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Preface ix

Preface

Every closed surface admits a geometry of constant curvature, and may be
classified topologically either by its fundamental group or by its Euler charac-
teristic and orientation character. Closed 3-manifolds have decompositions into
geometric pieces, and are determined up to homeomorphism by invariants asso-
ciated with the fundamental group (whereas the Euler characteristic is always
0). In dimension 4 the Euler characteristic and fundamental group are largely
independent, and the class of closed 4-manifolds which admit a geometric de-
composition is rather restricted. For instance, there are only 11 such manifolds
with finite fundamental group. On the other hand, many complex surfaces ad-
mit geometric structures, as do all the manifolds arising from surgery on twist
spun simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds
that fibre nontrivially or admit geometries, or which are obtained by surgery
on 2-knots, and to provide a reference for the topology of such manifolds and
knots. In many cases the Euler characteristic, fundamental group and Stiefel-
Whitney classes together form a complete system of invariants for the homo-
topy type of such manifolds, and the possible values of the invariants can be
described explicitly. If the fundamental group is elementary amenable we may
use topological surgery to obtain classifications up to homeomorphism. Surgery
techniques also work well “stably” in dimension 4 (i.e., modulo connected sums
with copies of S2×S2 ). However, in our situation the fundamental group may
have nonabelian free subgroups and the Euler characteristic is usually the min-
imal possible for the group, and it is not known whether s-cobordisms between
such 4-manifolds are always topologically products. Our strongest results are
characterizations of infrasolvmanifolds (up to homeomorphism) and aspherical
manifolds which fibre over a surface or which admit a geometry of rank > 1
(up to TOP s-cobordism). As a consequence 2-knots whose groups are poly-Z
are determined up to Gluck reconstruction and change of orientations by their
groups alone.

We shall now outline the chapters in somewhat greater detail. The first chapter
is purely algebraic; here we summarize the relevant group theory and present
the notions of amenable group, Hirsch length of an elementary amenable group,
finiteness conditions, criteria for the vanishing of cohomology of a group with
coefficients in a free module, Poincaré duality groups, and Hilbert modules over
the von Neumann algebra of a group. The rest of the book may be divided into
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three parts: general results on homotopy and surgery (Chapters 2-6), geometries
and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and PD3 -
complexes in Chapter 2, which presents equivariant cohomology, L2 -Betti num-
bers and Poincaré duality. Chapter 3 gives general criteria for two closed 4-
manifolds to be homotopy equivalent, and we show that a closed 4-manifold M
is aspherical if and only if π1(M) is a PD4 -group of type FF and χ(M) = χ(π).
We show that if the universal cover of a closed 4-manifold is finitely dominated
then it is contractible or homotopy equivalent to S2 or S3 or the fundamental
group is finite. We also consider at length the relationship between fundamental
group and Euler characteristic for closed 4-manifolds. In Chapter 4 we show
that a closed 4-manifold M fibres homotopically over S1 with fibre a PD3 -
complex if and only if χ(M) = 0 and π1(M) is an extension of Z by a finitely
presentable normal subgroup. (There remains the problem of recognizing which
PD3 -complexes are homotopy equivalent to 3-manifolds). The dual problem of
characterizing the total spaces of S1 -bundles over 3-dimensional bases seems
more difficult. We give a criterion that applies under some restrictions on the
fundamental group. In Chapter 5 we characterize the homotopy types of total
spaces of surface bundles. (Our results are incomplete if the base is RP 2 ). In
particular, a closed 4-manifold M is simple homotopy equivalent to the total
space of an F -bundle over B (where B and F are closed surfaces and B is
aspherical) if and only if χ(M) = χ(B)χ(F ) and π1(M) is an extension of
π1(B) by a normal subgroup isomorphic to π1(F ). (The extension should split
if F = RP 2 ). Any such extension is the fundamental group of such a bundle
space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the fibre is S2 or RP 2 .
This characterization is improved in Chapter 6, which considers Whitehead
groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limi-
tations of geometric methods in this dimension. It also gives a brief outline of
the connections between geometries, Seifert fibrations and complex surfaces. In
Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infra-
solvmanifold if and only if χ(M) = 0 and π1(M) has a locally nilpotent normal
subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Moreover π1(M) is then
a torsion free virtually poly-Z group of Hirsch length 4 and every such group is
the fundamental group of an infrasolvmanifold. We also consider in detail the
question of when such a manifold is the mapping torus of a self homeomorphism
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of a 3-manifold, and give a direct and elementary derivation of the fundamental
groups of flat 4-manifolds. At the end of this chapter we show that all ori-
entable 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups. (The corresponding result in other dimensions
was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R4 , S2 × R2 , S3 × R or is
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism
by their homotopy type. However there are only partial characterizations of the
groups arising as fundamental groups of H2×H2 -manifolds, while very little is
known about H4 - or H2(C)-manifolds. We show that the homotopy types of
manifolds covered by S2 × R2 are determined up to finite ambiguity by their
fundamental groups. If the fundamental group is torsion free such a manifold
is s-cobordant to the total space of an S2 -bundle over an aspherical surface.
The homotopy types of manifolds covered by S3 × R are determined by the
fundamental group and first nonzero k -invariant; much is known about the
possible fundamental groups, but less is known about which k -invariants are
realized. Moreover, although the fundamental groups are all “good”, so that
in principle surgery may be used to give a classification up to homeomorphism,
the problem of computing surgery obstructions seems very difficult. We con-
clude the geometric section of the book in Chapter 13 by considering geometric
decompositions of 4-manifolds which are also mapping tori or total spaces of
surface bundles, and we characterize the complex surfaces which fibre over S1

or over a closed orientable 2-manifold.

The final five chapters are on 2-knots. Chapter 14 is an overview of knot theory;
in particular it is shown how the classification of higher-dimensional knots may
be largely reduced to the classification of knot manifolds. The knot exterior is
determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essen-
tial step is to characterize 2-knot groups. Kervaire gave homological conditions
which characterize high dimensional knot groups and which 2-knot groups must
satisfy, and showed that any high dimensional knot group with a presentation
of deficiency 1 is a 2-knot group. Bridging the gap between the homological and
combinatorial conditions appears to be a delicate task. In Chapter 15 we inves-
tigate 2-knot groups with infinite normal subgroups which have no noncyclic
free subgroups. We show that under mild coherence hypotheses such 2-knot
groups usually have nontrivial abelian normal subgroups, and we determine all
2-knot groups with finite commutator subgroup. In Chapter 16 we show that if
there is an abelian normal subgroup of rank > 1 then the knot manifold is either
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s-cobordant to a S̃L×E1 -manifold or is homeomorphic to an infrasolvmanifold.
In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on
certain 2-knots, and show that just eight of the 4-dimensional geometries are
realised by knot manifolds. We also consider when the knot manifold admits
a complex structure. The final chapter considers when a fibred 2-knot with
geometric fibre is determined by its exterior. We settle this question when the
monodromy has finite order or when the fibre is R3/Z3 or is a coset space of
the Lie group Nil3 .

This book arose out of two earlier books of mine, on “2-Knots and their Groups”
and “The Algebraic Characterization of Geometric 4-Manifolds”, published by
Cambridge University Press for the Australian Mathematical Society and for
the London Mathematical Society, respectively. About a quarter of the present
text has been taken from these books. 1 However the arguments have been
improved in many cases, notably in using Bowditch’s homological criterion for
virtual surface groups to streamline the results on surface bundles, using L2 -
methods instead of localization, completing the characterization of mapping
tori, relaxing the hypotheses on torsion or on abelian normal subgroups in
the fundamental group and in deriving the results on 2-knot groups from the
work on 4-manifolds. The main tools used here beyond what can be found in
Algebraic Topology [Sp] are cohomology of groups, equivariant Poincaré duality
and (to a lesser extent) L2 -(co)homology. Our references for these are the books
Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds
[Wl] and L2 -Invariants: Theory and Applications to Geometry and K -Theory
[Lü], respectively. We also use properties of 3-manifolds (for the construction
of examples) and calculations of Whitehead groups and surgery obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would
like to thank them all for their advice, and in particular Steve Plotnick for
the collaboration reported in Chapter 18. I would also like to thank Robert
Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and
Warren Dicks, William Dunbar, Ross Geoghegan, F.T.Farrell, Ian Hambleton,
Derek Holt, K.F.Lai, Eamonn O’Brien, Peter Scott and Shmuel Weinberger for
their correspondance and advice on aspects of this work.

Jonathan Hillman

1See the Acknowledgment following this preface for a summary of the textual bor-
rowings.
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Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups
of covering spaces as modules over the group ring of the group of covering
transformations. In this chapter we shall summarize the relevant notions from
group theory, in particular, the Hirsch-Plotkin radical, amenable groups, Hirsch
length, finiteness conditions, the connection between ends and the vanishing of
cohomology with coefficients in a free module, Poincaré duality groups and
Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall write Z for the ring of integers and for the augmentation module of a
group, and otherwise write Z for the free (abelian) group of rank 1. Let F (r)
be the free group of rank r .

Let G be a group. Then G′ and ζG denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)/Inn(G), where Inn(G) ∼= G/ζG is the subgroup of Aut(G) consist-
ing of conjugations by elements of G. If H is a subgroup of G let NG(H)
and CG(H) denote the normalizer and centralizer of H in G, respectively.
The subgroup H is a characteristic subgroup of G if it is preserved under all
automorphisms of G. In particular, I(G) = {g ∈ G | ∃n > 0, gn ∈ G′}
is a characteristic subgroup of G, and the quotient G/I(G) is a torsion-free
abelian group of rank β1(G). A group G is indicable if there is an epimorphism
p : G → Z , or if G = 1. If S is a subset of G then 〈S〉 and 〈〈S〉〉G (or just
〈〈S〉〉) are the subgroup generated by S and the normal closure of S in G (the
intersection of the normal subgroups of G which contain S ), respectively.

If P and Q are classes of groups let PQ denote the class of (“P by Q”) groups
G which have a normal subgroup H in P such that the quotient G/H is in
Q, and let `P denote the class of (“locally P ”) groups such that each finitely
generated subgroup is in the class P . In particular, if F is the class of finite
groups `F is the class of locally finite groups. In any group the union of all
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4 Chapter 1: Group theoretic preliminaries

the locally-finite normal subgroups is the unique maximal locally-finite normal
subgroup. Clearly there are no nontrivial homomorphisms from such a group to
a torsion-free group. Let poly-P be the class of groups with a finite composition
series such that each subquotient is in P . Thus if Ab is the class of abelian
groups poly-Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups. A group
is virtually P if it has a subgroup of finite index in P . Let vP be the class
of groups which are virtually P . Thus a virtually poly-Z group is one which
has a subgroup of finite index with a composition series whose factors are all
infinite cyclic. The number of infinite cyclic factors is independent of the choice
of finite index subgroup or composition series, and is called the Hirsch length
of the group. We shall also say that a space virtually has some property if it
has a finite regular covering space with that property.

If p : G → Q is an epimorphism with kernel N we shall say that G is an
extension of Q = G/N by the normal subgroup N . The action of G on N
by conjugation determines a homomorphism from G to Aut(N) with kernel
CG(N) and hence a homomorphism from G/N to Out(N) = Aut(N)/Inn(N).
If G/N ∼= Z the extension splits: a choice of element t in G which projects to a
generator of G/N determines a right inverse to p. Let θ be the automorphism
of N determined by conjugation by t in G. Then G is isomorphic to the
semidirect product N oθ Z . Every automorphism of N arises in this way, and
automorphisms whose images in Out(N) are conjugate determine isomorphic
semidirect products. In particular, G ∼= N × Z if θ is an inner automorphism.

Lemma 1.1 Let θ and φ automorphisms of a group G such that H1(θ;Q)−1
and H1(φ;Q) − 1 are automorphisms of H1(G;Q) = (G/G′) ⊗ Q. Then the
semidirect products πθ = Goθ Z and πφ = Goφ Z are isomorphic if and only
if θ is conjugate to φ or φ−1 in Out(G).

Proof Let t and u be fixed elements of πθ and πφ , respectively, which map
to 1 in Z . Since H1(πθ;Q) ∼= H1(πφ;Q) ∼= Q the image of G in each group
is characteristic. Hence an isomorphism h : πθ → πφ induces an isomorphism
e : Z → Z of the quotients, for some e = ±1, and so h(t) = ueg for some g in
G. Therefore h(θ(h−1(j)))) = h(th−1(j)t−1) = uegjg−1u−e = φe(gjg−1) for all
j in G. Thus θ is conjugate to φe in Out(G).

Conversely, if θ and φe are conjugate in Out(G) there is an f in Aut(G) and
a g in G such that θ(j) = f−1φef(gjg−1) for all j in G. Hence F (j) = f(j)
for all j in G and F (t) = uef(g) defines an isomorphism F : πθ → πφ .
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A subgroup K of a group G is ascendant if there is an increasing sequence of
subgroups Nα , indexed by ordinals ≤ i, such that N0 = K , Nα is normal in
Nα+1 if α < i, Nβ = ∪α<βNα for all limit ordinals β ≤ i and Ni = G. If i is
finite K is subnormal in G. Such ascendant series are well suited to arguments
by transfinite induction.

1.2 Matrix groups

In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2 Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n,Z) to SL(n,Fp) is torsion-free.

Proof This follows easily from the observation that if A is an integral matrix
and k = pvq with q not divisible by p then (I+prA)k ≡ I+kprA mod (p2r+v),
and kpr 6≡ 0 mod (p2r+v) if r ≥ 1.

Similarly, the kernel of reduction mod (4) is torsion-free.

Since SL(n,Fp) has order (Πj=n−1
j=0 (pn − pj))/(p− 1), it follows that the order

of any finite subgroup of SL(n,Z) must divide the highest common factor of
these numbers, as p varies over all odd primes. In particular, finite subgroups
of SL(2,Z) have order dividing 24, and so are solvable.

Let A =
(

0 1
−1 0

)
, B =

(
0 −1
1 1

)
and R = ( 0 1

1 0 ). Then A2 = B3 = −I and
A4 = B6 = I . The matrices A and R generate a dihedral group of order 8,
while B and R generate a dihedral group of order 12.

Theorem 1.3 Let G be a nontrivial finite subgroup of GL(2,Z). Then G is
conjugate to one of the cyclic groups generated by A, A2 = −I , B , B2 , R or
RA, or to one of the dihedral groups generated by {A,R}, {−I,R}, {A2, RA},
{B,R}, {B2, R} or {B2, RB}. If G 6= 〈−I2〉 then NGL(2,Z)(G) is finite.

Proof If M ∈ GL(2,Z) has finite order then its characteristic polynomial has
cyclotomic factors. If the characteristic polynomial is (X ± 1)2 then M = ∓I .
(This uses the finite order of M .) If the characteristic polynomial is X2 − 1
then M is conjugate to R or RA. If the characteristic polynomial is X2 + 1,
X2−X + 1 or X2 +X + 1 then it is irreducible, and the corresponding ring of
algebraic numbers is a PID. Since any Z-torsion-free module over such a ring
is free it follows easily that M is conjugate to A, B or B2 .

The normalizers in SL(2,Z) of the subgroups generated by A, B or B2 are
easily seen to be finite cyclic. Since G ∩ SL(2,Z) is solvable it must be cyclic
also. As it has index at most 2 in G the rest of the theorem follows easily.
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Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2,Z), some of these conjugacy classes coalesce in GL(2,R). (For
instance, R and RA are conjugate in GL(2,Z[1

2 ]).)

Corollary 1.3.1 Let G be a locally finite subgroup of GL(2,Q). Then G is
finite, and is conjugate to one of the above subgroups of GL(2,Z).

Proof Let L be a finitely generated subgroup of rank 2 in Q2 . If G is finite
then ∪g∈GgL is finitely generated, G-invariant and of rank 2, and so G is
conjugate to a subgroup of GL(2,Z). In general, as the finite subgroups of G
have bounded order G must be finite.

Theorem 1.3 also follows from the fact that PSL(2,Z) = SL(2,Z)/〈±I〉 is
a free product (Z/2Z) ∗ (Z/3Z), generated by the images of A and B . (In
fact 〈A,B | A2 = B3, A4 = 1〉 is a presentation for SL(2,Z).) Moreover,
SL(2,Z)′ ∼= PSL(2,Z)′ is freely generated by the images of ABA−1B−1 = ( 2 1

1 1 )
and A−1B−1AB = ( 1 1

1 2 ), while the abelianizations are generated by the images
of AB = ( 1 0

1 1 ). (See §6.2 of [Ro].)

The groups arising as extension of such groups G by Z2 are the flat 2-orbifold
groups, or 2-dimensional crystallographic groups. In three cases H2(G;Z2) 6=
0, and there are in fact 17 isomorphism classes of such groups.

Let Λ = Z[t, t−1] be the ring of integral Laurent polynomials. The next theorem
is a special case of a classical result of Latimer and MacDuffee.

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of
matrices in GL(n,Z) with irreducible characteristic polynomial ∆(t) and iso-
morphism classes of ideals in Λ/(∆(t)). The set of such ideal classes is finite.

Proof Let A ∈ GL(n,Z) have characteristic polynomial ∆(t) and let R =
Λ/(∆(t)). As ∆(A) = 0, by the Cayley-Hamilton Theorem, we may define an
R-module MA with underlying abelian group Zn by t.z = A(z) for all z ∈ Zn .
As R is a domain and has rank n as an abelian group MA is torsion-free and of
rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every
R-ideal arises in this way. The isomorphism of abelian groups underlying an
R-isomorphism between two such modules MA and MB determines a matrix
C ∈ GL(n,Z) such that CA = BC . The final assertion follows from the
Jordan-Zassenhaus Theorem.
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1.3 The Hirsch-Plotkin radical 7

1.3 The Hirsch-Plotkin radical

The Hirsch-Plotkin radical
√
G of a group G is its maximal locally-nilpotent

normal subgroup; in a virtually poly-Z group every subgroup is finitely gen-
erated, and so

√
G is then the maximal nilpotent normal subgroup. If H is

normal in G then
√
H is normal in G also, since it is a characteristic subgroup

of H , and in particular it is a subgroup of
√
G.

For each natural number q ≥ 1 let Γq be the group with presentation

〈x, y, z | xz = zx, yz = zy, xy = zqyx〉.

Every such group Γq is torsion-free and nilpotent of Hirsch length 3.

Theorem 1.5 Let G be a finitely generated torsion-free nilpotent group of
Hirsch length h(G) ≤ 4. Then either

(1) G is free abelian; or

(2) h(G) = 3 and G ∼= Γq for some q ≥ 1; or

(3) h(G) = 4, ζG ∼= Z2 and G ∼= Γq × Z for some q ≥ 1; or

(4) h(G) = 4, ζG ∼= Z and G/ζG ∼= Γq for some q ≥ 1.

In the latter case G has characteristic subgroups which are free abelian of rank
1, 2 and 3. In all cases G is an extension of Z by a free abelian normal
subgroup.

Proof The centre ζG is nontrivial and the quotient G/ζG is again torsion -
abelian, and hence that G/ζG is not cyclic. Hence h(G/ζG) ≥ 2, so h(G) ≥ 3
and 1 ≤ h(ζG) ≤ h(G)− 2. In all cases ζG is free abelian.

If h(G) = 3 then ζG ∼= Z and G/ζG ∼= Z2 . On choosing elements x and y
representing a basis of G/ζG and z generating ζG we quickly find that G is
isomorphic to one of the groups Γq , and thus is an extension of Z by Z2 .

If h(G) = 4 and ζG ∼= Z2 then G/ζG ∼= Z2 , so G′ ⊆ ζG. Since G may be
generated by elements x, y, t and u where x and y represent a basis of G/ζG
and t and u are central it follows easily that G′ is infinite cyclic. Therefore
ζG is not contained in G′ and G has an infinite cyclic direct factor. Hence
G ∼= Z × Γq , for some q ≥ 1, and thus is an extension of Z by Z3 .

The remaining possibility is that h(G) = 4 and ζG ∼= Z . In this case G/ζG
is torsion-free nilpotent of Hirsch length 3. If G/ζG were abelian G′ would
also be infinite cyclic, and the pairing from G/ζG×G/ζG into G′ defined by
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8 Chapter 1: Group theoretic preliminaries

the commutator would be nondegenerate and skewsymmetric. But there are no
such pairings on free abelian groups of odd rank. Therefore G/ζG ∼= Γq , for
some q ≥ 1.

Let ζ2G be the preimage in G of ζ(G/ζG). Then ζ2G ∼= Z2 and is a characteris-
tic subgroup of G, so CG(ζ2G) is also characteristic in G. The quotient G/ζ2G
acts by conjugation on ζ2G. Since Aut(Z2) = GL(2,Z) is virtually free and
G/ζ2G ∼= Γq/ζΓq ∼= Z2 and since ζ2G 6= ζG it follows that h(CG(ζ2G)) = 3.
Since CG(ζ2G) is nilpotent and has centre of rank ≥ 2 it is abelian, and so
CG(ζ2G) ∼= Z3 . The preimage in G of the torsion subgroup of G/CG(ζ2G)
is torsion-free, nilpotent of Hirsch length 3 and virtually abelian and hence is
abelian. Therefore G/CG(ζ2G) ∼= Z .

Theorem 1.6 Let π be a torsion-free virtually poly-Z group of Hirsch length
4. Then h(

√
π) ≥ 3.

Proof Let S be a solvable normal subgroup of finite index in π . Then the
lowest nontrivial term of the derived series of S is an abelian subgroup which
is characteristic in S and so normal in π . Hence

√
π 6= 1. If h(

√
π) ≤ 2 then√

π ∼= Z or Z2 . Suppose π has an infinite cyclic normal subgroup A. On
replacing π by a normal subgroup σ of finite index we may assume that A is
central and that σ/A is poly-Z . Let B be the preimage in σ of a nontrivial
abelian normal subgroup of σ/A. Then B is nilpotent (since A is central and
B/A is abelian) and h(B) > 1 (since B/A 6= 1 and σ/A is torsion-free). Hence
h(
√
π) ≥ h(

√
σ) > 1.

If π has a normal subgroup N ∼= Z2 then Aut(N) ∼= GL(2,Z) is virtually free,
and so the kernel of the natural map from π to Aut(N) is nontrivial. Hence
h(Cπ(N)) ≥ 3. Since h(π/N) = 2 the quotient π/N is virtually abelian, and
so Cπ(N) is virtually nilpotent.

In all cases we must have h(
√
π) ≥ 3.

1.4 Amenable groups

The class of amenable groups arose first in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-
valued functions [Pi]. There is a more geometric characterization of finitely
presentable amenable groups that is more convenient for our purposes. Let X
be a finite cell-complex with universal cover X̃ . Then X̃ is an increasing union
of finite subcomplexes Xj ⊆ Xj+1 ⊆ X̃ = ∪n≥1Xn such that Xj is the union
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1.4 Amenable groups 9

of Nj <∞ translates of some fundamental domain D for G = π1(X). Let N ′j
be the number of translates of D which meet the frontier of Xj in X̃ . The

sequence {Xj} is a Følner exhaustion for X̃ if lim(N ′j/Nj) = 0, and π1(X) is

amenable if and only if X̃ has a Følner exhaustion. This class contains all finite
groups and Z , and is closed under the operations of extension, increasing union,
and under the formation of sub- and quotient groups. (However nonabelian free
groups are not amenable.)

The subclass EG generated from finite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let U0 = 1 and U1 be the class of finitely
generated virtually abelian groups. If Uα has been defined for some ordinal α
let Uα+1 = (`Uα)U1 and if Uα has been defined for all ordinals less than some
limit ordinal β let Uβ = ∪α<βUα . Let κ be the first uncountable ordinal. Then
EG = `Uκ .

This class is well adapted to arguments by transfinite induction on the ordinal
α(G) = min{α|G ∈ Uα}. It is closed under extension (in fact UαUβ ⊆ Uα+β )
and increasing union, and under the formation of sub- and quotient groups. As
Uκ contains every countable elementary amenable group, Uλ = `Uκ = EG if
λ > κ. Torsion groups in EG are locally finite and elementary amenable free
groups are cyclic. Every locally-finite by virtually solvable group is elementary
amenable; however this inclusion is proper.

For example, let Z∞ be the free abelian group with basis {xi | i ∈ Z} and let G
be the subgroup of Aut(Z∞) generated by {ei | i ∈ Z}, where ei(xi) = xi+xi+1

and ei(xj) = xj if j 6= i. Then G is the increasing union of subgroups iso-
morphic to groups of upper triangular matrices, and so is locally nilpotent.
However it has no nontrivial abelian normal subgroups. If we let φ be the
automorphism of G defined by φ(ei) = ei+1 for all i then Goφ Z is a finitely
generated torsion-free elementary amenable group which is not virtually solv-
able.

It can be shown (using the Følner condition) that finitely generated groups
of subexponential growth are amenable. The class SG generated from such
groups by extensions and increasing unions contains EG (since finite groups and
finitely generated abelian groups have polynomial growth), and is the largest
class of groups over which topological surgery techniques are known to work in
dimension 4 [FT95]. There is a finitely presentable group in SG which is not
elementary amenable [Gr98], and a finitely presentable amenable group which
is not in SG [BV05].

Geometry & Topology Monographs, Volume 5 (2002)



10 Chapter 1: Group theoretic preliminaries

A group is restrained if it has no noncyclic free subgroup. Amenable groups are
restrained, but there are finitely presentable restrained groups which are not
amenable [OS02, Lo13]. There are also infinite finitely generated torsion groups.
(See §14.2 of [Ro].) These are restrained, but are not elementary amenable. No
known example is also finitely presentable.

1.5 Hirsch length

In this section we shall use transfinite induction to extend the notion of Hirsch
length (as a measure of the size of a solvable group) to elementary amenable
groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G be a finitely generated infinite elementary amenable group.
Then G has normal subgroups K < H such that G/H is finite, H/K is free
abelian of positive rank and the action of G/H on H/K by conjugation is
effective.

Proof We may show that G has a normal subgroup K such that G/K is
an infinite virtually abelian group, by transfinite induction on α(G). We may
assume that G/K has no nontrivial finite normal subgroup. If H is a subgroup
of G which contains K and is such that H/K is a maximal abelian normal
subgroup of G/K then H and K satisfy the above conditions.

In particular, finitely generated infinite elementary amenable groups are virtu-
ally indicable.

If G is in U1 let h(G) be the rank of an abelian subgroup of finite index in G.
If h(G) has been defined for all G in Uα and H is in `Uα let

h(H) = l.u.b.{h(F )|F ≤ H, F ∈ Uα}.

Finally, if G is in Uα+1 , so has a normal subgroup H in `Uα with G/H in U1 ,
let h(G) = h(H) + h(G/H).

Theorem 1.8 Let G be an elementary amenable group. Then

(1) h(G) is well defined;

(2) If H is a subgroup of G then h(H) ≤ h(G);

(3) h(G) = l.u.b.{h(F ) | F is a finitely generated subgroup of G};
(4) if H is a normal subgroup of G then h(G) = h(H) + h(G/H).
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1.5 Hirsch length 11

Proof We shall prove all four assertions simultaneously by induction on α(G).
They are clearly true when α(G) = 1. Suppose that they hold for all groups
in Uα and that α(G) = α+ 1. If G is in `Uα so is any subgroup, and (1) and
(2) are immediate, while (3) follows since it holds for groups in Uα and since
each finitely generated subgroup of G is a Uα -subgroup. To prove (4) we may
assume that h(H) is finite, for otherwise both h(G) and h(H) + h(G/H) are
∞, by (2). Therefore by (3) there is a finitely generated subgroup J ≤ H with
h(J) = h(H). Given a finitely generated subgroup Q of G/H we may choose a
finitely generated subgroup F of G containing J and whose image in G/H is
Q. Since F is finitely generated it is in Uα and so h(F ) = h(H)+h(Q). Taking
least upper bounds over all such Q we have h(G) ≥ h(H) + h(G/H). On the
other hand if F is any Uα -subgroup of G then h(F ) = h(F ∩H) + h(FH/H),
since (4) holds for F , and so h(G) ≤ h(H) + h(G/H), Thus (4) holds for G
also.

Now suppose that G is not in `Uα , but has a normal subgroup K in `Uα such
that G/K is in U1 . If K1 is another such subgroup then (4) holds for K and K1

by the hypothesis of induction and so h(K) = h(K ∩K1) + h(KK1/K). Since
we also have h(G/K) = h(G/KK1)+h(KK1/K) and h(G/K1) = h(G/KK1)+
h(KK1/K1) it follows that h(K1)+h(G/K1) = h(K)+h(G/K) and so h(G) is
well defined. Property (2) follows easily, as any subgroup of G is an extension
of a subgroup of G/K by a subgroup of K . Property (3) holds for K by the
hypothesis of induction. Therefore if h(K) is finite K has a finitely generated
subgroup J with h(J) = h(K). Since G/K is finitely generated there is a
finitely generated subgroup F of G containing J and such that FK/K = G/K .
Clearly h(F ) = h(G). If h(K) is infinite then for every n ≥ 0 there is a finitely
generated subgroup Jn of K with h(Jn) ≥ n. In either case, (3) also holds
for G. If H is a normal subgroup of G then H and G/H are also in Uα+1 ,
while H ∩K and KH/H = K/H ∩K are in `Uα and HK/K = H/H ∩K and
G/HK are in U1 . Therefore

h(H) + h(G/H) = h(H ∩K) + h(HK/K) + h(HK/H) + h(G/HK)

= h(H ∩K) + h(HK/H) + h(HK/K) + h(G/HK).

Since K is in `Uα and G/K is in U1 this sum gives h(G) = h(K) + h(G/K)
and so (4) holds for G. This completes the inductive step.

Let Λ(G) be the maximal locally-finite normal subgroup of G.

Theorem 1.9 There are functions d and M from Z≥0 to Z≥0 such that if G
is an elementary amenable group of Hirsch length at most h and Λ(G) is its
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12 Chapter 1: Group theoretic preliminaries

maximal locally finite normal subgroup then G/Λ(G) has a maximal solvable
normal subgroup of derived length at most d(h) and index at most M(h).

Proof We argue by induction on h. Since an elementary amenable group
has Hirsch length 0 if and only if it is locally finite we may set d(0) = 0 and
M(0) = 1. Assume that the result is true for all such groups with Hirsch length
at most h and that G is an elementary amenable group with h(G) = h+ 1.

Suppose first that G is finitely generated. Then by Lemma 1.7 there are normal
subgroups K < H in G such that G/H is finite, H/K is free abelian of rank
r ≥ 1 and the action of G/H on H/K by conjugation is effective. (Note that
r = h(G/K) ≤ h(G) = h + 1.) Since the kernel of the natural map from
GL(r,Z) to GL(r,F3) is torsion-free, by Lemma 1.2, we see that G/H embeds
in GL(r,F3) and so has order at most 3r

2
. Since h(K) = h(G) − r ≤ h the

inductive hypothesis applies for K , so it has a normal subgroup L containing
Λ(K) and of index at most M(h) such that L/Λ(K) has derived length at
most d(h) and is the maximal solvable normal subgroup of K/Λ(K). As Λ(K)
and L are characteristic in K they are normal in G. (In particular, Λ(K) =
K ∩ Λ(G).) The centralizer of K/L in H/L is a normal solvable subgroup of
G/L with index at most [K : L]![G : H] and derived length at most 2. Set
M(h+1) = M(h)!3(h+1)2 and d(h+1) = M(h+1)+2+d(h). Then G.Λ(G) has
a maximal solvable normal subgroup of index at most M(h + 1) and derived
length at most d(h + 1) (since it contains the preimage of the centralizer of
K/L in H/L).

In general, let {Gi | i ∈ I} be the set of finitely generated subgroups of G.
By the above argument Gi has a normal subgroup Hi containing Λ(Gi) and
such that Hi/Λ(Gi) is a maximal normal solvable subgroup of Gi/Λ(Gi) and
has derived length at most d(h + 1) and index at most M(h + 1). Let N =
max{[Gi : Hi] | i ∈ I} and choose α ∈ I such that [Gα : Hα] = N . If Gi ≥ Gα
then Hi∩Gα ≤ Hα . Since [Gα : Hα] ≤ [Gα : Hi∩Gα] = [HiGα : Hi] ≤ [Gi : Hi]
we have [Gi : Hi] = N and Hi ≥ Hα . It follows easily that if Gα ≤ Gi ≤ Gj
then Hi ≤ Hj .

Set J = {i ∈ I | Hα ≤ Hi} and H = ∪i∈JHi . If x, y ∈ H and g ∈ G then there
are indices i, k and k ∈ J such that x ∈ Hi , y ∈ Hj and g ∈ Gk . Choose l ∈ J
such that Gl contains Gi ∪ Gj ∪ Gk . Then xy−1 and gxg−1 are in Hl ≤ H ,
and so H is a normal subgroup of G. Moreover if x1, . . . , xN is a set of coset
representatives for Hα in Gα then it remains a set of coset representatives for
H in G, and so [G;H] = N .

Let Di be the d(h + 1)th derived subgroup of Hi . Then Di is a locally-finite
normal subgroup of Gi and so, by an argument similar to that of the above
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1.6 Modules and finiteness conditions 13

paragraph ∪i∈JDi is a locally-finite normal subgroup of G. Since it is easily
seen that the d(h + 1)th derived subgroup of H is contained in ∪i∈JDi (as
each iterated commutator involves only finitely many elements of H ) it follows
that HΛ(G)/Λ(G) ∼= H/H ∩ Λ(G) is solvable and of derived length at most
d(h+ 1).

The above result is from [HL92]. The argument can be simplified to some extent
if G is countable and torsion-free. (In fact a virtually solvable group of finite
Hirsch length and with no nontrivial locally-finite normal subgroup must be
countable, by Lemma 7.9 of [Bi].)

Lemma 1.10 Let G be an elementary amenable group. If h(G) = ∞ then
for every k > 0 there is a subgroup H of G with k < h(H) <∞.

Proof We shall argue by induction on α(G). The result is vacuously true if
α(G) = 1. Suppose that it is true for all groups in Uα and G is in `Uα . Since
h(G) = l.u.b.{h(F )|F ≤ G, F ∈ Uα} either there is a subgroup F of G in Uα
with h(F ) =∞, in which case the result is true by the inductive hypothesis, or
h(G) is the least upper bound of a set of natural numbers and the result is true.
If G is in Uα+1 then it has a normal subgroup N which is in `Uα with quotient
G/N in U1 . But then h(N) = h(G) =∞ and so N has such a subgroup.

Theorem 1.11 Let G be an elementary amenable group of finite cohomolog-
ical dimension. Then h(G) ≤ c.d.G and G is virtually solvable.

Proof Since c.d.G <∞ the group G is torsion-free. Let H be a subgroup of
finite Hirsch length. Then H is virtually solvable and c.d.H ≤ c.d.G so h(H) ≤
c.d.G. The theorem now follows from Theorem 1.9 and Lemma 1.10.

1.6 Modules and finiteness conditions

Let G be a group and w : G → Z/2Z a homomorphism, and let R be a
commutative ring. Then ḡ = (−1)w(g)g−1 defines an anti-involution on R[G].
If L is a left R[G]-module L shall denote the conjugate right R[G]-module with
the same underlying R-module and R[G]-action given by l.g = ḡ.l , for all l ∈ L
and g ∈ G. (We shall also use the overline to denote the conjugate of a right
R[G]-module.) The conjugate of a free left (right) module is a free right (left)
module of the same rank.

We shall also let Zw denote the G-module with underlying abelian group Z
and G-action given by g.n = (−1)w(g)n for all g in G and n in Z .
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14 Chapter 1: Group theoretic preliminaries

Lemma 1.12 [Wl65] Let G and H be groups such that G is finitely pre-
sentable and there are homomorphisms j : H → G and ρ : G → H with
ρj = idH . Then H is also finitely presentable.

Proof Since G is finitely presentable there is an epimorphism p : F → G from
a free group F (X) with a finite basis X onto G, with kernel the normal closure
of a finite set of relators R. We may choose elements wx in F (X) such that
jρp(x) = p(wx), for all x in X . Then ρ factors through the group K with
presentation 〈X | R, x−1wx,∀x ∈ X〉, say ρ = vu. Now uj is clearly onto,
while vuj = ρj = idH , and so v and uj are mutually inverse isomomorphisms.
Therefore H ∼= K is finitely presentable.

A group G is FPn if the augmentation Z[G]-module Z has a projective reso-
lution which is finitely generated in degrees ≤ n, and it is FP if it has finite
cohomological dimension and is FPn for n = c.d.G. It is FF if moreover
Z has a finite resolution consisting of finitely generated free Z[G]-modules.
“Finitely generated” is equivalent to FP1 , while “finitely presentable” implies
FP2 . Groups which are FP2 are also said to be almost finitely presentable.
(There are FP groups which are not finitely presentable [BB97].) An elemen-
tary amenable group G is FP∞ if and only if it is virtually FP , and is then
virtually constructible and solvable of finite Hirsch length [Kr93].

If the augmentation Q[π]-module Q has a finite resolution F∗ by finitely gen-
erated projective modules then χ(π) = Σ(−1)idimQ(Q⊗πFi) is independent of
the resolution. (If π is the fundamental group of an aspherical finite complex K
then χ(π) = χ(K).) We may extend this definition to groups σ which have a
subgroup π of finite index with such a resolution by setting χ(σ) = χ(π)/[σ : π].
(It is not hard to see that this is well defined.)

Let P be a finitely generated projective Z[π]-module. Then P is a direct
summand of Z[π]r , for some r ≥ 0, and so is the image of some idempotent
r×r -matrix M with entries in Z[π]. The Kaplansky rank κ(P ) is the coefficient
of 1 ∈ π in the trace of M . It depends only on P and is strictly positive if
P 6= 0. The group π satisfies the Weak Bass Conjecture if κ(P ) = dimQQ⊗πP .
This conjecture has been confirmed for linear groups, solvable groups, groups of
cohomological dimension ≤ 2 over Q and PD3 -groups. (See [Ec01] for further
details.)

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel) Let G be an FP2 group with G/G′ infinite.
Then G is an HNN extension with finitely generated base and associated sub-
groups.
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1.6 Modules and finiteness conditions 15

Proof (Sketch – We shall assume that G is finitely presentable.) Let h :
F (m) → G be an epimorphism, and let gi = h(xi) for 1 ≤ i ≤ m. We may
assume that gm has infinite order modulo the normal closure of {gi | 1 ≤
i < m}. Since G is finitely presentable the kernel of h is the normal closure
of finitely many relators, of weight 0 in the letter xm . Each such relator is a
product of powers of conjugates of the generators {xi | 1 ≤ i < m} by powers of
xm . Thus we may assume the relators are contained in the subgroup generated
by {xjmxix−jm | 1 ≤ i ≤ m, −p ≤ j ≤ p}, for some sufficiently large p. Let
U be the subgroup of G generated by {gjmgig−jm | 1 ≤ i ≤ m, −p ≤ j < p},
and let V = gmUg

−1
m . Let B be the subgroup of G generated by U ∪ V and

let G̃ be the HNN extension with base B and associated subgroups U and
V presented by G̃ = 〈B, s | sus−1 = τ(u) ∀u ∈ U〉, where τ : U → V is
the isomorphism determined by conjugation by gm in G. There are obvious
epimorphisms ξ : F (m+ 1)→ G̃ and ψ : G̃→ G with composite h. It is easy
to see that Ker(h) ≤ Ker(ξ) and so G̃ ∼= G.

In particular, if G is restrained then it is an ascending HNN extension.

A ring R is weakly finite if every onto endomorphism of Rn is an isomorphism,
for all n ≥ 0. (In [H2] the term “SIBN ring” was used instead.) Finitely
generated stably free modules over weakly finite rings have well defined ranks,
and the rank is strictly positive if the module is nonzero. Skew fields are weakly
finite, as are subrings of weakly finite rings. If G is a group its complex group
algebra C[G] is weakly finite, by a result of Kaplansky. (See [Ro84] for a proof.)

A ring R is (regular) coherent if every finitely presentable left R-module has a
(finite) resolution by finitely generated projective R-modules, and is (regular)
noetherian if moreover every finitely generated R-module is finitely presentable.
A group G is regular coherent or regular noetherian if the group ring R[G] is
regular coherent or regular noetherian (respectively) for any regular noetherian
ring R. It is coherent as a group if all its finitely generated subgroups are
finitely presentable.

Lemma 1.14 If G is a group such that Z[G] is coherent then every finitely
generated subgroup of G is FP∞ .

Proof Let H be a subgroup of G. Since Z[H] ≤ Z[G] is a faithfully flat
ring extension a left Z[H]-module is finitely generated over Z[H] if and only if
the induced module Z[G] ⊗H M is finitely generated over Z[G]. It follows by
induction on n that M is FPn over Z[H] if and only if Z[G] ⊗H M is FPn
over Z[G].
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16 Chapter 1: Group theoretic preliminaries

If H is finitely generated then the augmentation Z[H]-module Z is finitely
presentable over Z[H]. Hence Z[G]⊗H Z is finitely presentable over Z[G], and
so is FP∞ over Z[G], since that ring is coherent. Hence Z is FP∞ over Z[H],
i.e., H is FP∞ .

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every
finitely generated subgroup of G is FP2 . As the latter condition shall usually
suffice for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains the
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian,
by Theorem 19.1 of [Wd78]. If [G : H] is finite and G is torsion-free then Z[G]
is regular coherent if and only if Z[H] is. In particular, free groups and surface
groups are coherent and their integral group rings are regular coherent, while
(torsion-free) virtually poly-Z groups are coherent and their integral group
rings are (regular) noetherian.

1.7 Ends and cohomology with free coefficients

A finitely generated group G has 0, 1, 2 or infinitely many ends. It has 0 ends
if and only if it is finite, in which case H0(G;Z[G]) ∼= Z and Hq(G;Z[G]) = 0
for q > 0. Otherwise H0(G;Z[G]) = 0 and H1(G;Z[G]) is a free abelian group
of rank e(G)− 1, where e(G) is the number of ends of G [Sp49]. The group G
has more than one end if and only if it is a nontrivial generalised free product
with amalgamation G ∼= A ∗C B or an HNN extension A ∗C φ, where C is a
finite group. In particular, it has two ends if and only if it is virtually Z if and
only if it has a (maximal) finite normal subgroup F such that G/F ∼= Z or D ,
where D = (Z/2Z) ∗ (Z/2Z) is the infinite dihedral group [St] - see also [DD].

