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Chapter 7

Geometries and decompositions

Every closed connected surface is geometric, i.e., is a quotient of one of the three
model 2-dimensional geometries E2 , H2 or S2 by a free and properly discontinu-
ous action of a discrete group of isometries. Every closed irreducible 3-manifold
admits a finite decomposition into geometric pieces. (That this should be so
was the Geometrization Conjecture of Thurston, which was proven in 2003 by
Perelman, through an analysis of the Ricci flow, introduced by Hamilton.) In
§1 we shall recall Thurston’s definition of geometry, and shall describe briefly
the 19 4-dimensional geometries. Our concern in the middle third of this book
is not to show how this list arises (as this is properly a question of differen-
tial geometry; see [Is55, Fi, Pa96] and [Wl85, Wl86]), but rather to describe
the geometries sufficiently well that we may subsequently characterize geomet-
ric manifolds up to homotopy equivalence or homeomorphism. In §2 and §3
we relate the notions of “geometry of solvable Lie type” and “infrasolvmani-
fold”. The limitations of geometry in higher dimensions are illustrated in §4,
where it is shown that a closed 4-manifold which admits a finite decomposi-
tion into geometric pieces is (essentially) either geometric or aspherical. The
geometric viewpoint is nevertheless of considerable interest in connection with
complex surfaces [Ue90, Ue91, Wl85, Wl86]. With the exception of the geome-

tries S2 × H2 , H2 × H2 , H2 × E2 and S̃L × E1 no closed geometric manifold
has a proper geometric decomposition. A number of the geometries support
natural Seifert fibrations or compatible complex structures. In §4 we character-
ize the groups of aspherical 4-manifolds which are orbifold bundles over flat or
hyperbolic 2-orbifolds. We outline what we need about Seifert fibrations and
complex surfaces in §5 and §6.

Subsequent chapters shall consider in turn geometries whose models are con-
tractible (Chapters 8 and 9), geometries with models diffeomorphic to S2×R2

(Chapter 10), the geometry S3×E1 (Chapter 11) and the geometries with com-
pact models (Chapter 12). In Chapter 13 we shall consider geometric structures
and decompositions of bundle spaces. In the final chapter of the book we shall
consider knot manifolds which admit geometries.
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132 Chapter 7: Geometries and decompositions

7.1 Geometries

An n-dimensional geometry X in the sense of Thurston is represented by a pair
(X,GX) where X is a complete 1-connected n-dimensional Riemannian mani-
fold and GX is a Lie group which acts effectively, transitively and isometrically
on X and which has discrete subgroups Γ which act freely on X so that Γ\X
has finite volume. (Such subgroups are called lattices.) Since the stabilizer of
a point in X is isomorphic to a closed subgroup of O(n) it is compact, and so
Γ\X is compact if and only if Γ\GX is compact. Two such pairs (X,G) and
(X ′, G′) define the same geometry if there is a diffeomorphism f : X → X ′

which conjugates the action of G onto that of G′ . (Thus the metric is only
an adjunct to the definition.) We shall assume that G is maximal among Lie
groups acting thus on X , and write Isom(X) = G, and Isomo(X) for the com-
ponent of the identity. A closed manifold M is an X-manifold if it is a quotient
Γ\X for some lattice in GX . Under an equivalent formulation, M is an X-
manifold if it is a quotient Γ\X for some discrete group Γ of isometries acting
freely on a 1-connected homogeneous space X = G/K , where G is a connected
Lie group and K is a compact subgroup of G such that the intersection of
the conjugates of K is trivial, and X has a G-invariant metric. The manifold
admits a geometry of type X if it is homeomorphic to such a quotient. If G is
solvable we shall say that the geometry is of solvable Lie type. If X = (X,GX)
and Y = (Y,GY ) are two geometries then X×Y supports a geometry in a nat-
ural way; GX×Y = GX ×GY if X and Y are irreducible and not isomorphic,
but otherwise GX×Y may be larger.

The geometries of dimension 1 or 2 are the familiar geometries of constant cur-
vature: E1 , E2 , H2 and S2 . Thurston showed that there are eight maximal
3-dimensional geometries (E3 , Nil3 , Sol3 , S̃L, H2 × E1 , H3 , S2 × E1 and S3 .)
Manifolds with one of the first five of these geometries are aspherical Seifert
fibred 3-manifolds or Sol3 -manifolds. These are determined among irreducible
3-manifolds by their fundamental groups, which are the PD3 -groups with non-
trivial Hirsch-Plotkin radical. A closed 3-manifold M is hyperbolic if and only
if it is aspherical and π1(M) has no rank 2 abelian subgroup, while it is an
S3 -manifold if and only if π1(M) is finite, by the work of Perelman [B-P].
(See §11.4 below for more on S3 -manifolds and their groups.) There are just
four S2 × E1 -manifolds. For a detailed and lucid account of the 3-dimensional
geometries see [Sc83’].

There are 19 maximal 4-dimensional geometries; one of these (Sol4m,n ) is in fact
a family of closely related geometries, and one (F4 ) is not realizable by any
closed manifold [Fi]. We shall see that the geometry is determined by the fun-
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7.2 Infranilmanifolds 133

damental group (cf. [Wl86, Ko92]). In addition to the geometries of constant
curvature and products of lower dimensional geometries there are seven “new”
4-dimensional geometries. Two of these are modeled on the irreducible Rieman-
nian symmetric spaces CP 2 = U(3)/U(2) and H2(C) = SU(2, 1)/S(U(2) ×
U(1)). The model for the geometry F4 is the tangent bundle of the hyperbolic
plane, which we may identify with R2×H2 . Its isometry group is the semidirect
product R2 ×α SL±(2,R), where SL±(2,R) = {A ∈ GL(2,R) | detA = ±1},
and α is the natural action of SL±(2,R) on R2 . The identity component
acts on R2 × H2 as follows: if u ∈ R2 and A =

(
a b
c d

)
∈ SL(2,R) then

u(w, z) = (u + w, z) and A(w, z) = (Aw, az+bcz+d) for all (w, z) ∈ R2 ×H2 . The

matrix D =
(

1 0
0 −1

)
acts via D(w, z) = (Dw,−z̄). All H2(C)- and F4 -manifolds

are orientable. The other four new geometries are of solvable Lie type, and shall
be described in §2 and §3.

In most cases the model X is homeomorphic to R4 , and the corresponding ge-
ometric manifolds are aspherical. Six of these geometries (E4 , Nil4 , Nil3×E1 ,
Sol4m,n , Sol40 and Sol41 ) are of solvable Lie type; in Chapter 8 we shall show man-
ifolds admitting such geometries have Euler characteristic 0 and fundamental
group a torsion-free virtually poly-Z group of Hirsch length 4. Such manifolds
are determined up to homeomorphism by their fundamental groups, and every
such group arises in this way. In Chapter 9 we shall consider closed 4-manifolds
admitting one of the other geometries of aspherical type (H3 × E1 , S̃L × E1 ,
H2 × E2 , H2 × H2 , H4 , H2(C) and F4 ). These may be characterised up to
s-cobordism by their fundamental group and Euler characteristic. However it
is unknown to what extent surgery arguments apply in these cases, and we do
not yet have good characterizations of the possible fundamental groups. Al-
though no closed 4-manifold admits the geometry F4 , there are such manifolds
with proper geometric decompositions involving this geometry; we shall give
examples in Chapter 13.

Three of the remaining geometries (S2×E2 , S2×H2 and S3×E1 ) have models
homeomorphic to S2×R2 or S3×R. The final three (S4 , CP2 and S2×S2 ) have
compact models, and there are only eleven such manifolds. We shall discuss
these nonaspherical geometries in Chapters 10, 11 and 12.

7.2 Infranilmanifolds

The notions of “geometry of solvable Lie type” and “infrasolvmanifold” are
closely related. We shall describe briefly the latter class of manifolds, from
a rather utilitarian point of view. As we are only interested in closed mani-
folds, we shall frame our definitions accordingly. We consider the easier case of
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134 Chapter 7: Geometries and decompositions

infranilmanifolds in this section, and the other infrasolvmanifolds in the next
section.

A flat n-manifold is a quotient of Rn by a discrete torsion-free subgroup of
E(n) = Isom(En) = Rn oα O(n) (where α is the natural action of O(n) on
Rn ). A group π is a flat n-manifold group if it is torsion-free and has a nor-
mal subgroup of finite index which is isomorphic to Zn . (These are necessary
and sufficient conditions for π to be the fundamental group of a closed flat
n-manifold.) The action of π by conjugation on its translation subgroup T (π)
(the maximal abelian normal subgroup of π) induces a faithful action of π/T (π)
on T (π). On choosing an isomorphism T (π) ∼= Zn we may identify π/T (π)
with a subgroup of GL(n,Z); this subgroup is called the holonomy group of π ,
and is well defined up to conjugacy in GL(n,Z). We say that π is orientable
if the holonomy group lies in SL(n,Z); equivalently, π is orientable if the flat
n-manifold Rn/π is orientable or if π ≤ E(n)+ = Rn oα SO(n). If two dis-
crete torsion-free cocompact subgroups of E(n) are isomorphic then they are
conjugate in the larger group Aff(Rn) = RnoαGL(n,R), and the correspond-
ing flat n-manifolds are “affinely” diffeomorphic. There are only finitely many
isomorphism classes of such flat n-manifold groups for each n.

A nilmanifold is a coset space of a 1-connected nilpotent Lie group by a discrete
subgroup. More generally, an infranilmanifold is a quotient π\N where N is
a 1-connected nilpotent Lie group and π is a discrete torsion-free subgroup of
the semidirect product Aff(N) = N oαAut(N) such that π∩N is a lattice in
N and π/π∩N is finite. Thus infranilmanifolds are finitely covered by nilman-
ifolds. The Lie group N is determined by

√
π , by Mal’cev’s rigidity theorem,

and two infranilmanifolds are diffeomorphic if and only if their fundamental
groups are isomorphic. The isomorphism may then be induced by an affine
diffeomorphism. The infranilmanifolds derived from the abelian Lie groups Rn

are just the flat manifolds. It is not hard to see that there are just three 4-
dimensional (real) nilpotent Lie algebras. (Compare the analogous argument of
Theorem 1.4.) Hence there are three 1-connected 4-dimensional nilpotent Lie
groups, R4 , Nil3 ×R and Nil4 .

The group Nil3 is the subgroup of SL(3,R) consisting of upper triangular

matrices [r, s, t] =

1 r t
0 1 s
0 0 1

 . It has abelianization R2 and centre ζNil3 =

Nil3
′ ∼= R. The elements [1, 0, 0], [0, 1, 0] and [0, 0, 1/q] generate a discrete

cocompact subgroup of Nil3 isomorphic to Γq , and these are essentially the
only such subgroups. (Since they act orientably on R3 they are PD+

3 -groups.)
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7.3 Infrasolvmanifolds 135

The coset space Nq = Nil3/Γq is the total space of the S1 -bundle over S1×S1

with Euler number q , and the action of ζNil3 on Nil3 induces a free action
of S1 = ζNil/ζΓq on Nq . The group Nil4 is the semidirect product R3 oθ R,
where θ(t) = [t, t, t2/2]. It has abelianization R2 and central series ζNil4 ∼=
R < ζ2Nil

4 = Nil4
′ ∼= R2 .

These Lie groups have natural left invariant metrics, and the isometry groups
are generated by left translations and the stabilizer of the identity. For Nil3
this stabilizer is O(2), and Isom(Nil3) is an extension of E(2) by R. Hence
Isom(Nil3×E1) = Isom(Nil3)×E(1). For Nil4 the stabilizer is (Z/2Z)2 , and
is generated by two involutions, which send ((x, y, z), t) to (−(x, y, z), t) and
((−x, y, z),−t), respectively. (See [Sc83’, Wl86].)

7.3 Infrasolvmanifolds

The situation for (infra)solvmanifolds is more complicated. An infrasolvmani-
fold is a quotient M = Γ\S where S is a 1-connected solvable Lie group and Γ is
a closed torsion-free subgroup of the semidirect product Aff(S) = SoαAut(S)
such that Γo (the component of the identity of Γ) is contained in the nilrad-
ical of S (the maximal connected nilpotent normal subgroup of S ), Γ/Γ ∩ S
has compact closure in Aut(S) and M is compact. The pair (S,Γ) is called a
presentation for M , and is discrete if Γ is a discrete subgroup of Aff(S), in
which case π1(M) = Γ. Every infrasolvmanifold has a presentation such that
Γ/Γ ∩ S is finite [FJ97], but Γ need not be discrete, and S is not determined

by π . (For example, Z3 is a lattice in both R3 and Ẽ(2)+ = C oα̃ R, where
α̃(t)(z) = e2πitz for all t ∈ R and z ∈ C.)

Since S and Γo are each contractible, X = Γo\S is contractible also. It can be
shown that π = Γ/Γo acts freely on X , and so is a PDm group, where m is
the dimension of M = π\X . (See Chapter III.3 of [Au73] for the solvmanifold
case.) Since π is also virtually solvable it is thus virtually poly-Z of Hirsch
length m, by Theorem 9.23 of [Bi], and χ(M) = χ(π) = 0.

Working in the context of real algebraic groups, Baues has shown in [Ba04] that

(1) every infrasolvmanifold has a discrete presentation with Γ/Γ ∩ S finite;

(2) infrasolvmanifolds with isomorphic fundamental groups are diffeomor-
phic.

He has also given a new construction which realizes each torsion-free virtu-
ally poly-Z group as the fundamental group of an infrasolvmanifold, a result
originally due to Auslander and Johnson [AJ76]. Farrell and Jones had shown
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136 Chapter 7: Geometries and decompositions

earlier that (2) holds in all dimensions except perhaps 4. However there is not
always an affine diffeomorphism [FJ97]. (Theorem 8.9 below gives an ad hoc
argument, using the Mostow orbifold bundle associated to a presentation of
an infrasolvmanifold and standard 3-manifold theory, which covers most of the
4-dimensional cases.) Other notions of infrasolvmanifold are related in [KY13].

An important special case includes most infrasolvmanifolds of dimension ≤ 4
(and all infranilmanifolds). Let T+

n (R) be the subgroup of GL(n,R) consisting
of upper triangular matrices with positive diagonal entries. A Lie group S is
triangular if is isomorphic to a closed subgroup of T+

n (R) for some n. The
eigenvalues of the image of each element of S under the adjoint representation
are then all real, and so S is of type R in the terminology of [Go71]. (It can
be shown that a Lie group is triangular if and only if it is 1-connected and
solvable of type R.) Two infrasolvmanifolds with discrete presentations (Si,Γi)
where each Si is triangular (for i = 1, 2) are affinely diffeomorphic if and
only if their fundamental groups are isomorphic, by Theorem 3.1 of [Le95].
The translation subgroup S ∩ Γ of a discrete pair with S triangular can be
characterised intrinsically as the subgroup of Γ consisting of the elements g ∈ Γ
such that all the eigenvalues of the automorphisms of the abelian sections of the
lower central series for

√
Γ induced by conjugation by g are positive [De97].

Let S be a connected solvable Lie group of dimension m, and let N be its
nilradical. If π is a lattice in S then it is torsion-free and virtually poly-Z of
Hirsch length m and π ∩N =

√
π is a lattice in N . If S is 1-connected then

S/N is isomorphic to some vector group Rn , and π/
√
π ∼= Zn . A complete

characterization of such lattices is not known, but a torsion-free virtually poly-
Z group π is a lattice in a connected solvable Lie group S if and only if π/

√
π

is abelian. (See Sections 4.29-31 of [Rg].)

The 4-dimensional solvable Lie geometries other than the infranil geometries
are Sol4m,n , Sol40 and Sol41 , and the model spaces are solvable Lie groups with
left invariant metrics. The following descriptions are based on [Wl86]. The Lie
group is the identity component of the isometry group for the geometries Sol4m,n
and Sol41 ; the identity component of Isom(Sol40) is isomorphic to the semidirect
product (C ⊕R)oγ C× , where γ(z)(u, x) = (zu, |z|−2x) for all (u, x) in C ⊕R
and z in C× , and thus Sol40 admits an additional isometric action of S1 , by
rotations about an axis in C ⊕R ∼= R3 , the radical of Sol40 .

Sol4m,n = R3 oθm,n R, where m and n are integers such that the polynomial

fm,n = X3−mX2+nX−1 has distinct roots ea , eb and ec (with a < b < c real)
and θm,n(t) is the diagonal matrix diag[eat, ebt, ect]. Since θm,n(t) = θn,m(−t)
we may assume that m ≤ n; the condition on the roots then holds if and only if
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2
√
n ≤ m ≤ n. The metric given by ds2 = e−2atdx2 + e−2btdy2 + e−2ctdz2 + dt2

(in the obvious global coordinates) is left invariant, and the automorphism of
Sol4m,n which sends (x, y, z, t) to (px, qy, rz, t) is an isometry if and only if p2 =

q2 = r2 = 1. Let G be the subgroup of GL(4,R) of bordered matrices
(
D ξ
0 1

)
,

where D = diag[±eat,±ebt,±ect] and ξ ∈ R3 . Then Sol4m,n is the subgroup of
G with positive diagonal entries, and G = Isom(Sol4m,n) if m 6= n. If m = n
then b = 0 and Sol4m,m = Sol3 × E1 , which admits the additional isometry
sending (x, y, z, t) to (z, y, x,−t), and G has index 2 in Isom(Sol3 ×E1). The
stabilizer of the identity in the full isometry group is (Z/2Z)3 for Sol4m,n if m 6=
n and D8 × (Z/2Z) for Sol3 ×R. In all cases Isom(Sol4m,n) ≤ Aff(Sol4m,n).

