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Knot invariants derived from quandles and racks
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Abstract The homology and cohomology of quandles and racks are used
in knot theory: given a finite quandle and a cocycle, we can construct a
knot invariant. This is a quick introductory survey to the invariants of
knots derived from quandles and racks.
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1 Introduction

Many knot invariants can be calculated and interpretated via knot diagrams.
For example, the (fundamental) quandle of a knot and the rack of a framed
knot [12, 19] can be computed diagrammatically.

In 1942, Takasaki [31] introduced the notion of a kei , that is an algebraic object
consisting of a non-empty set and a binary operation on it. A kei acts on itself
by multiplication from the right side (the right translations). The notion of a kei
is an abstraction of the notion of the symmetric transformations. In particular,
the right translations of a kei are involutory ((x ∗ y) ∗ y = x for any elements
x, y). When we drop this condition from the kei, we obtain the notion of a
quandle, that was introduced by Joyce [19] in 1982. He associated a quandle to
a knot, called the knot quandle and proved that the knot quandle is a complete
invariant of a knot (up to weak equivalence). At the same time, Matveev
[23] proved a similar result independently. He called the notion a distributive
groupoid . Kauffman studied knot quandles and knot crystals in [20]. In 1988,
Brieskorn [1] introduced the notion of an automorphic set and, in 1992, Fenn
and Rourke [12] introduced the notion of a rack . Automorphic sets and racks
are the same notion, but their actions are the left translations and the right
translations, respectively. They removed the idempotency condition (x ∗ x = x
for any element x) from the quandle. Fenn and Rourke also generalized the
notion of the knot quandle to the rack of a framed knot or a knot diagram.
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104 Seiichi Kamada

Although knot quandles and racks are strong invariants, it is not easy to use
them to distinguish knots by direct calculations. The situation is similar to the
knot group. An easy method to use them in order to distinguish knots is to
calculate the representations in a given finite quandle/rack. Fox’s 3-colorings
are representations of the knot quandle to the dihedral kei of order 3 and
generalized Fox’s colorings (n-colorings) are representations to the dihedral kei
of order n [11, 16, 25].

In the 1990’s and the early 2000’s, the homology and cohomology theory for
quandles and racks appeared [4, 6, 13, 14]. In order to distinguish two quan-
dles or racks, we may calculate and compare their homology groups. Such
methods cannot distinguish a knot and its dual knot (the mirror image with
the reversed orientation), since they have isomorphic knot quandles. Carter,
Jelsovsky, Kamada, Langford, and Saito (CJKLS) [4] introduced an invariant
of a knot derived from a quandle cocycle. Associated with a finite quandle
and a cocycle, we can construct a knot invariant. The cohomology theory of a
quandle introduced in [4] is related to the homology theory of a rack introdued
by Fenn, Rourke and Sanderson (FRS) in [13, 14], cf [6, 21] or section 4.

The invariant of CJKLS corresponds to the evaluation, by a fixed cocycle, of
the fundamental class reprersented by a knot diagram in the homology group
in the sense of FRS. The invariants due to CJKLS and FRS are not invariants
that can be derived only from the knot quandle/rack. In fact, a trefoil knot
and its mirror image have isomorphic quandles and the 2-twist spun trefoil and
its orientation reversed 2-knot have isomorphic quandles. However they can be
distinguished by the invariants.

This is a quick introductory survey on the invariants of knots derived from quan-
dles and racks. The author thanks the organizers of the conference for giving
him an oppotunity to give a talk. The talk was introductory and concentrated
on the classical knot case according to the organizer’s request. However this
article includes some information on the 2-knot case.

2 Keis, quandles and racks

A kei, X , is a non-empty set with a binary operation (a, b) 7→ a ∗ b satisfying
the following axioms:

(K1) For any a ∈ X , a ∗ a = a.

(K2) For any a, b ∈ X , (a ∗ b) ∗ b = a.
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(K3) For any a, b, c ∈ X , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
A quandle, X , is a non-empty set with a binary operation (a, b) 7→ a ∗ b satis-
fying the following conditions:

(Q1) For any a ∈ X , a ∗ a = a.

