ∈ K , and let π be a prime element
of OK . Let g(T ), h(T ) ∈ W (kK)[T ] be such that g(π) = β 6= 0, h(π) = ζpm . Let
α ∈ OK , vK (α) > 2vK(p)/(p− 1). Then

(α, β)pm = ζcpm , c =
1
pm

TrK/Qp

(
ζpm

h′(π)
g′(π)
β

log α

)
.

R. Coleman (1981) gave a new form of explicit formulas which he proved for
K = Qp(ζpn). He uses formal power series associated to norm compatible sequences
of elements in the tower of finite subextensions of the p-cyclotomic extension of the
ground field and his formula can be viewed as a generalization of Iwasawa’s formula.

8.2. History: Further developments

8.2.1. Explicit formulas for the (generalized) Hilbert symbol in the case where it is
defined by an appropriate class field theory.

Definition. Let K be an n-dimensional local field of characteristic 0 which contains
a primitive pm th root of unity. The pm th Hilbert symbol is defined as

K top
n (K)/pm ×K∗/K∗p

m

→ 〈ζpm〉, (α, β)pm = γΨK (α)−1, γp
m

= β,

where ΨK :K top
n (K)→ Gal(Kab/K) is the reciprocity map.

For higher local fields and p > 2 complete formulas of Kummer’s type were
constructed by S. Vostokov (1985). They are discussed in subsections 8.3 and their
applications to K -theory of higher local fields and p-part of the existence theorem
in characteristic 0 are discussed in subsections 6.6, 6.7 and 10.5. For higher local
fields, p > 2 and Lubin–Tate formal group complete formulas of Kummer’s type were
deduced by I. Fesenko (1987).

Relations of the formulas with syntomic cohomologies were studied by K. Kato
(1991) in a very important work where it is suggested to use Fontaine–Messing’s syn-
tomic cohomologies and an interpretation of the Hilbert symbol as the cup product
explicitly computable in terms of the cup product of syntomic cohomologies; this
approach implies Vostokov’s formula. On the other hand, Vostokov’s formula appropri-
ately generalized defines a homomorphism from the Milnor K -groups to cohomology
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groups of a syntomic complex (see subsection 15.1.1). M. Kurihara (1990) applied syn-
tomic cohomologies to deduce Iwasawa’s and Coleman’s formulas in the multiplicative
case.

For higher local fields complete formulas of Artin–Hasse’s type were constructed
by M. Kurihara (1998), see section 9.

8.2.2. Explicit formulas for p-divisible groups.

Definition. Let F be a formal p-divisible group over the ring OK0 where K0 is a
subfield of a local field K . Let K contain pn-division points of F . Define the Hilbert
symbol by

K∗ × F (MK)→ ker[pn], (α, β)pn = ΨK(α)(γ) −F γ, [pn](γ) = β,

where ΨK :K∗ → Gal(Kab/K) is the reciprocity map.

For formal Lubin–Tate groups, complete formulas of Kummer’s type were obtained
by S. Vostokov (1979) for odd p and S. Vostokov and I. Fesenko (1983) for even p. For
relative formal Lubin–Tate groups complete formulas of Kummer’s type were obtained
by S. Vostokov and A. Demchenko (1995).

For local fields with finite residue field and formal Lubin–Tate groups formulas of
Artin–Hasse’s type were deduced by A. Wiles (1978) for K equal to the [πn]-division
field of the isogeny [π] of a formal Lubin–Tate group; by V. Kolyvagin (1979) for
K containing the [πn]-division field of the isogeny [π]; by R. Coleman (1981) in
the multiplicative case and some partial cases of Lubin–Tate groups; his conjectural
formula in the general case of Lubin–Tate groups was proved by E. de Shalit (1986) for
K containing the [πn]-division field of the isogeny [π]. This formula was generalized
by Y. Sueyoshi (1990) for relative formal Lubin–Tate groups. F. Destrempes (1995)
extended Sen’s formulas to Lubin–Tate formal groups.

J.–M. Fontaine (1991) used his crystalline ring and his and J.–P. Wintenberger’s
theory of field of norms for the p-cyclotomic extension to relate Kummer theory with
Artin–Schreier–Witt theory and deduce in particular some formulas of Iwasawa’s type
using Coleman’s power series. D. Benois (1998) further extended this approach by using
Fontaine–Herr’s complex and deduced Coleman’s formula. V. Abrashkin (1997) used
another arithmetically profinite extension (L = ∪Fi of F , Fi = Fi−1(πi), π

p
i = πi−1,

π0 being a prime element of F ) to deduce the formula of Brückner–Vostokov.
For formal groups which are defined over an absolutely unramified local field K0

( e(K0|Qp) = 1 ) and therefore are parametrized by Honda’s systems, formulas of
Kummer’s type were deduced by D. Benois and S. Vostokov (1990), for n = 1 and
one-dimensional formal groups, and by V. Abrashkin (1997) for arbitrary n and arbi-
trary formal group with restriction that K contains a primitive pn th root of unity. For
one dimensional formal groups and arbitrary n without restriction that K contains a
primitive pn th root of unity in the ramified case formulas were obtained by S. Vostokov
and A. Demchenko (2000). For arbitrary n and arbitrary formal group without restric-
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tions on K Abrashkin’s formula was established by Benois (2000), see subsection 6.6
of Part II.

Sen’s formulas were generalized to all p-divisible groups by D. Benois (1997) using
an interpretation of the Hilbert pairing in terms of an explicit construction of p-adic
periods. T. Fukaya (1998) generalized the latter for higher local fields.

8.2.3. Explicit formulas for p-adic representations. The previously discussed ex-
plicit formulas can be viewed as a description of the exponential map from the tangent
space of a formal group to the first cohomology group with coefficients in the Tate
module. Bloch and Kato (1990) defined a generalization of the exponential map to
de Rham representations. An explicit description of this map is closely related to the
computation of Tamagawa numbers of motives which play an important role in the
Bloch–Kato conjecture. The description of this map for the Qp (n) over cyclotomic
fields was given by Bloch–Kato (1990) and Kato (1993); it can be viewed as a vast
generalization of Iwasawa’s formula (the case n = 1 ). B. Perrin-Riou constructed an
Iwasawa theory for crystalline representations over an absolutely unramified local field
and conjectured an explicit description of the cup product of the cohomology groups.
There are three different approaches which culminate in the proof of this conjecture
by P. Colmez (1998), K. Kato–M. Kurihara–T. Tsuji (unpublished) and for crystalline
representations of finite height by D. Benois (1998).

K. Kato (1999) gave generalizations of explicit formulas of Artin–Hasse, Iwasawa
and Wiles type to p-adically complete discrete valuation fields and p-divisible groups
which relates norm compatible sequences in the Milnor K -groups and trace compatible
sequences in differential forms; these formulas are applied in his other work to give
an explicit description in the case of p-adic completions of function fields of modular
curves.

8.3. Explicit formulas in higher dimensional fields of characteristic 0

Let K be an n-dimensional field of characteristic 0, char (Kn−1) = p, p > 2. Let
ζpm ∈ K .

Let t1, . . . , tn be a system of local parameters of K .
For an element

α = tinn . . . t
i1
1 θ(1 +

∑
aJ t

jn
n . . . t

j1
1 ), θ ∈ R∗, aJ ∈W (K0),

(j1, . . . , jn) > (0, . . . , 0) denote by α the following element

Xin
n . . . X

i1
1 θ(1 +

∑
aJX

jn
n . . . X

j1
1 )

in F{{X1}} . . . {{Xn}} where F is the fraction field of W (K0). Clearly α is not
uniquely determined even if the choice of a system of local parameters is fixed.
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Independently of class field theory define the following explicit map

V ( , )m: (K∗)n+1 → 〈ζpm〉

by the formula

V (α1, . . . , αn+1)m = ζ
Tr res Φ(α1, . . . , αn+1)/s
pm , Φ(α1, . . . , αn+1)

=
n+1∑
i=1

(−1)n−i+1

pn−i+1 l
(
αi
) dα1

α1
∧ · · · ∧

dαi−1

αi−1
∧
dαi+1

4

αi+1
4 ∧ · · · ∧

dαn+1
4

αn+1
4

where s = ζpmp
m − 1, Tr = TrW (K0)/Zp , res = resX1,...,Xn ,

l (α) =
1
p

log
(
αp/α4

)
,
(∑

aJX
jn
n · · ·X

ji
1

)4
=
∑

Frob(aJ )Xpjn
n · · ·Xpj1

1 .

Theorem 1. The map V ( , )m is well defined, multilinear and symbolic. It induces a
homomorphism

Kn(K)/pm ×K∗/K∗ pm → µpm

and since V is sequentially continuous, a homomorphism

V ( , )m:K top
n (K)/pm ×K∗/K∗ pm → µpm

which is non-degenerate.

Comment on Proof. A set of elements t1, . . . , tn , εj, ω (where j runs over a subset
of Zn ) is called a Shafarevich basis of K∗/K∗p

m

if

(1) every α ∈ K∗ can be written as a convergent product α = t
i1
1 . . . t

in
n

∏
j ε
bj
j ω

c

mod K∗p
m

, bj, c ∈ Zp .
(2) V

(
{t1, . . . , tn}, εj

)
m

= 1, V
(
{t1, . . . , tn}, ω

)
m

= ζpm .

An important element of a Shafarevich basis is ω(a) = E(as(X))|Xn=tn,...,X1=t1
where

E(f (X)) = exp

((
1 +
4
p

+
42

p2 + · · ·
)
(f (X))

)
,

a ∈W (K0).
Now take the following elements as a Shafarevich basis of K∗/K∗p

m

:
— elements t1, . . . , tn ,
— elements εJ = 1 + θtjnn . . . t

j1
1 where p - gcd (j1, . . . , jn),

0 < (j1, . . . , jn) < p(e1, . . . , en)/(p − 1), where (e1, . . . , en) = v(p), v is the
discrete valuation of rank n associated to t1, . . . , tn ,

— ω = ω(a) where a is an appropriate generator of W (K0)/(F− 1)W (K0).
Using this basis it is relatively easy to show that V ( , )m is non-degenerate.
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In particular, for every θ ∈ R∗ there is θ′ ∈ R∗ such that

V
({

1 + θtinn . . . t
i1
1 , t1, . . . , t̂l, . . . , tn

}
, 1 + θ′tpen/(p−1)−in

n . . . t
pe1/(p−1)−i1
1

)
m

= ζpm

where il is prime to p, 0 < (i1, . . . , in) < p(e1, . . . , en)/(p− 1) and (e1, . . . , en) =
v(p).

Theorem 2. Every open subgroup N of finite index in K
top
n (K) such that N ⊃

pmK
top
n (K) is the orthogonal complement with respect to V ( , )m of a subgroup in

K∗/K∗p
m

.

Remark. Given higher local class field theory one defines the Hilbert symbol for l
such that l is not divisible by char (K), µl 6 K∗ as

( , )l:Kn(K)/l ×K∗/K∗ l → 〈ζl〉, (x, β)l = γΨK (x)−1

where γl = β , ΨK :Kn(K)→ Gal(Kab/K) is the reciprocity map.
If l is prime to p, then the Hilbert symbol ( , )l coincides (up to a sign) with the

(q − 1)/l th power of the tame symbol of 6.4.2. If l = pm , then the pm th Hilbert
symbol coincides (up to a sign) with the symbol V ( , )m .
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493(1997), 115–151.

[Be2] D. Benois, On Iwasawa theory of cristalline representations, Preprint Inst. Experimentelle
Mathematik (Essen) 1998.

[BK] S. Bloch and K. Kato, L –functions and Tamagawa numbers of motives, In The Gro-
thendieck Festschrift, Birkhäuser vol. 1, 1990, 334–400.
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9. Exponential maps and explicit formulas

Masato Kurihara

In this section we introduce an exponential homomorphism for the Milnor K -groups
for a complete discrete valuation field of mixed characteristics.

In general, to work with the additive group is easier than with the multiplicative
group, and the exponential map can be used to understand the structure of the multi-
plicative group by using that of the additive group. We would like to study the structure
of Kq(K) for a complete discrete valuation field K of mixed characteristics in order
to obtain arithmetic information of K . Note that the Milnor K -groups can be viewed
as a generalization of the multiplicative group. Our exponential map reduces some
problems in the Milnor K -groups to those of the differential modules Ω·OK which is
relatively easier than the Milnor K -groups.

As an application, we study explicit formulas of certain type.

9.1. Notation and exponential homomorphisms

Let K be a complete discrete valuation field of mixed characteristics (0, p). Let OK
be the ring of integers, and F be its the residue field. Denote by ordp:K∗ −→ Q the
additive valuation normalized by ordp(p) = 1. For η ∈ OK we have an exponential
homomorphism

expη:OK −→ K∗, a 7→ exp(ηa) =
∞∑
n=0

(ηa)n/n!

if ordp(η) > 1/(p− 1).
For q > 0 let Kq(K) be the q th Milnor K -group, and define K̂q(K) as the p-adic

completion of Kq(K), i.e.

K̂q(K) = lim←−Kq(K)⊗ Z/pn.
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For a ring A, we denote as usual by Ω1
A the module of the absolute differentials,

i.e. Ω1
A = Ω1

A/Z . For a field F of characteristic p and a p-base I of F , Ω1
F is an

F -vector space with basis dt ( t ∈ I ). Let K be as above, and consider the p-adic
completion Ω̂1

OK
of Ω1

OK

Ω̂1
OK

= lim←−Ω1
OK
⊗ Z/pn.

We take a lifting Ĩ of a p-base I of F , and take a prime element π of K . Then, Ω̂1
OK

is an OK -module (topologically) generated by dπ and dT (T ∈ Ĩ ) ([Ku1, Lemma
1.1]). If I is finite, then Ω̂1

OK
is generated by dπ and dT (T ∈ Ĩ ) in the ordinary

sense. Put

Ω̂q
OK

= ∧qΩ̂1
OK

.

Theorem ([Ku3]). Let η ∈ K be an element such that ordp(η) > 2/(p− 1). Then for
q > 0 there exists a homomorphism

exp(q)
η : Ω̂q

OK
−→ K̂q(K)

such that

exp(q)
η

(
a
db1

b1
∧ · · · ∧ dbq−1

bq−1

)
= {exp(ηa), b1, . . . , bq−1}

for any a ∈ OK and any b1, . . . , bq−1 ∈ O∗K .

Note that we have no assumption on F (F may be imperfect). For b1, . . . , bq−1 ∈
OK we have

exp(q)
η (a · db1 ∧ · · · ∧ dbq−1) = {exp(ηab1 · · · · · bq−1), b1, . . . , bq−1}.

9.2. Explicit formula of Sen

Let K be a finite extension of Qp and assume that a primitive pn th root ζpn is in
K . Denote by K0 the subfield of K such that K/K0 is totally ramified and K0/Qp
is unramified. Let π be a prime element of OK , and g(T ) and h(T ) ∈ OK0[T ] be
polynomials such that g(π) = β and h(π) = ζpn , respectively. Assume that α satisfies
ordp(α) > 2/(p− 1) and β ∈ O∗K . Then, Sen’s formula ([S]) is

(α, β) = ζcpn , c =
1
pn

TrK/Qp
( ζpn
h′(π)

g′(π)
β

logα
)

where (α, β) is the Hilbert symbol defined by (α, β) = γ−1ΨK(α)(γ) where γp
n

= β
and ΨK is the reciprocity map.

The existence of our exponential homomorphism introduced in the previous sub-
section helps to provide a new proof of this formula by reducing it to Artin–Hasse’s
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formula for (α, ζpn ). In fact, put k = Qp(ζpn), and let η be an element of k such that
ordp(η) = 2/(p− 1). Then, the commutative diagram

Ω̂1
OK

expη−−−−→ K̂2(K)

Tr

y N

y
Ω̂1
Ok

expη−−−−→ K̂2(k)

(N : K̂2(K) −→ K̂2(k) is the norm map of the Milnor K -groups, and Tr : Ω̂1
OK
−→

Ω̂1
Ok

is the trace map of differential modules) reduces the calculation of the Hilbert
symbol of elements in K to that of the Hilbert symbol of elements in k (namely
reduces the problem to Iwasawa’s formula [I]).

Further, since any element of Ω̂1
Ok

can be written in the form adζpn/ζpn , we can
reduce the problem to the calculation of (α, ζpn ).

In the same way, we can construct a formula of Sen’s type for a higher dimensional
local field (see [Ku3]), using a commutative diagram

Ω̂q
OK{{T}}

expη−−−−→ K̂q+1(K{{T}})

res

y res

y
Ω̂q−1
OK

expη−−−−→ K̂q(K)

where the right arrow is the residue homomorphism {α, T} 7→ α in [Ka], and the left
arrow is the residue homomorphism ωdT/T 7→ ω. The field K{{T}} is defined in
Example 3 of subsection 1.1 and OK{{T}} = OK{{T}} .

9.3. Some open problems

Problem 1. Determine the kernel of exp(q)
η completely. Especially, in the case of a

d-dimensional local field K , the knowledge of the kernel of exp(d)
η will give a lot of

information on the arithmetic of K by class field theory. Generally, one can show that

pdΩ̂q−2
OK
⊂ ker(exp(q)

p : Ω̂q−1
OK
−→ K̂q(K)).

For example, if K is absolutely unramified (namely, p is a prime element of K ) and
p > 2, then pdΩ̂q−2

OK
coincides with the kernel of exp(q)

p ([Ku2]). But in general, this
is not true. For example, if K = Qp{{T}}( p

√
pT ) and p > 2, we can show that the

kernel of exp(2)
p is generated by pdOK and the elements of the form log(1− xp)dx/x

for any x ∈MK where MK is the maximal ideal of OK .
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Problem 2. Can one generalize our exponential map to some (formal) groups? For
example, let G be a p-divisible group over K with |K : Qp| < ∞. Assume that the
[pn]-torsion points ker[pn] of G(Kalg) are in G(K). We define the Hilbert symbol
K∗ × G(K) −→ ker[pn] by (α, β) = ΨK(α)(γ) −G γ where [pn]γ = β . Benois
obtained an explicit formula ([B]) for this Hilbert symbol, which is a generalization
of Sen’s formula. Can one define a map expG: Ω1

OK
⊗ Lie(G) −→ K∗ × G(K)/ ∼

(some quotient of K∗ ×G(K) ) by which we can interpret Benois’s formula? We also
remark that Fukaya recently obtained some generalization ([F]) of Benois’s formula for
a higher dimensional local field.
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493(1997), 115–151.

[F] T. Fukaya, Explicit reciprocity laws for p –divisible groups over higher dimensional local
fields, preprint 1999.

[I] K. Iwasawa, On explicit formulas for the norm residue symbols, J. Math. Soc. Japan,
20(1968), 151–165.

[Ka] K. Kato, Residue homomorphisms in Milnor K -theory, in Galois groups and their
representations, Adv. Studies in Pure Math. 2, Kinokuniya, Tokyo (1983), 153–172.

[Ku1] M. Kurihara, On two types of complete discrete valuation fields, Comp. Math., 63(1987),
237–257.

[Ku2] M. Kurihara, Abelian extensions of an absolutely unramified local field with general
residue field, Invent. math., 93(1988), 451–480.

[Ku3] M. Kurihara, The exponential homomorphisms for the Milnor K -groups and an explicit
reciprocity law, J. reine angew. Math., 498(1998), 201–221.

[S] S. Sen, On explicit reciprocity laws, J. reine angew. Math., 313(1980), 1–26.

Department of Mathematics Tokyo Metropolitan University
Minami-Osawa 1-1, Hachioji, Tokyo 192-03, Japan
E-mail: m-kuri@comp.metro-u.ac.jp

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



ISSN 1464-8997 (on line) 1464-8989 (printed) 95

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Part I, section 10, pages 95–101

10. Explicit higher local class field theory

Ivan Fesenko

In this section we present an approach to higher local class field theory [F1-2] different
from Kato’s (see section 5) and Parshin’s (see section 7) approaches.

Let F (F = Kn, . . . ,K0 ) be an n-dimensional local field. We use the results of
section 6 and the notations of section 1.

10.1. Modified class formation axioms

Consider now an approach based on a generalization [F2] of Neukirch’s approach [N].
Below is a modified system of axioms of class formations (when applied to topo-

logical K -groups) which imposes weaker restrictions than the classical axioms (cf.
section 11).

(A1). There is a Ẑ-extension of F .
In the case of higher local fields let F pur/F be the extension which corresponds to

K
sep
0 /K0: F pur = ∪(l,p)=1F (µl); the extension F pur is called the maximal purely un-

ramified extension of F . Denote by FrobF the lifting of the Frobenius automorphisms
of Ksep

0 /K0. Then

Gal(F pur/F ) ' Ẑ, FrobF 7→ 1.

(A2). For every finite separable extension F of the ground field there is an abelian
group AF such that F → AF behaves well (is a Mackey functor, see for instance
[D]; in fact we shall use just topological K -groups) and such that there is a
homomorphism v:AF → Z associated to the choice of the Ẑ-extension in (A1)
which satisfies

v(NL/FAL) = |L ∩ F pur : F | v(AF ).

In the case of higher local fields we use the valuation homomorphism

v:K top
n (F )→ Z
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of 6.4.1. From now on we write K top
n (F ) instead of AF . The kernel of v is V K top

n (F ).
Put

vL =
1

|L ∩ F pur : F |v ◦NL/F .

Using (A1), (A2) for an arbitrary finite Galois extension L/F define the reciprocity
map

ϒL/F : Gal(L/F )→ K top
n (F )/NL/FK

top
n (L), σ 7→ NΣ/FΠΣ mod NL/FK

top
n (L)

where Σ is the fixed field of σ̃ and σ̃ is an element of Gal(L pur/F ) such that σ̃|L = σ
and σ̃|F pur = FrobiF with a positive integer i. The element ΠΣ of K top

n (Σ) is any such

that vΣ(ΠΣ) = 1; it is called a prime element of K top
n (Σ). This map doesn’t depend

on the choice of a prime element of K top
n (Σ), since ΣL/Σ is purely unramified and

V K
top
n (Σ) ⊂ NΣL/ΣV K

top
n (ΣL).

(A3). For every finite subextension L/F of F pur/F (which is cyclic, so its Galois
group is generated by, say, a σ )
(A3a) |K top

n (F ) : NL/FK
top
n (L)| = |L : F | ;

(A3b) 0 −→ K
top
n (F )

iF/L−−−→ K
top
n (L)

1−σ−−→ K
top
n (L) is exact;

(A3c) K
top
n (L)

1−σ−−→ K
top
n (L)

NL/F−−−→ K
top
n (F ) is exact.

Using (A1), (A2), (A3) one proves that ϒL/F is a homomorphism [F2].

(A4). For every cyclic extensions L/F of prime degree with a generator σ and a cyclic
extension L′/F of the same degree

(A4a) K
top
n (L)

1−σ−−→ K
top
n (L)

NL/F−−−→ K
top
n (F ) is exact;

(A4b) |K top
n (F ) : NL/FK

top
n (L)| = |L : F |;

(A4c) NL′/FK
top
n (L′) = NL/FK

top
n (L)⇒ L = L′ .

If all axioms (A1)–(A4) hold then the homomorphism ϒL/F induces an isomor-
phism [F2]

ϒab
L/F : Gal(L/F )ab → K top

n (F )/NL/FK
top
n (L).

The method of the proof is to define explicitly (as a generalization of Hazewinkel’s
approach [H]) a homomorphism

Ψab
L/F :K top

n (F )/NL/FK
top
n (L)→ Gal(L/F )ab

and then show that Ψab
L/F ◦ ϒab

L/F is the indentity.
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10.2. Characteristic p case

Theorem 1 ([F1], [F2]). In characteristic p all axioms (A1)–(A4) hold. So we get the
reciprocity map ΨL/F and passing to the limit the reciprocity map

ΨF :K top
n (F )→ Gal(F ab/F ).

Proof. See subsection 6.8. (A4c) can be checked by a direct computation using the
proposition of 6.8.1 [F2, p. 1118–1119]; (A3b) for p-extensions see in 7.5, to check it
for extensions of degree prime to p is relatively easy [F2, Th. 3.3].

Remark. Note that in characteristic p the sequence of (A3b) is not exact for an
arbitrary cyclic extension L/F (if L 6⊂ F pur ). The characteristic zero case is discussed
below.

10.3. Characteristic zero case. I

10.3.1. prime-to- p-part.
It is relatively easy to check that all the axioms of 10.1 hold for prime-to-p extensions

and for

K ′n(F ) = K top
n (F )/V K top

n (F )

(note that V K top
n (F ) =

⋂
(l,p)=1 lK

top
n (F ) ). This supplies the prime-to- p-part of the

reciprocity map.

10.3.2. p-part.
If µp 6 F ∗ then all the axioms of 10.1 hold; if µp 66 F ∗ then everything with

exception of the axiom (A3b) holds.

Example. Let k = Qp(ζp). Let ω ∈ k be a p-primary element of k which means
that k( p

√
ω)/k is unramified of degree p. Then due to the description of K2 of a local

field (see subsection 6.1 and [FV, Ch.IX §4]) there is a prime elements π of k such
that {ω, π} is a generator of K2(k)/p. Since α = ik/k( p

√
ω){ω, π} ∈ pK2(k( p

√
ω)),

the element α lies in
⋂
l>1 lK2(k( p

√
ω)). Let F = k{{t}}. Then {ω, π} /∈ pK top

2 (F )

and iF/F ( p
√
ω){ω, π} = 0 in K

top
2 (F ( p

√
ω)).

Since all other axioms are satisfied, according to 10.1 we get the reciprocity map

ϒL/F : Gal(L/F )→ K top
n (F )/NL/FK

top
n (L), σ 7→ NΣ/FΠΣ

for every finite Galois p-extension L/F .
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To study its properties we need to introduce the notion of Artin–Schreier trees
(cf. [F3]) as those extensions in characteristic zero which in a certain sense come
from characteristic p. Not quite precisely, there are sufficiently many finite Galois
p-extensions for which one can directly define an explicit homomorphism

K top
n (F )/NL/FK

top
n (L)→ Gal(L/F )ab

and show that the composition of ϒab
L/F with it is the identity map.

10.4. Characteristic zero case. II: Artin–Schreier trees

10.4.1.

Definition. A p-extension L/F is called an Artin–Schreier tree if there is a tower of
subfields F = F0 − F1 − · · · − Fr = L such that each Fi/Fi−1 is cyclic of degree p,
Fi = Fi−1(α), αp − α ∈ Fi−1.

A p-extension L/F is called a strong Artin–Schreier tree if every cyclic subexten-
sion M/E of degree p, F ⊂ E ⊂M ⊂ L, is of type E = M (α), αp − α ∈M .

Call an extension L/F totally ramified if f (L|F ) = 1 (i.e. L ∩ F pur = F ).

Properties of Artin–Schreier trees.
(1) if µp 66 F ∗ then every p-extension is an Artin–Schreier tree; if µp 6 F ∗ then

F ( p
√
a)/F is an Artin–Schreier tree if and only if aF ∗p 6 VFF ∗p .

(2) for every cyclic totally ramified extension L/F of degree p there is a Galois totally
ramified p-extension E/F such that E/F is an Artin–Schreier tree and E ⊃ L.

For example, if µp 6 F ∗, F is two-dimensional and t1, t2 is a system of local
parameters of F , then F ( p

√
t1)/F is not an Artin–Schreier tree. Find an ε ∈ VF \ V pF

such that M/F ramifies along t1 where M = F ( p
√
ε). Let t1,M , t2 ∈ F be a system

of local parameters of M . Then t1t
−p
1,M is a unit of M . Put E = M

(
p

√
t1t
−p
1,M

)
. Then

E ⊃ F ( p
√
t1) and E/F is an Artin–Schreier tree.