If G is a group with a normal subgroup N , and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension
of G/N by N and with coefficients A:

E2 = Hp(G/N ;Hq(N ;A))⇒ Hp+q(G;A),

the rth differential having bidegree (r, 1− r). (See Section 10.1 of [Mc].)

Theorem 1.15 [Ro75] If G has a normal subgroup N which is the union of
an increasing sequence of subgroups Nn such that Hs(Nn;Z[G]) = 0 for s ≤ r
then Hs(G;Z[G]) = 0 for s ≤ r .
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1.7 Ends and cohomology with free coefficients 17

Proof Let s ≤ r . Let f be an s-cocycle for N with coefficients Z[G], and
let fn denote the restriction of f to a cocycle on Nn . Then there is an
(s− 1)-cochain gn on Nn such that δgn = fn . Since δ(gn+1|Nn − gn) = 0
and Hs−1(Nn;Z[G]) = 0 there is an (s − 2)-cochain hn on Nn with δhn =
gn+1|Nn−gn . Choose an extension h′n of hn to Nn+1 and let ĝn+1 = gn+1−δh′n .
Then ĝn+1|Nn = gn and δĝn+1 = fn+1 . In this way we may extend g0 to an
(s − 1)-cochain g on N such that f = δg and so Hs(N ;Z[G]) = 0. The
LHSSS for G as an extension of G/N by N , with coefficients Z[G], now gives
Hs(G;Z[G]) = 0 for s ≤ r .

Corollary 1.15.1 The hypotheses are satisfied if N is the union of an increas-
ing sequence of FPr subgroups Nn such that Hs(Nn;Z[Nn]) = 0 for s ≤ r .
In particular, if N is the union of an increasing sequence of finitely generated,
one-ended subgroups then G has one end.

Proof We have Hs(Nn;Z[G]) = Hs(Nn;Z[Nn]) ⊗ Z[G/Nn] = 0, for all s ≤ r
and all n, since Nn is FPr .

If the successive inclusions are finite this corollary may be sharpened further.

Theorem (Gildenhuys-Strebel) Let G = ∪n≥1Gn be the union of an in-
creasing sequence of FPr subgroups. Suppose that [Gn+1 : Gn] < ∞ and
Hs(Gn;Z[Gn]) = 0 for all s < r and n ≥ 1. If G is not finitely generated then
Hs(G;F ) = 0 for every free Z[G]-module F and all s ≤ r .

The enunciation of this theorem in [GS81] assumes also that c.d.Gn = r for
all n ≥ 1, and concludes that c.d.G = r if and only if G is finitely generated.
However the argument establishes the above assertion.

Theorem 1.16 Let G be a finitely generated group with an infinite restrained
normal subgroup N of infinite index. Then e(G) = 1.

Proof Since N is infinite H1(G;Z[G]) ∼= H0(G/N ;H1(N ;Z[G])), by the
LHSSS. If N is finitely generated H1(N ;Z[G]) ∼= H1(N ;Z[N ])⊗Z[G/N ], with
the diagonal G/N -action. Since G/N is infinite H1(G;Z[G]) = 0. If N is lo-
cally one-ended or locally virtually Z and not finitely generated H1(N ;Z[G]) =
0, by Theorem 1.15 and the Gildenhuys-Strebel Theorem, respectively. In all
of these cases e(G) = 1.

There remains the possibility that N is locally finite. If e(G) > 1 then G ∼=
A ∗C B or A ∗C φ with C finite, by Stallings’ characterization of such groups.
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18 Chapter 1: Group theoretic preliminaries

Suppose G ∼= A ∗C B . Since N is infinite there is an n ∈ N \ C . We may
suppose that n = gag−1 for some a ∈ A and g ∈ G, since elements of finite
order in A ∗C B are conjugate to elements of A or B , by Theorem 6.4.3 of
[Ro]. If n 6∈ A we may suppose g = g1 . . . gk with terms alternately from A \C
and B \ C , and gk ∈ B . Let n′ = g0ng

−1
0 , where g0 ∈ A \ C if k is odd and

g0 ∈ B \ C if k is even (or if n ∈ A). Since N is normal n′ ∈ N also, and since
N is restrained w(n, n′) = 1 in N for some nontrivial word w ∈ F (2). But
this contradicts the “uniqueness of normal form” for such groups. A similar
argument shows that G cannot be A ∗C φ. Thus G must have one end.

In particular, a countable restrained group N is either elementary amenable and
h(N) ≤ 1 or is an increasing union of finitely generated, one-ended subgroups.

The second cohomology of a group with free coefficients (H2(G;R[G]), R = Z
or a field) shall play an important role in our investigations.

Theorem (Farrell) Let G be a finitely presentable group. If G has an ele-
ment of infinite order and R = Z or is a field then H2(G;R[G]) is either 0 or
R or is not finitely generated.

Farrell also showed in [Fa74] that if H2(G;F2[G]) ∼= Z/2Z then every finitely
generated subgroup of G with one end has finite index in G. Hence if G is also
torsion-free then subgroups of infinite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo04] - see §8 below).

We would also like to know when H2(G;Z[G]) is 0 (for G finitely presentable).
In particular, we expect this to be so if G has an elementary amenable, normal
subgroup E such that either h(E) = 1 and G/E has one end or h(E) = 2 and
[G : E] =∞ or h(E) ≥ 3, or if G is an ascending HNN extension over a finitely
generated, one-ended base. Our present arguments for these two cases require
stronger finiteness hypotheses, and each use the following result of [BG85].

Theorem (Brown-Geoghegan) Let G be an HNN extension B∗φ in which the
base B and associated subgroups I and φ(I) are FPn . If the homomorphism
from Hq(B;Z[G]) to Hq(I;Z[G]) induced by restriction is injective for some
q ≤ n then the corresponding homomorphism in the Mayer-Vietoris sequence
is injective, so Hq(G;Z[G]) is a quotient of Hq−1(I;Z[G]).

We begin with the case of “large” elementary amenable normal subgroups.
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1.7 Ends and cohomology with free coefficients 19

Theorem 1.17 Let G be a finitely presentable group with a locally virtually
indicable, restrained normal subgroup E of infinite index. Suppose that either
E is abelian of rank 1 and G/E has one end or E is torsion-free, elementary
amenable and h(E) > 1 or E is almost coherent and has a finitely generated,
one-ended subgroup. Then Hs(G;Z[G]) = 0 for s ≤ 2.

Proof If E is abelian of positive rank and G/E has one end then G is 1-
connected at ∞ by Theorem 1 of [Mi87], and so Hs(G;Z[G]) = 0 for s ≤ 2, by
[GM86].

Suppose next that E is torsion-free, elementary amenable and h(E) > 1. Then
G has one end, so Hs(G;Z[G]) = 0 for s ≤ 1. If E is virtually solvable it has a
nontrivial characteristic abelian subgroup A. If h(A) = 1 then we may assume
that A = 〈〈a〉〉G , so G/A is finitely presentable. As E/A is infinite G/A has
one end, by Theorem 1.16, and so H2(G;Z[G]) = 0 as before. If A ∼= Z2 then
H2(A;Z[G])) ∼= Z[G/A]. Otherwise, A has Z2 as a subgroup of infinite index
and so H2(A;Z[G]) = 0. If E is not virtually solvable Hs(E;Z[G]) = 0 for all
s, by Proposition 3 of [Kr93’]. (The argument applies even if E is not finitely
generated.) In all cases, an LHSSS argument gives H2(G;Z[G]) = 0.

We may assume henceforth that E is almost coherent and is an increasing
union of finitely generated one-ended subgroups En ⊆ En+1 · · · ⊆ E = ∪En .
Since E is locally virtually indicable there are subgroups Fn ≤ En such that
[En : Fn] < ∞ and which map onto Z . Since E is almost coherent these
subgroups are FP2 . Hence they are HNN extensions over FP2 bases Hn , by
Theorem 1.13, and the extensions are ascending, since E is restrained. Since
En has one end Hn is infinite and so has one or two ends.

Suppose that Hn has two ends, for all n ≥ 1. Then En is elementary amenable,
h(En) = 2 and [En+1 : En] < ∞, for all n ≥ 1. Hence E is elemen-
tary amenable and h(E) = 2. If E is finitely generated it is FP2 and so
Hs(G;Z[G]) = 0 for s ≤ 2, by an LHSSS argument. This is also the case
if E is not finitely generated, for then Hs(E;Z[G]) = 0 for s ≤ 2, by the
Gildenhuys-Strebel Theorem, and we may again apply an LHSSS argument.

Otherwise we may assume that Hn has one end, for all n ≥ 1. In this case
Hs(Fn;Z[Fn]) = 0 for s ≤ 2, by the Brown-Geoghegan Theorem. Therefore
Hs(G;Z[G]) = 0 for s ≤ 2, by Theorem 1.15.

The theorem applies if E is almost coherent and elementary amenable, since
elementary amenable groups are restrained and locally virtually indicable. It
also applies if E =

√
G is large enough, since finitely generated nilpotent

Geometry & Topology Monographs, Volume 5 (2002)



20 Chapter 1: Group theoretic preliminaries

groups are virtually poly-Z . Similar arguments show that if h(
√
G) ≥ r then

Hs(G;Z[G]) = 0 for s < r , and if also [G :
√
G] =∞ then Hr(G;Z[G]) = 0.

Are the hypotheses that E be almost coherent and locally virtually indicable
necessary? Is it sufficient that E be restrained and be an increasing union of
finitely generated, one-ended subgroups?

Theorem 1.18 Let G = B∗φ be an HNN extension with FP2 base B and
associated subgroups I and φ(I) = J , and which has a restrained normal
subgroup N ≤ 〈〈B〉〉. Then Hs(G;Z[G]) = 0 for s ≤ 2 if either

(1) the HNN extension is ascending and B = I ∼= J has one end; or

(2) N is locally virtually Z and G/N has one end; or

(3) N has a finitely generated subgroup with one end.

Proof The first assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit−1 = φ(i), for all i ∈ I . Suppose that
N ∩ J 6= N ∩ B , and let b ∈ N ∩ B \ J . Then bt = t−1bt is in N , since N is
normal in G. Let a be any element of N ∩ B . Since N has no noncyclic free
subgroup there is a word w ∈ F (2) such that w(a, bt) = 1 in G. It follows from
Britton’s Lemma that a must be in I , and so N ∩ B = N ∩ I . In particular,
N is the increasing union of copies of N ∩B .

Hence G/N is an HNN extension with base B/N ∩B and associated subgroups
I/N ∩ I and J/N ∩ J . Therefore if G/N has one end the latter groups are
infinite, and so B , I and J each have one end. If N is virtually Z then
Hs(G;Z[G]) = 0 for s ≤ 2, by an LHSSS argument. If N is locally virtually Z
but is not finitely generated then it is the increasing union of a sequence of two-
ended subgroups and Hs(N ;Z[G]) = 0 for s ≤ 1, by the Gildenhuys-Strebel
Theorem. Since H2(B;Z[G]) ∼= H0(B;H2(N ∩ B;Z[G])) and H2(I;Z[G]) ∼=
H0(I;H2(N ∩ I;Z[G])), the restriction map from H2(B;Z[G]) to H2(I;Z[G])
is injective. If N has a finitely generated, one-ended subgroup N1 , we may
assume that N1 ≤ N ∩ B , and so B , I and J also have one end. Moreover
Hs(N ∩ B;Z[G]) = 0 for s ≤ 1, by Theorem 1.15. We again see that the
restriction map from H2(B;Z[G]) to H2(I;Z[G]) is injective. The result now
follows in these cases from the Brown-Geoghegan Theorem.

The final result of this section is Theorem 8.8 of [Bi].

Theorem (Bieri) Let G be a nonabelian group with c.d.G = n. Then
c.d.ζG ≤ n− 1, and if ζG has rank n− 1 then G′ is free.
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1.8 Poincaré duality groups 21

1.8 Poincaré duality groups

A group G is a PDn -group if it is FP , Hp(G;Z[G]) = 0 for p 6= n and
Hn(G;Z[G]) ∼= Z . The “dualizing module” Hn(G;Z[G]) = ExtnZ[G](Z,Z[G])

is a right Z[G]-module, with G-action determined by a homomorphism w =
w1(G) : G → Aut(Z) ∼= Z× . The group is orientable (or is a PD+

n -group) if
w is trivial, i.e., if Hn(G;Z[G]) is isomorphic to the augmentation module Z.
(See [Bi].)

The only PD1 -group is Z . Eckmann, Linnell and Müller showed that every
PD2 -group is the fundamental group of a closed aspherical surface. (See Chap-
ter VI of [DD].) Bowditch has since found a much stronger result, which must
be close to the optimal characterization of such groups [Bo04].

Theorem (Bowditch) Let G be an FP2 group and F a field. Then G is
virtually a PD2 -group if and only if H2(G;F [G]) has a 1-dimensional G-
invariant subspace.

In particular, this theorem applies if H2(G;Z[G]) ∼= Z , for then the image of
H2(G;Z[G]) in H2(G;F2[G]) under reduction mod (2) is such a subspace.

The following result corresponds to the fact that an infinite covering space of a
PL n-manifold is homotopy equivalent to a complex of dimension < n [St77].

Theorem (Strebel) Let H be a subgroup of infinite index in a PDn -group
G. Then c.d.H < n.

Let S be a ring. If C is a left S -module and R is a subring of S let C|R be
the left R-module underlying C . If A is a left R-module the abelian group
HomR(S|R, A) has a natural left S -module structure given by ((sf)(s′) =
f(s′s) for all f ∈ HomR(S|R, A) and s, s′ ∈ S . The groups HomR(C|R, A)
and HomS(C,HomR(S|R, A)) are naturally isomorphic, for the maps I and J
defined by I(f)(c)(s) = f(sc) and J(θ)(c) = θ(c)(1) for f : C → A and θ :
C → HomR(S,A) are mutually inverse isomorphisms. When K is a subgroup
of π , R = Z[K] and S = Z[π] we may write C|K for C|R , and the module
HomZ[K](Z[π]|K , A) is said to be coinduced from A. The above isomorphisms
give rise to Shapiro’s Lemma. In our applications π/K shall usually be infinite
cyclic and S is then a twisted Laurent extension of R.

If G is a group and A is a left Z[G]-module let A|1 be the Z[G]-module with the
same underlying group and trivial G-action, and let AG = HomZ(Z[G], A) be
the module of functions α : G→ A with G-action given by (gα)(h) = g.α(hg)
for all g, h ∈ G. Then A|1G is coinduced from a module over the trivial group.
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22 Chapter 1: Group theoretic preliminaries

Theorem 1.19 Let π be a PDn -group with a normal subgroup K such that
π/K is a PDr -group. Then K is a PDn−r -group if and only if it is FP[n/2] .

Proof The condition is clearly necessary. Assume that it holds. After pass-
ing to a subgroup of index 2, if necessary, we may assume that G = π/K is
orientable. It is sufficient to show that the functors Hs(K;−) from left Z[K]-
modules to abelian groups commute with direct limit, for all s ≤ n, for then
K is FPn−1 [Br75], and the result follows from Theorem 9.11 of [Bi] (and an
LHSSS corner argument to identify the dualizing module), Since K is FP[n/2]

we may assume s > n/2. If A is a Z[K]-module and W = HomZ[K](Z[π], A)

then Hs(K;A) ∼= Hs(π;W ) ∼= Hn−s(π;W ), by Shapiro’s Lemma and Poincaré
duality.

Let Ag be the left Z[K]-module with the same underlying group as A and
K -action given by k.a = σ(g)kσ(g)−1a for all a ∈ A, g ∈ G and k ∈ K . The
Z[K]-epimorphisms pg : W → Ag given by pg(f) = f(σ(g)) for all f ∈W and
g ∈ G determine an isomorphism W ∼= Πg∈GAg . Hence they induce Z-linear
isomorphisms Hq(K;W ) ∼= Πg∈GHq(K;Ag) for q ≤ [n/2], since C∗ has finite
[n/2]-skeleton. The Z-linear homomorphisms tq,g : Ag ⊗Z[K] Cq → A⊗Z[K] Cq
given by tq,g(a ⊗ c) = w(σ(g))a ⊗ σ(g)c for all a ∈ A and c ∈ Cq induce
isomorphisms Hq(K;Ag) ∼= Hq(K;A) for all q ≥ 0 and g ∈ G. Let uq,g =
tq,g(pg ⊗ idCq). Then uq,g(fσ(h)−1 ⊗ σ(h)c) = uq,gh(f ⊗ c) for all g, h ∈ G,
f ∈W , c ∈ Cq and q ≥ 0. Hence these composites determine isomorphisms of
left Z[G]-modules Hq(K;W ) ∼= AGq , where Aq = Hq(A ⊗Z[K] C∗) = Hq(K;A)
(with trivial G-action) for q ≤ [n/2].

Let D(L) denote the conjugate of a left Z[G]-module L with respect to the
canonical involution. We shall apply the homology LHSSS

E2
pq = Hp(G;D(Hq(K;W ))⇒ Hp+q(π;W ).

Poincaré duality for G and another application of Shapiro’s Lemma now give
Hp(G;D(AGq )) ∼= Hr−p(G;AGq ) ∼= Hr−p(1;Aq), since AGq is coinduced from a
module over the trivial group. If s > [n/2] and p + q = n − s then q ≤ [n/2]
and so Hp(G;AGq ) ∼= Aq if p = r and is 0 otherwise. Thus the spectral sequence

collapses to give Hn−s(π;W ) ∼= Hn−r−s(K;A). Since homology commutes with
direct limits this proves the theorem.

The finiteness condition cannot be relaxed further when r = 2 and n = 4, for
Kapovich has given an example of a pair ν < π with π a PD4 -group, π/ν a
PD2 -group and ν finitely generated but not FP2 [Ka98].
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The most useful case of this theorem is when G ∼= Z . The argument of the first
paragraph of the theorem shows that if K is any normal subgroup such that
π/K ∼= Z then Hn(K;A) ∼= H0(π;W ) = 0, and so c.d.K < n. (This weak
version of Strebel’s Theorem suffices for some of the applications below.)

Let R be a ring. An R-chain complex has finite k-skeleton if it is chain homo-
topy equivalent to a complex P∗ with Pj a finitely generated free R-module
for j ≤ k . If R is a subring of S and C∗ is an S -chain complex then C∗ is
R-finitely dominated if C∗|R is chain homotopy equivalent to a finite projec-
tive R-chain complex. The argument of Theorem 1.19 extends easily to the
nonaspherical case as follows. (See Chapter 2 for the definition of PDn -space.)

Theorem 1.19 ′ Let M be a PDn -space, p : π1(M)→ G be an epimorphism

with G a PDr -group and ν = Ker(p). If C∗(M̃)|ν has finite [n/2]-skeleton

C∗(M̃) is Z[ν]-finitely dominated and Hs(Mν ;Z[ν]) ∼= Hn−r−s(Mν ;Z[ν]) for
all s.

If M is aspherical then Mν = K(ν, 1) is a PDn−r -space, by Theorem 1.19. In
Chapter 4 we shall show that this holds in general.

Corollary 1.19.1 If either r = n−1 or r = n−2 and ν is infinite or r = n−3
and ν has one end then M is aspherical.

1.9 Hilbert modules

Let π be a countable group and let `2(π) be the Hilbert space completion of
C[π] with respect to the inner product given by (Σagg,Σbhh) = Σagbg . Left
and right multiplication by elements of π determine left and right actions of
C[π] as bounded operators on `2(π). The (left) von Neumann algebra N (π) is
the algebra of bounded operators on `2(π) which are C[π]-linear with respect to
the left action. By the Tomita-Takesaki theorem this is also the bicommutant
in B(`2(π)) of the right action of C[π], i.e., the set of operators which commute
with every operator which is right C[π]-linear. (See pages 45-52 of [Su].) We
may clearly use the canonical involution of C[π] to interchange the roles of left
and right in these definitions.

If e ∈ π is the unit element we may define the von Neumann trace on N (π)
by the inner product tr(f) = (f(e), e). This extends to square matrices over
N (π) by taking the sum of the traces of the diagonal entries. A Hilbert N (π)-
module is a Hilbert space M with a unitary left π -action which embeds iso-
metrically and π -equivariantly into the completed tensor product H⊗̂`2(π) for

Geometry & Topology Monographs, Volume 5 (2002)
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some Hilbert space H . It is finitely generated if we may take H ∼= Cn for
some integer n. (In this case we do not need to complete the ordinary ten-
sor product over C.) A morphism of Hilbert N (π)-modules is a π -equivariant
bounded linear operator f : M → N . It is a weak isomorphism if it is injective
and has dense image. A bounded π -linear operator on `2(π)n = Cn ⊗ `2(π)
is represented by a matrix whose entries are in N (π). The von Neumann
dimension of a finitely generated Hilbert N (π)-module M is the real num-
ber dimN (π)(M) = tr(P ) ∈ [0,∞), where P is any projection operator on
H ⊗ `2(π) with image π -isometric to M . In particular, dimN (π)(M) = 0 if
and only if M = 0. The notions of finitely generated Hilbert N (π)-module
and finitely generated projective N (π)-module are essentially equivalent, and
arbitrary N (π)-modules have well-defined dimensions in [0,∞] [Lü].

A sequence of bounded maps between Hilbert N (π)-modules

M
j−−−−→ N

p−−−−→ P

is weakly exact at N if Ker(p) is the closure of Im(j). If 0→M → N → P → 0
is weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is
dense in P , and dimN (π)(N) = dimN (π)(M) + dimN (π)(P ). A finitely gener-
ated Hilbert N (π)-complex C∗ is a chain complex of finitely generated Hilbert
N (π)-modules with bounded C[π]-linear operators as differentials. The re-

duced L2 -homology is defined to be H̄
(2)
p (C∗) = Ker(dp)/Im(dp+1). The pth

L2 -Betti number of C∗ is then dimN (π)H̄
(2)
p (C∗). (As the images of the dif-

ferentials need not be closed the unreduced L2 -homology modules H
(2)
p (C∗) =

Ker(dp)/Im(dp+1) are not in general Hilbert modules.)

See [Lü] for more on modules over von Neumann algebras and L2 invariants of
complexes and manifolds.

[In this book L2 -Betti number arguments replace the localization arguments
used in [H2]. However we shall recall the definition of safe extension of a group
ring used there. An inclusion of rings Z[G] < S is a safe extension if it is flat, S
is weakly finite and S ⊗Z[G] Z = 0. If G has a nontrivial elementary amenable
normal subgroup whose finite subgroups have bounded order and which has no
nontrivial finite normal subgroup then Z[G] has a safe extension. This is used
briefly at the end of Chapter 15 below.]
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Chapter 2

2-Complexes and PD3-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coefficients and of the universal coefficient spectral sequence. We
then define the L2 -Betti numbers and present some useful vanishing theorems
of Lück and Gromov. These invariants are used in §3, where they are used to
estimate the Euler characteristics of finite [π,m]-complexes and to give a con-
verse to the Cheeger-Gromov-Gottlieb Theorem on aspherical finite complexes.
Some of the arguments and results here may be regarded as representing in
microcosm the bulk of this book; the analogies and connections between 2-
complexes and 4-manifolds are well known. We then review Poincaré duality
and PDn -complexes. In §5-§9 we shall summarize briefly what is known about
the homotopy types of PD3 -complexes.

2.1 Notation

Let X be a connected cell complex and let X̃ be its universal covering space. If
H is a normal subgroup of G = π1(X) we may lift the cellular decomposition of
X to an equivariant cellular decomposition of the corresponding covering space
XH . The cellular chain complex of XH with coefficients in a commutative
ring R is then a complex C∗ = C∗(XH) of left R[G/H]-modules, with respect
to the action of the covering group G/H . A choice of lifts of the q -cells of X
determines a free basis for Cq , for all q , and so C∗ is a complex of free modules.
If X is a finite complex G is finitely presentable and these modules are finitely
generated. If X is finitely dominated, i.e., is a retract of a finite complex, then
G is again finitely presentable, by Lemma 1.12. Moreover the chain complex
of the universal cover is chain homotopy equivalent over R[G] to a complex of
finitely generated projective modules [Wl65]. The Betti numbers of X with
coefficients in a field F shall be denoted by βi(X;F ) = dimFHi(X;F ) (or just
βi(X), if F = Q).

The ith equivariant homology module of X with coefficients R[G/H] is the left
module Hi(X;R[G/H]) = Hi(C∗), which is clearly isomorphic to Hi(XH ;R) as
an R-module, with the action of the covering group determining its R[G/H]-
module structure. The ith equivariant cohomology module of X with coeffi-
cients R[G/H] is the right module H i(X;R[G/H]) = H i(C∗), where C∗ =
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HomR[G/H](C∗, R[G/H]) is the associated cochain complex of right R[G/H]-
modules. More generally, if A and B are right and left Z[G/H]-modules (re-
spectively) we may define Hj(X;A) = Hj(A ⊗Z[G/H] C∗) and Hn−j(X;B) =
Hn−j(HomZ[G/H](C∗, B)). There is a Universal Coefficient Spectral Sequence
(UCSS) relating equivariant homology and cohomology:

Epq2 = ExtqR[G/H](Hp(X;R[G/H]), R[G/H])⇒ Hp+q(X;R[G/H]),

with rth differential dr of bidegree (1− r, r).

If J is a normal subgroup of G which contains H there is also a Cartan-Leray
spectral sequence relating the homology of XH and XJ :

E2
pq = TorR[G/H]

p (R[G/J ], Hq(X;R[G/H]))⇒ Hp+q(X;R[G/J ]),

with rth differential dr of bidegree (−r, r − 1). (See [Mc] for more details on
these spectral sequences.)

If M is a cell complex let cM : M → K(π1(M), 1) denote the classifying map for
the fundamental group and let fM : M → P2(M) denote the second stage of the
Postnikov tower for M . (Thus cM = cP2(M)fM .) A map f : X → K(π1(M), 1)
lifts to a map from X to P2(M) if and only if f∗k1(M) = 0, where k1(M)
is the first k -invariant of M in H3(π1(M);π2(M)). In particular, if k1(M) =
0 then cP2(M) has a cross-section. The algebraic 2-type of M is the triple
[π, π2(M), k1(M)]. Two such triples [π,Π, κ] and [π′,Π′, κ′] (corresponding to
M and M ′ , respectively) are equivalent if there are isomorphisms α : π → π′

and β : Π → Π′ such that β(gm) = α(g)β(m) for all g ∈ π and m ∈ Π
and β∗κ = α∗κ′ in H3(π;α∗Π′). Such an equivalence may be realized by
a homotopy equivalence of P2(M) and P2(M ′). (The reference [Ba] gives a
detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)
Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of
a finite Poincaré duality complex [KS].

2.2 L2-Betti numbers

Let X be a finite complex with fundamental group π . The L2 -Betti numbers

of X are defined by β
(2)
i (X) = dimN (π)(H̄

(2)
2 (X̃)), where the L2 -homology

H̄
(2)
i (X̃) = H̄i(C

(2)
∗ ) is the reduced homology of the Hilbert N (π)-complex

C
(2)
∗ = `2⊗Z[π]C∗(X̃) of square summable chains on X̃ . They are multiplicative

in finite covers, and for i = 0 or 1 depend only on π . (In particular, β
(2)
0 (π) = 0
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2.2 L2 -Betti numbers 27

if π is infinite.) The alternating sum of the L2 -Betti numbers is the Euler
characteristic χ(X). (See [Lü].)

It may be shown that β
(2)
i (X) = dimN (π)Hi(N (π)⊗Z[π]C∗(X̃)), and this formu-

lation of the definition applies to arbitrary complexes [CG86, Lü]. In particular,

β
(2)
i (π) = dimN (π)Hi(π;N (π)) is defined for all π . If X is finitely dominated

these numbers are finite, and if also π satisfies the Strong Bass Conjecture then

the Euler characteristic formula holds [Ec96]. Moreover, β
(2)
s (X) = β

(2)
s (π) for

s = 0 or 1, and β
(2)
2 (X) ≥ β(2)

2 (π). (See Theorems 1.35 and 6.54 of [Lü].) The
argument for Theorem 1.35.5 of [Lü] extends to show that if π ∼= A ∗C B then

β
(2)
1 (π) ≥ 1

|C| −
1
|A| −

1
|B| . (Similarly for A ∗C φ.) Thus if β

(2)
1 (π) = 0 then e(π)

is finite.

Lemma 2.1 Let π = H∗φ be a finitely presentable group which is an ascend-

ing HNN extension with finitely generated base H . Then β
(2)
1 (π) = 0.

Proof Let t be the stable letter and let Hn be the subgroup generated by H
and tn , and suppose that H is generated by g elements. Then [π : Hn] = n,

so β
(2)
1 (Hn) = nβ

(2)
1 (π). But each Hn is also finitely presentable and generated

by g + 1 elements. Hence β
(2)
1 (Hn) ≤ g + 1, and so β

(2)
1 (π) = 0.

In particular, this lemma holds if H is normal in π and π/H ∼= Z .

Theorem 2.2 (Lück) Let π be a group with a finitely generated infinite
normal subgroup ∆ such that π/∆ has an element of infinite order. Then

β
(2)
1 (π) = 0.

Proof (Sketch) Let ρ ≤ π be a subgroup containing ∆ such that ρ/∆ ∼=
Z . The terms in the line p + q = 1 of the homology LHSSS for ρ as an
extension of Z by ∆ with coefficients N (ρ) have dimension 0, by Lemma
2.1. Since dimN (ρ)M = dimN (π)(N (π)⊗N (ρ) M) for any N (ρ)-module M the
corresponding terms for the LHSSS for π as an extension of π/∆ by ∆ with
coefficients N (π) also have dimension 0 and the theorem follows.

This is Theorem 7.2.6 of [Lü]. The hypothesis “π/∆ has an element of infinite
order” can be relaxed to “π/∆ is infinite” [Ga00]. The next result also derives
from [Lü]. (The case s = 1 is extended further in [PT11].)

Theorem 2.3 Let π be a group with an ascendant subgroup N such that

β
(2)
i (N) = 0 for all i ≤ s. Then β

(2)
i (π) = 0 for all i ≤ s.

Geometry & Topology Monographs, Volume 5 (2002)



28 Chapter 2: 2-Complexes and PD3 -complexes

Proof Let N = N0 < N1 < ... < Ni = π be an ascendant sequence. Then

we may show by transfinite induction on α that β
(2)
i (Nα) = 0 for all i ≤ s

and α ≤ i, using parts (2) and (3) of Theorem 7.2 of [Lü] for the passages to
successor ordinals and to limit ordinals, respectively.

Corollary 2.3.1 (Gromov) Let π be a group with an infinite amenable nor-

mal subgroup A. Then β
(2)
i (π) = 0 for all i.

Proof If A is an infinite amenable group β
(2)
i (A) = 0 for all i [CG86].

Note that the normal closure of an amenable ascendant subgroup is amenable.

2.3 2-Complexes and finitely presentable groups

If a group π has a finite presentation P with g generators and r relators then
the deficiency of P is def(P ) = g − r , and def(π) is the maximal deficiency of
all finite presentations of π . Such a presentation determines a finite 2-complex
C(P ) with one 0-cell, g 1-cells and r 2-cells and with π1(C(P )) ∼= π . Clearly
def(P ) = 1 − χ(P ) = β1(C(P )) − β2(C(P )) and so def(π) ≤ β1(π) − β2(π).
Conversely every finite 2-complex with one 0-cell arises in this way. In general,
any connected finite 2-complex X is homotopy equivalent to one with a single
0-cell, obtained by collapsing a maximal tree T in the 1-skeleton X [1] .

We shall say that π has geometric dimension at most 2, written g.d.π ≤ 2, if
it is the fundamental group of a finite aspherical 2-complex.

Theorem 2.4 Let X be a connected finite 2-complex with fundamental group

π . Then β
(2)
2 (X) ≥ β(2)

2 (π), with equality if and only if X is aspherical.

Proof Since we may construct K = K(π, 1) by adjoining cells of dimen-
sion ≥ 3 to X the natural homomorphism H̄2(cX) is an epimorphism, and so

β
(2)
2 (X) ≥ β(2)

2 (π). Since X is 2-dimensional π2(X) = H2(X̃;Z) is a subgroup

of H̄
(2)
2 (X̃), with trivial image in H̄

(2)
2 (K̃). If moreover β

(2)
2 (X) = β

(2)
2 (π) then

H̄2(cX) is an isomorphism, by Lemma 1.13 of [Lü], so π2(X) = 0 and X is
aspherical.

Corollary 2.4.1 Let π be a finitely presentable group. Then def(π) ≤ 1 +

β
(2)
1 (π)− β(2)

2 (π). If def(π) = 1 + β
(2)
1 (π) then g.d.π ≤ 2.
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2.3 2-Complexes and finitely presentable groups 29

Proof This follows from the theorem and the L2 -Euler characteristic formula,
applied to the 2-complex associated to an optimal presentation for π .

Theorem 2.5 Let π be a finitely presentable group such that β
(2)
1 (π) = 0.

Then def(π) ≤ 1, with equality if and only if g.d.π ≤ 2 and β2(π) = β1(π)− 1.

Proof The upper bound and the necessity of the conditions follow as in Corol-
lary 2.4.1. Conversely, if they hold and X is a finite aspherical 2-complex with
π1(X) ∼= π then χ(X) = 1 − β1(π) + β2(π) = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read
off the 1- and 2-cells has deficiency 1.

This theorem applies if π is finitely presentable and is an ascending HNN ex-
tension with finitely generated base H , or has an infinite amenable normal

subgroup. In the latter case β
(2)
i (π) = 0 for all i, by Theorem 2.3. Thus if X

is a finite aspherical 2-complex with π1(X) ∼= π then χ(X) = 0, and so the
condition β2(π) = β1(π)− 1 is redundant.

[Similarly, if Z[π] has a safe extension Ψ and C∗ is the equivariant cellular
chain complex of the universal cover X̃ then Ψ ⊗Z[π] C∗ is a complex of free
left Ψ-modules with bases corresponding to the cells of X . Since Ψ is a safe
extension Hi(X; Ψ) = Ψ⊗Z[π]Hi(X;Z[π]) = 0 for all i, and so again χ(X) = 0.]

Corollary 2.5.1 Let π be a finitely presentable group with an FP2 normal
subgroup N such that π/N ∼= Z . Then def(π) = 1 if and only if N is free.

Proof If def(π) = 1 then g.d.π ≤ 2, by Theorem 2.5, and so N is free by
Corollary 8.6 of [Bi]. The converse is clear.

In fact it suffices to assume that N is finitely generated (rather than FP2 )
[Ko06]. (See Corollary 4.3.1 below.)

Let G = F (2)×F (2). Then g.d.G = 2 and def(G) ≤ β1(G)−β2(G) = 0. Hence
〈u, v, x, y | ux = xu, uy = yu, vx = xv, vy = yv〉 is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vx−1 and y is normal in G

and G/N ∼= Z , so β
(2)
1 (G) = 0, by Lemma 2.1. However N is not free, since

u and y generate a rank two abelian subgroup. It follows from Corollary 2.5.1
that N is not FP2 , and so F (2)× F (2) is not almost coherent.

The next result is a version of the Tits alternative for coherent groups of coho-
mological dimension 2. For each m ∈ Z let Z∗m be the group with presentation
〈a, t | tat−1 = am〉. (Thus Z∗0 ∼= Z and Z∗−1

∼= Z o−1 Z .)

Geometry & Topology Monographs, Volume 5 (2002)



30 Chapter 2: 2-Complexes and PD3 -complexes

Theorem 2.6 Let π be a finitely generated group such that c.d.π = 2. Then
π ∼= Z∗m for some m 6= 0 if and only if it is almost coherent and restrained
and π/π′ is infinite.

Proof The conditions are easily seen to be necessary. Conversely, if π is
almost coherent and π/π′ is infinite π is an HNN extension with FP2 base
H , by Theorem 1.13. The HNN extension must be ascending as π has no
noncyclic free subgroup. Hence H2(π;Z[π]) is a quotient of H1(H;Z[π]) ∼=
H1(H;Z[H])⊗Z[π/H], by the Brown-Geoghegan Theorem. Now H2(π;Z[π]) 6=
0, since c.d.π = 2, and so H1(H;Z[H]) 6= 0. Since H is restrained it must
have two ends, so H ∼= Z and π ∼= Z∗m for some m 6= 0.

Does this remain true without any such coherence hypothesis?

Corollary 2.6.1 Let π be a finitely generated group. Then the following are
equivalent:

(1) π ∼= Z∗m for some m ∈ Z ;

(2) π is torsion-free, elementary amenable, FP2 and h(π) ≤ 2;

(3) π is elementary amenable and c.d.π ≤ 2;

(4) π is elementary amenable and def(π) = 1; and

(5) π is almost coherent and restrained and def(π) = 1.

Proof Condition (1) clearly implies the others. Suppose (2) holds. We may
assume that h(π) = 2 and h(

√
π) = 1 (for otherwise π ∼= Z , Z2 = Z∗1 or

Z∗−1 ). Hence h(π/
√
π) = 1, and so π/

√
π is an extension of Z or D by

a finite normal subgroup. If π/
√
π maps onto D then π ∼= A ∗C B , where

[A : C] = [B : C] = 2 and h(A) = h(B) = h(C) = 1, and so π ∼= Zo−1Z .
But then h(

√
π) = 2. Hence we may assume that π maps onto Z , and so π is

an ascending HNN extension with finitely generated base H , by Theorem 1.13.
Since H is torsion-free, elementary amenable and h(H) = 1 it must be infinite
cyclic and so (2) implies (1). If (3) holds π is solvable, by Theorems 1.11, and
1.9, and so (1) follows from [Gi79]. If def(π) = 1 then π is an ascending HNN

extension with finitely generated base, so β
(2)
1 (π) = 0, by Lemma 2.1. Hence

(4) and (5) each imply (1) by Theorems 2.5 and 2.6.

Note that (3) ⇒ (2) if π is FP2 , so we may then avoid [Gi79]. Are these
conditions equivalent to “π is almost coherent and restrained and c.d.π ≤ 2”?
Note also that if def(π) > 1 then π has noncyclic free subgroups [Ro77].
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Let X be the class of groups of finite graphs of groups, with all edge and vertex
groups infinite cyclic. Kropholler has shown that a finitely generated, noncyclic
group G is in X if and only if c.d.G = 2 and G has an infinite cyclic subgroup
H which meets all its conjugates nontrivially. Moreover G is then coherent, one

ended and g.d.G = 2 [Kr90’], while β
(2)
1 (G) = 0 by Theorem 5.12 of [PT11].

Theorem 2.7 Let π be a finitely generated group such that c.d.π = 2. If π
has a nontrivial normal subgroup E which is either elementary amenable or
almost coherent, locally virtually indicable and restrained then π is in X and
either E ∼= Z or π/π′ is infinite and π′ is abelian.

Proof If E is elementary amenable it is virtually solvable, by Theorem 1.11,
since c.d.E ≤ c.d.π . Otherwise finitely generated subgroups of E are metabelian,
by Theorem 2.6 and its Corollary, and so all words in E of the form [[g, h], [g′, h′]]
are trivial. Hence E is metabelian also. Therefore A =

√
E is nontrivial, and

as A is characteristic in E it is normal in π . Since A is the union of its finitely
generated subgroups, which are torsion-free nilpotent groups of Hirsch length
≤ 2, it is abelian. If A ∼= Z then [π : Cπ(A)] ≤ 2. Moreover Cπ(A)′ is free,
by Bieri’s Theorem. If Cπ(A)′ is cyclic then π ∼= Z2 or Zo−1Z ; if Cπ(A)′

is nonabelian then E = A ∼= Z . Otherwise c.d.A = c.d.Cπ(A) = 2 and so
Cπ(A) = A, by Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian, so
π′ ≤ Cπ(A) and π is metabelian. If A ∼= Z2 then π/A is isomorphic to a
subgroup of GL(2,Z), and so is virtually free. As A together with an element
t ∈ π of infinite order modulo A would generate a subgroup of cohomologi-
cal dimension 3, which is impossible, the quotient π/A must be finite. Hence
π ∼= Z2 or Zo−1Z . In all cases π is in X , by Theorem C of [Kr90’].

If c.d.π = 2, ζπ 6= 1 and π is nonabelian then ζπ ∼= Z and π′ is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a finitely presentable group other than Z2 and def(G) ≥ 1 then
ζG ∼= Z or 1, and is trivial if def(G) > 1, and he verified this for classical link
groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if ζG is infinite
then def(G) = 1 and ζG ∼= Z .

It remains an open question whether every finitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer
to this question was first obtained by W.Beckmann under the additional as-
sumptions that π is FF and c.d.π ≤ 2 (see [Dy87’]).

Theorem 2.8 Let π be a finitely presentable group. Then g.d.π ≤ 2 if and
only if c.d.Qπ ≤ 2 and def(π) = β1(π)− β2(π).
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Proof The necessity of the conditions is clear. Suppose that they hold and
that C(P ) is the 2-complex corresponding to a presentation for π of maximal

deficiency. The cellular chain complex of C̃(P ) gives an exact sequence

0→ K = π2(C(P ))→ Z[π]r → Z[π]g → Z[π]→ Z→ 0.

Extending coefficients to Q gives a similar exact sequence, with kernel Q⊗ZK
on the left. As c.d.Qπ ≤ 2 the image of Q[π]r in Q[π]g is projective, by
Schanuel’s Lemma. Therefore the inclusion of Q ⊗Z K into Q[π]r splits, and
Q⊗ZK is projective. Moreover dimQ(Q⊗Z[π]K) = 0, and so Q⊗ZK = 0, since
the Weak Bass Conjecture holds for π [Ec86]. Since K is free as an abelian

group it imbeds in Q⊗Z K , and so is also 0. Hence C̃(P ) is contractible, and
so C(P ) is aspherical.