(Q2) For any a, b ∈ X , there is a unique c ∈ X such that a = c ∗ b.
(Q3) For any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
The three axioms correspond respectively to the Reidemeister moves of type I,
II, and III (see [12], [20], for example).

A rack, X , is a non-empty set with a binary operation (a, b) 7→ a ∗ b satisfying
the following conditions:

(R1) For any a, b ∈ X , there is a unique c ∈ X such that a = c ∗ b.
(R2) For any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

By definition, a kei is a quandle and a quandle is a rack:

{keis} ⊂ {quandles} ⊂ {racks}.
Here are some typical examples.

• Any set X with the operation x ∗ y = x for any x, y ∈ X is a kei, which
is called the trivial kei, the trivial quandle or the trivial rack.

• Let n be a positive integer. For elements i, j ∈ {0, 1, . . . , n − 1}, define
i∗j ≡ 2j− i (mod n). Then ∗ defines a kei structure called the dihedral
kei, Rn . This set can be identified with the set of reflections of a regular
n-gon with conjugation as the kei operation.

• A group X = G with n-fold conjugation as the quandle operation: a∗b =
b−nabn .

• A Λ(= Z[T, T−1])-module M is a quandle with a∗b = Ta+(1−T )b, a, b ∈
M , called an Alexander quandle. For example, R4

∼= Z2[T, T−1]/(T 2 +1).

See [1, 12, 19, 23] for further examples.

A subset S of a rack X is called a generating set if any element of X is obtained
from the elements of S by applying the operation suitably. If X is a kei, we
have

x ∗ (y ∗ z) = ((x ∗ (y ∗ z)) ∗ z) ∗ z (by K2)
= ((x ∗ z) ∗ ((y ∗ z) ∗ z)) ∗ z (by K3)
= ((x ∗ z) ∗ y) ∗ z (by K2) (1)
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for any x, y, z of X . Using this, Takasaki [31] and Winker [32] (cf. [20], p. 195)
proved that any element of a kei X which is expressed by elements of S can be
re-expressed by using the same elements in the form as

(· · · (((x1 ∗ x2) ∗ x3) ∗ x4) · · ·).

Such an expression is denoted by x1x2x3x4 · · · or xx2x3x4···
1 following [31] and

[12]. For example,

(a ∗ (b ∗ c)) ∗ (d ∗ e) = (((a ∗ c) ∗ b) ∗ c) ∗ (d ∗ e)
= (((((a ∗ c) ∗ b) ∗ c) ∗ e) ∗ d) ∗ e
= acbcede (2)

Fenn and Rourke [12] introduced this notation for any rack X . They denote
by ab the element a ∗ b of X and assume that ab

c
stands for a(bc) = a ∗ (b ∗ c)

and abc stands for (ab)c = (a ∗ b) ∗ c. Then the axioms are stated as follows:

(R1) For any a, b ∈ X , there is a unique c ∈ X such that a = cb .

(R2) For any a, b, c ∈ X , we have

abc = acb
c
. (3)

The axiom R1 implies that the function Sx : X → X (acting from the right
side) defined by (u)Sx = u∗x = ux is a bijection. The axiom R2 implies that it
is a homomorphism; (u∗v)Sx = (u)Sx ∗ (v)Sx or (u∗v)x = (ux)∗ (vx). We call
it the right translation by the element x. For a word W = xε11 · · · x

εk
k consisting

of elements of X and for an element u ∈ X , we denote by uW the element
(u)Sε1x1

· · ·Sεkxk . In particular, ab
−1

stands for the element c with cb = a. Then

xy
z

= xz
−1yz (4)

for any x, y, z of X . Using this, we see that if S is a generating set of a rack,
then any element of the rack is expressed by uW for some u ∈ S and a word
W consisting of elements of S . Refer to [12] for the details.

3 Knot quandles and colored knot diagrams

The quandle Q(K) of a knot K and the rack R(K) of a framed knot K were
introduced in [19] and [12]. They can be calculated from a diagram.