In general Sol4m,n = Sol4m′,n′ if and only if (a, b, c) = λ(a′, b′, c′) for some λ 6= 0.
Must λ be rational? (This is a case of the “problem of the four exponentials” of
transcendental number theory.) If m 6= n then Fm,n = Q[X]/(fm,n) is a totally
real cubic number field, generated over Q by the image of X . The images of X
under embeddings of Fm,n in R are the roots ea , eb and ec , and so it represents
a unit of norm 1. The group of such units is free abelian of rank 2. Therefore
if λ = r/s ∈ Q× this unit is an rth power in Fm,n (and its rth root satisfies
another such cubic). It can be shown that |r| ≤ log2(m), and so (modulo the
problem of the four exponentials) there is a canonical “minimal” pair (m,n)
representing each such geometry.

Sol40 = R3 oξ R, where ξ(t) is the diagonal matrix diag[et, et, e−2t]. Note
that if ξ(t) preserves a lattice in R3 then its characteristic polynomial has
integral coefficients and constant term −1. Since it has et as a repeated root
we must have ξ(t) = I . Therefore Sol40 does not admit any lattices. The metric
given by the expression ds2 = e−2t(dx2 + dy2) + e4tdz2 + dt2 is left invariant,
and O(2)×O(1) acts via rotations and reflections in the (x, y)-coordinates and
reflection in the z -coordinate, to give the stabilizer of the identity. These actions
are automorphisms of Sol40 , so Isom(Sol40) = Sol40o(O(2)×O(1)) ≤ Aff(Sol40).
The identity component of Isom(Sol40) is not triangular.

Sol41 is the group of real matrices {

1 y z
0 t x
0 0 1

 : t > 0, x, y, z ∈ R}. The

metric given by ds2 = t−2((1+x2)(dt2 +dy2)+t2(dx2 +dz2)−2tx(dtdx+dydz))
is left invariant, and the stabilizer of the identity is D8 , generated by the
isometries which send (t, x, y, z) to (t,−x, y,−z) and to t−1(1,−y,−x, xy−tz).
These are automorphisms. (The latter one is the restriction of the involution
Ω of GL(3,R) which sends A to J(Atr)−1J , where J reverses the order of
the standard basis of R3 .) Thus Isom(Sol41) ∼= Sol41 oD8 ≤ Aff(Sol41). The
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orientation-preserving subgroup is isomorphic to the subgroup G of GL(3,R)
generated by Sol41 and the diagonal matrices diag[−1, 1, 1] and diag[1, 1,−1].
(Note that these diagonal matrices act by conjugation on Sol41 .)

Closed Sol4m,n - or Sol41 -manifolds are clearly infrasolvmanifolds. The Sol40 case

is more complicated. Let γ̃(z)(u, x) = (ezu, e−2Re(z)x) for all (u, x) in C ⊕ R
and z in C . Then Ĩ = (C ⊕ R) oγ̃ C is the universal covering group of
Isom(Sol40). If M is a closed Sol40 -manifold its fundamental group π is a
semidirect product Z3oθZ , where θ(1) ∈ GL(3,Z) has two complex conjugate
eigenvalues λ 6= λ̄ with |λ| 6= 0 or 1 and one real eigenvalue ρ such that
|ρ| = |λ|−2 . (See Chapter 8.) If M is orientable (i.e., ρ > 0) then π is a lattice
in Sπ = (C⊕R)oθ̃R < Ĩ , where θ̃(r) = γ̃(rlog(λ)). In general, π is a lattice in

Aff(Sπ+). The action of Ĩ on Sol40 determines a diffeomorphism Sπ+/π ∼= M ,
and so M is an infrasolvmanifold with a discrete presentation.

7.4 Orbifold bundles

An n-dimensional orbifold B has an open covering by subspaces of the form
Dn/G, where G is a finite subgroup of O(n). The orbifold B is good if B =
Γ\M , where Γ is a discrete group acting properly discontinuously on a 1-
connected manifold M ; we then write πorb(B) = Γ. It is aspherical if the
universal cover M is contractible. A good 2-orbifold B is a quotient of R2 , S2

or H2 by an isometric action of πorb(B), and so is flat, spherical or hyperbolic.
Moreover, if B is compact it is a quotient of a closed surface by the action of
a finite group. An orbifold is bad if it is not good.

Let F be a closed manifold. An orbifold bundle with general fibre F over B is
a map f : M → B which is locally equivalent to a projection G\(F ×Dn) →
G\Dn , where G acts freely on F and effectively and orthogonally on Dn . If
the base B has a finite regular covering B̂ which is a manifold, then p induces
a fibre bundle projection p̂ : M̂ → B̂ with fibre F , and the action of the
covering group maps fibres to fibres. Conversely, if p1 : M1 → B1 is a fibre
bundle projection with fibre F1 and G is a finite group which acts freely on
M1 and maps fibres to fibres then passing to orbit spaces gives an orbifold
bundle p : M = G\M1 → B = H\B1 with general fibre F = K\F1 , where
H is the induced group of homeomorphisms of B1 and K is the kernel of the
epimorphism from G to H . We shall also say that f : M → B is an F -orbifold
bundle and M is an F -orbifold bundle space.

Theorem 7.1 [Cb] Let M be an infrasolvmanifold. Then there is an orbifold
bundle p : M → B with general fibre an infranilmanifold and base a flat
orbifold.
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Proof Let (S,Γ) be a presentation for M and let R be the nilradical of S .
Then A = S/R is a 1-connected abelian Lie group, and so A ∼= Rd for some
d ≥ 0. Since R is characteristic in S there is a natural projection q : Aff(S)→
Aff(A). Let ΓS = Γ∩S and ΓR = Γ∩R. Then the action of ΓS on S induces
an action of the discrete group q(ΓS) = RΓS/R on A. The Mostow fibration for
M1 = ΓS\S is the quotient map to B1 = q(ΓS)\A, which is a bundle projection
with fibre F1 = ΓR\R. Now Γo is normal in R, by Corollary 3 of Theorem 2.3
of [Rg], and ΓR/Γo is a lattice in the nilpotent Lie group R/Γo . Therefore F1

is a nilmanifold, while B1 is a torus.

The finite group Γ/ΓS acts on M1 , respecting the Mostow fibration. Let Γ =
q(Γ), K = Γ ∩Ker(q) and B = Γ\A. Then the induced map p : M → B is an
orbifold bundle projection with general fibre the infranilmanifold F = K\R =
(K/Γo)\(R/Γo), and base a flat orbifold.

We shall call p : M → B the Mostow orbifold bundle corresponding to (S,Γ).
In Theorem 8.9 we shall use this construction to show that most 4-dimensional
infrasolvmanifolds are determined up to diffeomorphism by their fundamental
groups. (Our argument fails for two virtually abelian fundamental groups.)

The Gluck reconstruction of an S2 -orbifold bundle p : M → B is the orbifold
bundle pτ : M τ → B obtained by removing a product neighbourhood S2 ×D2

of a general fibre and reattaching it via the nontrivial twist τ of S2 × S1 . It
can be shown that p is determined up to Gluck reconstruction by π = πorb(B)
and the action u : π → Aut(π2(M)), and that if B has a reflector curve then p
and pτ are isomorphic as orbifold bundles over B . (See [Hi13].)

7.5 Geometric decompositions

An n-manifold M admits a geometric decomposition if it has a finite family
S of disjoint 2-sided hypersurfaces S such that each component of M \ ∪S is
geometric of finite volume, i.e., is homeomorphic to Γ\X , for some geometry
X and lattice Γ. We shall call the hypersurfaces S cusps and the components
of M \ ∪S pieces of M . The decomposition is proper if S is nonempty.

Theorem 7.2 If a closed 4-manifold M admits a geometric decomposition
then either

(1) M is geometric; or

(2) M is the total space of an orbifold bundle with general fibre S2 over a
hyperbolic 2-orbifold; or
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(3) the components of M \ ∪S all have geometry H2 ×H2 ; or

(4) the components of M \ ∪S have geometry H4 , H3 × E1 , H2 × E2 or

S̃L× E1 ; or

(5) the components of M \ ∪S have geometry H2(C) or F4 .

In cases (3), (4) or (5) χ(M) ≥ 0 and in cases (4) or (5) M is aspherical.

Proof The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of finite volume. The hypersurfaces bounding a com-
ponent of M \ ∪S correspond to the ends of its interior. If the geometry is
of solvable or compact type then there are no ends, since every lattice is then
cocompact [Rg]. Thus we may concentrate on the eight geometries S2 × H2 ,

H2 × E2 , H2 × H2 , S̃L × E1 , H3 × E1 , H4 , H2(C) and F4 . The ends of a
geometry of constant negative curvature Hn are flat [Eb80]; since any lattice
in a Lie group must meet the radical in a lattice it follows easily that the ends
are also flat in the mixed euclidean cases H3×E1 , H2×E2 and S̃L×E1 . Sim-
ilarly, the ends of S2×H2 -manifolds are S2×E1 -manifolds. Since the elements
of PSL(2,C) corresponding to the cusps of finite area hyperbolic surfaces are
parabolic, the ends of F4 -manifolds are Nil3 -manifolds. The ends of H2(C)-
manifolds are also Nil3 -manifolds [Go], while the ends of H2×H2 -manifolds are
Sol3 -manifolds in the irreducible cases [Sh63], H2 × E1 -manifolds if the pieces
are virtually products of a closed surface with a punctured surface, and non-
trivial graph manifolds otherwise. Clearly if two pieces are contiguous their
common cusps must be homeomorphic. If the piece is not virtually a product
of two punctured surfaces then the inclusion of a cusp into the closure of the
piece induces a monomorphism on fundamental group.

If M is a closed 4-manifold with a geometric decomposition of type (2) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on
π2 , and a Mayer-Vietoris argument in the universal covering space M̃ shows
that M̃ is homotopy equivalent to S2 . The natural foliation of S2 × H2 by
2-spheres induces a codimension-2 foliation on each piece, with leaves S2 or
RP 2 . The cusps bounding the closure of a piece are S2 × E1 -manifolds, and
hence also have codimension-1 foliations, with leaves S2 or RP 2 . Together
these foliations give a foliation of the closure of the piece, so that each cusp is a
union of leaves. The homeomorphisms identifying cusps of contiguous pieces are
isotopic to isometries of the corresponding S2×E1 -manifolds. As the foliations
of the cusps are preserved by isometries M admits a foliation with leaves S2 or
RP 2 . If all the leaves are homeomorphic then the projection to the leaf space
is a submersion and so M is the total space of an S2 - or RP 2 -bundle over a
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hyperbolic surface. In Chapter 10 we shall show that S2 - and RP 2 -bundles
over aspherical surfaces are geometric. Otherwise, M is the total space of an
S2 -orbifold bundle over a hyperbolic 2-orbifold.

If at least one piece has an aspherical geometry other than H2 × H2 then all
do and M is aspherical. Since all the pieces of type H4 , H2(C) or H2 × H2

have strictly positive Euler characteristic while those of type H3×E1 , H2×E2 ,
S̃L× E1 or F4 have Euler characteristic 0 we must have χ(M) ≥ 0.

In Theorem 10.2 we shall show every pair (B, u) with B an aspherical 2-orbifold
and u an action of π = πorb(B) on Z with torsion-free kernel is realized by an
S2 -orbifold bundle p : M → B , with geometric total space. It can be shown
that every S2 -orbifold bundle over B is isomomorphic to p or to its Gluck
reconstruction pτ , and that M τ is also geometric if and only if either B has a
reflector curve, in which case pτ ∼= p as orbifold bundles, or π is not generated
by involutions. However, if B is the 2-sphere with 2k ≥ 4 cone points of order
2 then M τ is not geometric. (See [Hi11] and [Hi13].)

If in case (3) one piece is finitely covered by the product of a closed surface and
a punctured surface then all are. Let M be an aspherical closed 4-manifold with
a geometric decomposition into pieces which are reducible H2 ×H2 -manifolds.
If a piece N = Γ\H2 ×H2 is finitely covered by F×G, where F is a punctured
surface and G is closed then B = pr2(Γ)\H2 is a closed H2 -orbifold. Projection
onto the second factor induces an orbifold bundle pN : N → B with general
fibre a closed surface and monodromy of finite order. The boundary components
have an essentially unique Seifert fibration, and so the projections pN for the
various pieces give rise to an orbifold bundle p : M → B . The intersection of the
kernels of the action of πorb(B) on the fundamental groups of the regular fibres
of the pieces has finite index in πorb(B). Therefore M is homotopy equivalent
to an H2 ×H2 -manifold M1 , by Theorem 9.9 below. We may arrange that the
hypotheses of Theorem 4.1 of [Vo77] hold, and so M is itself geometric.

If one piece is finitely covered by the product of two punctured surfaces then its
boundary is connected, and so there must be just two pieces. Such manifolds
are never aspherical, for as the product of two free groups has cohomological
dimension 2 and the cusp is a nontrivial graph manifold the homomorphisms of
fundamental groups induced by the inclusions of the cusp into either piece have
nontrivial kernel. The simplest such example is the double of To × To , where
To = T \ intD2 is the once-punctured torus.

Is there an essentially unique minimal decomposition? Since hyperbolic surfaces
are connected sums of tori, and a punctured torus admits a complete hyperbolic
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geometry of finite area, we cannot expect that there is an unique decomposition,
even in dimension 2. Any PDn -group satisfying Max-c (the maximal condition
on centralizers) has an essentially unique minimal finite splitting along virtually
poly-Z subgroups of Hirsch length n−1, by Theorem A2 of [Kr90]. (The Max-
c condition is unnecessary [SS].) A compact non-positively curved n-manifold
(n ≥ 3) with convex boundary is either flat or has a canonical decomposition
along totally geodesic closed flat hypersurfaces into pieces which are Seifert
fibred or codimension-1 atoroidal [LS00]. Which 4-manifolds with geometric

decompositions admit such metrics? (Closed S̃L×E1 -manifolds do not [Eb82].)

If an aspherical closed 4-manifold M has a nontrivial geometric decomposition
then the subgroups of π1(M) corresponding to the cusps contain copies of Z2 ,
and if M has no pieces which are reducible H2 × H2 -manifolds the cuspidal
subgroups are polycyclic of Hirsch length 3. Closed H4 - or H2(C)-manifolds
admit no proper geometric decompositions, since their fundamental groups have
no noncyclic abelian subgroups [Pr43]. Similarly, closed H3 × E1 -manifolds
admit no proper decompositions, since they are finitely covered by cartesian
products of H3 -manifolds with S1 . Thus closed 4-manifolds with a proper
geometric decomposition involving pieces of types other than S2×H2 , H2×E2 ,
H2 ×H2 or S̃L× E1 are never geometric.

Many S2 × H2 -, H2 × H2 -, H2 × E2 - and S̃L × E1 -manifolds admit proper
geometric decompositions. On the other hand, a manifold with a geometric
decomposition into pieces of type H2×E2 need not be geometric. For instance,
let G = 〈u, v, x, y | [u, v] = [x, y]〉 be the fundamental group of T]T , the closed
orientable surface of genus 2, and let θ : G → SL(2,Z) be the epimorphism
determined by θ(u) =

(
0 −1
1 0

)
, θ(x) =

(
0 1
−1 1

)
and θ(v) = θ(y) = 1. Then the

semidirect product π = Z2 oθ G is the fundamental group of a torus bundle
over T]T which has a geometric decomposition into two pieces of type H2×E2 ,
but is not geometric, since π has no subgroup of finite index with centre Z2 .

It is easily seen that each S2 × E1 -manifold may be realized as the end of a
complete S2×H2 -manifold with finite volume and a single end. However, if the
manifold is orientable the ends must be orientable, and if it is complex analytic
then they must be S2× S1 . Every flat 3-manifold is a cusp of some (complete,
finite volume) H4 -manifold [Ni98]. However if such a manifold has only one cusp
the cusp cannot have holonomy Z/3Z or Z/6Z [LR00]. The fundamental group

of a cusp of an S̃L×E1 -manifold must have a chain of abelian normal subgroups
Z < Z2 < Z3 ; thus if the cusp is orientable the group is Z3 or Z2o−IZ . Every
Nil3 -manifold is a cusp of some H2(C)-manifold [McR09]. The ends of complex
analytic H2 ×H2 -manifolds with irreducible fundamental group are orientable
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Sol3 -manifolds which are mapping tori [Sh63]. Every orientable Sol3 -manifold
is a cusp of some H2 ×H2 -manifold [McR08].