The arguments of this section may easily be extended to other highly connected
finite complexes. A [π,m]f -complex is a finite m-dimensional complex X with

π1(X) ∼= π and with (m − 1)-connected universal cover X̃ . Such a [π,m]f -
complex X is aspherical if and only if πm(X) = 0. In that case we shall say
that π has geometric dimension at most m, written g.d.π ≤ m.

Theorem 2.4 ′ Let X be a [π,m]f -complex and suppose that β
(2)
i (π) = 0 for

i < m. Then (−1)mχ(X) ≥ 0. If χ(X) = 0 then X is aspherical.

In general, the final implication of this theorem cannot be reversed. For S1∨S1

is an aspherical [F (2), 1]f -complex and β
(2)
0 (F (2)) = 0, but χ(S1 ∨ S1) 6= 0.

One of the applications of L2 -cohomology in [CG86] was to show that if X is a
finite aspherical complex and π1(X) has an infinite amenable normal subgroup
A then χ(X) = 0. (This generalised a theorem of Gottlieb, who assumed that
A was a central subgroup [Go65].) We may similarly extend Theorem 2.5 to
give a converse to the Cheeger-Gromov extension of Gottlieb’s Theorem.

Theorem 2.5 ′ Let X be a [π,m]f -complex and suppose that π has an infinite
amenable normal subgroup. Then X is aspherical if and only if χ(X) = 0.

2.4 Poincaré duality

The main reason for studying PD -complexes is that they represent the ho-
motopy theory of manifolds. However they also arise in situations where the
geometry does not immediately provide a corresponding manifold. For instance,
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under suitable finiteness assumptions an infinite cyclic covering space of a closed
4-manifold with Euler characteristic 0 will be a PD3 -complex, but need not be
homotopy equivalent to a closed 3-manifold. (See Chapter 11.)

A PDn -space is a space homotopy equivalent to a cell complex which satisfies
Poincaré duality of formal dimension n with local coefficients. If X is a PDn -
space with fundamental group π then C∗(X̃) is Z[π]-finitely dominated, so π is
FP2 . The PDn -space X is finite if C∗(X̃) is Z[π]-chain homotopy equivalent
to a finite free Z[π]-complex. It is a PDn -complex if it is finitely dominated.
This is so if and only if π is finitely presentable [Br72, Br75]. Finite PDn -
complexes are homotopy equivalent to finite complexes. (Note also that a cell
complex X is finitely dominated if and only if X×S1 is finite. See Proposition
3 of [Rn95].) Although PDn -complexes are most convenient for our purposes,
the broader notion of PDn -space is occasionally useful. All the PDn -complexes
that we consider shall be connected.

Let P be a PDn -complex. We may assume that P = Po ∪ Dn , where Po
is a complex of dimension ≤ max{3, n − 1} [Wl67]. If C∗ is the cellular
chain complex of P̃ the Poincaré duality isomorphism may be described in
terms of a chain homotopy equivalence C∗ ∼= Cn−∗ , which induces isomor-
phisms from Hj(C∗) to Hn−j(C∗), given by cap product with a generator [P ]
of Hn(P ;Zw1(P )) = Hn(Z̄ ⊗Z[π1(P )] C∗). (Here the first Stiefel-Whitney class
w1(P ) is considered as a homomorphism from π1(P ) to Z/2Z .) From this point
of view it is easy to see that Poincaré duality gives rise to (Z-linear) isomor-
phisms from Hj(P ;B) to Hn−j(P ; B̄), where B is any left Z[π1(P )]-module
of coefficients. (See [Wl67] or Chapter II of [Wl] for further details.) If P is
a Poincaré duality complex then the L2 -Betti numbers also satisfy Poincaré
duality. (This does not require that P be finite or orientable!)

A group G is a PDn -group (as defined in Chapter 1) if and only if K(G, 1) is
a PDn -space. For every n ≥ 4 there are PDn -groups which are not finitely
presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H is
a subgroup of infinite index in π1(P ) then the corresponding covering space PH
has homological dimension < n; hence if moreover n 6= 3 then PH is homotopy
equivalent to a complex of dimension < n [DST96].

2.5 PD3-complexes

In this section we shall summarize briefly what is known about PDn -complexes
of dimension at most 3. It is easy to see that a connected PD1 -complex must
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be homotopy equivalent to S1 . The 2-dimensional case is already quite difficult,
but has been settled by Eckmann, Linnell and Müller, who showed that every
PD2 -complex is homotopy equivalent to a closed surface. (See Chapter VI of
[DD]. This result has been further improved by Bowditch’s Theorem.) There
are PD3 -complexes with finite fundamental group which are not homotopy
equivalent to any closed 3-manifold. On the other hand, Turaev’s Theorem
below implies that every PD3 -complex with torsion-free fundamental group is
homotopy equivalent to a closed 3-manifold if every PD3 -group is a 3-manifold
group. The latter is so if the Hirsch-Plotkin radical of the group is nontrivial
(see §7 below), but remains open in general.

The fundamental triple of a PD3 -complex P is (π1(P ), w1(P ), cP∗[P ]). This is
a complete homotopy invariant for such complexes. (See also §6 and §9 below.)

Theorem (Hendriks) Two PD3 -complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic.

Turaev has characterized the possible triples corresponding to a given finitely
presentable group and orientation character, and has used this result to deduce
a basic splitting theorem [Tu90].

Theorem (Turaev) A PD3 -complex is indecomposable with respect to con-
nected sum if and only if its fundamental group is indecomposable with respect
to free product.

Wall asked whether every orientable PD3 -complex whose fundamental group
has infinitely many ends is a proper connected sum [Wl67]. Since the funda-
mental group of a PDn -space is FP2 it is the fundamental group of a finite
graph of finitely generated groups in which each vertex group has at most one
end and each edge group is finite, by Theorem VI.6.3 of [DD]. Crisp has given a
substantial partial answer to Wall’s question, based on this observation [Cr00].

Theorem (Crisp) Let P be an indecomposable orientable PD3 -complex. If
π1(P ) is not virtually free then it has one end, and so P is aspherical.

The arguments of Turaev and Crisp extend to PD3 -spaces in a straightforward
manner. In particular, they imply that if P is a PD3 -space then π = π1(P )
is virtually torsion-free. However, there is an indecomposable orientable PD3 -
complex with π ∼= S3 ∗Z/2Z S3

∼= F (2) o S3 and double cover homotopy equiv-
alent to L(3, 1)]L(3, 1). “Most” indecomposable PD3 -complexes with π virtu-
ally free have double covers which are homotopy equivalent to connected sums
of S3 -manifolds [Hi12].
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2.6 The spherical cases

Let P be a PD3 -space with fundamental group π . The Hurewicz Theorem,
Poincaré duality and a choice of orientation for P together determine an iso-
morphism π2(P ) ∼= H1(π;Z[π]). In particular, π2(P ) = 0 if and only if π is
finite or has one end.

The possible PD3 -complexes with π finite are well understood.

Theorem 2.9 [Wl67] Let X be a PD3 -complex with finite fundamental
group F . Then

(1) X̃ ' S3 , F has cohomological period dividing 4 and X is orientable;

(2) the first nontrivial k -invariant k(X) generates H4(F ;Z) ∼= Z/|F |Z .

(3) the homotopy type of X is determined by F and the orbit of k(M) under
Out(F )× {±1}.

Proof Since the universal cover X̃ is also a finite PD3 -complex it is homotopy
equivalent to S3 . A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C be
a cyclic subgroup of F generated by an orientation reversing element. Let Z̃ be
the nontrivial infinite cyclic Z[C]-module. Then H2(XC ; Z̃) ∼= H1(XC ;Z) ∼= C ,
by Poincaré duality. But H2(XC ; Z̃) ∼= H2(C; Z̃) = 0, since the classifying map
from XC = X̃/C to K(C, 1) is 3-connected. Therefore X must be orientable
and F must act trivially on π3(X) ∼= H3(X̃;Z).

The image of the orientation class of X generates H3(F ;Z) ∼= Z/|F |Z . The
Bockstein β : H3(F ;Q/Z)→ H4(F ;Z) is an isomorphism, since Hq(F ;Q) = 0
for q > 0, and the bilinear pairing from H3(F ;Z)×H4(F ;Z) to Q/Z given by
(h, c) 7→ β−1(c)(h) is nonsingular. Each generator g of H3(F ;Z) determines
an unique kg ∈ H4(F ;Z) such that β−1(kg)(g) = 1

|F | mod Z. The element

corresponding to cX∗[X] is the first nontrivial k -invariant of X . Inner au-
tomorphisms of F act trivially on H4(F ;Z), while changing the orientation
of X corresponds to multiplication by −1. Thus the orbit of k(M) under
Out(F )× {±1} is the significant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X . The natural inclusion j : X → P3(X)
is then 4-connected. If X1 is another such PD3 -complex and θ : π1(X1) → F
is an isomorphism which identifies the k -invariants then there is a 4-connected
map j1 : X1 → P3(X) inducing θ , which is homotopic to a map with image
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in the 4-skeleton of P3(X), and so there is a map h : X1 → X such that j1 is
homotopic to jh. The map h induces isomorphisms on πi for i ≤ 3, since j
and j1 are 4-connected, and so the lift h̃ : X̃1 ' S3 → X̃ ' S3 is a homotopy
equivalence, by the theorems of Hurewicz and Whitehead. Thus h is itself a
homotopy equivalence.

The list of finite groups with cohomological period dividing 4 is well known.
Each such group F and generator k ∈ H4(F ;Z) is realized by some PD+

3 -
complex [Sw60, Wl67]. (See also Chapter 11 below.) In particular, there is
an unique homotopy type of PD3 -complexes with fundamental group S3 , but
there is no 3-manifold with this fundamental group [Mi57].

The fundamental group of a PD3 -complex P has two ends if and only if P̃ '
S2 , and then P is homotopy equivalent to one of the four S2 × E1 -manifolds
S2 × S1 , S2×̃S1 , RP 2 × S1 or RP 3]RP 3 . The following simple lemma leads
to an alternative characterization.

Lemma 2.10 Let X be a finite-dimensional complex with a connected regular
covering space X̂ and covering group C = Aut(X̂/X). If H̃q(X̂;Z) = 0 for

q 6= m then Hs+m+1(C;Z) ∼= Hs(C;Hm(X̂;Z)), for all s >> 0.

Proof The lemma follows by devissage applied to the homology of C∗(X̂),
considered as a chain complex over Z[C]. (In fact s ≥ dim(X)−m suffices.)

Theorem 2.11 Let P be a PD3 -space whose fundamental group π has a
nontrivial finite normal subgroup N . Then either P is homotopy equivalent to
RP 2 × S1 or π is finite.

Proof We may clearly assume that π is infinite. Then Hq(P̃ ;Z) = 0 for q > 2,
by Poincaré duality. Let Π = π2(P ). The augmentation sequence

0→ A(π)→ Z[π]→ Z→ 0

gives rise to a short exact sequence

0→ HomZ[π](Z[π],Z[π])→ HomZ[π](A(π),Z[π])→ H1(π;Z[π])→ 0.

Let f : A(π) → Z[π] be a homomorphism and ζ be a central element of π .
Then f.ζ(i) = f(i)ζ = ζf(i) = f(ζi) = f(iζ) and so (f.ζ−f)(i) = f(i(ζ−1)) =
if(ζ − 1) for all i ∈ A(π). Hence f.ζ − f is the restriction of a homomorphism
from Z[π] to Z[π]. Thus central elements of π act trivially on H1(π;Z[π]).
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If n ∈ N the centraliser γ = Cπ(〈n〉) has finite index in π , and so the covering
space Pγ is again a PD3 -complex with universal covering space P̃ . Therefore

Π ∼= H1(γ;Z[γ]) as a (left) Z[γ]-module. In particular, Π is a free abelian
group. Since n is central in γ it acts trivially on H1(γ;Z[γ]) and hence via
w(n) on Π. Suppose first that w(n) = 1. Then Lemma 2.10 (with X = P ,
X̂ = P̃ and m = 2) gives an exact sequence

0→ Z/o(n)Z → Π→ Π→ 0,

where o(n) is the order of n and the right hand homomorphism is multiplication
by o(n), since n acts trivially on Π. As Π is torsion-free we must have n = 1.

Therefore if n ∈ N is nontrivial it has order 2 and w(n) = −1. In this case
Lemma 2.10 gives an exact sequence

0→ Π→ Π→ Z/2Z → 0,

where the left hand homomorphism is multiplication by 2. Since Π is a free
abelian group it must be infinite cyclic. Hence P̃ ' S2 and P̃ /(Z/2Z) '
RP 2 . The theorem now follows, since any self homotopy equivalence of RP 2 is
homotopic to the identity (compare Theorem 4.4 of [Wl67]).

If π1(P ) has a finitely generated infinite normal subgroup of infinite index then
it has one end, and so P is aspherical. We shall discuss this case next.

2.7 PD3-groups

As a consequence of the work of Turaev and Crisp the study of PD3 -complexes
reduces largely to the study of PD3 -groups. It is not yet known whether all such
groups are 3-manifold groups, or even whether they must be finitely presentable.
The fundamental groups of aspherical 3-manifolds which are Seifert fibred or are
finitely covered by surface bundles may be characterized among all PD3 -groups
in simple group-theoretic terms.

Theorem 2.12 Let G be a PD3 -group with a nontrivial FP2 normal sub-
group N of infinite index. Then either

(1) N ∼= Z and G/N is virtually a PD2 -group; or

(2) N is a PD2 -group and G/N has two ends.
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Proof Let e be the number of ends of N . If N is free then H3(G;Z[G]) ∼=
H2(G/N ;H1(N ;Z[G])). Since N is finitely generated and G/N is FP2 this
is in turn isomorphic to H2(G/N ;Z[G/N ])(e−1) . Since G is a PD3 -group we
must have e − 1 = 1 and so N ∼= Z . We then have H2(G/N ;Z[G/N ]) ∼=
H3(G;Z[G]) ∼= Z , so G/N is virtually a PD2 -group, by Bowditch’s Theorem.

Otherwise c.d.N = 2 and so e = 1 or ∞. The LHSSS gives an isomorphism
H2(G;Z[G]) ∼= H1(G/N ;Z[G/N ]) ⊗ H1(N ;Z[N ]) ∼= H1(G/N ;Z[G/N ])e−1 .
Hence either e = 1 or H1(G/N ;Z[G/N ]) = 0. But in the latter case we
have H3(G;Z[G]) ∼= H2(G/N ;Z[G/N ]) ⊗ H1(N ;Z[N ]) and so H3(G;Z[G])
is either 0 or infinite dimensional. Therefore e = 1, and so H3(G;Z[G]) ∼=
H1(G/N ;Z[G/N ])⊗H2(N ;Z[N ]). Hence G/N has two ends and H2(N ;Z[N ])
∼= Z , so N is a PD2 -group.

We shall strengthen this result in Theorem 2.17 below.

Corollary 2.12.1 A PD3 -space P is homotopy equivalent to the mapping
torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism φ : π1(P )→ Z with finitely generated kernel.

Proof This follows from Theorems 1.19, 2.11 and 2.12.

If π1(P ) is infinite and is a nontrivial direct product then P is homotopy
equivalent to the product of S1 with a closed surface.

Theorem 2.13 Let G be a PD3 -group. If S is an almost coherent, restrained,
locally virtually indicable subgroup then S is virtually solvable. If S has infinite
index in G it is virtually abelian.

Proof Suppose first that S has finite index in G, and so is again a PD3 -
group. Since S is virtually indicable we may assume without loss of generality
that β1(S) > 0. Then S is an ascending HNN extension H∗φ with finitely
generated base. Since G is almost coherent H is finitely presentable, and since
H3(S;Z[S]) ∼= Z it follows from Lemma 3.4 of [BG85] that H is normal in S
and S/H ∼= Z . Hence H is a PD2 -group, by Theorem 2.12. Since H has no
noncyclic free subgroup it is virtually Z2 and so S and G are virtually poly-Z .

If [G : S] = ∞ then c.d.S ≤ 2, by Strebel’s Theorem. Let J be a finitely
generated subgroup of S . Then J is FP2 and virtually indicable, and hence is
virtually solvable, by Theorem 2.6 and its Corollary. Since J contains a PD2 -
group, by Corollary 1.4 of [KK05], it is virtually abelian. Hence S is virtually
abelian also.
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As the fundamental groups of virtually Haken 3-manifolds are coherent and lo-
cally virtually indicable, this implies the Tits alternative for such groups [EJ73].
A slight modification of the argument gives the following corollary.

Corollary 2.13.1 A PD3 -group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of finite index with infinite abelianiza-
tion.

If β1(G) ≥ 2 the hypothesis of coherence is redundant, for there is then an
epimorphism p : G → Z with finitely generated kernel, by Theorem D of
[BNS87], and the kernel is then FP2 by Theorem 1.19.

The argument of Theorem 2.13 and its corollary extend to show by induction
on m that a PDm -group is virtually poly-Z if and only if it is restrained and
every finitely generated subgroup is FPm−1 and virtually indicable.

Theorem 2.14 Let G be a PD3 -group. Then G is the fundamental group of
an aspherical Seifert fibred 3-manifold or a Sol3 -manifold if and only if

√
G 6= 1.

Moreover

(1) h(
√
G) = 1 if and only if G is the group of an H2 ×E1 - or S̃L-manifold;

(2) h(
√
G) = 2 if and only if G is the group of a Sol3 -manifold;

(3) h(
√
G) = 3 if and only if G is the group of an E3 - or Nil3 -manifold.

Proof The necessity of the conditions is clear. (See [Sc83’], or §2 and §3 of
Chapter 7 below.) Certainly h(

√
G) ≤ c.d.

√
G ≤ 3. Moreover c.d.

√
G = 3

if and only if [G :
√
G] is finite, by Strebel’s Theorem. Hence G is virtually

nilpotent if and only if h(
√
G) = 3. If h(

√
G) = 2 then

√
G is locally abelian,

and hence abelian. Moreover
√
G must be finitely generated, for otherwise

c.d
√
G = 3. Thus

√
G ∼= Z2 and case (2) follows from Theorem 2.12.

Suppose now that h(
√
G) = 1 and let C = CG(

√
G). Then

√
G is torsion-free

abelian of rank 1, so Aut(
√
G) is isomorphic to a subgroup of Q× . Therefore

G/C is abelian. If G/C is infinite then c.d.C ≤ 2 by Strebel’s Theorem and
√
G

is not finitely generated, so C is abelian, by Bieri’s Theorem, and hence G is
solvable. But then h(

√
G) > 1, which is contrary to our hypothesis. Therefore

G/C is isomorphic to a finite subgroup of Q× ∼= Z∞⊕ (Z/2Z) and so has order
at most 2. In particular, if A is an infinite cyclic subgroup of

√
G then A is

normal in G, and so G/A is virtually a PD2 -group, by Theorem 2.12. If G/A
is a PD2 -group then G is the fundamental group of an S1 -bundle over a closed
surface. In general, a finite torsion-free extension of the fundamental group of
a closed Seifert fibred 3-manifold is again the fundamental group of a closed
Seifert fibred 3-manifold, by [Sc83] and Section 63 of [Zi].
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The heart of this result is the deep theorem of Bowditch. The weaker character-
ization of fundamental groups of Sol3 -manifolds and aspherical Seifert fibred
3-manifolds as PD3 -groups G such that

√
G 6= 1 and G has a subgroup of

finite index with infinite abelianization is much easier to prove [H2]. There is
as yet no comparable characterization of the groups of H3 -manifolds, although
it may be conjectured that these are exactly the PD3 -groups with no noncyclic
abelian subgroups. (It has been recently shown that every closed H3 -manifold
is finitely covered by a mapping torus [Ag13].)

Nil3 - and S̃L-manifolds are orientable, and so their groups are PD+
3 -groups.

This can also be seen algebraically, as every such group has a characteristic
subgroup H which is a nonsplit central extension of a PD+

2 -group β by Z . An
automorphism of such a group H must be orientation preserving.

Theorem 2.14 implies that if a PD3 -group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this subgroup
is virtually solvable, by Theorem 1.11, and if it is nontrivial then so is

√
G.

Lemma 2.15 Let G be a group such that c.d.G = 2 and let K be an ascendant
FP2 subgroup of G. Then either [G : K] is finite or K is free.

Proof We may assume that K is not free, and so c.d.K = c.d.G = 2. Suppose
first that K is normal in G. Then G/K is locally finite, by Corollary 8.6 of
[Bi], and so G is the increasing union of a (possibly finite) sequence of FP2

subgroups K = U0 < U1 < . . . such that [Ui+1 : Ui] is finite, for all i ≥ 0. It
follows from the Kurosh subgroup theorem that if U ≤ V are finitely generated
groups and [V : U ] is finite then V has strictly fewer indecomposable factors
than U unless both groups are indecomposable. (See Lemma 1.4 of [Sc76]).
Hence if K is a nontrivial free product then [G : K] is finite. Otherwise K
has one end, and so Hs(Ui;Z[Ui]) = 0 for s ≤ 1 and i ≥ 0. Since K is FP2 ,
the successive indices are finite and c.dUi = 2 = c.d.G for all i ≥ 0 the union
is finitely generated, by the Gildenhuys-Strebel Theorem. Hence the sequence
terminates and [G : K] is again finite.

If K = K0 < K1 < . . .Ki = G is an ascendant chain then [Kα+1 : Kα] < ∞
for all α, by the argument just given. Let ω be the union of the finite ordinals
in i. Then ∪α<ωKα is finitely generated, by the Gildenhuys-Strebel Theorem,
and so ω is finite. Hence the chain is finite, and so [G : K] <∞.

Theorem 2.16 Let G be a PD3 -group with an ascending sequence of sub-
groups K0 < K1 < . . . such that Kn is normal in Kn+1 for all n ≥ 0. If
K = K0 is one-ended and FP2 then the sequence is finite and either [Kn : K]
or [G : Kn] is finite, for all n ≥ 0.
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Proof Suppose that [K1 : K] and [G : K1] are both infinite. Since K has
one end it is not free and so c.d.K = c.d.K1 = 2, by Strebel’s Theorem. Hence
there is a free Z[K1]-module W such that H2(K1;W ) 6= 0, by Proposition
5.1 of [Bi]. Since K is FP2 and has one end Hq(K;W ) = 0 for q = 0 or
1 and H2(K;W ) is an induced Z[K1/K]-module. Since [K1 : K] is infinite
H0(K1/K;H2(K;W )) = 0, by Lemma 8.1 of [Bi]. The LHSSS for K1 as an
extension of K1/K by K now gives Hr(K1;W ) = 0 for r ≤ 2, which is a
contradiction. A similar argument applies to the other terms of the sequence.

Suppose that [Kn : K] is finite for all n ≥ 0 and let K̂ = ∪n≥0Kn . If c.d.K̂ = 2

then [K̂ : K] <∞, by Lemma 2.15. Thus the sequence must be finite.

Corollary 2.16.1 Let G be a PD3 -group with an FP2 subgroup H which
has one end and is of infinite index in G. Let H0 = H and Hi+1 = NG(Hi)
for i ≥ 0. Then Ĥ = ∪Hi is FP2 and has one end, and either c.d.Ĥ = 2 and
NG(Ĥ) = Ĥ or [G : Ĥ] <∞ and G is virtually the group of a surface bundle.

Proof This follows immediately from Theorems 2.12 and 2.16.

Corollary 2.16.2 If G has a subgroup H which is a PD2 -group with χ(H) =
0 (respectively, < 0) then either it has such a subgroup which is its own nor-
malizer in G or it is virtually the group of a surface bundle.

Proof If c.d.Ĥ = 2 then [Ĥ : H] < ∞, so Ĥ is a PD2 -group, and χ(H) =
[Ĥ : H]χ(Ĥ).

It is possible to use the fact that Out(H) is virtually torsion-free instead of
appealing to [GS81] to prove this corollary.

Theorem 2.17 Let G be a PD3 -group with a nontrivial FP2 subgroup H
which is ascendant and of infinite index in G. Then either H ∼= Z and H is
normal in G or G is virtually poly-Z or H is a PD2 -group, [G : NG(H)] <∞
and NG(H)/H has two ends.

Proof Let H = H0 < H1 < · · · < Hi = G be an ascendant sequence and let
γ = min{α < i | [Hα : H] =∞}. Let Ĥ = ∪α<γHα . Then h.d.Ĥ ≤ 2 and so

[G : Ĥ] =∞. Hence c.d.Ĥ ≤ 2 also, by Strebel’s Theorem, and so either H is
free or [Ĥ : H] <∞, by Lemma 2.15.

If H is not free then c.d.Ĥ = 2 and Ĥ is FP2 , normal and of infinite index
in Hγ . Therefore [G : Hγ ] <∞ and so Hγ is a PD3 -group, by Theorem 2.16.
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Hence Ĥ is a PD2 -group and Hγ/Ĥ has two ends, by Theorem 2.12. Since

[Ĥ : H] < ∞ it follows easily that H is a PD2 -group, [G : NG(H)] <∞ and
NG(H)/H has two ends.

If H ∼= F (r) for some r > 1 then γ and [Ĥ : H] are finite, since [Hn : H]
divides χ(H) = 1 − r for all n < γ . A similar argument shows that Hγ/Ĥ is
not locally finite. Let K be a finitely generated subgroup of Hγ which contains

Ĥ as a subgroup of infinite index. Then K/Ĥ is virtually free, by Theorem 8.4
of [Bi], and so K is finitely presentable. In particular, χ(K) = χ(Ĥ)χ(K/Ĥ).
Now χ(K) ≤ 0 (see §9 of [KK05]). Since χ(Ĥ) < 0 this is only possible if
χ(K/Ĥ) ≥ 0, and so K/Ĥ is virtually Z . Hence we may assume that Hγ is
the union of an increasing sequence N0 = H < N1 ≤ . . . of finitely generated
subgroups with Ni/H virtually Z , for i ≥ 1. For each i ≥ 1 the group Ni

is FP2 , c.d.Ni = 2, Hs(Ni;Z[Ni]) = 0 for s ≤ 1 and [Ni+1 : Ni] is finite.
Therefore Hγ is finitely generated, by the Gildenhuys-Strebel Theorem.

In particular, Hγ is virtually a semidirect product Ĥ o Z , and so it is FP2

and c.d.Hγ = 2. Hence Hγ is a PD2 -group, by the earlier argument. But

PD2 -groups do not have normal subgroups such as Ĥ . Therefore if H is free
it is infinite cyclic: H ∼= Z . Since

√
Hα is characteristic in Hα it is normal

in Hα+1 , for each α < i. Transfinite induction now shows that H ≤
√
G.

Therefore either
√
G ∼= Z , so H ∼= Z and is normal in G, or G is virtually

poly-Z , by Theorem 2.14.

If H is a PD2 -group NG(H) is the fundamental group of a 3-manifold which is
double covered by the mapping torus of a surface homeomorphism. There are
however Nil3 -manifolds whose groups have no normal PD2 -subgroup (although
they always have subnormal copies of Z2 ).

The original version of this result assumed that H is subnormal in G. (See
[BH91] for a proof not using [Bo04] or [KK05].)

2.8 Subgroups of PD3-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of studying subgroups of
infinite index in PD3 -groups. Such subgroups have cohomological dimension
≤ 2, by Strebel’s Theorem.

There are substantial constraints on 3-manifold groups and their subgroups. Ev-
ery finitely generated subgroup of a 3-manifold group is the fundamental group
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of a compact 3-manifold (possibly with boundary), by Scott’s Core Theorem
[Sc73], and thus is finitely presentable and is either a 3-manifold group or has
finite geometric dimension 2 or is a free group. Aspherical closed 3-manifolds
are Haken, hyperbolic or Seifert fibred, by the work of Perelman [B-P]. The
groups of such 3-manifolds are residually finite [He87], and the centralizer of
any element in the group is finitely generated [JS]. Solvable subgroups of such
groups are virtually poly-Z [EJ73].

In contrast, any group of finite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and
2-handles to D4 . On applying the reflection group trick of Davis [Da83] to the
boundary we see that each such group embeds in a PD4 -group. For instance,
the product of two nonabelian PD+

2 -groups contains a copy of F (2)×F (2), and
so is a PD+

4 -group which is not almost coherent. No PD4 -group containing
a Baumslag-Solitar group 〈x, t | txpt−1 = xq〉 is residually finite, since this
property is inherited by subgroups. Thus the question of which groups of finite
geometric dimension 2 are subgroups of PD3 -groups is critical.

Kapovich and Kleiner have given an algebraic Core Theorem, showing that
every one-ended FP2 subgroup H in a PD3 -group G is the “ambient group” of
a PD3 -pair (H,S) [KK05]. Using this the argument of [Kr90a] may be adapted
to show that every strictly increasing sequence of centralizers in G has length at
most 4 [Hi06]. (The finiteness of such sequences and the fact that centralizers
in G are finitely generated or rank 1 abelian are due to Castel [Ca07].) With
the earlier work of Kropholler and Roller [KR88, KR89, Kr90, Kr93] it follows
that if G has a subgroup H ∼= Z2 and

√
G = 1 then it splits over a subgroup

commensurate with H . It also follows easily from the algebraic Core Theorem
that if a subgroup H is an X -group then H = π1(N) for some Seifert fibred
3-manifold N with ∂N 6= ∅. In particular, no nontrivial Baumslag-Solitar
relation holds in G [KK05].

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold
groups suggest that Theorems 2.12 and 2.17 should hold under the weaker
hypothesis that N be finitely generated. (Compare Theorem 1.19.) It is known
that F (2) × F (2) is not a subgroup of any PD3 -group [KR89]. This may be
regarded as a weak coherence result.

Is there a characterization of virtual PD3 -groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n ≤ 2.
There is no direct analogue in high dimensions. For every k ≥ 6 there are
FPk groups G with Hk(G;Z[G]) ∼= Z but which are not virtually torsion-free
[FS93].)
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2.9 π2(P ) as a Z[π]-module

Let P be a PD3 -space with fundamental group π and orientation character
w . If π is finite π2(P ) = 0 and cP∗[P ] ∈ H3(π;Zw) is essentially equivalent
to the first nontrivial k -invariant of P , as outlined in Theorem 2.9. Suppose
that π is infinite. If N is another PD3 -space and there is an isomorphism
θ : ν = π1(N) → π such that w1(N) = θ∗w then π2(N) ∼= θ∗π2(P ) as Z[ν]-
modules. If moreover k1(N) = θ∗k1(P ) (modulo automorphisms of the pair
(ν, π2(N))) then P2(N) ' P2(P ). Since we may construct these Postnikov
2-stages by adjoining cells of dimension ≥ 4 it follows that there is a map
f : N → P such that π1(f) = θ and π2(f) is an isomorphism. The homology
of the universal covering spaces Ñ and P̃ is 0 above degree 2, and so f is a
homotopy equivalence, by the Whitehead Theorem. Thus the homotopy type
of P is determined by the triple (π,w, k1(P )). One may ask how cP∗[P ] and
k1(P ) determine each other.

There is a facile answer: in Turaev’s realization theorem for homotopy triples
the element of H3(π;Zw) is used to construct a cell complex X by attaching
2- and 3-cells to the 2-skeleton of K(π, 1). If C∗ is the cellular chain complex
of X̃ then k1(X) is the class of

0→ π2(X)→ C2/∂C3 → C1 → C0 → Z→ 0

in H3(π;π2(X)) = Ext3Z[π](Z, π2(X)). Conversely, a class κ ∈ Ext3Z[π](Z,Π)
corresponds to an extension

0→ Π→ D2 → D1 → D0 → Z→ 0,

with D1 and D0 finitely generated free Z[π]-modules. Let D∗ be the complex
D2 → D1 → D0 , with augmentation ε to Z. If κ = k1(P ) for a PD3 -

complex P then TorZ[π]
3 (Zw,D∗) ∼= H3(P2(P );Zw) ∼= Z (where Tor denotes

hyperhomology), and the augmentation then determines a class in H3(π;Zw)
(up to sign). Can these connections be made more explicit? Is there a natural
homomorphism from H3(π;H1(π;Z[π])) to H3(π;Zw)?

If P is an orientable 3-manifold which is the connected sum of a 3-manifold
whose fundamental group is free of rank r with s ≥ 1 aspherical 3-manifolds
then π2(P ) is a finitely generated free Z[π]-module of rank r + s − 1 [Sw73].
We shall give a direct homological argument that applies for PD3 -spaces with
torsion-free fundamental group, and we shall also compute H2(P ;π2(P )) for
such spaces. (This cohomology group arises in studying homotopy classes of
self homotopy equivalences of P [HL74].)
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Theorem 2.18 Let P be a PD3 -space with torsion-free fundamental group
π and orientation character w = w1(P ). Then

(1) if π is a nontrivial free group π2(P ) is finitely generated and of projective
dimension 1 as a left Z[π]-module and H2(P ;π2(P )) ∼= Z ;

(2) if π is not free π2(P ) is a finitely generated free Z[π]-module, c.d.π = 3,
H3(cP ;Zw) is a monomorphism and H2(P ;π2(P )) = 0;

(3) P is homotopy equivalent to a finite PD3 -complex if and only if π is
finitely presentable and FF .

Proof As observed in §2.6 above, π2(P ) ∼= H1(π;Z[π]) as a left Z[π]-module.

Since π is finitely generated it is a free product of finitely many indecomposable
groups, and since π is torsion-free the latter either have one end or are infinite
cyclic. If π is free of rank r there is a short exact sequence of left modules

0→ Z[π]r → Z[π]→ Z→ 0.

If r 6= 0 then H0(π;Z[π]) = 0, so dualizing gives an exact sequence of right
modules

0→ Z[π]→ Z[π]r → H1(π;Z[π])→ 0.

The exact sequence of homology with these coefficients includes the sequence

0→ H1(P ;H1(π;Z[π]))→ H0(P ;Z[π])→ H0(P ;Z[π]r)

in which the right hand map is 0, and so H1(P ;H1(π;Z[π])) ∼= H0(P ;Z[π]) = Z .
Hence H2(P ;π2(P )) ∼= H1(P ;π2(P )) = H1(P ;H1(π;Z[π])) ∼= Z , by Poincaré
duality. As π is finitely presentable and projective Z[F (r)]-modules are free
[Ba64] P is homotopy equivalent to a finite PD3 -complex.

If π is not free then it is the fundamental group of a finite graph of groups
G in which all the vertex groups are finitely generated and have one end and
all the edge groups are trivial. It follows from the Mayer-Vietoris sequences
of Theorems 2.10 and 2.12 of [Bi] that H1(π;Z[π]) is a free right Z[π]-module
with basis corresponding to the edges of G . As H2(P ;Z[π]) = H1(P ;Z[π]) = 0
and π2(P ) is a finitely generated free module it follows that H2(P ;π2(P )) = 0.

We may assume that P is 3-dimensional. The cellular chain complex of P̃ is
chain homotopy equivalent to a finitely generated projective Z[π]-complex

0→ C3 → C2 → C1 → C0 → 0,

and we may assume that Ci is free if i ≤ 2. Then the sequences

0→ Z2 → C2 → C1 → C0 → Z→ 0

and 0→ C3 → Z2 → π2(P )→ 0
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are exact, where Z2 is the module of 2-cycles in C2 . Attaching 3-cells to P
along a basis for π2(P ) gives an aspherical 3-dimensional complex K with
fundamental group π . The inclusion of P into K may be identified with cP ,
and clearly induces monomorphisms H3(P ;A) → H3(π;A) for any coefficient
module A. Hence c.d.π = 3.

If π is FF there is a finite free resolution

0→ D3 → D2 → D1 → D0 → Z→ 0.

Therefore Z2 is finitely generated and stably free, by Schanuel’s Lemma. Since
π2(P ) is free Z2

∼= π2(P )⊕C3 and so C3 is also stably free. Hence if moreover π
is finitely presentable then P is homotopy equivalent to a finite PD3 -complex.
The converse is clear, by the above construction of K(π, 1) ' K .

If π is not torsion-free the projective dimension of π2(P ) is infinite. Since π is
FP2 it is accessible, and so π ∼= πG , where G is a finite graph of groups with
all vertex groups finite or one-ended and all edge groups finite. (See Theorem
VI.6.3 of [DD].) There is an associated Mayer-Vietoris presentation

0→ ⊕Z[Gv\π]→ ⊕Z[Ge\π]→ H1(π;Z[π])→ 0,

where the sums involve only the finite vertex groups Gv (and edge groups Ge ).
Crisp uses an ingenious combinatorial argument based on such a presentation
together with Lemma 2.10 to show that if P is indecomposable, orientable and
not aspherical the vertex groups must all be finite, and so π is virtually free.
He also extends Theorem 2.11 to show that the centralizer of any orientation-
preserving element of finite order is finite [Cr00]. Elementary group theory then
leads to the near-determination of the groups of such PD3 -complexes [Hi12]. (It
is not yet clear what are the indecomposable non-orientable PD3 -complexes.)

Corollary 2.18.1 Let P be a PD3 -complex. Then π2(P ) is finitely pre-
sentable as a Z[π]-module. Moreover, H2(P ;π2(P )) ∼= H1(π;π2(P )) is finitely
generated of rank 1 if π is virtually free and is finite otherwise.

Proof Since Crisp’s Theorem implies that π is virtually torsion-free, these
assertions follow from the theorem, together with an LHSSS argument.
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Chapter 3

Homotopy invariants of
PD4-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincaré
duality) by its algebraic 2-type and orientation character. In many cases the
formally weaker invariants π1(M), w1(M) and χ(M) already suffice. In §1 we
give criteria in such terms for a degree-1 map between PD4 -complexes to be a
homotopy equivalence, and for a PD4 -complex to be aspherical. We then show
in §2 that if the universal covering space of a PD4 -complex is homotopy equiv-
alent to a finite complex then it is either compact, contractible, or homotopy
equivalent to S2 or S3 . In §3 we obtain estimates for the minimal Euler charac-
teristic of PD4 -complexes with fundamental group of cohomological dimension
at most 2 and determine the second homotopy groups of PD4 -complexes real-
izing the minimal value. The class of such groups includes all surface groups
and classical link groups, and the groups of many other (bounded) 3-manifolds.
The minima are realized by s-parallelizable PL 4-manifolds. In §4 we show that
if χ(M) = 0 then π1(M) satisfies some stringent constraints, and in the final
section we define the reduced intersection pairing.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery
kernel. (Lemma 3.1 and Theorem 3.2 derive from Lemmas 2.2 and 2.3 of [Wl].)

Lemma 3.1 Let R be a ring and C∗ be a finite chain complex of projective
R-modules. If Hi(C∗) = 0 for i < q and Hq+1(HomR(C∗, B)) = 0 for any left
R-module B then Hq(C∗) is projective. If moreover Hi(C∗) = 0 for i > q then
Hq(C∗)⊕

⊕
i≡q+1 (2)Ci

∼=
⊕

i≡q (2)Ci .

Proof We may assume without loss of generality that q = 0 and Ci = 0
for i < 0. We may factor ∂1 : C1 → C0 through B = Im∂1 as ∂1 = jβ ,
where β is an epimorphism and j is the natural inclusion of the submodule
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B . Since jβ∂2 = ∂1∂2 = 0 and j is injective β∂2 = 0. Hence β is a 1-
cocycle of the complex HomR(C∗, B). Since H1(HomR(C∗, B)) = 0 there is
a homomorphism σ : C0 → B such that β = σ∂1 = σjβ . Since β is an
epimorphism σj = idB and so B is a direct summand of C0 . This proves the
first assertion.

The second assertion follows by an induction on the length of the complex.

Theorem 3.2 Let M and N be finite PD4 -complexes. A map f : M → N
is a homotopy equivalence if and only if π1(f) is an isomorphism, f∗w1(N) =
w1(M), f∗[M ] = ±[N ] and χ(M) = χ(N).

Proof The conditions are clearly necessary. Suppose that they hold. Up
to homotopy type we may assume that f is a cellular inclusion of finite cell
complexes, and so M is a subcomplex of N . We may also identify π1(M) with

π = π1(N). Let C∗(M), C∗(N) and D∗ be the cellular chain complexes of M̃ ,

Ñ and (Ñ , M̃), respectively. Then the sequence

0→ C∗(M)→ C∗(N)→ D∗ → 0

is a short exact sequence of finitely generated free Z[π]-chain complexes.

By the projection formula f∗(f
∗a ∩ [M ]) = a ∩ f∗[M ] = ±a ∩ [N ] for any

cohomology class a ∈ H∗(N ;Z[π]). Since M and N satisfy Poincaré du-
ality it follows that f induces split surjections on homology and split injec-
tions on cohomology. Hence Hq(D∗) is the “surgery kernel” in degree q − 1,
and the duality isomorphisms induce isomorphisms from Hr(HomZ[π](D∗, B))

to H6−r(D∗ ⊗ B), where B is any left Z[π]-module. Since f induces iso-
morphisms on homology and cohomology in degrees ≤ 1, with any coeffi-
cients, the hypotheses of Lemma 3.1 are satisfied for the Z[π]-chain com-
plex D∗ , with q = 3, and so H3(D∗) = Ker(π2(f)) is projective. Moreover
H3(D∗)⊕

⊕
i oddDi

∼=
⊕

i evenDi . Thus H3(D∗) is a stably free Z[π]-module
of rank χ(E,M) = χ(M) − χ(E) = 0. Hence H3(D∗) = 0, since group rings
are weakly finite, and so f is a homotopy equivalence.

If M and N are merely finitely dominated, rather than finite, then H3(D∗) is a
finitely generated projective Z[π]-module such that H3(D∗)⊗Z[π] Z = 0. If the

Wall finiteness obstructions satisfy f∗σ(M) = σ(N) in K̃0(Z[π]) then H3(D∗)
is stably free, and the theorem remains true. The theorem holds as stated
for arbitrary PD4 -spaces if π satisfies the Weak Bass Conjecture. (Similar
comments apply elsewhere in this section.)