Let D be a diagram in R2 of an oriented knot K , and let E = {x1, . . . , xm} be
the set of the arcs of the diagram. We give each arc of the diagram D a specific
normal direction (co-orientation) determined by use of the orientations of K
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and R2 . For a crossing point τ , let xi , xj and xk be the three arcs around
τ such that xk is the over-arc at the crossing and xi is one of the under-arcs
away from which the normal direction of xk points. We consider a relation

xj = xi ∗ xk (5)

and call it the crossing relation at τ (see Fig. 1).

Figure 1

The kei K(D), the quandle Q(D), or the rack R(D) of the diagram is defined to
be the kei, the quandle or the rack that is generated by the set E = {x1, . . . , xm}
and the defining relations are the crossing relations of the crossings of D .

The kei K(D) can be defined even if the knot K is unoriented, since xj = xi∗xk
and xi = xj ∗ xk are equivalent by the second axiom, K2.

By using Reidemeister moves, we see that K(D) and Q(D) are invariants of
the knot K . In fact, the quandle Q(D) is isomorphic to the knot quandle
Q(K) of the knot K , see [12, 19]. Similarly, R(D) is preserved by Reidemeister
moves of type 2 and type 3, and hence it is an invariant of the framed knot K ,
where we assume the framing is the blackboard framing of the diagram. This
is isomorphic to the rack R(K) of the framed knot K , see [12].

In general it is difficult to distinguish the isomorphism types of two given presen-
tations of keis, quandles or racks. A convenient method is to use representations
to a finite kei, quandle or rack X .

Let ρ : K(D)→ X be a homomorphism. We call it a coloring of D by X . We
color the arc xi of the diagram D with the element ρ(xi) of X . The crossing
relation xj = xi ∗ xk implies ρ(xj) = ρ(xi) ∗ ρ(xk) in X . This is called the
crossing relation for the coloring or the coloring condition.

For example, consider the case that X is the dihedral kei R3 = {0, 1, 2} of order
three. The crossing relation implies that the three colors ρ(xi), ρ(xj) and ρ(xk)
are the same or all of them are distinct. This is the 3-coloring condition due
to Fox, cf. [11, 25]. (In Exercise 6 of Chapter VI of [11], there is an additional
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condition that all three colors are actually used. The 3-coloring condition
together this condition is also referred to as Fox’s 3-coloring condition. In this
paper, we do not assume it.)

Figure 2

A typical diagram of the trefoil knot yields the presentation

〈x1, x2, x3 | x3 = x1 ∗ x2, x1 = x2 ∗ x3, x2 = x3 ∗ x1〉 (6)

(see Fig. 2). Then the diagram has 9 Fox’s 3-colorings. Three of them are
trivial colorings and the other six are non-trivial colorings. Since the obvious
diagram of the trivial knot has trivial colorings only, we see that the trefoil knot
is not the trivial knot.

When we use the dihedral kei Rn of order n, we have Fox’s n-coloring. Fox’s
n-coloring is studied in [25]. In general, by use of a finite kei, we can consider
colorings for unoriented knot diagrams. When we use a finite quandle or rack X
which is not involutory, diagrams must be oriented. A generalized n-coloring,
called an (n, r)-coloring, was introduced by Silver and Williams [30]. It is
interpretated as a coloring by a certain quandle X .

The knot group (the fundamental group of the knot complement) G(K) can
be calculated as the group G(D) of a diagram D that is the group with the
generating set E = {x1, . . . , xm} and the Wirtinger relations xj = x−1

k xixk
derived from the crossing points. The presentation of G(D) is obtained from
the presentation of Q(D) by assuming xj = xi ∗ xk to be xj = x−1

k xixk . In
fact, the knot group is a consequence of the knot quandle (see below or [12]).

For a quandle/rack X , assuming x ∗ y to be y−1xy , we obtain a group. It is
called the associated group of X and denoted by As(X). More precisely As(X)
is the group F (X)/N where F (X) is the free group generated by the elements of
X and N is the normal subgroup of F (X) generated by the words (x∗y)y−1xy
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Knot invariants derived from quandles and racks 109

for x, y ∈ X , see [12]. A (group) presentation of As(X) is obtained from a
(quandle/rack) presentation of X by reading x ∗ y as y−1xy , cf. Lemma 4.3 of
[12]. Conversely, for a group G, define a binary operation x ∗ y by y−1xy and
obtain a quandle. Such a quandle is called the conjugation quandle of G and
denoted by conj(G).