(3) Let L/F be a totally ramified finite Galois p-extension. Then there is a totally
ramified finite p-extension Q/F such that LQ/Q is a strong Artin–Schreier tree
and L pur ∩Q pur = F pur.

(4) For every totally ramified Galois extension L/F of degree p which is an Artin–
Schreier tree we have

vL pur (K
top
n (L pur)

Gal(L/F )) = pZ

where v is the valuation map defined in 10.1, K top
n (L pur) = lim−→M K

top
n (M ) where

M/L runs over finite subextensions in L pur/L and the limit is taken with respect
to the maps iM/M ′ induced by field embeddings.
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Proposition 1. For a strong Artin–Schreier tree L/F the sequence

1 −→ Gal(L/F )ab g−→ V K top
n (L pur)/I(L|F )

NL pur/F pur−−−−−−−→ V K top
n (F pur) −→ 0

is exact, where g(σ) = σΠ−Π, vL(Π) = 1, I(L|F ) = 〈σα− α : α ∈ V K top
n (L pur)〉.

Proof. Induction on |L : F | using the property NL pur/M purI(L|F ) = I(M |F ) for a
subextension M/F of L/F .

10.4.2. As a generalization of Hazewinkel’s approach [H] we have

Corollary. For a strong Artin–Schreier tree L/F define a homomorphism

ΨL/F :V K top
n (F )/NL/FV K

top
n (L)→ Gal(L/F )ab, α 7→ g−1((FrobL−1)β)

where NL pur/F purβ = iF/F purα and FrobL is defined in 10.1.

Proposition 2. ΨL/F ◦ ϒab
L/F : Gal(L/F )ab → Gal(L/F )ab is the identity map; so for

a strong Artin–Schreier tree ϒab
L/F is injective and ΨL/F is surjective.

Remark. As the example above shows, one cannot define ΨL/F for non-strong Artin–
Schreier trees.

Theorem 2. ϒab
L/F is an isomorphism.

Proof. Use property (3) of Artin–Schreier trees to deduce from the commutative dia-
gram

Gal(LO/Q)
ϒLQ/Q−−−−→ K

top
n (Q)/NLQ/QK

top
n (LQ)y NQ/F

y
Gal(L/F )

ϒL/F−−−−→ K
top
n (F )/NL/FK

top
n (L)

that ϒL/F is a homomorphism and injective. Surjectivity follows by induction on
degree.

Passing to the projective limit we get the reciprocity map

ΨF :K top
n (F )→ Gal(F ab/F )

whose image in dense in Gal(F ab/F ).

Remark. For another slightly different approach to deduce the properties of ϒL/F see
[F1].
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10.5

Theorem 3. The following diagram is commutative

K
top
n (F )

ΨF−−−−→ Gal(F ab/F )

∂

y y
K

top
n−1(Kn−1)

ΨKn−1−−−−→ Gal(Kab
n−1/Kn−1).

Proof. Follows from the explicit definition of ϒL/F , since ∂{t1, . . . , tn} is a prime

element of K top
n−1(Kn−1).

Existence Theorem ([F1-2]). Every open subgroup of finite index in K
top
n (F ) is the

norm group of a uniquely determined abelian extension L/F .

Proof. Let N be an open subgroup of K top
n (F ) of prime index l.

If p 6= l, then there is an α ∈ F ∗ such that N is the orthogonal complement of 〈α〉
with respect to t(q−1)/l where t is the tame symbol defined in 6.4.2.

If char (F ) = p = l, then there is an α ∈ F such that N is the orthogonal
complement of 〈α〉 with respect to ( , ]1 defined in 6.4.3.

If char (F ) = 0, l = p, µp 6 F ∗, then there is an α ∈ F ∗ such that N is the
orthogonal complement of 〈α〉 with respect to V1 defined in 6.4.4 (see the theorems in
8.3). If µp 66 F ∗ then pass to F (µp) and then back to F using (|F (µp) : F |, p) = 1.

Due to Kummer and Artin–Schreier theory, Theorem 2 and Remark of 8.3 we deduce
that N = NL/FK

top
n (L) for an appropriate cyclic extension L/F .

The theorem follows by induction on index.

Remark 1. From the definition of K top
n it immediately follows that open subgroups

of finite index in Kn(F ) are in one-to-one correspondence with open subgroups in
K

top
n (F ). Hence the correspondence L 7→ NL/FKn(L) is a one-to-one correspondence

between finite abelian extensions of F and open subgroups of finite index in Kn(F ).

Remark 2. If K0 is perfect and not separably p-closed, then there is a generalization
of the previous class field theory for totally ramified p-extensions of F (see Remark
in 16.1). There is also a generalization of the existence theorem [F3].

Corollary 1. The reciprocity map ΨF :K top
n (F )→ Gal(L/F ) is injective.

Proof. Use the corollary of Theorem 1 in 6.6.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Part I. Section 10. Explicit local class field theory 101

Corollary 2. For an element Π ∈ K top
n (F ) such that vF (Π) = 1 there is an infinite

abelian extension FΠ/F such that

F ab = F purFΠ, F pur ∩ FΠ = F

and Π ∈ NL/FK top
n (L) for every finite extension L/F , L ⊂ FΠ .

Problem. Construct (for n > 1 ) the extension FΠ explicitly?
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11. Generalized class formations
and higher class field theory

Michael Spieß

Let K (K = Kn,Kn−1, . . . ,K0 ) be an n-dimensional local field (whose last residue
field is finite of characteristic p ).

The following theorem can be viewed as a generalization to higher dimensional local
fields of the fact Br(F ) →̃ Q/Z for classical local fields F with finite residue field
(see section 5).

Theorem (Kato). There is a canonical isomorphism

h:Hn+1(K, Q/Z(n)) →̃ Q/Z.

Kato established higher local reciprocity map (see section 5 and [K1, Th. 2 of §6]
(two-dimensional case), [K2, Th. II], [K3, §4]) using in particular this theorem.

In this section we deduce the reciprocity map for higher local fields from this theorem
and Bloch–Kato’s theorem of section 4. Our approach which uses generalized class
formations simplifies Kato’s original argument.

We use the notations of section 5. For a complex X · the shifted-by-n complex
X ·[n] is defined as (X ·[n])q = Xn+q, dX·[n] = (−1)ndX· . For a (pro-)finite group G
the derived category of G-modules is denoted by D(G).

11.0. Classical class formations

We begin with recalling briefly the classical theory of class formations.
A pair (G,C) consisting of a profinite group G and a discrete G-module C is

called a class formation if
(C1) H1(H,C) = 0 for every open subgroup H of G.
(C2) There exists an isomorphism invH :H2(H,C) →̃Q/Z for every open subgroup

H of G.
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104 M. Spieß

(C3) For all pairs of open subgroups V 6 U 6 G the diagram

H2(U,C)
res−−−−→ H2(V,C)yinvU

yinvV

Q/Z ×|U :V |−−−−→ Q/Z
is commutative.

Then for a pair of open subgroups V 6 U 6 G with V normal in U the group
H2(U/V,CV ) ' ker(H2(U,C) → H2(V,C)) is cyclic of order |U : V |. It has
a canonical generator uL/K which is called the fundamental class; it is mapped to
1/|L : K| + Z under the composition

H2(U/V,CV )
inf−→ H2(U,C)

invU−−→ Q/Z.

Cup product with uL/K induces by the Tate–Nakayama lemma an isomorphism

Ĥq−2(U/V,Z) →̃ Ĥq(U/V,CV ).

Hence for q = 0 we get CU/ corU/V (CV ) →̃ (U/V )ab.
An example of a class formation is the pair (GK ,Gm) consisting of the absolute

Galois group of a local field K and the GK -module Gm = (Ksep)∗ . We get an
isomorphism

K∗/NL/KL
∗ →̃ Gal(L/K)ab

for every finite Galois extension L/K .
In order to give an analogous proof of the reciprocity law for higher dimensional

local fields one has to work with complexes of modules rather than a single module.
The concepts of the class formations and Tate’s cohomology groups as well as the

Tate–Nakayama lemma have a straightforward generalization to bounded complexes of
modules. Let us begin with Tate’s cohomology groups (see [Kn] and [Ko1]).

11.1. Tate’s cohomology groups

Let G be a finite group. Recall that there is an exact sequence (called a complete
resolution of G )

X · . . .→ X−2 → X−1 → X0 → X1 → . . .

of free finitely generated Z[G]-modules together with a map X0 → Z such that the
sequence

· · · → X−1 → X0 → Z→ 0

is exact.
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Definition. Let G be a finite group. For a a bounded complex

A· . . .→ A−1 → A0 → A1 → . . .

of G-modules Tate’s cohomology groups Ĥq(G,A·) are defined as the (hyper-)cohomo-
logy groups of the single complex associated to the double complex

Y i,j = HomG(X−i, Aj )

with suitably determined sign rule. In other words,

Ĥq(G,A·) = Hq(Tot(Hom(X ·, A·))G).

Remark. If A is a G-module, then Ĥq(G,A·) coincides with ordinary Tate’s coho-
mology group of G with coefficients in A where

A· . . .→ 0→ A→ 0→ . . . (A is at degree 0).

Lemma (Tate–Nakayama–Koya, [Ko2]). Suppose that

(i) Ĥ1(H,A·) = 0 for every subgroup H of G;
(ii) there is a ∈ Ĥ2(G,A·) such that resG/H (a) generates Ĥ2(H,A·) and is of order
|H| for every subgroups H of G.

Then

Ĥq−2(G,Z)
∪a−→ Ĥq(G,A·)

is an isomorphism for all q.

11.2. Generalized notion of class formations

Now let G be a profinite group and C · a bounded complex of G-modules.

Definition. The pair (G,C ·) is called a generalized class formation if it satisfies (C1)–
(C3) above (of course, we have to replace cohomology by hypercohomology).

As in the classical case the following lemma yields an abstract form of class field
theory

Lemma. If (G,C ·) is a generalized class formation, then for every open subgroup H
of G there is a canonical map

ρH :H0(H,C ·)→ Hab

such that the image of ρH is dense in Hab and such that for every pair of open
subgroups V 6 U 6 G, V normal in U , ρU induces an isomorphism

H0(U,C ·)/ corU/V H0(V,C ·) →̃ (U/V )ab.
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11.3. Important complexes

In order to apply these concepts to higher dimensional class field theory we need
complexes which are linked to K -theory as well as to the Galois cohomology groups
Hn+1(K, Q/Z(n)). Natural candidates are the Beilinson–Lichtenbaum complexes.

Conjecture ([Li1]). Let K be a field. There is a sequence of bounded complexes Z(n),
n > 0, of GK -modules such that

(a) Z(0) = Z concentrated in degree 0; Z(1) = Gm[−1] ;
(b) Z(n) is acyclic outside [1, n] ;
(c) there are canonical maps Z(m) ⊗L Z(n)→ Z(m + n) ;
(d) Hn+1(K,Z(n)) = 0 ;
(e) for every integer m there is a triangle Z(n)

m−→ Z(n) −→ Z/m(n) −→ Z(n)[1] in
D(GK) ;

(f) Hn(K,Z(n)) is identified with the Milnor K -group Kn(K).

Remarks. 1. This conjecture is very strong. For example, (d), (e), and (f) would imply
the Milnor–Bloch–Kato conjecture stated in 4.1.

2. There are several candidates for Z(n), but only in the case where n = 2 proofs
have been given so far, i.e. there exists a complex Z(2) satisfying (b), (d), (e) and (f)
(see [Li2]).

By using the complex Z(2) defined by Lichtenbaum, Koya proved that for 2-
dimensional local field K the pair (GK ,Z(2)) is a class formation and deduced the
reciprocity map for K (see [Ko1]). Once the existence of the Z(n) with the properties
(b), (d), (e) and (f) above is established, his proof would work for arbitrary higher
dimensional local fields as well (i.e. (GK ,Z(n)) would be a class formation for an
n-dimensional local field K ).

However, for the purpose of applications to local class field theory it is enough to
work with the following simple complexes which was first considered by B. Kahn [Kn].

Definition. Let Ž(n) ∈ D(GK) be the complex G
L
⊗n
m [−n].

Properties of Ž(n) .

(a) it is acyclic outside [1, n];
(b) for every m prime to the characteristic of K if the latter is non-zero, there is a

triangle

Ž(n)
m−→ Ž(n) −→ Z/m(n) −→ Ž(n)[1]

in D(GK);
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(c) for every m as in (b) there is a commutative diagram

K∗⊗n −−−−→ Hn(K, Ž(n))

pr
y y

Kn(K)/m −−−−→ Hn(K,Z/m(n)).

where the bottom horizontal arrow is the Galois symbol and the left vertical arrow
is given by x1 ⊗ · · · ⊗ xn 7→ {x1, . . . , xn} mod m.

The first two statements are proved in [Kn], the third in [Sp].

11.4. Applications to n-dimensional local class field theory

Let K be an n-dimensional local field. For simplicity we assume that char (K) = 0.
According to sections 3 and 5 for every finite extension L of K there are isomorphisms

(1) Kn(L)/m →̃Hn(L,Z/m(n)), Hn+1(L,Q/Z(n)) →̃Q/Z.

Lemma. (G, Ž(n)[n]) is a generalized class formation.

The triangle (b) above yields short exact sequences

0 −→ Hi(K, Ž(n))/m −→ Hi(K,Z/m(n)) −→ mH
i+1(K, Ž(n)) −→ 0

for every integer i. (1) and the diagram (c) show that mH
n+1(K, Ž(n)) = 0 for all

m 6= 0. By property (a) above Hn+1(K, Ž(n)) is a torsion group, hence = 0. Therefore
(C1) holds for (G, Ž(n)[n]). For (C2) note that the above exact sequence for i = n + 1
yields Hn+1(K,Z/m(n)) → mH

n+2(K, Ž(n)). By taking the direct limit over all m
and using (1) we obtain

Hn+2(K, Ž(n)) →̃Hn+1(K,Q/Z(n)) →̃Q/Z.

Now we can establish the reciprocity map for K : put C · = Ž(n)[n] and let L/K be
a finite Galois extension of degree m. By applying abstract class field theory (see the
lemma of 11.2) to (G,C ·) we get

Kn(K)/NL/KKn(L) →̃Hn(K,Z/m(n))/ cor Hn(L,Z/m(n))

→̃H0(K,C ·)/m/ cor H0(L,C ·)/m →̃ Gal(L/K)ab.

For the existence theorem see the previous section or Kato’s paper in this volume.
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12. Two types of complete discrete valuation fields

Masato Kurihara

In this section we discuss results of a paper [Ku1] which is an attempt to understand
the structure of the Milnor K -groups of complete discrete valuation fields of mixed
characteristics in the case of an arbitrary residue field.

12.0. Definitions

Let K be a complete discrete valuation field of mixed characteristics (0, p) with the ring
of integers OK . We consider the p-adic completion Ω̂1

OK
of Ω1

OK/Z as in section 9.
Note that

(a) If K is a finite extension of Qp , then

Ω̂1
OK

= (OK/DK/Qp )dπ

where DK/Qp is the different of K/Qp , and π is a prime element of K .
(b) If K = k{{t1}} . . . {{tn−1}} with |k : Qp| < ∞ (for the definition see subsec-

tion 1.1), then

Ω̂1
OK

= (Ok/Dk/Qp)dπ ⊕ OKdt1 ⊕ · · · ⊕ OKdtn−1

where π is a prime element of Ok .

But in general, the structure of Ω̂1
OK

is a little more complicated. Let F be the
residue field of K , and consider a natural map

ϕ: Ω̂1
OK
−→ Ω1

F .

Definition. Let Tors Ω̂1
OK

be the torsion part of Ω̂1
OK

. If ϕ(Tors Ω̂1
OK

) = 0, K is
said to be of type I, and said to be of type II otherwise.

So if K is a field in (a) or (b) as above, K is of type I.
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Let π be a prime element and {ti} be a lifting of a p-base of F . Then, there is a
relation

adπ +
∑

bidti = 0

with a, bi ∈ OK . The field K is of type I if and only if vK (a) < mini vK (bi), where
vK is the normalized discrete valuation of K .

Examples.
(1) If vK (p) is prime to p, or if F is perfect, then K is of type I.
(2) The field K = Qp{{t}}(π) with πp = pt is of type II. In this case we have

Ω̂1
OK
' OK/p⊕ OK .

The torsion part is generated by dt− πp−1dπ (we have pdt− pπp−1dπ = 0 ), so
ϕ(dt− πp−1dπ) = dt 6= 0.

12.1. The Milnor K -groups

Let π be a prime element, and put e = vK(p). Section 4 contains the definition of the
homomorphism

ρm: Ωq−1
F ⊕Ωq−2

F −→ grmKq(K).

Theorem. Put ` = lengthOK (Tors Ω̂1
OK

).
(a) If K is of type I, then for m > ` + 1 + 2e/(p− 1)

ρm|Ωq−1
F

: Ωq−1
F −→ grmKq(K)

is surjective.
(b) If K is of type II, then for m > ` + 2e/(p− 1) and for q > 2

ρm|Ωq−2
F

: Ωq−2
F −→ grmKq(K)

is surjective.

For the proof we used the exponential homomorphism for the Milnor K -groups
defined in section 9.

Corollary. Define the subgroup UiKq(K) of Kq(K) as in section 4, and define the
subgroup ViKq(K) as generated by {1 +Mi

K ,O
∗
K , . . . ,O

∗
K} where MK is the max-

imal ideal of OK .
(a) If K is of type I, then for sufficiently large m we have UmKq(K) = VmKq(K).
(b) If K is of type II, then for sufficiently large m, we have VmKq(K) = Um+1Kq(K).

Especially, grmKq(K) = 0 for sufficiently large m prime to p.
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Example. Let K = Qp{{t}}(π) where πp = pt as in Example (2) of subsection 12.0,
and assume p > 2. Then, we can determine the structures of grmKq(K) as follows
([Ku2]).

For m 6 p + 1, grmKq(K) is determined by Bloch and Kato ([BK]). We have
an isomorphism gr0K2(K) = K2(K)/U1K2(K) ' K2(F ) ⊕ F ∗, and grpKq(K) is
a certain quotient of Ω1

F /dF ⊕ F (cf. [BK]). The homomorphism ρm induces an
isomorphism from

Ω1
F if 1 6 m 6 p− 1 or m = p + 1

0 if i > p + 2 and i is prime to p

F/F p if m = 2p

(x 7→ {1 + pπpx, π} induces this isomorphism)

F p
n−2

if m = np with n > 3

(x 7→ {1 + pnx, π} induces this isomorphism)

onto grmK2(K).

12.2. Cyclic extensions

For cyclic extensions of K , by the argument using higher local class field theory and
the theorem of 12.1 we have (cf. [Ku1])

Theorem. Let ` be as in the theorem of 12.1.
(a) If K is of type I and i > 1+`+2e/(p−1), then K does not have ferociously ram-

ified cyclic extensions of degree pi . Here, we call an extension L/K ferociously
ramified if |L : K| = |kL : kK |ins where kL (resp. kK ) is the residue field of L
(resp. K ).

(b) If K is of type II and i > ` + 2e/(p− 1), then K does not have totally ramified
cyclic extensions of degree pi .

The bounds in the theorem are not so sharp. By some consideration, we can make
them more precise. For example, using this method we can give a new proof of the
following result of Miki.

Theorem (Miki, [M]). If e < p − 1 and L/K is a cyclic extension, the extension of
the residue fields is separable.

For K = Qp{{t}}( p
√
pt) with p > 2, we can show that it has no cyclic extensions

of degree p3.

Miki also showed that for any K , there is a constant c depending only on K such
that K has no ferociously ramified cyclic extensions of degree pi with i > c.
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For totally ramified extensions, we guess the following. Let F p
∞

be the maximal
perfect subfield of F , namely F p

∞
=
⋂
F p

n

. We regard the ring of Witt vectors
W (F p

∞
) as a subring of OK , and write k0 for the quotient field of W (F p

∞
), and

write k for the algebraic closure of k0 in K . Then, k is a finite extension of k0, and
is a complete discrete valuation field of mixed characteristics (0, p) with residue field
F p
∞

.

Conjecture. Suppose that e(K|k) > 1, i.e. a prime element of Ok is not a prime
element of OK . Then there is a constant c depending only on K such that K has no
totally ramified cyclic extension of degree pi with i > c.
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13. Abelian extensions of
absolutely unramified complete discrete valuation fields

Masato Kurihara

In this section we discuss results of [K]. We assume that p is an odd prime and K is an
absolutely unramified complete discrete valuation field of mixed characteristics (0, p),
so p is a prime element of the valuation ring OK . We denote by F the residue field of
K .

13.1. The Milnor K -groups and differential forms

For q > 0 we consider the Milnor K -group Kq(K), and its p-adic completion K̂q(K)
as in section 9. Let U1K̂q(K) be the subgroup generated by {1 + pOK ,K∗, . . . ,K∗}.
Then we have:

Theorem. Let K be as above. Then the exponential map expp for the element p,
defined in section 9, induces an isomorphism

expp: Ω̂q−1
OK

/pdΩ̂q−2
OK
→̃U1K̂q(K).

The group K̂q(K) carries arithmetic information of K , and the essential part
of K̂q(K) is U1K̂q(K). Since the left hand side Ω̂q−1

OK
/pdΩ̂q−2

OK
can be described

explicitly (for example, if F has a finite p-base I , Ω̂1
OK

is a free OK -module
generated by {dti} where {ti} are a lifting of elements of I ), we know the structure
of U1K̂q(K) completely from the theorem.

In particular, for subquotients of K̂q(K) we have:

Corollary. The map ρm: Ωq−1
F ⊕ Ωq−2

F −→ grmKq(K) defined in section 4 induces
an isomorphism

Ωq−1
F /Bm−1Ωq−1

F →̃ grmKq(K)
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where Bm−1Ωq−1
F is the subgroup of Ωq−1

F generated by the elements ap
j

d log a ∧
d log b1 ∧ · · · ∧ d log bq−2 with 0 6 j 6 m− 1 and a, bi ∈ F ∗.

13.2. Cyclic p-extensions of K

As in section 12, using some class field theoretic argument we get arithmetic information
from the structure of the Milnor K -groups.

Theorem. Let Wn(F ) be the ring of Witt vectors of length n over F . Then there
exists a homomorphism

Φn:H1(K,Z/pn) = Homcont(Gal(K/K),Z/pn) −→Wn(F )

for any n > 1 such that:
(1) The sequence

0 −→ H1(Kur/K,Z/pn) −→ H1(K,Z/pn)
Φn−−→Wn(F ) −→ 0

is exact where Kur is the maximal unramified extension of K .
(2) The diagram

H1(K,Z/pn+1)
p−−−−→ H1(K,Z/pn)yΦn+1

yΦn

Wn+1(F )
F−−−−→ Wn(F )

is commutative where F is the Frobenius map.
(3) The diagram

H1(K,Z/pn) −−−−→ H1(K,Z/pn+1)yΦn
yΦn+1

Wn(F )
V−−−−→ Wn+1(F )

is commutative where V((a0, . . . , an−1)) = (0, a0, . . . , an−1) is the Verschiebung
map.

(4) Let E be the fraction field of the completion of the localization OK[T ](p) (so the
residue field of E is F (T ) ). Let

λ:Wn(F )×Wn(F (T ))
ρ−→ pn Br(F (T ))⊕H1(F (T ),Z/pn)

be the map defined by λ(w,w′) = (i2(pn−1wdw′), i1(ww′)) where pn Br(F (T )) is
the pn-torsion of the Brauer group of F (T ), and we consider pn−1wdw′ as an
element of WnΩ1

F (T ) (WnΩ·F (T ) is the de Rham Witt complex). Let

i1:Wn(F (T )) −→ H1(F (T ),Z/pn)

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



Part I. Section 13. Abelian extensions of absolutely unramified cdv fields 115

be the map defined by Artin–Schreier–Witt theory, and let

i2:WnΩ1
F (T ) −→ pn Br(F (T ))

be the map obtained by taking Galois cohomology from an exact sequence

0 −→ (F (T )sep)∗/((F (T )sep)∗)p
n −→WnΩ1

F (T )sep −→WnΩ1
F (T )sep −→ 0.

Then we have a commutative diagram

H1(K,Z/pn)×E∗/(E∗)p
n ∪−−−−→ Br(E)

Φn
y xψn xi

Wn(F ) ×Wn(F (T ))
λ−−−−→ pn Br(F (T )) ⊕H1(F (T ),Z/pn)

where i is the map in subsection 5.1, and

ψn((a0, . . . , an−1)) = exp
(n−1∑
i=0

n−i∑
j=1

pi+j ãi
pn−i−j )

( ãi is a lifting of ai to OK ).
(5) Suppose that n = 1 and F is separably closed. Then we have an isomorphism

Φ1:H1(K,Z/p) ' F.

Suppose that Φ1(χ) = a. Then the extension L/K which corresponds to the
character χ can be described as follows. Let ã be a lifting of a to OK . Then
L = K(x) where x is a solution of the equation

Xp −X = ã/p.

The property (4) characterizes Φn.

Corollary (Miki). Let L = K(x) where xp − x = a/p with some a ∈ OK . L is
contained in a cyclic extension of K of degree pn if and only if

a mod p ∈ F pn−1
.

This follows from parts (2) and (5) of the theorem. More generally:

Corollary. Let χ be a character corresponding to the extension L/K of degree pn ,
and Φn(χ) = (a0, . . . , an−1). Then for m > n, L is contained in a cyclic extension
of K of degree pm if and only if ai ∈ F p

m−n
for all i such that 0 6 i 6 n− 1.

Remarks.
(1) Fesenko gave a new and simple proof of this theorem from his general theory on

totally ramified extensions (cf. subsection 16.4).
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(2) For any q > 0 we can construct a homomorphism

Φn:Hq(K,Z/pn(q − 1)) −→WnΩq−1
F

by the same method. By using this homomorphism, we can study the Brauer group
of K , for example.

Problems.
(1) Let χ

�
be the character of the extension constructed in 14.1. Calculate Φn(χ

�
).

(2) Assume that F is separably closed. Then we have an isomorphism

Φn:H1(K,Z/pn) ' Wn(F ).

This isomorphism is reminiscent of the isomorphism of Artin–Schreier–Witt theory.
For w = (a0, . . . , an−1) ∈ Wn(F ), can one give an explicit equation of the
corresponding extension L/K using a0, . . . , an−1 for n > 2 (where L/K
corresponds to the character χ such that Φn(χ) = w )?
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14. Explicit abelian extensions of
complete discrete valuation fields

Igor Zhukov

14.0

For higher class field theory Witt and Kummer extensions are very important. In fact,
Parshin’s construction of class field theory for higher local fields of prime characteristic
[P] is based on an explicit (Artin–Schreier–Witt) pairing; see [F] for a generalization to
the case of a perfect residue field. Kummer extensions in the mixed characteristic case
can be described by using class field theory and Vostokov’s symbol [V1], [V2]; for a
perfect residue field, see [V3], [F].

An explicit description of non Kummer abelian extensions for a complete discrete
valuation field K of characteristic 0 with residue field kK of prime characteristic p
is an open problem. We are interested in totally ramified extensions, and, therefore,
in p-extensions (tame totally ramified abelian extensions are always Kummer and their
class field theory can be described by means of the higher tame symbol defined in
subsection 6.4.2).