We shall see that when N is aspherical and f = cM we may drop the hypotheses
that f∗w1(N) = w1(M) and f has degree ±1.
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Corollary 3.2.1 [Ha87] Let N be orientable. Then a map f : N → N which
induces automorphisms of π1(N) and H4(N ;Z) is a homotopy equivalence.

Any self-map of a geometric manifold of semisimple type (e.g., an H4 -, H2(C)-
or H2 ×H2 -manifold) with nonzero degree is a homotopy equivalence [Re96].

If X is a cell complex with fundamental group π then π2(X) ∼= H2(X;Z[π]),
by the Hurewicz Theorem for X̃ , and so there is an evaluation homomorphism
ev : H2(X;Z[π])→ HomZ[π](π2(X),Z[π]). The latter module may be identified

with H0(π;H2(X̃;Z[π])), the π -invariant subgroup of the cohomology of X̃
with coefficients Z[π].

Lemma 3.3 Let M be a PD4 -space with fundamental group π and let Π =
π2(M). Then Π ∼= H2(M ;Z[π]) and there is an exact sequence

0→ H2(π;Z[π])→ H2(M ;Z[π])
ev−−−−→ HomZ[π](Π,Z[π])→ H3(π;Z[π])→ 0.

Proof This follows from the Hurewicz Theorem, Poincaré duality and the
UCSS, since H3(M ;Z[π]) ∼= H1(M̃ ;Z) = 0.

Exactness of much of this sequence can be derived without the UCSS. When
π is finite the sequence reduces to the Poincaré duality isomorphism π2(M) ∼=
HomZ[π](π2(M),Z[π]).

Let ev(2) : H2
(2)(M̃) → HomZ[π](π2(M), `2(π)) be the analogous evaluation

defined on the unreduced L2 -cohomology by ev(2)(f)(z) = Σf(g−1z)g for
all square summable 2-cocycles f and all 2-cycles z representing elements of
H2(X;Z[π]) ∼= π2(M). Part of the next theorem is implicit in [Ec94].

Theorem 3.4 Let M be a PD4 -complex with fundamental group π . Then

(1) if β
(2)
1 (π) = 0 and M is finite or π satisfies the Weak Bass Conjecture

then χ(M) ≥ 0;

(2) Ker(ev(2)) is closed;

(3) if β
(2)
2 (M) = β

(2)
2 (π) then H2(cM ;Z[π]) : H2(π;Z[π]) → H2(M ;Z[π]) is

an isomorphism.

Proof Since M is a PD4 -complex β
(2)
i (M) = β

(2)
4−i(M) for all i. If M is

finite or π satisfies the Weak Bass Conjecture the alternating sum of the L2 -

Betti numbers gives the Euler characteristic [Ec96], and so χ(M) = 2β
(2)
0 (π)−

2β
(2)
1 (π) + β

(2)
2 (M). Hence χ(M) ≥ β(2)

2 (M) ≥ 0 if β
(2)
1 (π) = 0.
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Let z ∈ C2(M̃) be a 2-cycle and f ∈ C(2)
2 (M̃) a square-summable 2-cocycle. As

||ev(2)(f)(z)||2 ≤ ||f ||2||z||2 , the map f 7→ ev(2)(f)(z) is continuous, for fixed
z . Hence if f = limfn and ev(2)(fn) = 0 for all n then ev(2)(f) = 0.

The inclusion Z[π] < `2(π) induces a homomorphism from the exact sequence
of Lemma 3.3 to the corresponding sequence with coefficients `2(π). (See §1.4 of

[Ec94]. Note that we may identify H0(π;H2(M̃ ;A)) with HomZ[π](π2(M), A)

for A = Z[π] or `2(π) since M̃ is 1-connected.) As Ker(ev(2)) is closed and
ev(2)(δg)(z) = ev(2)(g)(∂z) = 0 for any square summable 1-chain g , the ho-

momorphism ev(2) factors through the reduced L2 -cohomology H̄2
(2)(M̃). If

β
(2)
2 (M) = β

(2)
2 (π) the classifying map cM : M → K(π, 1) induces weak isomor-

phisms on reduced L2 -cohomology H̄ i
(2)(π)→ H̄ i

(2)(M̃) for i ≤ 2. In particular,

the image of H̄2
(2)(π) is dense in H̄2

(2)(M̃). Since ev(2) is trivial on H̄2
(2)(π) and

Ker(ev(2)) is closed it follows that ev(2) = 0. Since the natural homomorphism
from HomZ[π](π2(M),Z[π]) to HomZ[π](π2(M), `2(π)) is a monomorphism it
follows that ev = 0 also and so H2(cM ;Z[π]) is an isomorphism.

This gives a complete and natural criterion for asphericity (which we state as a
separate theorem to retain the enumeration of the original version of this book).

Theorem 3.5 Let M be a PD4 -complex with fundamental group π . Then

M is aspherical if and only if Hs(π;Z[π]) = 0 for s ≤ 2 and β
(2)
2 (M) = β

(2)
2 (π).

Proof The conditions are clearly necessary. If they hold then H2(M ;Z[π]) ∼=
H2(π;Z[π]) = 0 and so M is aspherical, by Poincaré duality.

Is it possible to replace the hypothesis “β
(2)
2 (M) = β

(2)
2 (π)” by “β2(M+) =

β2(Ker(w1(M)))”, where p+ : M+ →M is the orientation cover? It is easy to
find examples to show that the homological conditions on π cannot be relaxed
further.

Corollary 3.5.1 The PD4 -complex M is finite and aspherical if and only if
π is a finitely presentable PD4 -group of type FF and χ(M) = χ(π).

If β2(π) 6= 0 this follows from Theorem 3.2. For we may assume π and M are
orientable, on replacing π by K = Ker(w1(M)) ∩Ker(w1(π)) and M by MK .
As H2(cM ;Z) is onto it is an isomorphism, so cM has degree ±1, by Poincaré
duality. Is M always aspherical if π is a PD4 -group and χ(M) = χ(π)?
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Corollary 3.5.2 If χ(M) = β
(2)
1 (π) = 0 and Hs(π;Z[π]) = 0 for s ≤ 2 then

M is aspherical and π is a PD4 -group.

Corollary 3.5.3 If π ∼= Zr then χ(M) ≥ 0, and is 0 only if r = 1, 2 or 4.

Proof If r > 2 then Hs(π;Z[π]) = 0 for s ≤ 2.

Theorem 3.5 implies that if π is a PD4 -group and χ(M) = χ(π) then cM∗[M ] is
nonzero. If χ(M) > χ(π) this need not be true. Given any finitely presentable
group π there is a finite 2-complex K with π1(K) ∼= π . The boundary of a
regular neighbourhood N of some embedding of K in R5 is a closed orientable
4-manifold M with π1(M) ∼= π . As the inclusion of M into N is 2-connected
and K is a deformation retract of N the classifying map cM factors through cK
and so induces the trivial homomorphism on homology in degrees > 2. However
if M and π are orientable and β2(M) < 2β2(π) then cM must have nonzero
degree, for the image of H2(π;Q) in H2(M ;Q) then cannot be self-orthogonal
under cup-product.

Theorem 3.6 Let π be a PD4 -group of type FF . Then def(π) < 1− 1
2χ(π).

Proof Suppose that π has a presentation of deficiency d ≥ 1− 1
2χ(π), and let

X be the corresponding finite 2-complex. Then β
(2)
2 (π)− β(2)

1 (π) ≤ β
(2)
2 (X)−

β
(2)
1 (π) = χ(X) = 1 − d. Since we also have β

(2)
2 (π) − 2β

(2)
1 (π) = χ(π) and

χ(π) ≥ 2 − 2d it follows that β
(2)
1 (π) ≤ d− 1. Hence β

(2)
2 (X) = 0. Therefore

X is aspherical, by Theorem 2.4, and so c.d.π ≤ 2. But this contradicts the
hypothesis that π is a PD4 -group.

Note that if χ(π) is odd the conclusion does not imply that def(π) ≤ −1
2χ(π).

An old conjecture of H.Hopf asserts that if M is an aspherical smooth 2k -
manifold then (−1)kχ(M) ≥ 0. The first open case is when k = 2. If Hopf’s
conjecture is true then def(π1(M)) ≤ 0. Is def(π) ≤ 0 for every PD4 -group
π? This bound is best possible for groups with χ = 0, since the presentation
〈a, b | ba2 = a3b2, b2a = a2b3〉 gives a Cappell-Shaneson 2-knot group Z3oAZ .

The hypothesis on orientation characters in Theorem 3.2 is often redundant.

Theorem 3.7 Let f : M → N be a 2-connected map between finite PD4 -
complexes with χ(M) = χ(N). If H2(N ;F2) 6= 0 then f∗w1(N) = w1(M),
and if moreover N is orientable and H2(N ;Q) 6= 0 then f is a homotopy
equivalence.
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Proof Since f is 2-connected H2(f ;F2) is injective, and since χ(M) = χ(N)
it is an isomorphism. Since H2(N ;F2) 6= 0, the nondegeneracy of Poincaré
duality implies that H4(f ;F2) 6= 0, and so f is a F2 -(co)homology equivalence.
Since w1(M) is characterized by the Wu formula x ∪ w1(M) = Sq1x for all x
in H3(M ;F2), it follows that f∗w1(N) = w1(M).

If H2(N ;Q) 6= 0 then H2(N ;Z) has positive rank and H2(N ;F2) 6= 0, so N
orientable implies M orientable. We may then repeat the above argument with
integral coefficients, to conclude that f has degree ±1. The result then follows
from Theorem 3.2.

The argument breaks down if, for instance, M = S1×̃S3 is the nonorientable
S3 -bundle over S1 , N = S1 × S3 and f is the composite of the projection of
M onto S1 followed by the inclusion of a factor.

We would like to replace the hypotheses above that there be a map f : M → N
realizing certain isomorphisms by weaker, more algebraic conditions. If M and
N are closed 4-manifolds with isomorphic algebraic 2-types then there is a 3-
connected map f : M → P2(N). The restriction of such a map to Mo = M \D4

is homotopic to a map fo : Mo → N which induces isomorphisms on πi for
i ≤ 2. In particular, χ(M) = χ(N). Thus if fo extends to a map from M
to N we may be able to apply Theorem 3.2. However we usually need more
information on how the top cell is attached. The characteristic classes and the
equivariant intersection pairing on π2(M) are the obvious candidates.

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let E be a PD4 -complex with fundamental group π and such
that H4(fE ;Zw1(E)) is a monomorphism. A PD4 -complex M is homotopy
equivalent to E if and only if there is an isomorphism θ from π1(M) to π
such that w1(M) = w1(E)θ , there is a lift ĉ : M → P2(E) of θcM such that
ĉ∗[M ] = ±fE∗[E] and χ(M) = χ(E).

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing
the obstructions to the existence of a degree 1 map between PD3 -complexes
realizing a given homomorphism of fundamental groups. For simplicity of no-
tation we shall write Z̃ for Zw1(E) and also for Zw1(M)(= θ∗Z̃), and use θ to
identify π1(M) with π and K(π1(M), 1) with K(π, 1). We may suppose the
sign of the fundamental class [M ] is so chosen that ĉ∗[M ] = fE∗[E].
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Let Eo = E \D4 . Then P2(Eo) = P2(E) and may be constructed as the union
of Eo with cells of dimension ≥ 4. Let

h : Z̃ ⊗Z[π] π4(P2(Eo), Eo)→ H4(P2(Eo), Eo; Z̃)

be the w1(E)-twisted relative Hurewicz homomorphism, and let ∂ be the con-
necting homomorphism from π4(P2(Eo), Eo) to π3(Eo) in the exact sequence of
homotopy for the pair (P2(Eo), Eo). Then h and ∂ are isomorphisms since fEo
is 3-connected, and so the homomorphism τE : H4(P2(E); Z̃)→ Z̃ ⊗Z[π] π3(Eo)
given by the composite of the inclusion

H4(P2(E); Z̃) = H4(P2(Eo); Z̃)→ H4(P2(Eo), Eo; Z̃)

with h−1 and 1 ⊗Z[π] ∂ is a monomorphism. Similarly Mo = M \ D4 may
be viewed as a subspace of P2(Mo) and there is a monomorphism τM from
H4(P2(M); Z̃) to Z̃ ⊗Z[π] π3(Mo). These monomorphisms are natural with
respect to maps defined on the 3-skeleta (i.e., Eo and Mo ).

The classes τE(fE∗[E]) and τM (fM∗[M ]) are the images of the primary ob-
structions to retracting E onto Eo and M onto Mo , under the Poincaré du-
ality isomorphisms from H4(E,Eo;π3(Eo)) to H0(E \ Eo; Z̃ ⊗Z[π] π3(Eo)) =

Z̃ ⊗Z[π] π3(Eo) and H4(M,Mo;π3(Mo)) to Z̃ ⊗Z[π] π3(Mo), respectively. Since
Mo is homotopy equivalent to a cell complex of dimension ≤ 3 the restriction of
ĉ to Mo is homotopic to a map from Mo to Eo . Let ĉ] be the homomorphism
from π3(Mo) to π3(Eo) induced by ĉ|Mo . Then (1 ⊗Z[π] ĉ])τM (fM∗[M ]) =
τE(fE∗[E]). It follows as in [Hn77] that the obstruction to extending ĉ|Mo :
Mo → Eo to a map d from M to E is trivial.

Since fE∗d∗[M ] = ĉ∗[M ] = fE∗[E] and fE∗ is a monomorphism in degree 4 the
map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2.

If there is such a lift ĉ then c∗Mθ
∗k1(E) = 0 and θ∗cM∗[M ] = cE∗[E].

3.2 Finitely dominated covering spaces

In this section we shall show that if a PD4 -complex M has a finitely domi-
nated, infinite regular covering space then either M is aspherical or its universal
covering space is homotopy equivalent to S2 or S3 . In Chapters 4 and 5 we
shall see that such manifolds are close to being total spaces of fibre bundles.

Theorem 3.9 Let M be a PD4 -complex with fundamental group π , and let
Mν be the covering space associated to ν = Ker(p), where p : π → G is an
epimorphism. Suppose that Mν is finitely dominated. Then
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(1) G has finitely many ends;

(2) if Mν is acyclic then it is contractible and M is aspherical;

(3) if G has one end and ν is infinite and FP3 then M is aspherical and Mν

is homotopy equivalent to an aspherical closed surface or to S1 ;

(4) if G has one end and ν is finite but Mν is not acyclic then Mν ' S2 or
RP 2 ;

(5) G has two ends if and only if Mν is a PD3 -complex.

Proof We may clearly assume that G is infinite. As Z[G] has no nonzero
left ideal (i.e., submodule) which is finitely generated as an abelian group
HomZ[G](Hq(Mν ;Z),Z[G]) = 0 for all q ≥ 0, and so the bottom row of the
UCSS for the covering p is 0. From Poincaré duality and the UCSS we find
that H4(Mν ;Z) = H0(G;Z[G]) = 0 and H1(G;Z[G]) ∼= H3(Mν ;Z). As this
group is finitely generated, and as G is infinite, G has one or two ends. Simi-
larly, H2(G;Z[G]) is finitely generated and so H2(G;Z[G]) ∼= Z or 0.

If Mν is acyclic D∗ = Z[G] ⊗Z[π] C∗(M̃) is a resolution of the augmentation
Z[G]-module Z and Hq(D∗) ∼= H4−q(Mν ;Z). Hence G is a PD4 -group, and so

Hs(M̃ ;Z) = Hs(Mν ;Z[ν]) = H−s(Mν ;Z[ν]) = 0 for s > 0, by Theorem 1.19 ′ .
Thus Mν is contractible and so M is aspherical.

Suppose that G has one end. If H2(G;Z[G]) ∼= Z then G is virtually a PD2 -
group, by Bowditch’s Theorem, and so Mν is a PD2 -complex, by [Go79]. In

general, C∗(M̃)|ν is chain homotopy equivalent to a finitely generated projective
Z[ν]-chain complex P∗ and H3(Mν ;Z) = H4(Mν ;Z) = 0. If ν is FP3 then the
augmentation Z[ν]-module Z has a free resolution F∗ which is finitely generated
in degrees ≤ 3. On applying Schanuel’s Lemma to the exact sequences

0→ Z2 → P2 → P1 → P0 → Z→ 0

and 0→ ∂F3 → F2 → F1 → F0 → Z→ 0

derived from these two chain complexes we find that Z2 is finitely generated as a
Z[ν]-module. Hence Π = π2(M) = π2(Mν) is also finitely generated as a Z[ν]-
module and so Homπ(Π,Z[π]) = 0. If moreover ν is infinite then Hs(π;Z[π]) =
0 for s ≤ 2, so Π = 0, by Lemma 3.3, and M is aspherical. If H2(G;Z[G]) = 0
a spectral sequence corner argument then shows that H3(G;Z[G]) ∼= Z and
Mν ' S1 . (See the following theorem.)

If ν is finite but Mν is not acyclic then the universal covering space M̃ is
also finitely dominated but not contractible, and Π = H2(M̃ ;Z) is a nontrivial

finitely generated abelian group, while H3(M̃ ;Z) = H4(M̃ ;Z) = 0. If C is a
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finite cyclic subgroup of π there are isomorphisms Hn+3(C;Z) ∼= Hn(C; Π), for
all n ≥ 4, by Lemma 2.10. Suppose that C acts trivially on Π. Then if n is
odd this isomorphism reduces to 0 = Π/|C|Π. Since Π is finitely generated,
this implies that multiplication by |C| is an isomorphism. On the other hand,
if n is even we have Z/|C|Z ∼= {a ∈ Π | |C|a = 0}. Hence we must have C = 1.
Now since Π is finitely generated any torsion subgroup of Aut(Π) is finite. (Let
T be the torsion subgroup of Π and suppose that Π/T ∼= Zr . Then the natural
homomorphism from Aut(Π) to Aut(Π/T ) has finite kernel, and its image is
isomorphic to a subgroup of GL(r,Z), which is virtually torsion-free.) Hence
as π is infinite it must have elements of infinite order. Since H2(π;Z[π]) ∼= Π̄,
by Lemma 3.3, it is a finitely generated abelian group. Therefore it must be
infinite cyclic, by Corollary 5.2 of [Fa74]. Hence M̃ ' S2 and ν has order at
most 2, so Mν ' S2 or RP 2 .

Suppose now that Mν is a PD3 -complex. After passing to a finite covering of
M , if necessary, we may assume that Mν is orientable. Then H1(G;Z[G]) ∼=
H3(Mν ;Z), and so G has two ends. Conversely, if G has two ends we may
assume that G ∼= Z , after passing to a finite covering of M , if necessary. Hence
Mν is a PD3 -complex, by [Go79].

The hypotheses that M be a PD4 -complex and Mν be finitely dominated can
be relaxed to requiring that M be a PD4 -space and C∗(M̃) be Z[ν]-finitely
dominated, and the appeal to [Go79] can be avoided. (See Theorem 4.1.) It
can be shown that the hypothesis in (3) that ν be FP3 is redundant if M is a
finite PD4 -space. (See [Hi13b].)

Corollary 3.9.1 The covering space Mν is homotopy equivalent to a closed
surface if and only if it is finitely dominated and H2(G;Z[G]) ∼= Z .

In this case M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter
5.)

Corollary 3.9.2 The covering space Mν is homotopy equivalent to S1 if and
only if it is finitely dominated, G has one end, H2(G;Z[G]) = 0 and ν is a
nontrivial finitely generated free group.

Proof If Mν ' S1 then it is finitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3) of
Theorem 3.9, since ν is infinite and FP .
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In fact any finitely generated free normal subgroup F of a PDn -group π must
be infinite cyclic. For π/FCπ(F ) embeds in Out(F ), so v.c.d.π/FCπ(F ) ≤
v.c.d.Out(F (r)) < ∞. If F is nonabelian then Cπ(F ) ∩ F = 1 and so π/F
is an extension of π/FCπ(F ) by Cπ(F ). Hence v.c.d.π/F < ∞. Since F is
finitely generated π/F is FP∞ . Hence we may apply Theorem 9.11 of [Bi], and
an LHSSS corner argument gives a contradiction.

In the simply connected case “finitely dominated”, “homotopy equivalent to a
finite complex” and “having finitely generated homology” are all equivalent.

Corollary 3.9.3 If H∗(M̃ ;Z) is finitely generated then either M is aspherical

or M̃ is homotopy equivalent to S2 or S3 or π1(M) is finite.

This was first stated (for π1(M) satisfying a homological finiteness condition)
in [Ku78]. We shall examine the spherical cases more closely in Chapters 10 and
11. (The arguments in these chapters may apply also to PDn -complexes with
universal covering space homotopy equivalent to Sn−1 or Sn−2 . The analogues
in higher codimensions appear to be less accessible.)

The following variation on the aspherical case shall be used in Theorem 4.8,
but belongs naturally here.

Theorem 3.10 Let ν be a nontrivial FP3 normal subgroup of infinite index
in a PD4 -group π , and let G = π/ν . Then either

(1) ν is a PD3 -group and G has two ends;

(2) ν is a PD2 -group and G is virtually a PD2 -group; or

(3) ν ∼= Z , Hs(G;Z[G]) = 0 for s 6= 3 and H3(G;Z[G]) ∼= Z .

Proof Since c.d.ν < 4, by Strebel’s Theorem, ν is FP and hence G is FP∞ .
The E2 terms of the LHSSS with coefficients Q[π] can then be expressed as
Epq2 = Hp(G;Q[G]) ⊗ Hq(ν;Q[ν]). If Hj(G;Q[G]) and Hk(ν;Q[ν]) are the

first nonzero such cohomology groups then Ejk2 persists to E∞ and hence j +
k = 4. Therefore Hj(G;Q[G]) ⊗ H4−j(ν;Q[ν]) ∼= Q, and so Hj(G;Q[G]) ∼=
H4−j(ν;Q[ν]) ∼= Q. If G has two ends it is virtually Z , and then ν is a PD3 -
group, by Theorem 9.11 of [Bi]. If H2(ν;Q[ν]) ∼= H2(G;Q[G]) ∼= Q then ν and
G are virtually PD2 -groups, by Bowditch’s Theorem. Since ν is torsion-free it
is then a PD2 -group. The only remaining possibility is (3).

In case (1) π has a subgroup of index ≤ 2 which is a semidirect product HoθZ
with ν ≤ H and [H : ν] <∞. Is it sufficient that ν be FP2? Must the quotient
π/ν be virtually a PD3 -group in case (3)?
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Corollary 3.10.1 If K is FP2 and is ascendant in ν where ν is an FP3

normal subgroup of infinite index in the PD4 -group π then K is a PDk -group
for some k < 4.

Proof This follows from Theorem 3.10 together with Theorem 2.17.

What happens if we drop the hypothesis that the covering be regular? It follows
easily from Theorem 2.18 that a PD3 -complex has a finitely dominated infinite
covering space if and only if its fundamental group has one or two ends [Hi08].
We might conjecture that if a PD4 -complex M has a finitely dominated infinite
covering space M̂ then either M is aspherical or M̃ is homotopy equivalent
to S2 or S3 or M has a finite covering space which is homotopy equivalent
to the mapping torus of a self homotopy equivalence of a PD3 -complex. (In
particular, π1(M) has one or two ends.) In [Hi08] we extend the arguments

of Theorem 3.9 to show that if π1(M̂) is FP3 and ascendant in π the only

other possibility is that π1(M̂) has two ends, h(
√
π) = 1 and H2(π;Z[π]) is

not finitely generated. This paper also considers in more detail FP ascendant
subgroups of PD4 -groups, corresponding to the aspherical case.

3.3 Minimizing the Euler characteristic

It is well known that every finitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for
the Euler characteristic may be made arbitrarily large by taking connected
sums with simply connected manifolds. Following Hausmann and Weinberger
[HW85], we may define an invariant q(π) for any finitely presentable group π
by

q(π) = min{χ(M)|M is a PD4 complex with π1(M) ∼= π}.

We may also define related invariants qX where the minimum is taken over the
class of PD4 -complexes whose normal fibration has an X -reduction. There
are the following basic estimates for qSG , which is defined in terms of PD+

4 -
complexes.

Lemma 3.11 Let π be a finitely presentable group with a subgroup H of
finite index and let F be a field. Then

(1) 1− β1(H;F ) + β2(H;F ) ≤ [π : H](1− defπ);

(2) 2− 2β1(H;F ) + β2(H;F ) ≤ [π : H]qSG(π);
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(3) qSG(π) ≤ 2(1− def(π));

(4) if H4(π;F ) = 0 then qSG(π) ≥ 2(1−β1(π;F )+β2(π;F )), and if moreover
H4(π;F2) = 0 then q(π) ≥ 2(1− β1(π;F2) + β2(π;F2)) also.

Proof Let C be the 2-complex corresponding to a presentation for π of max-
imal deficiency and let CH be the covering space associated to the subgroup
H . Then χ(C) = 1 − defπ and χ(CH) = [π : H]χ(π). Condition (1) follows
since β1(H;F ) = β1(CH ;F ) and β2(H;F ) ≤ β2(CH ;F ).

Condition (2) follows similarly on considering the Euler characteristics of a
PD+

4 -complex M with π1(M) ∼= π and of the associated covering space MH .

The boundary of a regular neighbourhood of a PL embedding of C in R5 is a
closed orientable 4-manifold realizing the upper bound in (3).

The image of H2(π;F ) in H2(M ;F ) has dimension β2(π;F ), and is self-
annihilating under cup-product if H4(π;F ) = 0. In that case β2(M ;F ) ≥
2β2(π;F ), which implies the first part of (4). The final observation follows
since all PDn -complexes are orientable over F2 .

Condition (2) was used in [HW85] to give examples of finitely presentable su-
perperfect groups which are not fundamental groups of homology 4-spheres.
(See Chapter 14 below.)

If π is a finitely presentable, orientable PD4 -group we see immediately that
qSG(π) ≥ χ(π). Multiplicativity then implies that q(π) = χ(π) if K(π, 1) is a
finite PD4 -complex.

For groups of cohomological dimension at most 2 we can say more.

Theorem 3.12 Let X be a PD4 -complex with fundamental group π such
that c.d.π ≤ 2, and let C∗ = C∗(X;Z[π]). Then

(1) C∗ is Z[π]-chain homotopy equivalent to D∗⊕L[2]⊕D4−∗ , where D∗ is a
projective resolution of Z, L[2] is a finitely generated projective module
L concentrated in degree 2 and D4−∗ is the conjugate dual of D∗ , shifted
to terminate in degree 2;

(2) π2(X) ∼= L⊕H2(π;Z[π]);

(3) χ(X) ≥ 2χ(π), with equality if and only if L = 0;

(4) HomZ[π](H2(π;Z[π]),Z[π]) = 0.
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Proof The chain complex C∗ gives a resolution of the augmentation module

0→ Im(∂C2 )→ C1 → C0 → Z→ 0.

Let D∗ be the corresponding chain complex with D0 = C0 , D1 = C1 and
D2 = Im(∂C2 ). Since c.d.π ≤ 2 and D0 and D1 are projective modules D2 is
projective, by Schanuel’s Lemma. Therefore the epimorphism from C2 to D2

splits, and so C∗ is a direct sum C∗ ∼= D∗⊕(C/D)∗ . Since X is a PD4 -complex
C∗ is chain homotopy equivalent to C4−∗ . The first two assertions follow easily.

On taking homology with simple coefficients Q, we see that χ(X) = 2χ(π) +
dimQQ⊗πL. Hence χ(X) ≥ 2χ(π). Since π satisfies the Weak Bass Conjecture
[Ec86] and L is projective, L = 0 if and only if dimQQ⊗π L = 0.

Let δ : D2 → D1 be the inclusion. Then H2(π;Z[π]) = Cok(δ†), where δ† is

the conjugate transpose of δ . Hence HomZ[π](H2(π;Z[π]),Z[π]) = Ker(δ††) .

But δ†† = δ , which is injective, and so HomZ[π](H2(π;Z[π]),Z[π]) = 0.

The appeal to the Weak Bass Conjecture may be avoided if X and K(π, 1) are
homotopy equivalent to finite complexes. For then L is stably free, and so is 0
if and only if Z⊗Z[π] L = 0, since group rings are weakly finite.

Similar arguments may be used to prove the following variation.

Addendum Suppose that c.d.Rπ ≤ 2 for some ring R. Then R⊗ π2(M) ∼=
P⊕H2(π;R[π]), where P is a projective R[π]-module, and χ(M) ≥ 2χ(π;R) =
2(1− β1(π;R) + β2(π;R)). If R is a subring of Q then χ(M) = 2χ(π;R) if
and only if π2(M) ∼= H2(π;Z[π]).

There are many natural examples of 4-manifolds with π1(M) = π having non-
trivial torsion and such that c.d.Qπ ≤ 2 and χ(M) = 2χ(π). (See Chapters 10
and 11.) However all the known examples satisfy v.c.d.π ≤ 2.

Corollary 3.12.1 If H2(π;F2) 6= 0 the Hurewicz homomorphism from π2(M)
to H2(M ;F2) is nonzero.

Proof By the addendum to the theorem, H2(M ;F2) has dimension at least
2β2(π), and so cannot be isomorphic to H2(π;F2) unless both are 0.

Corollary 3.12.2 If π = π1(P ) where P is an aspherical finite 2-complex then
q(π) = 2χ(P ). The minimum is realized by an s-parallelizable PL 4-manifold.
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Proof If we choose a PL embedding j : P → R5 , the boundary of a regular
neighbourhood N of j(P ) is an s-parallelizable PL 4-manifold with fundamen-
tal group π and with Euler characteristic 2χ(P ).

By Theorem 2.8 a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension ≤ 2
and is efficient, i.e. has a presentation of deficiency β1(π;Q) − β2(π;Q). It is
not known whether every finitely presentable group of cohomological dimension
2 is efficient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is
a closed 4-manifold with π1(M) ∼= π then χ(M) = q(π) if and only if M is
homotopy equivalent to the total space of an S2 -bundle over P . The homotopy
types of such minimal 4-manifolds for π may be distinguished by their Stiefel-
Whitney classes. Note that if π is orientable then S2 × P is a minimal 4-
manifold for π which is both s-parallelizable and also a projective algebraic
complex surface. Note also that the conjugation of the module structure in the
theorem involves the orientation character of M which may differ from that of
the PD2 -group π .

Corollary 3.12.3 If π is the group of an unsplittable µ-component 1-link
then q(π) = 0.

If π is the group of a µ-component n-link with n ≥ 2 then H2(π;Q) = 0 and
so q(π) ≥ 2(1− µ), with equality if and only if π is the group of a 2-link. (See
Chapter 14.)

Corollary 3.12.4 If π is an extension of Z by a finitely generated free normal
subgroup then q(π) = 0.

In Chapter 4 we shall see that if M is a closed 4-manifold with π1(M) such an
extension then χ(M) = q(π) if and only if M is homotopy equivalent to a man-
ifold which fibres over S1 with fibre a closed 3-manifold with free fundamental
group, and then π and w1(M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F (2) is an extension of
Z by F (∞), and q(F (2)) = 2χ(F (2)) = −2.

Let π be the fundamental group of a closed orientable 3-manifold. Then π ∼=
F ∗ν where F is free of rank r and ν has no infinite cyclic free factors. Moreover
ν = π1(N) for some closed orientable 3-manifold N . If M0 is the closed 4-
manifold obtained by surgery on {n}×S1 in N×S1 then M = M0](]

r(S1×S3)
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is a smooth s-parallelisable 4-manifold with π1(M) ∼= π and χ(M) = 2(1− r).
Hence qSG(π) = 2(1− r), by part (4) of Lemma 3.11.

The arguments of Theorem 3.12 give stronger results in this case also.

Theorem 3.13 Let π be a finitely presentable PD3 -group, and let M be a
PD4 -complex with fundamental group π and w1(π) = w1(M). Then q(π) = 2,
and there are finitely generated projective Z[π]-modules P and P ′ such that
π2(M)⊕ P ∼= A(π)⊕ P ′ , where A(π) is the augmentation ideal of Z[π].

Proof Let N be a PD3 -complex with fundamental group π . We may suppose
that N = No ∪D3 , where No ∩D3 = S2 . Let M = No × S1 ∪ S2 ×D2 . Then
M is a PD4 -complex, χ(M) = 2 and π1(M) ∼= π . Hence q(π) ≤ 2. On the
other hand, q(π) ≥ 2 by part (4) of Lemma 3.11, and so q(π) = 2.

For any left Z[π]-module N let eiN = ExtiZ[π](N,Z[π]), to simplify the nota-
tion. The cellular chain complex for the universal covering space of M gives
exact sequences

0→ C4 → C3 → Z2 → H2 → 0 (3.1)

and 0→ Z2 → C2 → C1 → C0 → Z→ 0. (3.2)

Since π is a PD3 -group the augmentation module Z has a finite projective
resolution of length 3. On comparing sequence 3.2 with such a resolution and
applying Schanuel’s lemma we find that Z2 is a finitely generated projective
Z[π]-module. Since π has one end, the UCSS reduces to an exact sequence

0→ H2 → e0H2 → e3Z→ H3 → e1H2 → 0 (3.3)

and isomorphisms H4 ∼= e2H2 and e3H2 = e4H2 = 0. Poincaré duality implies
that H3 = 0 and H4 ∼= Z. Hence sequence 3.3 reduces to

0→ H2 → e0H2 → e3Z→ 0 (3.4)

and e1H2 = 0. On dualizing the sequence 3.1 and conjugating we get an exact
sequence of left modules

0→ e0H2 → e0Z2 → e0C3 → e0C4 → e2H2
∼= Z→ 0. (3.5)

Schanuel’s lemma again implies that e0H2 is a finitely generated projective
module. Now π2(M) ∼= H2 , by Poincaré duality, and e3Z ∼= Z, since π is
a PD3 -group and w1(M) = w1(π). Hence the final assertion follows from
sequence 3.4 and Schanuel’s Lemma.
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Can Theorem 3.13 be extended to all torsion-free 3-manifold groups, or more
generally to all free products of PD3 -groups?

There has been some related work estimating the difference χ(M) − |σ(M)|
where M is a closed orientable 4-manifold M with π1(M) ∼= π and where
σ(M) is the signature of M . In particular, this difference is always ≥ 0 if

β
(2)
1 (π) = 0. (See [JK93] and §3 of Chapter 7 of [Lü].) The minimum value of

this difference (p(π) = min{χ(M)− |σ(M)|}) is another numerical invariant of
π , which is studied in [Ko94].

3.4 Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that χ(M) = 0
and show that if π is an ascending HNN extension then it satisfies some very
stringent conditions. The groups Z∗m shall play an important role. We shall
approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamen-
tal group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G/I(G) is
free abelian.

Lemma 3.14 Let M be a PD4 -space with χ(M) ≤ 0. If M is orientable
then H1(M ;Z) 6= 0 and so π = π1(M) maps onto Z . If H1(M ;Z) = 0 then π
maps onto D .

Proof The covering space MW corresponding to W = Ker(w1(M)) is ori-
entable and χ(MW ) = 2− 2β1(MW ) + β2(MW ) = [π : W ]χ(M) ≤ 0. Therefore
β1(W ) = β1(MW ) > 0 and so W/I(W ) ∼= Zr for some r > 0. Since I(W ) is
characteristic in W it is normal in π . As [π : W ] ≤ 2 it follows easily that
π/I(W ) maps onto Z or D .

Note that if M = RP 4]RP 4 , then χ(M) = 0 and π1(M) ∼= D , but π1(M)
does not map onto Z .

Lemma 3.15 Let M be a PD+
4 -complex such that χ(M) = 0 and π = π1(M)

is an extension of Z∗m by a finite normal subgroup F , for some m 6= 0. Then
the abelian subgroups of F are cyclic. If F 6= 1 then π has a subgroup of finite
index which is a central extension of Z∗n by a nontrivial finite cyclic group,
where n is a power of m.
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Proof Let M̂ be the infinite cyclic covering space corresponding to the sub-
group I(π). Since M is compact and Λ = Z[Z] is noetherian the groups

Hi(M̂ ;Z) = Hi(M ; Λ) are finitely generated as Λ-modules. Since M is ori-
entable, χ(M) = 0 and H1(M ;Z) has rank 1 they are Λ-torsion modules,

by the Wang sequence for the projection of M̂ onto M . Now H2(M̂ ;Z) ∼=
Ext1Λ(I(π)/I(π)′,Λ), by Poincaré duality. There is an exact sequence

0→ T → I(π)/I(π)′ → I(Z∗m) ∼= Λ/(t−m)→ 0,

where T is a finite Λ-module. Therefore Ext1Λ(I(π)/I(π)′,Λ) ∼= Λ/(t − m)
and so H2(I(π);Z) is a quotient of Λ/(mt − 1), which is isomorphic to Z[ 1

m ]
as an abelian group. Now I(π)/Ker(f) ∼= Z[ 1

m ] also, and H2(Z[ 1
m ];Z) ∼=

Z[ 1
m ] ∧ Z[ 1

m ] = 0. (See page 334 of [Ro].) Hence H2(I(π);Z) is finite, by an
LHSSS argument, and so is cyclic, of order relatively prime to m.

Let t in π generate π/I(π) ∼= Z . Let A be a maximal abelian subgroup of
F and let C = Cπ(A). Then q = [π : C] is finite, since F is finite and
normal in π . In particular, tq is in C and C maps onto Z , with kernel J , say.
Since J is an extension of Z[ 1

m ] by a finite normal subgroup its centre ζJ has
finite index in J . Therefore the subgroup G generated by ζJ and tq has finite
index in π , and there is an epimorphism f from G onto Z∗mq , with kernel
A. Moreover I(G) = f−1(I(Z∗mq)) is abelian, and is an extension of Z[ 1

m ] by
the finite abelian group A. Hence it is isomorphic to A⊕Z[ 1

m ]. (See page 106
of [Ro].) Now H2(I(G);Z) is cyclic of order prime to m. On the other hand
H2(I(G);Z) ∼= (A ∧A)⊕ (A⊗ Z[ 1

m ]) and so A must be cyclic.

If F 6= 1 then A is cyclic, nontrivial, central in G and G/A ∼= Z∗mq .

Lemma 3.16 Let M be a finite PD4 -complex with fundamental group π .
Suppose that π has a nontrivial finite cyclic central subgroup F with quotient
G = π/F such that g.d.G = 2, e(G) = 1 and def(G) = 1. Then χ(M) ≥ 0. If
χ(M) = 0 and Ξ = Fp[G] is a weakly finite ring for some prime p dividing |F |
then π is virtually Z2 .

Proof Let M̂ be the covering space of M with group F , and let cq be the
number of q -cells of M , for q ≥ 0. Let C∗ = C∗(M ; Ξ) = Fp ⊗ C∗(M) be

the equivariant cellular chain complex of M̂ with coefficients Fp and let Hp =

Hp(M ; Ξ) = Hp(M̂ ;Fp). For any left Ξ-module H let eqH = ExtqΞ(H,Ξ).

Since M̂ is connected and F is cyclic H0
∼= H1

∼= Fp and since G has one end
Poincaré duality and the UCSS give H3 = H4 = 0, an exact sequence

0→ e2Fp → H2 → e0H2 → e2H1 → H1 → e1H2 → 0
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and an isomorphism e2H2
∼= Fp . Since g.d.G = 2 and def(G) = 1 the augmen-

tation module has a resolution

0→ Ξr → Ξr+1 → Ξ→ Fp → 0.

The chain complex C∗ gives four exact sequences

0→ Z1 → C1 → C0 → Fp → 0,

0→ Z2 → C2 → Z1 → Fp → 0,

0→ B2 → Z2 → H2 → 0

and 0→ C4 → C3 → B2 → 0.

Using Schanuel’s Lemma several times we find that the cycle submodules Z1

and Z2 are stably free, of stable ranks c1 − c0 and c2 − c1 + c0 , respectively.
Dualizing the last two sequences gives two new sequences

0→ e0B2 → e0C3 → e0C4 → e1B2 → 0

and 0→ e0H2 → e0Z2 → e0B2 → e1H2 → 0,

and an isomorphism e1B2
∼= e2H2

∼= Fp . Further applications of Schanuel’s
Lemma show that e0B2 is stably free of rank c3 − c4 , and hence that e0H2 is
stably free of rank c2− c1 + c0− (c3− c4) = χ(M). Since Ξ maps onto the field
Fp the rank must be non-negative, and so χ(M) ≥ 0.

If χ(M) = 0 and Ξ = Fp[G] is a weakly finite ring then e0H2 = 0 and so
e2Fp = e2H1 is a submodule of Fp ∼= H1 . Moreover it cannot be 0, for otherwise
the UCSS would give H2 = 0 and then H1 = 0, which is impossible. Therefore
e2Fp ∼= Fp .

Since G is torsion-free and indicable it must be a PD2 -group, by Theorem
V.12.2 of [DD]. Since def(G) = 1 it follows that G ∼= Z2 or Z o−1 Z , and
hence that π is also virtually Z2 .

The hypothesis on Ξ is satisfied if G is an extension of an amenable group
by a free normal subgroup [AO’M02]. In particular, this is so if G′ is finitely
generated, by Corollary 4.3.1.

We may now give the main result of this section.

Theorem 3.17 Let M be a finite PD4 -complex whose fundamental group π
is an ascending HNN extension with finitely generated base B . Then χ(M) ≥ 0,
and hence q(π) ≥ 0. If χ(M) = 0 and B is FP2 and finitely ended then either
π has two ends or π ∼= Z∗m or Z ∗m o(Z/2Z) for some m 6= 0 or ±1 or π is
virtually Z2 or M is aspherical.
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Proof The L2 Euler characteristic formula gives χ(M) = β
(2)
2 (M) ≥ 0, since

β
(2)
i (M) = β

(2)
i (π) = 0 for i = 0 or 1, by Lemma 2.1.

Let φ : B → B be the monomorphism determining π ∼= B∗φ . If B is finite
then φ is an automorphism and so π has two ends. If B is FP2 and has one
end then Hs(π;Z[π]) = 0 for s ≤ 2, by the Brown-Geoghegan Theorem. If
moreover χ(M) = 0 then M is aspherical, by Corollary 3.5.2.