7.6 Realization of virtual bundle groups

Every extension of one PD2 -group by another may be realized by some surface
bundle, by Theorem 5.2. The study of Seifert fibred 4-manifolds and singular
fibrations of complex surfaces lead naturally to consideration of the larger class
of torsion-free groups which are virtually such extensions. Johnson has asked
whether such virtual bundle groups may be realized by aspherical 4-manifolds.

Theorem 7.3 Let π be a torsion-free group with normal subgroups K < G <
π such that K and G/K are PD2 -groups and [π : G] < ∞. Then π is the
fundamental group of an aspherical closed smooth 4-manifold which is the total
space of an orbifold bundle with general fibre an aspherical closed surface over
a 2-dimensional orbifold.

Proof Let p : π → π/K be the quotient homomorphism. Since π is torsion-
free the preimage in π of any finite subgroup of π/K is a PD2 -group. As the
finite subgroups of π/K have order at most [π : G], we may assume that π/K
has no nontrivial finite normal subgroup, and so is the orbifold fundamental
group of some 2-dimensional orbifold B , by the solution to the Nielsen realiza-
tion problem for surfaces [Ke83]. Let F be the aspherical closed surface with
π1(F ) ∼= K . If π/K is torsion-free then B is a closed aspherical surface, and
the result follows from Theorem 5.2. In general, B is the union of a punctured
surface Bo with finitely many cone discs and regular neighborhoods of reflector
curves (possibly containing corner points). The latter may be further decom-
posed as the union of squares with a reflector curve along one side and with
at most one corner point, with two such squares meeting along sides adjacent
to the reflector curve. These suborbifolds Ui (i.e., cone discs and squares) are
quotients of D2 by finite subgroups of O(2). Since B is finitely covered (as an
orbifold) by the aspherical surface with fundamental group G/K these finite
groups embed in πorb

1 (B) ∼= π/K , by the Van Kampen Theorem for orbifolds.

The action of π/K on K determines an action of π1(Bo) on K and hence
an F -bundle over Bo . Let Hi be the preimage in π of πorb1 (Ui). Then Hi

is torsion-free and [Hi : K] < ∞, so Hi acts freely and cocompactly on X2 ,
where X2 = R2 if χ(K) = 0 and X2 = H2 otherwise, and F is a finite covering
space of Hi\X2 . The obvious action of Hi on X2 × D2 determines a bundle
with general fibre F over the orbifold Ui . Since self homeomorphisms of F
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are determined up to isotopy by the induced element of Out(K), bundles over
adjacent suborbifolds have isomorphic restrictions along common edges. Hence
these pieces may be assembled to give a bundle with general fibre F over the
orbifold B , whose total space is an aspherical closed smooth 4-manifold with
fundamental group π .

We can improve upon Theorem 5.7 as follows.

Corollary 7.3.1 Let M be a PD4 -complex with fundamental group π . Then
the following are equivalent.

(1) M is homotopy equivalent to the total space of an orbifold bundle with
general fibre an aspherical surface over an E2 - or H2 -orbifold;

(2) π has an FP2 normal subgroup K such that π/K is virtually a PD2 -
group and π2(M) = 0;

(3) π has a normal subgroup N which is a PD2 -group and π2(M) = 0.

Proof Condition (1) clearly implies (2) and (3). Conversely, if they hold the
argument of Theorem 5.7 shows that K is a PD2 -group and N is virtually a
PD2 -group. In each case (1) now follows from Theorem 7.3.

It follows easily from the argument of part (1) of Theorem 5.4 that if π is a
group with a normal subgroup K such that K and π/K are PD2 -groups with
ζK = ζ(π/K) = 1, ρ is a subgroup of finite index in π and L = K ∩ ρ then
Cρ(L) = 1 if and only if Cπ(K) = 1. Since ρ is virtually a product of PD2 -
groups with trivial centres if and only if π is, Johnson’s trichotomy extends to
groups commensurate with extensions of one centreless PD2 -group by another.

Theorem 7.3 settles the realization question for groups of type I. (For suppose
π has a subgroup σ of finite index with a normal subgroup ν such that ν and
σ/ν are PD2 -groups with ζν = ζ(σ/ν) = 1. Let G = ∩hσh−1 and K = ν ∩G.
Then [π : G] <∞, G is normal in π , and K and G/K are PD2 -groups. If G is
of type I then K is characteristic in G, by Theorem 5.5, and so is normal in π .)
Groups of type II need not have such normal PD2 -subgroups – although this
is almost true. In Theorem 9.8 we show that such groups are also realizable. It
is not known whether every type III extension of centreless PD2 -groups has a
characteristic PD2 -subgroup.

If π is an extension of Z2 by a normal PD2 -subgroup K with ζK = 1 then
Cπ(K) =

√
π , and [π : KCπ(K)] <∞ if and only if π is virtually K × Z2 , so
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Johnson’s trichotomy extends to such groups. The three types may be char-
acterized by (I)

√
π ∼= Z , (II)

√
π ∼= Z2 , and (III)

√
π = 1. If β1(π) = 2

the subgroup K is canonical, but in general π may admit such subgroups of
arbitrarily large genus [Bu07]. Every such group is realized by an iterated
mapping torus construction. As these properties are shared by commensurate
torsion-free groups, the trichotomy extends further to torsion-free groups which
are virtually such extensions, but it is not known whether every group of this
larger class is realized by some aspherical closed 4-manifold.

The Johnson trichotomy is inappropriate if ζK 6= 1, as there are then nontrivial
extensions with trivial action (θ = 1). Moreover Out(K) is virtually free and so
θ is never injective. However all such groups π may be realized by aspherical
4-manifolds, for either

√
π ∼= Z2 and Theorem 7.3 applies, or π is virtually

poly-Z and is the fundamental group of an infrasolvmanifold. (See Chapter 8.)

Aspherical orbifold bundles (with 2-dimensional base and fibre) are determined
up to fibre-preserving diffeomorphism by their fundamental groups, subject to
conditions on χ(F ) and χorb(B) analogous to those of §2 of Chapter 5 [Vo77].

7.7 Seifert fibrations

A 4-manifold S is Seifert fibred if it is the total space of an orbifold bundle with
general fibre a torus or Klein bottle over a 2-orbifold. (In [Zn85, Ue90, Ue91] it
is required that the general fibre be a torus. This is always so if the manifold
is orientable. In [Vo77] “Seifert fibration” means “orbifold bundle over a 2-
dimensional base”, in our terms.) It is easily seen that χ(S) = 0. (In fact S is
finitely covered by the total space of a torus bundle over a surface. This is clear
if the base orbifold is good, and follows from the result of Ue quoted below if
the base is bad.)

Let p : S → B be a Seifert fibration with closed aspherical base, and let
j : F → S be the inclusion of the fibre over the basepoint of B . Let H =
j∗(π1(F )) and A =

√
H ∼= Z2 . Then j∗ : π1(F ) → π = π1(S) is injective, A

is a normal subgroup of π and π/A is virtually a surface group. If moreover
B is hyperbolic H is the unique maximal solvable normal subgroup of π , and√
π = A. Let α : π/A → Aut(A) ∼= GL(2,Z) be the homomorphism induced

by conjugation in π , A = Q ⊗Z
√
π the corresponding Q[π/A]-module and

eQ(p) ∈ H2(π/A;A) the class corresponding to π as an extension of π/A by A.
We shall call α and eQ(p) the action and the (rational) Euler class of the Seifert
fibration, respectively. (When A =

√
π we shall write eQ(π) for eQ(p)). Let π̂

be a normal subgroup of finite index in π which contains A and such that π̂/A is
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a PD+
2 -group. Then H2(π/A;A) ∼= H0(π/π̂;H2(π̂/A;A)) ∼= H0(π/π̂;A/ÎA),

where Î is the augmentation ideal of Q[π̂/A]. It follows that restriction to
subgroups of finite index which contain A is injective, and so whether eQ(p)
is 0 or not is invariant under passage to such subgroups. If α(π̂) = 1 (so α
has finite image) then H2(π/A;A) ≤ A ∼= Q2 . (Note that if the general fibre
is the Klein bottle the action is diagonalizable, with image of order ≤ 4, and
H2(π/A;A) ∼= Q or 0. The action and the rational Euler class may also be
defined when the base is not aspherical, but we shall not need to do this.)

If X is one of the geometries Nil4 , Nil3×E1 , Sol3×E1 , S2×E2 , H2×E2 , S̃L× E1

or F4 its model space X has a canonical foliation with leaves diffeomorphic to
R2 and which is preserved by isometries. (For the Lie groups Nil4 , Nil3 × R
and Sol3 × R we may take the foliations by cosets of the normal subgroups
ζ2Nil

4 , ζNil3 × R and Sol3
′
.) These foliations induce Seifert fibrations on

quotients by lattices. All S3 × E1 -manifolds are also Seifert fibred. Case-
by-case inspection of the 74 flat 4-manifold groups shows that all but three
have rank 2 free abelian normal subgroups, and the representations given in
[B-Z] may be used to show that the corresponding manifolds are Seifert fibred.
The exceptions are the semidirect products G6 oθ Z where θ = j , cej and
abcej . (See §3 of Chapter 8 for definitions of these automorphisms.) Closed
4-manifolds with one of the other geometries are not Seifert fibred. (Among
these, only Sol4m,n (with m 6= n), Sol40 , Sol41 and H3×E1 have closed quotients
M = Γ\X with χ(M) = 0, and for these the lattices Γ do not have Z2 as a
normal subgroup.)

The relationship between Seifert fibrations and geometries for orientable 4-
manifolds is as follows [Ue90, Ue91]:

Theorem [Ue] Let S be a closed orientable 4-manifold which is Seifert fibred
over the 2-orbifold B . Then

(1) If B is spherical or bad S has geometry S3 × E1 or S2 × E2 ;

(2) If B is flat then S has geometry E4 , Nil4 , Nil3 × E1 or Sol3 × E1 ;

(3) If B is hyperbolic then S is geometric if and only if the action α has

finite image. The geometry is then H2×E2 if eQ(π1(S)) = 0 and S̃L× E1

otherwise.

(4) If B is hyperbolic then S has a complex structure if and only if B is
orientable and S is geometric.

Conversely, excepting only two flat 4-manifolds, any orientable 4-manifold ad-
mitting one of these geometries is Seifert fibred.
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If the base is aspherical S is determined up to diffeomorphism by π1(S); if
moreover the base is hyperbolic or S is geometric of type Nil4 or Sol3 × E1

there is a fibre-preserving diffeomorphism.

We have corrected a minor oversight in [Ue90]; there are in fact two orientable
flat 4-manifolds which are not Seifert fibred. If the base is bad or spherical then
S may admit many inequivalent Seifert fibrations. (See also §10 of Chapter 8
and §2 of Chapter 9 for further discussion of the flat base and hyperbolic base
cases, respectively.)

In general, 4-manifolds which are Seifert fibred over aspherical bases are deter-
mined up to diffeomorphism by their fundamental groups. This was first shown
by Zieschang for the cases with base a hyperbolic orbifold with no reflector
curves and general fibre a torus [Zi69], and the full result is due to Vogt [Vo77].
Kemp has shown that a nonorientable aspherical Seifert fibred 4-manifold is ge-
ometric if and only if its orientable double covering space is geometric [Ke]. (See
also Theorems 9.4 and 9.5). Closed 4-manifolds which fibre over S1 with fibre a
small Seifert fibred 3-manifold are also determined by their fundamental groups
[Oh90]. This class includes many nonorientable Seifert fibred 4-manifolds over
bad, spherical or flat bases, but not all.

The homotopy type of a S2×E2 -manifold is determined up to finite ambiguity by
its fundamental group (which is virtually Z2 ), Euler characteristic (which is 0)
and Stiefel-Whitney classes. There are just nine possible fundamental groups.
Six of these have infinite abelianization, and the above invariants determine
the homotopy type in these cases. (See Chapter 10.) The homotopy type of a
S3×E1 -manifold is determined by its fundamental group (which has two ends),
Euler characteristic (which is 0), orientation character w1 and first k -invariant
in H4(π;π3). (See Chapter 11.)

Let S be a Seifert fibred 4-manifold with base an flat orbifold, and let π =
π1(S). Then χ(S) = 0 and π is solvable of Hirsch length 4, and so S is
homeomorphic to an infrasolvmanifold, by Theorem 6.11 and [AJ76]. Every
such group π is the fundamental group of some Seifert fibred geometric 4-
manifold, and so S is in fact diffeomorphic to an infrasolvmanifold [Vo77]. (See
Chapter 8.§9 and Theorem 8.10 below.) The general fibre must be a torus if
the geometry is Nil4 or Sol3 × E1 , since Out(π1(Kb)) is finite.

As H2 × E2 - and S̃L× E1 -manifolds are aspherical, they are determined up to
homotopy equivalence by their fundamental groups. (See Chapter 9.) Theorem
7.3 specializes to give the following characterization of the fundamental groups
of Seifert fibred 4-manifolds over hyperbolic bases.
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Theorem 7.4 A group π is the fundamental group of a closed 4-manifold
which is Seifert fibred over a hyperbolic 2-orbifold if and only if it is torsion-
free,

√
π ∼= Z2 , π/

√
π is virtually a PD2 -group and the maximal finite normal

subgroup of π/
√
π has order at most 2.

If
√
π is central (ζπ ∼= Z2 ) the corresponding Seifert fibred manifold M(π)

admits an effective torus action with finite isotropy subgroups.

7.8 Complex surfaces and related structures

In this section we shall summarize what we need from [BHPV, Ue90, Ue91,
Wl86] and [GS], and we refer to these sources for more details.

A complex surface shall mean a compact connected complex analytic manifold
S of complex dimension 2. It is Kähler (and thus diffeomorphic to a projective
algebraic surface) if and only if β1(S) is even. Since the Kähler condition is
local, all finite covering spaces of such a surface must also have β1 even. If S
has a complex submanifold L ∼= CP 1 with self-intersection −1 then L may be
blown down: there is a complex surface S1 and a holomorphic map p : S → S1

such that p(L) is a point and p restricts to a biholomorphic isomorphism from
S \ L to S1 \ p(L). In particular, S is diffeomorphic to S1]CP 2 . If there is no
such embedded projective line L the surface is minimal. Every surface has a
minimal model, and the model is unique if it is neither rational nor ruled.

For many of the 4-dimensional geometries (X,G) the identity component Go of
the isometry group preserves a natural complex structure on X , and so if π is a
discrete subgroup of Go which acts freely on X the quotient π\X is a complex
surface. This is clear for the geometries CP2 , S2×S2 , S2×E2 , S2×H2 , H2×E2 ,
H2 ×H2 and H2(C). (The corresponding model spaces may be identified with
CP 2 , CP 1 ×CP 1 , CP 1 ×C , CP 1 ×H2 , H2 ×C , H2 ×H2 and the unit ball
in C2 , respectively, where H2 is identified with the upper half plane.) It is also

true for Nil3 × E1 , Sol40 , Sol41 , S̃L × E1 and F4 . In addition, the subgroups
R4×̃U(2) of E(4) and U(2)×R of Isom(S3×E1) act biholomorphically on C2

and C2\{0}, respectively, and so some E4 - and S3×E1 -manifolds have complex
structures. No other geometry admits a compatible complex structure. Since
none of the model spaces contain an embedded S2 with self-intersection −1,
any complex surface which admits a compatible geometry must be minimal.

Complex surfaces may be coarsely classified by their Kodaira dimension κ,
which may be −∞, 0, 1 or 2. Within this classification, minimal surfaces may
be further classified into a number of families. We have indicated in parentheses
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where the geometric complex surfaces appear in this classification. (The dashes
signify families which include nongeometric surfaces.)

κ = −∞: Hopf surfaces (S3 × E1 , –); Inoue surfaces (Sol40 , Sol41 ); (other)
surfaces of class VII with β2 > 0 (–); rational surfaces (CP2 , S2 × S2 ); ruled
surfaces (S2 × E2 , S2 ×H2 , –).

κ = 0: complex tori (E4 ); hyperelliptic surfaces (E4 ); Enriques surfaces (–);
K3 surfaces (–); Kodaira surfaces (Nil3 × E1 ).

κ = 1: minimal properly elliptic surfaces (S̃L× E1 , H2 × E2 ).

κ = 2: minimal (algebraic) surfaces of general type (H2 ×H2 , H2(C), –).

A Hopf surface is a complex surface whose universal covering space is home-
omorphic to S3 × R ∼= C2 \ {0}. Some Hopf surfaces admit no compatible
geometry, and there are S3 × E1 -manifolds that admit no complex structure.
The Inoue surfaces are exactly the complex surfaces admitting one of the ge-
ometries Sol40 or Sol41 . Surfaces of class VII have κ = −∞ and β1 = 1, and are
not yet fully understood. (A theorem of Bogomolov asserts that every minimal
complex surface of class VII with β2(S) = 0 is either a Hopf surface or an Inoue
surface. See [Tl94] for a complete proof.)

A rational surface is a complex surface birationally equivalent to CP 2 . Minimal
rational surfaces are diffeomorphic to CP 2 or to CP 1×CP 1 . A ruled surface is
a complex surface which is holomorphically fibred over a smooth complex curve
(closed orientable 2-manifold) of genus g > 0 with fibre CP 1 . Rational and
ruled surfaces may be characterized as the complex surfaces S with κ(S) = −∞
and β1(S) even. Not all ruled surfaces admit geometries compatible with their
complex structures.