In the case of an absolutely unramified K there is a beautiful description of all
abelian totally ramified p-extensions in terms of Witt vectors over kK by Kurihara
(see section 13 and [K]). Below we give another construction of some totally ramified
cyclic p-extensions for such K . The construction is complicated; however, the exten-
sions under consideration are constructed explicitly, and eventually we obtain a certain
description of the whole maximal abelian extension of K . Proofs are given in [VZ].

14.1

We recall that cyclic extensions of K of degree p can be described by means of Artin–
Schreier extensions, see [FV, III.2]. Namely, for a cyclic L/K of degree p we have
L = K(x), xp − x = a, where vK(a) = −1 if L/K is totally ramified, and vK(a) = 0
if L/K is unramified.
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Notice that if vK (a1 − a2) > 0, then for corresponding cyclic extensions L1/K
and L2/K we have L1Kur = L2Kur. (If vK (a1−a2) > 1, then, moreover, L1 = L2. )
We obtain immediately the following description of the maximal abelian extension of
K of exponent p: Kab,p = Kab,p

ur
∏
dKd , where Kd = K(x), xp − x = −p−1d, and

d runs over any fixed system of representatives of k∗K in OK . This is a part of a more
precise statement at the end of the next subsection.

14.2

It is easy to determine whether a given cyclic extension L/K of degree p can be
embedded into a cyclic extension of degree pn , n > 2.

Proposition. In the above notation, let b be the residue of pa in kK . Then there is a

cyclic extension M/K of degree pn such that L ⊂M if and only if b ∈ kKp
n−1

.

The proof is based on the following theorem of Miki [M]. Let F be a field of
characteristic not equal to p and let ζp ∈ F . Let L = F (α), αp = a ∈ F . Then
a ∈ F ∗pNF (ζpn )/FF (ζpn)∗ if and only if there is a cyclic extension M/F of degree
pn such that L ⊂M .

Corollary. Denote by Kab,pn (respectively Kab,pn
ur ) the maximal abelian (respectively

abelian unramified) extension of K of exponent pn. Choose Ai ⊂ OK , 1 6 i 6 n,

in such a way that {d : d ∈ Ai} is an Fp-basis of kp
i−1

K /kp
i

K for i 6 n − 1 and an

Fp -basis of kp
n−1

K for i = n. Let Ki,d ( d ∈ Ai ) be any cyclic extension of degree pi

that contains x with xp − x = −p−1d. Then Kab,pn/K is the compositum of linearly
disjoint extensions Ki,d/K ( 1 6 i 6 n; d runs over Ai ) and Kab,pn

ur /K .

From now on, let p > 3. For any n > 1 and any b ∈ kp
n−1

K , we shall give
a construction of a cyclic extension Kn,d/K of degree pn such that x ∈ Kn,d ,
xp − x = −p−1d, where d ∈ OK is such that its residue d is equal to b.

14.3

Denote by G the Lubin–Tate formal group over Zp such that multiplication by p in it
takes the form [p]G(X) = pX +Xp .

Let O be the ring of integers of the field E defined in (2) of Theorem 13.2, and v
the valuation on E .
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Proposition. There exist gi ∈ O, i ∈ Z, and Ri ∈ O, i > 0, satisfying the following
conditions.
(1) g0 ≡ 1 mod pO, gi ≡ 0 mod pO for i 6= 0.
(2) R0 = T .
(3) v(gi) > −i + 2 +

[
i
p

]
+
[
i−2
p

]
for i 6 −1.

(4) Let g(X) =
∞∑
−∞

giX
i(p−1)+1, R(X,T ) =

∞∑
i=0
RiX

i(p−1)+1. Then

g(X) +G [p]GR(g(X), T ) = g(X +G R([p]GX,T
p)).

Remark. We do not expect that the above conditions determine gi and Ri uniquely.
However, in [VZ] a certain canonical way to construct (g,R) by a process of the p-adic
approximation is given.

Fix a system (g,R) satisfying the above conditions. Denote

S =
∞∑
i=0

Si(T )Xi(p−1)+1 = T−1X + . . .

the series which is inverse to R with respect to substitution in O[[X]].

Theorem. Let d ∈ O∗K . Consider β1, . . . , βn ∈ Ksep such that

βp1 − β1 = −p−1
∑
i>0

Si(d
pn−1

)(−p)i,

βpj − βj = −p−1
+∞∑
−∞

gi(d
pn−j )(−p)iβi(p−1)+1

j−1 , j > 2.

Then K
n,dpn−1 = K(β1, . . . , βn) is a cyclic extension of K of degree pn containing

a zero of the polynomial Xp −X + p−1dp
n−1

.

Remark. We do not know which Witt vector corresponds to K
n,dp

n−1/K in Kurihara’s
theory (cf. section 13). However, one could try to construct a parallel theory in which
(the canonical character of) this extension would correspond to (dp

n−1
, 0, 0, . . . ) ∈

Wn(kK ).

14.4

If one is interested in explicit equations for abelian extensions of K of exponent pn

for a fixed n, then it is sufficient to compute a certain p-adic approximation to g (resp.
R ) by polynomials in Z(p)[T, T−1,X,X−1] (resp. Z(p)[T, T−1,X] ). Let us make
this statement more precise.
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In what follows we consider a fixed pair (g,R) constructed in [VZ]. Denote

K
j,dpn−1 = K(β1, . . . , βj).

Let v be the (non-normalized) extension of the valuation of K to K
n,dpn−1 . Then

v(βj) = −p−1 − · · · − p−j , j = 1, . . . , n.
We assert that in the defining equations for K

n,dpn−1 the pair (g,R) can be replaced

with (g̃, R̃) such that

(1) v(g̃i − gi) > n + max j=1,...,n−1(−j − i · p−j + p−1 + p−2 + · · · + p−j), i ∈ Z,

and

(2) v(R̃i −Ri) > n− i, i > 0.

Theorem. Assume that the pair (g̃, R̃) satisfies (1) and (2). Define S̃ as R̃−1 . Let

β̃p1 − β̃1 = −p−1
∑
i>0

S̃i(d
pn−1

)(−p)i,

β̃pj − β̃j = −p−1
+∞∑
−∞

g̃i(d
pn−j )(−p)iβ̃i(p−1)+1

j−1 , j > 2.

Then K(β̃1, . . . , β̃n) = K(β1, . . . , βn).

Proof. It is easy to check by induction on j that β̃j ∈ Kj,dpn−1 and v(β̃j−βj) > n−j ,
j = 1, . . . , n.

Remark. For a fixed n, one may take R̃i = 0 for i > n, g̃i = 0 for all sufficiently
small or sufficiently large i.

14.5

If we consider non-strict inequalities in (1)and (2), then we obtain an extension K̃
n,dp

n−1

such that K̃
n,dpn−1Kur = K

n,dpn−1Kur. In particular, let n = 2. Calculation of (R, g)
in [VZ] shows that

gi
p2O≡


0, i < −1

p · T 1−p−1
2 , i = −1

1 + p · T 1−p−1
2 (1 − T p), i = 0

Therefore, one may take g̃i = 0 for i < −1 or i > 0, g̃−1 = p · T 1−p−1
2 , g̃0 =

1 +p · T 1−p−1
2 (1−T p). Further, one may take R̃ = TX . Thus, we obtain the following
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Theorem. For any d ∈ O∗K , let K̃1,d = K(y), where yp − y = −p−1d. Next, let

K̃2,dp = K(y1, y2), where

yp1 − y1 = −p−1dp,

yp2 − y2 = −p−1y1 + p−1 · d
1−p − 1

2
y−p+2

1 − d1−p − 1
2

(1− dp)y1.

Then
1. All K̃1,d/K are cyclic of degree p, and all K̃2,dp/K are cyclic of degree p2 .

2. Kab,p2
/K is the compositum of linearly disjoint extensions described below:

(a) K̃1,d/K , where d runs over a system of representatives of an Fp -basis of
kK/k

p
K ;

(b) K̃2,dp/K , where d runs over a system of representatives of an Fp-basis of
kK ;

(c) Kab,p2

ur /K .

14.6

One of the goals of developing explicit constructions for abelian extensions would be
to write down explicit formulas for class field theory. We are very far from this goal
in the case of non Kummer extensions of an absolutely unramified higher local field.
However, the K -group involved in the reciprocity map can be computed for such fields
in a totally explicit way.

Let K be an absolutely unramified n-dimensional local field with any perfect
residue field. Then [Z, §11] gives an explicit description of

U (1)K top
n K = 〈{α, β1, . . . , βn−1} : α, βi ∈ K∗, v(α − 1) > 0〉.

Notice that the structure of K top
n K/U (1)K top

n K , i.e., the quotient group responsible for
tamely ramified extensions, is well known. We cite here a result in the simplest possible
case K = Qp{{t}}.

Theorem. Let K = Qp{{t}}.
1. For every α ∈ U1K

top
2 (K) there are nj ∈ Zp , j ∈ Z \ {0} which are uniquely

determined modulo pvQp (j)+1 and there is n0 ∈ Zp which is uniquely determined
such that

α =
∑
j

nj{1− ptj , t}.

2. For any j 6= 0 we have

pvQp (j)+1{1− ptj , t} = 0.
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Proof. Use explicit class field theory of section 10 and the above mentioned theorem
of Miki.

Question. How does {1− ptj , t} act on K
n,dpn−1 ?
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15. On the structure of the Milnor K -groups
of complete discrete valuation fields

Jinya Nakamura

15.0. Introduction

For a discrete valuation field K the unit group K∗ of K has a natural decreasing
filtration with respect to the valuation, and the graded quotients of this filtration are
written in terms of the residue field. The Milnor K -group Kq(K) is a generalization
of the unit group and it also has a natural decreasing filtration defined in section 4.
However, if K is of mixed characteristic and has absolute ramification index greater
than one, the graded quotients of this filtration are known in some special cases only.

Let K be a complete discrete valuation field with residue field k = kK ; we keep
the notations of section 4. Put vp = vQp .

A description of grnKq(K) is known in the following cases:
(i) (Bass and Tate [BT]) gr0Kq(K) ' Kq(k)⊕Kq−1(k).

(ii) (Graham [G]) If the characteristic of K and k is zero, then grnKq(K) ' Ωq−1
k

for all n > 1.
(iii) (Bloch [B], Kato [Kt1]) If the characteristic of K and of k is p > 0 then

grnKq(K) ' coker
(

Ωq−2
k −→ Ωq−1

k /Bq−1
s ⊕Ωq−2

k /Bq−2
s

)
where ω 7−→ (C−s(dω), (−1)qmC−s(ω) and where n > 1, s = vp(n) and
m = n/ps.

(iv) (Bloch–Kato [BK]) If K is of mixed characteristic (0, p), then

grnKq(K) ' coker
(

Ωq−2
k −→ Ωq−1

k /Bq−1
s ⊕Ωq−2

k /Bq−2
s

)
where ω 7−→ (C−s(dω), (−1)qmC−s(ω)) and where 1 6 n < ep/(p − 1) for
e = vK (p), s = vp(n) and m = n/ps; and

gr ep
p−1

Kq(K)

' coker
(

Ωq−2
k −→ Ωq−1

k /(1 + aC)Bq−1
s ⊕Ωq−2

k /(1 + aC)Bq−2
s

)
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124 J. Nakamura

where ω 7−→ ((1 + aC) C−s(dω), (−1)qm(1 + aC) C−s(ω)) and where a is the
residue class of p/πe for fixed prime element of K , s = vp(ep/(p − 1)) and
m = ep/(p− 1)ps .

(v) (Kurihara [Ku1], see also section 13) If K is of mixed characteristic (0, p) and
absolutely unramified (i.e., vK (p) = 1 ), then grnKq(K) ' Ωq−1

k /Bq−1
n−1 for

n > 1.
(vi) (Nakamura [N2]) If K is of mixed characteristic (0, p) with p > 2 and p - e =

vK (p), then

grnKq(K) '
{

as in (iv) (1 6 n 6 ep/(p− 1))

Ωq−1
k /Bq−1

ln+sn (n > ep/(p− 1))

where ln is the maximal integer which satisfies n − lne > e/(p − 1) and sn =
vp(n− lne).

(vii) (Kurihara [Ku3]) If K0 is the fraction field of the completion of the localization
Zp[T ](p) and K = K0( p

√
pT ) for a prime p 6= 2, then

grnK2(K) '


as in (iv) (1 6 n 6 p)

k/kp (n = 2p)

kp
l−2

(n = lp, l > 3)

0 (otherwise).

(viii) (Nakamura [N1]) Let K0 be an absolutely unramified complete discrete valuation
field of mixed characteristic (0, p) with p > 2. If K = K0(ζp)( p

√
π) where π is a

prime element of K0(ζp) such that dπp−1 = 0 in Ω1
OK0(ζp)

, then grnKq(K) are

determined for all n > 1. This is complicated, so we omit the details.
(ix) (Kahn [Kh]) Quotients of the Milnor K -groups of a complete discrete valuation

field K with perfect residue field are computed using symbols.

Recall that the group of units U1,K can be described as a topological Zp -module.
As a generalization of this classical result, there is an appraoch different from (i)-(ix)
for higher local fields K which uses topological convergence and

K top
q (K) = Kq(K)/ ∩l>1 lKq(K)

(see section 6). It provides not only the description of grnKq(K) but of the whole
K

top
q (K) in characteristic p (Parshin [P]) and in characteristic 0 (Fesenko [F]). A

complete description of the structure of K top
q (K) of some higher local fields with small

ramification is given by Zhukov [Z].

Below we discuss (vi).
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15.1. Syntomic complex and Kurihara’s exponential homomorphism

15.1.1. Syntomic complex. Let A = OK and let A0 be the subring of A such that
A0 is a complete discrete valuation ring with respect to the restriction of the valuation
of K , the residue field of A0 coincides with k = kK and A0 is absolutely unramified.
Let π be a fixed prime of K . Let B = A0[[X]]. Define

J = ker[B
X 7→π−−−→ A]

I = ker[B
X 7→π−−−→ A

mod p−−−→ A/p] = J + pB.

Let D and J ⊂ D be the PD-envelope and the PD-ideal with respect to B → A,
respectively. Let I ⊂ D be the PD-ideal with respect to B → A/p. Namely,

D = B

[
xj

j!
; j > 0, x ∈ J

]
, J = ker(D → A), I = ker(D → A/p).

Let J [r] (resp. I[r] ) be the r-th divided power, which is the ideal of D generated by{
xj

j!
; j > r, x ∈ J

}
,

(
resp.

{
xi

i!
pj

j!
; i + j > r, x ∈ I

})
.

Notice that I[0] = J [0] = D. Let I[n] = J [n] = D for a negative n. We define the
complexes J[q] and I[q] as

J[q] = [J [q] d−→ J [q−1] ⊗B Ω̂1
B

d−→ J [q−2] ⊗B Ω̂2
B −→ · · · ]

I[q] = [I[q] d−→ I[q−1] ⊗B Ω̂1
B

d−→ I[q−2] ⊗B Ω̂2
B −→ · · · ]

where Ω̂q
B is the p-adic completion of Ωq

B . We define D = I[0] = J[0].
Let T be a fixed set of elements of A∗0 such that the residue classes of all T ∈ T

in k forms a p-base of k. Let f be the Frobenius endomorphism of A0 such that
f (T ) = T p for any T ∈ T and f (x) ≡ xp mod p for any x ∈ A0. We extend f to
B by f (X) = Xp , and to D naturally. For 0 6 r < p and 0 6 s, we get

f (J [r]) ⊂ prD, f (Ω̂s
B) ⊂ psΩ̂s

B ,

since

f (x[r]) = (xp + py)[r] = (p!x[p] + py)[r] = p[r]((p− 1)!x[p] + y)r,

f
(
z
dT1

T1
∧ · · · ∧ dTs

Ts

)
= z

dT p1
T p1
∧ · · · ∧ dT

p
s

T ps
= zps

dT1

T1
∧ · · · ∧ dTs

Ts
,

where x ∈ J, y is an element which satisfies f (x) = xp + py, and T1, . . . , Ts ∈
T ∪ {X}. Thus we can define

fq =
f

pq
: J [r] ⊗ Ω̂q−r

B −→ D ⊗ Ω̂q−r
B
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for 0 6 r < p. Let S (q) and S ′(q) be the mapping fiber complexes (cf. Appendix)
of

J[q] 1−fq−−−→ D and I[q] 1−fq−−−→ D
respectively, for q < p. For simplicity, from now to the end, we assume p is large
enough to treat S (q) and S ′(q). S (q) is called the syntomic complex of A with
respect to B, and S ′(q) is also called the syntomic complex of A/p with respect to
B (cf. [Kt2]).

Theorem 1 (Kurihara [Ku2]). There exists a subgroup Sq of Hq(S (q)) such that
UXH

q(S (q)) ' U1K̂q(A) where K̂q(A) = lim←−Kq(A)/pn is the p-adic completion of
Kq(A) (see subsection 9.1).

Outline of the proof. Let UX (D⊗ Ω̂q−1
B ) be the subgroup of D⊗ Ω̂q−1

B generated by
XD ⊗ Ω̂q−1

B , D ⊗ Ω̂q−2
B ∧ dX and I ⊗ Ω̂q−1

B , and let

Sq = UX (D ⊗ Ω̂q−1
B )/((dD ⊗ Ω̂q−2

B + (1− fq)J ⊗ Ω̂q−1
B ) ∩ UX (D ⊗ Ω̂q−1

B )).

The infinite sum
∑

n>0 f
n
q (dx) converges in D⊗ Ω̂q

B for x ∈ UX (D ⊗ Ω̂q−1
B ). Thus

we get a map

UX (D ⊗ Ω̂q−1
B ) −→ Hq(S (q))

x 7−→
(
x,
∞∑
n=0

fnq (dx)
)

and we may assume Sq is a subgroup of Hq(S (q)). Let Eq be the map

Eq : UX(D ⊗ Ω̂q−1
B ) −→ K̂q(A)

x
dT1

T1
∧ · · · ∧ dTq−1

Tq−1
7−→ {E1(x), T1, . . . , Tq−1},

where E1(x) = exp ◦(
∑

n>0 f
n
1 )(x) is Artin–Hasse’s exponential homomorphism. In

[Ku2] it was shown that Eq vanishes on

(dD ⊗ Ω̂q−2
B + (1− fq)J ⊗ Ω̂q−1

B ) ∩ UX (D ⊗ Ω̂q−1
B ),

hence we get the map

Eq : Sq −→ K̂q(A).

The image of Eq coincides with U1K̂q(A) by definition.
On the other hand, define sq : K̂q(A) −→ Sq by

sq({a1, . . . , aq})

=
q∑
i=1

(−1)i−1 1
p

log
(f (ãi)
ãi
p

)dã1

ã1
∧ · · · ∧ dãi−1

ãi−1
∧ f1

(dãi+1

ãi+1

)
∧ · · · ∧ f1

(dãq
ãq

)
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(cf. [Kt2], compare with the series Φ in subsection 8.3), where ã is a lifting of a
to D. One can check that sq ◦ Eq = − id . Hence Sq ' U1K̂q(A). Note that if
ζp ∈ K , then one can show U1K̂q(A) ' U1K̂q(K) (see [Ku4] or [N2]), thus we have
Sq ' U1K̂q(K).

Example. We shall prove the equality sq ◦ Eq = − id in the following simple case.
Let q = 2. Take an element adT/T ∈ UX(D ⊗ Ω̂q−1

B ) for T ∈ T ∪ {X}. Then

sq ◦ Eq
(
a
dT

T

)
= sq({E1(ã), T})

=
1
p

log

(
f (E1(a))
E1(a)p

)
f1

(
dT

T

)
=

1
p

(
log ◦f ◦ exp ◦

∑
n>0

fn1 (a)− p log ◦ exp◦
∑
n>0

fn1 (a)

)
dT

T

=

(
f1

∑
n>0

fn1 (a) −
∑
n>0

fn1 (a)

)
dT

T

= −adT
T
.

15.1.2. Exponential Homomorphism. The usual exponential homomorphism

expη : A −→ A∗

x 7−→ exp(ηx) =
∑
n>0

xn

n!

is defined for η ∈ A such that vA(η) > e/(p − 1). This map is injective. Section 9
contains a definition of the map

expη : Ω̂q−1
A −→ K̂q(A)

x
dy1

y1
∧ · · · ∧ dyq−1

yq−1
7−→ {exp(ηx), y1, . . . , yq−1}

for η ∈ A such that vA(η) > 2e/(p− 1). This map is not injective in general. Here is
a description of the kernel of expη .

Theorem 2. The following sequence is exact:

(*) Hq−1(S ′(q))
ψ−→ Ωq−1

A /pdΩ̂q−2
A

expp−→ K̂q(A).
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Sketch of the proof. There is an exact sequence of complexes

0→MF


J[q]

1−fq
y
D

→MF


I[q]

1−fq
y
D

→I[q]/J[q] → 0,

‖ ‖
S (q) S

′(q)

where MF means the mapping fiber complex. Thus, taking cohomologies we have the
following diagram with the exact top row

Hq−1(S ′(q))
ψ−−−−→ Hq−1(I[q]/J[q])

δ−−−−→ Hq(S (q))

(1)

x Thm.1

x
Ω̂q−1
A /pdΩ̂q−2

A

expp−−−−→ U1K̂q(A),

where the map (1) is induced by

Ω̂q−1
A 3 ω 7−→ pω̃ ∈ I ⊗ Ω̂q−1

B /J ⊗ Ω̂q−1
B = (I[q]/J[q])q−1.

We denoted the left horizontal arrow of the top row by ψ and the right horizontal arrow
of the top row by δ. The right vertical arrow is injective, thus the claims are
(1) is an isomorphism,
(2) this diagram is commutative.

First we shall show (1). Recall that

Hq−1(I[q]/J[q]) = coker

(
I[2] ⊗ Ω̂q−2

B

J [2] ⊗ Ω̂q−2
B

−→ I ⊗ Ω̂q−2
B

J ⊗ Ω̂q−2
B

)
.

From the exact sequence

0 −→ J −→ D −→ A −→ 0,

we get D ⊗ Ω̂q−1
B /J ⊗ Ω̂q−1

B = A ⊗ Ω̂q−1
B and its subgroup I ⊗ Ω̂q−2

B /J ⊗ Ω̂q−2
B is

pA ⊗ Ω̂q−1
B in A ⊗ Ω̂q−1

B . The image of I[2] ⊗ Ω̂q−2
B in pA ⊗ Ω̂q−1

B is equal to the
image of

I2 ⊗ Ω̂q−2
B = J2 ⊗ Ω̂q−2

B + pJΩ̂q−2
B + p2Ω̂q−2

B .

On the other hand, from the exact sequence

0 −→ J −→ B −→ A −→ 0,

we get an exact sequence

(J/J2)⊗ Ω̂q−2
B

d−→ A⊗ Ω̂q−1
B −→ Ω̂q−1

A −→ 0.
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Thus dJ2 ⊗ Ω̂q−2
B vanishes on pA⊗ Ω̂q−1

B , hence

Hq−1(I[q]/J[q]) =
pA⊗ Ω̂q−1

B

pdJΩ̂q−2
B + p2dΩ̂q−2

B

p−1

' A⊗ Ω̂q−1
B

dJΩ̂q−2
B + pdΩ̂q−2

B

' Ω̂q−1
A /pdΩ̂q−2

A ,

which completes the proof of (1).
Next, we shall demonstrate the commutativity of the diagram on a simple example.

Consider the case where q = 2 and take adT/T ∈ Ω̂1
A for T ∈ T ∪ {π}. We want to

show that the composite of

Ω̂1
A/pdA

(1)−→ H1(I[2]/J[2])
δ−→ Sq

Eq−→ U1K̂2(A)

coincides with expp . By (1), the lifting of adT/T in (I[2]/J[2])1 = I⊗ Ω̂1
B/J⊗ Ω̂1

B is
pã ⊗ dT/T , where ã is a lifting of a to D. Chasing the connecting homomorphism
δ,

0 −−→ (J⊗Ω̂1
B )⊕D −−→ (I⊗Ω̂1

B )⊕D −−→ (I⊗Ω̂1
B )/(J⊗Ω̂1

B ) −−→ 0

d

y d

y d

y
0 −−→ (D⊗Ω̂2

B)⊕(D⊗Ω̂1
B) −−→ (D⊗Ω̂2

B)⊕(D⊗Ω̂1
B) −−→ 0 −−→ 0

d

y d

y d

y
(the left column is S (2), the middle is S ′(2) and the right is I[2]/J[2] ); pãdT/T in
the upper right goes to (pdã ∧ dT/T, (1− f2)(pã ⊗ dT/T )) in the lower left. By E2,
this element goes

E2
(
(1 − f2)

(
pã⊗ d

T

))
= E2

(
(1− f1)(pã)⊗ dT

T

)
= {E1((1 − f1)(pã)), T} =

{
exp ◦

(∑
n>0

fn1
)
◦ (1− f1)(pã), T

}
= {exp(pa), T}.

in U1K̂2(A). This is none other than the map expp .

By Theorem 2 we can calculate the kernel of expp . On the other hand, even though

expp is not surjective, the image of expp includes Ue+1K̂q(A) and we already know

griK̂q(K) for 0 6 i 6 ep/(p − 1). Thus it is enough to calculate the kernel of expp
in order to know all griK̂q(K). Note that to know griK̂q(K), we may assume that
ζp ∈ K , and hence K̂q(A) = U0K̂q(K).
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15.2. Computation of the kernel of the exponential homomorphism

15.2.1. Modified syntomic complex. We introduce a modification of S ′(q) and
calculate it instead of S ′(q). Let Sq be the mapping fiber complex of

1− fq : (J[q])>q−2 −→ D>q−2.

Here, for a complex C ·, we put

C>n = (0 −→ · · · −→ 0 −→ Cn −→ Cn+1 −→ · · · ).

By definition, we have a natural surjection Hq−1(Sq) → Hq−1(S ′(q)), hence
ψ(Hq−1(Sq)) = ψ(Hq−1(S ′(q))), which is the kernel of expp .

To calculate Hq−1(Sq), we introduce an X -filtration. Let 0 6 r 6 2 and s = q−r.
Recall that B = A0[[X]]. For i > 0, let fili(I[r]⊗BΩ̂s

B) be the subgroup of I[r]⊗BΩ̂s
B

generated by the elements

{
Xn (Xe)j

j!
pl

l!
aω : n + ej > i, n > 0, j + l > r, a ∈ D,ω ∈ Ω̂s

B

}
∪
{
Xn (Xe)j

j!
pl

l!
aυ ∧ dX

X
: n + ej > i, n > 1, j + l > r, a ∈ D,υ ∈ Ω̂s−1

B

}
.

The map 1 − fq: I[r] ⊗ Ω̂s
B → D ⊗ Ω̂s

B preserves the filtrations. By using the latter
we get the following

Proposition 3. Hq−1(filiSq)i form a finite decreasing filtration of Hq−1(Sq). Denote

filiH
q−1(Sq) = Hq−1(filiSq),

griH
q−1(Sq) = filiH

q−1(Sq)/fili+1H
q−1(Sq).
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Then griHq−1(Sq)

=



0 ( if i > 2e)

X2e−1dX ∧
(

Ω̂q−3
A0

/p
)

( if i = 2e)

Xi
(

Ω̂q−2
A0

/p
)
⊕Xi−1dX ∧ (Ω̂q−3

A0
/p) ( if e < i < 2e)

Xe
(

Ω̂q−2
A0

/p
)
⊕Xe−1dX ∧

(
Z1Ω̂q−3

A0

/
p2Ω̂q−3

A0

)
( if i = e, p | e)

Xe−1dX ∧
(
Z1Ω̂q−3

A0

/
p2Ω̂q−3

A0

)
( if i = e, p - e)Xi

(
p

max(η′
i
−vp(i),0)Ω̂q−2

A0
∩Zηi Ω̂q−2

A0

)
+p2Ω̂q−2

A0

p2Ω̂q−2
A0


⊕
(
Xi−1dX ∧

Zηi Ω̂q−3
A0

+p2Ω̂q−3
A0

p2Ω̂q−3
A0

)
( if 1 6 i < e)

0 ( if i = 0).