If B has two ends then it is an extension of Z or D by a finite normal subgroup
F . As φ must map F isomorphically to itself, F is normal in π , and is the
maximal finite normal subgroup of π . Moreover π/F ∼= Z∗m , for some m 6= 0,
if B/F ∼= Z , and is a semidirect product Z ∗m o(Z/2Z), with a presentation
〈a, t, u | tat−1 = am, tut−1 = uar, u2 = 1, uau = a−1〉, for some m 6= 0 and
some r ∈ Z , if B/F ∼= D . (On replacing t by a[r/2]t, if necessary, we may
assume that r = 0 or 1.)

Suppose first that M is orientable, and that F 6= 1. Then π has a subgroup
σ of finite index which is a central extension of Z∗mq by a finite cyclic group,
for some q ≥ 1, by Lemma 3.15. Let p be a prime dividing q . Since Z∗mq is a
torsion-free solvable group the ring Ξ = Fp[Z∗mq ] has a skew field of fractions
L, which as a right Ξ-module is the direct limit of the system {Ξθ | 0 6= θ ∈ Ξ},
where each Ξθ = Ξ, the index set is ordered by right divisibility (θ ≤ φθ) and
the map from Ξθ to Ξφθ sends ξ to φξ [KLM88]. In particular, Ξ is a weakly
finite ring and so π is virtually Z2 , by Lemma 3.16.

If M is nonorientable then either w1(M)|F is injective, so π ∼= Z ∗m o(Z/2Z),
or π is virtually Z2 .

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary 3.17.1 Let M be a finite PD4 -complex such that χ(M) = 0 and
π = π1(M) is almost coherent and restrained. Then either π has two ends or
π ∼= Z∗m or Z∗m o(Z/2Z) for some m 6= 0 or ±1 or π is virtually Z2 or M
is aspherical.

Proof Let π+ = Ker(w1(M)). Then π+ maps onto Z , by Lemma 3.14, and so
is an ascending HNN extension π+ ∼= B∗φ with finitely generated base B . Since
π is almost coherent B is FP2 , and since π has no nonabelian free subgroup
B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either
π has two ends or M is aspherical or π+ ∼= Z∗m or Z ∗m o(Z/2Z) for some
m 6= 0 or ±1. In the latter case

√
π is isomorphic to a subgroup of the additive

rationals Q, and
√
π = Cπ(

√
π). Hence the image of π in Aut(

√
π) ≤ Q× is
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infinite. Therefore π maps onto Z and so is an ascending HNN extension B∗φ ,
and we may again use Theorem 3.17.

Does this corollary remain true without the hypothesis that π be almost co-
herent?

There are nine groups which are virtually Z2 and are fundamental groups of
PD4 -complexes with Euler characteristic 0. (See Chapter 11.) Are any of the
groups Z ∗m o(Z/2Z) with |m| > 1 realized by PD4 -complexes with χ = 0?
If π is restrained and M is aspherical must π be virtually poly-Z ? (Aspheri-
cal 4-manifolds with virtually poly-Z fundamental groups are characterized in
Chapter 8.)

Let G is a group with a presentation of deficiency d and w : G → {±1} be
a homomorphism, and let 〈xi, 1 ≤ i ≤ m | rj , 1 ≤ j ≤ n〉 be a presentation
for G with m − n = d. We may assume that w(xi) = +1 for i ≤ m − 1. Let
X = \m(S1×D3) if w = 1 and X = (\m−1(S1×D3))\(S1×̃D3) otherwise. The
relators rj may be represented by disjoint orientation preserving embeddings
of S1 in ∂X , and so we may attach 2-handles along product neighbourhoods,
to get a bounded 4-manifold Y with π1(Y ) = G, w1(Y ) = w and χ(Y ) =
1 − d. Doubling Y gives a closed 4-manifold M with χ(M) = 2(1 − d) and
(π1(M), w1(M)) isomorphic to (G,w).

Since the groups Z∗m have deficiency 1 it follows that any homomorphism
w : Z∗m → {±1} may be realized as the orientation character of a closed 4-
manifold with fundamental group Z∗m and Euler characteristic 0. What other
invariants are needed to determine the homotopy type of such a manifold?

3.5 The intersection pairing

Let X be a PD4 -complex with fundamental group π and let w = w1(X). In
this section it shall be convenient to work with left modules. Thus if L is a left
Z[π]-module we shall let L† = HomZ[π](L,Z[π]) be the conjugate dual module.

If L is free, stably free or projective so is L† .

Let H = H2(X;Z[π]) and Π = π2(X), and let D : H → Π and ev : H → Π†

be the Poincaré duality isomorphism and the evaluation homomorphism, re-
spectively. The cohomology intersection pairing λ : H × H → Z[π] is defined
by λ(u, v) = ev(v)(D(u)), for all u, v ∈ H . This pairing is w -hermitian:
λ(gu, hv) = gλ(u, v)h̄ and λ(v, u) = λ(u, v) for all u, v ∈ H and g, h ∈ π .
Since λ(u, e) = 0 for all u ∈ H and e ∈ E = H2(π;Z[π]) the pairing λ induces
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a pairing λX : H/E × H/E → Z[π], which we shall call the reduced intersec-
tion pairing. The adjoint homomorphism λ̃X : H/E → (H/E)† is given by
λ̃X([v])([u]) = λ(u, v) = ev(v)(D(u)), for all u, v ∈ H . It is a monomorphism,
and λX is nonsingular if λ̃X is an isomorphism.

Lemma 3.18 Let X be a PD4 -complex with fundamental group π , and let
E = H2(π;Z[π]).

(1) If λX is nonsingular then H3(π;Z[π]) embeds as a submodule of E† ;

(2) if λX is nonsingular and H2(cX ;Z[π]) splits then E† ∼= H3(π;Z[π]);

(3) if H3(π;Z[π]) = 0 then λX is nonsingular;

(4) if H3(π;Z[π]) = 0 and Π is a finitely generated projective Z[π]-module
then E = 0;

(5) if H1(π;Z[π]) and Π are projective then c.d.π = 4.

Proof Let p : Π → Π/D(E) and q : H → H/E be the canonical epimor-
phisms. Poincaré duality induces an isomorphism γ : H/E ∼= Π/D(E). It is
straightforward to verify that p†(γ†)−1λ̃Xq = ev . If λX is nonsingular then λ̃X
is an isomorphism, and so Coker(p†) = Coker(ev). The first assertion follows
easily, since Coker(p†) ≤ E† .

If moreover H2(cX ;Z[π]) splits then so does p, and so E† ∼= Coker(p†).

If H3(π;Z[π]) = 0 then ev is an epimorphism and so p† is an epimorphism.
Since p† is also a monomorphism it is an isomorphism. Since ev and q are
epimorphisms with the same kernel it folows that λ̃X = γ†(p†)−1 , and so λ̃X
is also an isomorphism.

If Π is finitely generated and projective then so is Π† , and Π ∼= Π†† . If moreover
H3(π;Z[π]) = 0 then Π ∼= H ∼= E⊕Π† . Hence E is also finitely generated and
projective, and E ∼= E†† = 0.

If H1(π;Z[π]) and Π are projective then we may obtain a projective resolution
of Z of length 4 from C∗ = C∗(X̃) by replacing C3 and C4 by C3 ⊕ Π and
C4 ⊕H1(π;Z[π]), respectively, and modifying ∂3 and ∂4 appropriately. Since
H3(X;Z[π]) ∼= H1(π;Z[π]) it is also projective. It follows from the UCSS that
H4(π;Z[π]) 6= 0. Hence c.d.π = 4.

In particular, the cohomology intersection pairing is nonsingular if and only if
H2(π;Z[π]) = H3(π;Z[π]) = 0. If X is a 4-manifold counting intersections of
generic immersions of S2 in X̃ gives an equivalent pairing on Π.
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We do not know whether the hypotheses in this lemma can be simplified. For in-
stance, is H2(π;Z[π])† always 0? Does “Π projective” imply that H3(π;Z[π]) =
0? Projectivity of Π† and H2(π;Z[π]) = 0 together do not imply this. For
if π is a PD+

3 -group and w = w1(π) there are finitely generated projective
Z[π]-modules P and P ′ such that Π⊕P ∼= A(π)⊕P ′ , where A(π) is the aug-
mentation ideal of Z[π], by Theorem 3.13, and so Π† is projective. However
H3(π;Z[π]) ∼= Z 6= 0.

The module Π is finitely generated if and only if π is of type FP3 . As observed
in the proof of Theorem 2.18, if π is a free product of infinite cyclic groups and
groups with one end and is not a free group then H1(π;Z[π]) is a free Z[π]-
module. An argument similar to that for part(5) of the lemma shows that
c.d.π ≤ 5 if and only if π is torsion-free and p.d.Z[π]Π ≤ 2.

If Y is a second PD4 -complex we write λX ∼= λY if there is an isomorphism
θ : π ∼= π1(Y ) such that w1(X) = w1(Y )θ and a Z[π]-module isomorphism
Θ : π2(X) ∼= θ∗π2(Y ) inducing an isometry of cohomology intersection pair-
ings. If f : X → Y is a 2-connected degree-1 map the “surgery kernel”
K2(f) = Ker(π2(f)) and “surgery cokernel” K2(f) = Cok(H2(f ;Z[π])) are
finitely generated and projective, and are stably free if X and Y are finite
complexes, by Lemma 2.2 of [Wl]. (See also Theorem 3.2 above.) Moreover cap
product with [X] induces an isomorphism from K2(f) to K2(f). The pairing
λf = λ|K2(f)×K2(f) is nonsingular, by Theorem 5.2 of [Wl].

Geometry & Topology Monographs, Volume 5 (2002)



69

Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and f : M → S1 a map which
induces an epimorphism f∗ : π1(M) → Z with infinite kernel K then f is
homotopic to a bundle projection if and only if M is irreducible and K is
finitely generated. Farrell gave an analogous characterization in dimensions
≥ 6, with the hypotheses that the homotopy fibre of f is finitely dominated
and a torsion invariant τ(f) ∈ Wh(π1(M)) is 0. The corresponding results
in dimensions 4 and 5 are constrained by the present limitations of geometric
topology in these dimensions. (In fact there are counter-examples to the most
natural 4-dimensional analogue of Farrell’s theorem [We87].)

Quinn showed that if the base B and homotopy fibre F of a fibration p : M → B
are finitely dominated then the total space M is a Poincaré duality complex
if and only if both the base and fibre are Poincaré duality complexes. (The
paper [Go79] gives an elegant proof for the case when M , B and F are finite
complexes. The general case follows on taking products with copies of S1 to
reduce to the finite case and using the Künneth theorem.)

We shall begin by giving a purely homological proof of a version of this result,
for the case when M and B are PD -spaces and B = K(G, 1) is aspherical.
The homotopy fibre F is then the covering space associated to the kernel of the
induced epimorphism from π1(M) to G. Our algebraic approach requires only
that the equivariant chain complex of F have finite [n/2]-skeleton. In the next
two sections we use the finiteness criterion of Ranicki and the fact that Novikov
rings associated to finitely generated groups are weakly finite to sharpen this
finiteness hypotheses when B = S1 , corresponding to infinite cyclic covers of
M . The main result of §4.4 is a 4-dimensional homotopy fibration theorem
with hypotheses similar to those of Stallings and a conclusion similar to that
of Gottlieb and Quinn. The next two sections consider products of 3-manifolds
with S1 and covers associated to ascendant subgroups.

We shall treat fibrations of PD4 -complexes over surfaces in Chapter 5, by a
different, more direct method. In the final section of this chapter we consider
instead bundles with fibre S1 . We give conditions for a PD4 -complex to fibre
over a PD3 -complex with homotopy fibre S1 , and show that these conditions
are sufficient if the fundamental group of the base is torsion-free but not free.
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4.1 PDr -covers of PDn-spaces

Let M be a PDn -space and p : π = π1(M) → G an epimorphism with G a
PDr -group, and let Mν be the covering space corresponding to ν = Ker(p).
If M is aspherical and ν is FP[n/2] then ν is a PDn−r -group and Mν =
K(ν, 1) is a PDn−r -space, by Theorem 9.11 of [Bi]. In general, there are
isomorphisms Hq(Mν ;Z[ν]) ∼= Hn−r−q(Mν ;Z[ν]), by Theorem 1.19 ′ . However
in the nonaspherical case it is not clear that there are such isomorphisms induced
by cap product with a class in Hn−r(Mν ;Z[ν]). If M is a PDn -complex and
ν is finitely presentable Mν is finitely dominated, and we could apply the
Gottlieb-Quinn Theorem to conclude that Mν is a PDn−r -complex. We shall
give instead a purely homological argument which does not require π or ν to
be finitely presentable, and so applies under weaker finiteness hypotheses.

A group G is a weak PDr -group if Hq(G;Z[G]) ∼= Z if q = r and is 0 otherwise
[Ba80]. If r ≤ 2 an FP2 group is a weak PDr -group if and only if it is virtually
a PDr -group. This is easy for r ≤ 1 and is due to Bowditch when r = 2
[Bo04]. Barge has given a simple homological argument to show that if G is a
weak PDr -group, M is a PDn -space and ηG ∈ Hr(M ;Z[G]) is the image of
a generator of Hr(G;Z[G]) then cap product with [Mν ] = ηG ∩ [M ] induces
isomorphisms with simple coefficients [Ba80]. We shall extend his argument
to the case of arbitrary local coefficients, using coinduced modules to transfer
arguments about subgroups and covering spaces to contexts where Poincaré
duality applies,

All tensor products N ⊗ P in the following theorem are taken over Z.

Theorem 4.1 Let M be a PDn -space and p : π = π1(M) → G an epimor-

phism with G a weak PDr -group, and let ν = Ker(p). If C∗(M̃) is Z[ν]-finitely
dominated then Mν is a PDn−r -space.

Proof Let C∗ be a finitely generated projective Z[π]-chain complex which is

chain homotopy equivalent to C∗(M̃). Since C∗(M̃) is Z[ν]-finitely dominated
there is a finitely generated projective Z[ν]-chain complex E∗ and a pair of Z[ν]-
linear chain homomorphisms θ : E∗ → C∗|ν and φ : C∗|ν → E∗ such that θφ ∼
IC∗ and φθ ∼ IE∗ . Let Cq = HomZ[π](Cq,Z[π]) and Eq = HomZ[ν](Eq,Z[ν]),

and let Ẑ[π] = HomZ[ν](Z[π]|ν ,Z[ν]) be the module coinduced from Z[ν]. Then

there are isomorphisms Ψ : Hq(E∗) ∼= Hq(C∗; Ẑ[π]), determined by θ and
Shapiro’s Lemma.

The complex Z[G]⊗Z[π] C∗ is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G
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is of type FP∞ , by Theorem 3.1 of [St96]. Hence the augmentation Z[G]-
module Z has a resolution A∗ by finitely generated projective Z[G]-modules.
Let Aq = HomZ[G](Aq,Z[G]) and let η ∈ Hr(A∗) = Hr(G;Z[G]) be a genera-
tor. Let εC : C∗ → A∗ be a chain map corresponding to the projection of p onto
G, and let ηG = ε∗Cη ∈ Hr(C∗;Z[G]). The augmentation A∗ → Z determines
a chain homotopy equivalence p : C∗ ⊗ A∗ → C∗ ⊗ Z = C∗ . Let σ : G → π be
a set-theoretic section.

We may define cup-products relating the cohomology of Mν and M as follows.

Let e : Ẑ[π]⊗Z[G]→ Z[π] be the pairing given by e(α⊗g) = σ(g).α(σ(g)−1) for
all α : Z[π]→ Z[ν] and g ∈ G. Then e is independent of the choice of section σ

and is Z[π]-linear with respect to the diagonal left π -action on Ẑ[π]⊗Z[G]. Let
d : C∗ → C∗⊗C∗ be a π -equivariant diagonal, with respect to the diagonal left
π -action on C∗ ⊗ C∗ , and let j = (1⊗ εC)d : C∗ → C∗ ⊗A∗ . Then pj = IdC∗

and so j is a chain homotopy equivalence. We define the cup-product [f ]∪ηG in
Hp+r(C∗) = Hp+r(M ;Z[π]) by [f ]∪ηG = e#d

∗(Ψ([f ])×ηG) = e#j
∗(Ψ([f ])×η)

for all [f ] ∈ Hp(E∗) = Hp(Mν ;Z[ν]).

If C is a left Z[π]-module let D = HomZ[ν](C|ν ,Z[π]) have the left G-action
determined by (gλ)(c) = σ(g)λ(σ(g)−1c) for all c ∈ C and g ∈ G. If C is free
with basis {ci|1 ≤ i ≤ n} there is an isomorphism of left Z[G]-modules Θ :
D ∼= (|Z[π]|G)n given by Θ(λ)(g) = (σ(g).λ(σ(g)−1c1), . . . , σ(g).λ(σ(g)−1cn))
for all λ ∈ D and g ∈ G, and so D is coinduced from a module over the trivial
group.

Let Dq = HomZ[ν](Cq|ν ,Z[π]) and let ρ : E∗ ⊗ Z[G] → D∗ be the Z-linear
cochain homomorphism defined by ρ(f⊗g)(c) = σ(g)fφ(σ(g)−1c) for all c ∈ Cq ,
λ ∈ Dq , f ∈ Eq , g ∈ G and all q . Then the G-action on Dq and ρ are
independent of the choice of section σ , and ρ is Z[G]-linear if Eq ⊗ Z[G] has
the left G-action given by g(f ⊗ g′) = f ⊗ gg′ for all g, g′ ∈ G and f ∈ Eq .

If λ ∈ Dq then λθq(Eq) is a finitely generated Z[ν]-submodule of Z[π]. Hence
there is a family of homomorphisms {fg ∈ Eq|g ∈ F}, where F is a finite
subset of G, such that λθq(e) = Σg∈F fg(e)σ(g) for all e ∈ Eq . Let λg(e) =
σ(g)−1fg(φσ(g)θ(e))σ(g) for all e ∈ Eq and g ∈ F . Let Φ(λ) = Σg∈Fλg ⊗ g ∈
Eq ⊗Z[G]. Then Φ is a Z-linear cochain homomorphism. Moreover [ρΦ(λ)] =
[λ] for all [λ] ∈ Hq(D∗) and [Φρ(f⊗g)] = [f⊗g] for all [f⊗g] ∈ Hq(E∗⊗Z[G]),
and so ρ is a chain homotopy equivalence. (It is not clear that Φ is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E∗ ⊗ Z[G] and D∗ . On one side we have Hn(G;E∗ ⊗ Z[G]) =
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Hn
tot(HomZ[G](A∗, E

∗ ⊗ Z[G])), which may be identified with Hn
tot(E

∗ ⊗ A∗)
since Aq is finitely generated for all q ≥ 0. This is in turn isomorphic to
Hn−r(E∗) ⊗ Hr(G;Z[G]) ∼= Hn−r(E∗), since G acts trivially on E∗ and is a
weak PDr -group.

On the other side we have Hn(G;D∗) = Hn
tot(HomZ[G](A∗, D

∗)). The cochain
homomorphism ρ induces a morphism of double complexes from E∗ ⊗ A∗ to
HomZ[G](A∗, D

∗) by ρpq(f ⊗ α)(a) = ρ(f ⊗ α(a)) ∈ Dp for all f ∈ Ep , α ∈ Aq
and a ∈ Aq and all p, q ≥ 0. Let ρ̂p([f ]) = [ρpr(f × η)] ∈ Hp+r(G;D∗) for
all [f ] ∈ Hp(E∗). Then ρ̂p : Hp(E∗) → Hp+r(G;D∗) is an isomorphism, since
[f ] 7→ [f × η] is an isomorphism and ρ is a chain homotopy equivalence. Since
Cp is a finitely generated projective Z[π]-module Dp is a direct summand of a
coinduced module. Therefore H i(G;Dp) = 0 for all i > 0, while H0(G;Dp) =
HomZ[π](Cp,Z[π]), for all p ≥ 0. Hence Hn(G;D∗) ∼= Hn(C∗) for all n.

Let f ∈ Ep , a ∈ Ar and c ∈ Cp , and suppose that η(a) = Σngg . Since
ρ̂p([f ])(a)(c) = ρ(f ⊗ η(a))(c) = Σngσ(g)fφ(σ(g)−1c) = ([f ]∪ η)(c, a) it follows
that the homomorphisms from Hp(E∗) to Hp+r(C∗) given by cup-product with
ηG are isomorphisms for all p.

Let [M ] ∈ Hn(M ;Zw) be a fundamental class for M , and let [Mν ] = ηG∩[M ] ∈
Hn−r(M ;Zw ⊗ Z[G]) = Hn−r(Mν ;Zw|ν ). Then cap product with [Mν ] induces
isomorphisms Hp(Mν ;Z[ν]) ∼= Hn−r−p(Mν ;Z[ν]) for all p, since c ∩ [Mν ] =

(c ∪ ηG) ∩ [M ] in Hn−r−p(M ;Z[π]) = Hn−r−p(Mν ;Z[ν]) = Hn−r−p(M̃ ;Z) for
c ∈ Hp(Mν ;Z[ν]). Thus Mν is a PDn−r -space.

Theorems 1.19 ′ and 4.1 together give the following version of the Gottlieb-
Quinn Theorem for covering spaces.

Corollary 4.1.1 Let M be a PDn -space and p : π = π1(M)→ G an epimor-
phism with G a PDr -group, and let ν = Ker(p). Then Mν is a PDn−r -space

if and only if C∗(M̃)|ν has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if Mν has finite [n/2]-
skeleton then C∗ is Z[ν]-finitely dominated, by Theorem 1.19 ′ , and hence is a
PDn−r -space, by Theorem 4.1.

Corollary 4.1.2 The space Mν is a PDn−r -complex if and only if it is ho-
motopy equivalent to a complex with finite [n/2]-skeleton and ν is finitely
presentable.
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Corollary 4.1.3 If π is a PDr -group M̃ is a PDn−r -complex if and only if
Hq(M̃ ;Z) is finitely generated for all q ≤ [n/2].

Stark used Theorem 3.1 of [St96] with the Gottlieb-Quinn Theorem to deduce
that if M is a PDn -complex and v.c.d.π/ν < ∞ then π/ν is of type vFP ,
and therefore is virtually a PD -group. Is there a purely algebraic argument to
show that if M is a PDn -space, ν is a normal subgroup of π and C∗(M̃) is
Z[ν]-finitely dominated then π/ν must be a weak PD -group?

4.2 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z . In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which can be shown to be best possible. The results of
this section are based on joint work with Kochloukova (in [HK07]).

Let π be a group, ρ : π → Z an epimorphism with kernel ν and t ∈ π an
element such that ρ(t) = 1. Let α : ν → ν be the automorphism determined
by α(h) = tht−1 for all h in ν . This automorphism extends to a ring automor-
phism (also denoted by α) of the group ring R = Z[ν], and the ring S = Z[π]
may then be viewed as a twisted Laurent extension, Z[π] = Z[ν]α[t, t−1]. The

Novikov ring Ẑ[π]ρ associated to π and ρ is the ring of (twisted) Laurent se-

ries Σj≥aκjt
j , for some a ∈ Z, with coefficients κj in Z[ν]. Multiplication of

such series is determined by conjugation in π : if g ∈ ν then tg = (tgt−1)t. If

π is finitely generated the Novikov rings Ẑ[π]ρ are weakly finite [Ko06]. Let

Ŝ+ = Ẑ[π]ρ and Ŝ− = Ẑ[π]−ρ .

An α-twisted endomorphism of an R-module E is an additive function h : E →
E such that h(re) = α(r)h(e) for all e ∈ E and r ∈ R, and h is an α-twisted
automorphism if it is bijective. Such an endomorphism h extends to α-twisted
endomorphisms of the modules S ⊗R E , Ê+ = Ŝ+ ⊗R E and Ê− = Ŝ− ⊗R E
by h(s ⊗ e) = tst−1 ⊗ h(e) for all e ∈ E and s ∈ S , Ŝ+ or Ŝ− , respectively.
In particular, left multiplication by t determines α-twisted automorphisms of
S ⊗R E , Ê+ and Ê− which commute with h.

If E is finitely generated then 1 − t−1h is an automorphism of Ê− , with in-
verse given by a geometric series: (1 − t−1h)−1 = Σk≥0t

−khk . (If E is not

finitely generated this series may not give a function with values in Ê− , and
t− h = t(1 − t−1h) may not be surjective). Similarly, if k is an α−1 -twisted
endomorphism of E then 1− tk is an automorphism of Ê+ .
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If P∗ is a chain complex with an endomorphism β : P∗ → P∗ let P∗[1] be the
suspension and C(β)∗ be the mapping cone. Thus C(β)q = Pq−1 ⊕ Pq , and
∂q(p, p

′) = (−∂p, β(p) + ∂p′), and there is a short exact sequence

0→ P∗ → C(β)∗ → P∗[1]→ 0.

The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by β . The algebraic mapping torus of an α-twisted self
chain homotopy equivalence h of an R-chain complex E∗ is the mapping cone
C(1− t−1h) of the endomorphism 1− t−1h of the S -chain complex S ⊗R E∗ .

Lemma 4.2 Let E∗ be a projective chain complex over R which is finitely
generated in degrees ≤ d and let h : E∗ → E∗ be an α-twisted chain homotopy
equivalence. Then Hq(Ŝ− ⊗S C(1− t−1h)∗) = 0 for q ≤ d.

Proof There is a short exact sequence

0→ S ⊗R E∗ → C(1− z−1h)∗ → S ⊗R E∗[1]→ 0.

Since E∗ is a complex of projective R-modules the sequence

0→ Ê∗− → Ŝ− ⊗S C(1− t−1h)∗ → Ê∗−[1]→ 0

obtained by extending coefficients is exact. Since 1−t−1h induces isomorphisms
on Êq− for q ≤ d it induces isomorphisms on homology in degrees < d and an

epimorphism on homology in degree d. Therefore Hq(Ŝ− ⊗S C(1− t−1h)∗) = 0
for q ≤ d, by the long exact sequence of homology.

The next theorem is our refinement of Ranicki’s finiteness criterion [HK07].

Theorem 4.3 Let C∗ be a finitely generated projective S -chain complex.
Then i!C∗ has finite d-skeleton if and only if Hq(Ŝ± ⊗S C∗) = 0 for q ≤ d.

Proof We may assume without loss of generality that Cq is a finitely generated
free S -module for all q ≤ d+ 1, with basis Xi = {cq,i}i∈I(q) . We may also
assume that 0 /∈ ∂i(Xi) for i ≤ d + 1, where ∂i : Ci → Ci−1 is the differential
of the complex. Let h± be the α±1 -twisted automorphisms of i!C∗ induced by
multiplication by z±1 in C∗ . Let fq(z

krcq,i) = (0, zk ⊗ rcq,i) ∈ (S ⊗R Cq−1)⊕
(S ⊗R Cq). Then f∗ defines S -chain homotopy equivalences from C∗ to each
of C(1− z−1h+) and C(1− zh−).

Suppose first that k∗ : i!C∗ → E∗ and g∗ : E∗ → i!C∗ are chain homotopy equiv-
alences, where E∗ is a projective R-chain complex which is finitely generated
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in degrees ≤ d. Then θ± = k∗h±g∗ are α±1 -twisted self homotopy equiva-
lences of E∗ , and C(1− z−1h+) and C(1− zh−) are chain homotopy equivalent
to C(1 − z−1θ+) and C(1 − zθ−), respectively. Therefore Hq(Ŝ− ⊗S C∗) =

Hq(Ŝ− ⊗S C(1− z−1θ+)) = 0 and Hq(Ŝ+ ⊗S C∗) = Hq(Ŝ+ ⊗S C(1− zθ−)) = 0
for q ≤ d, by Lemma 5, applied twice.

Conversely, suppose that Hi(Ŝ±⊗SC∗) = 0 for all i ≤ k . Adapting an idea from
[BR88], we shall define inductively a support function suppX for λ ∈ ∪i≤d+1Ci
with values finite subsets of {zj}j∈Z so that

(1) suppX(0) = ∅;
(2) if x ∈ X0 then suppX(zjx) = zj ;

(3) if x ∈ Xi for 1 ≤ i ≤ d+ 1 then suppX(zjx) = zj .suppX(∂i(x));

(4) if s =
∑

j rjz
j ∈ S , where rj ∈ R, suppX(sx) = ∪rj 6=0suppX(zjx);

(5) if 0 ≤ i ≤ d+ 1 and λ =
∑

sx∈S,x∈Xi sxx then
suppX(λ) = ∪sx 6=0,x∈XisuppX(sxx).

Then suppX(∂i(λ)) ⊆ suppX(λ) for all λ ∈ Ci and all 1 ≤ i ≤ d+ 1. Since
X = ∪i≤d+1Xi is finite there is a positive integer b such that

∪x∈Xi,i≤d+1suppX(x) ⊆ {zj}−b≤j≤b.

Define two subcomplexes C+ and C− of C which are 0 in degrees i ≥ d+ 2 as
follows:

(1) if i ≤ d+ 1 an element λ ∈ Ci is in C+ if and only if suppX(λ) ⊆
{zj}j≥−b ; and

(2) if i ≤ d+ 1 an element λ ∈ Ci is in C− if and only if suppX(λ) ⊆ {zj}j≤b .

Then ∪i≤d+1Xi ⊆ (C+)[d+1] ∩ (C−)[d+1] and so (C+)[d+1] ∪ (C−)[d+1] = C [d+1],
where the upper index ∗ denotes the ∗-skeleton. Moreover (C+)[d+1] is a
complex of free finitely generated Rα[z]-modules, (C−)[d+1] is a complex of
free finitely generated Rα[z−1]-modules, (C+)[d+1] ∩ (C−)[d+1] is a complex of
free finitely generated R-modules and

C [d+1] = S ⊗Rα[z] (C+)[d+1] = S ⊗Rα[z−1] (C−)[d+1].

Furthermore there is a Mayer-Vietoris exact sequence

0→ (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕ (C−)[d+1] → C [d+1] → 0.

Thus the (d+ 1)-skeletons of C , C+ and C− satisfy “algebraic transversality”
in the sense of [Rn95].
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Then to prove the theorem it suffices to show that C+ and C− are each chain
homotopy equivalent over R to a complex of projective R-modules which is
finitely generated in degrees ≤ d. As in [Rn95] there is an exact sequence of
Rα[z−1]-module chain complexes

0→ (C−)[d+1] → C [d+1] ⊕Rα[[z−1]]⊗Rα[z−1] (C−)[d+1] → Ŝ− ⊗S C [d+1] → 0.

Let ĩ denot the inclusion of (C−)[d+1] into the central term. Inclusions on each
component define a chain homomorphism

j̃ : (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕Rα[[z−1]]⊗Rα[z−1] (C−)[d+1]

such that the mapping cones of ĩ and j̃ are chain equivalent R-module chain
complexes. The map induced by ĩ in homology is an epimorphism in degree d
and an isomorphism in degree < d, since Hi(Ŝ− ⊗S C [d+1]) = 0 for i ≤ d. In
particular all homologies in degrees ≤ d of the mapping cone of ĩ are 0. Hence
all homologies of the mapping cone of j̃ are 0 in degrees ≤ d. Then (C+)[d+1]

is homotopy equivalent over R to a chain complex of projectives over R whose
k -skeleton is a summand of (C+)[d] ∩ (C−)[d] . This completes the proof.

The argument for the converse is entirely due to Kochloukova.

As an application we shall give a quick proof of Kochloukova’s improvement of
Corollary 2.5.1.

Corollary 4.3.1 [Ko06] Let π be a finitely presentable group with a finitely
generated normal subgroup N such that π/N ∼= Z . Then def(π) = 1 if and
only if N is free.

Proof Let X be the finite 2-complex corresponding to an optimal presentation
of π . If def(G) = 1 then χ(X) = 0 and X is aspherical, by Theorem 2.5. Hence
C∗ = C∗(X̃) is a finite free resolution of the augmentation module Z. Let A±
be the two Novikov rings corresponding to the two epimorphisms ±p : π → Z
with kernel N . Then Hj(A±⊗Z[π]C∗) = 0 for j ≤ 1, by Theorem 4.3. But then
H2(A±⊗Z[π]C∗) is stably free, by Lemma 3.1. Since χ(A±⊗Z[π]C∗) = χ(C∗) =
χ(X) = 0 and the rings A± are weakly finite [Ko06] these modules are 0. Thus
Hj(A± ⊗Z[π] C∗) = 0 for all j , and so C∗|ν is chain homotopy equivalent to
a finite projective Z[ν]-complex, by Theorem 2 of [Rn95]. In particular, N is
FP2 and hence is free, by Corollary 8.6 of [Bi].

The converse is clear.
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4.3 Infinite cyclic covers

The mapping torus of a self homotopy equivalence f : X → X is the space
M(f) = X × [0, 1]/ ∼, where (x, 0) ∼ (f(x), 1) for all x ∈ X . The function
p([x, t]) = e2πit defines a map p : M(f)→ S1 with homotopy fibre X , and the
induced homomorphism p∗ : π1(M(f)) → Z is an epimorphism if X is path-
connected. Conversely, let E be a connected cell complex and let f : E → S1

be a map which induces an epimorphism f∗ : π1(E)→ Z , with kernel ν . Then
Eν = E ×S1 R = {(x, y) ∈ E × R | f(x) = e2πiy}, and E ' M(φ), where
φ : Eν → Eν is the generator of the covering group given by φ(x, y) = (x, y+1)
for all (x, y) in Eν .

Theorem 4.4 Let M be a finite PDn -space with fundamental group π and
let p : π → Z be an epimorphism with kernel ν . Then Mν is a PDn−1 -space if
and only if χ(M) = 0 and C∗(M̃ν) = C∗(M̃)|ν has finite [(n− 1)/2]-skeleton.

Proof If Mν is a PDn−1 -space then C∗(M̃ν) is Z[ν]-finitely dominated [Br72].
In particular, H∗(M ; Λ) = H∗(Mν ;Z) is finitely generated. The augmentation
Λ-module Z has a short free resolution 0 → Λ → Λ → Z → 0, and it follows
easily from the exact sequence of homology for this coefficient sequence that
χ(M) = 0 [Mi68]. Thus the conditions are necessary.

Suppose that they hold. Let A± be the two Novikov rings corresponding to
the two epimorphisms ±p : π → Z with kernel ν . Then Hj(A± ⊗Z[π] C∗) = 0
for j ≤ [(n − 1)/2], by Theorem 4.3. Hence Hj(A± ⊗Z[π] C∗) = 0 for j ≥
n− [(n−1)/2], by duality. If n is even there is one possible nonzero module, in
degree m = n/2. But then Hm(A± ⊗Z[π] C∗) is stably free, by the finiteness of
M and Lemma 3.1. Since χ(A± ⊗Z[π] C∗) = χ(C∗) = χ(M) = 0 and the rings
A± are weakly finite [Ko06] these modules are 0. Thus Hj(A± ⊗Z[π] C∗) = 0
for all j , and so C∗|ν is chain homotopy equivalent to a finite projective Z[ν]-
complex, by Theorem 4.4. Thus the result follows from Theorem 4.1.

When n is odd [n/2] = [(n − 1)/2], so the finiteness condition on Mν agrees
with that of Corollary 4.1.1 (for G = Z ), but it is slightly weaker if n is even.
Examples constructed by elementary surgery on simple n-knots show that the
FP[(n−1)/2] condition is best possible, even when π ∼= Z and ν = 1.

Corollary 4.4.1 Under the same hypotheses on M and π , if n 6= 4 then Mν

is a PDn−1 -complex if and only if it is homotopy equivalent to a complex with
finite [(n− 1)/2]-skeleton.

Geometry & Topology Monographs, Volume 5 (2002)



78 Chapter 4: Mapping tori and circle bundles

Proof If n ≤ 3 every PDn−1 -space is a PDn−1 -complex, while if n ≥ 5 then
[(n− 1)/2] ≥ 2 and so ν is finitely presentable.

If n ≤ 3 we need only assume that M is a PDn -space and ν is finitely generated.

It remains an open question whether every PD3 -space is finitely dominated.
The arguments of [Tu90] and [Cr00] on the factorization of PD3 -complexes
into connected sums are essentially homological, and so every PD3 -space is a
connected sum of aspherical PD3 -spaces and a PD3 -complex with virtually
free fundamental group. Thus the question of whether every PD3 -space is
finitely dominated reduces to whether every PD3 -group is finitely presentable.

4.4 The case n = 4

If M(f) is the mapping torus of a self homotopy equivalence of a PD3 -space
then χ(M) = 0 and π1(M) is an extension of Z by a finitely generated normal
subgroup. These conditions characterize such mapping tori, by Theorem 4.4.
We shall summarize various related results in the following theorem.

Theorem 4.5 Let M be a finite PD4 -space whose fundamental group π is
an extension of Z by a finitely generated normal subgroup ν . Then

(1) χ(M) ≥ 0, with equality if and only if H2(Mν ;Q) is finitely generated;

(2) χ(M) = 0 if and only if Mν is a PD3 -space;

(3) if χ(M) = 0 then M is aspherical if and only if ν is a PD3 -group if and
only if ν has one end;

(4) if M is aspherical then χ(M) = 0 if and only if ν is a PD3 -group if and
only ν is FP2 .

Proof Since C∗(M̃) is finitely dominated and QΛ = Q[t, t−1] is noetherian
the homology groups Hq(Mν ;Q) are finitely generated as QΛ-modules. Since
ν is finitely generated they are finite dimensional as Q-vector spaces if q < 2,
and hence also if q > 2, by Poincaré duality. Now H2(Mν ;Q) ∼= Qr ⊕ (QΛ)s

for some r, s ≥ 0, by the Structure Theorem for modules over a PID. It follows
easily from the Wang sequence for the covering projection from Mν to M , that
χ(M) = s ≥ 0.

The space Mν is a PD3 -space if and only if χ(M) = 0, by Theorem 4.4.

Since M is aspherical if and only if Mν is aspherical, (3) follows from (2) and
the facts that PD3 -groups have one end and a PD3 -space is aspherical if and
only if its fundamental group has one end.
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If M is aspherical and χ(M) = 0 then ν is a PD3 -group. If ν is a PD3 -group
it is FP2 . If M is aspherical and ν is FP2 then ν is a PD3 -group, by Theorem
1.19 (or Theorem 4.4), and so χ(M) = 0.

In particular, if χ(M) = 0 then q(π) = 0. This observation and the bound
χ(M) ≥ 0 were given in Theorem 3.17. (They also follow on counting bases for
the cellular chain complex of Mν and extending coefficients to Q(t).)

If χ(M) = 0 and ν is finitely presentable then Mν is a PD3 -complex. However
Mν need not be homotopy equivalent to a finite complex. If M is a simple PD4 -
complex and a generator of Aut(Mν/M) ∼= π/ν has finite order in the group of
self homotopy equivalences of Mν then M is finitely covered by a simple PD4 -
complex homotopy equivalent to Mν ×S1 . In this case Mν must be homotopy
finite by [Rn86].

If π ∼= ν o Z is a PD4 -group with ν finitely generated then χ(π) = 0 if and
only if ν is FP2 , by Theorem 4.5. However the latter conditions need not hold.
Let F be the orientable surface of genus 2. Then G = π1(F ) has a presentation
〈a1, a2, b1, b2 | [a1, b1] = [a2, b2]〉. The group π = G × G is a PD4 -group, and
the subgroup ν ≤ π generated by the images of (a1, a1) and the six elements
(x, 1) and (1, x), for x = a2 , b1 or b2 , is normal in π , with quotient π/ν ∼= Z .
However χ(π) = 4 6= 0 and so ν cannot be FP2 .

It can be shown that the finitely generated subgroup N of F (2)×F (2) defined
after Theorem 2.4 has one end. However H2(F (2)×F (2);Z[F (2)×F (2)]) 6= 0.
(Note that q(F (2)× F (2)) = 2, by Corollary 3.12.2.)

Corollary 4.5.1 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν . If π has
an infinite cyclic normal subgroup C which is not contained in ν then the
covering space Mν with fundamental group ν is a PD3 -complex.

Proof We may assume without loss of generality that M is orientable and
that C is central in π . Since π/ν is torsion-free C ∩ ν = 1, and so Cν ∼= C× ν
has finite index in π . Thus by passing to a finite cover we may assume that
π = C × ν . Hence ν is finitely presentable and so Theorem 4.5 applies.

Since ν has one or two ends if it has an infinite cyclic normal subgroup, Corol-
lary 4.5.1 remains true if C ≤ ν and ν is finitely presentable. In this case ν is
the fundamental group of a Seifert fibred 3-manifold, by Theorem 2.14.
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Corollary 4.5.2 Let M be a finite PD4 -space with χ(M) = 0 and whose fun-
damental group π is an extension of Z by a finitely generated normal subgroup
ν . If ν is finite then it has cohomological period dividing 4. If ν has one end
then M is aspherical and so π is a PD4 -group. If ν has two ends then ν ∼= Z ,
Z ⊕ (Z/2Z) or D = (Z/2Z) ∗ (Z/2Z). If moreover ν is finitely presentable the
covering space Mν with fundamental group ν is a PD3 -complex.

Proof The final hypothesis is only needed if ν is one-ended, as finite groups
and groups with two ends are finitely presentable. If ν is finite then M̃ ' S3

and so the first assertion holds. (See Chapter 11 for more details.) If ν has one
end we may use Theorem 4.5. If ν has two ends and its maximal finite normal
subgroup is nontrivial then ν ∼= Z ⊕ (Z/2Z), by Theorem 2.11 (applied to the
PD3 -complex Mν ). Otherwise ν ∼= Z or D .

In Chapter 6 we shall strengthen this Corollary to obtain a fibration theorem
for 4-manifolds with torsion-free elementary amenable fundamental group.

Corollary 4.5.3 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν ∼= F (r).
Then M is homotopy equivalent to a closed PL 4-manifold which fibres over
the circle, with fibre ]rS1 × S2 if w1(M)|ν is trivial, and ]rS1×̃S2 otherwise.
The bundle is determined by the homotopy type of M .