Joyce [19] and Matveev [23] proved the following theorem, which shows that
the knot quandle is truely stronger than the knot group for some composite
knots.

Theorem 3.1 (Joyce [19], Matveev [23]) Knots K and K′ with Q(K)∼=Q(K′)
are weakly equivalent; namely, (R3,K) is homeomorphic to (R3,K′) when we
ignore the orientations of R3 and the knots.

For an oriented knot K , let −K denote the knot with the reversed orientation
and let K∗ denote the mirror image. Then Q(K) ∼= Q(−K∗). If the knot K is
invertible (i.e., K ∼= −K), or amphicheiral (i.e., K ∼= K∗ ), then Q(K), Q(−K),
Q(K∗) and Q(−K∗) are isomorphic to each other. Therefore any invariant
which is derived only from the quandle Q(K) cannot distinguish the trefoil and
its mirror image, since the trefoil is invertible. The invariants due to CJKLS
and FRS can distinguish this pair and hence they are not invariants that are
derived only from the knot quanadle.

4 Homologies and cohomologies of a quandle and a
rack

For a rack X , let CR
n (X) be the free abelian group generated by n-tuples

(x1, . . . , xn) of elements of X when n is a positive integer and put CR
n (X) = 0.

Define a homomorphism ∂n : CR
n (X)→ CR

n−1(X) by

∂n(x1, x2, . . . , xn) =
n∑
i=1

(−1)i
[
(x1, x2, . . . , xi−1, xi+1, . . . , xn)

− (xxi1 , x
xi
2 , . . . , x

xi
i−1, xi+1, . . . , xn)

]
(7)

for n ≥ 2 and ∂n = 0 for n ≤ 1. Then CR
∗ (X) = {CR

n (X), ∂n} is a chain com-
plex. Let CD

n (X) be the subset of CR
n (X) generated by n-tuples (x1, . . . , xn)

with xi = xi+1 for some i ∈ {1, . . . , n− 1} if n ≥ 2; otherwise let CD
n (X) = 0.

If X is a quandle, then ∂n(CD
n (X)) ⊂ CD

n−1(X) and CD
∗ (X) = {CD

n (X), ∂n}
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is a sub-complex of CR
∗ (X). In this case, let CQ

∗ (X) be the quotient complex
CR
∗ (X)/CD

∗ (X). Let G be an abelian group and let W stand for R, D or Q.
Then we consider the homology and cohomology groups

HW
n (X;G) = Hn(CW

∗ (X)⊗G), Hn
W(X;G) = Hn(Hom(CW

∗ (X), G)). (8)

Definition 4.1 The nth rack homology and rack cohomology groups [13] of a
rack/quandle X with coefficient group G are HR

n (X;G) and Hn
R(X;G). The

nth degeneration homology and degeneration cohomology groups of a quandle
X with coefficient group G are HD

n (X;G) and Hn
D(X;G). The nth quandle

homology and quandle cohomology groups [4] of a quandle X with coefficient
group G are HQ

n (X;G) and Hn
Q(X;G).

The nth cocycle group of the cochain complex Hom(CQ
∗ (X), G) is called the

quandle n-cocycle group and denoted by ZQ
n (X;G). We will omit the coefficient

group G as usual if G = Z. Refer to [13, 14, 15, 17] for some calculations and
applications of the rack homology groups, and [4, 5, 6, 7, 21, 24] for the quandle
homology groups.

Theorem 4.2 (Universal Coefficient Theorem [6]) There exist split exact se-
quences

0→ HW
n (X)⊗G→ HW

n (X;G)→ Tor(HW
n−1(X), G) → 0 (9)

0→ Ext(HW
n−1(X), G) → Hn

W(X;G) → Hom(HW
n (X), G) → 0. (10)

By definition, there is a natural short exact sequence

0→ CD
∗ (X)→CR

∗ (X)→CQ
∗ (X)→ 0, (11)

which is split (in the weak sense), namely, for each n, the short exact sequence

0→ CD
n (X)→CR

n (X)→CQ
n (X)→ 0 (12)

is split. Therefore we have a long exact sequence

· · · ∂∗→ HD
n (X;G)→HR

n (X;G)→HQ
n (X;G) ∂∗→ HD

n−1(X;G)→ · · · . (13)

In [6], it was proved that this sequence is split into short exact sequences for
small n’s and it was conjectured that so is for all n’s. This was proved by
Litherland and Nelson [21].