Here ηi and η′i are the integers which satisfy pηi−1i < e 6 pηii and pη
′
i−1i − 1 <

e 6 pη′ii− 1 for each i,

ZnΩ̂q
A0

= ker
(

Ω̂q
A0

d−→ Ω̂q+1
A0
/pn
)

for positive n, and ZnΩ̂q
A0

= Ω̂q
A0

for n 6 0.

Outline of the proof. From the definition of the filtration we have the exact sequence
of complexes:

0 −→ fili+1Sq −→ filiSq −→ griSq −→ 0

and this sequence induce a long exact sequence

· · · → Hq−2(griSq)→ Hq−1(fili+1Sq)→ Hq−1(filiSq)→ Hq−1(griSq)→ · · · .

The group Hq−2(griSq) is

Hq−2(griSq) = ker

(
griI[2] ⊗ Ω̂q−2

B −→ (griI ⊗ Ω̂q−1
B )⊕ (griD ⊗ Ω̂q−2

B )
x 7−→ (dx, (1 − fq)x)

)
.

The map 1−fq is equal to 1 if i > 1 and 1−fq : p2Ω̂q−2
A0
→ Ω̂q−2

A0
if i = 0, thus they

are all injective. Hence Hq−2(griSq) = 0 for all i and we deduce that Hq−1(filiSq)i
form a decreasing filtration on Hq−1(Sq).

Next, we have to calculate Hq−2(griSq). The calculation is easy but there are many
cases which depend on i, so we omit them. For more detail, see [N2].
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Finally, we have to compute the image of the last arrow of the exact sequence

0 −→ Hq−1(fili+1Sq) −→ Hq−1(filiSq) −→ Hq−1(griSq)

because it is not surjective in general. Write down the complex griSq :

· · · → (griI ⊗ Ω̂q−1
B )⊕ (griD ⊗ Ω̂q−2

B )
d→ (griD ⊗ Ω̂q

B)⊕ (griD ⊗ Ω̂q−1
B )→ · · · ,

where the first term is the degree q−1 part and the second term is the degree q part. An
element (x, y) in the first term which is mapped to zero by d comes from Hq−1(filiSq)
if and only if there exists z ∈ filiD ⊗ Ω̂q−2

B such that z ≡ y modulo fili+1D ⊗ Ω̂q−2
B

and ∑
n>0

fnq (dz) ∈ filiI ⊗ Ω̂q−1
B .

From here one deduces Proposition 3.

15.2.2. Differential modules. Take a prime element π of K such that πe−1dπ = 0.
We assume that p - e in this subsection. Then we have

Ω̂q
A '

( ⊕
i1<i2<···<iq

A
dTi1
Ti1
∧ · · · ∧

dTiq
Tiq

)

⊕
( ⊕
i1<i2<···<iq−1

A/(πe−1)
dTi1
Ti1
∧ · · · ∧

dTiq−1

Tiq−1

∧ dπ
)
,

where {Ti} = T. We introduce a filtration on Ω̂q
A as

filiΩ̂q
A =

{
Ω̂q
A ( if i = 0)

πiΩ̂q
A + πi−1dπ ∧ Ω̂q−1

A ( if i > 1).

The subquotients are

griΩ̂q
A = filiΩ̂q

A/fili+1Ω̂q
A

=

{
Ωq
F ( if i = 0 or i > e)

Ωq
F ⊕Ωq−1

F ( if 1 6 i < e),

where the map is

Ωq
F 3 ω 7−→ πiω̃ ∈ πiΩ̂q

A

Ωq−1
F 3 ω 7−→ πi−1dπ ∧ ω̃ ∈ πi−1dπ ∧ Ω̂q−1

A .

Here ω̃ is the lifting of ω. Let fili(Ω̂q
A/pdΩ̂q−1

A ) be the image of filiΩ̂q
A in

Ω̂q
A/pdΩ̂q−1

A . Then we have the following:
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Proposition 4. For j > 0,

grj
(

Ω̂q
A/pdΩ̂q−1

A

)
=


Ωq
F (j = 0)

Ωq
F ⊕Ωq−1

F (1 6 j < e)

Ωq
F /B

q
l (e 6 j),

where l be the maximal integer which satisfies j − le > 0.

Proof. If 1 6 j < e, grjΩ̂q
A = grj(Ω̂q

A/pdΩ̂q−1
A ) because pdΩ̂q−1

A ⊂ fileΩ̂q
A . As-

sume that j > e and let l be as above. Since πe−1dπ = 0, Ω̂q−1
A is generated by

elements pπidω for 0 6 i < e and ω ∈ Ω̂q−1
A0

. By [I] (Cor. 2.3.14), pπidω ∈
file(1+n)+iΩ̂q

A if and only if the residue class of p−ndω belongs to Bn+1. Thus

grj(Ω̂q
A/pdΩ̂q−1

A ) ' Ωq
F/B

q
l .

By definition of the filtrations, expp preserves the filtrations on Ω̂q−1
A /pdΩ̂q−2

A and

K̂q(K). Furthermore, expp: gri(Ω̂q−1
A /pdΩ̂q−2

A ) → gri+eKq(K) is surjective and its

kernel is the image of ψ(Hq−1(Sq))∩fili(Ω̂q−1
A /pdΩ̂q−2

A ) in gri(Ω̂q−1
A /pdΩ̂q−2

A ). Now

we know both Ω̂q−1
A /pdΩ̂q−2

A and Hq−1(Sq) explicitly, thus we shall get the structure
of Kq(K) by calculating ψ. But ψ does not preserve the filtration of Hq−1(Sq), so
it is not easy to compute it. For more details, see [N2], especially sections 4-8 of that
paper. After completing these calculations, we get the result in (vi) in the introduction.

Remark. Note that if p | e, the structure of Ω̂q−1
A /pdΩ̂q−2

A is much more complicated.
For example, if e = p(p−1), and if πe = p, then pπe−1dπ = 0. This means the torsion
part of Ω̂q−1

A is larger than in the the case where p - e. Furthermore, if πp(p−1) = pT
for some T ∈ T, then pπe−1dπ = pdT , this means that dπ is not a torsion element.
This complexity makes it difficult to describe the structure of Kq(K) in the case where
p | e.

Appendix. The mapping fiber complex.
This subsection is only a note on homological algebra to introduce the mapping

fiber complex. The mapping fiber complex is the degree −1 shift of the mapping cone
complex.

Let C ·
f→ D· be a morphism of non-negative cochain complexes. We denote the

degree i term of C · by Ci .
Then the mapping fiber complex MF(f )· is defined as follows.

MF(f )i = Ci ⊕Di−1,

differential d: Ci ⊕Di−1 −→ Ci+1 ⊕Di

(x, y) 7−→ (dx, f (x) − dy).
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By definition, we get an exact sequence of complexes:

0 −→ D[−1]· −→ MF(f )· −→ C · −→ 0,

where D[−1]· = (0→ D0 → D1 → · · · ) (degree −1 shift of D·. )
Taking cohomology, we get a long exact sequence

· · · → Hi(MF(f )·)→ Hi(C ·)→ Hi+1(D·[−1])→ Hi+1(MF(f )·)→ · · · ,

which is the same as the following exact sequence

· · · → Hi(MF(f )·)→ Hi(C ·)
f→ Hi(D·)→ Hi+1(MF(f )·)→ · · · .
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16. Higher class field theory without using K -groups

Ivan Fesenko

Let F be a complete discrete valuation field with residue field k = kF of characteris-
tic p. In this section we discuss an alternative to higher local class field theory method
which describes abelian totally ramified extensions of F without using K -groups. For
n-dimensional local fields this gives a description of abelian totally ramified (with re-
spect to the discrete valuation of rank one) extensions of F . Applications are sketched
in 16.3 and 16.4.

16.1. p-class field theory

Suppose that k is perfect and k 6= ℘(k) where ℘: k → k, ℘(a) = ap − a.
Let F̃ be the maximal abelian unramified p-extension of F . Then due to Witt theory

Gal(F̃ /F ) is isomorphic to
∏
κ Zp where κ = dim Fp k/℘(k). The isomorphism is

non-canonical unless k is finite where the canonical one is given by FrobF 7→ 1.
Let L be a totally ramified Galois p-extension of F .
Let Gal(F̃ /F ) act trivially on Gal(L/F ).
Denote

Gal(L/F )∼ = H1
cont((Gal(F̃ /F ),Gal(L/F )) = Homcont(Gal(F̃ /F ),Gal(L/F )).

Then Gal(L/F )∼ ' ⊕κ Gal(L/F ) non-canonically.
Put L̃ = LF̃ . Denote by ϕ ∈ Gal(L̃/L) the lifting of ϕ ∈ Gal(F̃ /F ).
For χ ∈ Gal(L/F )∼ denote

Σχ = {α ∈ L̃ : αϕχ(ϕ) = α for all ϕ ∈ Gal(F̃ /F )}.
The extension Σχ/F is totally ramified.

As an generalization of Neukirch’s approach [N] introduce the following:

Definition. Put

ϒL/F (χ) = NΣχ/Fπχ/NL/FπL mod NL/FUL
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138 I. Fesenko

where πχ is a prime element of Σχ and πL is a prime element of L.
This map is well defined. Compare with 10.1.

Theorem ([F1, Th. 1.7]). The map ϒL/F is a homomorphism and it induces an iso-
morphism

Gal(L ∩ F ab/F )∼ →̃UF /NL/FUL →̃U1,F /NL/FU1,L.

Proof. One of the easiest ways to prove the theorem is to define and use the map which
goes in the reverse direction. For details see [F1, sect. 1].

Problem. If π is a prime element of F , then p-class field theory implies that there
is a totally ramified abelian p-extension Fπ of F such that FπF̃ coincides with the
maximal abelian p-extension of F and π ∈ NFπ/FF ∗π . Describe Fπ explicitly (like
Lubin–Tate theory does in the case of finite k ).

Remark. Let K be an n-dimensional local field (K = Kn, . . . , , K0 ) with K0
satisfying the same restrictions as k above.

For a totally ramified Galois p-extension L/K (for the definition of a totally
ramified extension see 10.4) put

Gal(L/K)∼ = Homcont(Gal(K̃/K),Gal(L/K))

where K̃ is the maximal p-subextension of K pur/K (for the definition of K pur see
(A1) of 10.1).

There is a map ϒL/K which induces an isomorphism [F2, Th. 3.8]

Gal(L ∩Kab/K)∼ →̃V Kt
n(K)/NL/KV K

t
n(L)

where V Kt
n(K) = {VK} ·Kt

n−1(K) and Kt
n was defined in 2.0.

16.2. General abelian local p-class field theory

Now let k be an arbitrary field of characteristic p, ℘(k) 6= k.
Let F̃ be the maximal abelian unramified p-extension of F .
Let L be a totally ramified Galois p-extension of F . Denote

Gal(L/F )∼ = H1
cont((Gal(F̃ /F ),Gal(L/F )) = Homcont(Gal(F̃ /F ),Gal(L/F )).

In a similar way to the previous subsection define the map

ϒL/F : Gal(L/F )∼ → U1,F /NL/FU1,L.

In fact it lands in U1,F ∩ NL̃/F̃U1,L̃
)/NL/FU1,L and we denote this new map by the

same notation.
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Definition. Let F be complete discrete valuation field such that F ⊃ F̃ , e(F|F̃ ) = 1

and kF = ∪n>0k
p−n

F̃
. Put L = LF.

Denote I(L|F ) = 〈εσ−1 : ε ∈ U1,L, σ ∈ Gal(L/F )〉 ∩ U
1,L̃

.

Then the sequence

(*) 1 −→ Gal(L/F )ab g−→ U
1,L̃
/I(L|F )

N
L̃/F̃−−−→ N

L̃/F̃
U

1,L̃
−→ 1

is exact where g(σ) = πσ−1
L and πL is a prime element of L (compare with Proposi-

tion 1 of 10.4.1).

Generalizing Hazewinkel’s method [H] introduce

Definition. Define a homomorphism

ΨL/F : (U1,F ∩NL̃/F̃U1,L̃)/NL/FU1,L → Gal(L ∩ F ab/F )∼, ΨL/F (ε) = χ

where χ(ϕ) = g−1(η1−ϕ), η ∈ U
1,L̃

is such that ε = N
L̃/F̃

η.

Properties of ϒL/F ,ΨL/F .
(1) ΨL/F ◦ ϒL/F = id on Gal(L ∩ F ab/F )∼ , so ΨL/F is an epimorphism.
(2) Let F be a complete discrete valuation field such that F ⊃ F , e(F|F ) = 1 and

kF = ∪n>0k
p−n

F . Put L = LF. Let

λL/F : (U1,F ∩NL̃/F̃U1,L̃)/NL/FU1,L → U1,F/NL/FU1,L

be induced by the embedding F → F. Then the diagram

Gal(L/F )∼
ϒL/F−−−−→ (U1,F ∩NL̃/F̃U1,L̃

)/NL/FU1,L
ΨL/F−−−−→ Gal(L ∩ F ab/F )∼y λL/F

y iso

y
Gal(L/F)∼

ϒL/F−−−−→ U1,F/NL/FU1,L
ΨL/F−−−−→ Gal(L ∩ Fab/F)∼

is commutative.
(3) Since ΨL/F is an isomorphism (see 16.1), we deduce that λL/F is surjective and

ker(ΨL/F ) = ker(λL/F ), so

(U1,F ∩NL̃/F̃U1,L̃
)/N∗(L/F ) →̃ Gal(L ∩ F ab/F )∼

where N∗(L/F ) = U1,F ∩NL̃/F̃U1,L̃
∩NL/FU1,L.

Theorem ([F3, Th. 1.9]). Let L/F be a cyclic totally ramified p-extension. Then

ϒL/F : Gal(L/F )∼ → (U1,F ∩NL̃/F̃U1,L̃
)/NL/FU1,L

is an isomorphism.
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Proof. Since L/F is cyclic we get I(L|F ) = {εσ−1 : ε ∈ U1,L̃, σ ∈ Gal(L/F )}, so

I(L|F ) ∩ Uϕ−1

1,L̃
= I(L|F )ϕ−1

for every ϕ ∈ Gal(L̃/L).
Let ΨL/F (ε) = 1 for ε = N

L̃/F̃
η ∈ U1,F . Then ηϕ−1 ∈ I(L|F ) ∩ Uϕ−1

1,L̃
,

so η ∈ I(L|F )Lϕ where Lϕ is the fixed subfield of L̃ with respect to ϕ. Hence
ε ∈ NLϕ/F∩LϕU1,Lϕ . By induction on κ we deduce that ε ∈ NL/FU1,L and ΨL/F

is injective.

Remark. Miki [M] proved this theorem in a different setting which doesn’t mention
class field theory.

Corollary. Let L1/F , L2/F be abelian totally ramified p-extensions. Assume that
L1L2/F is totally ramified. Then

NL2/F
U1,L2 ⊂ NL1/F

U1,L1 ⇐⇒ L2 ⊃ L1.

Proof. Let M/F be a cyclic subextension in L1/F . Then
NM/FU1,M ⊃ NL2/F

U1,L2 , so M ⊂ L2 and M ⊂ L2. Thus L1 ⊂ L2.

Problem. Describe ker(ΨL/F ) for an arbitrary L/F . It is known [F3, 1.11] that this
kernel is trivial in one of the following situations:
(1) L is the compositum of cyclic extensions Mi over F , 1 6 i 6 m, such that

all ramification breaks of Gal(Mi/F ) with respect to the upper numbering are not
greater than every break of Gal(Mi+1/F ) for all 1 6 i 6 m− 1.

(2) Gal(L/F ) is the product of cyclic groups of order p and a cyclic group.
No example with non-trivial kernel is known.

16.3. Norm groups

Proposition ([F3, Prop. 2.1]). Let F be a complete discrete valuation field with residue
field of characteristic p. Let L1/F and L2/F be abelian totally ramified p-extensions.
Let NL1/F

L∗1 ∩ NL2/F
L∗2 contain a prime element of F . Then L1L2/F is totally

ramified.

Proof. If kF is perfect, then the claim follows from p-class field theory in 16.1.
If kF is imperfect then use the fact that there is a field F as above which satisfies
L1F ∩ L2F = (L1 ∩ L2)F.
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Theorem (uniqueness part of the existence theorem) ([F3, Th. 2.2]). Let kF 6= ℘(kF ).
Let L1/F , L2/F be totally ramified abelian p-extensions. Then

NL2/F
L∗2 = NL1/F

L∗1 ⇐⇒ L1 = L2.

Proof. Use the previous proposition and corollary in 16.2.

16.4. Norm groups more explicitly

Let F be of characteristic 0. In general if k is imperfect it is very difficult to describe
NL/FU1,L . One partial case can be handled: let the absolute ramification index e(F )
be equal to 1 (the description below can be extended to the case of e(F ) < p− 1 ).

Let π be a prime element of F .

Definition.

En,π:Wn(kF )→ U1,F /U
pn

1,F , En,π((a0, . . . , an−1)) =
∏

06i6n−1

E(ãi
pn−iπ)p

i

where E(X) = exp(X + Xp/p + Xp2
/p2 + . . . ) and ãi ∈ OF is a lifting of ai ∈ kF

(this map is basically the same as the map ψn in Theorem 13.2).

The following property is easy to deduce:

Lemma. En,π is a monomorphism. If kF is perfect then En,π is an isomorphism.

Theorem ([F3, Th. 3.2]). Let kF 6= ℘(kF ) and let e(F ) = 1. Let π be a prime element
of F .

Then cyclic totally ramified extensions L/F of degree pn such that π ∈ NL/FL∗
are in one-to-one correspondence with subgroups

En,π
(
F(w)℘(Wn(kF ))

)
Up

n

1,F

of U1,F/U
pn

1,F where w runs over elements of Wn(kF )∗ .

Hint. Use the theorem of 16.3. If kF is perfect, the assertion follows from p-class
field theory.

Remark. The correspondence in this theorem was discovered by M. Kurihara [K, Th.
0.1], see the sequence (1) of theorem 13.2. The proof here is more elementary since it
doesn’t use étale vanishing cycles.
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17. An approach to higher ramification theory

Igor Zhukov

We use the notation of sections 1 and 10.

17.0. Approach of Hyodo and Fesenko

Let K be an n-dimensional local field, L/K a finite abelian extension. Define a
filtration on Gal(L/K) (cf. [H], [F, sect. 4]) by

Gal(L/K)i = ϒ−1
L/K(UiK

top
n (K) +NL/KK

top
n (L)/NL/KK

top
n (L)), i ∈ Zn+ ,

where UiK
top
n (K) = {Ui} ·K top

n−1(K), Ui = 1 + PK(i),

ϒ−1
L/K :K top

n (K)/NL/KK
top
n (L) →̃ Gal(L/K)

is the reciprocity map.
Then for a subextension M/K of L/K

Gal(M/K)i = Gal(L/K)i Gal(L/M )/Gal(L/M )

which is a higher dimensional analogue of Herbrand’s theorem. However, if one defines
a generalization of the Hasse–Herbrand function and lower ramification filtration, then
for n > 1 the lower filtration on a subgroup does not coincide with the induced filtration
in general.

Below we shall give another construction of the ramification filtration of L/K in
the two-dimensional case; details can be found in [Z], see also [KZ]. This construction
can be considered as a development of an approach by K. Kato and T. Saito in [KS].

Definition. Let K be a complete discrete valuation field with residue field kK of
characteristic p. A finite extension L/K is called ferociously ramified if |L : K| =
|kL : kK |ins .
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In addition to the nice ramification theory for totally ramified extensions, there is a
nice ramification theory for ferociously ramified extensions L/K such that kL/kK is
generated by one element; the reason is that in both cases the ring extension OL/OK
is monogenic, i.e., generated by one element, see section 18.

17.1. Almost constant extensions

Everywhere below K is a complete discrete valuation field with residue field kK of
characteristic p such that |kK : kpK | = p. For instance, K can be a two-dimensional
local field, or K = Fq(X1)((X2)) or the quotient field of the completion of Zp[T ](p)
with respect to the p-adic topology.

Definition. For the field K define a base (sub)field B as
B = Qp ⊂ K if char (K) = 0,
B = Fp((ρ)) ⊂ K if char (K) = p, where ρ is an element of K with vK (ρ) > 0.

Denote by k0 the completion of B(RK ) inside K . Put k = kalg
0 ∩K .

The subfield k is a maximal complete subfield of K with perfect residue field.
It is called a constant subfield of K . A constant subfield is defined canonically if
char (K) = 0. Until the end of section 17 we assume that B (and, therefore, k ) is
fixed.

By v we denote the valuation Kalg∗ → Q normalized so that v(B∗) = Z.

Example. If K = F{{T}} where F is a mixed characteristic complete discrete
valuation field with perfect residue field, then k = F .

Definition. An extension L/K is said to be constant if there is an algebraic extension
l/k such that L = Kl.

An extension L/K is said to be almost constant if L ⊂ L1L2 for a constant
extension L1/K and an unramified extension L2/K .

A field K is said to be standard, if e(K|k) = 1, and almost standard, if some finite
unramified extension of K is a standard field.

Epp’s theorem on elimination of wild ramification. ([E], [KZ]) Let L be a finite
extension of K . Then there is a finite extension k′ of a constant subfield k of K such
that e(Lk′|Kk′) = 1.

Corollary. There exists a finite constant extension of K which is a standard field.

Proof. See the proof of the Classification Theorem in 1.1.

Lemma. The class of constant (almost constant) extensions is closed with respect to
taking compositums and subextensions. If L/K and M/L are almost constant then
M/K is almost constant as well.
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Definition. Denote by Lc the maximal almost constant subextension of K in L.

Properties.
(1) Every tamely ramified extension is almost constant. In other words, the (first)

ramification subfield in L/K is a subfield of Lc .
(2) If L/K is normal then Lc/K is normal.
(3) There is an unramified extension L′0 of L0 such that LcL′0/L0 is a constant

extension.
(4) There is a constant extension L′c/Lc such that LL′c/L

′
c is ferociously ramified

and L′c ∩ L = Lc . This follows immediately from Epp’s theorem.

The principal idea of the proposed approach to ramification theory is to split L/K
into a tower of three extensions: L0/K , Lc/L0, L/Lc , where L0 is the inertia
subfield in L/K . The ramification filtration for Gal(Lc/L0) reflects that for the
corresponding extensions of constants subfields. Next, to construct the ramification
filtration for Gal(L/Lc), one reduces to the case of ferociously ramified extensions by
means of Epp’s theorem. (In the case of higher local fields one can also construct a
filtration on Gal(L0/K) by lifting that for the first residue fields.)

Now we give precise definitions.

17.2. Lower and upper ramification filtrations

Keep the assumption of the previous subsection. Put

A = {−1, 0} ∪ {(c, s) : 0 < s ∈ Z} ∪ {(i, r) : 0 < r ∈ Q}.

This set is linearly ordered as follows:

−1 < 0 < (c, i) < (i, j) for any i, j;

(c, i) < (c, j) for any i < j;

(i, i) < (i, j) for any i < j.

Definition. Let G = Gal(L/K). For any α ∈ A we define a subgroup Gα in G.
Put G−1 = G, and denote by G0 the inertia subgroup in G, i.e.,

G0 = {g ∈ G : v(g(a) − a) > 0 for all a ∈ OL}.

Let Lc/K be constant, and let it contain no unramified subextensions. Then define

Gc,i = pr−1(Gal(l/k)i)

where l and k are the constant subfields in L and K respectively,

pr : Gal(L/K)→ Gal(l/k) = Gal(l/k)0
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is the natural projection and Gal(l/k)i are the classical ramification subgroups. In the
general case take an unramified extension K ′/K such that K ′L/K ′ is constant and
contains no unramified subextensions, and put Gc,i = Gal(K ′L/K ′)c,i.

Finally, define Gi,i , i > 0. Assume that Lc is standard and L/Lc is ferociously
ramified. Let t ∈ OL , t /∈ kpL . Define

Gi,i = {g ∈ G : v(g(t) − t) > i}

for all i > 0.
In the general case choose a finite extension l′/l such that l′Lc is standard and

e(l′L|l′Lc) = 1. Then it is clear that Gal(l′L/l′Lc) = Gal(L/Lc), and l′L/l′Lc is
ferociously ramified. Define

Gi,i = Gal(l′L/l′Lc)i,i

for all i > 0.

Proposition. For a finite Galois extension L/K the lower filtration {Gal(L/K)α}α∈A
is well defined.

Definition. Define a generalization hL/K :A → A of the Hasse–Herbrand function.
First, we define

ΦL/K : A→ A

as follows:

ΦL/K(α) = α for α = −1, 0;

ΦL/K ((c, i)) =

(
c,

1
e(L|K)

∫ i

0
|Gal(Lc/K)c,t|dt

)
for all i > 0;

ΦL/K ((i, i)) =

(
i,

∫ i

0
|Gal(L/K)i,t|dt

)
for all i > 0.

It is easy to see that ΦL/K is bijective and increasing, and we introduce

hL/K = ΨL/K = Φ−1
L/K .

Define the upper filtration Gal(L/K)α = Gal(L/K)hL/K(α) .

All standard formulas for intermediate extensions take place; in particular, for a
normal subgroup H in G we have Hα = H ∩ Gα and (G/H)α = GαH/H . The
latter relation enables one to introduce the upper filtration for an infinite Galois extension
as well.

Remark. The filtrations do depend on the choice of a constant subfield (in characteris-
tic p ).
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Example. Let K = Fp((t))((π)). Choose k = B = Fp((π)) as a constant subfield.
Let L = K(b), bp − b = a ∈ K . Then

if a = π−i , i prime to p, then the ramification break of Gal(L/K) is (c, i);
if a = π−pit, i prime to p, then the ramification break of Gal(L/K) is (i, i);
if a = π−it, i prime to p, then the ramification break of Gal(L/K) is (i, i/p);
if a = π−itp , i prime to p, then the ramification break of Gal(L/K) is (i, i/p2).

Remark. A dual filtration on K/℘(K) is computed in the final version of [Z], see also
[KZ].

17.3. Refinement for a two-dimensional local field

Let K be a two-dimensional local field with char (kK) = p, and let k be the constant
subfield of K . Denote by

v = (v1, v2): (Kalg)∗ → Q×Q
the extension of the rank 2 valuation of K , which is normalized so that:
• v2(a) = v(a) for all a ∈ K∗,
• v1(u) = w(u) for all u ∈ UKalg , where w is a non-normalized extension of vkK

on k
alg
K , and u is the residue of u,
• v(c) = (0, e(k|B)−1vk(c)) for all c ∈ k.
It can be easily shown that v is uniquely determined by these conditions, and the

value group of v|K∗ is isomorphic to Z× Z.
Next, we introduce the index set

A2 = A ∪Q2
+ = A ∪ {(i1, i2) : i1, i2 ∈ Q, i2 > 0}

and extend the ordering of A onto A2 assuming

(i, i2) < (i1, i2) < (i′1, i2) < (i, i′2)

for all i2 < i′2, i1 < i′1.
Now we can define Gi1,i2 , where G is the Galois group of a given finite Galois

extension L/K . Assume first that Lc is standard and L/Lc is ferociously ramified.
Let t ∈ OL , t̄ /∈ kpL (e.g., a first local parameter of L ). We define

Gi1,i2 =
{
g ∈ G : v

(
t−1g(t)− 1

)
> (i1, i2)

}
for i1, i2 ∈ Q, i2 > 0. In the general case we choose l′/l ( l is the constant subfield
of both L and Lc ) such that l′Lc is standard and l′L/l′Lc is ferociously ramified and
put

Gi1,i2 = Gal(l′L/l′Lc)i1,i2 .