A complex torus is a quotient of C2 by a lattice, and a hyperelliptic surface is
one properly covered by a complex torus. If S is a complex surface which is
homeomorphic to a flat 4-manifold then S is a complex torus or is hyperelliptic,
since it is finitely covered by a complex torus. Since S is orientable and β1(S)
is even π = π1(S) must be one of the eight flat 4-manifold groups of orientable
type and with π ∼= Z4 or I(π) ∼= Z2 . In each case the holonomy group is
cyclic, and so is conjugate (in GL+(4,R)) to a subgroup of GL(2,C). (See
Chapter 8.) Thus all of these groups may be realized by complex surfaces. A
Kodaira surface is a surface with β1 odd and which has a finite cover which
fibres holomorphically over an elliptic curve with fibres of genus 1.

An elliptic surface S is a complex surface which admits a holomorphic map p
to a complex curve such that the generic fibres of p are diffeomorphic to the
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torus T . If the elliptic surface S has no singular fibres it is Seifert fibred, and
it then has a geometric structure if and only if the base is a good orbifold.
An orientable Seifert fibred 4-manifold over a hyperbolic base has a geometric
structure if and only if it is an elliptic surface without singular fibres [Ue90].
The elliptic surfaces S with κ(S) = −∞ and β1(S) odd are the geometric
Hopf surfaces. The elliptic surfaces S with κ(S) = −∞ and β1(S) even are
the cartesian products of elliptic curves with CP 1 .

All rational, ruled and hyperelliptic surfaces are projective algebraic surfaces, as
are all surfaces with κ = 2. Complex tori and surfaces with geometry H2 × E2

are diffeomorphic to projective algebraic surfaces. Hopf, Inoue and Kodaira
surfaces and surfaces with geometry S̃L × E1 all have β1 odd, and so are not
Kähler, let alone projective algebraic.

An almost complex structure on a smooth 2n-manifold M is a reduction of
the structure group of its tangent bundle to GL(n,C) < GL+(2n,R). Such a
structure determines an orientation on M . If M is a closed oriented 4-manifold
and c ∈ H2(M ;Z) then there is an almost complex structure on M with first
Chern class c and inducing the given orientation if and only if c ≡ w2(M) mod
(2) and c2 ∩ [M ] = 3σ(M) + 2χ(M), by a theorem of Wu. (See the Appendix
to Chapter I of [GS] for a recent account.)

A symplectic structure on a closed smooth manifold M is a closed nondegenerate
2-form ω . Nondegenerate means that for all x ∈ M and all u ∈ TxM there is
a v ∈ TxM such that ω(u, v) 6= 0. Manifolds admitting symplectic structures
are even-dimensional and orientable. A condition equivalent to nondegeneracy
is that the n-fold wedge ω∧n is nowhere 0, where 2n is the dimension of M .
The nth cup power of the corresponding cohomology class [ω] is then a nonzero
element of H2n(M ;R). Any two of a riemannian metric, a symplectic structure
and an almost complex structure together determine a third, if the given two
are compatible. In dimension 4, this is essentially equivalent to the fact that
SO(4)∩Sp(4) = SO(4)∩GL(2,C) = Sp(4)∩GL(2,C) = U(2), as subgroups of
GL(4,R). (See [GS] for a discussion of relations between these structures.) In
particular, Kähler surfaces have natural symplectic structures, and symplectic
4-manifolds admit compatible almost complex tangential structures. However
orientable Sol3 × E1 -manifolds which fibre over T are symplectic [Ge92] but
have no complex structure (by the classification of surfaces) and Hopf surfaces
are complex manifolds with no symplectic structure (since β2 = 0).
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Chapter 8

Solvable Lie geometries

The main result of this chapter is the characterization of 4-dimensional infra-
solvmanifolds up to homeomorphism, given in §1. All such manifolds are either
mapping tori of self homeomorphisms of 3-dimensional infrasolvmanifolds or
are unions of two twisted I -bundles over such 3-manifolds. In the rest of the
chapter we consider each of the possible 4-dimensional geometries of solvable
Lie type.

In §2 we determine the automorphism groups of the flat 3-manifold groups,
while in §3 and §4 we determine ab initio the 74 flat 4-manifold groups. There
have been several independent computations of these groups; the consensus
reported on page 126 of [Wo] is that there are 27 orientable groups and 48
nonorientable groups. However the tables of 4-dimensional crystallographic
groups in [B-Z] list only 74 torsion-free groups, of which 27 are orientable and
47 are nonorientable. As these computer-generated tables give little insight into
how these groups arise, and as the earlier computations were never published
in detail, we shall give a direct and elementary computation, motivated by
Lemma 3.14. Our conclusions as to the numbers of groups with abelianization
of given rank, isomorphism type of holonomy group and orientation type agree
with those of [B-Z] and [LRT13]. (We refer to [LRT13] for details of some gaps
relating to the cases with β1 = 0 in earlier versions of this book.)

There are infinitely many examples for each of the other geometries. In §5
we show how these geometries may be distinguished, in terms of the group
theoretic properties of their lattices. In §6, §7 and §8 we consider mapping
tori of self homeomorphisms of E3 -, Nil3 - and Sol3 -manifolds, respectively. In
§9 we show directly that “most” groups allowed by Theorem 8.1 are realized
geometrically and outline classifications for them, while in §10 we show that
“most” 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups.

8.1 The characterization

In this section we show that 4-dimensional infrasolvmanifolds may be charac-
terized up to homeomorphism in terms of the fundamental group and Euler
characteristic.
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Theorem 8.1 Let M be a closed 4-manifold with fundamental group π and
such that χ(M) = 0. The following conditions are equivalent:

(1) π is torsion-free and virtually poly-Z and h(π) = 4;

(2) h(
√
π) ≥ 3;

(3) π has an elementary amenable normal subgroup ρ with h(ρ) ≥ 3, and
H2(π;Z[π]) = 0; and

(4) π is restrained, every finitely generated subgroup of π is FP3 and π
maps onto a virtually poly-Z group Q with h(Q) ≥ 3.

Moreover if these conditions hold M is aspherical, and is determined up to
homeomorphism by π , and every automorphism of π may be realized by a self
homeomorphism of M .

Proof If (1) holds then h(
√
π) ≥ 3, by Theorem 1.6, and so (2) holds. This

in turn implies (3), by Theorem 1.17. If (3) holds then π has one end, by

Lemma 1.15, and β
(2)
1 (π) = 0, by Corollary 2.3.1. Hence M is aspherical,

by Corollary 3.5.2. Hence π is a PD4 -group and 3 ≤ h(ρ) ≤ c.d.ρ ≤ 4. In
particular, ρ is virtually solvable, by Theorem 1.11. If c.d.ρ = 4 then [π : ρ]
is finite, by Strebel’s Theorem, and so π is virtually solvable also. If c.d.ρ = 3
then c.d.ρ = h(ρ) and so ρ is a duality group and is FP [Kr86]. Therefore
Hq(ρ;Q[π]) ∼= Hq(ρ;Q[ρ]) ⊗ Q[π/ρ] and is 0 unless q = 3. It then follows
from the LHSSS for π as an extension of π/ρ by ρ (with coefficients Q[π]) that
H4(π;Q[π]) ∼= H1(π/ρ;Q[π/ρ])⊗H3(ρ;Q[ρ]). Therefore H1(π/ρ;Q[π/ρ]) ∼= Q,
so π/ρ has two ends and we again find that π is virtually solvable. In all cases
π is torsion-free and virtually poly-Z , by Theorem 9.23 of [Bi], and h(π) = 4.

If (4) holds then π is an ascending HNN extension π ∼= B∗φ with base FP3

and so M is aspherical, by Theorem 3.16. As in Theorem 2.13 we may deduce
from [BG85] that B must be a PD3 -group and φ an isomorphism, and hence
B and π are virtually poly-Z . Conversely (1) clearly implies (4).

The final assertions follow from Theorem 2.16 of [FJ], as in Theorem 6.11
above.

Does the hypothesis h(ρ) ≥ 3 in (3) imply H2(π;Z[π]) = 0? The examples
F × S1 × S1 where F = S2 or is a closed hyperbolic surface show that the
condition that h(ρ) > 2 is necessary. (See also §1 of Chapter 9.)

Corollary 8.1.1 The 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if the equivalent conditions of Theorem 8.1 hold.
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Proof If M is homeomorphic to an infrasolvmanifold then χ(M) = 0, π is
torsion-free and virtually poly-Z and h(π) = 4. (See Chapter 7.) Conversely, if
these conditions hold then π is the fundamental group of an infrasolvmanifold,
by [AJ76].

It is easy to see that all such groups are realizable by closed smooth 4-manifolds
with Euler characteristic 0.

Theorem 8.2 If π is torsion-free and virtually poly-Z of Hirsch length 4 then
it is the fundamental group of a closed smooth 4-manifold M which is either a
mapping torus of a self homeomorphism of a closed 3-dimensional infrasolvman-
ifold or is the union of two twisted I -bundles over such a 3-manifold. Moreover,
the 4-manifold M is determined up to homeomorphism by the group.

Proof The Eilenberg-Mac Lane space K(π, 1) is a PD4 -complex with Euler
characteristic 0. By Lemma 3.14, either there is an epimorphism φ : π → Z , in
which case π is a semidirect product GoθZ where G = Ker(φ), or π ∼= G1∗GG2

where [G1 : G] = [G2 : G] = 2. The subgroups G, G1 and G2 are torsion-
free and virtually poly-Z . Since in each case π/G has Hirsch length 1 these
subgroups have Hirsch length 3 and so are fundamental groups of closed 3-
dimensional infrasolvmanifolds. The existence of such a manifold now follows
by standard 3-manifold topology, while its uniqueness up to homeomorphism
was proven in Theorem 6.11.

The first part of this theorem may be stated and proven in purely algebraic
terms, since torsion-free virtually poly-Z groups are Poincaré duality groups.
(See Chapter III of [Bi].) If π is such a group then either it is virtually nilpotent
or
√
π ∼= Z3 or Γq for some q , by Theorems 1.5 and 1.6. In the following sections

we shall consider how such groups may be realized geometrically. The geometry
is largely determined by

√
π . We shall consider first the virtually abelian cases.

8.2 Flat 3-manifold groups and their automorphisms

The flat n-manifold groups for n ≤ 2 are Z , Z2 and K = Zo−1Z , the Klein
bottle group. There are six orientable and four nonorientable flat 3-manifold
groups. The first of the orientable flat 3-manifold groups G1 - G6 is G1 = Z3 .
The next four have I(Gi) ∼= Z2 and are semidirect products Z2 oT Z where
T = −I ,

(
0 −1
1 −1

)
,
(

0 −1
1 0

)
or
(

0 −1
1 1

)
, respectively, is an element of finite order

in SL(2,Z). These groups all have cyclic holonomy groups, of orders 2, 3, 4
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and 6, respectively. The group G6 is the group of the Hantzsche-Wendt flat
3-manifold, and has a presentation

〈x, y | xy2x−1 = y−2, yx2y−1 = x−2〉.

Its maximal abelian normal subgroup is generated by x2, y2 and (xy)2 and
its holonomy group is the diagonal subgroup of SL(3,Z), which is isomorphic
to (Z/2Z)2 . (This group is the generalized free product of two copies of K ,
amalgamated over their maximal abelian subgroups, and so maps onto D .)

The nonorientable flat 3-manifold groups B1 - B4 are semidirect products
K oθ Z , corresponding to the classes in Out(K) ∼= (Z/2Z)2 . In terms of
the presentation 〈x, y | xyx−1 = y−1〉 for K these classes are represented by
the automorphisms θ which fix y and send x to x, xy, x−1 and x−1y , respec-
tively. The groups B1 and B2 are also semidirect products Z2 oT Z , where
T =

(
1 0
0 −1

)
or ( 0 1

1 0 ) has determinant −1 and T 2 = I . They have holonomy
groups of order 2, while the holonomy groups of B3 and B4 are isomorphic to
(Z/2Z)2 .

All the flat 3-manifold groups either map onto Z or map onto D . The methods
of this chapter may be easily adapted to find all such groups. Assuming these
are all known we may use Sylow theory and some calculation to show that there
are no others. We sketch here such an argument. Suppose that π is a flat 3-
manifold group with finite abelianization. Then 0 = χ(π) = 1+β2(π)−β3(π), so
β3(π) 6= 0 and π must be orientable. Hence the holonomy group F = π/T (π) is
a subgroup of SL(3,Z). Let f be a nontrivial element of F . Then f has order
2, 3, 4 or 6, and has a +1-eigenspace of rank 1, since it is orientation preserving.
This eigenspace is invariant under the action of the normalizer NF (〈f〉), and
the induced action of NF (〈f〉) on the quotient space is faithful. Thus NF (〈f〉)
is isomorphic to a subgroup of GL(2,Z) and so is cyclic or dihedral of order
dividing 24. This estimate applies to the Sylow subgroups of F , since p-groups
have nontrivial centres, and so the order of F divides 24. If F has a nontrivial
cyclic normal subgroup then π has a normal subgroup isomorphic to Z2 and
hence maps onto Z or D . Otherwise F has a nontrivial Sylow 3-subgroup C
which is not normal in F . The number of Sylow 3-subgroups is congruent to
1 mod (3) and divides the order of F . The action of F by conjugation on
the set of such subgroups is transitive. It must also be faithful. (For otherwise
∩g∈F gNF (C)g−1 6= 1. As NF (C) is cyclic or dihedral it would follow that F
must have a nontrivial cyclic normal subgroup, contrary to hypothesis.) Hence
F must be A4 or S4 , and so contains V ∼= (Z/2Z)2 as a normal subgroup.
Suppose that G is a flat 3-manifold group with holonomy A4 . It is easily seen
that G6 is the only flat 3-manifold group with holonomy (Z/2Z)2 , and so we
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may assume that the images in SL(3,Z) of the elements of order 2 are diagonal
matrices. It then follows easily that the images of the elements of order 3
are (signed) permutation matrices. (Solve the linear equations wu = vw and
wv = uvw in SL(3,Z), where u = diag[1,−1,−1] and v = diag[−1,−1, 1].)
Hence G has a presentation of the form
〈Z3, u, v, w | ux = xu, yuy = u, zuz = u, xvx = v, yvy = v, zv = vz, wx = zw,

wy = xw,wz = yw,wu = vw, u2 = x,w3 = xaybzc, (uw)3 = xpyqzr〉.

It may be checked that no such group is torsion-free. Therefore neither A4 nor
S4 can be the holonomy group of a flat 3-manifold.

We shall now determine the (outer) automorphism groups of each of the flat
3-manifold groups. Clearly Out(G1) = Aut(G1) = GL(3,Z). If 2 ≤ i ≤ 5 let
t ∈ Gi represent a generator of the quotient Gi/I(Gi) ∼= Z . The automorphisms
of Gi must preserve the characteristic subgroup I(Gi) and so may be identified
with triples (v,A, ε) ∈ Z2 × GL(2,Z) × {±1} such that ATA−1 = T ε and
which act via A on I(Gi) = Z2 and send t to tεv . Such an automorphism is
orientation preserving if and only if ε = det(A). The multiplication is given
by (v,A, ε)(w,B, η) = (Ξv + Aw,AB, εη), where Ξ = I if η = 1 and Ξ =
−T ε if η = −1. The inner automorphisms are generated by (0, T, 1) and
((T − I)Z2, I, 1).

In particular, Aut(G2) ∼= (Z2oαGL(2,Z))×{±1}, where α is the natural action
of GL(2,Z) on Z2 , for Ξ is always I if T = −I . The involution (0, I,−1) is
central in Aut(G2), and is orientation reversing. Hence Out(G2) is isomorphic
to ((Z/2Z)2 oPα PGL(2,Z)) × (Z/2Z), where Pα is the induced action of
PGL(2,Z) on (Z/2Z)2 .

If n = 3, 4 or 5 the normal subgroup I(Gi) may be viewed as a module over the
ring R = Z[t]/(φ(t)), where φ(t) = t2+t+1, t2+1 or t2−t+1, respectively. As
these rings are principal ideal domains and I(Gi) is torsion-free of rank 2 as an
abelian group, in each case it is free of rank 1 as an R-module. Thus matrices
A such that AT = TA correspond to units of R. Hence automorphisms of
Gi which induce the identity on Gi/I(Gi) have the form (v,±Tm, 1), for some
m ∈ Z and v ∈ Z2 . There is also an involution (0, ( 0 1

1 0 ) ,−1) which sends
t to t−1 . In all cases ε = det(A). It follows that Out(G3) ∼= S3 × (Z/2Z),
Out(G4) ∼= (Z/2Z)2 and Out(G5) = Z/2Z . All these automorphisms are
orientation preserving.