Theorem 4.3 (Litherland and Nelson [21]) The short exact sequence (11) is
split in the strong sense, that is, there exist splitting homomorphisms compati-
ble with the boundary maps. Thus, for each n, there is a short exact sequence

0→HD
n (X;G)→HR

n (X;G)→HQ
n (X;G)→0. (14)
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Suppose that X is a quandle with finitely many orbits, where orbits means
orbits by the inner-automorphisms of X , i.e., orbits by the right action of X
on itself by the right translations. (In [19] orbits by all the automorphisms of X
are studied.) Let Z[Orb(X)] be the free abelian group generated by the orbit
set, Orb(X), of X . In [6, 17] it is shown that

HD
1 (X) = 0, HR

1 (X) ∼= HQ
1 (X) ∼= Z[Orb(X)], and HD

2 (X) ∼= Z[Orb(X)].

Hence
HR

2 (X) ∼= HQ
2 (X)⊕ Z[Orb(X)].

In [21](Theorem 2.2) it is proved that

HR
3 (X) ∼= HQ

3 (X)⊕HQ
2 (X) ⊕ Z[Orb(X) ×Orb(X)].

The quandle (co)homology groups of some finite quandles were caluculated in
[5] (Table 1). However there are errata due to the authors. They thank R. A.
Litherland, S. Nelson [21] and T. Mochizuki [24] for pointing out and correcting
them. Further calculations on homology/cohomology groups of finite Alexander
quandles are found in their papers [21] and [24].

5 Knot invariants

Let X be a finite quandle, let G be an abelian group (written in multiplicative
notation), and let φ ∈ C2

Q(X;G) be a quandle 2-cocycle.

Let D be an oriented knot diagram. Recall that a homomorphism ρ : Q(D)→
X is called a coloring and satisfies the crossing condition ρ(xj) = ρ(xi) ∗ ρ(xk)
at each crossing, where xi , xj and xk are as before (see Fig. 1). For each
crossing point τ , we consider an element Wφ(τ, ρ) of G determined by

Wφ(τ, ρ) = φ(ρ(xi), ρ(xk))ε, (15)

where xi and xk are the arcs around τ corresponding the crossing relation
xj = xi ∗ xk , and ε is the sign of the crossing point τ . Consider the element

Φφ(D) =
∑
ρ

∏
τ

Wφ(τ, ρ) (16)

of the group ring ZG, where ρ runs all colorings of D by X and τ runs all
crossing points of D . Since φ is a cocycle, the value Φφ(D) is preserved by
Reidemeister moves. Therefore it is an invariant of the knot K represented
by the diagram. Thus we denote this value by Φφ(K) and call it the state-
sum invariant or the quandle cocycle invariant , [4]. If φ and φ′ are cocycles
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that are cohomologous then Φφ(K) = Φφ′(K). Thus this invariant depends on
the quandle cohomology class of φ. When φ is a trivial cocycle, the element
Wφ(τ, ρ) is the trivial element of G. In this case the invariant Φφ(K) is equal
to the number of all colorings of D by X . In [8, 2], the abelian extension E =
E(X,G, φ) is defined as G×X as a set, with the quandle operation (g1, x1) ∗
(g2, x2) = (g1φ(x1, x2), x1 ∗ x2). The state-sum Φφ(D) is an obstruction to
extending the colorings of D by X to colorings by E(X,G, φ), see Theorems 4.1
and 4.5 of [2].

Let X be a finite quandle, let G be an abelian group (written in multiplicative
notation), and let θ ∈ C3

Q(X;G) be a quandle 3-cocycle.

A shadow coloring (or face coloring) of D by X is a function ρ̃ : Ẽ → X ,
where Ẽ is the set of arcs of the diagram D and the regions separated by the
underlying immersed curve of the diagram, satisfying the coloring condition
(ρ̃(xj) = ρ̃(xi) ∗ ρ̃(xk)) and the condition that if yi and yj are regions which
are adjacent to an arc xk and the normal direction of xk points away from yi
toward yj , then

ρ̃(yj) = ρ̃(yi) ∗ ρ̃(xk).