We obtain a well defined lower filtration (Gα)α∈A2 on G = Gal(L/K).

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



148 I. Zhukov

In a similar way to 17.2, one constructs the Hasse–Herbrand functions
Φ2,L/K : A2 → A2 and Ψ2,L/K = Φ−1

2,L/K which extend Φ and Ψ respectively.
Namely,

Φ2,L/K((i1, i2)) =
∫ (i1,i2)

(0,0)
|Gal(L/K)t|dt.

These functions have usual properties of the Hasse–Herbrand functions ϕ and
h = ψ, and one can introduce an A2-indexed upper filtration on any finite or infinite
Galois group G.

17.4. Filtration on K top(K)

In the case of a two-dimensional local field K the upper ramification filtration for
Kab/K determines a compatible filtration on K top

2 (K). In the case where char (K) = p
this filtration has an explicit description given below.

From now on, let K be a two-dimensional local field of prime characteristic p over
a quasi-finite field, and k the constant subfield of K . Introduce v as in 17.3. Let πk
be a prime of k.

For all α ∈ Q2
+ introduce subgroups

Qα = { {πk, u} : u ∈ K,v(u − 1) > α } ⊂ V K top
2 (K);

Q(n)
α = {a ∈ K top

2 (K) : pna ∈ Qα};
Sα = Cl

⋃
n>0

Q(n)
pnα.

For a subgroup A, ClA denotes the intersection of all open subgroups containing A.
The subgroups Sα constitute the heart of the ramification filtration on K

top
2 (K).

Their most important property is that they have nice behaviour in unramified, constant
and ferociously ramified extensions.

Proposition 1. Suppose that K satisfies the following property.
(*) The extension of constant subfields in any finite unramified extension of K is also

unramified.
Let L/K be either an unramified or a constant totally ramified extension, α ∈ Q2

+ .
Then we have NL/KSα,L = Sα,K .

Proposition 2. Let K be standard, L/K a cyclic ferociously ramified extension of
degree p with the ramification jump h in lower numbering, α ∈ Q2

+. Then:
(1) NL/KSα,L = Sα+(p−1)h,K , if α > h;
(2) NL/KSα,L is a subgroup in Spα,K of index p, if α 6 h.
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Now we have ingredients to define a decreasing filtration {filαK
top
2 (K)}α∈A2 on

K
top
2 (K). Assume first that K̃ satisfies the condition (*). It follows from [KZ, Th.

3.4.3] that for some purely inseparable constant extension K ′/K the field K ′ is almost
standard. Since K ′ satisfies (*) and is almost standard, it is in fact standard.

Denote

filα1,α2 K
top
2 (K) = Sα1,α2 ;

fili,α2 K
top
2 (K) = Cl

⋃
α1∈Q

filα1,α2 K
top
2 (K) for α2 ∈ Q+;

TK = Cl
⋃
α∈Q2

+

filαK
top
2 (K);

filc,iK
top
2 (K) = TK + { {t, u} : u ∈ k, vk(u− 1) > i} for all i ∈ Q+,

if K = k{{t}} is standard;

filc,iK
top
2 (K) = NK′/K filc,iK

top
2 (K ′), where K ′/K is as above;

fil0 K
top
2 (K) = U (1)K top

2 (K) + {t,RK}, where U (1)K top
2 (K) = {1 + PK(1),K∗},

t is the first local parameter;

fil−1 K
top
2 (K) = K top

2 (K).

It is easy to see that for some unramified extension K̃/K the field K̃ satisfies the
condition (*), and we define filαK

top
2 (K) as N

K̃/K
filαK

top
2 (K̃) for all α > 0, and

fil−1 K
top
2 (K) as K top

2 (K). It can be shown that the filtration {filαK
top
2 (K)}α∈A2 is

well defined.

Theorem 1. Let L/K be a finite abelian extension, α ∈ A2 . Then NL/K filαK
top
2 (L)

is a subgroup in filΦ2,L/K (α) K
top
2 (K) of index |Gal(L/K)α|. Furthermore,

filΦL/K(α) K
top
2 (K) ∩NL/KK top

2 (L) = NL/K filαK
top
2 (L).

Theorem 2. Let L/K be a finite abelian extension, and let

ϒ−1
L/K : K top

2 (K)/NL/KK
top
2 (L)→ Gal(L/K)

be the reciprocity map. Then

ϒ−1
L/K (filαK

top
2 (K) mod NL/KK

top
2 (L)) = Gal(L/K)α

for any α ∈ A2 .

Remarks. 1. The ramification filtration, constructed in 17.2, does not give information
about the classical ramification invariants in general. Therefore, this construction can
be considered only as a provisional one.
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2. The filtration on K
top
2 (K) constructed in 17.4 behaves with respect to the norm

map much better than the usual filtration {UiK
top
2 (K)}i∈Zn+ . We hope that this filtration

can be useful in the study of the structure of K top-groups.
3. In the mixed characteristic case the description of “ramification” filtration on

K
top
2 (K) is not very nice. However, it would be interesting to try to modify the

ramification filtration on Gal(L/K) in order to get the filtration on K
top
2 (K) similar to

that described in 17.4.
4. It would be interesting to compute ramification of the extensions constructed in

sections 13 and 14.

References

[E] H. Epp, Eliminating wild ramification, Invent. Math. 19 (1973), pp. 235–249

[F] I. Fesenko, Abelian local p-class field theory, Math. Ann. 301 (1995), 561–586.

[H] O. Hyodo, Wild ramification in the imperfect residue field case, Advanced Stud. in Pure
Math. 12 (1987) Galois Representation and Arithmetic Algebraic Geometry, 287–314.

[KS] K. Kato and T. Saito, Vanishing cycles, ramification of valuations and class field theory,
Duke Math. J., 55 (1997), 629–659

[KZ] M. V. Koroteev and I. B. Zhukov, Elimination of wild ramification, Algebra i Analiz 11
(1999), no. 6.

[Z] I. B. Zhukov, On ramification theory in the imperfect residue field case, preprint of
Nottingham University 98-02, Nottingham, 1998, www.dpmms.cam.ac.uk/Algebraic-
Number-Theory/0113, to appear in Proceedings of the Luminy conference on Ramifica-
tion theory for arithmetic schemes.

Department of Mathematics and Mechanics St. Petersburg University
Bibliotechnaya pl. 2, Staryj Petergof
198904 St. Petersburg Russia
E-mail: igor@zhukov.pdmi.ras.ru

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



ISSN 1464-8997 (on line) 1464-8989 (printed) 151

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Part I, section 18, pages 151–164

18. On ramification theory of monogenic extensions

Luca Spriano

We discuss ramification theory for finite extensions L/K of a complete discrete valua-
tion field K . This theory deals with quantities which measure wildness of ramification,
such as different, the Artin (resp. Swan) characters and the Artin (resp. Swan) conduc-
tors. When the residue field extension kL/kK is separable there is a complete theory,
e.g. [S], but in general it is not so. In the classical case (i.e. kL/kK separable) proofs
of many results in ramification theory use the property that all finite extensions of val-
uation rings OL/OK are monogenic which is not the case in general. Examples (e.g.
[Sp]) show that the classical theorems do not hold in general. Waiting for a beautiful
and general ramification theory, we consider a class of extensions L/K which has a
good ramification theory. We describe this class and we will call its elements well
ramified extensions. All classical results are generalizable for well ramified extensions,
for example a generalization of the Hasse–Arf theorem proved by J. Borger. We also
concentrate our attention on other ramification invariants, more appropriate and general;
in particular, we consider two ramification invariants: the Kato conductor and Hyodo
depth of ramification.

Here we comment on some works on general ramification theory.
The first direction aims to generalize classical ramification invariants to the general

case working with (one dimensional) rational valued invariants. In his papers de
Smit gives some properties about ramification jumps and considers the different and
differential [Sm2]; he generalizes the Hilbert formula by using the monogenic conductor
[Sm1]. We discuss works of Kato [K3-4] in subsection 18.2. In [K2] Kato describes
ramification theory for two-dimensional local fields and he proves an analogue of the
Hasse–Arf theorem for those Galois extensions in which the extension of the valuation
rings (with respect to the discrete valuation of rank 2) is monogenic.

The second direction aims to extend ramification invariants from one dimensional
to either higher dimensional or to more complicated objects which involve differential
forms (as in Kato’s works [K4], [K5]). By using higher local class field theory, Hyodo
[H] defines generalized ramification invariants, like depth of ramification (see Theorem
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5 below). We discuss relations of his invariants with the (one dimensional) Kato
conductor in subsection 18.3 below. Zhukov [Z] generalizes the classical ramification
theory to the case where |kK : kpK | = p (see section 17 of this volume). From the
viewpoint of this section the existence of Zhukov’s theory is in particular due to the
fact that in the case where |kK : kpK | = p one can reduce various assertions to the well
ramified case.

18.0. Notations and definitions

In this section we recall some general definitions. We only consider complete discrete
valuation fields K with residue fields kK of characteristic p > 0. We also assume that
|kK : kpK | is finite.

Definition. Let L/K be a finite Galois extension, G = Gal(L/K). Let
G0 = Gal(L/L ∩Kur) be the inertia subgroup of G. Define functions

iG, sG:G→ Z

by

iG(σ) =

{
inf x∈OL\{0} vL(σ(x) − x) if σ 6= 1

+∞ if σ = 1

and

sG(σ) =


inf x∈OL\{0} vL(σ(x)/x − 1) if σ 6= 1, σ ∈ G0

+∞ if σ = 1

0 if σ 6∈ G0.

Then sG(σ) 6 iG(σ) 6 sG(σ)+1 and if kL/kK is separable, then iG(σ) = sG(σ)+1
for σ ∈ G0. Note that the functions iG, sG depend not only on the group G, but on
the extension L/K ; we will denote iG also by iL/K .

Definition. The Swan function is defined as

SwG(σ) =


−|kL : kK |sG(σ), if σ ∈ G0 \ {1}
−

∑
τ∈G0\{1}

SwG(τ ), if σ = 1

0 if σ 6∈ G0.

For a character χ of G its Swan conductor

(1) sw(χ) = swG(χ) = (SwG, χ) =
1
|G|

∑
σ∈G

SwG(σ)χ(σ)

is an integer if kL/kK is separable (Artin’s Theorem) and is not an integer in general
(e.g. [Sp, Ch. I]).
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18.1. Well ramified extensions

Definition. Let L/K be a finite Galois p-extension. The extension L/K is called
well ramified if OL = OK[α] for some α ∈ L.

18.1.1. Structure theorem for well ramified extensions.

Definition. We say that an extension L/K is in case I if kL/kK is separable; an
extension L/K is in case II if |L : K| = |kL : kK | (i.e. L/K is ferociously ramified
in the terminology of 17.0) and kL = kK(a) is purely inseparable over kK .

Extensions in case I and case II are well ramified. An extension which is simultane-
ously in case I and case II is the trivial extension.

We characterize well ramified extensions by means of the function iG in the fol-
lowing theorem.

Theorem 1 ([Sp, Prop. 1.5.2]). Let L/K be a finite Galois p-extension. Then the
following properties are equivalent:
(i) L/K is well ramified;
(ii) for every normal subgroup H of G the Herbrand property holds:

for every 1 6= τ ∈ G/H

iG/H (τ ) =
1

e(L|LH )

∑
σ∈τH

iG(σ);

(iii) the Hilbert formula holds:

vL(DL/K ) =
∑
σ 6=1

iG(σ) =
∑
i>0

(|Gi| − 1),

for the definition of Gi see subsection 18.2.

From the definition we immediately deduce that if M/K is a Galois subextension
of a well ramified L/K then L/M is well ramified; from (ii) we conclude that M/K
is well ramified.

Now we consider well ramified extensions L/K which are not in case I nor in
case II.

Example. (Well ramified extension not in case I and not in case II). Let K be a
complete discrete valuation field of characteristic zero. Let ζp2 ∈ K. Consider a
cyclic extension of degree p2 defined by L = K(x) where x a root of the polynomial

f (X) = Xp2 − (1 + uπ)αp, α ∈ UK , α 6∈ kpK , u ∈ UK , π is a prime of K . Then
e(L|K) = p = f (L|K)ins, so L/K is not in case I nor in case II. Using Theorem 1, one
can show that OL = OK[x] by checking the Herbrand property.
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Definition. A well ramified extension which is not in case I and is not in case II is said
to be in case III.

Note that in case III we have e(L|K) > p, f (L|K)ins > p.

Lemma 1. If L/K is a well ramified Galois extension, then for every ferociously
ramified Galois subextension E/K such that L/E is totally ramified either E = K
or E = L.

Proof. Suppose that there exists K 6= E 6= L, such that E/K is ferociously ramified
and L/E is totally ramified. Let π1 be a prime of L such that OL = OE[π1].
Let α ∈ E be such that OE = OK[α]. Then we have OL = OK[α, π1]. Let σ
be a K -automorphism of E and denote σ̃ a lifting of σ to G = Gal(L/K). It is
not difficult to show that iG(σ̃) = min{vL(σ̃π1 − π1), vL(σα − α)}. We show that
iG(σ̃) = vL(σ̃π1 − π1). Suppose we had iG(σ̃) = vL(σα − α), then

(∗) iG(σ̃)
e(L|E)

= vE(σα − α) = iE/K (σ).

Furthermore, by Herbrand property we have

iE/K (σ) =
1

e(L|E)

∑
s∈σ Gal(L/E)

iG(s) =
iG(σ̃)
e(L|E)

+
1

e(L|E)

∑
s6=σ̃

iG(s).

So from (∗) we deduce that

1
e(L|E)

∑
s6=σ̃

iG(s) = 0,

but this is not possible because iG(s) > 1 for all s ∈ G. We have shown that

(∗∗) iG(s) = vL(sπ1 − π1) for all s ∈ G.

Now note that α 6∈ OK[π1]. Indeed, from α =
∑
aiπ

i
1, ai ∈ OK , we deduce

α ≡ a0 (modπ1) which is impossible. By (∗∗) and the Hilbert formula (cf. Theorem
1) we have

(∗ ∗ ∗) vL(DL/K ) =
∑
s6=1

iG(s) =
∑
s6=1

vL(sπ1 − π1) = vL(f ′(π1)),

where f (X) denotes the minimal polynomial of π1 over K.
Now let the ideal Tπ1 = {x ∈ OL : xOK[π1] ⊂ OL} be the conductor of OK[π1]

in OL (cf. [S, Ch. III, §6]). We have (cf. loc.cit.)

Tπ1DL/K = f ′(π1)OL

and then (∗ ∗ ∗) implies Tπ1 = OL , OL = OK[π1], which contradicts α 6∈ OK[π1].
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Theorem 2 (Spriano). Let L/K be a Galois well ramified p-extension. Put K0 =
L ∩Kur . Then there is a Galois subextension T/K0 of L/K0 such that T/K0 is in
case I and L/T in case II.

Proof. Induction on |L : K0|.
Let M/K0 be a Galois subextension of L/K0 such that |L : M | = p. Let T/K0

be a Galois subextension of M/K0 such that T/K0 is totally ramified and M/T is
in case II. Applying Lemma 1 to L/T we deduce that L/M is ferociously ramified,
hence in case II.

In particular, if L/K is a Galois p-extension in case III such that L ∩Kur = K ,
then there is a Galois subextension T/K of L/K such that T/K is in case I, L/T in
case I and K 6= T 6= L.

18.1.2. Modified ramification function for well ramified extensions.
In the general case one can define a filtration of ramification groups as follows.

Given two integers n,m > 0 the (n,m)-ramification group Gn,m of L/K is

Gn,m = {σ ∈ G : vL(σ(x) − x) > n +m, for all x ∈Mm
L }.

Put Gn = Gn+1,0 and Hn = Gn,1, so that the classical ramification groups are the
Gn . It is easy to show that Hi > Gi > Hi+1 for i > 0.

In case I we have Gi = Hi for all i > 0; in case II we have Gi = Hi+1 for all i > 0,
see [Sm1]. If L/K is in case III, we leave to the reader the proof of the following
equality

Gi = {σ ∈ Gal(L/K) : vL(σ(x) − x) > i + 1 for all x ∈ OL}
= {σ ∈ Gal(L/K) : vL(σ(x) − x) > i + 2 for all x ∈ML} = Hi+1.

We introduce another filtration which allows us to simultaneously deal with case I,
II and III.

Definition. Let L/K be a finite Galois well ramified extension. The modified t-th
ramification group G[t] for t > 0 is defined by

G[t] = {σ ∈ Gal(L/K) : iG(σ) > t}.

We call an integer number m a modified ramification jump of L/K if G[m] 6= G[m+1].

From now on we will consider only p-extensions.

Definition. For a well ramified extension L/K define the modified Hasse–Herbrand
function sL/K (u), u ∈ R>0 as

sL/K (u) =
∫ u

0

|G[t]|
e(L|K)

dt.
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Put gi = |Gi|. If m 6 u 6 m + 1 where m is a non-negative integer, then

sL/K (u) =
1

e(L|K)
(g1 + · · · + gm + gm+1(u−m)).

We drop the index L/K in sL/K if there is no risk of confusion. One can show that
the function s is continuous, piecewise linear, increasing and convex. In case I, if
ϕL/K denotes the classical Hasse–Herbrand function as in [S, Ch. IV], then sL/K (u) =
1 + ϕL/K (u − 1). We define a modified upper numbering for ramification groups by
G(sL/K (u)) = G[u].

If m is a modified ramification jumps, then the number sL/K (m) is called a modified
upper ramification jump of L/K .

For well ramified extensions we can show the Herbrand theorem as follows.

Lemma 2. For u > 0 we have sL/K (u) =
1

e(L|K)

∑
σ∈G

inf(iG(σ), u).

The proof goes exactly as in [S, Lemme 3, Ch.IV, §3].

Lemma 3. Let H be a normal subgroup of G and τ ∈ G/H and let j(τ ) be the
upper bound of the integers iG(σ) where σ runs over all automorphisms of G which
are congruent to τ modulo H . Then we have

iLH/K (τ ) = sL/LH (j(τ )).

For the proof see Lemme 4 loc.cit. (note that Theorem 1 is fundamental in the proof).
In order to show Herbrand theorem, we have to show the multiplicativity in the tower
of extensions of the function sL/K .

Lemma 4. With the above notation, we have sL/K = sLH/K ◦ sL/LH .

For the proof see Prop. 15 loc.cit.

Corollary. If L/K is well ramified and H is a normal subgroup of G = Gal(L/K),
then the Herbrand theorem holds:

(G/H)(u) = G(u)H/H for all u > 0 .

It is known that the upper ramification jumps (with respect the classical function ϕ )
of an abelian extension in case I are integers. This is the Hasse–Arf theorem. Clearly
the same result holds with respect the function s. In fact, if m is a classical ramification
jump and ϕL/K (m) is the upper ramification jump, then the modified ramification jump
is m + 1 and the modified upper ramification jumps is sL/K (m + 1) = 1 + ϕL/K(m)
which is an integer. In case II it is obvious that the modified upper ramification jumps
are integers. For well ramified extensions we have the following theorem, for the proof
see the end of 18.2.
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Theorem 3 (Borger). The modified upper ramification jumps of abelian well ramified
extensions are integers.

18.2. The Kato conductor

We have already remarked that the Swan conductor sw(χ) for a character χ of the
Galois group GK is not an integer in general. In [K3] Kato defined a modified Swan
conductor in case I, II for any character χ of GK ; and [K4] contains a definition of
an integer valued conductor (which we will call the Kato conductor) for characters of
degree 1 in the general case i.e. not only in cases I and II.

We recall its definition. The map K∗ → H1(K,Z/n(1)) (cf. the definition of
Hq(K) in subsection 5.1) induces a pairing

{ , }:Hq(K)×Kr(K)→ Hq+r(K),

which we briefly explain only for K of characteristic zero, in characteristic p > 0 see
[K4, (1.3)]. For a ∈ K∗ and a fixed n > 0, let {a} ∈ H1(K,Z/n(1)) be the image
under the connecting homomorphism K∗ → H1(K,Z/n(1)) induced by the exact
sequence of GK -modules

1 −→ Z/n(1) −→ K∗s
n−→ K∗s −→ 1.

For a1, ..., ar ∈ K∗ the symbol {a1, ..., ar} ∈ Hr(K,Z/n(r)) is the cup product
{a1} ∪ {a2} ∪ · · · ∪ {ar}. For χ ∈ Hq(K) and a1, . . . , ar ∈ K∗ {χ, a1, ..., ar} ∈
Hq+r
n (K) is the cup product {χ} ∪ {a1} ∪ · · · ∪ {ar}. Passing to the limit we have the

element {χ, a1, ..., ar} ∈ Hq+r(K).

Definition. Following Kato, we define an increasing filtration {filmHq(K)}m>0 of
Hq(K) by

filmH
q(K) = {χ ∈ Hq(K) : {χ|M , Um+1,M} = 0 for every M }

where M runs through all complete discrete valuation fields satisfying OK ⊂ OM ,
MM =MKOM ; here χ|M denotes the image of χ ∈ Hq(K) in Hq(M ).

Then one can show Hq(K) = ∪m>0 filmHq(K) [K4, Lemma (2.2)] which allows
us to give the following definition.

Definition. For χ ∈ Hq(K) the Kato conductor of χ is the integer ksw(χ) defined
by

ksw(χ) = min{m > 0 : χ ∈ filmH
q(K)}.

This integer ksw(χ) is a generalization of the classical Swan conductor as stated in
the following proposition.
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Proposition 1. Let χ ∈ H1(K) and let L/K be the corresponding finite cyclic
extension and suppose that L/K is in case I or II. Then

(a) ksw(χ) = sw(χ) (see formula (1) ).
(b) Let t be the maximal modified ramification jump. Then

ksw(χ) =

{
sL/K (t)− 1 case I

sL/K (t) case II.

Proof. (a) See [K4, Prop. (6.8)]. (b) This is a computation left to the reader.

We compute the Kato conductor in case III.

Theorem 4 (Spriano). If L/K is a cyclic extension in case III and if χ is the corre-
sponding element of H1(K), then ksw(χ) = sw(χ) − 1. If t is the maximal modified
ramification jump of L/K , then ksw(χ) = sL/K (t)− 1.

Before the proof we explain how to compute the Kato conductor ksw(χ) where
χ ∈ H1(K). Consider the pairing H1(K)×K∗ → H2(K), ( q = 1 = r ). It coincides
with the symbol (·, ·) defined in [S, Ch. XIV]. In particular, if χ ∈ H1(K) and
a ∈ K∗, then {χ, a} = 0 if and only if the element a is a norm of the extension
L/K corresponding to χ. So we have to compute the minimal integer m such that
Um+1,M is in the norm of the cyclic extension corresponding to χ|M when M runs
through all complete discrete valuation fields satisfying MM =MKOM . The minimal
integer n such that Un+1,K is contained in the norm of L/K is not, in general, the
Kato conductor (for instance if the residue field of K is algebraically closed)

Here is a characterization of the Kato conductor which helps to compute it and does
not involve extensions M/K , cf. [K4, Prop. (6.5)].

Proposition 2. Let K be a complete discrete valuation field. Suppose that |kK : kpK | =
pc <∞, and Hc+1

p (kK) 6= 0. Then for χ ∈ Hq(K) and n > 0

χ ∈ filnH
q(K) ⇐⇒ {χ,Un+1K

M
c+2−q(K)} = 0 in Hc+2(K),

for the definition of Un+1K
M
c+2−q(K) see subsection 4.2.

In the following we will only consider characters χ such that the corresponding
cyclic extensions L/K are p-extension, because ksw(χ) = 0 for tame characters χ,
cf. [K4, Prop. (6.1)]. We can compute the Kato conductor in the following manner.

Corollary. Let K be as in Proposition 2. Let χ ∈ H1(K) and assume that the
corresponding cyclic extension L/K is a p-extension. Then the minimal integer n
such that

Un+1,K ⊂ NL/KL∗

is the Kato conductor of χ.
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Proof. By the hypothesis (i.e. Un+1,K ⊂ NL/KL
∗ ) we have ksw(χ) > n. Now

Un+1,K ⊂ NL/KL
∗, implies that Un+1Kc+1(K) is contained in the norm group

NL/KKc+1(L). By [K1, II, Cor. at p. 659] we have that {χ,Un+1Kc+1(K)} = 0 in
Hc+2(K) and so by Proposition 2 ksw(χ) 6 n.

Beginning of the proof of Theorem 4. Let L/K be an extension in case III and let
χ ∈ H1(K) be the corresponding character. We can assume that Hc+1

p (kK) 6= 0,

otherwise we consider the extension k = ∪i>0kK(T p
−i

) of the residue field kK ,
preserving a p-base, for which Hc+1

p (k) 6= 0 (see [K3, Lemma (3-9)]).
So by the above Corollary we have to compute the minimal integer n such that

Un+1,K ⊂ NL/KL∗.
Let T/K be the totally ramified extension defined by Lemma 1 (here T/K is

uniquely determined because the extension L/K is cyclic). Denote by Uv,L for
v ∈ R, v > 0 the group Un,L where n is the smallest integer > v.

If t is the maximal modified ramification jump of L/K , then

(1) UsL/T (t)+1,T ⊂ NL/TL∗

because L/T is in case II and its Kato conductor is sL/T (t) by Proposition 1 (b). Now
consider the totally ramified extension T/K . By [S, Ch. V, Cor. 3 §6] we have

(2) NT/K (Us,T ) = UsT/K (s+1)−1,K if Gal(T/K)s = {1}.

Let t′ = iT/K (τ ) be the maximal modified ramification jump of T/K . Let r be the
maximum of iL/K (σ) where σ runs over all representatives of the coset τ Gal(L/T ).
By Lemma 3 t′ = sL/T (r). Note that r < t (we explain it in the next paragraph), so

(3) t′ = sL/T (r) < sL/T (t).

To show that r < t it suffices to show that for a generator ρ of Gal(L/K)

iL/K (ρp
m

) > iL/K (ρp
m−1

)

for |T : K| 6 pm 6 |L : K|. Write OL = OK(a) then

ρp
m

(a) − a = ρp
m−1

(b)− b, b =
p−1∑
i=0

ρp
m−1i(a).

Then b = pa + πif (a) where π is a prime element of L, f (X) ∈ OK[X] and
i = iL/K (ρp

m−1
). Hence iL/K (ρp

m

) = vL(ρp
m

(a) − a) > min (i + vL(p), 2i), so

iL/K (ρp
m

) > iL/K (ρp
m−1

), as required.
Now we use the fact that the number sL/K (t) is an integer (by Borger’s Theorem).

We shall show that UsL/K (t),K ⊂ NL/KL∗ .
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By (3) we have Gal(T/K)sL/T (t) = {1} and so we can apply (2). By (1) we have
UsL/T (t)+1,T ⊂ NL/TL∗, and by applying the norm map NT/K we have (by (2) )

NT/K (UsL/T (t)+1,T ) = UsT/K (sL/T (t)+2)−1,K ⊂ NL/KL∗.