Proof Since Mν is a PD3 -complex with free fundamental group it is homotopy
equivalent to N = ]rS1 × S2 if w1(M)|ν is trivial and to ]rS1×̃S2 otherwise.
Every self homotopy equivalence of a connected sum of S2 -bundles over S1 is
homotopic to a self-homeomorphism, and homotopy implies isotopy for such
manifolds [La]. Thus M is homotopy equivalent to such a fibred 4-manifold,
and the bundle is determined by the homotopy type of M .

It is easy to see that the natural map from Homeo(N) to Out(F (r)) is onto. If a
self homeomorphism f of N = ]rS1×S2 induces the trivial outer automorphism
of F (r) then f is homotopic to a product of twists about nonseparating 2-
spheres [Hn]. How is this manifest in the topology of the mapping torus?

Corollary 4.5.4 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a torsion-free normal subgroup ν
which is the fundamental group of a closed 3-manifold N . Then M is homotopy
equivalent to the mapping torus of a self homeomorphism of N .
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Proof There is a homotopy equivalence f : N → Mν , by Turaev’s Theorem.
(See §5 of Chapter 2.) The indecomposable factors of N are either Haken, hy-
perbolic or Seifert fibred 3-manifolds, by the Geometrization Conjecture (see
[B-P]). Let t : Mν → Mν be the generator of the covering transformations.
Then there is a self homotopy equivalence u : N → N such that fu ∼ tf . As
each aspherical factor of N has the property that self homotopy equivalences
are homotopic to PL homeomorphisms (by [Hm], Mostow rigidity or [Sc83]),
and a similar result holds for ]r(S1 × S2) (by [La]), u is homotopic to a home-
omorphism [HL74], and so M is homotopy equivalent to the mapping torus of
this homeomorphism.

The hypothesis that M be finite is redundant in each of the last two corollaries,
since K̃0(Z[π]) = 0. (See Theorem 6.3.) All known PD3 -complexes with
torsion-free fundamental group are homotopy equivalent to 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = ]iNi are
P 2 -irreducible and sufficiently large or have fundamental group Z then every
self homotopy equivalence of N is realized by an unique isotopy class of home-
omorphisms [HL74]. However if N is not aspherical then it admits nontrivial
self-homeomorphisms (“rotations about 2-spheres”) which induce the identity
on ν , and so such bundles are not determined by the group alone.

Let f : M → E be a homotopy equivalence, where E is a finite PD4 -complex
with χ(E) = 0 and fundamental group π = ν o Z , where ν is finitely pre-
sentable. Then w1(M) = f∗w1(E) and cE∗f∗[M ] = ±cE∗[E] in H4(π;Zw1(E)).
Conversely, if χ(M) = 0 and there is an isomorphism θ : π1(M) ∼= π such that
w1(M) = θ∗iw and θ1∗cM∗[M ] = cE∗[E] then Eν and Mν are PD3 -complexes,
by Theorem 4.5. A Wang sequence argument as in the next theorem shows
that the fundamental triples of Eν and Mν are isomorphic, and so they are
homotopy equivalent, by Hendrik’s Theorem. What additional conditions are
needed to determine the homotopy type of such mapping tori? Our next result
is a partial step in this direction.

Theorem 4.6 Let E be a finite PD4 -complex with χ(E) = 0 and whose
fundamental group π is an extension of Z by a finitely presentable normal sub-
group ν which is not virtually free. Let Π = H2(π;Z[π]). A PD4 -complex M
is homotopy equivalent to E if and only if χ(M) = 0, there is an isomorphism
θ from π1(M) to π such that w1(M) = w1(E)θ , θ∗−1k1(M) and k1(E) gener-
ate the same subgroup of H3(π; Π) under the action of Out(π)×AutZ[π](Π),
and there is a lift ĉ : M → P2(E) of θcM such that ĉ∗[M ] = ±fE∗[E] in
H4(P2(E);Zw1(E)).
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Proof The conditions are clearly necessary. Suppose that they hold. The in-
finite cyclic covering spaces N = Eν and Mν are PD3 -complexes, by Theorem
4.5, and π2(E) ∼= Π and π2(M) ∼= θ∗Π, by Theorem 3.4. The maps cN and cE
induce a homomorphism between the Wang sequence for the fibration of E over
S1 and the corresponding Wang sequence for K(π, 1). Since ν is not virtually
free H3(cN ;Zw1(E)) is a monomorphism. Hence H4(cE ;Zw1(E)) and a fortiori
H4(fE ;Zw1(E)) are monomorphisms, and so Theorem 3.8 applies.

As observed in the first paragraph of §9 of Chapter 2, the conditions on θ and
the k -invariants also imply that Mν ' Eν .

The original version of this book gave an exposition of the extension of Barge’s
argument to local coefficients for the case when G ∼= Z , instead of the present
Theorem 4.1, and used this together with an L2 -argument, instead of the
present Theorem 4.3, to establish the results corresponding to Theorem 4.5
for the case when ν was FP2 .

4.5 Products

If M = N × S1 , where N is a closed 3-manifold, then χ(M) = 0, Z is a
direct factor of π1(M), w1(M) is trivial on this factor and the Pin− -condition
w2 = w2

1 holds. These conditions almost characterize such products up to
homotopy equivalence. We need also a constraint on the other direct factor of
the fundamental group.

Theorem 4.7 Let M be a finite PD4 -complex whose fundamental group π
has no 2-torsion. Then M is homotopy equivalent to a product N ×S1 , where
N is a closed 3-manifold, if and only if χ(M) = 0, w2(M) = w1(M)2 and there
is an isomorphism θ : π → ν × Z such that w1(M)θ−1|Z = 0, where ν is a
(2-torsion-free) 3-manifold group.

Proof The conditions are clearly necessary, since the Pin− -condition holds
for 3-manifolds.

If these conditions hold then the covering space Mν with fundamental group ν
is a PD3 -complex, by Theorem 4.5 above. Since ν is a 3-manifold group and
has no 2-torsion it is a free product of cyclic groups and groups of aspherical
closed 3-manifolds. Hence there is a homotopy equivalence h : Mν → N , where
N is a connected sum of lens spaces and aspherical closed 3-manifolds, by
Turaev’s Theorem. (See §5 of Chapter 2.) Let φ generate the covering group
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Aut(M/Mν) ∼= Z . Then there is a self homotopy equivalence ψ : N → N
such that ψh ∼ hφ, and M is homotopy equivalent to the mapping torus
M(ψ). We may assume that ψ fixes a basepoint and induces the identity on
π1(N), since π1(M) ∼= ν × Z . Moreover ψ preserves the local orientation,
since w1(M)θ−1|Z = 0. Since ν has no element of order 2 N has no two-sided
projective planes and so ψ is homotopic to a rotation about a 2-sphere [Hn].
Since w2(M) = w1(M)2 the rotation is homotopic to the identity and so M is
homotopy equivalent to N × S1 .

Let ρ be an essential map from S1 to SO(3), and let M = M(τ), where
τ : S2 × S1 → S2 × S1 is the twist map, given by τ(x, y) = (ρ(y)(x), y) for
all (x, y) in S2 × S1 . Then π1(M) ∼= Z × Z , χ(M) = 0, and w1(M) = 0,
but w2(M) 6= w1(M)2 = 0, so M is not homotopy equivalent to a product.
(Clearly however M(τ2) = S2 × S1 × S1 .)

To what extent are the constraints on ν necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N×S1 where ν = π1(N)
is finite and is not a 3-manifold group. (See Chapter 11.) Theorem 4.1 implies
that M is homotopy equivalent to a product of an aspherical PD3 -complex
with S1 if and only if χ(M) = 0 and π1(M) ∼= ν × Z where ν has one end.

There are 4-manifolds which are simple homotopy equivalent to S1×RP 3 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic
to mapping tori [We87].

4.6 Ascendant subgroups

In this brief section we shall give another characterization of aspherical PD4 -
complexes with finite covering spaces which are homotopy equivalent to map-
ping tori.

Theorem 4.8 Let M be a PD4 -complex. Then M is aspherical and has a
finite cover which is homotopy equivalent to a mapping torus if and only if
χ(M) = 0 and π = π1(M) has an ascendant FP3 subgroup G of infinite index
and such that Hs(G;Z[G]) = 0 for s ≤ 2. In that case G is a PD3 -group,
[π : Nπ(G)] <∞ and e(Nπ(G)/G) = 2.

Proof The conditions are clearly necessary. Suppose that they hold and
that G = G0 < G1 < ... < Gi = π is an ascendant sequence. Let γ =
min{α | [Gα : G] =∞}. Transfinite induction using the LHSSS with coefficients
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Z[π] and Theorem 1.15 shows that Hs(π;Z[π]) = 0 for s ≤ 2. If γ is finite then

β
(2)
1 (Gγ) = 0, since it has a finitely generated normal subgroup of infinite index

[Ga00]. Otherwise γ is the first infinite ordinal, and [Gj+1 : Gj ] < ∞ for all

j < γ . In this case β
(2)
1 (Gn) = β

(2)
1 (G)/[Gn : G] and so limn→∞ β

(2)
1 (Gn) = 0.

It then follows from Theorems 6.13 and 6.54(7) of [Lü] that β
(2)
1 (Gγ) = 0. In

either case it then follows that β
(2)
1 (Gα) = 0 for all γ ≤ α ≤ i by Theorem

2.3 (which is part of Theorem 7.2 of [Lü]). Hence M is aspherical, by Theorem
3.5.

On the other hand Hs(Gγ ;W ) = 0 for s ≤ 3 and any free Z[Gγ ]-module W ,
so c.d.Gγ = 4. Hence [π : Gγ ] < ∞, by Strebel’s Theorem. Therefore Gγ is a
PD4 -group. In particular, it is finitely generated and so γ < ∞. If γ = β + 1
then [Gβ : G] < ∞. It follows easily that [π : Nπ(G)] < ∞. Hence G is a
PD3 -group and Nπ(G)/G has two ends, by Theorem 3.10.

The hypotheses on G could be replaced by “G is a PD3 -group”, for then
[π : G] =∞, by Theorem 3.12.

We shall establish an analogous result for PD4 -complexes M such that χ(M) =
0 and π1(M) has an ascendant subgroup of infinite index which is a PD2 -group
in Chapter 5.

4.7 Circle bundles

In this section we shall consider the “dual” situation, of PD4 -complexes which
are homotopy equivalent to the total space of a S1 -bundle over a 3-dimensional
base N . Lemma 4.9 presents a number of conditions satisfied by such spaces.
(These conditions are not all independent.) Bundles c∗Nξ induced from S1 -
bundles over K(π1(N), 1) are given equivalent characterizations in Lemma 4.10.
In Theorem 4.11 we shall show that the conditions of Lemmas 4.9 and 4.10
characterize the homotopy types of such bundle spaces E(c∗Nξ), provided π1(N)
is torsion-free but not free.

Since BS1 ' K(Z, 2) any S1 -bundle over a connected base B is induced from
some bundle over P2(B). For each epimorphism γ : µ → ν with cyclic kernel
and such that the action of µ by conjugation on Ker(γ) factors through multi-
plication by ±1 there is an S1 -bundle p(γ) : X(γ)→ Y (γ) whose fundamental
group sequence realizes γ and which is universal for such bundles; the total
space E(p(γ)) is a K(µ, 1) space (cf. Proposition 11.4 of [Wl]).
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Lemma 4.9 Let p : E → B be the projection of an S1 -bundle ξ over a
connected cell complex B . Then

(1) χ(E) = 0;

(2) the natural map p∗ : π = π1(E) → ν = π1(B) is an epimorphism with
cyclic kernel, and the action of ν on Ker(p∗) induced by conjugation in
π is given by w = w1(ξ) : π1(B)→ Z/2Z ∼= {±1} ≤ Aut(Ker(p∗));

(3) if B is a PD -complex w1(E) = p∗(w1(B) + w);

(4) if B is a PD3 -complex there are maps ĉ : E → P2(B) and
y : P2(B) → Y (p∗) such that cP2(B) = cY (p∗)y , yĉ = p(p∗)cE and
(ĉ, cE)∗[E] = ±G(fB∗[B]) where G is the Gysin homomorphism from
H3(P2(B);Zw1(B)) to H4(P2(E);Zw1(E));

(5) If B is a PD3 -complex cE∗[E] = ±G(cB∗[B]), where G is the Gysin
homomorphism from H3(ν;ZwB ) to H4(π;ZwE );

(6) Ker(p∗) acts trivially on π2(E).

Proof Condition(1) follows from the multiplicativity of the Euler characteris-
tic in a fibration. If α is any loop in B the total space of the induced bundle
α∗ξ is the torus if w(α) = 0 and the Klein bottle if w(α) = 1 in Z/2Z ; hence
gzg−1 = zε(g) where ε(g) = (−1)w(p∗(g)) for g in π1(E) and z in Ker(p∗).
Conditions (2) and (6) then follow from the exact homotopy sequence. If the
base B is a PD -complex then so is E , and we may use naturality and the
Whitney sum formula (applied to the Spivak normal bundles) to show that
w1(E) = p∗(w1(B) + w1(ξ)). (As p∗ : H1(B;F2) → H1(E;F2) is a monomor-
phism this equation determines w1(ξ).)

Condition (4) implies (5), and follows from the observations in the paragraph
preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5)
are well defined, since H1 (Ker(γ);ZwE ) is isomorphic to ZwB , by (3).)

Bundles with Ker(p∗) ∼= Z have the following equivalent characterizations.

Lemma 4.10 Let p : E → B be the projection of an S1 -bundle ξ over a
connected cell complex B . Then the following conditions are equivalent:

(1) ξ is induced from an S1 -bundle over K(π1(B), 1) via cB ;

(2) for each map β : S2 → B the induced bundle β∗ξ is trivial;

(3) the induced epimorphism p∗ : π1(E)→ π1(B) has infinite cyclic kernel.
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If these conditions hold then c(ξ) = c∗BΞ, where c(ξ) is the characteristic class
of ξ in H2(B;Zw) and Ξ is the class of the extension of fundamental groups
in H2(π1(B);Zw) = H2(K(π1(B), 1);Zw), where w = w1(ξ).

Proof Condition (1) implies condition (2) as for any such map β the com-
posite cBβ is nullhomotopic. Conversely, as we may construct K(π1(B), 1) by
adjoining cells of dimension ≥ 3 to B condition (2) implies that we may extend
ξ over the 3-cells, and as S1 -bundles over Sn are trivial for all n > 2 we may
then extend ξ over the whole of K(π1(B), 1), so that (2) implies (1). The equiv-
alence of (2) and (3) follows on observing that (3) holds if and only if ∂β = 0
for all such β , where ∂ is the connecting map from π2(B) to π1(S1) in the ex-
act sequence of homotopy for ξ , and on comparing this with the corresponding
sequence for β∗ξ .

As the natural map from the set of S1 -bundles over K(π, 1) with w1 = w (which
are classified by H2(K(π, 1);Zw)) to the set of extensions of π by Z with π
acting via w (which are classified by H2(π;Zw)) which sends a bundle to the
extension of fundamental groups is an isomorphism we have c(ξ) = c∗B(Ξ).

If N is a closed 3-manifold which has no summands of type S1×S2 or S1×̃S2

(i.e., if π1(N) has no infinite cyclic free factor) then every S1 -bundle over N
with w = 0 restricts to a trivial bundle over any map from S2 to N . For if ξ is
such a bundle, with characteristic class c(χ) in H2(N ;Z), and β : S2 → N is
any map then β∗(c(β

∗ξ) ∩ [S2]) = β∗(β
∗c(ξ) ∩ [S2]) = c(ξ) ∩ β∗[S2] = 0, as the

Hurewicz homomorphism is trivial for such N . Since β∗ is an isomorphism in
degree 0 it follows that c(β∗ξ) = 0 and so β∗ξ is trivial. (A similar argument
applies for bundles with w 6= 0, provided the induced 2-fold covering space Nw

has no summands of type S1 × S2 or S1×̃S2 .)

On the other hand, if η is the Hopf fibration the bundle with total space S1×S3 ,
base S1×S2 and projection idS1 × η has nontrivial pullback over any essential
map from S2 to S1 × S2 , and is not induced from any bundle over K(Z, 1).
Moreover, S1 × S2 is a 2-fold covering space of RP 3]RP 3 , and so the above
hypothesis on summands of N is not stable under passage to 2-fold coverings
(corresponding to a homomorphism w from π1(N) to Z/2Z ).

Theorem 4.11 Let M be a PD4 -complex and N a PD3 -complex whose
fundamental group is torsion-free but not free. Then M is homotopy equivalent
to the total space of an S1 -bundle over N which satisfies the conditions of
Lemma 4.10 if and only if
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(1) χ(M) = 0;

(2) there is an epimorphism γ : π = π1(M)→ ν = π1(N) with Ker(γ) ∼= Z ;

(3) w1(M) = (w1(N) + w)γ , where w : ν → Z/2Z ∼= Aut(Ker(γ)) is
determined by the action of ν on Ker(γ) induced by conjugation in π ;

(4) k1(M) = γ∗k1(N) (and so P2(M) ' P2(N)×K(ν,1) K(π, 1));

(5) fM∗[M ] = ±G(fN∗[N ]) in H4(P2(M);Zw1(M)), where G is the Gysin
homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its funda-
mental group, i.e., q(π) = 0.

Remark The first three conditions and Poincaré duality imply that π2(M) ∼=
γ∗π2(N), the Z[π]-module with the same underlying group as π2(N) and with
Z[π]-action determined by the homomorphism γ .

Proof Since these conditions are homotopy invariant and hold if M is the
total space of such a bundle, they are necessary. Suppose conversely that they
hold. As ν is torsion-free N is the connected sum of a 3-manifold with free
fundamental group and some aspherical PD3 -complexes [Tu90]. As ν is not free
there is at least one aspherical summand. Hence c.d.ν = 3 and H3(cN ;Zw1(N))
is a monomorphism.

Let p(γ) : K(π, 1) → K(ν, 1) be the S1 -bundle corresponding to γ and let
E = N ×K(ν,1) K(π, 1) be the total space of the S1 -bundle over N induced by
the classifying map cN : N → K(ν, 1). The bundle map covering cN is the
classifying map cE . Then π1(E) ∼= π = π1(M), w1(E) = (w1(N) + w)γ =
w1(M), as maps from π to Z/2Z , and χ(E) = 0 = χ(M), by conditions (1)
and (3). The maps cN and cE induce a homomorphism between the Gysin
sequences of the S1 -bundles. Since N and ν have cohomological dimension 3
the Gysin homomorphisms in degree 3 are isomorphisms. Hence H4(cE ;Zw1(E))
is a monomorphism, and so a fortiori H4(fE ;Zw1(E)) is also a monomorphism.

Since χ(M) = 0 and β
(2)
1 (π) = 0, by Theorem 2.3, part (3) of Theorem 3.4

implies that π2(M) ∼= H2(π;Z[π]). It follows from conditions (2) and (3) and
the LHSSS that π2(M) ∼= π2(E) ∼= γ∗π2(N) as Z[π]-modules. Conditions (4)
and (5) then give us a map (ĉ, cM ) from M to P2(E) = P2(N)×K(ν,1) K(π, 1)
such that (ĉ, cM )∗[M ] = ±fE∗[E]. Hence M is homotopy equivalent to E , by
Theorem 3.8.

The final assertion now follows from part (1) of Theorem 3.4.
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As π2(N) is a projective Z[ν]-module, by Theorem 2.18, it is homologically
trivial and so Hq(π; γ∗π2(N) ⊗ Zw1(M)) = 0 if q ≥ 2. Hence it follows
from the spectral sequence for cP2(M) that H4(P2(M);Zw1(M)) maps onto

H4(π;Zw1(M)), with kernel isomorphic to H0(π; Γ(π2(M))) ⊗ Zw1(M)), where
Γ(π2(M)) = H4(K(π2(M), 2);Z) is Whitehead’s universal quadratic construc-
tion on π2(M). (See Chapter I of [Ba’].) This suggests that there may be
another formulation of the theorem in terms of conditions (1-3), together with
some information on k1(M) and the intersection pairing on π2(M). If N is
aspherical conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if ν is a free group, for then c.d.π ≤ 2. In this
case the Hurewicz homomorphism from π3(N) to H3(N ;Zw1(N)) is 0, and so
H3(fN ;Zw1(N)) is a monomorphism. The argument of the theorem would then
extend if the Gysin map in degree 3 for the bundle P2(E) → P2(N) were a
monomorphism. If ν = 1 then M is orientable, π ∼= Z and χ(M) = 0, so
M ' S3 × S1 . In general, if the restriction on ν is removed it is not clear that
there should be a degree 1 map from M to such a bundle space E .

It would be of interest to have a theorem with hypotheses involving only M ,
without reference to a model N . There is such a result in the aspherical case.

Theorem 4.12 A finite PD4 -complex M is homotopy equivalent to the total
space of an S1 -bundle over an aspherical PD3 -complex if and only if χ(M) = 0
and π = π1(M) has an infinite cyclic normal subgroup A such that π/A has
one end and finite cohomological dimension.

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. Since π/A has one end Hs(π/A;Z[π/A]) = 0 for s ≤ 1 and so an LHSSS

calculation gives Ht(π;Z[π]) = 0 for t ≤ 2. Moreover β
(2)
1 (π) = 0, by Theorem

2.3. Hence M is aspherical and π is a PD4 -group, by Corollary 3.5.2. Since A
is FP∞ and c.d.π/A <∞ the quotient π/A is a PD3 -group, by Theorem 9.11
of [Bi]. Therefore M is homotopy equivalent to the total space of an S1 -bundle
over the PD3 -complex K(π/A, 1).

Note that a finitely generated torsion-free group has one end if and only if it is
indecomposable as a free product and is neither infinite cyclic nor trivial.

In general, if M is homotopy equivalent to the total space of an S1 -bundle
over some 3-manifold then χ(M) = 0 and π1(M) has an infinite cyclic normal
subgroup A such that π1(M)/A is virtually of finite cohomological dimension.
Do these conditions characterize such homotopy types?
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Chapter 5

Surface bundles

In this chapter we shall show that a closed 4-manifold M is homotopy equiv-
alent to the total space of a fibre bundle with base and fibre closed surfaces if
and only if the obviously necessary conditions on the Euler characteristic and
fundamental group hold. When the base is S2 we need also conditions on the
characteristic classes of M , and when the base is RP 2 our results are incom-
plete. We shall defer consideration of bundles over RP 2 with fibre T or Kb
and ∂ 6= 0 to Chapter 11, and those with fibre S2 or RP 2 to Chapter 12.

5.1 Some general results

If B , E and F are connected finite complexes and p : E → B is a Hurewicz
fibration with fibre homotopy equivalent to F then χ(E) = χ(B)χ(F ) and the
long exact sequence of homotopy gives an exact sequence

π2(B)→ π1(F )→ π1(E)→ π1(B)→ 1

in which the image of π2(B) under the connecting homomorphism ∂ is in the
centre of π1(F ). (See page 51 of [Go68].) These conditions are clearly homotopy
invariant.

Hurewicz fibrations with base B and fibre X are classified by homotopy classes
of maps from B to the Milgram classifying space BE(X), where E(X) is the
monoid of all self homotopy equivalences of X , with the compact-open topology
[Mi67]. If X has been given a base point the evaluation map from E(X) to
X is a Hurewicz fibration with fibre the subspace (and submonoid) E0(X) of
base point preserving self homotopy equivalences [Go68].

Let T and Kb denote the torus and Klein bottle, respectively.

Lemma 5.1 Let F be an aspherical closed surface and B a closed smooth
manifold. There are natural bijections from the set of isomorphism classes of
smooth F -bundles over B to the set of fibre homotopy equivalence classes of
Hurewicz fibrations with fibre F over B and to the set

∐
[ξ]H

2(B; ζπ1(F )ξ),
where the union is over conjugacy classes of homomorphisms ξ : π1(B) →
Out(π1(F )) and ζπ1(F )ξ is the Z[π1(F )]-module determined by ξ .
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Proof If ζπ1(F ) = 1 the identity components of Diff(F ) and E(F ) are
contractible [EE69]. Now every automorphism of π1(F ) is realizable by a dif-
feomorphism and homotopy implies isotopy for self diffeomorphisms of surfaces.
(See Chapter V of [ZVC].) Therefore π0(Diff(F )) ∼= π0(E(F )) ∼= Out(π1(F )),
and the inclusion of Diff(F ) into E(F ) is a homotopy equivalence. Hence
BDiff(F ) ' BE(F ) ' K(Out(π1(F ), 1), so smooth F -bundles over B and
Hurewicz fibrations with fibre F over B are classified by the (unbased) homo-
topy set

[B,K(Out(π1(F ), 1))] = Hom(π1(B), Out(π1(F )))/ v,

where ξ v ξ′ if there is an α ∈ Out(π1(F )) such that ξ′(b) = αξ(b)α−1 for all
b ∈ π1(B).

If ζπ1(F ) 6= 1 then F = T or Kb. Left multiplication by T on itself induces
homotopy equivalences from T to the identity components of Diff(T ) and
E(T ). (Similarly, the standard action of S1 on Kb induces homotopy equiv-
alences from S1 to the identity components of Diff(Kb) and E(Kb). See
Theorem III.2 of [Go65].) Let α : GL(2,Z) → Aut(T ) ≤ Diff(T ) be the
standard linear action. Then the natural maps from the semidirect product
T oα GL(2,Z) to Diff(T ) and to E(T ) are homotopy equivalences. There-
fore BDiff(T ) is a K(Z2, 2)-fibration over K(GL(2,Z), 1). It follows that
T -bundles over B are classified by two invariants: a conjugacy class of ho-
momorphisms ξ : π1(B) → GL(2,Z) together with a cohomology class in
H2(B; (Z2)ξ). A similar argument applies if F = Kb.

Theorem 5.2 Let M be a PD4 -complex and B and F aspherical closed
surfaces. Then M is homotopy equivalent to the total space of an F -bundle
over B if and only if χ(M) = χ(B)χ(F ) and π = π1(M) is an extension of
π1(B) by π1(F ). Moreover every extension of π1(B) by π1(F ) is realized by
some surface bundle, which is determined up to isomorphism by the extension.

Proof The conditions are clearly necessary. Suppose that they hold. If
ζπ1(F ) = 1 each homomorphism ξ : π1(B) → Out(π1(F )) corresponds to
an unique equivalence class of extensions of π1(B) by π1(F ), by Proposition
11.4.21 of [Ro]. Hence there is an F -bundle p : E → B with π1(E) ∼= π real-
izing the extension, and p is unique up to bundle isomorphism. If F = T then
every homomorphism ξ : π1(B) → GL(2,Z) is realizable by an extension (for
instance, the semidirect product Z2 oξ π1(B)) and the extensions realizing ξ
are classified up to equivalence by H2(π1(B); (Z2)ξ). As B is aspherical the
natural map from bundles to group extensions is a bijection. Similar arguments
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apply if F = Kb. In all cases the bundle space E is aspherical, and so π is
an FF PD4 -group. Such extensions satisfy the Weak Bass Conjecture, by
Theorem 5.7 of [Co95]. Hence M ' E , by Corollary 3.5.1.

Such extensions (with χ(F ) < 0) were shown to be realizable by bundles in
[Jo79].

5.2 Bundles with base and fibre aspherical surfaces

In many cases the group π1(M) determines the bundle up to diffeomorphism
of its base. Lemma 5.3 and Theorems 5.4 and 5.5 are based on [Jo94].

Lemma 5.3 Let G1 and G2 be groups with no nontrivial abelian normal
subgroup. If H is a normal subgroup of G = G1 × G2 which contains no
nontrivial direct product then either H ≤ G1 × {1} or H ≤ {1} ×G2 .

Proof Let Pi be the projection of H onto Gi , for i = 1, 2. If (h, h′) ∈ H ,
g1 ∈ G1 and g2 ∈ G2 then ([h, g1], 1) = [(h, h′), (g1, 1)] and (1, [h′, g2]) are in
H . Hence [P1, P1]× [P2, P2] ≤ H . Therefore either P1 or P2 is abelian, and so
is trivial, since Pi is normal in Gi , for i = 1, 2.

Theorem 5.4 Let π be a group with a normal subgroup K such that K and
π/K are PD2 -groups with trivial centres.

(1) If Cπ(K) = 1 and K1 is a finitely generated normal subgroup of π then
Cπ(K1) = 1 also.

(2) The index [π : KCπ(K)] is finite if and only if π is virtually a direct
product of PD2 -groups.

Proof (1) Let z ∈ Cπ(K1). If K1 ≤ K then [K : K1] < ∞ and ζK1 = 1.
Let M = [K : K1]!. Then f(k) = k−1zMkz−M is in K1 for all k in K . Now
f(kk1) = k−1

1 f(k)k1 and also f(kk1) = f(kk1k
−1k) = f(k) (since K1 is a

normal subgroup centralized by z ), for all k in K and k1 in K1 . Hence f(k) is
central in K1 , and so f(k) = 1 for all k in K . Thus zM centralizes K . Since
π is torsion-free we must have z = 1. Otherwise the image of K1 under the
projection p : π → π/K is a nontrivial finitely generated normal subgroup of
π/K , and so has trivial centralizer. Hence p(z) = 1. Now [K,K1] ≤ K∩K1 and
so K ∩K1 6= 1, for otherwise K1 ≤ Cπ(K). Since z centralizes the nontrivial
normal subgroup K ∩K1 in K we must again have z = 1.
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(2) Since K has trivial centre KCπ(K) ∼= K ×Cπ(K) and so the condition is
necessary. Suppose that f : G1 × G2 → π is an isomorphism onto a subgroup
of finite index, where G1 and G2 are PD2 -groups. Let H = K ∩ f(G1 ×G2).
Then [K : H] <∞ and so H is also a PD2 -group, and is normal in f(G1×G2).
We may assume that H ≤ f(G1), by Lemma 5.3. Then f(G1)/H is finite and
is isomorphic to a subgroup of f(G1 × G2)/K ≤ π/K , so H = f(G1). Now
f(G2) normalizes K and centralizes H , and [K : H] < ∞. Hence f(G2)
has a subgroup of finite index which centralizes K , as in part (1). Hence
[π : KCπ(K)] <∞.

It follows immediately that if π and K are as in the theorem whether

(1) Cπ(K) 6= 1 and [π : KCπ(K)] =∞;

(2) [π : KCπ(K)] <∞; or

(3) Cπ(K) = 1

depends only on π and not on the subgroup K . In [Jo94] these cases are labeled
as types I, II and III, respectively. (In terms of the action ξ : π/K → Out(K):
if Im(ξ) is infinite and Ker(ξ) 6= 1 then π is of type I, if Im(ξ) is finite then π
is of type II, and if ξ is injective then π is of type III.)

Theorem 5.5 Let π be a group with a normal subgroup K such that K
and π/K are virtually PD2 -groups with no non-trivial finite normal subgroup.
If
√
π = 1 and Cπ(K) 6= 1 then π has at most one other nontrivial finitely

generated normal subgroup K1 6= K which contains no nontrivial direct product
and is such that π/K1 has no non-trivial finite normal subgroup. In that case
K1 ∩K = 1 and [π : KCπ(K)] <∞.

Proof Let p : π → π/K be the quotient epimorphism. Then p(Cπ(K)) is a
nontrivial normal subgroup of π/K , since K ∩ Cπ(K) = ζK = 1. Suppose
that K1 < π is a nontrivial finitely generated normal subgroup which contains
no nontrivial direct product and is such that π/K1 has no non-trivial finite
normal subgroup. Let Σ = K1 ∩ (KCπ(K)). Since Σ is normal in KCπ(K) ∼=
K×Cπ(K) and Σ ≤ K1 we must have either Σ ≤ K or Σ ≤ Cπ(K), by Lemma
5.3.

If Σ ≤ K then p(K1) ∩ p(Cπ(K)) = 1, and so p(K1) centralizes the nontrivial
normal subgroup p(Cπ(K)) in π/K . Therefore K1 ≤ K and so [K : K1] <∞.
Since π/K1 has no non-trivial finite normal subgroup we find K1 = K .

If Σ ≤ Cπ(K) then K1 ∩ K = 1. Hence [K,K1] = 1, since each subgroup is
normal in π , and so K1 ≤ Cπ(K). Moreover [π/K : p(K1)] <∞ since p(K1) is
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a nontrivial finitely generated normal subgroup of π/K , and so K1 and Cπ(K)
are PD2 -groups and [π : KCπ(K)] =]π/K : p(Cπ(K))] ≤ [π/K : p(K1)] <∞.

If K1 6= K and K2 is another such subgroup of π then K2 also has finite index
in Cπ(K), by the same argument. Since π/K1 and π/K2 have no non-trivial
finite normal subgroup it follows that K1 = K2 .

Corollary 5.5.1 [Jo93] Let α and β be automorphisms of π , and suppose
that α(K) ∩K = 1. Then β(K) = K or α(K). In particular, Aut(K ×K) ∼=
Aut(K)2 o (Z/2Z).

Groups of type I have an unique such normal subgroup K , while groups of
type II have at most two such subgroups, by Theorem 5.5. We shall obtain a
somewhat weaker result for groups of type III as a corollary of Theorem 5.6.

We shall use the following corollary in Chapter 9.

Corollary 5.5.2 Let π be a PD4 -group such that
√
π = 1. Then the following

conditions are equivalent:

(1) π has a subgroup ρ ∼= α× β where α and β are PD2 -groups;

(2) π has a normal subgroup σ ∼= K × L of finite index where K and L are
PD2 -groups and [π : Nπ(K)] ≤ 2;

(3) π has a subgroup τ such that [π : τ ] ≤ 2 and τ ≤ G×H where G and
H are virtually PD2 -groups.

Proof Suppose that (1) holds. Then [π : ρ] < ∞, by Strebel’s Theorem. Let
N be the intersection of the conjugates of ρ in π . Then N is normal in π and
[π : N ] <∞. We shall identify α ∼= α×{1} and β ∼= {1}×β with subgroups of
π . Let K = α∩N and L = β∩N . Then K and L are PD2 -groups, K∩L = 1
and σ = K.L ∼= K×L is normal in N and has finite index in π . Moreover N/K
and N/L are isomorphic to subgroups of finite index in β and α, respectively,
and so are also PD2 -groups. If

√
π = 1 all these groups have trivial centre,

and so any automorphism of N must either fix K and L or interchange them,
by Theorem 5.5. Hence σ is normal in π and [π : Nπ(K)] ≤ 2.

If (2) holds then Nπ(K) = Nπ(L). Let τ = Nπ(K) and let pG : τ → G =
τ/Cπ(K) and pH : τ → H = τ/Cπ(L) be the natural epimorphisms. Then
pG|K , pH |L and (pG, pH) are injective and have images of finite index in G, H
and G×H respectively. In particular, G and H are virtually PD2 -groups.

If (3) holds let α = τ ∩ (G × {1}) and β = τ ∩ ({1} × H). Then α and β
have finite index in G and H , respectively, and are torsion-free. Hence they
are PD2 -groups and clearly α ∩ β = 1. Therefore ρ = α.β ∼= α× β .
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It can be shown that these three conditions remain equivalent under the weaker
hypothesis that π be a PD4 -group which is not virtually abelian (using Lemma
9.4 for the implication (1)⇒ (3)).

Theorem 5.6 Let π be a group with normal subgroups K and K1 such that
K , K1 and π/K are PD2 -groups, π/K1 is torsion-free and χ(π/K) < 0. Then
either K1 = K or K1 ∩K = 1 and π ∼= K ×K1 or χ(K1) < χ(π/K).

Proof Let p : π → π/K be the quotient epimorphism. If K1 ≤ K then
K1 = K , as in Theorem 5.5. Otherwise p(K1) has finite index in π/K and so
p(K1) is also a PD2 -group. As the minimum number of generators of a PD2 -
group G is β1(G;F2), we have χ(K1) ≤ χ(p(K1)) ≤ χ(π/K). We may assume
that χ(K1) ≥ χ(π/K). Hence χ(K1) = χ(π/K) and so p|K1 is an epimorphism.
Therefore K1 and π/K have the same orientation type, by the nondegeneracy
of Poincaré duality with coefficients F2 and the Wu relation w1 ∪ x = x2 for
all x ∈ H1(G;F2) and PD2 -groups G. Hence K1

∼= π/K . Since PD2 -groups
are hopfian p|K1 is an isomorphism. Hence [K,K1] ≤ K ∩ K1 = 1 and so
π = K.K1

∼= K × π/K .

Corollary 5.6.1 [Jo99] There are only finitely many such subgroups K < π .

Proof We may assume that ζK = 1 and π is of type III. There is an epimor-
phism ρ : π → Z/χ(π)Z such that ρ(K) = 0. Then χ(Ker(ρ)) = χ(π)2 . Since
π is not virtually a product K is the only normal PD2 -subgroup of Ker(ρ)
with quotient a PD2 -group and such that χ(K)2 ≤ χ(Ker(ρ)). The corollary
follows since there are only finitely many such epimorphisms ρ.

See §14 of Chapter V of [BHPV] for examples of type III admitting at least two
such normal subgroups. The next corollary follows by elementary arithmetic.

Corollary 5.6.2 If K1 6= K and χ(K1) = −1 then π ∼= K ×K1 .

Corollary 5.6.3 Let M and M ′ be the total spaces of bundles ξ and ξ′ with
the same base B and fibre F , where B and F are aspherical closed surfaces
such that χ(B) < χ(F ). Then M ′ is diffeomorphic to M via a fibre-preserving
diffeomorphism if and only if π1(M ′) ∼= π1(M).

Compare the statement of Melvin’s Theorem on total spaces of S2 -bundles
(Theorem 5.13 below.)

We can often recognise total spaces of aspherical surface bundles under weaker
hypotheses on the fundamental group.

Geometry & Topology Monographs, Volume 5 (2002)



5.2 Bundles with base and fibre aspherical surfaces 95

Theorem 5.7 Let M be a PD4 -complex with fundamental group π . Then
the following conditions are equivalent:

(1) M is homotopy equivalent to the total space of a bundle with base and
fibre aspherical closed surfaces:

(2) π has an FP2 normal subgroup K such that π/K is a PD2 -group and
π2(M) = 0;

(3) π has a normal subgroup N which is a PD2 -group, π/N is torsion-free
and π2(M) = 0.

Proof Clearly (1) implies (2) and (3). Conversely they each imply that π has
one end and so M is aspherical. If K is an FP3 normal subgroup in π and
π/K is a PD2 -group then K is a PD2 -group, by Theorem 1.19. If N is a
normal subgroup which is a PD2 -group then π/N is virtually a PD2 -group,
by Theorem 3.10. Since it is torsion-free it is a PD2 -group and so the theorem
follows from Theorem 5.2.

If ζN = 1 then π/N is an extension of Cπ(N) by a subgroup of Out(N).
Thus we may argue instead that v.c.d.π/N <∞ and π/N is FP∞ , so π/N is
virtually a PD2 -group, by Theorem 9.11 of [Bi].

Corollary 5.7.1 The PD4 -complex M is homotopy equivalent to the total
space of a T - or Kb-bundle over an aspherical closed surface, if and only if
χ(M) = 0 and π has a normal subgroup A ∼= Z2 or Z o−1 Z such that π/A is
torsion free.

Proof The conditions are clearly necessary. If they hold then M is aspherical,
by Theorem 2.2 and Corollary 3.5.2, and so this corollary follows from part (3)
of Theorem 5.7

Kapovich has given examples of aspherical closed 4-manifolds M such that
π1(M) is an extension of a PD2 -group by a finitely generated normal subgroup
which is not FP2 [Ka13].

Theorem 5.8 Let M be a PD4 -complex whose fundamental group π has
an ascendant FP2 subgroup G of infinite index with one end and such that
χ(M) = 0. Then M is aspherical. If moreover c.d.G = 2 and χ(G) 6= 0 then
G is a PD2 -group and either [π : Nπ(G)] < ∞ or there is a subnormal chain
G < J < K ≤ π such that [π : K] <∞ and K/J ∼= J/G ∼= Z .
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Proof The argument of the first paragraph of the proof of Theorem 4.8 applies
equally well here to show that M is aspherical.

Assume henceforth that c.d.G = 2 and χ(G) < 0. If G < G̃ < Gγ and c.d.G̃ =
2 then [G̃ : G] < ∞, by Lemma 2.15. Hence G̃ is FP and [G̃ : G] ≤ |χ(G)|,
since χ(G) = [G̃ : G]χ(G̃). We may assume that G̃ is maximal among all
groups of cohomological dimension 2 in an ascendant chain from G to π . Let
G = G0 < G1 < ... < Gi = π be such an ascendant chain, with G̃ = Gn for
some finite ordinal n. Then [Gn+1 : G] =∞ and c.d.Gn+1 ≥ 3.

If G̃ is normal in π then G̃ is a PD2 -group and π/G̃ is virtually a PD2 -group,
by Theorem 3.10. Moreover [π : Nπ(G)] < ∞, since G̃ has only finitely many
subgroups of index [G̃ : G]. Therefore π has a normal subgroup K ≤ Nπ(G)
such that [π : K] <∞ and K/G is a PD+

2 -group.

Otherwise, replacing Gn+1 by the union of the terms Gα which normalize G̃
and reindexing, if necessary, we may assume that G̃ is not normal in Gn+2 . Let
h be an element of Gn+2 such that hG̃h−1 6= G̃, and let H = G̃.hG̃h−1 . Then
G̃ is normal in H and H is normal in Gn+1 , so [H : G̃] = ∞ and c.d.H = 3.
Moreover H is FP , by Proposition 8.3 of [Bi], and Hs(H;Z[H]) = 0 for s ≤ 2,
by an LHSSS argument.