The subgroup A of G6 generated by {x2, y2, (xy)2} is the maximal abelian
normal subgroup of G6 , and G6/A ∼= (Z/2Z)2 . Let a, b, c, d, e, f , i and
j be the automorphisms of G6 which send x to x−1, x, x, x, y2x, (xy)2x, y, xy
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and y to y, y−1, (xy)2y, x2y, y, (xy)2y, x, x, respectively. The natural homo-
morphism from Aut(G6) to Aut(G6/A) ∼= GL(2,F2) is onto, as the images of
i and j generate GL(2,F2), and its kernel E is generated by {a, b, c, d, e, f}.
(For an automorphism which induces the identity on G6/A must send x to
x2py2q(xy)2rx, and y to x2sy2t(xy)2uy . The images of x2 , y2 and (xy)2 are
then x4p+2 , y4t+2 and (xy)4(r−u)+2 , which generate A if and only if p = 0
or −1, t = 0 or −1 and r = u − 1 or u. Composing such an automorphism
appropriately with a, b and c we may acheive p = t = 0 and r = u. Then
by composing with powers of d, e and f we may obtain the identity automor-
phism.) The inner automorphisms are generated by bcd (conjugation by x)
and acef (conjugation by y). Then Out(G6) has a presentation

〈a, b, c, e, i, j | a2 = b2 = c2 = e2 = i2 = j6 = 1, a, b, c, e commute, iai = b,

ici = ae, jaj−1 = c, jbj−1 = abc, jcj−1 = be, j3 = abce, (ji)2 = bc〉.

The generators a, b, c, and j represent orientation reversing automorphisms.
(Note that jej−1 = bc follows from the other relations. See [Zn90] for an
alternative description.)

The group B1 = Z×K has a presentation

〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉.

An automorphism of B1 must preserve the centre ζB1 (which has basis t, x2 )
and I(B1) (which is generated by y). Thus the automorphisms of B1 may be
identified with triples (A,m, ε) ∈ Υ2 × Z× {±1}, where Υ2 is the subgroup of
GL(2,Z) consisting of matrices congruent mod (2) to upper triangular matrices.
Such an automorphism sends t to taxb , x to tcxdym and y to yε , and induces
multiplication by A on B1/I(B1) ∼= Z2 . Composition of automorphisms is
given by (A,m, ε)(B,n, η) = (AB,m + εn, εη). The inner automorphisms are
generated by (I, 1,−1) and (I, 2, 1), and so Out(B1) ∼= Υ2 × (Z/2Z).

The group B2 has a presentation

〈t, x, y | txt−1 = xy, ty = yt, xyx−1 = y−1〉.

Automorphisms of B2 may be identified with triples (A, (m,n), ε), where A ∈
Υ2 , m,n ∈ Z , ε = ±1 and m = (A11 − ε)/2. Such an automorphism sends
t to taxbym , x to tcxdyn and y to yε , and induces multiplication by A on
B2/I(B2) ∼= Z2 . The automorphisms which induce the identity on B2/I(B2)
are all inner, and so Out(B2) ∼= Υ2 .

The group B3 has a presentation

〈t, x, y | txt−1 = x−1, ty = yt, xyx−1 = y−1〉.
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An automorphism of B3 must preserve I(B3) ∼= K (which is generated by
x, y) and I(I(B3)) (which is generated by y). It follows easily that Out(B3) ∼=
(Z/2Z)3 , and is generated by the classes of the automorphisms which fix y and
send t to t−1, t, tx2 and x to x, xy, x, respectively.

A similar argument using the presentation

〈t, x, y | txt−1 = x−1y, ty = yt, xyx−1 = y−1〉

for B4 shows that Out(B4) ∼= (Z/2Z)3 , and is generated by the classes of the
automorphisms which fix y and send t to t−1y−1, t, tx2 and x to x, x−1, x,
respectively.

8.3 Flat 4-manifold groups with infinite abelianization

We shall organize our determination of the flat 4-manifold groups π in terms
of I(π). Let π be a flat 4-manifold group, β = β1(π) and h = h(I(π)).
Then π/I(π) ∼= Zβ and h + β = 4. If I(π) is abelian then Cπ(I(π)) is a
nilpotent normal subgroup of π and so is a subgroup of the Hirsch-Plotkin
radical

√
π , which is here the maximal abelian normal subgroup T (π). Hence

Cπ(I(π)) = T (π) and the holonomy group is isomorphic to π/Cπ(I(π)).

h = 0 In this case I(π) = 1, so π ∼= Z4 and is orientable.

h = 1 In this case I(π) ∼= Z and π is nonabelian, so π/Cπ(I(π)) = Z/2Z .
Hence π has a presentation of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = z−1, x, y, z commute〉,

for some integers a, b. On replacing x by xy or interchanging x and y if
necessary we may assume that a is even. On then replacing x by xza/2 and y
by yz[b/2] we may assume that a = 0 and b = 0 or 1. Thus π is a semidirect
product Z3 oT Z , where the normal subgroup Z3 is generated by the images

of x, y and z , and the action of t is determined by a matrix T =
(

I2 0
(0,b) −1

)
in

GL(3,Z). Hence π ∼= Z × B1 = Z2 ×K or Z × B2 . Both of these groups are
nonorientable.

h = 2 If I(π) ∼= Z2 and π/Cπ(I(π)) is cyclic then we may again assume
that π is a semidirect product Z3 oT Z , where T =

(
1 0
µ U

)
, with µ = ( ab ) and

U ∈ GL(2,Z) is of order 2, 3, 4 or 6 and does not have 1 as an eigenvalue. Thus
U = −I2 ,

(
0 −1
1 −1

)
,
(

0 −1
1 0

)
or
(

0 −1
1 1

)
. Conjugating T by

(
1 0
ν I2

)
replaces µ by

µ+ (I2 − U)ν . In each case the choice a = b = 0 leads to a group of the form
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π ∼= Z × G, where G is an orientable flat 3-manifold group with β1(G) = 1.
For each of the first three of these matrices there is one other possible group.
However if U =

(
0 −1
1 1

)
then I2 − U is invertible and so Z × G5 is the only

possibility. All seven of these groups are orientable.

If I(π) ∼= Z2 and π/Cπ(I(π)) is not cyclic then π/Cπ(I(π)) ∼= (Z/2Z)2 . There
are two conjugacy classes of embeddings of (Z/2Z)2 in GL(2,Z). One has
image the subgroup of diagonal matrices. The corresponding groups π have
presentations of the form

〈t, u, x, y | tx = xt, tyt−1 = y−1, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,

for some integers m, n. On replacing t by tx−[m/2]y[n/2] if necessary we may
assume that 0 ≤ m,n ≤ 1. On then replacing t by tu and interchanging x and
y if necessary we may assume that m ≤ n. The only infinite cyclic subgroups of
I(π) which are normal in π are the subgroups 〈x〉 and 〈y〉. On comparing the
quotients of these groups π by such subgroups we see that the three possibilities
are distinct. The other embedding of (Z/2Z)2 in GL(2,Z) has image generated
by −I and ( 0 1

1 0 ). The corresponding groups π have presentations of the form

〈t, u, x, y | txt−1 = y, tyt−1 = x, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,

for some integers m, n. On replacing t by tx[(m−n)/2] and u by ux−m if
necessary we may assume that m = 0 and n = 0 or 1. Thus there two such
groups. All five of these groups are nonorientable.

Otherwise, I(π) ∼= K , I(I(π)) ∼= Z and G = π/I(I(π)) is a flat 3-manifold
group with β1(G) = 2, but with I(G) = I(π)/I(I(π)) not contained in G′

(since it acts nontrivially on I(I(π))). Therefore G ∼= B1 = Z ×K , and so has
a presentation

〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉.

If w : G → Aut(Z) is a homomorphism which restricts nontrivially to I(G)
then we may assume (up to isomorphism of G) that w(x) = 1 and w(y) = −1.
Groups π which are extensions of Z × K by Z corresponding to the action
with w(t) = w (= ±1) have presentations of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = zw, xyx−1 = y−1zc, xz = zx,

yzy−1 = z−1〉,

for some integers a, b and c. Any group with such a presentation is easily seen
to be an extension of Z×K by a cyclic normal subgroup. However conjugating
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the fourth relation leads to the equation

txt−1tyt−1(txt−1)−1 = txyx−1t−1 = ty−1zct−1 = tyt−1(tzt−1)c

which simplifies to xzayzbz−ax−1 = (yzb)−1zwc and hence to zc−2a = zwc .
Hence this cyclic normal subgroup is finite unless 2a = (1− w)c.

Suppose first that w = 1. Then z2a = 1 and so we must have a = 0. On
replacing t by tz[b/2] and x by xz[c/2] , if necessary, we may assume that 0 ≤
b, c ≤ 1. If b = 0 then π ∼= Z × B3 or Z × B4 . Otherwise, after further
replacing x by txz , if necessary, we may assume that b = 1 and c = 0. The
three possibilities may be distinguished by their abelianizations, and so there
are three such groups. In each case the subgroup generated by {t, x2, y2, z} is
maximal abelian, and the holonomy group is isomorphic to (Z/2Z)2 .

If instead w = −1 then z2(c−a) = 1 and so we must have c = a. On replacing
x by xz[a/2] and y by yz[b/2] , if necessary, we may assume that 0 ≤ a, b ≤ 1. If
b = 1 then after replacing x by txy , if necessary, we may assume that a = 0.
If a = b = 0 then π/π′ ∼= Z2 ⊕ (Z/2Z)2 . The two other possibilities each have
abelianization Z2 ⊕ (Z/2Z), but one has centre of rank 2 and the other has
centre of rank 1. Thus there are three such groups. The subgroup generated
by {ty, x2, y2, z} is maximal abelian, and the holonomy group is isomorphic to
(Z/2Z)2 . All of these groups π with I(π) ∼= K are nonorientable.

h = 3 In this case π is uniquely a semidirect product π ∼= I(π) oθ Z , where
I(π) is a flat 3-manifold group and θ is an automorphism of I(π) such that the
induced automorphism of I(π)/I(I(π)) has no eigenvalue 1, and whose image in
Out(I(π)) has finite order. (The conjugacy class of the image of θ in Out(I(π))
is determined up to inversion by π .)

Since T (I(π)) is the maximal abelian normal subgroup of I(π) it is normal in
π . It follows easily that T (π) ∩ I(π) = T (I(π)). Hence the holonomy group of
I(π) is isomorphic to a normal subgroup of the holonomy subgroup of π , with
quotient cyclic of order dividing the order of θ in Out(I(π)). (The order of the
quotient can be strictly smaller.)

If I(π) ∼= Z3 then Out(I(π)) ∼= GL(3,Z). If T ∈ GL(3,Z) has finite order n
and β1(Z3 oT Z) = 1 then either T = −I or n = 4 or 6 and the characteristic
polynomial of T is (t+ 1)φ(t) with φ(t) = t2 + 1, t2 + t+ 1 or t2− t+ 1. In the
latter cases T is conjugate to a matrix of the form

(−1 µ
0 A

)
, where A =

(
0 −1
1 0

)
,(

0 −1
1 −1

)
or
(

0 −1
1 1

)
, respectively. The row vector µ = (m1,m2) is well defined

mod Z2(A+ I). Thus there are seven such conjugacy classes. All but one pair
(corresponding to

(
0 −1
1 1

)
and µ /∈ Z2(A+ I)) are self-inverse, and so there are
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six such groups. The holonomy group is cyclic, of order equal to the order of T .
As such matrices all have determinant −1 all of these groups are nonorientable.

If I(π) ∼= Gi for 2 ≤ i ≤ 5 the automorphism θ = (v,A, ε) must have ε = −1,
for otherwise β1(π) = 2. We have Out(G2) ∼= ((Z/2Z)2oPGL(2,Z))×(Z/2Z).
The five conjugacy classes of finite order in PGL(2,Z) are represented by the
matrices I ,

(
0 −1
1 0

)
, ( 0 1

1 0 ),
(

1 0
0 −1

)
and

(
0 1
−1 1

)
. The numbers of conjugacy

classes in Out(G2) with ε = −1 corresponding to these matrices are two, two,
two, three and one, respectively. All of these conjugacy classes are self-inverse.
Of these, only the two conjugacy classes corresponding to ( 0 1

1 0 ) and the three
conjugacy classes corresponding to

(
1 0
0 −1

)
give rise to orientable groups. The

holonomy groups are all isomorphic to (Z/2Z)2 , except when A =
(

0 −1
1 0

)
or(

0 1
−1 1

)
, when they are isomorphic to Z/4Z or Z/6Z ⊕ Z/2Z , respectively.

There are five orientable groups and five nonorientable groups.

As Out(G3) ∼= S3 × (Z/2Z), Out(G4) ∼= (Z/2Z)2 and Out(G5) = Z/2Z , there
are three, two and one conjugacy classes corresponding to automorphisms with
ε = −1, respectively, and all these conjugacy classes are closed under inversion.
The holonomy groups are dihedral of order 6, 8 and 12, respectively. The six
such groups are all orientable.

The centre of Out(G6) is generated by the image of ab, and the image of ce
in the quotient Out(G6)/〈ab〉 generates a central Z/2Z direct factor. The
quotient Out(G6)/〈ab, ce〉 is isomorphic to the semidirect product of a normal
subgroup (Z/2Z)2 (generated by the images of a and c) with S3 (generated
by the images of ia and j ), and has five conjugacy classes, represented by
1, a, i, j and ci. Hence Out(G6)/〈ab〉 has ten conjugacy classes, represented by
1, a, ce, e = iacei, i, cei, j, cej, ci and cice = ei. Thus Out(G6) itself has between
10 and 20 conjugacy classes. In fact Out(G6) has 14 conjugacy classes, of which
those represented by 1, ab, bce, e, i, cej , abcej and ei are orientation preserving,
and those represented by a, ce, cei, j, abj and ci are orientation reversing. All
of these classes are self inverse, except for j and abj , which are mutually
inverse (j−1 = ai(abj)ia). The holonomy groups corresponding to the classes
1, ab, bce and e are isomorphic to (Z/2Z)2 , those corresponding to a and ce
are isomorphic to (Z/2Z)3 , those corresponding to i, ei, cei and ci are dihedral
of order 8, those corresponding to cej and abcej are isomorphic to A4 and the
one corresponding to j is isomorphic to (Z/2Z)2oZ/6Z ∼= A4 × Z/2Z . There
are eight orientable groups and five nonorientable groups.

All the remaining cases give rise to nonorientable groups.

I(π) ∼= Z×K . If a matrix A in Υ2 has finite order then as its trace is even the
order must be 1, 2 or 4. If moreover A does not have 1 as an eigenvalue then
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either A = −I or A has order 4 and is conjugate (in Υ2 ) to
(−1 1
−2 1

)
. Each of the

four corresponding conjugacy classes in Υ2×Z/2Z is self inverse, and so there
are four such groups. The holonomy groups are isomorphic to Z/nZ ⊕ Z/2Z ,
where n = 2 or 4 is the order of A.

I(π) ∼= B2 . As Out(B2) ∼= Υ2 there are two relevant conjugacy classes
and hence two such groups. The holonomy groups are again isomorphic to
Z/nZ ⊕ Z/2Z , where n = 2 or 4 is the order of A.

I(π) ∼= B3 or B4 . In each case Out(H) ∼= (Z/2Z)3 , and there are four outer
automorphism classes determining semidirect products with β = 1. (Note that
here conjugacy classes are singletons and are self-inverse.) The holonomy groups
are all isomorphic to (Z/2Z)3 .

8.4 Flat 4-manifold groups with finite abelianization

There remains the case when π/π′ is finite (equivalently, h = 4). By Lemma
3.14 if π is such a flat 4-manifold group it is nonorientable and is isomorphic
to a generalized free product J ∗φ J̃ , where φ is an isomorphism from G < J
to G̃ < J̃ and [J : G] = [J̃ : G̃] = 2. The groups G, J and J̃ are then flat
3-manifold groups. If λ and λ̃ are automorphisms of G and G̃ which extend
to J and J̃ , respectively, then J ∗φ J̃ and J ∗λ̃φλ J̃ are isomorphic, and so we

shall say that φ and λ̃φλ are equivalent. The major difficulty is that some such
groups split as a generalised free product in several essentially distinct ways.

It follows from the Mayer-Vietoris sequence for π ∼= J ∗φ J̃ that H1(G;Q)
maps onto H1(J ;Q)⊕H1(J̃ ;Q), and hence that β1(J) + β1(J̃) ≤ β1(G). Since
G3 , G4 , B3 and B4 are only subgroups of other flat 3-manifold groups via
maps inducing isomorphisms on H1(−;Q) and G5 and G6 are not index 2
subgroups of any flat 3-manifold group we may assume that G ∼= Z3 , G2 , B1

or B2 . If j and j̃ are the automorphisms of T (J) and T (J̃) determined by
conjugation in J and J̃ , respectively, then π is a flat 4-manifold group if and
only if Φ = jT (φ)−1j̃T (φ) has finite order. In particular, |tr(Φ)| ≤ 3. At
this point detailed computation seems unavoidable. (We note in passing that
any generalised free product J ∗G J̃ with G ∼= G3 , G4 , B3 or B4 , J and J̃
torsion-free and [J : G] = [J̃ : G] = 2 is a flat 4-manifold group, since Out(G)
is then finite. However all such groups have infinite abelianization.)