Thus it suffices to show that the smallest integer > sT/K (sL/T (t) + 2)− 1 is sL/K (t).
Indeed we have

sT/K (sL/T (t) + 2)− 1 = sT/K (sL/T (t)) +
2

|T : K| − 1 = sL/K (t)− 1 +
2
pe

where we have used Lemma 4. By Borger’s theorem sL/K (t) is an integer and thus we
have shown that ksw(χ) 6 sL/K (t)− 1.

Now we need a lemma which is a key ingredient to deduce Borger’s theorem.

Lemma 5. Let L/K be a Galois extension in case III. If kL = kK(a1/f ) then
a ∈ kK \ kpK where f = |L : T | = f (L/K)ins . Let α be a lifting of a in K and let
M = K(β) where βf = α.

If σ ∈ Gal(L/K) and σ′ ∈ Gal(LM/M ) is such that σ′|L = σ then

iLM/M (σ′) = e(LM |L)iL/K (σ).

Proof. (After J. Borger). Note that the extension M/K is in case II and LM/M is in
case I, in particular it is totally ramified. Let x ∈ OL such that OL = OK[x]. One can
check that xf − α ∈ ML \M2

L . Let g(X) be the minimal polynomial of β over K .
Then g(X+x) is an Eisenstein polynomial over L (because g(X+x) ≡ Xf +xf−α ≡
Xf mod ML ) and β − x is a root of g(X + x). So β − x is a prime of LM and we
have

iLM/M (σ′) = vLM (σ′(β − x)− (β − x)) = vLM (σ′(x) − x) = e(LM |L)iL/K (σ).

Proof of Theorem 3 and Theorem 4. Now we deduce simultaneously the formula for
the Kato conductor in case III and Borger’s theorem. We compute the classical Artin
conductor A(χ|M ). By the preceding lemma we have
(2)

A(χ|M ) =
1

e(LM |M )

∑
σ′∈Gal(LM/M )

χ|M (σ′)iLM/M (σ′)

=
e(LM |L)
e(LM |M )

∑
σ′∈Gal(LM/M )

χ|M (σ′)iL/K (σ) =
1

e(L|K)

∑
σ∈G

χ(σ)iL/K (σ).

Since A(χ|M ) is an integer by Artin’s theorem we deduce that the latter expression is
an integer. Now by the well known arguments one deduces the Hasse–Arf property for
L/K .
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The above argument also shows that the Swan conductor (=Kato conductor) of
LM/M is equal to A(χ|M )−1, which shows that ksw(χ) > A(χ|M )−1 = sL/K (t)−1,
so ksw(χ) = sL/K (t)− 1 and Theorem 4 follows.

18.3. More ramification invariants

18.3.1. Hyodo’s depth of ramification. This ramification invariant was introduced
by Hyodo in [H]. We are interested in its link with the Kato conductor.

Let K be an m-dimensional local field, m > 1. Let t1, . . . , tm be a system of
local parameters of K and let v be the corresponding valuation.

Definition. Let L/K be a finite extension. The depth of ramification of L/K is

dK(L/K) = inf{v(Tr L/K (y)/y) : y ∈ L∗} ∈ Qm.

The right hand side expression exists; and, in particular, if m = 1 then dK(L/K) =
vK (DL/K ) − (1 − vK (πL)), see [H]. The main result about the depth is stated in the
following theorem (see [H, Th. (1-5)]).

Theorem 5 (Hyodo). Let L be a finite Galois extension of an m-dimensional local
field K . For l > 1 define

j(l) = jL/K (l) =

{
max{i : 1 6 i ∈ Zm, |ΨL/K (UiK

top
m (K))| > pl} if it exists

0 otherwise

where ΨL/K is the reciprocity map; the definition of UiK
top
m (K) is given in 17.0. Then

(3) (p− 1)
∑
l>1

j(l)/pl 6 dK(L/K) 6 (1− p−1)
∑
l>1

j(l).

Furthermore, these inequalities are the best possible (cf. [H, Prop. (3-4) and Ex. (3-5)]).

For i ∈ Zm , let Gi be the image of UiK
top
m (K) in Gal(L/K) under the reciprocity

map ΨL/K . The numbers j(l) are called jumping number (by Hyodo) and in the
classical case, i.e. m = 1, they coincide with the upper ramification jumps of L/K .

For local fields (i.e. 1-dimensional local fields) one can show that the first inequality
in (3) is actually an equality. Hyodo stated ([H, p.292]) “It seems that we can define
nice ramification groups only when the first equality of (3) holds.”

For example, if L/K is of degree p, then the inequalities in (3) are actually
equalities and in this case we actually have a nice ramification theory. For an abelian
extension L/K [H, Prop. (3-4)] shows that the first equality of (3) holds if at most
one diagonal component of E(L/K) (for the definition see subsection 1.2) is divisible
by p.
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Extensions in case I or II verify the hypothesis of Hyodo’s proposition, but it is not
so in case III. We shall show below that the first equality does not hold in case III.

18.3.2. The Kato conductor and depth of ramification.
Consider an m-dimensional local field K, m > 1. Proposition 2 of 18.2 shows (if

the first residue field is of characteristic p > 0 ) that for χ ∈ H1(K), χ ∈ filnH1(K) if
and only if the induced homomorphism Km(K)→ Q/Z annihilates Un+1Km(K) (cf.
also in [K4, Remark (6.6)]). This also means that the Kato conductor of the extension
L/K corresponding to χ is the m-th component of the last ramification jump j(1)
(recall that j(1) = max{i : 1 6 i ∈ Zm, |Gi| > p} ).

Example. Let L/K as in Example of 18.1.1 and assume that K is a 2-dimensional
local field with the first residue field of characteristic p > 0 and let χ ∈ H1(K) be
the corresponding character. Let j(l)i denotes the i-th component of j(l). Then by
Theorem 3 and by the above discussion we have

ksw(χ) = j(1)2 = sL/K (pe/(p− 1))− 1 =
(2p− 1)e
p− 1

− 1.

If T/K is the subextension of degree p, we have

dK(T/K)2 = p−1(p− 1)j(2)2 =⇒ j(2)2 =
pe

p− 1
− 1.

The depth of ramification is easily computed:

dK(L/K)2 = dK(T/K)2 + dK(L/T )2 =
(p− 1)
p

(
2pe
p− 1

− 1

)
.

The left hand side of (3) is (p− 1)(j(1)/p + j(2)/p2), so for the second component we
have

(p− 1)

(
j(1)2

p
+

j(2)2

p2

)
= 2e− (p2 − 1)

p2 6= dK(L/K)2.

Thus, the first equality in (3) does not hold for the extension L/K .

If K is a complete discrete valuation (of rank one) field, then in the well ramified
case straightforward calculations show that

e(L|K)dK(L/K) =

{ ∑
σ 6=1 sG(σ) case I,II∑
σ 6=1 sG(σ) − e(L|K) + 1 case III

Let χ ∈ H1(K) and assume that the corresponding extension L/K is well ramified.
Let t denote the last ramification jump of L/K ; then from the previous formula and
Theorem 4 we have

e(L|K) ksw(χ) =

{
dL(L/K) + t case I,II

dL(L/K) + t− 1 case III
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In the general case, we can indicate the following relation between the Kato con-
ductor and Hyodo’s depth of ramification.

Theorem 6 (Spriano). Let χ ∈ H1(K,Z/pn) and let L/K be the corresponding cyclic
extension. Then

ksw(χ) 6 dK(L/K) +
t

e(L|K)

where t is the maximal modified ramification jump.

Proof. In [Sp, Prop. 3.7.3] we show that

(∗) ksw(χ) 6
[

1
e(L|K)

(∑
σ∈G

SwG(σ)χ(σ) −ML/K

)]
,

where [x] indicates the integer part of x ∈ Q and the integer ML/K is defined by

(∗∗) dL(L/K) +ML/K =
∑
σ 6=1

sG(σ).

Thus, the inequality in the statement follows from (∗) and (∗∗).
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[Z] I.B. Zhukov, On ramification theory in the imperfect residue field case, Preprint, Univ.
Nottingham, (1998).

Luca Spriano Department of Mathematics University of Bordeaux
351, Cours de la Libération 33405 Talence Cedex France
E-mail: Luca.Spriano@math.u-bordeaux.fr

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields



ISSN 1464-8997 (on line) 1464-8989 (printed) 165

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Pages 165–195

Existence theorem for higher local fields

Kazuya Kato

0. Introduction

A field K is called an n-dimensional local field if there is a sequence of fields kn, . . . , k0
satisfying the following conditions: k0 is a finite field, ki is a complete discrete valu-
ation field with residue field ki−1 for i = 1, . . . , n, and kn = K .

In [9] we defined a canonical homomorphism from the n th Milnor group Kn(K)
(cf. [14]) of an n-dimensional local field K to the Galois group Gal(Kab/K) of the
maximal abelian extension of K and generalized the familiar results of the usual local
class field theory to the case of arbitrary dimension except the “existence theorem”.

An essential difficulty with the existence theorem lies in the fact that K (resp. the
multiplicative group K∗ ) has no appropriate topology in the case where n > 2 (resp.
n > 3 ) which would be compatible with the ring (resp. group) structure and which
would take the topologies of the residue fields into account. Thus we abandon the
familiar tool “topology” and define the openness of subgroups and the continuity of
maps from a new point of view.

In the following main theorems the words “open” and “continuous” are not used in
the topological sense. They are explained below.

Theorem 1. Let K be an n-dimensional local field. Then the correspondence

L→ NL/KKn(L)

is a bijection from the set of all finite abelian extensions of K to the set of all open
subgroups of Kn(K) of finite index.

This existence theorem is essentially contained in the following theorem which
expresses certain Galois cohomology groups of K (for example the Brauer group of
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K ) by using the Milnor K -group of K . For a field k we define the group Hr(k)
( r > 0 ) as follows (cf. [9, §3.1]). In the case where char (k) = 0 let

Hr(k) = lim−→Hr(k, µ⊗(r−1)
m )

(the Galois cohomology). In the case where char (k) = p > 0 let

Hr(k) = lim−→Hr(k, µ⊗(r−1)
m ) + lim−→Hr

pi(k).

Here in each case m runs over all integers invertible in k, µm denotes the group of all
m th roots of 1 in the separable closure ksep of k, and µ⊗(r−1)

m denotes its (r − 1) th
tensor power as a Z/m-module on which Gal(ksep/k) acts in the natural way. In the
case where char (k) = p > 0 we denote by Hr

pi(k) the cokernel of

F − 1:Cr−1
i (k)→ Cr−1

i (k)/{Cr−2
i (k), T}

where C ·i is the group defined in [3, Ch.II,§7] (see also Milne [13, §3]). For example,
H1(k) is isomorphic to the group of all continuous characters of the compact abelian
group Gal(kab/k) and H2(k) is isomorphic to the Brauer group of k.

Theorem 2. Let K be as in Theorem 1. Then Hr(K) vanishes for r > n + 1 and is
isomorphic to the group of all continuous characters of finite order of Kn+1−r(K) in
the case where 0 6 r 6 n + 1.

We shall explain the contents of each section.
For a category C the category of pro-objects pro(C) and the category of ind-objects

ind(C) are defined as in Deligne [5]. Let F0 be the category of finite sets, and let F1,
F2, . . . be the categories defined by Fn+1 = ind(pro(Fn)). Let F∞ = ∪nFn. In
section 1 we shall show that n-dimensional local fields can be viewed as ring objects
of Fn . More precisely we shall define a ring object K of Fn corresponding to an
n-dimensional local field K such that K is identified with the ring [e,K]F∞ of
morphisms from the one-point set e (an object of F0 ) to K , and a group object K∗

such that K∗ is identified with [e,K∗]F∞ . We call a subgroup N of Kq(K) open if
and only if the map

K∗ × · · · ×K∗ → Kq(K)/N, (x1, . . . , xq) 7→ {x1, . . . , xq} mod N

comes from a morphism K∗ × · · · ×K∗ → Kq(K)/N of F∞ where Kq(K)/N is
viewed as an object of ind(F0) ⊂ F1. We call a homomorphism ϕ:Kq(K)→ Q/Z a
continuous character if and only if the induced map

K∗ × · · · ×K∗ → Q/Z, (x1, . . . , xq) 7→ ϕ({x1, . . . , xq})

comes from a morphism of F∞ where Q/Z is viewed as an object of ind(F0). In each
case such a morphism of F∞ is unique if it exists (cf. Lemma 1 of section 1).

In section 2 we shall generalize the self-duality of the additive group of a one-
dimensional local field in the sense of Pontryagin to arbitrary dimension.
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Section 3 is a preliminary one for section 4. There we shall prove some ring-theoretic
properties of [X,K]F∞ for objects X of F∞ .

In section 4 we shall treat the norm groups of cohomological objects. For a field k
denote by E(k) the category of all finite extensions of k in a fixed algebraic closure of
k with the inclusion maps as morphisms. Let H be a functor from E(k) to the category
Ab of all abelian groups such that lim−→ k′∈E(k) H(k′) = 0. For w1, . . . , wg ∈ H(k)
define the Kq -norm group Nq(w1, . . . , wg) as the subgroup of Kq(k) generated by the
subgroups Nk′/kKq(k′) where k′ runs over all fields in E(k) such that {w1, . . . , wg} ∈
ker(H(k) → H(k′)) and where Nk′/k denotes the canonical norm homomorphism of
the Milnor K -groups (Bass and Tate [2, §5] and [9, §1.7]). For example, if H = H1

and χ1, . . . , χg ∈ H1(k) then Nq(χ1, . . . , χg) is nothing but Nk′/kKq(k′) where k′

is the finite abelian extension of k corresponding to ∩i ker(χi: Gal(kab/k)→ Q/Z). If
H = H2 and w ∈ H2(k) then N1(w) is the image of the reduced norm map A∗ → k∗

where A is a central simple algebra over k corresponding to w.
As it is well known for a one-dimensional local field k the group N1(χ1, . . . , χg)

is an open subgroup of k∗ of finite index for any χ1, . . . , χg ∈ H1(k) and the group
N1(w) = k∗ for any w ∈ H2(k). We generalize these facts as follows.

Theorem 3. Let K be an n-dimensional local field and let r > 1.
(1) Let w1, . . . , wg ∈ Hr(K). Then the norm group Nn+1−r(w1, . . . , wg) is an open

subgroup of Kn+1−r(K) of finite index.
(2) Let M be a discrete torsion abelian group endowed with a continuous action

of Gal(Ksep/K). Let H be the Galois cohomology functor Hr( ,M ). Then for
every w ∈ Hr(K,M ) the group Nn+1−r(w) is an open subgroup of Kn+1−r(K)
of finite index.

Let k be a field and let q, r > 0. We define a condition (Nr
q , k) as follows: for

every k′ ∈ E(k) and every discrete torsion abelian group M endowed with a continuous
action of Gal(k′sep

/k′)

Nq(w1, . . . , wg) = Kq(k
′)

for every i > r, w1, . . . , wg ∈ Hi(k′), w1, . . . , wg ∈ Hi(k′,M ), and in addition
|k : kp| 6 pq+r in the case where char (k) = p > 0.

For example, if k is a perfect field then the condition (Nr
0 , k) is equivalent to

cd(k) 6 r where cd denotes the cohomological dimension (Serre [16]).

Proposition 1. Let K be a complete discrete valuation field with residue field k. Let
q > 1 and r > 0. Then the two conditions (Nr

q ,K) and (Nr
q−1, k) are equivalent.

On the other hand by [11] the conditions (Nr
0 ,K) and (Nr−1

0 , k) are equivalent
for any r > 1. By induction on n we obtain

Corollary. Let K be an n-dimensional local field. Then the condition (Nr
q ,K) holds

if and only if q + r > n + 1.
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We conjecture that if q + r = q′ + r′ then the two conditions (Nr
q , k) and (Nr′

q′ , k)
are equivalent for any field k.

Finally in section 5 we shall prove Theorem 2. Then Theorem 1 will be a corollary
of Theorem 2 for r = 1 and of [9, §3, Theorem 1] which claims that the canonical
homomorphism

Kn(K)→ Gal(Kab/K)

induces an isomorphism Kn(K)/NL/KKn(L) →̃ Gal(L/K) for each finite abelian
extension L of K .

I would like to thank Shuji Saito for helpful discussions and for the stimulation given
by his research in this area (e.g. his duality theorem of Galois cohomology groups with
locally compact topologies for two-dimensional local fields).

Table of contents.
1. Definition of the continuity for higher local fields.
2. Additive duality.
3. Properties of the ring of K -valued morphisms.
4. Norm groups.
5. Proof of Theorem 2.

Notation.
We follow the notation in the beginning of this volume. References to sections in

this text mean references to sections of this work and not of the whole volume.
All fields and rings in this paper are assumed to be commutative.
Denote by Sets, Ab, Rings the categories of sets, of abelian groups and of rings

respectively.
If C is a category and X,Y are objects of C then [X,Y ]C (or simply [X,Y ] )

denotes the set of morphisms X → Y .

1. Definition of the continuity for higher local fields

1.1. Ring objects of a category corresponding to rings.

For a category C let C◦ be the dual category of C. If C has a final object we always
denote it by e. Then, if θ:X → Y is a morphism of C, [e, θ] denotes the induced
map [e,X]→ [e, Y ].

In this subsection we prove the following

Proposition 2. Let C be a category with a final object e in which the product of any
two objects exists. Let R be a ring object of C such that for a prime p the morphism
R → R, x 7→ px is the zero morphism, and via the morphism R → R, x 7→ xp the
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latter R is a free module of finite rank over the former R. Let R = [e,R], and let A
be a ring with a nilpotent ideal I such that R = A/I and such that Ii/Ii+1 is a free
R-module of finite rank for any i.

Then:
(1) There exists a ring object A of C equipped with a ring isomorphism j:A →̃ [e,A]

and with a homomorphism of ring objects θ:A → R having the following prop-
erties:
(a) [e, θ] ◦ j:A→ R coincides with the canonical projection.
(b) For any object X of C, [X,A] is a formally etale ring over A in the sense

of Grothendieck [7, Ch. 0 §19], and θ induces an isomorphism

[X,A]/I[X,A] ' [X,R].

(2) The above triple (A, j, θ) is unique in the following sense. If (A′, j′, θ′) is another
triple satisfying the same condition in (1), then there exists a unique isomorphism
of ring objects ψ:A →̃A′ such that [e, ψ] ◦ j = j′ and θ = θ′ ◦ ψ.

(3) The object A is isomorphic (if one forgets the ring-object structure) to the product
of finitely many copies of R.

(4) If C has finite inverse limits, the above assertions (1) and (2) are valid if conditions
“free module of finite rank” on R and Ii/Ii+1 are replaced by conditions “direct
summand of a free module of finite rank”.

Example. Let R be a non-discrete locally compact field and A a local ring of finite
length with residue field R. Then in the case where char (R) > 0 Proposition 2 shows
that there exists a canonical topology on A compatible with the ring structure such
that A is homeomorphic to the product of finitely many copies of R. On the other
hand, in the case where char (R) = 0 it is impossible in general to define canonically
such a topology on A. Of course, by taking a section s:R → A (as rings), A as a
vector space over s(R) has the vector space topology, but this topology depends on the
choice of s in general. This reflects the fact that in the case of char (R) = 0 the ring of
R-valued continuous functions on a topological space is not in general formally smooth
over R contrary to the case of char (R) > 0.

Proof of Proposition 2. Let X be an object of C; put RX = [X,R]. The assumptions
on R show that the homomorphism

R(p) ⊗R RX → RX , x⊗ y 7→ xyp

is bijective, where R(p) = R as a ring and the structure homomorphism R → R(p) is
x 7→ xp . Hence by [10, §1 Lemma 1] there exists a formally etale ring AX over A with
a ring isomorphism θX :AX/IAX ' RX . The property “formally etale” shows that
the correspondence X → AX is a functor C◦ → Rings, and that the system θX forms
a morphism of functors. More explicitly, let n and r be sufficiently large integers, let
Wn(R) be the ring of p-Witt vectors over R of length n, and let ϕ:Wn(R) → A be
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the homomorphism

(x0, x1, . . . ) 7→
r∑
i=0

pix̃i
pr−i

where x̃i is a representative of xi ∈ R in A. Then AX is defined as the tensor product

Wn(RX )⊗Wn(R) A

induced by ϕ. Since TorWn(R)
1 (Wn(RX ), R) = 0 we have

TorWn(R)
1 (Wn(RX ), A/Ii) = 0

for every i. This proves that the canonical homomorphism

Ii/Ii+1 ⊗R RX → IiAX/I
i+1AX

is bijective for every i. Hence each functor X → IiAX/I
i+1AX is representable

by a finite product of copies of R, and it follows immediately that the functor AX is
represented by the product of finitely many copies of R.

1.2. n-dimensional local fields as objects of Fn .

Let K be an n-dimensional local field. In this subsection we define a ring object
K and a group object K∗ by induction on n.

Let k0, . . . , kn = K be as in the introduction. For each i such that char (ki−1) = 0
(if such an i exists) choose a ring morphism si: ki−1 → Oki such that the composite
ki−1 → Oki → Oki/Mki is the indentity map. Assume n > 1 and let kn−1 be the
ring object of Fn−1 corresponding to kn−1 by induction on n.

If char (kn−1) = p > 0, the construction of K below will show by induction on n
that the assumptions of Proposition 2 are satisfied when one takes Fn−1, kn−1, kn−1

and OK/Mr
K ( r > 1 ) as C, R, R and A. Hence we obtain a ring object OK/Mr

K of
Fn−1. We identify OK/Mr

K with [e,OK/Mr
K] via the isomorphism j of Proposition

2.
If char (kn−1) = 0, let OK/Mr

K be the ring object of Fn−1 which represents the
functor

F◦n−1 → Rings, X 7→ OK/Mr
K ⊗kn−1 [X,kn−1],

where OK/Mr
K is viewed as a ring over kn−1 via sn−1.

In each case let OK be the object " lim←− "OK/Mr
K of pro(Fn−1). We define K as

the ring object of Fn which corresponds to the functor

pro(Fn−1)◦ → Rings, X 7→ K ⊗OK [X,OK ].

Thus, K is defined canonically in the case of char (kn−1) > 0, and it depends (and
doesn’t depend) on the choices of si in the case of char (kn−1) = 0 in the following
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sense. Assume that another choice of sections s′i yields ki′ and K ′ . Then there exists
an isomorphism of ring objects K →̃K ′ which induces ki →̃ ki

′ for each i. But in
general there is no isomorphism of ring objects ψ:K → K ′ such that [e, ψ]:K → K
is the indentity map.

Now let K∗ be the object of Fn which represents the functor

F◦n → Sets, X 7→ [X,K]∗.

This functor is representable because Fn has finite inverse limits as can be shown by
induction on n.

Definition 1. We define fine (resp. cofine) objects of Fn by induction on n. All
objects in F0 are called fine (resp. cofine) objects of F0. An object of Fn (n > 1 ) is
called a fine (resp. cofine) object of Fn if and only if it is expressed as X = " lim−→ "Xλ

for some objects Xλ of pro(Fn−1) and each Xλ is expressed as Xλ = " lim←− "Xλµ for
some objects Xλµ of Fn−1 satisfying the condition that all Xλµ are fine (resp. cofine)
objects of Fn−1 and the maps [e,Xλ]→ [e,Xλµ] are surjective for all λ, µ (resp. the
maps [e,Xλ]→ [e,X] are injective for all λ ).

Recall that if i 6 j then Fi is a full subcategory of Fj . Thus each Fi is a full
subcategory of F∞ = ∪iFi .

Lemma 1.

(1) Let K be an n-dimensional local field. Then an object of Fn of the form

K × . . . K ×K∗ × · · · ×K∗

is a fine and cofine object of Fn . Every set S viewed as an object of ind(F0) is a
fine and cofine object of F1 .

(2) Let X and Y be objects of F∞ , and assume that X is a fine object of Fn
for some n and Y is a cofine object of Fm for some m. Then two morphisms
θ, θ′:X → Y coincide if [e, θ] = [e, θ′].

As explained in 1.1 the definition of the object K depends on the sections si: ki−1 →
Oki chosen for each i such that char (ki−1) = 0. Still we have the following:

Lemma 2.

(1) Let N be a subgroup of Kq(K) of finite index. Then openness of N doesn’t
depend on the choice of sections si .

(2) Let ϕ:Kq(K)→ Q/Z be a homomorphism of finite order. Then the continuity of
χ doesn’t depend on the choice of sections si .

The exact meaning of Theorems 1,2,3 is now clear.
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2. Additive duality

2.1. Category of locally compact objects.

If C is the category of finite abelian groups, let C̃ be the category of topological
abelian groups G which possess a totally disconnected open compact subgroup H such
that G/H is a torsion group. If C is the category of finite dimensional vector spaces
over a fixed (discrete) field k, let C̃ be the category of locally linearly compact vector
spaces over k (cf. Lefschetz [12]). In both cases the canonical self-duality of C̃ is well
known. These two examples are special cases of the following general construction.

Definition 2. For a category C define a full subcategory C̃ of ind(pro(C)) as follows.
An object X of ind(pro(C)) belongs to C̃ if and only if it is expressed in the form
" lim−→ " j∈J " lim←− " i∈IX(i, j) for some directly ordered sets I and J viewed as small
categories in the usual way and for some functor X: I◦×J → C satisfying the following
conditions.

(i) If i, i′ ∈ I , i 6 i′ then the morphism X(i′, j) → X(i, j) is surjective for every
j ∈ J . If j, j′ ∈ J , j 6 j′ then the morphism X(i, j)→ X(i, j′) is injective for
every i ∈ I .

(ii) If i, i′ ∈ I , i 6 i′ and j, j′ ∈ J , j 6 j′ then the square

X(i′, j) −−−−→ X(i′, j′)y y
X(i, j) −−−−→ X(i, j′)

is cartesian and cocartesian.

It is not difficult to prove that C̃ is equivalent to the full subcategory of pro(ind(C))
(as well as ind(pro(C)) ) consisting of all objects which are expressed in the form
" lim←− " i∈I " lim−→ " j∈JX(i, j) for some triple (I, J,X) satisfying the same conditions as
above. In this equivalence the object
" lim−→ " j∈J " lim←− " i∈IX(i, j) corresponds to " lim←− " i∈I " lim−→ " j∈JX(i, j).

Definition 3. Let A0 be the category of finite abelian groups, and let A1,A2, . . . be
the categories defined as An+1 = Ãn .

It is easy to check by induction on n that An is a full subcategory of the category
Fab
n of all abelian group objects of Fn with additive morphisms.
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2.2. Pontryagin duality.

The category A0 is equivalent to its dual via the functor

D0:A◦0 →̃A0, X 7→ Hom(X,Q/Z).

By induction on n we get an equivalence

Dn:A◦n →̃An, A◦n = (Ãn−1)◦ = Ã◦n−1
Dn−1−−−→ Ãn−1 = An

where we use (C̃)◦ = C̃◦ . As in the case of Fn each An is a full subcategory of
A∞ = ∪nAn . The functors Dn induce an equivalence

D:A◦∞ →̃A∞

such that D ◦D coincides with the indentity functor.

Lemma 3. View Q/Z as an object of ind(A0) ⊂ A∞ ⊂ Fab
∞ . Then:

(1) For every object X of A∞

[X,Q/Z]A∞ ' [e,D(X)]F∞ .

(2) For all objects X,Y of A∞ [X,D(Y )]A∞ is canonically isomorphic to the group
of biadditive morphisms X × Y → Q/Z in F∞ .