If c.d.Gn+1 = 3 then Gn+1/H is locally finite, by Theorem 8.2 of [Bi]. Hence
it is finite, by the Gildenhuys-Strebel Theorem. Therefore Gn+1 is FP and
Hs(Gn+1;Z[Gn+1]) = 0 for s ≤ 2. Since Gn+1 is also ascendant in π it is
a PD3 -group, [π : Nπ(Gn+1)] < ∞ and Nπ(Gn+1)/Gn+1 has two ends, by
Theorem 4.8. Hence Gn+1/G̃ has two ends also, and G̃ is a PD2 -group, by
Theorem 2.12. We may easily find subgroups J ≤ Gn+1 and K ≤ Nπ(Gn+1)
such that G < J < K , J/G ∼= K/J ∼= Z and [π : K] <∞.

If c.d.Gn+1 = 4 then [π : Gn+1] is again finite and Gn+1 is a PD4 -group.
Hence the result follows as for the case when G̃ is normal in π .

Corollary 5.8.1 If χ(M) = 0, G is a PD2 -group, χ(G) 6= 0 and G is normal
in π then M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over T .

Proof Since G is normal in π and M is aspherical M has a finite covering
which is homotopy equivalent to a K(G, 1)-bundle over an aspherical orientable
surface, as in Theorem 5.7. Since χ(M) = 0 the base must be T .

If π/G is virtually Z2 then it has a subgroup of index at most 6 which maps
onto Z2 or Zo−1Z .
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Let G be a PD2 -group such that ζG = 1. Let θ be an automorphism of G
whose class in Out(G) has infinite order and let λ : G→ Z be an epimorphism.
Let π = (G×Z)oφZ where φ(g, n) = (θ(g), λ(g)+n) for all g ∈ G and n ∈ Z .
Then G is subnormal in π but this group is not virtually the group of a surface
bundle over a surface.

If π has an ascendant subgroup G which is a PD2 -group with χ(G) = 0 then√
G ∼= Z2 is ascendant in π and hence contained in

√
π . In this case h(

√
π) ≥ 2

and so either Theorem 8.1 or Theorem 9.2 applies, to show that M has a finite
covering space which is homotopy equivalent to the total space of a T -bundle
over an aspherical closed surface.

5.3 Bundles with aspherical base and fibre S2 or RP 2

Let E+(S2) denote the connected component of idS2 in E(S2), i.e., the sub-
monoid of degree 1 maps. The connected component of idS2 in E0(S2) may be
identified with the double loop space Ω2S2 .

Lemma 5.9 Let X be a finite 2-complex. Then there are natural bijections
[X;BO(3)] ∼= [X;BE(S2)] ∼= H1(X;F2)×H2(X;F2).

Proof As a self homotopy equivalence of a sphere is homotopic to the identity
if and only if it has degree +1 the inclusion of O(3) into E(S2) is bijective
on components. Evaluation of a self map of S2 at the basepoint determines
fibrations of SO(3) and E+(S2) over S2 , with fibre SO(2) and Ω2S2 , respec-
tively, and the map of fibres induces an isomorphism on π1 . On comparing the
exact sequences of homotopy for these fibrations we see that the inclusion of
SO(3) in E+(S2) also induces an isomorphism on π1 . Since the Stiefel-Whitney
classes are defined for any spherical fibration and w1 and w2 are nontrivial on
suitable S2 -bundles over S1 and S2 , respectively, the inclusion of BO(3) into
BE(S2) and the map (w1, w2) : BE(S2)→ K(Z/2Z, 1)×K(Z/2Z, 2) induces
isomorphisms on πi for i ≤ 2. The lemma follows easily.

Thus there is a natural 1-1 correspondance between S2 -bundles and spherical
fibrations over such complexes, and any such bundle ξ is determined up to
isomorphism over X by its total Stiefel-Whitney class w(ξ) = 1+w1(ξ)+w2(ξ).
(From another point of view: if w1(ξ) = w1(ξ′) there is an isomorphism of the
restrictions of ξ and ξ′ over the 1-skeleton X [1] . The difference w2(ξ)−w2(ξ′)
is the obstruction to extending any such isomorphism over the 2-skeleton.)

Geometry & Topology Monographs, Volume 5 (2002)



98 Chapter 5: Surface bundles

Theorem 5.10 Let M be a PD4 -complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) π1(M) ∼= π1(B) and χ(M) = 2χ(B);

(2) π1(M) ∼= π1(B) and M̃ ' S2 ;

(3) M is homotopy equivalent to the total space of an S2 -bundle over B .

Proof If (1) holds then H3(M̃ ;Z) = H4(M̃ ;Z) = 0, as π1(M) has one end,

and π2(M) ∼= H2(π;Z[π]) ∼= Z , by Theorem 3.12. Hence M̃ is homotopy
equivalent to S2 . If (2) holds we may assume that there is a Hurewicz fibra-
tion h : M → B which induces an isomorphism of fundamental groups. As
the homotopy fibre of h is M̃ , Lemma 5.9 implies that h is fibre homotopy
equivalent to the projection of an S2 -bundle over B . Clearly (3) implies the
other conditions.

We shall summarize some of the key properties of the Stiefel-Whitney classes
of such bundles in the following lemma.

Lemma 5.11 Let ξ be an S2 -bundle over a closed surface B , with total space
M and projection p : M → B . Then

(1) ξ is trivial if and only if w(M) = p∗w(B);

(2) π1(M) ∼= π1(B) acts on π2(M) by multiplication by w1(ξ);

(3) the intersection form on H2(M ;F2) is even if and only if w2(ξ) = 0;

(4) if q : B′ → B is a 2-fold covering map with connected domain B′ then
w2(q∗ξ) = 0.

Proof (1) Applying the Whitney sum formula and naturality to the tangent
bundle of the B3 -bundle associated to ξ gives w(M) = p∗w(B)∪p∗w(ξ). Since
p is a 2-connected map the induced homomorphism p∗ is injective in degrees
≤ 2 and so w(M) = p∗w(B) if and only if w(ξ) = 1. By Lemma 5.9 this is so
if and only if ξ is trivial, since B is 2-dimensional.

(2) It is sufficient to consider the restriction of ξ over loops in B , where the
result is clear.

(3) By Poincaré duality, the intersection form is even if and only if the Wu
class v2(M) = w2(M) + w1(M)2 is 0. Now

v2(M) = p∗(w1(B) + w1(ξ))2 + p∗(w2(B) + w1(B) ∪ w1(ξ) + w2(ξ))

= p∗(w2(B) + w1(B) ∪ w1(ξ) + w2(ξ) + w1(B)2 + w1(ξ)2)

= p∗(w2(ξ)),
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since w1(B) ∪ η = η2 and w1(B)2 = w2(B), by the Wu relations for B . Hence
v2(M) = 0 if and only if w2(ξ) = 0, as p∗ is injective in degree 2.

(4) We have q∗(w2(q∗ξ) ∩ [B′]) = q∗((q
∗w2(ξ)) ∩ [B′]) = w2(ξ) ∩ q∗[B′], by the

projection formula. Since q has degree 2 this is 0, and since q∗ is an isomorphism
in degree 0 we find w2(q∗ξ) ∩ [B′] = 0. Therefore w2(q∗ξ) = 0, by Poincaré
duality for B′ .

Melvin has determined criteria for the total spaces of S2 -bundles over a compact
surface to be diffeomorphic, in terms of their Stiefel-Whitney classes. We shall
give an alternative argument for the cases with aspherical base.

Lemma 5.12 Let B be a closed surface and w be the Poincaré dual of w1(B).
If u1 and u2 are elements of H1(B;F2) \ {0, w} such that u1.u1 = u2.u2 then
there is a diffeomorphism f : B → B which is a composite of Dehn twists about
two-sided essential simple closed curves and such that f∗(u1) = u2 .

Proof For simplicity of notation, we shall use the same symbol for a simple
closed curve u on B and its homology class in H1(B;F2). The curve u is
two-sided if and only if u.u = 0. In that case we shall let cu denote the
automorphism of H1(B;F2) induced by a Dehn twist about u. Note also that
u.u = u.w and cv(u) = u+ (u.v)v for all u and two-sided v in H1(B;F2).

If B is orientable it is well known that the group of isometries of the intersection
form acts transitively on H1(B;F2), and is generated by the automorphisms
cu . Thus the claim is true in this case.

If w1(B)2 6= 0 then B ∼= RP 2]Tg , where Tg is orientable. If u1.u1 = u2.u2 = 0
then u1 and u2 are represented by simple closed curves in Tg , and so are
related by a diffeomorphism which is the identity on the RP 2 summand. If
u1.u1 = u2.u2 = 1 let vi = ui + w . Then vi.vi = 0 and this case follows from
the earlier one.

Suppose finally that w1(B) 6= 0 but w1(B)2 = 0; equivalently, that B ∼= Kb]Tg ,
where Tg is orientable. Let {w, z} be a basis for the homology of the Kb
summand. In this case w is represented by a 2-sided curve. If u1.u1 = u2.u2 = 0
and u1.z = u2.z = 0 then u1 and u2 are represented by simple closed curves
in Tg , and so are related by a diffeomorphism which is the identity on the Kb
summand. The claim then follows if u.z = 1 for u = u1 or u2 , since we then
have cw(u).cw(u) = cw(u).z = 0. If u.u 6= 0 and u.z = 0 then (u+z).(u+z) = 0
and cu+z(u) = z . If u.u 6= 0, u.z 6= 0 and u 6= z then cu+z+wcw(u) = z . Thus
if u1.u1 = u2.u2 = 1 both u1 and u2 are related to z . Thus in all cases the
claim is true.
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Theorem 5.13 (Melvin) Let ξ and ξ′ be two S2 -bundles over an aspherical
closed surface B . Then the following conditions are equivalent:

(1) there is a diffeomorphism f : B → B such that ξ = f∗ξ′ ;

(2) the total spaces E(ξ) and E(ξ′) are diffeomorphic; and

(3) w1(ξ) = w1(ξ′) if w1(ξ) = 0 or w1(B), w1(ξ) ∪ w1(B) = w1(ξ′) ∪ w1(B)
and w2(ξ) = w2(ξ′).

Proof Clearly (1) implies (2). A diffeomorphism h : E → E′ induces an
isomorphism on fundamental groups; hence there is a diffeomorphism f : B →
B such that fp is homotopic to p′h. Now h∗w(E′) = w(E) and f∗w(B) =
w(B). Hence p∗f∗w(ξ′) = p∗w(ξ) and so w(f∗ξ′) = f∗w(ξ′) = w(ξ). Thus
f∗ξ′ = ξ , by Lemma 5.9, and so (2) implies (1).

If (1) holds then f∗w(ξ′) = w(ξ). Since w1(B) = v1(B) is the character-
istic element for the cup product pairing from H1(B;F2) to H2(B;F2) and
H2(f ;F2) is the identity f∗w1(B) = w1(B), w1(ξ) ∪ w1(B) = w1(ξ′) ∪ w1(B)
and w2(ξ) = w2(ξ′). Hence(1) implies (3).

If w1(ξ) ∪ w1(B) = w1(ξ′) ∪ w1(B) and w1(ξ) and w1(ξ′) are neither 0 nor
w1(B) then there is a diffeomorphism f : B → B such that f∗w1(ξ′) = w1(ξ),
by Lemma 5.12 (applied to the Poincaré dual homology classes). Hence (3)
implies (1).

Corollary 5.13.1 There are 4 diffeomorphism classes of S2 -bundle spaces if
B is orientable and χ(B) ≤ 0, 6 if B = Kb and 8 if B is nonorientable and
χ(B) < 0.

See [Me84] for a more geometric argument, which applies also to S2 -bundles
over surfaces with nonempty boundary. The theorem holds also when B = S2

or RP 2 ; there are 2 such bundles over S2 and 4 over RP 2 . (See Chapter 12.)

Theorem 5.14 Let M be a PD4 -complex with fundamental group π . The
following are equivalent:

(1) π 6= 1 and π2(M) ∼= Z .

(2) M̃ ' S2 ;

(3) M has a covering space of degree ≤ 2 which is homotopy equivalent to
the total space of an S2 -bundle over an aspherical closed surface;

(4) π is virtually a PD2 -group and χ(M) = 2χ(π).
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If these conditions hold the kernel K of the natural action of π on π2(M) is a
PD2 -group.

Proof Suppose that (1) holds. If π is finite and π2(M) ∼= Z then M̃ ' CP 2 ,
and so admits no nontrivial free group actions, by the Lefshetz fixed point
theorem. Hence π must be infinite. Then H0(M̃ ;Z) = Z , H1(M̃ ;Z) = 0

and H2(M̃ ;Z) = π2(M), while H3(M̃ ;Z) ∼= H1(π;Z[π]) and H4(M̃ ;Z) = 0.
Now HomZ[π](π2(M),Z[π]) = 0, since π is infinite and π2(M) ∼= Z . Therefore
H2(π;Z[π]) is infinite cyclic, by Lemma 3.3, and so π is virtually a PD2 -group,

by Bowditch’s Theorem. Hence H3(M̃ ;Z) = 0 and so M̃ ' S2 . If C is a finite

cyclic subgroup of K then Hn+3(C;Z) ∼= Hn(C;H2(M̃ ;Z)) for all n ≥ 2, by
Lemma 2.10. Therefore C must be trivial, so K is torsion-free. Hence K is a
PD2 -group and (3) now follows from Theorem 5.10. Clearly (3) implies (2) and
(2) implies (1). The equivalence of (3) and (4) follows from Theorem 5.10.

A straightfoward Mayer-Vietoris argument may be used to show directly that
if H2(π;Z[π]) ∼= Z then π has one end.

Lemma 5.15 Let X be a finite 2-complex. Then there are natural bijections
[X;BSO(3)] ∼= [X;BE(RP 2)] ∼= H2(X;F2).

Proof Let (1, 0, 0) and [1 : 0 : 0] be the base points for S2 and RP 2 re-
spectively. A based self homotopy equivalence f of RP 2 lifts to a based self
homotopy equivalence f+ of S2 . If f is based homotopic to the identity then
deg(f+) = 1. Conversely, any based self homotopy equivalence is based homo-
topic to a map which is the identity on RP 1 ; if moreover deg(f+) = 1 then this
map is the identity on the normal bundle and it quickly follows that f is based
homotopic to the identity. Thus E0(RP 2) has two components. The diffeomor-
phism g defined by g([x : y : z]) = [x : y : −z] is isotopic to the identity (rotate
in the (x, y)-coordinates). However deg(g+) = −1. It follows that E(RP 2) is
connected. As every self homotopy equivalence of RP 2 is covered by a degree
1 self map of S2 , there is a natural map from E(RP 2) to E+(S2).

We may use obstruction theory to show that π1(E0(RP 2)) has order 2. Hence
π1(E(RP 2)) has order at most 4. Suppose that there were a homotopy ft
through self maps of RP 2 with f0 = f1 = idRP 2 and such that the loop ft(∗)
is essential, where ∗ is a basepoint. Let F be the map from RP 2 × S1 to
RP 2 determined by F (p, t) = ft(p), and let α and β be the generators of
H1(RP 2;F2) and H1(S1;F2), respectively. Then F ∗α = α⊗ 1 + 1⊗ β and so
(F ∗α)3 = α2 ⊗ β which is nonzero, contradicting α3 = 0. Thus there can be
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no such homotopy, and so the homomorphism from π1(E(RP 2)) to π1(RP 2)
induced by the evaluation map must be trivial. It then follows from the exact
sequence of homotopy for this evaluation map that the order of π1(E(RP 2)) is
at most 2. The group SO(3) ∼= O(3)/(±I) acts isometrically on RP 2 . As the
composite of the maps on π1 induced by the inclusions SO(3) ⊂ E(RP 2) ⊂
E+(S2) is an isomorphism of groups of order 2 the first map also induces an
isomorphism. It follows as in Lemma 5.9 that there are natural bijections
[X;BSO(3)] ∼= [X;BE(RP 2)] ∼= H2(X;F2).

Thus there is a natural 1-1 correspondance between RP 2 -bundles and orientable
spherical fibrations over such complexes. The RP 2 -bundle corresponding to an
orientable S2 -bundle is the quotient by the fibrewise antipodal involution. In
particular, there are two RP 2 -bundles over each closed aspherical surface.

Theorem 5.16 Let M be a PD4 -complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) π1(M) ∼= π1(B)× (Z/2Z) and χ(M) = χ(B);

(2) π1(M) ∼= π1(B)× (Z/2Z) and M̃ ' S2 ;

(3) M is homotopy equivalent to the total space of an RP 2 -bundle over B .

Proof Suppose that (1) holds, and let w : π1(M) → Z/2Z be the projection
onto the Z/2Z factor. Then the covering space associated with the kernel of w

satisfies the hypotheses of Theorem 5.10 and so M̃ ' S2 .

If (2) holds the homotopy fibre of the map h from M to B inducing the
projection of π1(M) onto π1(B) is homotopy equivalent to RP 2 . The map h
is fibre homotopy equivalent to the projection of an RP 2 -bundle over B , by
Lemma 5.15.

If E is the total space of an RP 2 -bundle over B , with projection p, then
χ(E) = χ(B) and the long exact sequence of homotopy gives a short exact
sequence 1 → Z/2Z → π1(E) → π1(B) → 1. Since the fibre has a product
neighbourhood, j∗w1(E) = w1(RP 2), where j : RP 2 → E is the inclusion of
the fibre over the basepoint of B , and so w1(E) considered as a homomorphism
from π1(E) to Z/2Z splits the injection j∗ . Therefore π1(E) ∼= π1(B)×(Z/2Z)
and so (1) holds, as these conditions are clearly invariant under homotopy.

We may use the above results to refine some of the conclusions of Theorem 3.9
on PD4 -complexes with finitely dominated covering spaces.
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Theorem 5.17 Let M be a PD4 -complex with fundamental group π , and let
p : π → G be an epimorphism with FP2 kernel ν . Suppose that H2(G;Z[G]) ∼=
Z . Then the following conditions are equivalent:

(1) HomZ[π](π2(M),Z[π]) = 0;

(2) C∗(M̃)|ν has finite 2-skeleton;

(3) the associated covering space Mν is homotopy equivalent to a closed
surface;

(4) M has a finite covering space which is homotopy equivalent to the total
space of a surface bundle over an aspherical closed surface.

Proof By Bowditch’s Theorem G is virtually a PD2 -group. Hence π has
one end and H2(π;Z[π]) ∼= Z , if ν is finite, and is 0 otherwise, by an LHSSS
argument.

If (1) holds π2(M) ∼= H2(π;Z[π]), by Lemma 3.3. If (2) holds π2(M) ∼=
H2(Mν ;Z[ν]) ∼= H0(Mν ;Z[ν]), by Theorem 1.19 ′ . In either case, if ν is finite
π2(M) ∼= Z , while if ν is infinite π2(M) = 0 and M is aspherical. Condition
(3) now follows from Theorems 5.10, 5.16 and 1.19, and (4) follows easily.

If (4) holds then π is infinite and π2(M) = π2(Mν) ∼= Z or is 0, and so (1)
holds.

The total spaces of such bundles with base an aspherical surface have mini-
mal Euler characteristic for their fundamental groups (i.e. χ(M) = q(π)), by
Theorem 3.12 and the remarks in the paragraph preceding it.

The FP2 hypothesis is in general necessary, as observed after Theorem 5.7. (See
[Ka98].) However it may be relaxed when G is virtually Z2 and χ(M) = 0.

Theorem 5.18 Let M be a finite PD4 -complex with fundamental group π .
Then M is homotopy equivalent to the total space of a surface bundle over T
or Kb if and only if π is an extension of Z2 or Zo−1Z (respectively) by a
finitely generated normal subgroup ν and χ(M) = 0.

Proof The conditions are clearly necessary. If they hold the covering space
Mν associated to the subgroup ν is homotopy equivalent to a closed surface, by
Corollaries 4.5.2 and 2.12.1. The result then follows from Theorems 5.2, 5.10
and 5.16.

In particular, if π is the nontrivial extension of Z2 by Z/2Z then q(π) > 0.
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5.4 Bundles over S2

Since S2 is the union of two discs along a circle, an F -bundle over S2 is
determined by the homotopy class of the clutching function in π1(Diff(F )).
(This group is isomorphic to ζπ1(F ) and hence to H2(S2; ζπ1(F )).) On the
other hand, if M is a PD4 -complex then cellular approximation gives bijections
H2(M ;Z) = [M ;CP∞] = [M ;CP 2], and a map f : M → CP 2 factors through
CP 2 \ D4 ∼ S2 if and only if deg(f) = 0. Thus if u ∈ H2(M ;Z) and i2
generates H2(S2;Z) then u = f∗i2 for some f : M → S2 if and only if u2 = 0.
The map is uniquely determined by u, by Theorem 8.4.11 of [Sp].

Theorem 5.19 Let M be a PD4 -complex with fundamental group π and
F a closed surface. Then M is homotopy equivalent to the total space of an
F -bundle over S2 if and only if χ(M) = 2χ(F ) and

(1) (when χ(F ) < 0) π ∼= π1(F ), w1(M) = c∗Mw1(F ) and w2(M) = w1(M)2 =
(c∗Mw1(F ))2 ; or

(2) (when F = T ) π ∼= Z2 and w1(M) = w2(M) = 0, or π ∼= Z ⊕ (Z/nZ)
for some n > 0 and, if n = 1 or 2, w1(M) = 0; or

(3) (when F = Kb) π ∼= Zo−1Z , w1(M) 6= 0 and w2(M) = w1(M)2 = 0,
or π has a presentation 〈x, y | yxy−1 = x−1, y2n = 1〉 for some n > 0,
where w1(M)(x) = 0 and w1(M)(y) = 1; or

(4) (when F = S2 ) π = 1 and the index σ(M) = 0; or

(5) (when F = RP 2 ) π = Z/2Z , w1(M) 6= 0 and there is a class u of infinite
order in H2(M ;Z) and such that u2 = 0.

Proof Let pE : E → S2 be such a bundle. Then χ(E) = 2χ(F ) and
π1(E) ∼= π1(F )/∂π2(S2), where Im(∂) ≤ ζπ1(F ) [Go68]. The characteristic
classes of E restrict to the characteristic classes of the fibre, as it has a product
neighbourhood. As the base is 1-connected E is orientable if and only if the
fibre is orientable. Thus the conditions on χ, π and w1 are all necessary. We
shall treat the other assertions case by case.

(1) If χ(F ) < 0 any F -bundle over S2 is trivial, by Lemma 5.1. Thus the
conditions are necessary. Conversely, if they hold then cM is fibre homotopy
equivalent to the projection of an S2 -bundle ξ with base F , by Theorem 5.10.
The conditions on the Stiefel-Whitney classes then imply that w(ξ) = 1 and
hence that the bundle is trivial, by Lemma 5.11. Therefore M is homotopy
equivalent to S2 × F .
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(2) If ∂ = 0 there is a map q : E → T which induces an isomorphism of
fundamental groups, and the map (pE , q) : E → S2 × T is clearly a homotopy
equivalence, so w(E) = 1. Conversely, if χ(M) = 0, π ∼= Z2 and w(M) = 1
then M is homotopy equivalent to S2 × T , by Theorem 5.10 and Lemma 5.11.

If χ(M) = 0 and π ∼= Z ⊕ (Z/nZ) for some n > 0 then the covering space
MZ/nZ corresponding to the torsion subgroup Z/nZ is homotopy equivalent
to a lens space L, by Corollary 4.5.2. As observed in Chapter 4 the manifold
M is homotopy equivalent to the mapping torus of a generator of the group
of covering transformations Aut(MZ/nZ/M) ∼= Z . Since the generator induces
the identity on π1(L) ∼= Z/nZ it is homotopic to idL , if n > 2. This is also
true if n = 1 or 2 and M is orientable. (See Section 29 of [Co].) Therefore M
is homotopy equivalent to L× S1 , which fibres over S2 via the composition of
the projection to L with the Hopf fibration of L over S2 . (Hence w(M) = 1
in these cases also.)

(3) As in part (2), if π1(E) ∼= Zo−1Z = π1(Kb) then E is homotopy equivalent
to S2 × Kb and so w1(E) 6= 0, while w2(E) = 0. Conversely, if χ(M) =
0, π ∼= π1(Kb), M is nonorientable and w1(M)2 = w2(M) = 0 then M is
homotopy equivalent to S2 × Kb. Suppose now that π and w1 satisfy the
second alternative (corresponding to bundles with ∂ 6= 0). Let q : M+ → M
be the orientation double cover. Then M+ satisfies the hypotheses of part (3),
and so there is a map p+ : M+ → S2 with homotopy fibre T . Now H2(q;Z) is
an epimorphism, since H3(Z/2Z;Z) = H2(Z/2Z;H1(M+;Z)) = 0. Therefore
p+ = pq for some map p : M → S2 . Comparison of the exact sequences of
homotopy for p+ and p shows that the homotopy fibre of p must be Kb. As
in Theorem 5.2 above p is fibre homotopy equivalent to a bundle projection.

(4) There are just two S2 -bundles over S2 , with total spaces S2 × S2 and
S2×̃S2 = CP 2] − CP 2 , respectively. Thus the conditions are necessary. If
M satisfies these conditions then H2(M ;Z) ∼= Z2 and there is an element u
in H2(M ;Z) which generates an infinite cyclic direct summand and has square
u∪u = 0. Thus u = f∗i2 for some map f : M → S2 . Since u generates a direct
summand there is a homology class z in H2(M ;Z) such that u ∩ z = 1, and
therefore (by the Hurewicz theorem) there is a map z : S2 → M such that fz
is homotopic to idS2 . The homotopy fibre of f is 1-connected and has π2

∼= Z ,
by the long exact sequence of homotopy. It then follows easily from the spectral
sequence for f that the homotopy fibre has the homology of S2 . Therefore f
is fibre homotopy equivalent to the projection of an S2 -bundle over S2 .

(5) Since π1(Diff(RP 2)) = Z/2Z (see page 21 of [EE69]) there are two RP 2 -
bundles over S2 . Again the conditions are clearly necessary. If they hold we
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may assume that u generates an infinite cyclic direct summand of H2(M ;Z)
and that u = g∗i2 for some map g : M → S2 . Let q : M+ → M be the
orientation double cover and g+ = gq . Since H2(Z/2Z;Z) = 0 the second
homology of M is spherical. Thus there is a map z = qz+ : S2 → M such
that gz = g+z+ is homotopic to idS2 . Hence the homotopy fibre of g+ is S2 ,
by case (5). Since the homotopy fibre of g has fundamental group Z/2Z and
is double covered by the homotopy fibre of g+ it is homotopy equivalent to
RP 2 . It follows as in Theorem 5.16 that g is fibre homotopy equivalent to the
projection of an RP 2 -bundle over S2 .

Theorems 5.2, 5.10 and 5.16 may each be rephrased as giving criteria for maps
from M to B to be fibre homotopy equivalent to fibre bundle projections. With
the hypotheses of Theorem 5.19 (and assuming also that ∂ = 0 if χ(M) = 0)
we may conclude that a map f : M → S2 is fibre homotopy equivalent to a
fibre bundle projection if and only if f∗i2 generates an infinite cyclic direct
summand of H2(M ;Z).

It follows from Theorem 5.10 that the conditions on the Stiefel-Whitney classes
are independent of the other conditions when π ∼= π1(F ). Note also that the
nonorientable S3 - and RP 3 -bundles over S1 are not T -bundles over S2 , while
if M = CP 2]CP 2 then π = 1 and χ(M) = 4 but σ(M) 6= 0. See Chapter 12
for further information on parts (4) and (5).

5.5 Bundles over RP 2

Since RP 2 = Mb ∪ D2 is the union of a Möbius band Mb and a disc D2 , a
bundle p : E → RP 2 with fibre F is determined by a bundle over Mb which
restricts to a trivial bundle over ∂Mb, i.e. by a conjugacy class of elements of
order dividing 2 in π0(Homeo(F )), together with the class of a gluing map over
∂Mb = ∂D2 modulo those which extend across D2 or Mb, i.e. an element of a
quotient of π1(Homeo(F )). If F is aspherical π0(Homeo(F )) ∼= Out(π1(F )),
while π1(Homeo(F )) ∼= ζπ1(F ) [Go65].

We may summarize the key properties of the algebraic invariants of such bundles
with F an aspherical closed surface in the following lemma. Let Z̃ be the non-
trivial infinite cyclic Z/2Z -module. The groups H1(Z/2Z; Z̃), H1(Z/2Z;F2)
and H1(RP 2; Z̃) are canonically isomorphic to Z/2Z .

Lemma 5.20 Let p : E → RP 2 be the projection of an F -bundle, where F is
an aspherical closed surface, and let x be the generator of H1(RP 2; Z̃). Then

Geometry & Topology Monographs, Volume 5 (2002)



5.5 Bundles over RP 2 107

(1) χ(E) = χ(F );

(2) ∂(π2(RP 2)) ≤ ζπ1(F ) and there is an exact sequence of groups

0→ π2(E)→ Z
∂−−−−→ π1(F )→ π1(E)→ Z/2Z → 1;

(3) if ∂ = 0 then π1(E) acts nontrivially on π2(E) ∼= Z and the covering
space EF with fundamental group π1(F ) is homeomorphic to S2 × F ,
so w1(E)|π1(F ) = w1(EF ) = w1(F ) (as homomorphisms from π1(F ) to
Z/2Z ) and w2(EF ) = w1(EF )2 ;

(4) if ∂ 6= 0 then χ(F ) = 0, π1(E) has two ends, π2(E) = 0 and Z/2Z acts
by inversion on ∂(Z);

(5) p∗x3 = 0 ∈ H3(E; p∗Z̃).

Proof Condition (1) holds since the Euler characteristic is multiplicative in
fibrations, while (2) is part of the long exact sequence of homotopy for p.
The image of ∂ is central by [Go68], and is therefore trivial unless χ(F ) = 0.
Conditions (3) and (4) then follow as the homomorphisms in this sequence are
compatible with the actions of the fundamental groups, and EF is the total
space of an F -bundle over S2 , which is a trivial bundle if ∂ = 0, by Theorem
5.19. Condition (5) holds since H3(RP 2; Z̃) = 0.

Let π be a group which is an extension of Z/2Z by a normal subgroup G, and
let t ∈ π be an element which maps nontrivially to π/G = Z/2Z . Then u = t2

is in G and conjugation by t determines an automorphism α of G such that
α(u) = u and α2 is the inner automorphism given by conjugation by u.

Conversely, let α be an automorphism of G whose square is inner, say α2(g) =
ugu−1 for all g ∈ G. Let v = α(u). Then α3(g) = α2(α(g)) = uα(g)c−1 =
α(α2(g)) = vα(g)v−1 for all g ∈ G. Therefore vu−1 is central. In particular, if
the centre of G is trivial α fixes u, and we may define an extension

ξα : 1→ G→ Πα → Z/2Z → 1

in which Πα has the presentation 〈G, tα | tαgt−1
α = α(g), t2α = u〉. If β is

another automorphism in the same outer automorphism class then ξα and ξβ
are equivalent extensions. (Note that if β = α.ch , where ch is conjugation by
h, then β(α(h)uh) = α(h)uh and β2(g) = α(h)uh.g.(α(h)uh)−1 for all g ∈ G.)

Lemma 5.21 If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then an F -bundle
over RP 2 is determined up to isomorphism by the corresponding extension of
fundamental groups.
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Proof If χ(F ) < 0 such bundles and extensions are each determined by an
element ξ of order 2 in Out(π1(F )). If χ(F ) = 0 bundles with ∂ = 0 are
the restrictions of bundles over RP∞ = K(Z/2Z, 1) (compare Lemma 4.10).
Such bundles are determined by an element ξ of order 2 in Out(π1(F )) and
a cohomology class in H2(Z/2Z; ζπ1(F )ξ), by Lemma 5.1, and so correspond
bijectively to extensions also.

Lemma 5.22 Let M be a PD4 -complex with fundamental group π . A map
f : M → RP 2 is fibre homotopy equivalent to the projection of a bundle over
RP 2 with fibre an aspherical closed surface if π1(f) is an epimorphism and
either

(1) χ(M) ≤ 0 and π2(f) is an isomorphism; or

(2) χ(M) = 0, π has two ends and π3(f) is an isomorphism.

Proof In each case π is infinite, by Lemma 3.14. In case (1) H2(π;Z[π]) ∼= Z

(by Lemma 3.3) and so π has one end, by Bowditch’s Theorem. Hence M̃ ' S2 .
Moreover the homotopy fibre of f is aspherical, and its fundamental group is a
surface group. (See Chapter X for details.) In case (2) M̃ ' S3 , by Corollary

4.5.2. Hence the lift f̃ : M̃ → S2 is fibre homotopy equivalent to the Hopf
map, and so induces isomorphisms on all higher homotopy groups. Therefore
the homotopy fibre of f is aspherical. As π2(M) = 0 the fundamental group of
the homotopy fibre is a (torsion-free) infinite cyclic extension of π and so must
be either Z2 or Zo−1Z . Thus the homotopy fibre of f is homotopy equivalent
to T or Kb. In both cases the argument of Theorem 5.2 now shows that f is
fibre homotopy equivalent to a surface bundle projection.

5.6 Bundles over RP 2 with ∂ = 0

Let F be a closed aspherical surface and p : M → RP 2 be a bundle with fibre
F , and such that π2(M) ∼= Z . (This condition is automatic if χ(F ) < 0.) Then
π = π1(M) acts nontrivially on π2(M). The covering space Mκ associated to
the kernel κ of the action is an F -bundle over S2 , and so Mκ

∼= S2×F , since all
such bundles are trivial. In particular, v2(M) ∈ H2(π;F2), and v2(M)|κ = 0.
The projection admits a section if and only if π ∼= κo Z/2Z .

Our attempt (in the original version of this book) to characterize more general
surface bundles over RP 2 had an error (in the claim that restriction from
H2(RP 2;Zu) to H2(S2;Z) is an isomorphism). We provide instead several
partial results. Further progress might follow from a better understanding

Geometry & Topology Monographs, Volume 5 (2002)



5.6 Bundles over RP 2 with ∂ = 0 109

of maps from 4-complexes to RP 2 . The reference [Si67] cited in the former
(flawed) theorem of this section remains potentially useful here.

The product RP 2 × F is easily characterized.

Theorem 5.23 Let M be a closed 4-manifold with fundamental group π ,
and let F be an aspherical closed surface. Then the following are equivalent.

(1) M ' RP 2 × F ;

(2) π ∼= Z/2Z × π1(F ), χ(M) = χ(F ) and v2(M) = 0;

(3) π ∼= Z/2Z × π1(F ), χ(M) = χ(F ) and M ' E , where E is the total
space of an F -bundle over RP 2 .

Proof Clearly (1)⇒ (2) and (3). If (2) holds then M is homotopy equivalent
to the total space of an RP 2 -bundle over F , by Theorem 5.16. This bundle
must be trivial since v2(M) = 0. If (3) holds then there are maps q : M → F
and p : M → RP 2 such that π1(p) and π1(q) are the projections of π onto
its factors and π2(p) is surjective. The map (p, q) : M → RP 2 × F is then a
homotopy equivalence.

The implication (3)⇒ (1) fails if F = RP 2 or S2 .

The characterization of bundles with sections is based on a study of S2 -orbifold
bundles. (See Chapter 10 below and [Hi13].)

Theorem 5.24 Let F be an aspherical closed surface. A closed orientable 4-
manifold M is homotopy equivalent to the total space of an F -bundle over RP 2

with a section if and only if π = π1(M) has an element of order 2, π2(M) ∼= Z
and κ = Ker(u) ∼= π1(F ), where u is the natural action of π on π2(M).

Proof The conditions are clearly necessary. Suppose that they hold. We may
assume that π is not a direct product κ×Z/2Z . Therefore M is not homotopy
equivalent to an RP 2 -bundle space. Hence it is homotopy equivalent to the
total space E of an S2 -orbifold bundle over a 2-orbifold B . (See Corollary
10.8.1 below.) The involution ζ of F corresponding to the orbifold covering
has non-empty fixed point set, since π has torsion. Let Mst = S2 × F/ ∼,
where (s, f) ∼ (−s, ζ(f)). Then Mst is the total space of an F -bundle over
RP 2 , and th e fixed points of ζ determine sections of this bundle.

The double cover of E corresponding to κ is an S2 -bundle over F . Since M
is orientable and κ acts trivially on π2(M), F must also be orientable and the
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covering involution of F over B must be orientation-reversing. Since π has
torsion ΣB is a non-empty union of reflector curves, and since F is orientable
these are “untwisted”. Therefore M 'Mst , by Corollary 4.8 of [Hi13].

Orientability is used here mainly to ensure that B has a reflector curve.

When π is torsion-free M is homotopy equivalent to the total space of an
S2 -bundle over a surface B , with π = π1(B) acting nontrivially on the fibre.
Inspection of the geometric models for such bundle spaces given in Chapter 10
below shows that if also v2(M) 6= 0 then the bundle space fibres over RP 2 . Is
the condition v2(M) 6= 0 necessary?

5.7 Sections of surface bundles

If a bundle p : E → B with base and fibre aspherical surfaces has a section
then its fundamental group sequence splits. The converse holds if the action ξ
can be realized by a group of based self homeomorphisms of the fibre F . (This
is so if F = T or Kb.) The sequence splits if and only if the action factors
through Aut(π1(F )) and the class of the extension in H2(π1(B); ζπ1(F )) is 0.
This cohomology group is trivial if χ(F ) < 0, and the class is easily computed
if χ(F ) = 0. In particular, if B is orientable and F = T then p has a section
if and only if H1(E;Z) ∼= H1(B;Z) ⊕ H0(B;π1(F )). (The T -bundles over T
which are coset spaces of the nilpotent Lie groups Nil3 × R and Nil4 do not
satisfy this criterion, and so do not have sections.)

If p∗ splits and s and s′ are two sections determining the same lift ξ̃ : π1(B)→
Aut(π1(F )) then s′(g)s(g)−1 is in ζπ1(F ), for all g ∈ π1(B). Hence the
sections are parametrized (up to conjugation by an element of π1(F )) by
H1(π1(B); ζπ1(F )). In particular, if χ(F ) < 0 and p∗ has a section then
the section is unique up to conjugation by an element of π1(F ).

It follows easily from Theorem 5.19 that nontrivial bundles over S2 with as-
pherical fibre do not admit sections.

See also [Hi13e].
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Chapter 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given
homotopy type has been successfully reduced to the determination of normal
invariants and surgery obstructions. This strategy applies also in dimension
4, provided that the fundamental group is in the class SA generated from
groups with subexponential growth by extensions and increasing unions [FT95].
(Essentially all the groups in this class that we shall discuss in this book are
in fact virtually solvable.) We may often avoid this hypothesis by using 5-
dimensional surgery to construct s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group is
trivial for surface bundles over surfaces, most circle bundles over geometric 3-
manifolds and for many mapping tori. In §2 we define the modified surgery
structure set, parametrizing s-cobordism classes of simply homotopy equiva-
lences of closed 4-manifolds. This notion allows partial extensions of surgery ar-
guments to situations where the fundamental group is not elementary amenable.
Although many papers on surgery do not explicitly consider the 4-dimensional
cases, their results may often be adapted to these cases. In §3 we comment
briefly on approaches to the s-cobordism theorem and classification using sta-
bilization by connected sum with copies of S2 × S2 or by cartesian product
with R.

In §4 we show that 4-manifolds M such that π = π1(M) is torsion-free virtually
poly-Z and χ(M) = 0 are determined up to homeomorphism by their funda-
mental group (and Stiefel-Whitney classes, if h(π) < 4). We also characterize
4-dimensional mapping tori with torsion-free, elementary amenable fundamen-
tal group and show that the structure sets for total spaces of RP 2 -bundles
over T or Kb are finite. In §5 we extend this finiteness to RP 2 -bundle spaces
over closed hyperbolic surfaces and show that total spaces of bundles with fibre
S2 or an aspherical closed surface over aspherical bases are determined up to
s-cobordism by their homotopy type. (We shall consider bundles with base or
fibre geometric 3-manifolds in Chapter 13.)
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6.1 The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78].
The class of groups Cl is the smallest class of groups containing the trivial group
and which is closed under generalised free products and HNN extensions with
amalgamation over regular coherent subgroups and under filtering direct limit.
This class is also closed under taking subgroups, by Proposition 19.3 of [Wd78].
If G is in Cl then so is G×Zn , and Wh(G) = K̃(Z[G]) = 0, by Theorem 19.4
of [Wd78]. The argument for this theorem actually shows that if G ∼= A ∗C B
and C is regular coherent then there are Mayer-Vietoris sequences:

Wh(A)⊕Wh(B)→Wh(G)→K̃0(Z[C])→K̃0(Z[A])⊕K̃0(Z[B])→K̃0(Z[G])→0

and similarly if G ∼= A∗C . (See Sections 17.1.3 and 17.2.3 of [Wd78].)

The class Cl contains all free groups and poly-Z groups and the class X of
Chapter 2. (In particular, all the groups Z∗m are in Cl.) Since every PD2 -
group is either poly-Z or is the generalised free product of two free groups with
amalgamation over infinite cyclic subgroups it is regular coherent, and is in Cl.
Hence homotopy equivalences between S2 -bundles over aspherical surfaces are
simple. The following extension implies the corresponding result for quotients
of such bundle spaces by free involutions.

Theorem 6.1 Let π be a semidirect product ρo (Z/2Z) where ρ is a surface
group. Then Wh(π) = 0.

Proof Assume first that π ∼= ρ× (Z/2Z). Let Γ = Z[ρ]. There is a cartesian
square expressing Γ[Z/2Z] = Z[ρ× (Z/2Z)] as the pullback of the reduction of
coefficients map from Γ to Γ2 = Γ/2Γ = Z/2Z[ρ] over itself. (The two maps
from Γ[Z/2Z] to Γ send the generator of Z/2Z to +1 and −1, respectively.)
The Mayer-Vietoris sequence for algebraic K -theory traps K1(Γ[Z/2Z]) be-
tween K2(Γ2) and K1(Γ)2 . (See Theorem 6.4 of [Mi].) Now since c.d.ρ = 2
the higher K -theory of R[ρ] can be computed in terms of the homology of ρ
with coefficients in the K -theory of R (cf. the Corollary to Theorem 5 of the
introduction of [Wd78]). In particular, the map from K2(Γ) to K2(Γ2) is onto,
while K1(Γ) = K1(Z) ⊕ (ρ/ρ′) and K1(Γ2) = ρ/ρ′ . It now follows easily that
K1(Γ[Z/2Z]) is generated by the images of K1(Z) = {±1} and ρ × (Z/2Z),
and so Wh(ρ× (Z/2Z)) = 0.