Suppose first that G ∼= Z3 , with basis {x, y, z}. Then J and J̃ must have
holonomy of order ≤ 2, and β1(J) + β1(J̃) ≤ 3. Hence we may assume that
J ∼= G2 and J̃ ∼= G2 , B1 or B2 . In each case we have G = T (J) and G̃ = T (J̃).
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We may assume that J and J̃ are generated by G and elements s and t,
respectively, such that s2 = x and t2 ∈ G̃, and that the action of s on G has
matrix j =

(
1 0
0 −I

)
with respect to the basis {x, y, z}. Fix an isomorphism

φ : G → G̃ and let T = T (φ)−1j̃T (φ) =
(
a δ
γ D

)
be the matrix corresponding

to the action of t on G̃. (Here γ is a 2 × 1 column vector, δ is a 1 × 2 row
vector and D is a 2 × 2 matrix, possibly singular.) Then T 2 = I and so the
trace of T is odd. Since j ≡ I mod (2) the trace of Φ = jT is also odd, and
so Φ cannot have order 3 or 6. Therefore Φ4 = I . If Φ = I then π/π′ is
infinite. If Φ has order 2 then jT = Tj and so γ = 0, δ = 0 and D2 = I2 .
Moreover we must have a = −1 for otherwise π/π′ is infinite. After conjugating
T by a matrix commuting with j if necessary we may assume that D = I2 or(

1 0
0 −1

)
. (Since J̃ must be torsion-free we cannot have D = ( 0 1

1 0 ).) These two
matrices correspond to the generalized free products G2 ∗φ B1 and G2 ∗φ G2 ,
with presentations

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tz = zt〉
and 〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tzt−1 = z−1〉,

respectively. These groups each have holonomy group isomorphic to (Z/2Z)2 .
If Φ has order 4 then we must have (jT )2 = (jT )−2 = (Tj)2 and so (jT )2

commutes with j . After conjugating T by a matrix commuting with j , if
necessary, we may assume that T is the elementary matrix which interchanges
the first and third rows. The corresponding group G2 ∗φ B2 has a presentation

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = z, tzt−1 = s2〉.

Its holonomy group is isomorphic to the dihedral group of order 8.

If G ∼= G2 then β1(J) + β1(J̃) ≤ 1, so we may assume that J ∼= G6 . The other
factor J̃ must then be one of G2 , G4 , G6 , B3 or B4 , and then every amalga-
mation has finite abelianization. If J̃ ∼= G2 there are two index-2 embeddings
of G2 in J̃ up to composition with an automorphism of J̃ . (One of these was
overlooked in earlier versions of this book.) In all other cases the image of G2

in J̃ is canonical, and the matrices for j and j̃ have the form
(±1 0

0 N

)
where

N4 = I ∈ GL(2,Z), and T (φ) =
(
ε 0
0 M

)
for some M ∈ GL(2,Z). Calculation

shows that Φ has finite order if and only if M is in the dihedral subgroup D8 of
GL(2,Z) generated by the diagonal matrices and ( 0 1

1 0 ). (In other words, either
M is diagonal or both diagonal elements of M are 0.) Now the subgroup of
Aut(G2) consisting of automorphisms which extend to G6 is (Z2oαD8)×{±1}.
Hence any two such isomorphisms φ from G to G̃ are equivalent, and so there
is an unique such flat 4-manifold group G6 ∗φ J̃ for each of these choices of
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J̃ = G4 , G6 , B3 or B4 . The corresponding presentations are

〈u, x, y | xux−1 = u−1, y2 = u2, yx2y−1 = x−2, u(xy)2 = (xy)2u〉,
〈u, x, y | xux−1 = u−1, xy2x−1 = y−2, y2 = u2(xy)2, yx2y−1 = x−2,

u(xy)2 = (xy)2u〉,
〈u, x, y | yx2y−1 = x−2, uy2u−1 = (xy)2, u(xy)2u−1 = y−2, x = u2〉,
〈u, x, y | xy2x−1 = y−2, yx2y−1 = ux2u−1 = x−2, y2 = u2, yxy = uxu〉,

〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2, y2 = (t−1x)2, t(xy)2 = (xy)2t〉,
and 〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2(xy)2, y2 = (t−1x)2,

t(xy)2 = (xy)2t〉,

respectively. The corresponding holonomy groups are isomorphic to (Z/2Z)3 ,
(Z/2Z)3 , D8 , (Z/2Z)2 , (Z/2Z)3 and (Z/2Z)3 , respectively.

If G ∼= B1 or B2 then J and J̃ are nonorientable and β1(J)+β1(J̃) ≤ 2. Hence
J and J̃ are B3 or B4 . There are two essentially different embeddings of B1

as an index 2 subgroup in each of B3 or B4 . (The image of one contains I(Bi)
while the other does not.) The group B2 is not a subgroup of B4 . However,
it embeds in B3 as the index 2 subgroup generated by {t, x2, xy}. Contrary to
our claim in earlier versions of this book that no flat 4-manifold groups with
finite abelianization are such amalgamations, there are in fact three, all with
G = B1 . However they are each isomorphic to one of the groups already given:
B3 ∗φ B3

∼= B3 ∗φ B4
∼= G6 ∗φ B4 and B4 ∗φ B4

∼= G6 ∗φ B3 . See [LRT13].

There remain nine generalized free products J ∗G J̃ which are flat 4-manifold
groups with β = 0 and with G orientable. The groups G2 ∗φB1 , G2 ∗φG2 and
G6 ∗φ G6 are all easily seen to be semidirect products of G6 with an infinite
cyclic normal subgroup, on which G6 acts nontrivially. It follows easily that
these three groups are in fact isomorphic, and so there is just one flat 4-manifold
group with finite abelianization and holonomy isomorphic to (Z/2Z)2 .

The groups G2 ∗φB2 and G6 ∗φG4 are in fact isomorphic; the function sending
s to y , t to yu−1 and z to uy2u−1 determines an equivalence between the
above presentations. Thus there is just one flat 4-manifold group with finite
abelianization and holonomy isomorphic to D8 .

The first amalgamation G6 ∗φ G2 and G6 ∗φ B4 are also isomorphic, via the
function sending u to xy−1 , x to xt−1 and y to yt. Similarly, the second
amalgamation G6 ∗φG2 and G6 ∗φB3 are isomorphic; via the function sending
u to tyx, x to tx−1 and y to ty . (These isomorphisms and the one in the
paragraph above were found by Derek Holt, using the program described in
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[HR92].) The translation subgroups of G6 ∗φ B3 and G6 ∗φ B4 are generated
by the images of U = (ty)2 , X = x2 , Y = y2 and Z = (xy)2 (with respect to
the above presentations). In each case the images of t, x and y act diagonally,
via the matrices diag[−1, 1,−1, 1], diag[1, 1,−1,−1] and diag[−1,−1, 1,−1],
respectively. However the maximal orientable subgroups have abelianization
Z ⊕ (Z/2)3 and Z ⊕ (Z/4Z) ⊕ (Z/2Z), respectively, and so G6 ∗φ B3 is not
isomorphic to G6 ∗φ B4 . Thus there are two flat 4-manifold groups with finite
abelianization and holonomy isomorphic to (Z/2Z)3 .

In summary, there are 27 orientable flat 4-manifold groups (all with β > 0), 43
nonorientable flat 4-manifold groups with β > 0 and 4 (nonorientable) flat 4-
manifold groups with β = 0. All orientable flat 4-manifolds are Spin, excepting
for those with π ∼= G6 oθ Z, where θ = bce, e or ei [PS10].

8.5 Distinguishing between the geometries

If Γ is a lattice in a 1-connected solvable Lie group G with nilradical N then
Γ∩N and Γ∩N ′ are lattices in N and N ′ , respectively, and h(Γ) = dim(G).
If G is also a linear algebraic group then Γ is Zariski dense in G. In particular,
Γ∩N and N have the same nilpotency class, and ζΓ = Γ∩ζN . (See Chapter 2
of [Rg].) These observations imply that the geometry of a closed 4-manifold M
with a geometry of solvable Lie type is largely determined by the structure of√
π . (See also Proposition 10.4 of [Wl86].) As each covering space has the same

geometry it shall suffice to show that the geometries on suitable finite covering
spaces (corresponding to subgroups of finite index in π) can be recognized.

If M is an infranilmanifold then [π :
√
π] < ∞. If it is flat then

√
π ∼= Z4 ,

while if it has the geometry Nil3 × E1 or Nil4 then
√
π is nilpotent of class 2

or 3 respectively. (These cases may also be distinguished by the rank of ζ
√
π .)

All such groups have been classified, and may be realized geometrically. (See
[De] for explicit representations of the Nil3 × E1 - and Nil4 -groups as lattices
in Aff(Nil3 × R) and Aff(Nil4), respectively.) If M is a Sol4m,n - or Sol40 -
manifold then

√
π ∼= Z3 . Hence h(π/

√
π) = 1 and so π has a normal subgroup

of finite index which is a semidirect product
√
πoθZ . It is easy to give geometric

realizations of such subgroups.

Theorem 8.3 Let π be a torsion-free group with
√
π ∼= Z3 and such that

π/
√
π ∼= Z . Then π is the fundamental group of a Sol4m,n - or Sol40 -manifold.

Proof Let t ∈ π represent a generator of π/
√
π , and let θ be the automor-

phism of
√
π ∼= Z3 determined by conjugation by t. Then π ∼=

√
π oθ Z . If
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the eigenvalues of θ were roots of unity of order dividing k then the subgroup
generated by

√
π and tk would be nilpotent, and of finite index in π . Therefore

we may assume that the eigenvalues κ, λ, µ of θ are distinct and that neither
κ nor λ is a root of unity.

Suppose first that the eigenvalues are all real. Then the eigenvalues of θ2 are
all positive, and θ2 has characteristic polynomial X3 −mX2 + nX − 1, where
m = trace(θ2) and n = trace(θ−2). Since

√
π ∼= Z3 there is a monomorphism

f :
√
π → R3 such that fθ = Ψf , where Ψ = diag[κ, λ, µ] ∈ GL(3,R). Let

F (g) =
(
I3 f(n)
0 1

)
, for g ∈

√
π . If ν =

√
π we extend F to π by setting

F (t) =
(

Ψ 0
0 1

)
. In this case F defines a discrete cocompact embedding of π in

Isom(Sol4m,n). (See Chapter 7.§3. If one of the eigenvalues is ±1 then m = n
and the geometry is Sol3 × E1 .)

If the eigenvalues are not all real we may assume that λ = κ̄ and µ 6= ±1.
Let Rφ ∈ SO(2) be rotation of R2 through the angle φ = Arg(κ). There is

a monomorphism f :
√
π → R3 such that fθ = Ψf where Ψ =

(
|κ|Rφ 0

0 µ

)
.

Let F (n) =
(
I3 f(n)
0 1

)
, for n ∈

√
π , and let F (t) =

(
Ψ 0
0 1

)
. Then F defines a

discrete cocompact embedding of π in Isom(Sol40).

If M is a Sol4m,n -manifold the eigenvalues of θ are distinct and real. The
geometry is Sol3 × E1(= Sol4m,m for any m ≥ 4) if and only if θ has 1 as a
simple eigenvalue. If M is a Sol40 -manifold two of the eigenvalues are complex
conjugates, and none are roots of unity.

The groups of E4 -, Nil3 × E1 - and Nil4 -manifolds also have finite index sub-
groups σ ∼= Z3 oθ Z . We may assume that all the eigenvalues of θ are 1, so
N = θ−I is nilpotent. If the geometry is E4 then N = 0; if it is Nil3×E1 then
N 6= 0 but N2 = 0, while if it is Nil4 then N2 6= 0 but N3 = 0. (Conversely,
it is easy to see that such semidirect products may be realized by lattices in the
corresponding Lie groups.)

Finally, if M is a Sol41 -manifold then
√
π ∼= Γq for some q ≥ 1 (and so is

nonabelian, of Hirsch length 3). Every group π ∼= Γq oθ Z may be realized
geometrically. (See Theorem 8.7 below.)

If h(
√
π) = 3 then π is an extension of Z or D by a normal subgroup ν which

contains
√
π as a subgroup of finite index. Hence either M is the mapping

torus of a self homeomorphism of a flat 3-manifold or a Nil3 -manifold, or it is
the union of two twisted I -bundles over such 3-manifolds and is doubly covered
by such a mapping torus. (Compare Theorem 8.2.)
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We shall consider further the question of realizing geometrically such torsion-
free virtually poly-Z groups π (with h(π) = 4 and h(

√
π) = 3) in §9.

8.6 Mapping tori of self homeomorphisms of E3-manifolds

It follows from the above that a 4-dimensional infrasolvmanifold M admits one
of the product geometries of type E4 , Nil3 × E1 or Sol3 × E1 if and only if
π1(M) has a subgroup of finite index of the form ν × Z , where ν is abelian,
nilpotent of class 2 or solvable but not virtually nilpotent, respectively. In
the next two sections we shall examine when M is the mapping torus of a
self homeomorphism of a 3-dimensional infrasolvmanifold. (Note that if M is
orientable then it must be a mapping torus, by Lemma 3.14 and Theorem 6.11.)

Theorem 8.4 Let ν be the fundamental group of a flat 3-manifold, and let
θ be an automorphism of ν . Then

(1)
√
ν is the maximal abelian subgroup of ν and ν/

√
ν embeds in Aut(

√
ν);

(2) Out(ν) is finite if and only if [ν :
√
ν] > 2;

(3) the restriction homomorphism from Out(ν) to Aut(
√
ν) has finite kernel;

(4) if [ν :
√
ν] = 2 then (θ|√ν)2 has 1 as an eigenvalue;

(5) if [ν :
√
ν] = 2 and θ|√ν has infinite order but all of its eigenvalues are

roots of unity then ((θ|√ν)2 − I)2 = 0;

(6) if θ is orientation-preserving and ((θ|√ν)2−I)3 = 0 but (θ|√ν)2 6= I then

(θ|√ν − I)3 = 0, and so β1(ν oθ Z) ≥ 2.

Proof It follows immediately from Theorem 1.5 that
√
ν ∼= Z3 and is thus

the maximal abelian subgroup of ν . The kernel of the homomorphism from ν
to Aut(

√
ν) determined by conjugation is the centralizer C = Cν(

√
ν). As

√
ν

is central in C and [C :
√
ν] is finite, C has finite commutator subgroup, by

Schur’s Theorem (Proposition 10.1.4 of [Ro]). Since C is torsion-free it must
be abelian and so C =

√
ν . Hence H = ν/

√
ν embeds in Aut(

√
ν) ∼= GL(3,Z).

(This is just the holonomy representation.)

If H has order 2 then θ induces the identity on H ; if H has order greater than
2 then some power of θ induces the identity on H , since

√
ν is a characteristic

subgroup of finite index. The matrix θ|√ν then commutes with each element
of the image of H in GL(3,Z), and assertions (2)–(5) follow from simple cal-
culations, on considering the possibilities for π and H listed in §3 above. The
final assertion follows on considering the Jordan normal form of θ|√ν .
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Corollary 8.4.1 The mapping torus M(φ) = N ×φ S1 of a self homeomor-
phism φ of a flat 3-manifold N is flat if and only if the outer automorphism
[φ∗] induced by φ has finite order.

If N is flat and [φ∗] has infinite order then M(φ) may admit one of the other
product geometries Sol3 × E1 or Nil3 × E1 ; otherwise it must be a Sol4m,n -,
Sol40 - or Nil4 -manifold. (The latter can only happen if N = R3/Z3 , by part
(v) of the theorem.)

Theorem 8.5 Let M be a closed 4-manifold with a geometry of solvable Lie
type and fundamental group π . If

√
π ∼= Z3 and π/

√
π is an extension of D

by a finite normal subgroup then M is a Sol3 × E1 -manifold.

Proof Let p : π → D be an epimorphism with kernel K containing
√
π as a

subgroup of finite index, and let t and u be elements of π whose images under
p generate D and such that p(t) generates an infinite cyclic subgroup of index
2 in D . Then there is an N > 0 such that the image of s = tN in π/

√
π

generates a normal subgroup. In particular, the subgroup generated by s and√
π is normal in π and usu−1 and s−1 have the same image in π/

√
π . Let θ

be the matrix of the action of s on
√
π , with respect to some basis

√
π ∼= Z3 .

Then θ is conjugate to its inverse, since usu−1 and s−1 agree modulo
√
π .

Hence one of the eigenvalues of θ is ±1. Since π is not virtually nilpotent
the eigenvalues of θ must be distinct, and so the geometry must be of type
Sol3 × E1 .

Corollary 8.5.1 If M admits one of the geometries Sol40 or Sol4m,n with m 6=
n then it is the mapping torus of a self homeomorphism of R3/Z3 , and so
π ∼= Z3 oθ Z for some θ in GL(3,Z) and is a metabelian poly-Z group.

Proof This follows immediately from Theorems 8.3 and 8.4.