Proof. The isomorphism of (1) is given by

[X,Q/Z]A∞ ' [D(Q/Z),D(X)]A∞ = [Ẑ,D(X)]A∞ →̃ [e,D(X)]F∞

( Ẑ is the totally disconnected compact abelian group lim←−n>0
Z/n and the last arrow is

the evaluation at 1 ∈ Ẑ ). The isomorphism of (2) is induced by the canonical biadditive
morphism D(Y )× Y → Q/Z which is defined naturally by induction on n.

Compare the following Proposition 3 with Weil [17, Ch. II §5 Theorem 3].

Proposition 3. Let K be an n-dimensional local field, and let V be a vector space
over K of finite dimension, V ′ = HomK(V,K). Then

:
(1) The abelian group object V of Fn which represents the functor X → V ⊗K

[X,K] belongs to An .
(2) [K,Q/Z]A∞ is one-dimensional with respect to the natural K -module structure

and its non-zero element induces due to Lemma 3 (2) an isomorphism V ′ ' D(V ).
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3. Properties of the ring of K -valued morphisms

3.1. Multiplicative groups of certain complete rings.

Proposition 4. Let A be a ring and let π be a non-zero element of A such that
A = lim←−A/π

nA. Let R = A/πA and B = A[π−1]. Assume that at least one of the
following two conditions is satisfied.
(i) R is reduced (i.e. having no nilpotent elements except zero) and there is a ring

homomorphism s:R → A such that the composite R
s−→ A −→ A/πA is the

identity.
(ii) For a prime p the ring R is annihilated by p and via the homomorphism R→ R,

x 7→ xp the latter R is a finitely generated projective module over the former R.
Then we have

B∗ ' A∗ × Γ(Spec(R),Z)

where Γ(Spec(R),Z) is the group of global sections of the constant sheaf Z on Spec(R)
with Zariski topology. The isomorphism is given by the homomorphism of sheaves
Z→ O∗Spec(R) , 1 7→ π, the map

Γ(Spec(R),Z) ' Γ(Spec(A),Z)→ Γ(Spec(B),Z)

and the inclusion map A∗ → B∗.

Proof. Let AffR be the category of affine schemes over R. In case (i) let C = AffR .
In case (ii) let C be the category of all affine schemes Spec(R′) over R such that the
map

R(p) ⊗R R′ → R′, x⊗ y 7→ xyp

(cf. the proof of Proposition 2) is bijective. Then in case (ii) every finite inverse limit
and finite sum exists in C and coincides with that taken in AffR . Furthermore, in this
case the inclusion functor C→ AffR has a right adjoint. Indeed, for any affine scheme
X over R the corresponding object in C is lim←−Xi where Xi is the Weil restriction

of X with respect to the homomorphism R→ R, x 7→ xp
i

.
Let R be the ring object of C which represents the functor X → Γ(X,OX ), and

let R∗ be the object which represents the functor X → [X,R]∗ , and 0 be the final
object e regarded as a closed subscheme of R via the zero morphism e→ R.

Lemma 4. Let X be an object of C and assume that X is reduced as a scheme
(this condition is always satisfied in case (ii)). Let θ:X → R be a morphism of C.
If θ−1(R∗) is a closed subscheme of X , then X is the direct sum of θ−1(R∗) and
θ−1(0) (where the inverse image notation are used for the fibre product).
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The group B∗ is generated by elements x of A such that πn ∈ Ax for some
n > 0. In case (i) let A/πn+1A be the ring object of C which represents the functor

X → A/πn+1A⊗R [X,R] where A/πn+1A is viewed as an R-ring via a fixed section
s. In case (ii) we get a ring object A/πn+1A of C by Proposition 2 (4).

In both cases there are morhisms θi:R → A/πn+1A ( 0 6 i 6 n ) in C such that
the morphism

R × · · · ×R→ A/πn+1A, (x0, . . . , xn) 7→
n∑
i=0

θi(xi)π
i

is an isomorphism.
Now assume xy = πn for some x, y ∈ A and take elements xi, yi ∈ R = [e,R]

( 0 6 i 6 n ) such that

x mod πn+1 =
n∑
i=0

θi(xi)π
i, y mod πn+1 =

n∑
i=0

θi(yi)π
i.

An easy computation shows that for every r = 0, . . . , n

(r−1⋂
i=0

x−1
i (0)

)⋂
x−1
r (R∗) =

(r−1⋂
i=0

x−1
i (0)

)⋂(n−r−1⋂
i=0

y−1
i (0)

)
.

By Lemma 4 and induction on r we deduce that e = Spec(R) is the direct sum of the
closed open subschemes

(
∩r−1
i=0 x

−1
i (0)

)
∩ x−1

r (R∗) on which the restriction of x has
the form aπr for an invertible element a ∈ A.

3.2. Properties of the ring [X,K] .

Results of this subsection will be used in section 4.

Definition 4. For an object X of F∞ and a set S let

lcf(X,S) = lim−→ I [X, I]

where I runs over all finite subsets of S (considering each I as an object of F0 ⊂ F∞ ).

Lemma 5. Let K be an n-dimensional local field and let X be an object of F∞ .
Then:
(1) The ring [X,K] is reduced.
(2) For every set S there is a canonical bijection

lcf(X,S) →̃Γ(Spec([X,K]), S)

where S on the right hand side is regarded as a constant sheaf on Spec([X,K]).
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Proof of (2). If I is a finite set and θ:X → I is a morphism of F∞ then X is
the direct sum of the objects θ−1(i) = X ×I {i} in F∞ ( i ∈ I ). Hence we get the
canonical map of (2). To prove its bijectivity we may assume S = {0, 1}. Note that
Γ(Spec(R), {0, 1}) is the set of idempotents in R for any ring R. We may assume that
X is an object of pro(Fn−1).

Let kn−1 be the residue field of kn = K . Then

Γ(Spec([X,K]), {0, 1}) ' Γ(Spec([X,kn−1]), {0, 1})

by (1) applied to the ring [X,kn−1].

Lemma 6. Let K be an n-dimensional local field of characteristic p > 0. Let
k0, . . . , kn be as in the introduction. For each i = 1, . . . , n let πi be a lifting to K of
a prime element of ki . Then for each object X of F∞ [X,K]∗ is generated by the
subgroups

[X,Kp(π(s))]∗

where s runs over all functions {1, . . . , n} → {0, 1, . . . , p − 1} and π(s) denotes
πs(1)

1 . . . πs(n)
n , Kp(π(s)) is the subring object of K corresponding to Kp(π(s)), i.e.

[X,Kp(π(s))] = Kp(π(s))⊗Kp [X,K].

Proof. Indeed, Proposition 4 and induction on n yield morphisms

θ(s):K∗ → Kp(π(s))∗

such that the product of all θ(s) in K∗ is the identity morphism K∗ → K∗.

The following similar result is also proved by induction on n.

Lemma 7. Let K,k0 and (πi)16i6n be as in Lemma 6. Then there exists a morphism
of A∞
(cf. section 2)

(θ1, θ2): Ωn
K → Ωn

K × k0

such that

x = (1− C)θ1(x) + θ2(x)dπ1/π1 ∧ · · · ∧ dπn/πn
for every object X of F∞ and for every x ∈ [X,Ωn

K ] where Ωn
K is the object which

represents the functor X → Ωn
K ⊗K [X,K] and C denotes the Cartier operator ([4],

or see 4.2 in Part I for the definition).

Generalize the Milnor K -groups as follows.
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Definition 5. For a ring R let Γ0(R) = Γ(Spec(R),Z). The morphism of sheaves

Z× O∗Spec(R) → O∗Spec(R), (n, x) 7→ xn

determines the Γ0(R)-module structure on R∗ . Put Γ1(R) = R∗ and for q > 2 put

Γq(R) = ⊗qΓ0(R)Γ1(R)/Jq

where ⊗qΓ0(R)Γ1(R) is the q th tensor power of Γ1(R) over Γ0(R) and Jq is the
subgroup of the tensor power generated by elements x1 ⊗ · · · ⊗ xq which satisfy
xi + xj = 1 or xi + xj = 0 for some i 6= j . An element x1 ⊗ · · · ⊗ xq mod Jq will
be denoted by {x1, . . . , xq}.

Note that Γq(k) = Kq(k) for each field k and Γq(R1 × R2) ' Γq(R1) × Γq(R2)
for rings R1, R2.

Lemma 8. In one of the following two cases
(i) A,R,B, π as in Proposition 4
(ii) an n-dimensional local field K , an object X of F∞ , A = [X,OK],

R = [X,kn−1], B = [X,K],

let UiΓq(B) be the subgroup of Γq(B) generated by elements {1 +πix, y1, . . . , yq−1}
such that x ∈ A, yj ∈ B∗ , q, i > 1.

Then:
(1) There is a homomorphism ρq0: Γq(R)→ Γq(B)/U1Γq(B) such that

ρq0({x1, . . . , xq}) = {x̃1, . . . , x̃q} mod U1Γq(B)

where x̃i ∈ A is a representative ofxi . In case (i) (resp. (ii)) the induced map

Γq(R) + Γq−1(R)→ Γq(B)/U1Γq(B), (x, y) 7→ ρq0(x) + {ρq−1
0 (y), π}

(resp.

Γq(R)/m + Γq−1(R)/m→ Γq(B)/(U1Γq(B) +mΓq(B)),

(x, y) 7→ ρq0(x) + {ρq−1
0 (y), π})

is bijective (resp. bijective for every non-zero integer m ).
(2) If m is an integer invertible in R then U1Γq(B) is m-divisible.
(3) In case (i) assume that R is additively generated by R∗ . In case (ii) assume that

char (kn−1) = p > 0. Then there exists a unique homomorphism

ρqi : Ωq−1
R → UiΓq(B)/Ui+1Γq(B)

such that

ρqi (xdy1/y1 ∧ · · · ∧ dyq−1/yq−1) = {1 + x̃πi, ỹ1, . . . , ỹq−1} mod Ui+1Γq(B)

for every x ∈ R, y1, . . . , yq−1 ∈ R∗. The induced map

Ωq−1
R ⊕Ωq−2

R → UiΓq(B)/Ui+1Γq(B), (x, y) 7→ ρqi (x) + {ρq−1
i (y), π}
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is surjective. If i is invertible in R then the homomorphism ρqi is surjective.

Proof. In case (i) these results follow from Proposition 4 by Bass–Tate’s method
[2, Proposition 4.3] for (1), Bloch’s method [3, §3] for (3) and by writing down the
kernel of R ⊗R∗ → Ω1

R , x⊗ y 7→ xdy/y as in [9, §1 Lemma 5].
If X is an object of pro(Fn−1) then case (ii) is a special case of (i) except n = 1 and

k0 = F2 where [X,k0] is not generated by [X,k0]∗ in general. But in this exceptional
case it is easy to check directly all the assertions.

For an arbitrary X we present here only the proof of (3) because the proof of (1) is
rather similar.

Put k = kn−1. For the existence of ρqi it suffices to consider the cases where

X = Ωq−1
k and X = k ×

∏q−1 k∗ (
∏r Y denotes the product of r copies of Y ).

Note that these objects are in pro(Fn−1) since [X,Ωq
k] = Ωq

[X,k] for any X and q.

The uniqueness follows from the fact that [X,Ωq−1
k ] is generated by elements of

the form xdc1/c1 ∧ · · · ∧ dcq−1/cq−1 such that x ∈ [X,k] and c1, . . . , cq−1 ∈ k∗.
To prove the surjectivity we may assume X = (1+πiOK)×

∏q−1
K∗ and it suffices

to prove in this case that the typical element in UiΓq(B)/Ui+1Γq(B) belongs to the
image of the homomorphism introduced in (3). Let UK be the object of Fn which
represents the functor X → [X,OK ]∗ . By Proposition 4 there exist

morphisms θ1:K∗ →
∐p−1
i=0 UKπ

i (the direct sum in Fn ) and θ2:K∗ → K∗

such that x = θ1(x)θ2(x)p for each X in F∞ and each x ∈ [X,K∗] (in the proof of
(1) p is replaced by m ). Since

∐p−1
i=0 UKπ

i belongs to pro(Fn−1) and
(1 + πi[X,OK])p ⊂ 1 + πi+1[X,OK ] we are reduced to the case where X is an object
of pro(Fn−1).

4. Norm groups

In this section we prove Theorem 3 and Proposition 1. In subsection 4.1 we reduce
these results to Proposition 6.

4.1. Reduction steps.

Definition 6. Let k be a field and let H:E(k)→ Ab be a functor such that
lim−→ k′∈E(k)H(k′) = 0. Let w ∈ H(k) (cf. Introduction). For a ring R over k and
q > 1 define the subgroup Nq(w,R) (resp. Lq(w,R) ) of Γq(R) as follows.

An element x belongs to Nq(w,R) (resp. Lq(w,R) ) if and only if there exist
a finite set J and element 0 ∈ J ,
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a map f :J → J such that for some n > 0 the n th iteration fn with respect to
the composite is a constant map with value 0,
and a family (Ej , xj)j∈J (Ej ∈ E(k) ), xj ∈ Γq(Ej ⊗k R) ) satisfying the follow-
ing conditions:
(i) E0 = k and x0 = x.
(ii) Ef (j) ⊂ Ej for every j ∈ J .
(iii) Let j ∈ f (J ). Then there exists a family (yt, zt)t∈f−1(j)

( yt ∈ (Et ⊗k R)∗ , zt ∈ Γq−1(Ej ⊗k R) ) such that xt = {yt, zt} for all
t ∈ f−1(j) and

xj =
∑

t∈f−1(j)

{NEt⊗kR/Ej⊗kR(yt), zt}

where NEt⊗kR/Ej⊗kR denotes the norm homomorphism

(Et ⊗k R)∗ → (Ej ⊗k R)∗.

(iv) If j ∈ J \ f (J ) then w belongs to the kernel of H(k)→ H(Ej )
(resp. then one of the following two assertions is valid:
(a) w belongs to the kernel of H(k)→ H(Ej ),
(b) xj belongs to the image of Γ(Spec(Ej ⊗k R),Kq(Ej ))→ Γq(Ej ⊗k R),
where Kq(Ej) denotes the constant sheaf on Spec(Ej ⊗k R) defined by the
set Kq(Ej) ).

Remark. If the groups Γq(Ej ⊗k R) have a suitable “norm” homomorphism then x

is the sum of the “norms” of xj such that f−1(j) = ∅. In particular, in the case where
R = k we get Nq(w, k) ⊂ Nq(w) and N1(w, k) = N1(w).

Definition 7. For a field k let [E(k),Ab] be the abelian category of all functors
E(k)→ Ab.
(1) For q > 0 let Nq,k denote the full subcategory of [E(k),Ab] consisting of functors

H such that lim−→ k′∈E(k)H(k′) = 0 and such that for every k′ ∈ E(k), w ∈ H(k′)

the norm group Nq(w) coincides with Kq(k′). Here Nq(w) is defined with
respect to the functor E(k′)→ Ab.

(2) If K is an n-dimensional local field and q > 1, let Nq,K (resp. Lq,K ) denote
the full subcategory of [E(K),Ab] consisting of functors H such that

lim−→K′∈E(K) H(K ′) = 0

and such that for every K ′ ∈ E(K), w ∈ H(K ′) and every object X of F∞ the
group Nq(w, [X,K ′]) (resp. Lq(w, [X,K ′]) ) coincides with Γq([X,K ′]).

Lemma 9. Let K be an n-dimensional local field and let H be an object of Lq,K .
Then for every w ∈ H(K) the group Nq(w) is an open subgroup of Kq(K) of finite
index.
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Proof. Consider the case where X =
∏q

K∗. We can take a system (Ej , xj)j∈J as in
Definition 6 such that E0 = K , x0 is the canonical element in Γq([X,K]) and such
that if j 6∈ f (J ) and w 6∈ ker(H(K) → H(Ej )) then xj is the image of an element
θj of lcf(X,Kq(Ej)). Let θ ∈ lcf(X,Kq(K)/Nq(w)) be the sum of NEj/K ◦ θj
mod Nq(w). Then the canonical map [e,X] =

∏q
K∗ → Kq(K)/Nq(w) comes from

θ.

Definition 8. Let k be a field. A collection {Ck′}k′∈E(k) of full subcategories Ck′ of
[E(k′),Ab] is called admissible if and only if it satisfies conditions (i) – (iii) below.
(i) Let E ∈ E(k). Then every subobject, quotient object, extension and filtered

inductive limit (in the category of [E(E),Ab] ) of objects of CE belongs to CE .
(ii) Let E,E′ ∈ E(k) and E ⊂ E′ . If H is in CE then the composite functor

E(E′) −→ E(E)
H−→ Ab is in CE′ .

(iii) Let E ∈ E(k) and H is in [E(E),Ab]. Then H is in CE if conditions (a) and
(b) below are satisfied for a prime p.
(a) For some E′ ∈ E(E) such that |E′ : E| is prime to p the composite functor

(E′) −→ (E)
H−→ Ab is in CE′ .

(b) Let q be a prime number distinct from p and let S be a direct subordered set
of E(E). If the degree of every finite extension of the field lim−→E′∈S E

′ is a

power of p then lim−→E′∈S H(E′) = 0.

Lemma 10.
(1) For each field k and q the collection {Nq,k′}k′∈E(k) is admissible. If K is an

n-dimensional local field then the collections {Nq,k′}k′∈E(k) and {Lq,k′}k′∈E(k)
are admissible.

(2) Let k be a field. Assume that a collection {Ck′}k′∈E(k) is admissible. Let r > 1
and for every prime p there exist E ∈ E(k) such that |E : k| is prime to p
and such that the functor Hr( ,Z/pr):E(E) → Ab is in CE . Then for each
k′ ∈ E(k), each discrete torsion abelian group M endowed with a continuous
action of Gal(k′sep

/k′) and each i > r the functor

Hi( ,M ):E(k′)→ Ab

is in Ck′ .

Definition 9. For a field k, r > 0 and a non-zero integer m define the group Hr
m(k)

as follows.
If char (k) = 0 let

Hr
m(k) = Hr(k, µ⊗(r−1)

m ).

If char (k) = p > 0 and m = m′pi where m′ is prime to p and i > 0 let

Hr
m(k) = Hr

m′(k, µ
⊗(r−1)
m′ )⊕ coker(F − 1:Cr−1

i (k)→ Cr−1
i (k)/{Cr−2

i (k), T})
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(where C ·i is the group defined in [3, Ch.II,§7], Cri = 0 for r < 0 ).

By the above results it suffices for the proof of Theorem 3 to prove the following
Proposition 5 in the case where m is a prime number.

Proposition 5. Let K be an n-dimensional local field. Let q, r > 1 and let m be a
non-zero integer. Then the functor Hr

m:E(K) → Ab is in Lq,K if q + r = n + 1 and
in Nq,K if q + r > n + 1.

Now we begin the proofs of Proposition 1 and Proposition 5.

Definition 10. Let K be a complete discrete valuation field, r > 0 and m be a
non-zero integer.
(1) Let Hr

m,ur and Hr
m/H

r
m,ur be the functors E(K)→ Ab:

Hr
m,ur(K

′) = ker(Hr
m(K ′)→ Hr

m(K ′ur)),

(Hr
m/H

r
m,ur)(K

′) = Hr
m(K ′)/Hr

m,ur(K
′)

where K ′ur is the maximal unramified extension of K ′ .
(2) Let Irm (resp. Jrm ) be the functor E(K) → Ab such that Irm(K ′) = Hr

m(k′)
(resp. Jrm(K ′) = Hr

m(k′) ) where k′ is the residue field of K ′ and such that the
homomorphism Irm(K ′) → Irm(K ′′) (resp. Jrm(K ′) → Jrm(K ′′) ) for K ′ ⊂ K ′′

is jk′′/k′ (resp. e(K ′′|K ′)jk′′/k′ ) where k′′ is the residue field of K ′′ , jk′′/k′ is
the canonical homomorphism induced by the inclusion k′ ⊂ k′′ and e(K ′′|K ′) is
the index of ramification of K ′′/K ′ .

Lemma 11. Let K and m be as in Definition 10.
(1) For r > 1 there exists an exact sequence of functors

0→ Irm → Hr
m,ur → Jr−1

m → 0.

(2) Jrm is in N1,K for every r > 0.
(3) Let q, r > 1. Then Irm is in Nq,K if and only if Hr

m:E(k) → Ab is in Nq−1,k
where k is the residue field of K .

Proof. The assertion (1) follows from [11]. The assertion (3) follows from the facts
that 1+MK ⊂ NL/K (L∗) for every unramified extension L of K and that there exists
a canonical split exact sequence

0→ Kq(k)→ Kq(K)/U1Kq(K)→ Kq−1(k)→ 0.

The following proposition will be proved in 4.4.

Proposition 6. Let K be a complete discrete valuation field with residue field k. Let
q, r > 1 and m be a non-zero integer. Assume that [k : kp| 6 pq+r−2 if char (k) =
p > 0. Then:
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(1) Hr
m/H

r
m,ur is in Nq,K .

(2) If K is an n-dimensional local field with n > 1 then Hr
m/H

r
m,ur is in Nq,K .

Proposition 1 follows from this proposition by Lemma 10 and Lemma 11 (note that
if char (k) = p > 0 and i > 0 then Hr

pi(k) is isomorphic to ker(pi:Hr(k)→ Hr(k))
as it follows from [11]).

Lemma 12. Let K be an n-dimensional local field and let X be an object of F∞ .
Consider the following cases.
(i) q > n + 1 and m is a non-zero integer.
(ii) q = n + 1, char (K) = p > 0 and m is a power of p.
(iii) q = n + 1 and m is a non-zero integer.

Let x ∈ Γq([X,K]. Then in cases (i) and (ii) (resp. in case (iii)) there exist a triple
(J, 0, f ) and a family (Ej , xj)j∈J which satisfy all the conditions in Definition 6 with
k = K except condition (iv), and which satisfy the following condition:
(iv)’ If j ∈ J \ f (J ) then xj ∈ mΓq([X,Ej ])

(resp. xj belongs to mΓq([X,Ej ])
or to the image of lcf(X,Kq(Ej))→ Γq([X,Ej ]) ).

Corollary. Let K be an n-dimensional local field. Then mKn+1(K) is an open
subgroup of finite index of Kn+1(K) for every non-zero integer m.

This corollary follows from case (iii) above by the argument in the proof of Lemma
9.

Proof of Lemma 12. We may assume that m is a prime number.
First we consider case (ii). By Lemma 6 we may assume that there are elements

b1, . . . , bn+1 ∈ [X,K]∗ and c1, . . . , cn+1 ∈ K∗ such that x = {b1, . . . , bn+1} and
bi ∈ [X,Kp(ci)]∗ for each i. We may assume that |Kp(c1, . . . , cr) : Kp| = pr

and cr+1 ∈ Kp(c1, . . . , cr) for some r 6 n. Let J = {0, 1, . . . , r}, and define

f :J → J by f (j) = j − 1 for j > 1 and f (0) = 0. Put Ej = K(c1/p
1 , . . . , c

1/p
j ) and

xj = {b1/p
1 , . . . , b

1/p
j , bj+1, . . . , bn+1}. Then

xr = p{b1/p
1 , . . . , b

1/p
r+1, br+2, . . . , bn+1} in Γn+1([X,Er]).

Next we consider cases (i) and (iii). If K is a finite field then the assertion for
(i) follows from Lemma 13 below and the assertion for (iii) is trivial. Assume n > 1
and let k be the residue field of K . By induction on n Lemma 8 (1) (2) and case
(ii) of Lemma 12 show that we may assume x ∈ U1Γq([X,K]), char (K) = 0 and
m = char (k) = p > 0. Furthermore we may assume that K contains a primitive p th
root ζ of 1. Let eK = vK (p) and let π be a prime element of K . Then

UiΓq([X,OK ]) ⊂ pU1Γq([X,OK ]), if i > peK/(p− 1) .

From this and Lemma 8 (3) (and a computation of the map x 7→ xp on U1Γq([X,OK ]) )
it follows that U1Γq([X,K]) is p-divisible if q > n + 1 and that there is a surjective
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homomorphism

[X,Ωn−1
k ]/(1− C)[X,Ωn−1

k ]→ U1Γn+1([X,K])/pU1Γn+1([X,K]),

xdy1/y1 ∧ · · · ∧ dyn−1/yn−1 7→ {1 + x̃(ζ − 1)p, ỹ1, . . . , ỹn1 , π}
where C is the Cartier operator. By Lemma 7

[X,Ωn−1
k ]/(1 − C)[X,Ωn−1

k ] = lcf(X,Ωn−1
k /(1− C)Ωn−1

k ).

Lemma 13. Let K be a finite field and let X be an object of F∞ . Then
(1) Γq[X,K] = 0 for q > 2.
(2) For every finite extension L of K the norm homomorphism [X,L]∗ → [X,K]∗

is surjective.

Proof. Follows from Lemma 5 (2).

Proof of Proposition 5 assuming Proposition 6. If K is a finite field, the assertion of
Proposition 5 follows from Lemma 13.

Let n > 1. Let k be the residue field of K . Let Irm and Jrm be as in Definition
10. Assume q + r = n + 1 (resp. q + r > n + 1 ). Using Lemma 8 (1) and the fact that

U1Γq([X,K]) ⊂ NL/KΓq([X,L])

for every unramified extension L/K we can deduce that Irm is in Lq,K (resp. Nq,K )
from the induction hypothesis Hr

m:E(k) → Ab is in Lq−1,k (resp. Nq−1,k ). We can
deduce Jr−1

m is in Lq,K (resp. Nq,K ) from the hypothesis Hr−1
m :E(k) → Ab is in

Lq,k (resp. Nq,k ). Thus Hr
m,ur is in Lq,K (resp. Nq,K ).

4.2. Proof of Proposition 6.

Let k be a field and let m be a non-zero integer. Then ⊕r>0H
r
m(k) (cf. Definition

9) has a natural right ⊕q>0Kq(k)-module structure (if m is invertible in k this structure
is defined by the cohomological symbol hqm,k:Kq(k)/m → Hq(k, µ⊗qm ) and the cup-
product, cf. [9, §3.1]). We denote the product in this structure by {w, a}
(a ∈ ⊕q>0Kq(k), w ∈ ⊕r>0H

r
m(k) ).

Definition 11. Let K be a complete discrete valuation field with residue field k such
that char (k) = p > 0. Let r > 1. We call an element w of Hr

p (K) standard if and
only if w is in one of the following forms (i) or (ii).
(i) w = {χ, a1, . . . , ar−1} where χ is an element of H1

p (K) corresponding to a
totally ramified cyclic extension of K of degree p, and a1, . . . , ar−1 are elements
of O∗K such that

|kp(a1, . . . , ar−1) : kp| = pr−1
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(ai denotes the residue of ai ).
(ii) w = {χ, a1, . . . , ar−2, π} where χ is an element of H1

p (K) corresponding to a
cyclic extension of K of degree p whose residue field is an inseparable extension
of k of degree p, π is a prime element of K and a1, . . . , ar−2 are elements of
O∗K such that |kp(a1, . . . , ar−2) : kp| = pr−2.

Lemma 14. Let K and k be as in Definition 11. Assume that |k : kp| = pr−1 . Then
for every element w ∈ Hr

p (K) \Hr
p,ur(K) there exists a finite extension L of K such

that |L : K| is prime to p and such that the image of w in Hr
p (L) is standard.

Proof. If char (K) = p the proof goes just as in the proof of [8, §4 Lemma 5] where
the case of r = 2 was treated.