If π = ρ o (Z/2Z) is not such a direct product it is isomorphic to a discrete
subgroup of Isom(X) which acts properly discontinuously on X , where X = E2

or H2 . (See [EM82, Zi].) The singularities of the corresponding 2-orbifold π\X
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are either cone points of order 2 or reflector curves; there are no corner points
and no cone points of higher order. Let |π\X| be the surface obtained by
forgetting the orbifold structure of π\X , and let m be the number of cone
points. Then χ(|π\X|) − (m/2) = χorb(π\X) ≤ 0, by the Riemann-Hurwitz
formula [Sc83’], so either χ(|π\X|) ≤ 0 or χ(|π\X|) = 1 and m ≥ 2 or |π\X| ∼=
S2 and m ≥ 4.

We may separate π\X along embedded circles (avoiding the singularities) into
pieces which are either (i) discs with at least two cone points; (ii) annuli with
one cone point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces
other than D2 with nonempty boundary. In each case the inclusions of the
separating circles induce monomorphisms on orbifold fundamental groups, and
so π is a generalized free product with amalgamation over copies of Z of groups
of the form (i) ∗m(Z/2Z) (with m ≥ 2); (ii) Z ∗ (Z/2Z); (iii) Z ⊕ (Z/2Z); or
(iv) ∗mZ , by the Van Kampen theorem for orbifolds [Sc83]. The Mayer-Vietoris
sequences for algebraic K -theory now give Wh(π) = 0.

The argument for the direct product case is based on one for showing that
Wh(Z ⊕ (Z/2Z)) = 0 from [Kw86].

Not all such orbifold groups arise in this way. For instance, the orbifold fun-
damental group of a torus with one cone point of order 2 has the presentation
〈x, y | [x, y]2 = 1〉. Hence it has torsion-free abelianization, and so cannot be a
semidirect product as above.

The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crys-
tallographic groups. Their finite subgroups are cyclic or dihedral, of order
properly dividing 24, and have trivial Whitehead group. In fact Wh(π) = 0 for
π any such 2-dimensional crystallographic group [Pe98]. (If π is the fundamen-
tal group of an orientable hyperbolic 2-orbifold with k cone points of orders
{n1, . . . nk} then Wh(π) ∼= ⊕ki=1Wh(Z/niZ) [LS00].)

The argument for the next result is essentially due to F.T.Farrell.

Theorem 6.2 If π is an extension of π1(B) by π1(F ) where B and F are
aspherical closed surfaces then Wh(π) = K̃0(Z[π]) = 0.

Proof If χ(B) < 0 then B admits a complete riemannian metric of constant
negative curvature −1. Moreover the only virtually poly-Z subgroups of π1(B)
are 1 and Z . If G is the preimage in π of such a subgroup then G is either
π1(F ) or is the group of a Haken 3-manifold. It follows easily that for any n ≥ 0
the group G × Zn is in Cl and so Wh(G × Zn) = 0. Therefore any such G
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is K -flat and so the bundle is admissible, in the terminology of [FJ86]. Hence
Wh(π) = K̃0(Z[π]) = 0 by the main result of that paper.

If χ(B) = 0 then this argument does not work, although if moreover χ(F ) = 0
then π is poly-Z , so Wh(π) = K̃0(Z[π]) = 0 by Theorem 2.13 of [FJ]. We
shall sketch an argument of Farrell for the general case. Lemma 1.4.2 and
Theorem 2.1 of [FJ93] together yield a spectral sequence (with coefficients in
a simplicial cosheaf) whose E2 term is Hi(X/π1(B);Wh′j(p

−1(π1(B)x))) and
which converges to Wh′i+j(π). Here p : π → π1(B) is the epimorphism of the
extension and X is a certain universal π1(B)-complex which is contractible and
such that all the nontrivial isotropy subgroups π1(B)x are infinite cyclic and
the fixed point set of each infinite cyclic subgroup is a contractible (nonempty)
subcomplex. The Whitehead groups with negative indices are the lower K -
theory of Z[G] (i.e., Wh′n(G) = Kn(Z[G]) for all n ≤ −1), while Wh′0(G) =
K̃0(Z[G]) and Wh′1(G) = Wh(G). Note that Wh′−n(G) is a direct summand of
Wh(G× Zn+1). If i+ j > 1 then Wh′i+j(π) agrees rationally with the higher
Whitehead group Whi+j(π). Since the isotropy subgroups π1(B)x are infinite
cyclic or trivial Wh(p−1(π1(B)x) × Zn) = 0 for all n ≥ 0, by the argument
of the above paragraph, and so Wh′j(p

−1(π1(B)x)) = 0 if j ≤ 1. Hence the

spectral sequence gives Wh(π) = K̃0(Z[π]) = 0.

A closed 3-manifold is a Haken manifold if it is irreducible and contains an
incompressible 2-sided surface. Every aspherical closed 3-manifold N is ei-
ther Haken, hyperbolic or Seifert-fibred, by the work of Perelman [B-P], and
so either has an infinite solvable fundamental group or it has a JSJ decom-
position along a finite family of disjoint incompressible tori and Klein bottles
so that the complementary components are Seifert fibred or hyperbolic. Every
closed 3-manifold with a metric of non-positive curvature is virtually fibred (i.e.,
finitely covered by a mapping torus), and so every aspherical closed 3-manifold
is virtually Haken [Ag13, PW12].

If an aspherical closed 3-manifold has a JSJ decomposition with at least one
hyperbolic component then it has a metric of non-positive curvature [Lb95].
Otherwise it is a graph manifold: either it has solvable fundamental group or
it has a JSJ decomposition into Seifert fibred pieces. It is a proper graph
manifold if the minimal such JSJ decomposition is non-trivial. A criterion for
a proper graph manifold to be virtually fibred is given in [Ne97].

Theorem 6.3 Let N be a connected sum of aspherical graph manifolds, and
let ν = π1(N) and π = ν oθ Z , where θ ∈ Aut(ν). Then ν × Zn is regular
coherent, and Wh(π × Zn) = K̃0(Z[π × Zn]) = 0, for all n ≥ 0.
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Proof The group ν is either polycyclic or is a generalized free product with
amalgamation along poly-Z subgroups (1, Z2 or Zo−1 Z ) of fundamental
groups of Seifert fibred 3-manifolds (possibly with boundary). The group rings
of torsion-free polycyclic groups are regular noetherian, and hence regular co-
herent. If G is the fundamental group of a Seifert fibred 3-manifold then it has
a subgroup Go of finite index which is a central extension of the fundamental
group of a surface B (possibly with boundary) by Z . We may assume that G is
not solvable and hence that χ(B) < 0. If ∂B is nonempty then Go ∼= Z×F and
so is an iterated generalized free product of copies of Z2 , with amalgamation
along infinite cyclic subgroups. Otherwise we may split B along an essential
curve and represent Go as the generalised free product of two such groups, with
amalgamation along a copy of Z2 . In both cases Go is regular coherent, and
therefore so is G, since [G : Go] <∞ and c.d.G <∞.

Since ν is the generalised free product with amalgamation of regular coherent
groups, with amalgamation along poly-Z subgroups, it is also regular coherent.
Hence so is ν×Zn . Let Ni be an irreducible summand of N and let νi = π1(Ni).
If Ni is Haken then νi is in Cl and so Wh(νi × Zn) = 0, for all n ≥ 0.
Otherwise Ni is a Seifert fibred 3-manifold which is not sufficiently large, and
the argument of [Pl80] extends easily to prove this. Since K̃0(Z[σ]) is a direct
summand of Wh(σ×Z), for any group σ , we have K̃0(Z[νi ×Zn]) = 0, for all
n ≥ 0. The Mayer-Vietoris sequences for algebraic K -theory now give, firstly,
Wh(ν×Zn) = K̃0(Z[ν×Zn]) = 0, and then Wh(π×Zn) = K̃0(Z[π×Zn]) = 0
also.

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group
rings were regular coherent then we could use [Wd78] instead of [FJ86] to give
a purely algebraic proof of Theorem 6.2, for as surface groups are free products
of free groups with amalgamation over an infinite cyclic subgroup, an extension
of one surface group by another is a free product of groups with Wh = 0,
amalgamated over the group of a surface bundle over S1 . Similarly, we could
deduce from [Wd78] and the work of Perelman [B-P] that Wh(ν oθ Z) = 0 for
any torsion-free 3-manifold group ν = π1(N) where N is a closed 3-manifold.

Theorem 6.4 Let N be a closed 3-manifold such that ν = π1(N) is torsion-
free, and let µ be a group with an infinite cyclic normal subgroup A such that
µ/A ∼= ν . Then Wh(µ) = Wh(ν) = 0.

Proof Let N = ]1≤i≤nNi be the factorization of N into irreducibles, and let
ν ∼= ∗1≤i≤nνi , where νi = π1(Ni). The irreducible factors are either Haken,
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hyperbolic or Seifert fibred, by the work of Perelman [B-P]. Let µi be the
preimage of νi in µ, for 1 ≤ i ≤ n. Then µ is the generalized free product
of the µi ’s, amalgamated over infinite cyclic subgroups. For all 1 ≤ i ≤ n we
have Wh(µi) = 0, by Lemma 1.1 of [St84] if K(νi, 1) is Haken, by the main
result of [FJ86] if it is hyperbolic, by an easy extension of the argument of
[Pl80] if it is Seifert fibred but not Haken and by Theorem 19.5 of [Wd78] if
νi is infinite cyclic. The Mayer-Vietoris sequences for algebraic K -theory now
give Wh(µ) = Wh(ν) = 0 also.

Theorem 6.4 may be used to strengthen Theorem 4.11 to give criteria for a
closed 4-manifold M to be simple homotopy equivalent to the total space of an
S1 -bundle, if π1(M) is torsion-free.

6.2 The s-cobordism structure set

The TOP structure set for a closed 4-manifold M with fundamental group π
and orientation character w : π → {±1} is

STOP (M) = {f : N →M | N a TOP 4−manifold, f a simple h.e.}/∼,

where f1 ∼ f2 if f1 = f2h for some homeomomorphism h : N1 → N2 . If π is
“good” (e.g., if it is in SA) then Ls5(π,w) acts on the structure set STOP (M),
and the orbits of the action ω correspond to the normal invariants η(f) of
simple homotopy equivalences [FQ, FT95]. The surgery sequence

[SM ;G/TOP ]
σ5−→ Ls5(π,w)

ω−→ STOP (M)
η−→ [M ;G/TOP ]

σ4−→ Ls4(π,w)

may then be identified with the algebraic surgery sequence of [Rn]. The addi-
tions on the homotopy sets [X,G/TOP ] derive from an H -space structure on
G/TOP . (In low dimensions this is unambiguous, as G/TOP has Postnikov
5-stage K(Z/2Z, 2) × K(Z, 4), which has an unique H -space structure.) We
shall not need to specify the addition on STOP (M).

As it is not yet known whether 5-dimensional s-cobordisms over other funda-
mental groups are products, we shall redefine the structure set by setting

SsTOP (M) = {f : N →M | N a TOP 4−manifold, f a simple h.e.}/≈,

where f1 ≈ f2 if there is a map F : W → M with domain W an s-cobordism
with ∂W = N1 ∪ N2 and F |Ni = fi for i = 1, 2. If the s-cobordism theorem
holds over π this is the usual TOP structure set for M . We shall usually write
Ln(π,w) for Lsn(π,w) if Wh(π) = 0 and Ln(π) if moreover w is trivial. When
the orientation character is nontrivial and otherwise clear from the context we
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shall write Ln(π,−). We shall say that a closed 4-manifold is s-rigid if it
is determined up to s-cobordism by its homotopy type. The homotopy set
[M ;G/TOP ] may be identified with the set of normal maps (f, b), where f :
N →M is a degree 1 map and b is a stable framing of TN ⊕f∗ξ , for some TOP
Rn -bundle ξ over M . If f : N →M is a homotopy equivalence, with homotopy
inverse h, let ξ = h∗νN and b be the framing determined by a homotopy from
hf to idN . Let f̂ ∈ [M,G/TOP ] be the homotopy class corresponding to (f, b).
Let k2 generate H2(G/TOP ;F2) ∼= Z/2Z and l4 generate H4(G/TOP ;Z) ∼=
Z , with image [l4] in H4(G/TOP ;F2). The function from [M ;G/TOP ] to
H2(M ;F2) ⊕ H4(M ;Z) which sends f̂ to (f̂∗(k2), f̂∗(l4)) is an isomorphism.
Let KS(M) ∈ H4(M ;F2) be the Kirby-Siebenmann obstruction to lifting the
TOP normal fibration of M to a vector bundle. If f̂ is a normal map then

KS(M)− (f∗)−1KS(N) = f̂∗(k2
2 + [l4]),

and f̂ factors through G/PL if and only if this difference is 0 [KT98]. If M is
orientable then f̂∗(l4)([M ]) = (σ(M)− σ(N))/8, where σ(M) is the signature
of the intersection pairing on H2(M ;Z), and so

(KS(M)− (f∗)−1KS(N)− f̂∗(k2)2)([M ]) ≡ (σ(M)− σ(N))/8 mod (2).

The Kervaire-Arf invariant of a normal map ĝ : N2q → G/TOP is the image of
the surgery obstruction in L2q(Z/2Z,−) = Z/2Z under the homomorphism in-
duced by the orientation character, c(ĝ) = L2q(w1(N))(σ2q(ĝ)). The argument
of Theorem 13.B.5 of [Wl] may be adapted to show that there are universal
classes K4i+2 in H4i+2(G/TOP ;F2) (for i ≥ 0) such that

c(ĝ) = (w(M) ∪ ĝ∗((1 + Sq2 + Sq2Sq2)ΣK4i+2)) ∩ [M ].

Moreover K2 = k2 , since c induces the isomorphism π2(G/TOP ) = Z/2Z . In
the 4-dimensional case this expression simplifies to

c(ĝ) = (w2(M) ∪ ĝ∗(k2) + ĝ∗(Sq2k2))([M ]) = (w1(M)2 ∪ ĝ∗(k2))([M ]).

The codimension-2 Kervaire invariant of a 4-dimensional normal map ĝ is
kerv(ĝ) = ĝ∗(k2). Its value on a 2-dimensional homology class represented
by an immersion y : Y → M is the Kervaire-Arf invariant of the normal map
induced over the surface Y .

The structure set may overestimate the number of homeomorphism types within
the homotopy type of M , if M has self homotopy equivalences which are not
homotopic to homeomorphisms. Such “exotic” self homotopy equivalences may
often be constructed as follows. Given α : S2 → M , let β : S4 → M be the
composition αηSη , where η is the Hopf map, and let s : M → M ∨ S4 be the
pinch map obtained by shrinking the boundary of a 4-disc in M . Then the
composite fα = (idM ∨ β)s is a self homotopy equivalence of M .
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Lemma 6.5 [No64] Let M be a closed 4-manifold and let α : S2 →M be a

map such that α∗[S
2] 6= 0 in H2(M ;F2) and α∗w2(M) = 0. Then kerv(f̂α) 6= 0

and so fα is not normally cobordant to a homeomorphism.

Proof Since α∗[S
2] 6= 0 there is a u ∈ H2(M ;F2) such that α∗[S

2].u = 1. This
class may be realized as u = g∗[Y ] where Y is a closed surface and g : Y →M

is transverse to fα . Then g∗kerv(f̂α)[Y ] is the Kervaire-Arf invariant of the
normal map induced over Y and is nontrivial. (See Theorem 5.1 of [CH90] for
details.)

The family of surgery obstruction maps may be identified with a natural trans-
formation from L0 -homology to L-theory. (In the nonorientable case we must
use w -twisted L0 -homology.) In dimension 4 the cobordism invariance of
surgery obstructions (as in §13B of [Wl]) leads to the following formula.

Theorem 6.6 [Da05] There are homomorphisms I0 :H0(π;Zw)→L4(π,w)
and κ2 : H2(π;F2)→ L4(π,w) such that for any f̂ : M → G/TOP the surgery
obstruction is σ4(f̂) = I0(cM∗(f̂

∗(l4) ∩ [M ])) + κ2(cM∗(kerv(f̂) ∩ [M ])).

In the orientable case the signature homomorphism from L4(π) to Z is a left
inverse for I0 : Z → L4(π), but in general I0 is not injective. This formula can
be made somewhat more explicit as follows.

Theorem 6.6 ′ [Da05] If f̂ = (f, b) where f : N → M is a degree 1 map
then the surgery obstructions are given by

σ4(f̂) = I0((σ(N)− σ(M))/8) + κ2(cM∗(kerv(f̂) ∩ [M ])), if w = 1, and

σ4(f̂) = I0(KS(N)−KS(M) + kerv(f̂)2) + κ2(cM∗(kerv(f̂)∩ [M ])), if w 6= 1.

(In the latter case we identify H4(M ;Z), H4(N ;Z) and H4(M ;F2) with
H0(π;Zw) = Z/2Z .)

The homomorphism σ4 is trivial on the image of η , but in general we do not
know whether a 4-dimensional normal map with trivial surgery obstruction
must be normally cobordant to a simple homotopy equivalence. (See however
[Kh07] and [Ym07].) In our applications we shall always have a simple homo-
topy equivalence in hand.

A more serious problem is that it is not clear how to define the action ω in
general. We shall be able to circumvent this problem by ad hoc arguments in
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some cases. (There is always an action on the homological structure set, defined
in terms of Z[π]-homology equivalences [FQ].)

If we fix an isomorphism iZ : Z → L5(Z) we may define a function Iπ : π →
Ls5(π) for any group π by Iπ(g) = g∗(iZ(1)), where g∗ : Z = L5(Z)→ Ls5(π) is
induced by the homomorphism sending 1 in Z to g in π . Then IZ = iZ and Iπ
is natural in the sense that if f : π → H is a homomorphism then L5(f)Iπ =
IHf . As abelianization and projection to the summands of Z2 induce an iso-
morphism from L5(Z ∗ Z) to L5(Z)2 [Ca73], it follows easily from naturality
that Iπ is a homomorphism (and so factors through π/π′ ) [We83]. We shall
extend this to the nonorientable case by defining I+

π : Ker(w) → Ls5(π;w) as
the composite of IKer(w) with the homomorphism induced by inclusion.

Theorem 6.7 Let M be a closed 4-manifold with fundamental group π and
let w = w1(M). Given any γ ∈ Ker(w) there is a normal cobordism from idM
to itself with surgery obstruction I+

π (γ) ∈ Ls5(π,w).

Proof We may assume that γ is represented by a simple closed curve with a
product neighbourhood U ∼= S1 × D3 . Let P be the E8 manifold [FQ] and
delete the interior of a submanifold homeomorphic to D3 × [0, 1] to obtain
Po . There is a normal map p : Po → D3 × [0, 1] (rel boundary). The surgery
obstruction for p×idS1 in L5(Z) ∼= L4(1) is given by a codimension-1 signature
(see §12B of [Wl]), and generates L5(Z). Let Y = (M \ intU)× [0, 1]∪Po×S1 ,
where we identify (∂U) × [0, 1] = S1 × S2 × [0, 1] with S2 × [0, 1] × S1 in
∂Po × S1 . Matching together id|(M\intU)×[0,1] and p × idS1 gives a normal
cobordism Q from idM to itself. The theorem now follows by the additivity of
surgery obstructions and naturality of the homomorphisms I+

π .

In particular, if π is in SA then the image of I+
π acts trivially on STOP (M).

Corollary 6.7.1 Let λ∗ : Ls5(π) → L5(Z)d = Zd be the homomorphism
induced by a basis {λ1, ..., λd} for Hom(π, Z). If M is orientable, f : M1 →M
is a simple homotopy equivalence and θ ∈ L5(Z)d there is a normal cobordism
from f to itself whose surgery obstruction in L5(π) has image θ under λ∗ .

Proof If {γ1, ..., γd} ∈ π represents a “dual basis” for H1(π;Z) modulo torsion
(so that λi(γj) = δij for 1 ≤ i, j ≤ d), then {λ∗(Iπ(γ1)), ..., λ∗(Iπ(γd))} is a
basis for L5(Z)d .

If π is free or is a PD+
2 -group the homomorphism λ∗ is an isomorphism [Ca73].

In most of the other cases of interest to us the following corollary applies.
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Corollary 6.7.2 If M is orientable and Ker(λ∗) is finite then SsTOP (M) is
finite. In particular, this is so if Coker(σ5) is finite.

Proof The signature difference maps [M ;G/TOP ] = H4(M ;Z)⊕H2(M ;F2)
onto L4(1) = Z and so there are only finitely many normal cobordism classes
of simple homotopy equivalences f : M1 → M . Moreover, Ker(λ∗) is fi-
nite if σ5 has finite cokernel, since [SM ;G/TOP ] ∼= Zd ⊕ (Z/2Z)d . Sup-
pose that F : N → M × I is a normal cobordism between two simple ho-
motopy equivalences F− = F |∂−N and F+ = F |∂+N . By Theorem 6.7
there is another normal cobordism F ′ : N ′ → M × I from F+ to itself with
λ∗(σ5(F ′)) = λ∗(−σ5(F )). The union of these two normal cobordisms along
∂+N = ∂−N

′ is a normal cobordism from F− to F+ with surgery obstruc-
tion in Ker(λ∗). If this obstruction is 0 we may obtain an s-cobordism W by
5-dimensional surgery (rel ∂ ).

The surgery obstruction groups for a semidirect product π ∼= Goθ Z , may be
related to those of the (finitely presentable) normal subgroup G by means of
Theorem 12.6 of [Wl]. If Wh(π) = Wh(G) = 0 this theorem asserts that there
is an exact sequence

. . . Lm(G,w|G)
1−w(t)θ∗−→ Lm(G,w|G)→ Lm(π,w)→ Lm−1(G,w|G) . . . ,

where t generates π modulo G and θ∗ = Lm(θ, w|G). The following result is
based on Theorem 15.B.1 of [Wl].

Theorem 6.8 Let M be a 4-manifold which is homotopy equivalent to a
mapping torus M(θ), where θ is a self-homeomorphism of an aspherical closed
3-manifold N . If Wh(π1(M)) = Wh(π1(M)× Z) = 0 then M is s-cobordant

to M(θ) and M̃ is homeomorphic to R4 .

Proof The surgery obstruction homomorphisms σNi are isomorphisms for all
large i [Ro11]. Comparison of the Mayer-Vietoris sequences for L0 -homology

and L-theory (as in Proposition 2.6 of [St84]) shows that σMi and σM×S
1

i are
also isomorphisms for all large i, and so STOP (M(Θ)×S1) has just one element.
If h : M → M(Θ) is a homotopy equivalence then h × id is homotopic to a
homeomorphism M × S1 ∼= M(Θ) × S1 , and so M × R ∼= M(Θ) × R. This
product contains s-cobordisms bounded by disjoint copies of M and M(Θ).

The final assertion follows from Corollary 7.3B of [FQ] since M is aspherical
and π is 1-connected at ∞ [Ho77].
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It remains an open question whether aspherical closed manifolds with iso-
morphic fundamental groups must be homeomorphic. This has been verified
in higher dimensions in many cases, in particular under geometric assump-
tions [FJ], and under assumptions on the combinatorial structure of the group
[Ca73, St84, NS85]. We shall see that many aspherical 4-manifolds are deter-
mined up to s-cobordism by their groups.

There are more general “Mayer-Vietoris” sequences which lead to calculations
of the surgery obstruction groups for certain generalized free products and HNN
extensions in terms of those of their building blocks [Ca73, St87].

A subgroup H of a group G is square-root closed in G if g2 ∈ H implies
g ∈ H , for g ∈ G. A group π is square-root closed accessible if it can be
obtained from the trivial group by iterated HNN extensions with associated
subgroups square-root closed in the base group and amalgamated products
over square-root closed subgroups. In particular, finitely generated free groups
and poly-Z groups are square-root closed accessible. A geometric argument
implies that cuspidal subgroups of the fundamental group Γ of a complete
hyperbolic manifold of finite volume are maximal parabolic subgroups, and
hence are square root closed in Γ. If S is a closed surface with χ(S) < 0 it may
be decomposed as the union of two subsurfaces with connected boundary and
hyperbolic interior. Therefore all PD2 -groups are square-root closed accessible.

Lemma 6.9 Let π be either the group of a finite graph of groups, all of whose
vertex groups are infinite cyclic, or a square root closed accessible group of
cohomological dimension 2. Then I+

π is an epimorphism. If M is a closed 4-
manifold with fundamental group π the surgery obstruction maps σ4(M) and
σ5(M) are epimorphisms.

Proof Since π is in Cl we have Wh(π) = 0 and a comparison of Mayer-
Vietoris sequences shows that the assembly map from H∗(π;Lw0 ) to L∗(π,w)
is an isomorphism [Ca73, St87]. Since c.d.π ≤ 2 and H1(Ker(w);Z) maps onto
H1(π;Zw) the component of this map in degree 1 may be identified with I+

π . In
general, the surgery obstruction maps factor through the assembly map. Since
c.d.π ≤ 2 the homomorphism cM∗ : H∗(M ;D)→ H∗(π;D) is onto for any local
coefficient module D , and so the lemma follows.

The class of groups considered in this lemma includes free groups, PD2 -groups
and the groups Z∗m . Note however that if π is a PD2 -group w need not be
the canonical orientation character.
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6.3 Stabilization and h-cobordism

It has long been known that many results of high dimensional differential topol-
ogy hold for smooth 4-manifolds after stabilizing by connected sum with copies
of S2 × S2 [CS71, FQ80, La79, Qu83]. In particular, if M and N are h-
cobordant closed smooth 4-manifolds then M](]kS2 × S2) is diffeomorphic
to N](]kS2 × S2) for some k ≥ 0. In the spin case w2(M) = 0 this is an
elementary consequence of the existence of a well-indexed handle decompo-
sition of the h-cobordism [Wl64]. In Chapter VII of [FQ] it is shown that
5-dimensional TOP cobordisms have handle decompositions relative to a com-
ponent of their boundaries, and so a similar result holds for h-cobordant closed
TOP 4-manifolds. Moreover, if M is a TOP 4-manifold then KS(M) = 0 if
and only if M](]kS2 × S2) is smoothable for some k ≥ 0 [LS71].

These results suggest the following definition. Two 4-manifolds M1 and M2 are
stably homeomorphic if M1](]

kS2×S2) and M2](]
lS2×S2) are homeomorphic,

for some k , l ≥ 0. (Thus h-cobordant closed 4-manifolds are stably homeo-
morphic.) Clearly π1(M), w1(M), the orbit of cM∗[M ] in H4(π1(M);Zw1(M))
under the action of Out(π1(M)), and the parity of χ(M) are invariant under
stabilization. If M is orientable σ(M) is also invariant.

Kreck has shown that (in any dimension) classification up to stable homeo-
morphism (or diffeomorphism) can be reduced to bordism theory. There are

three cases: If w2(M̃) 6= 0 and w2(Ñ) 6= 0 then M and N are stably homeo-
morphic if and only if for some choices of orientations and identification of the
fundamental groups the invariants listed above agree (in an obvious manner).
If w2(M) = w2(N) = 0 then M and N are stably homeomorphic if and only if
for some choices of orientations, Spin structures and identification of the fun-
damental group they represent the same element in ΩSpinTOP

4 (K(π, 1)). The
most complicated case is when M and N are not Spin, but the universal covers
are Spin. (See [Kr99, Te] for expositions of Kreck’s ideas, and see [Po13] for an
application to 4-manifolds determined by Tietze-equivalent presentations.)

We shall not pursue this notion of stabilization further (with one minor excep-
tion, in Chapter 14), for it is somewhat at odds with the tenor of this book.
The manifolds studied here usually have minimal Euler characteristic, and often
are aspherical. Each of these properties disappears after stabilization. We may
however also stabilize by cartesian product with the real line R, and there is
then the following simple but satisfying result.

Lemma 6.10 Closed 4-manifolds M and N are h-cobordant if and only if
M ×R and N ×R are homeomorphic.
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Proof If W is an h-cobordism from M to N (with fundamental group π =
π1(W )) then W × S1 is an h-cobordism from M × S1 to N × S1 . The torsion
is 0 in Wh(π×Z), by Theorem 23.2 of [Co], and so there is a homeomorphism
from M×S1 to N×S1 which carries π1(M) to π1(N). Hence M×R ∼= N×R.
Conversely, if M ×R ∼= N ×R then M ×R contains a copy of N disjoint from
M × {0}, and the region W between M × {0} and N is an h-cobordism.

6.4 Manifolds with π1 elementary amenable and χ = 0

In this section we shall show that closed manifolds satisfying the hypotheses of
Theorem 3.17 and with torsion-free fundamental group are determined up to
homeomorphism by their homotopy type. As a consequence, closed 4-manifolds
with torsion-free elementary amenable fundamental group and Euler character-
istic 0 are homeomorphic to mapping tori. We also estimate the structure sets
for RP 2 -bundles over T or Kb. In the remaining cases involving torsion com-
putation of the surgery obstructions is much more difficult. We shall comment
briefly on these cases in Chapters 10 and 11.

Theorem 6.11 Let M be a closed 4-manifold with χ(M) = 0 and whose
fundamental group π is torsion-free, coherent, locally virtually indicable and
restrained. Then M is determined up to homeomorphism by its homotopy
type. If moreover h(π) = 4 then every automorphism of π is realized by a self
homeomorphism of M .

Proof By Theorem 3.17 either π ∼= Z or Z∗m for some m 6= 0, or M is
aspherical, π is virtually poly-Z and h(π) = 4. Hence Wh(π) = 0, in all
cases. If π ∼= Z or Z∗m then the surgery obstruction homomorphisms are
epimorphisms, by Lemma 6.9. We may calculate L4(π,w) by means of Theorem
12.6 of [Wl], or more generally §3 of [St87], and we find that if π ∼= Z or Z∗2n
then σ4(M) is in fact an isomorphism. If π ∼= Z∗2n+1 then there are two normal
cobordism classes of homotopy equivalences h : X → M . Let ξ generate the
image of H2(π;F2) ∼= Z/2Z in H2(M ;F2) ∼= (Z/2Z)2 , and let j : S2 → M
represent the unique nontrivial spherical class in H2(M ;F2). Then ξ2 = 0,
since c.d.π = 2, and ξ ∩ j∗[S2] = 0, since cMj is nullhomotopic. It follows
that j∗[S

2] is Poincaré dual to ξ , and so v2(M) ∩ j∗[S2] = ξ2 ∩ [M ] = 0.
Hence j∗w2(M) = j∗v2(M) + (j∗w1(M))2 = 0 and so fj has nontrivial normal
invariant, by Lemma 6.5. Therefore each of these two normal cobordism classes
contains a self homotopy equivalence of M .

If M is aspherical, π is virtually poly-Z and h(π) = 4 then STOP (M) has just
one element, by Theorem 2.16 of [FJ]. The theorem now follows.
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Corollary 6.11.1 Let M be a closed 4-manifold with χ(M) = 0 and funda-
mental group π ∼= Z , Z2 or Zo−1Z . Then M is determined up to homeomor-
phism by π and w(M).

Proof If π ∼= Z then M is homotopy equivalent to S1 × S3 or S1×̃S3 , by
Corollary 4.5.3, while if π ∼= Z2 or Zo−1Z it is homotopy equivalent to the
total space of an S2 -bundle over T or Kb, by Theorem 5.10.

The homotopy type of a closed 4-manifold M is also determined by π and
w(M) if χ(M) = 0 and π ∼= Z∗m for m even [Hi13c].

We may now give an analogue of the Farrell and Stallings fibration theorems
for 4-manifolds with torsion-free elementary amenable fundamental group.

Theorem 6.12 Let M be a closed 4-manifold whose fundamental group π is
torsion-free and elementary amenable. A map f : M → S1 is homotopic to a
fibre bundle projection if and only if χ(M) = 0 and f induces an epimorphism
from π to Z with finitely generated kernel.

Proof The conditions are clearly necessary. Suppose that they hold. Let
ν = Ker(π1(f)), let Mν be the infinite cyclic covering space of M with funda-
mental group ν and let t : Mν → Mν be a generator of the group of covering
transformations. By Corollary 4.5.2 either ν = 1 (so Mν ' S3 ) or ν ∼= Z
(so Mν ' S2 × S1 or S2×̃S1 ) or M is aspherical. In the latter case π is
a torsion-free virtually poly-Z group, by Theorem 1.11 and Theorem 9.23 of
[Bi]. Thus in all cases there is a homotopy equivalence fν from Mν to a closed
3-manifold N . Moreover the self homotopy equivalence fνtf

−1
ν of N is homo-

topic to a homeomorphism, g say, and so f is fibre homotopy equivalent to the
canonical projection of the mapping torus M(g) onto S1 . It now follows from
Theorem 6.11 that any homotopy equivalence from M to M(g) is homotopic
to a homeomorphism.

The structure sets of the RP 2 -bundles over T or Kb are also finite.

Theorem 6.13 Let M be the total space of an RP 2 -bundle over T or Kb.
Then STOP (M) has order at most 32.

Proof As M is nonorientable H4(M ;Z) = Z/2Z and as β1(M ;F2) = 3 and
χ(M) = 0 we have H2(M ;F2) ∼= (Z/2Z)4 . Hence [M ;G/TOP ] has order 32.
Let w = w1(M). It follows from the Shaneson-Wall splitting theorem (Theorem
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12.6 of [Wl]) that L4(π,w) ∼= L4(Z/2Z,−)⊕L2(Z/2Z,−) ∼= (Z/2Z)2 , detected
by the Kervaire-Arf invariant and the codimension-2 Kervaire invariant. Simi-
larly L5(π,w) ∼= L4(Z/2Z,−)2 and the projections to the factors are Kervaire-
Arf invariants of normal maps induced over codimension-1 submanifolds. (In
applying the splitting theorem, note that Wh(Z ⊕ (Z/2Z)) = Wh(π) = 0, by
Theorem 6.1 above.) Hence STOP (M) has order at most 128.

The Kervaire-Arf homomorphism c is onto, since c(ĝ) = (w2 ∪ ĝ∗(k2)) ∩ [M ],
w2 6= 0 and every element of H2(M ;F2) is equal to ĝ∗(k2) for some normal
map ĝ : M → G/TOP . Similarly there is a normal map f2 : X2 → RP 2 with
σ2(f2) 6= 0 in L2(Z/2Z,−). If M = RP 2×B , where B = T or Kb is the base
of the bundle, then f2× idB : X2×B → RP 2×B is a normal map with surgery
obstruction (0, σ2(f2)) ∈ L4(Z/2Z,−)⊕L2(Z/2Z,−). We may assume that f2

is a homeomorphism over a disc ∆ ⊂ RP 2 . As the nontrivial bundles may be
obtained from the product bundles by cutting M along RP 2×∂∆ and regluing
via the twist map of RP 2 × S1 , the normal maps for the product bundles may
be compatibly modified to give normal maps with nonzero obstructions in the
other cases. Hence σ4 is onto and so STOP (M) has order at most 32.

In each case H2(M ;F2) ∼= H2(π;F2), so the argument of Lemma 6.5 does not
apply. However we can improve our estimate in the abelian case.

Theorem 6.14 Let M be the total space of an RP 2 -bundle over T . Then
STOP (M) has order 8.

Proof Since π is abelian the surgery sequence may be identified with the
algebraic surgery sequence of [Rn], which is an exact sequence of abelian groups.
Thus it shall suffice to show that L5(π,w) acts trivially on the class of idM in
STOP (M).

Let λ1, λ2 : π → Z be epimorphisms generating Hom(π, Z) and let t1, t2 ∈ π
represent a dual basis for π/(torsion) (i.e., λi(tj) = δij for i = 1, 2). Let u be
the element of order 2 in π and let ki : Z⊕ (Z/2Z)→ π be the monomorphism
defined by ki(a, b) = ati + bu, for i = 1, 2. Define splitting homomorphisms
p1, p2 by pi(g) = k−1

i (g − λi(g)ti) for all g ∈ π . Then piki = idZ⊕(Z/2Z)

and pik3−i factors through Z/2Z , for i = 1, 2. The orientation character
w = w1(M) maps the torsion subgroup of π onto Z/2Z , by Theorem 5.13,
and t1 and t2 are in Ker(w). Therefore pi and ki are compatible with w , for
i = 1, 2. As L5(Z/2Z,−) = 0 it follows that L5(k1) and L5(k2) are inclusions
of complementary summands of L5(π,w) ∼= (Z/2Z)2 , split by the projections
L5(p1) and L5(p2).
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Let γi be a simple closed curve in T which represents ti ∈ π . Then γi
has a product neighbourhood Ni

∼= S1 × [−1, 1] whose preimage Ui ⊂ M is
homeomorphic to RP 2 × S1 × [−1, 1]. As in Theorem 6.13 there is a nor-
mal map f4 : X4 → RP 2 × [−1, 1]2 (rel boundary) with σ4(f4) 6= 0 in
L4(Z/2Z,−). Let Yi = (M \ intUi) × [−1, 1] ∪ X4 × S1 , where we identify
(∂Ui) × [−1, 1] = RP 2 × S1 × S0 × [−1, 1] with RP 2 × [−1, 1] × S0 × S1

in ∂X4 × S1 . If we match together id(M\intUi)×[−1,1] and f4 × idS1 we ob-
tain a normal cobordism Qi from idM to itself. The image of σ5(Qi) in
L4(Ker(λi), w) ∼= L4(Z/2Z,−) under the splitting homomorphism is σ4(f4).
On the other hand its image in L4(Ker(λ3−i), w) is 0, and so it generates the
image of L5(k3−i). Thus L5(π,w) is generated by σ5(Q1) and σ5(Q2), and so
acts trivially on idM .

Does L5(π,w) act trivially on each class in STOP (M) when M is an RP 2 -
bundle over Kb? If so, then STOP (M) has order 8 in each case. Are these
manifolds determined up to homeomorphism by their homotopy type?

6.5 Bundles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces
all contain nonabelian free subgroups. Nevertheless, such bundle spaces are
determined up to s-cobordism by their homotopy type, except when the fibre
is RP 2 , in which case we can only show that the structure sets are finite.

Theorem 6.15 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an F -bundle over B where B and F are aspherical
closed surfaces. Then M is s-cobordant to E and M̃ is homeomorphic to R4 .

Proof If χ(B) = 0 then π × Z is an extension of a poly-Z group (of Hirsch
length 3) by π1(F ). Otherwise, π1(B) ∼= F ∗Z F ′ , where the amalgamated
subgroup Z is square-root closed in each of the free groups F and F ′ . (See
the final paragraph on page 120.) In all cases π × Z is a square root closed
generalised free product with amalgamation of groups in Cl. Comparison of the
Mayer-Vietoris sequences for L0 -homology and L-theory (as in Proposition 2.6
of [St84]) shows that STOP (E×S1) has just one element. (Note that even when
χ(B) = 0 the groups arising in intermediate stages of the argument all have
trivial Whitehead groups.) Hence M ×S1 ∼= E×S1 , and so M is s-cobordant
to E by Lemma 6.10 and Theorem 6.2.

The final assertion follows from Corollary 7.3B of [FQ] since M is aspherical
and π is 1-connected at ∞ [Ho77].
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Davis has constructed aspherical 4-manifolds whose universal covering space is
not 1-connected at ∞ [Da83].

Theorem 6.16 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an S2 -bundle over an aspherical closed surface B . Then
M is s-cobordant to E , and M̃ is homeomorphic to S2 ×R2 .

Proof Let π = π1(E) ∼= π1(B). Then Wh(π) = 0, and H∗(π;Lw0 ) ∼= L∗(π,w),
as in Lemma 6.9. Hence L4(π,w) ∼= Z ⊕ (Z/2Z) if w = 0 and (Z/2Z)2

otherwise. The surgery obstruction map σ4(E) is onto, by Lemma 6.9. Hence
there are two normal cobordism classes of maps h : X → E with σ4(h) =
0. The kernel of the natural homomorphism from H2(E;F2) ∼= (Z/2Z)2 to
H2(π;F2) ∼= Z/2Z is generated by j∗[S

2], where j : S2 → E is the inclusion
of a fibre. As j∗[S

2] 6= −0, while w2(E)(j∗[S
2]) = j∗w2(E) = 0 the normal

invariant of fj is nontrivial, by Lemma 6.5. Hence each of these two normal
cobordism classes contains a self homotopy equivalence of E .

Let f : M → E be a homotopy equivalence (necessarily simple). Then there is a
normal cobordism F : V → E× [0, 1] from f to some self homotopy equivalence
of E . As I+

π is an isomorphism, by Lemma 6.9, there is an s-cobordism W
from M to E , as in Corollary 6.7.2.

The universal covering space W̃ is a proper s-cobordism from M̃ to Ẽ ∼=
S2 × R2 . Since the end of Ẽ is tame and has fundamental group Z we may
apply Corollary 7.3B of [FQ] to conclude that W̃ is homeomorphic to a product.

Hence M̃ is homeomorphic to S2 ×R2 .

Let ρ be a PD2 -group. As π = ρ × (Z/2Z) is square-root closed accessi-
ble from Z/2Z , the Mayer-Vietoris sequences of [Ca73] imply that L4(π,w) ∼=
L4(Z/2Z,−) ⊕ L2(Z/2Z,−) and that L5(π,w) ∼= L4(Z/2Z,−)β , where w =
pr2 : π → Z/2Z and β = β1(ρ;F2). Since these L-groups are finite the struc-
ture sets of total spaces of RP 2 -bundles over aspherical surfaces are also finite.
(Moreover the arguments of Theorems 6.13 and 6.14 can be extended to show
that σ4 is an epimorphism and that most of L5(π,w) acts trivially on idE ,
where E is such a bundle space.)
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