We may use the idea of Theorem 8.2 to give examples of E4 -, Nil4 -, Nil3×E1 -
and Sol3 × E1 -manifolds which are not mapping tori. For instance, the groups
with presentations

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, uxu−1 = x−1, u2 = y, uzu−1 = z−1,

v2 = z, vxv−1 = x−1, vyv−1 = y−1〉,
〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uyu−1 = y−1, uzu−1 = z−1,

v2 = x, vyv−1 = v−4y−1, vzv−1 = z−1〉
and 〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, v2 = y,

uyu−1 = x4y−1, vxv−1 = x−1y2, uzu−1 = vzv−1 = z−1〉

Geometry & Topology Monographs, Volume 5 (2002)



168 Chapter 8: Solvable Lie geometries

are each generalised free products of two copies of Z2o−I Z amalgamated over
their maximal abelian subgroups. The Hirsch-Plotkin radicals of these groups
are isomorphic to Z4 (generated by {(uv)2, x, y, z}), Γ2 × Z (generated by
{uv, x, y, z}) and Z3 (generated by {x, y, z}), respectively. The group with
presentation

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uz = zu, uyu−1 = xy−1,

vxv−1 = x−1, v2 = y, vzv−1 = v2z−1〉

is a generalised free product of copies of (Zo−1Z)×Z (generated by {u, y, z})
and Z2o−IZ (generated by {v, x, z}) amalgamated over their maximal abelian
subgroups. Its Hirsch-Plotkin radical is the subgroup of index 4 generated by
{(uv)2, x, y, z}, and is nilpotent of class 3. The manifolds corresponding to
these groups admit the geometries E4 , Nil3 × E1 , Sol3 × E1 and Nil4 , respec-
tively. However they cannot be mapping tori, as these groups each have finite
abelianization.

8.7 Mapping tori of self homeomorphisms of Nil3-manifolds

Let φ be an automorphism of Γq , sending x to xaybzm and y to xcydzn for
some a, . . . , n in Z. The induced automorphism of Γq/I(Γq) ∼= Z2 has matrix
A = ( a cb d ) ∈ GL(2,Z) and φ(z) = zdet(A) . (In particular, the PD3 -group Γq
is orientable, and φ is orientation preserving, as observed in §2 of Chapter 7.
See also §3 of Chapter 18 below.) Every pair (A,µ) in the set GL(2,Z) × Z2

determines an automorphism (with µ = (m,n)). However Aut(Γq) is not a
semidirect product, as

(A,µ)(B, ν) = (AB,µB + det(A)ν + qω(A,B)),

where ω(A,B) is biquadratic in the entries of A and B . The natural map p :
Aut(Γq)→ Aut(Γq/ζΓq) = GL(2,Z) sends (A,µ) to A and is an epimorphism,
with Ker(p) ∼= Z2 . The inner automorphisms are represented by qKer(p), and
Out(Γq) ∼= (Z/qZ)2oGL(2,Z). (Let [A,µ] be the image of (A,µ) in Out(Γq).
Then [A,µ][B, ν] = [AB,µB + det(A)ν].) In particular, Out(Γ1) = GL(2,Z).

Theorem 8.6 Let ν be the fundamental group of a Nil3 -manifold N . Then

(1) ν/
√
ν embeds in Aut(

√
ν/ζ
√
ν) ∼= GL(2,Z);

(2) ν̄ = ν/ζ
√
ν is a 2-dimensional crystallographic group;

(3) the images of elements of ν̄ of finite order under the holonomy
representation in Aut(

√
ν̄) ∼= GL(2,Z) have determinant 1;
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(4) Out(ν̄) is infinite if and only if ν̄ ∼= Z2 or Z2 o−I (Z/2Z);

(5) the kernel of the natural homomorphism from Out(ν) to Out(ν̄) is finite.

(6) ν is orientable and every automorphism of ν is orientation preserving.

Proof Let h : ν → Aut(
√
ν/ζ
√
ν) be the homomorphism determined by

conjugation, and let C = Ker(h). Then
√
ν/ζ
√
ν is central in C/ζ

√
ν and

[C/ζ
√
ν :
√
ν/ζ
√
ν] is finite, so C/ζ

√
ν has finite commutator subgroup, by

Schur’s Theorem (Proposition 10.1.4 of [Ro].) Since C is torsion-free it fol-
lows easily that C is nilpotent and hence that C =

√
ν . This proves (1) and

(2). In particular, h factors through the holonomy representation for ν̄ , and
gzg−1 = zd(g) for all g ∈ ν and z ∈ ζ

√
ν , where d(g) = det(h(g)). If g ∈ ν

is such that g 6= 1 and gk ∈ ζ
√
ν for some k > 0 then gk 6= 1 and so g

must commute with elements of ζ
√
ν , i.e., the determinant of the image of g

is 1. Condition (4) follows as in Theorem 8.4, on considering the possible finite
subgroups of GL(2,Z). (See Theorem 1.3.)

If ζν 6= 1 then ζν = ζ
√
ν ∼= Z and so the kernel of the natural homomorphism

from Aut(ν) to Aut(ν̄) is isomorphic to Hom(ν/ν ′, Z). If ν/ν ′ is finite this
kernel is trivial. If ν̄ ∼= Z2 then ν =

√
ν ∼= Γq , for some q ≥ 1, and the kernel

is isomorphic to (Z/qZ)2 . Otherwise ν̄ ∼= Zo−1Z , Z×D or Doτ Z (where τ
is the automorphism of D = (Z/2Z) ∗ (Z/2Z) which interchanges the factors).
But then H2(ν̄;Z) is finite and so any central extension of such a group by Z
is virtually abelian, and thus not a Nil3 -manifold group.

If ζν = 1 then ν/
√
ν < GL(2,Z) has an element of order 2 with determinant

−1. No such element can be conjugate to ( 0 1
1 0 ) , for otherwise ν would not be

torsion-free. Hence the image of ν/
√
ν in GL(2,Z) is conjugate to a subgroup of

the group of diagonal matrices
(
ε 0
0 ε′
)
, with |ε| = |ε′| = 1. If ν/

√
ν is generated

by
(

1 0
0 −1

)
then ν/ζ

√
ν ∼= Zo−1Z and ν ∼= Z2 oθ Z , where θ =

(−1 r
0 −1

)
for

some nonzero integer r , and N is a circle bundle over the Klein bottle. If
ν/
√
ν ∼= (Z/2Z)2 then ν has a presentation

〈t, u, z | u2 = z, tzt−1 = z−1, ut2u−1 = t−2zs〉,

and N is a Seifert bundle over the orbifold P (22). It may be verified in each
case that the kernel of the natural homomorphism from Out(ν) to Out(ν̄) is
finite. Therefore (5) holds.

Since
√
ν ∼= Γq is a PD+

3 -group, [ν :
√
ν] <∞ and every automorphism of Γq

is orientation preserving ν must also be orientable. Since
√
ν is characteristic

in ν and the image of H3(
√
ν;Z) in H3(ν;Z) has index [ν :

√
ν] it follows easily

that any automorphism of ν must be orientation preserving.
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In fact every Nil3 -manifold is a Seifert bundle over a 2-dimensional euclidean
orbifold [Sc83’]. The base orbifold must be one of the seven such with no
reflector curves, by (3).

Theorem 8.7 Let θ = (A,µ) be an automorphism of Γq and π = Γq oθ Z .
Then

(1) If A has finite order h(
√
π) = 4 and π is a lattice in Isom(Nil3 × E1);

(2) if A has infinite order and equal eigenvalues h(
√
π) = 4 and π is a lattice

in Isom(Nil4);

(3) Otherwise
√
π = Γq and π is a lattice in Isom(Sol41).

Proof Let t ∈ π represent a generator for π/Γq ∼= Z . The image of θ in
Out(Γq) has finite order if and only if A has finite order. If Ak = 1 for some
k ≥ 1 the subgroup generated by Γq and tkq is isomorphic to Γq × Z . If A
has infinite order and equal eigenvalues then A2 is conjugate to ( 1 n

0 1 ), for some
n 6= 0, and the subgroup generated by Γq and t2 is nilpotent of class 3. In
each of these cases π is virtually nilpotent, and may be embedded as a lattice
in Isom(Nil3 × E1) or Isom(Nil4) [De].

Otherwise the eigenvalues α, β of A are distinct and not ±1. Let e, f ∈ R2

be the corresponding eigenvectors. Let (1, 0) = x1e+ x2f , (0, 1) = y1e+ y2f ,

µ = z1e+ z2f and h = 1
q (x2y1 − x1y2). Let F (x) =

1 x2 0
0 1 x1

0 0 1

, F (y) =1 y2 0
0 1 y1

0 0 1

, F (z) =

1 0 h
0 1 0
0 0 1

 and F (t) =

αβ z2 0
0 α z1

0 0 1

. Then F de-

fines an embedding of π as a lattice in Isom(Sol41).

Theorem 8.8 The mapping torus M(φ) = N ×φ S1 of a self homeomorphism
φ of a Nil3 -manifold N is orientable, and is a Nil3 × E1 -manifold if and only
if the outer automorphism [φ∗] induced by φ has finite order.

Proof Since N is orientable and φ is orientation preserving (by part (6) of
Theorem 8.6) M(φ) must be orientable.

The subgroup ζ
√
ν is characteristic in ν and hence normal in π , and ν/ζ

√
ν

is virtually Z2 . If M(φ) is a Nil3 × E1 -manifold then π/ζ
√
ν is also virtually

abelian. It follows easily that that the image of φ∗ in Aut(ν/ζ
√
ν) has finite
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order. Hence [φ∗] has finite order also, by Theorem 8.6. Conversely, if [φ∗] has
finite order in Out(ν) then π has a subgroup of finite index which is isomorphic
to ν ×Z , and so M(φ) has the product geometry, by the discussion above.

Theorem 4.2 of [KLR83] (which extends Bieberbach’s theorem to the virtually
nilpotent case) may be used to show directly that every outer automorphism
class of finite order of the fundamental group of an E3 - or Nil3 -manifold is
realizable by an isometry of an affinely equivalent manifold.

Theorem 8.9 Let M be a closed Nil3 × E1 -, Nil4 - or Sol41 -manifold. Then
M is the mapping torus of a self homeomorphism of a Nil3 -manifold if and
only if it is orientable.

Proof If M is such a mapping torus then it is orientable, by Theorem 8.8.
Conversely, if M is orientable then π = π1(M) has infinite abelianization, by
Lemma 3.14. Let p : π → Z be an epimorphism with kernel K , and let t be
an element of π such that p(t) generates Z . If K is virtually nilpotent of class
2 we are done, by Theorem 6.12. (Note that this must be the case if M is
a Sol41 -manifold.) If K is virtually abelian then K ∼= Z3 or G2 , by part (5)
of Theorem 8.4. The action of t on

√
K by conjugation must be orientation

preserving, since M is orientable. Since det(t) = 1 and π is virtually nilpotent
but not virtually abelian, at least one eigenvalue must be +1. It follows easily
that β1(π) ≥ 2. Hence there is another epimorphism with kernel nilpotent of
class 2, and so the theorem is proven.

Corollary 8.9.1 Let M be a closed Sol41 -manifold with fundamental group
π . Then β1(M) ≤ 1 and M is orientable if and only if β1(M) = 1.

Proof The first assertion is clear if π is a semidirect product Γq oθ Z , and
then follows in general. Hence if p : π → Z is an epimorphism Ker(p) must be
virtually nilpotent of class 2 and the result follows from the theorem.

If M is a Nil3 × E1 - or Nil4 -manifold then β1(π) ≤ 3 or 2, respectively, with
equality if and only if π is nilpotent. In the latter case M is orientable, and
is a mapping torus, both of a self homeomorphism of R3/Z3 and also of a self
homeomorphism of a Nil3 -manifold. We have already seen that Nil3 × E1 -
and Nil4 -manifolds need not be mapping tori at all. We shall round out this
discussion with examples illustrating the remaining combinations of mapping
torus structure and orientation compatible with Lemma 3.14 and Theorems
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8.8 and 8.9. As the groups have abelianization of rank 1 the corresponding
manifolds are mapping tori in an essentially unique way. The groups with
presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1, tzt−1 = yz−1〉
and 〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1〉

are each virtually nilpotent of class 2. The corresponding Nil3 × E1 -manifolds
are mapping tori of self homeomorphisms of R3/Z3 and a Nil3 -manifold, re-
spectively. The groups with presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1, tzt−1 = yz−1〉
and 〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1〉

are each virtually nilpotent of class 3. The corresponding Nil4 -manifolds are
mapping tori of self homeomorphisms of R3/Z3 and of a Nil3 -manifold, respec-
tively. The group with presentation

〈t, u, x, y, z | xyx−1y−1 = z2, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy,

tz = zt, u4 = z, uxu−1 = y−1, uyu−1 = x, utu−1 = t−1〉

has Hirsch-Plotkin radical isomorphic to Γ2 (generated by {x, y, z}), and has
finite abelianization. The corresponding Sol41 -manifold is nonorientable and is
not a mapping torus.

8.8 Mapping tori of self homeomorphisms of Sol3-manifolds

The arguments in this section are again analogous to those of §6.

Theorem 8.10 Let σ be the fundamental group of a Sol3 -manifold. Then

(1)
√
σ ∼= Z2 and σ/

√
σ ∼= Z or D ;

(2) Out(σ) is finite.

Proof The argument of Theorem 1.6 implies that h(
√
σ) > 1. Since σ is not

virtually nilpotent h(
√
σ) < 3. Hence

√
σ ∼= Z2 , by Theorem 1.5. Let F̃ be

the preimage in σ of the maximal finite normal subgroup of σ/
√
ν , let t be an

element of σ whose image generates the maximal abelian subgroup of σ/F̃ and
let τ be the automorphism of F̃ determined by conjugation by t. Let σ1 be
the subgroup of σ generated by F̃ and t. Then σ1

∼= F̃ oτ Z , [σ : σ1] ≤ 2, F̃ is
torsion-free and h(F̃ ) = 2. If F̃ 6=

√
σ then F̃ ∼= Zo−1Z . But extensions of Z
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by Zo−1Z are virtually abelian, since Out(Zo−1Z) is finite. Hence F̃ =
√
σ

and so σ/
√
σ ∼= Z or D .

Every automorphism of σ induces automorphisms of
√
σ and of σ/

√
σ . Let

Out+(σ) be the subgroup of Out(σ) represented by automorphisms which in-
duce the identity on σ/

√
σ . The restriction of any such automorphism to√

σ commutes with τ . We may view
√
σ as a module over the ring R =

Z[X]/(λ(X)), where λ(X) = X2 − tr(τ)X + det(τ) is the characteristic poly-
nomial of τ . The polynomial λ is irreducible and has real roots which are not
roots of unity, for otherwise

√
σ oτ Z would be virtually nilpotent. Therefore

R is a domain and its field of fractions Q[X]/(λ(X)) is a real quadratic num-
ber field. The R-module

√
σ is clearly finitely generated, R-torsion-free and

of rank 1. Hence the endomorphism ring EndR(
√
σ) is a subring of R̃, the

integral closure of R. Since R̃ is the ring of integers in Q[X]/(λ(X)) the group
of units R̃× is isomorphic to {±1} × Z . Since τ determines a unit of infinite
order in R× the index [R̃× : τZ ] is finite.

Suppose now that σ/
√
σ ∼= Z . If f is an automorphism which induces the

identity on
√
σ and on σ/

√
σ then f(t) = tw for some w in

√
σ . If w is in the

image of τ − 1 then f is an inner automorphism. Now
√
σ/(τ − 1)

√
σ is finite,

of order det(τ − 1). Since τ is the image of an inner automorphism of σ it
follows that Out+(σ) is an extension of a subgroup of R̃×/τZ by

√
σ/(τ−1)

√
σ .

Hence Out(σ) has order dividing 2[R̃× : τZ ]det(τ − 1).

If σ/
√
σ ∼= D then σ has a characteristic subgroup σ1 such that [σ : σ1] = 2,√

σ < σ1 and σ1/
√
σ ∼= Z =

√
D . Every automorphism of σ restricts to an

automorphism of σ1 . It is easily verified that the restriction from Aut(σ) to
Aut(σ1) is a monomorphism. Since Out(σ1) is finite it follows that Out(σ) is
also finite.

Corollary 8.10.1 The mapping torus of a self homeomorphism of a Sol3 -
manifold is a Sol3 × E1 -manifold.

The group with presentation

〈x, y, t | xy = yx, txt−1 = xy, tyt−1 = x〉

is the fundamental group of a nonorientable Sol3 -manifold Σ. The nonori-
entable Sol3 ×E1 -manifold Σ× S1 is the mapping torus of idΣ and is also the
mapping torus of a self homeomorphism of R3/Z3 .
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The groups with presentations

〈t, x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1, txt−1 = xy, tyt−1 = x,

tzt−1 = z−1〉,
〈t, x, y, z | xy = yx, zxz−1 = x2y, zyz−1 = xy, tx = xt, tyt−1 = x−1y−1,

tzt−1 = z−1〉,
〈t, x, y, z | xy = yx, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy, tzt−1 = z−1〉

and 〈t, u, x, y | xy = yx, txt−1 = x2y, tyt−1 = xy, uxu−1 = y−1,

uyu−1 = x, utu−1 = t−1〉

have Hirsch-Plotkin radical Z3 and abelianization of rank 1. The corresponding
Sol3×E1 -manifolds are mapping tori in an essentially unique way. The first two
are orientable, and are mapping tori of self homeomorphisms of the orientable
flat 3-manifold with holonomy of order 2 and of an orientable Sol3 -manifold,
respectively. The latter two are nonorientable, and are mapping tori of ori-
entation reversing self homeomorphisms of R3/Z3 and of the same orientable
Sol3 -manifold, respectively.