If char (K) = 0 we may assume that K contains a primitive p th root of 1. Then
the cohomological symbol hrp,K:Kr(K)/p→ Hr

p (K) is surjective and

coker(hrp,K :U1Kr(K)→ Hr
p (K)) ' νr−1(k)

by [11] and |k : kp| = pr−1.
Here we are making the following:

Definition 12. Let K be a complete discrete valuation field. Then UiKq(K) for
i, q > 1 denotes UiΓq(K) of Lemma 8 case (i) (take A = OK and B = K ).

Definition 13. Let k be a field of characteristic p > 0. As in Milne [13] denote by
νr(k) the kernel of the homomorphism

Ωr
k → Ωr

k/d(Ωr−1
k ), xdy1/y1 ∧ · · · ∧ dyr/yr 7→ (xp − x)dy1/y1 ∧ · · · ∧ dyr/yr.

By [11, Lemma 2] for every element α of νr−1(k) there is a finite extension k′ of
k such that
|k′ : k| is prime to p and the image of α in νr−1(k′) is the sum of elements of type

dx1/x1 ∧ · · · ∧ dxr/xr.

Hence we can follow the method of the proof of [8, §4 Lemma 5 or §2 Proposition 2].

Proof of Proposition 6. If m is invertible in k then Hr
m = Hr

m,ur. Hence we may
assume that char (k) = p > 0 and m = pi , i > 1. Since ker(p:Hr

pi/H
r
pi,ur →

Hr
pi/H

r
pi,ur) is isomorphic to Hr

p/H
r
p,ur by [11], we may assume m = p.

The proof of part (1) is rather similar to the proof of part (2). So we present here
only the proof of part (2), but the method is directly applicable to the proof of (1).

The proof is divided in several steps. In the following K always denotes an
n-dimensional local field with n > 1 and with residue field k such that
char (k) = p > 0, except in Lemma 21. X denotes an object of F∞ .
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Step 1. In this step w denotes a standard element of Hr
p (K) and w is its image

in (Hr
p/H

r
p,ur)(K). We shall prove here that U1Γq([X,K]) ⊂ N (w, [X,K]). We

fix a presentation of w as in (i) or (ii) of Definition 11. Let L be a cyclic extension
of K corresponding to χ. In case (i) (resp. (ii)) let h be a prime element of L
(resp. an element of OL such that the residue class h is not contained in k ). Let
G be the subgroup of K∗ generated by a1, . . . , ar−1 (resp. by a1, . . . , ar−2, π ), by
1 +MK and NL/K (h). Let l be the subfield of k generated by the residue classes of
a1, . . . , ar−1 (resp. a1, . . . , ar−2,NL/K (h) ).

Let i > 1. Let Gi,q be the subgroup of UiΓq([X,K]) generated by
{UiΓq−1([X,K]), G} and Ui+1Γq([X,K]). Under these notation we have the follow-
ing Lemma 15, 16 ,17.

Lemma 15.
(1) Gi,q ⊂ Nq(w, [X,K ]) + Ui+1Γq([X,K]).
(2) The homomorphism ρqi of Lemma 8 (3) induces the surjections

[X,Ωq−1
k ]→ [X,Ωq−1

k/l ]
ρq
i−→ U1Γq([X,K])/Gi,q.

(3) If ρqi is defined using a prime element π which belongs to G then the above
homomorphism ρqi annihilates the image of the exterior derivation
d: [X,Ωq−2

k/l ]→ [X,Ωq−1
k/l ].

Lemma 16. Let a be an element of K∗ such that vK (a) = i and
a = as(1)

1 . . . as(r−1)
r−1 NL/K (h)s(r)

(resp. a = as(1)
1 . . . as(r−2)

r−2 πs(r−1)NL/K (h)s(r) )
where s is a map {0, . . . , r} → Z such that p - s(j) for some j 6= r.

Then 1− xpa ∈ N1(w, [X,K ]) for each x ∈ [X,OK ].

Proof. It follows from the fact that w ∈ {Hr−1
p (K), a} and 1 − xpa is the norm of

1 − xa1/p ∈ [X,K(a1/p)]∗ (K(a1/p) denotes the ring object which represents the
functor X → K(a1/p)⊗K [X,K] ).

Lemma 17. Let σ be a generator of Gal(L/K) and let a = h−1σ(h)−1, b = NL/K (a),
t = vK(b). Let f = 1 in case (i) and let f = p in case (ii). Let N : [X,L]∗ → [X,K]∗

be the norm homomorphism. Then:

(1) If f |i and 1 6 i < t then for every x ∈Mi/f
L [X,OL]

N (1 + x) ≡ 1 +N (x) mod Mi+1
K [X,OK ].

(2) For every x ∈ [X,OK]

N (1 + xa) ≡ 1 + (xp − x)b mod Mt+1
K [X,OK ].
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In case (ii) for every integer r prime to p and every x ∈ [X,OK ]

N (1 + xhra) ≡ 1 + xpN (h)rb mod Mt+1
K [X,OK ].

(3)

1 +Mt+1
K [X,OK ] ⊂ N (1 +Mt/f+1

L [X,OL]).

Proof. Follows from the computation of the norm homomorphism L∗ → K∗ in Serre
[15, Ch. V §3] and [8, §1].

From these lemmas we have
(1) If 0 < i < t then

UiΓq([X,K]) ⊂ Nq(w, [X,K]) + Ui+1Γq([X,K]).

(2) Ut+1Γq([X,K]) ⊂ Nq(w, [X,K ]).
(3) In case (ii) let ar−1 = NL/K (h). then in both cases (i) and (ii) the homomorphism

[X,Ωq+r−2
k ]→ U1Γq([X,K])/Nq(w, [X,K ]),

xda1/a1 ∧ · · · ∧ dar−1/ar−1 ∧ dy1/y1 ∧ · · · ∧ dyq−1/yq−1

7→ {1 + x̃b, ỹ1, . . . , ỹq−1},

(x ∈ [X,k], yi ∈ [X,k∗] ) annihilates (1− C)[X,Ωq+r−2
k ].

Lemma 7 and (1), (2), (3) imply that U1Γq([X,K]) is contained in the sum of
Nq(w, [X,K ]) and the image of lcf(X,Ut+1Kq(K)).

Lemma 18. For each u ∈ OK there exists an element ψ of H1
p,ur(K) such that

(1 + ub)NL/K (h)−1 is contained in the norm group NL′/KL
′∗ where L′ is the cyclic

extension of K corresponding to χ + ψ (χ corresponds to L/K ).

Proof. Follows from [9, §3.3 Lemma 15] (can be proved using the formula

NLur/Kur (1 + xa) ≡ 1 + (xp − x)b mod bMKur

for x ∈ OKur .

Lemma 18 shows that 1 + ub is contained in the subgroup generated by NL/KL
∗

and NL′/KL
′∗ , χL = 0, χL′ ∈ H1

p,ur(L
′).

Step 2. Next we prove that

U1Γq([X,K]) ⊂ N (w, [X,K])

for every w ∈ Hr
p (K) where w is the image of w in (Hr

p/H
r
p,ur)(K).
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Lemma 19. Let q, r > 1 and let w ∈ Hr
p (K). Then there exists i > 1 such that

piΓq([X,K ′]) and Ue(K′|K)iΓq([X,K ′]) are contained in Nq(wK′ , [X,K ′]) for every
K ′ ∈ E(K) where wK′ denotes the image of w in Hr

p (K ′) and e(K ′|K) denotes the
ramification index of K ′/K .

Lemma 20. Let i > 1 and x ∈ U1Γq([X,K]); (resp. x = {u1, . . . , uq} with
ui ∈ [X,O∗K ]; resp. x ∈ Γq([X,K]) ).

Then there exists a triple (J, 0, f ) and a family (Ej , xj)j∈J which satisfy all the
conditions of Definition 6 except (iv) and satisfy condition (iv)’ below.
(iv)’ If j 6∈ f (J ) then xj satisfy one of the following three properties:

(a) xj ∈ piΓq([X,Ej ]).
(b) xj ∈ Ue(Ej |K)iΓq([X,Ej ]); (resp. (b) xj ∈ U1Γq([X,Ej ]).
(c) Let Ej be the residue field of Ej . There are elements c1, . . . , cq−1 of O∗Ej

such that
xj ∈ {U1Γ1([X,Ej ]), c1, . . . , cq−1} and |Ejp(c1, . . . , cq−1) : Ejp| = pq−1;
(resp. (c) There are elements b1, . . . , bq of [X,O∗Ej ] and c1, . . . , cq of O∗Ej
such that xj = {b1, . . . , bq} and such that for each m the residue class
bm ∈ [X,Ej] belongs to [X,Ej]p[cm] and |Ejp(c1, . . . , cq) : Ejp| = pq );
(resp. (c) There are elements b1, . . . , bq−1 of [X,O∗Ej ] and c1, . . . , cq−1 of

O∗Ej such that xj ∈ {[X,Ej ]∗, b1, . . . , bq−1} and such that for each m the

residue class bm ∈ [X,Ej] belongs to [X,Ej]p[cm] and

|Ejp(c1, . . . , cq−1) : Ejp| = pq−1 ).

Using Lemma 19 and 20 it suffices for the purpose of this step to consider the
following elements
{u, c1, . . . , cq−1} ∈ U1Γq([X,K]) such that u ∈ U1Γ1([X,K]), c1, . . . , cq−1 ∈ O∗K
and |kp(c1, . . . , cq−1 : kp| = pq−1.

For each i = 1, . . . , q − 1 and each s > 0 take a ps th root ci,s of −ci satisfying
cpi,s+1 = ci,s. Note that Nk(ci,s+1)/k(ci,s)(−ci,s+1) = −ci,s. For each m > 0 write m
in the form (q − 1)s + r ( s > 0, 0 6 r < q − 1 ). Let Em be the finite extension of
K of degree pm generated by ci,s+1 ( 1 6 i 6 r ) and ci,s ( r + 1 6 i 6 q− 1 ) and let

xm = {u,−c1,s+1, . . . ,−cr,s+1,−cr+1,s, . . . ,−cq−1,s} ∈ Γq([X,Em]).

Then E∞ = lim−→Em is a henselian discrete valuation field with residue field E∞

satisfying |E∞ : E∞p| 6 pr−1. Hence by Lemma 14 and Lemma 21 below there
exists m < ∞ such that for some finite extension E′m of Em of degree prime to p
the image of w in Hr

p (E′m) is standard. Let J = {0, 1, . . . ,m,m′}, f (j) = j − 1 for
1 6 j 6 m, f (0) = 0, f (m′) = m, Em′ = E′m and

xm′ = {u1/|E′m:Em|, c1, . . . , cq−1}.
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Then from Step 1 we deduce {u, c1, . . . , cq−1} ∈ Nq(w, [X,K]).

Lemma 21. Let K be a henselian discrete valuation field, and let K̂ be its completion.
Then Hr

m(K) ' Hr
m(K̂) for every r and m.

Proof. If m is invertible in K this follows from the isomorphism Gal(K̂sep/K̂) '
Gal(Ksep/K) (cf. [1, Lemma 2.2.1]). Assume char (K) = p > 0 and m = pi

( i > 1 ). For a field k of characteristic p > 0 the group Hr
pi(k) is isomorphic to

(H1
pi (k)⊗ k∗ ⊗ · · · ⊗ k∗)/J where J is the subgroup of the tensor product generated

by elements of the form (cf. [9, §2.2 Corollary 4 to Proposition 2])

(i) χ⊗ a1 ⊗ · · · ⊗ ar−1 such that ai = aj for some i 6= j ,
(ii) χ⊗a1⊗ · · ·⊗ar−1 such that ai ∈ Nkχ/kk∗χ for some i where kχ is the extension

of k corresponding to χ.

By the above isomorphism of the Galois groups H1
pi (K) ' H1

pi(K̂). Furthermore if

L is a cyclic extension of K then 1 +Mn
K ⊂ NL/KL∗ and 1 +Mn

K̂
⊂ N

LK̂/K̂
(LK̂)∗

for sufficiently large n. Since K∗/(1 +Mn
K) ' K̂∗/(1 +Mn

K̂
), the lemma follows.

Step 3. In this step we prove that the subgroup of Γq([X,K]) generated by
U1Γq([X,K]) and elements of the form {u1, . . . , uq} (ui ∈ [X,O∗K ] ) is contained
in Nq(w, [X,K]). By Lemma 20 it suffices to consider elements {b1, . . . , bq} such
that bi ∈ [X,O∗K] and such that there are elements cj ∈ O∗K satisfying

|kp(c1, . . . , cq) : kp| = pq

and bi ∈ [X,k]p[ci] for each i. Define fields Em as in Step 2 replacing q − 1 by
q. Then E∞ = lim−→Em is a henselian discrete valuation field with residue field E∞

satisfying |E∞ : E∞p| 6 pr−2. Hence Hr
p (Ê∞) = Hr

p,ur(Ê∞). By Lemma 21 there
exists m <∞ such that wEm ∈ Hr

p,ur(Em).

Step 4. Let w be a standard element. Then there exists a prime element π of K
such that π ∈ N1(w, [X,K ]) = Γq([X,K]).

Step 5. Let w be any element of Hr
p (K). To show that Γq([X,K]) = Nq(w, [X,K])

it suffices using Lemma 20 to consider elements of Γq([X,K]) of the form
{x, b1, . . . , bq−1} (x ∈ [X,K]∗ , bi ∈ [X,O∗K ] ) such that there are elements

c1, . . . , cq−1 ∈ O∗K satisfying |kp(c1, . . . , cq−1) : kp| = pq−1 and bi ∈ [X,k]p[ci]
for each i. The fields Em are defined again as in Step 2, and we are reduced to the
case where w is standard.
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5. Proof of Theorem 2

Let K be an n-dimensional local field. By [9, §3 Proposition 1] Hr(K) = 0 for
r > n + 1 and there exists a canonical isomorphism Hn+1(K) ' Q/Z.
For 0 6 r 6 n + 1 the canonical pairing

{ , }:Hr(K)×Kn+1−r(K)→ Hn+1(K)

(see subsection 4.2) induces a homomorphism

Φr
K :Hr(K)→ Hom(Kn+1−r(K),Q/Z).

if w ∈ Hr(K) with r > 1 (resp. r = 0 ) then Φr
K (w) annihilates the norm group

Nn+1−r(w) (resp. Φr
K(w) annihilates mKn+1(K) where m is the order of w ). Since

Nn+1−r(w) (resp. mKn+1(K) ) is open in Kn+1−r(K) by Theorem 3 (resp. Corollary
to Lemma 12), Φr

K(w) is a continuous character of Kn+1−r(K) of finite order.

5.1. Continuous characters of prime order.

In this subsection we shall prove that for every prime p the map Φr
K ( 0 6 r 6 n+1 )

induces a bijection between Hr
p (K) (cf. Definition 10) and the group of all continuous

characters of order p of Kn+1−r(K). We may assume that n > 1 and 1 6 r 6 n.
Let k be the residue field of K . In the case where char (k) 6= p the above assertion
follows by induction on n from the isomorphisms

Hr
p (k)⊕Hr−1

p (k) ' Hr
p (K), Kq(k)/p⊕Kq(k)/p ' Kq(K)/p.

Now we consider the case of char (k) = p.

Definition 14. Let K be a complete discrete valuation field with residue field k of
characteristic p > 0. For r > 1 and i > 0 we define the subgroup TiH

r
p (K) of

Hr
p (K) as follows.

(1) If char (K) = p then let δrK : Ωr−1
K = Cr−1

1 (K) → Hr
p (K) be the canonical

projection. Then TiH
r
p (K) is the subgroup of Hr

p (K) generated by elements of
the form

δrK(xdy1/y1 ∧ · · · ∧ dyr−1/yr−1), x ∈ K, y1, . . . , yr−1 ∈ K∗, vK (x) > −i.

(2) If char (K) = 0 then let ζ be a primitive p th root of 1, and let L = K(ζ).
Let j = (peK/(p − 1) − i)e(L|K) where eK = vK (p) and e(L|K) is the ram-
ification index of L/K . If j > 1 let UjHr

p (L) be the image of UjKr(L) (cf.
Definition 12) under the cohomological symbol Kr(L)/p → Hr

p (L). If j 6 0,
let UjHr

p (L) = Hr
p (L). Then TiH

r
p (K) is the inverse image of UjHr

p (L) under
the canonical injection Hr

p (K)→ Hr
p (L).
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Remark. TiH
1
p (K) coincides with the subgroup consisting of elements which cor-

responds to cyclic extensions of K of degree p with ramification number 6 i (the
ramification number is defined as t of Lemma 17).

Let K be as in Definition 14, and assume that |k : kp| <∞. Fix q, r > 1 such that
|k : kp| = pq+r−2. Let Ti = TiHr

p (K), for i > 0; let Ui be the image of UiKq(K) in
Kq(K)/p for i > 1, and let U0 = Kq(K)/p. Let e = vK (p) ( =∞ if char (K) = p ).
Fix a prime element π of K . Via the homomorphism

(x, y) 7→ ρqi (x) + {ρq−1
i (y), π}

of Lemma 8 whose kernel is known by [11], we identify Ui/Ui+1 with the following
groups:
(1) Kq(k)/p⊕Kq−1(k)/p if i = 0.

(2) Ωq−1
k if 0 < i < pe/(p− 1) and i is prime to p.

(3) Ωq−1
k /Ωq−1

k,d=0 ⊕Ωq−2
k /Ωq−2

k,d=0 if 0 < i < pe/(p− 1) and p|i.
(4) Ωq−1

k /Dq−1
a,k ⊕ Ωq−2

k /Dq−2
a,k if char (K) = 0, pe/(p − 1) is an integer and i =

pe/(p− 1).
(5) 0 if i > pe/(p− 1).

Here in (3) Ωq
k,d=0 ( q > 0 ) denotes the kernel of the exterior derivation

d: Ωq
k → Ωq+1

k . In (4) a denotes the residue class of pπ−e where e = vK (p) and Da,k

denotes the subgroup of Ωq
k generated by d(Ωq−1

k ) and elements of the form

(xp + ax)dy1/y1 ∧ · · · ∧ dyq/yq.

Note that Hr+1
p (K) ' Hq+r−1

p (k) by [11]. Let δ = δq+r−1
k : Ωq+r−2

k → Hq+r−1
p (k)

(Definition 14).

Lemma 22. In the canonical pairing

Hr
p (K)×Kq(K)/p→ Hq+r

p (K) ' Hq+r−1
p (k)

Ti annihilates Ui+1 for each i > 0. Furthermore,
(1) T0 = Hr

p,ur(k) ' Hr
p (k)⊕Hr−1

p (k), and the induced pairing

T0 × U0/U1 → Hq+r−1
p (k)

is identified with the direct sum of the canonical pairings

Hr
p (k)×Kq−1(k)/p→ Hq+r−1

p (k), Hr−1
p (k)×Kq(k)/p→ Hq+r−1

p (k).

(2) If 0 < i < pe/(p− 1) and i is prime to p then there exists an isomorphism

Ti/Ti−1 ' Ωr−1
k

such that the induced pairing Ti/Ti−1 ×Ui/Ui+1 → Hq+r−1
p (k) is identified with

Ωr−1
k ×Ωq−1

k → Hq+r−1
p (k), (w, v) 7→ δ(w ∧ v).
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(3) If 0 < i < pe/(p− 1) and p|i then there exists an isomorphism

Ti/Ti−1 ' Ωr−1
k /Ωr−1

k,d=0 ⊕Ωr−2
k /Ωr−2

k,d=0

such that the induced pairing is identified with

(w1 ⊕ w2, v1 ⊕ v2) 7→ δ(dw1 ∧ v2 + dw2 ∧ v1).

(4) If char (K) = 0 and pe/(p−1) is not an integer, then Hr
p (K) = Ti for the maximal

integer i smaller than pe/(p− 1). Assume that char (K) = 0 and pe/(p− 1) is
an integer. Let a be the residue element of pπ−e and let for s > 0

νs(a, F ) = ker(Ωs
k,d=0 → Ωs

k, w 7→ C(w) + aw)

( C denotes the Cartier operator). Then there exists an isomorphism

Tpe/(p−1)/Tpe/(p−1)−1 ' νr(a, k)⊕ νr−1(a, k)

such that the induced pairing is identified with

(w1 ⊕ w2, v1 ⊕ v2) 7→ δ(w1 ∧ v2 + w2 ∧ v1).

Proof. If char (K) = p the lemma follows from a computation in the differential
modules Ωs

K ( s = r−1, q+r−1 ). In the case where char (K) = 0 let ζ be a primitive
p th root of 1 and let L = K(ζ). Then the cohomological symbol Kr(L)/p → Hr

p (L)
is surjective and the structure of Hr

p (L) is explicitly given in [11]. Since

Hr
p (K) ' {x ∈ Hr

p (L) : σ(x) = x for all σ ∈ Gal(L/K)},

the structure of Hr
p (K) is deduced from that of Hr

p (L) and the description of the
pairing

Hr
p (K)×Kq(K)/p→ Hq+r

p (K)

follows from a computation of the pairing

Kr(L)/p×Kq(L)/p→ Kq+r(L)/p.

Lemma 23. Let K be an n-dimensional local field such that char (K) = p > 0. Then
the canonical map δnK : Ωn

K → Hn+1
p (K) ' Z/p (cf. Definition 14) comes from a

morphism Ωn
K → Z/p of A∞ .

Proof. Indeed it comes from the composite morphism of F∞

Ωn
K

θ2−→ k0
Tr k0/Fp−−−−−→ Fp

defined by Lemma 7.
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Now let K be an n-dimensional local field (n > 1 ) with residue field k such that
char (k) = p > 0. Let 1 6 r 6 n, q = n + 1− r, and let Ti and Ui ( i > 0 ) be as in
Lemma 22.

The injectivity of the map induced by Φr
K

Hr
p (K)→ Hom(Kn+1−r(K)/p,Z/p)

follows by induction on n from the injectivity of Ti/Ti−1 → Hom(Ui/Ui+1,Z/p),
i > 1. Note that this injectivity for all prime p implies the injectivity of Φr

K .
Now let ϕ:Kn+1−r(K) → Z/p be a continuous character of order p. We prove

that there is an element w of Hr
p (K) such that ϕ = Φr

K(w).
The continuity of ϕ implies that there exists i > 1 such that

ϕ({x1, . . . , xn+1−r}) = 0 for all x1, . . . , xn+1−r ∈ 1 +Mi
K .

Using Graham’s method [6, Lemma 6] we deduce that ϕ(Ui) = 0 for some i > 1. We
prove the following assertion (Ai ) ( i > 0 ) by downward induction on i.
(Ai ) The restriction of ϕ to Ui coincides with the restriction of Φr

K(w) for some
w ∈ Hr

p (K).
Indeed, by induction on i there exists w ∈ Hr

p (K) such that the continuous
character ϕ′ = ϕ− Φr

K(w) annihilates Ui+1.
In the case where i > 1 the continuity of ϕ′ implies that the map

Ωn−r
k ⊕Ωn−r−1

k
Lemma 8−−−−−→ Ui/Ui+1

ϕ′−→ Z/p

comes from a morphism of F∞ . By additive duality of Proposition 3 and Lemma 23
applied to k the above map is expressed in the form

(v1, v2) 7→ δnk (w1 ∧ v2 + w2 ∧ v1)

for some w1 ∈ Ωn
k , w2 ∈ Ωr−1

k . By the following argument the restriction of ϕ′ to
Ui/Ui+1 is induced by an element of Ti/Ti−1. For example, assume char (K) = 0
and i = pe/(p − 1) (the other cases are treated similarly and more easily). Since ϕ′

annihilates d(Ωn−r−1
k )⊕ d(Ωn−r−2

k ) and δnk annihilates d(Ωn−2
k ) we get

δnk (dw1 ∧ v2) = ±δnk (w2 ∧ dv2) = 0 for all v2 .

Therefore dw1 = 0. For every x ∈ F , y1, . . . , yn−r−1 ∈ F ∗ we have

δnk
(
(C(w1)+aw1)∧xdy1

y1
∧ · · ·∧dyn−r−1

yn−r−1

)
= δnk

(
w1∧(xp+ax)

dy1

y1
∧ · · ·∧dyn−r−1

yn−r−1

)
= 0

(where a is as in Lemma 22 (4)). Hence w1 ∈ νr(a, k) and similarly w2 ∈ νr−1(a, k).
In the case where i = 0 Lemma 22 (1) and induction on n imply that there is an

element w ∈ T0 such that ϕ′ = Φr
K (w).
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5.2. Continuous characters of higher orders.

In treatment of continuous characters of higher order the following proposition will
play a key role.

Proposition 7. Let K be an n-dimensional local field. Let p be a prime number
distinct from the characteristic of K . Assume that K contains a primitive p th root ζ
of 1. Let r > 0 and w ∈ Hr(K). Then the following two conditions are equivalent.
(1) w = pw′ for some w′ ∈ Hr(K).
(2) {w, ζ} = 0 in Hr+1(K).

Proof. We may assume that 0 6 r 6 n. Let δr:Hr(K) → Hr+1(K,Z/p) be the
connecting homomorphism induced by the exact sequence of Gal(Ksep/K)-modules

0→ Z/p→ lim−→ i µ
⊗(r−1)
pi

p−→ lim−→ i µ
⊗(r−1)
pi

→ 0.

Condition (1) is clearly equivalent to δr(w) = 0.
First we prove the proposition in the case where r = n. Since the kernel of

δn:Hn(K)→ Hn+1(K,Z/p) ' Z/p

is contained in the kernel of the homomorphism { , ζ}:Hn(K)→ Hn+1(K) it suffices
to prove that the latter homomorphism is not a zero map. Let i be the maximal natural
number such that K contains a primitive pi th root of 1. Since the image χ of a
primitive pi th root of 1 under the composite map

K∗/K∗p ' H1(K,µp) ' H1(K,Z/p)→ H1(K)

is not zero, the injectivity of Φ1
K shows that there is an element a of Kn(K) such

that {χ, a} 6= 0. Let w be the image of a under the composite map induced by the
cohomological symbol

Kn(K)/pi → Hn(K,µ⊗n
pi

) ' Hn(K,µ⊗(n−1)
pi

)→ Hn(K).

Then {χ, a} = ±{w, ζ}.
Next we consider the general case of 0 6 r 6 n. Let w be an element of Hr(K)

such that {w, ζ} = 0. Since the proposition holds for r = n we get {δr(w), a} =
δn({w, a}) = 0 for all a ∈ Kn−r(K). The injectivity of Φr+1

K implies δr(w) = 0.

Remark. We conjecture that condition (1) is equivalent to condition (2) for every field
K .

This conjecture is true if ⊕r>1H
r(K) is generated by H1(K) as

a ⊕q>0Kq(K)-module.

Completion of the proof of Theorem 2. Let ϕ be a non-zero continuous character
of Kn+1−r(K) of finite order, and let p be a prime divisor of the order of ϕ. By
induction on the order there exists an element w of Hr(K) such that pϕ = Φr

K(w).
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If char (K) = p then Hr(K) is p-divisible. If char (K) 6= p, let L = K(ζ) where
ζ is a primitive p th root of 1 and let wL be the image of w in Hr(L). Then
Φr
L(wL):Kn+1−r(L)→ Q/Z coincides with the composite

Kn+1−r(L)
NL/K−−−−→ Kn+1−r(K)

pϕ−→ Q/Z

and hence {wL, ζ, a} = 0 in Hn+1(L) for all a ∈ Kn−r(L). The injectivity of Φr+1
L

and Proposition 7 imply that wL ∈ pHr(L). Since |L : K| is prime to p, w belongs
to pHr(K).

Thus there is an element w′ of Hr(K) such that w = pw′ . Then ϕ− Φr
K(w′) is

a continuous character annihilated by p.
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