We call this condition the face coloring condition.

Let τ be a crossing point and let xi and xk be the arcs around τ appearing
in the crossing relation xj = xi ∗ xk at τ as before. Let y be the region which
is one of the four regions around τ such that the normal directions of xi and
xk are away from the region y . Then we give this crossing point τ an element
Wθ(τ, ρ̃) of G determined by

Wθ(τ, ρ̃) = θ(ρ̃(y), ρ̃(xi), ρ̃(xk))ε, (17)

where ε is the sign of the crossing point. Consider the element

Ψθ(D) =
∑
ρ̃

∏
τ

Wθ(τ, ρ̃) (18)

of the group ring ZG, where ρ̃ runs all shadow colorings of D by X and
τ runs all crossing points of D . Since θ is a cocycle, the value Ψθ(D) is
preserved by Reidemeister moves. It is an invariant of the knot K represented
by D . We denote this value by Ψθ(K). If θ and θ′ are cohomologous, then
Ψθ(K) = Ψθ′(K). Thus this invariant depends on the quandle 3-cohomology
class of θ . When θ is a trivial cocycle, the invariant Ψθ(K) is equal to the
number of the shadow colorings of D by X .

Colorings and shadow colorings are defined for oriented knotted surfaces in
4-space similarly using their diagrams in 3-space. For a knotted surface K
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in R4 , by modifying it slightly, we may assume that the projection p : K →
R3 to the 3-space is a generic map. The singularity set of the projection
consists of double points, triple points and branch points. By removing a small
regular neighborhood of the under-curve of the double curve, we have a compact
embedded surface in the 3-space. This is a diagram of the knotted surface K
(see [10] for details). Let D be the diagram and let E = {x1, . . . , xm} be the
set of sheets of the diagram. Using the orientation of K and the orientation of
3-space, we give a normal direction (co-orientation) to each sheet. At a double
curve of the projection p(K), let xi , xj and xk be the three sheets around the
double curve such that xk is the over-sheet and xi and xj are under-sheets and
that the normal direction is away from xi toward xj . At each double curve, we
consider a relation

xj = xi ∗ xk (19)

and call it the crossing relation around the double curve (see Fig. 3). The
quandle Q(D) of the diagram is defined to be the quandle generated by E =
{x1, . . . , xm} and the defining relations are the crossing relations around the
double curves. This quandle is isomorphic to the quandle Q(K) of the knotted
surface K in the sense of [12, 19].

Figure 3

A homomorphism ρ : Q(D) → X is called a coloring of the diagram D by X .
This is equivalent to coloring the sheets by elements of X such that the colors
ρ(xi), ρ(xj) and ρ(xk) of the three sheets xi, xj and xk around a double curve
satisfies ρ(xj) = ρ(xi) ∗ ρ(xk).

Let X be a finite quandle, let G be an abelian group (written in multiplicative
notation), and let θ ∈ C3

Q(X;G) be a quandle 3-cocycle. For each triple point
τ of the diagram D , we consider an element Wθ(τ, ρ) of G determined by

Wθ(τ, ρ) = φ(ρ(xi), ρ(xj), ρ(xk))ε, (20)

where xi , xj and xk are the sheets around τ such that xk is the upper-sheet, xj
is one of the two middle-sheets from which the normal direction of xk is away,
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and xi is one of the four lower-sheets away from which the normal directions of
xk and xj point, and ε is the sign of the triple point τ . Consider the element

Φθ(D) =
∑
ρ

∏
τ

Wφ(τ, ρ) (21)

of the group ring ZG, where ρ runs all colorings of D by X and τ runs all
triple points of D . Since φ is a cocycle, the value Φφ(D) is preserved by
Roseman moves ([10, 26]). Therefore it is an invariant of the knotted surface
K represented by the diagram. We denote this value by Φφ(K). If φ and
φ′ are cohomologous, then Φφ(K) = Φφ′(K). Thus this invariant depends on
the quandle cohomology class of φ. When φ is a trivial cocycle, the invariant
Φφ(K) is equal to the number of the colorings of D by X .

6 Examples

Let X be the dihedral kei R3 = {0, 1, 2} of order three, let G be the cyclic
group 〈t | t3 = 1〉, and let θ ∈ Z3

Q(R3; Z3) be the quandle 3-cocycle defined by

θ = χ012χ021χ101χ201χ202χ102

where χabc(x, y, z) = t if (x, y, z) = (a, b, c); otherwise χabc(x, y, z) = 1. In this
situation, we consider the invariant Ψθ for classical knots (defined by shadow
colorings) and the invariant Φθ for knotted surfaces (defined by colorings). Note
that the values Ψθ(K) and Φθ(K) are elements of Z〈t | t3 = 1〉.

Theorem 6.1 (Rourke and Sanderson [27]) The invariant Ψθ distinguishes
the trefoil T (2, 3) and its mirror image T (2,−3); Ψθ(T (2, 3)) 6= Ψθ(T (2,−3)).

Theorem 6.2 (Carter et al. [9]) A torus knot/link T (2, n) is 3-colorable if
and only if n = 3k for some integer k . In this case, Ψθ(T (2, 3k)) = 9 + 18tk .

Theorem 6.3 (Carter et al. [9]) A torus knot/link T (3, n) is 3-colorable if
and only if n = 2k for some integer k . In this case, if k is not a multiple of 3,
then Ψθ(T (3, 2k)) = 9 + 18tk ; otherwise Ψθ(T (3, 2k)) = 45.

There are four knots in the table with less than 8 crossings that are 3-colorable:
31 , 61 , 74 , and 77 . Ψθ(31) = Ψθ(74) = Ψθ(77) = 9 + 18t and Ψθ(61) = 27, [9].
Further examples are calculated in [5, 9].
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Theorem 6.4 (Carter et al. [4], Rourke and Sanderson [27]) Let K be the
2-twist spun trefoil and let −K be the same 2-knot with the reversed ori-
entation. Then Φθ(K) = 3 + 6t2 and Φθ(−K) = 3 + 6t. Thus the invariant Φθ

distinguishes K and −K .

Carter et al. [5] (Theorem 7.2, Cor. 7.3 and 7.4) and Satoh [28] (Theorem 12)
gave formulae on the invariants Φθ(K) for the twist-spun knots. The following
theorem is a consequence of the formulae.

Theorem 6.5 (Carter et al. [5], Satoh[28]) Let K be the m-twist spun tre-
foil. Then

Φθ(K) =


3 + 6t2 for m ≡ 2 mod 6
3 + 6t for m ≡ 4 mod 6
9 for m ≡ 0 mod 6
3 otherwise.

(22)

Remark 6.6 (1) Here we used quandle cohomology of a finite quandle to
define the invariants Φ and Ψ. We may use the rack cohomology of a quandle
or a rack to define a framed knot. For the purpose of constructing a 3-manifold
invariant, one should use the rack homology.

(2) To define the invariants Φ and Ψ, we used the summation over all possible
colorings. When we need an invariant of a colored knot, we do not need to take
the summation.

Remark 6.7 (1) Shadow coloring of a classical knot diagram is closely related
to coloring a knotted surface diagram and its lower decker set. The correspon-
dence is given in [7].

(2) Recall that a shadow coloring of a classical knot diagram is a function
ρ̃ : Ẽ → X . The arcs and the regions in Ẽ are colored by elements of X .
However, when we use an X -set Y in the sense of Fenn et al. (cf. [13, 14]),
we may color the regions with elements of Y and the arcs with elements of
X . Equivalently, we may introduce and use the cohomologies with twisted
coefficients. So there are a lot of variations of the invariants derived from
quandle/rack (co)homologies. For example, see [3].

Remark 6.8 Recently, S. Satoh and A. Shima [29] proved that if Φθ(K) is not
an integer for a knotted surface K , then the minimum triple point number t(K)
of the generic projections of K is greater than three, where Φθ is the invariant
used in this section. As a corollary, they proved that t(K) = 4 for the 2-twist
spun trefoil K .
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