8.9 Realization and classification

Let π be a torsion-free virtually poly-Z group of Hirsch length 4. If π is
virtually abelian then it is the fundamental group of a flat 4-manifold, by the
work of Bieberbach, and such groups are listed in §2-§4 above.

If π is virtually nilpotent but not virtually abelian then
√
π is nilpotent of class

2 or 3. In the first case it has a characteristic chain
√
π
′ ∼= Z < C = ζ

√
π ∼= Z2 .

Let θ : π → Aut(C) ∼= GL(2,Z) be the homomorphism induced by conjugation
in π . Then Im(θ) is finite and triangular, and so is 1, Z/2Z or (Z/2Z)2 . Let
K = Cπ(C) = Ker(θ). Then K is torsion-free and ζK = C , so K/C is a
flat 2-orbifold group. Moreover as K/

√
K acts trivially on

√
π
′

it must act
orientably on

√
K/C , and so K/

√
K is cyclic of order 1, 2, 3, 4 or 6. As

√
π

is the preimage of
√
K in π we see that [π :

√
π] ≤ 24. (In fact π/

√
π ∼= F or

F ⊕ (Z/2Z), where F is a finite subgroup of GL(2,Z), excepting only direct
sums of the dihedral groups of order 6, 8 or 12 with (Z/2Z) [De].) Otherwise
(if
√
π
′ � ζ

√
π) it has a subgroup of index ≤ 2 which is a semidirect product

Z3oθ Z , by part (5) of Theorem 8.4. Since (θ2− I) is nilpotent it follows that
π/
√
π = 1, Z/2Z or (Z/2Z)2 . All these possibilities occur.

Such virtually nilpotent groups are fundamental groups of Nil3×E1 - and Nil4 -
manifolds (respectively), and are classified in [De]. Dekimpe observes that π
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has a characteristic subgroup Z such that Q = π/Z is a Nil3 - or E3 -orbifold
group and classifies the torsion-free extensions of such Q by Z . There are 61
families of Nil3 × E1 -groups and 7 families of Nil4 -groups. He also gives a
faithful affine representation for each such group.

We shall sketch an alternative approach for the geometry Nil4 , which applies
also to Sol4m,n , Sol40 and Sol41 . Each such group π has a characteristic subgroup

ν of Hirsch length 3, and such that π/ν ∼= Z or D . The preimage in π of
√
π/ν

is characteristic, and is a semidirect product νoθ Z . Hence it is determined up
to isomorphism by the union of the conjugacy classes of θ and θ−1 in Out(ν),
by Lemma 1.1. All such semidirect products may be realized as lattices and
have faithful affine representations.

If the geometry is Nil4 then ν = C√π(ζ2
√
π) ∼= Z3 , by Theorem 1.5 and

part (5) of Theorem 8.4. Moreover ν has a basis x, y, z such that 〈z〉 = ζ
√
π

and 〈y, z〉 = ζ2
√
π . As these subgroups are characteristic the matrix of θ

with respect to such a basis is ±(I +N), where N is strictly lower triangular
and n21n32 6= 0. (See §5 above.) The conjugacy class of θ is determined by
(det(θ), |n21|, |n32|, [n31 mod (n32)]). (Thus θ is conjugate to θ−1 if and only if
n32 divides 2n31 .) The classification is more complicated if π/ν ∼= D .

If the geometry is Sol4m,n for some m 6= n then π ∼= Z3 oθ Z , where the
eigenvalues of θ are distinct and real, and not ±1, by Corollary 8.5.1. The
translation subgroup π ∩ Sol4m,n is Z3 oA Z , where A = θ or θ2 is the least
nontrivial power of θ with all eigenvalues positive, and has index ≤ 2 in π .
Conversely, every such group is a lattice in Isom(Sol4m,n), by Theorem 8.3.
The conjugacy class of θ is determined by its characteristic polynomial ∆θ(t)
and the ideal class of ν ∼= Z3 , considered as a rank 1 module over the order
Λ/(∆θ(t)), by Theorem 1.4. (No such θ is conjugate to its inverse, as neither
1 nor -1 is an eigenvalue.)

A similar argument applies for Sol40 , where we again have π ∼= Z3 oθ Z . Al-
though Sol40 has no lattice subgroups, any semidirect product Z3 oθ Z where
θ has a pair of complex conjugate roots which are not roots of unity is a lat-
tice in Isom(Sol40), by Theorem 8.3. Such groups are again classified by the
characteristic polynomial and an ideal class.

If the geometry is Sol41 then
√
π ∼= Γq for some q ≥ 1, and either ν =

√
π

or ν/
√
π = Z/2Z and ν/ζ

√
π ∼= Z2 o−I (Z/2Z). (In the latter case ν is

uniquely determined by q .) Moreover π is orientable if and only if β1(π) = 1.
In particular, Ker(w1(π)) ∼= ν oθ Z , for some θ ∈ Aut(ν). Let A = θ|√π and

let A be its image in Aut(
√
π/ζ
√
π) ∼= GL(2,Z). If ν =

√
π the translation
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subgroup π ∩ Sol41 is T = Γq oB Z , where B = A or A2 is the least nontrivial
power of A such that both eigenvalues of A are positive. If ν 6=

√
π the

conjugacy class of A is only well-defined up to sign. If moreover π/ν ∼= D then
A is conjugate to its inverse, and so det(A) = 1, since A has infinite order. We
can then choose θ and hence A so that T =

√
π oA Z . The quotient π/T is a

subgroup of D8 , since Isom(Sol41) ∼= Sol41 oD8 .

Conversely, any torsion-free group with a subgroup of index ≤ 2 which is such
a semidirect product ν oθ Z (with [ν : Γq] ≤ 2 and ν as above) and which is
not virtually nilpotent is a lattice in Isom(Sol41), by an argument extending
that of Theorem 8.7. (See [Hi07].) The conjugacy class of θ is determined up
to a finite ambiguity by the characteristic polynomial of A. The Sol41 -lattices
are classified in [LT13]. In particular, it is shown there that each of the possible
isomorphism classes of subgroups of D8 is realized as π/T for some π .

In the remaining case Sol3×E1 the subgroup ν is one of the four flat 3-manifold
groups Z3 , Z2 o−I Z , B1 or B2 , and θ|√ν has distinct real eigenvalues, one

being ±1. The index of the translation subgroup π∩ (Sol3×R) in π divides 8.
(Note that Isom(Sol3 × E1) has 16 components.) Conversely any torsion-free
group with a subgroup of index ≤ 2 which is such a semidirect product ν oθ Z
is a lattice in Isom(Sol3×E1), by an argument extending that of Theorem 8.3.
(See [Hi07].) The semidirect products N oθ Z (with N = ν or a Sol3 -group)
may be classified in terms of conjugacy classes in Aut(N). (See also [Cb].)

Every Nil4 - or Sol3 × E1 -manifold has an essentially unique Seifert fibration.
The general fibre is a torus, and so π has an unique normal subgroup A ∼= Z2

such that π/A is a flat 2-orbifold group. It is easy to see that A ≤ π′ . The
action has infinite image in Aut(A) ∼= GL(2,Z), for these geometries. Since
GL(2,Z) is virtually free the base orbifold B must itself fibre over S1 or the
reflector interval I. Moreover, B = T if and only if β1(π) = 2, while B = Kb,A
or Mb if and only if β1(π) = 1. There are examples with B = T,Kb,A,Mb
or S(2, 2, 2, 2), for either geometry. No other bases occur for Seifert fibrations
of Sol3 × E1 -manifolds. (If B = P (2, 2) then π ∼= G ∗ν H , where G = 〈ν, u〉,
H = 〈ν, v〉 and π/A = 〈u, v|v2 = (vu2)2 = 1〉. Hence ν = 〈

√
π, u2〉, and so

is orientable. A Mayer-Vietoris argument gives ν ∼= Z3 , since β1(π) = 0, and
one of G or H is orientable, since π is non-orientable. But then u or v acts
as ±I2 on A, and so π is virtually nilpotent. Since P (2, 2) covers each of
D(2, 2), D(2, 2, 2) and D(2, 2, 2, 2), these are also ruled out.) In the Nil4 case,
if B = T,A or Mb then M must be orientable (see Theorem 8.7), and the
only other bases realized are D(2, 2) and P (2, 2). (See Chapter 7 of [De].) The
Sol3×E1 -manifolds M with π/π′ finite are Seifert fibred over S(2, 2, 2, 2), and
these may be classified in terms of certain matrices in GL(2,Z) [Hi13d].
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We mention briefly another aspect of these groups. All E4 -, Nil3 × E1 -, Nil4 -,
Sol40 -, Sol41 - and Sol3×E1 -lattices are arithmetic. However no Sol4m,n -lattice is
arithmetic if the field Fm,n defined on page 137 is Galois over Q [GP99].

8.10 Diffeomorphism

Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds (see §3 of
Chapter 7), and infrasolvmanifolds are the total spaces of orbifold bundles
with infranilmanifold fibre and flat base, by Theorem 7.2. Baues showed that
infrasolvmanifolds are determined up to diffeomorphism by their fundamental
groups [Ba04]. In dimensions ≤ 3 this follows from standard results of low
dimensional topology. We shall show that related arguments also cover most
4-dimensional orbifold bundle spaces. The following theorem extends the main
result of [Cb] (in which it was assumed that π is not virtually nilpotent).

Theorem 8.11 Let M and M ′ be 4-manifolds which are total spaces of orb-
ifold bundles p : M → B and p′ : M ′ → B′ with fibres infranilmanifolds F and
F ′ (respectively) and bases flat orbifolds, and suppose that π1(M) ∼= π1(M ′) ∼=
π . If π is virtually abelian and β1(π) = 1 assume that π is orientable. Then
M and M ′ are diffeomorphic.

Proof We may assume that d = dim(B) ≤ d′ = dim(B′). Suppose first that
π is not virtually abelian or virtually nilpotent of class 2. Then all subgroups
of finite index in π have β1 ≤ 2, and so 1 ≤ d ≤ d′ ≤ 2. Moreover π has
a characteristic nilpotent subgroup ν̃ such that h(π/ν̃) = 1, by Theorems 1.5
and 1.6. Let ν be the preimage in π of the maximal finite normal subgroup
of π/ν̃ . Then ν is a characteristic virtually nilpotent subgroup (with

√
ν = ν̃ )

and π/ν ∼= Z or D . If d = 1 then π1(F ) = ν and p : M → B induces this
isomorphism. If d = 2 the image of ν in πorb1 (B) is normal. Hence there is an
orbifold map q from B to the circle S1 or the reflector interval I such that qp is
an orbifold bundle projection. A similar analysis applies to M ′ . In either case,
M and M ′ are canonically mapping tori or unions of two twisted I -bundles,
and the theorem follows via standard 3-manifold theory.

If π is virtually nilpotent it is realized by an infranilmanifold M0 [De]. Hence
we may assume that M ′ = M0 , d′ = 4, h(

√
π) = 4 and

√
π
′ ∼= Z or 1. If d = 0

or 4 then M is also an infranilmanifold and the result is clear. If there is an
orbifold bundle projection from B to S1 or I then M is a mapping torus or a
union of twisted I -bundles, and π is a semidirect product κoZ or a generalized
free product with amalgamation G ∗J H where [G : J ] = [H : J ] = 2. The
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model M0 then has a corresponding structure as a mapping torus or a union
of twisted I -bundles, and we may argue as before.

If β1(π) + d > 4 then πorb1 (B) maps onto Z , and so B is an orbifold bundle
over S1 . Hence the above argument applies. If there is no such orbifold bundle
projection then d 6= 1. Thus we may assume that d = 2 or 3 and that β1(π) ≤
4− d. (If moreover β1(π) = 4 − d and there is no such projection then π′ ∩
π1(F ) = 1 and so π is virtually abelian.) If d = 2 then M is Seifert fibred.
Since M ′ is an infranilmanifold (and π cannot be one of the three exceptional
flat 4-manifold groups G6 oθ Z with θ = j , cej or abcej ) it is also Seifert
fibred, and so M and M ′ are diffeomorphic, by [Vo77].

If d = 3 then π1(F ) ∼= Z . The group π has a normal subgroup K such that
π/K ∼= Z or D , by Lemma 3.14. If π1(F ) < K then πorb1 (B) maps onto Z
or D and we may argue as before. Otherwise π1(F ) ∩ K = 1, since Z and
D have no nontrivial finite normal subgroups, and so π is virtually abelian. If
β1(π) = 1 then π1(F )∩π′ = 1 (since π/K does not map onto Z ) and so π1(F )
is central in π . It follows that p is the orbit map of an S1 -action on M . Once
again, the model M0 has an S1 -action inducing the same orbifold fundamental
group sequence. Orientable 4-manifolds with S1 -action are determined up to
diffeomorphism by the orbifold data and an Euler class corresponding to the
central extension of πorb1 (B) by Z [Fi78]. Thus M and M ′ are diffeomorphic.
It is not difficult to determine the maximal infinite cyclic normal subgroups of
the flat 4-manifold groups π with β1(π) = 0, and to verify that in each case
the quotient maps onto D .

It is highly probable that the arguments of Fintushel can be extended to all
4-manifolds which admit smooth S1 -actions, and the theorem is surely true
without any restrictions on π . (Note that the algebraic argument of the final
sentence of Theorem 8.11 does not work for nine of the 30 nonorientable flat
4-manifold groups π with β1(π) = 1.)

If π is orientable then it is realized geometrically and determines the total space
of such an orbifold bundle up to diffeomorphism. Hence orientable smooth
4-manifolds admitting such orbifold fibrations are diffeomorphic to geometric
4-manifolds of solvable Lie type. Is this also so in the nonorientable case?
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Chapter 9

The other aspherical geometries

The aspherical geometries of nonsolvable type which are realizable by closed
4-manifolds are the “mixed” geometries H2 × E2 , S̃L × E1 , H3 × E1 and the
“semisimple” geometries H2 × H2 , H4 and H2(C). (We shall consider the ge-

ometry F4 briefly in Chapter 13.) Closed H2 × E2 - or S̃L × E1 -manifolds are
Seifert fibred, have Euler characteristic 0 and their fundamental groups have
Hirsch-Plotkin radical Z2 . In §1 and §2 we examine to what extent these
properties characterize such manifolds and their fundamental groups. Closed
H3 × E1 -manifolds also have Euler characteristic 0, but we have only a conjec-
tural characterization of their fundamental groups (§3). In §4 we determine the
mapping tori of self homeomorphisms of geometric 3-manifolds which admit
one of these mixed geometries. (We return to this topic in Chapter 13.) In
§5 we consider the three semisimple geometries. All closed 4-manifolds with
product geometries other than H2 ×H2 are finitely covered by cartesian prod-
ucts. We characterize the fundamental groups of H2 ×H2 -manifolds with this
property; there are also “irreducible” H2×H2 -manifolds which are not virtually
products. Little is known about manifolds admitting one of the two hyperbolic
geometries.

Although it is not yet known whether the disk embedding theorem holds over
lattices for such geometries, we can show that the fundamental group and Euler
characteristic determine the manifold up to s-cobordism (§6). Moreover an
aspherical orientable closed 4-manifold which is finitely covered by a geometric
manifold is homotopy equivalent to a geometric manifold (excepting perhaps if

the geometry is H2 × E2 or S̃L× E1 ).

9.1 Aspherical Seifert fibred 4-manifolds

In Chapter 8 we saw that if M is a closed 4-manifold with fundamental group π
such that χ(M) = 0 and h(

√
π) ≥ 3 then M is homeomorphic to an infrasolv-

manifold. Here we shall show that if χ(M) = 0, h(
√
π) = 2 and [π :

√
π] =∞

then M is homotopy equivalent to a 4-manifold which is Seifert fibred over a
hyperbolic 2-orbifold. (We shall consider the case when χ(M) = 0, h(

√
π) = 2

and [π :
√
π] <∞ in Chapter 10.)
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Theorem 9.1 Let M be a PD4 -complex with fundamental group π . If
χ(M) = 0, π has an elementary amenable normal subgroup ρ with h(ρ) = 2
and H2(π;Z[π]) = 0 then M is aspherical and ρ is virtually abelian.

Proof Since π has one end, by Corollary 1.15.1, β
(2)
1 (π) = 0, by Theorem 2.3,

and H2(π;Z[π]) = 0, M is aspherical, by Corollary 3.5.2. In particular, ρ is
torsion-free and [π : ρ] =∞.

Since ρ is torsion-free elementary amenable and h(ρ) = 2 it is virtually solvable,
by Theorem 1.11. Therefore A =

√
ρ is nontrivial, and as it is characteristic

in ρ it is normal in π . Since A is torsion-free and h(A) ≤ 2 it is abelian, by
Theorem 1.5.

If h(A) = 1 then A is isomorphic to a subgroup of Q and the homomorphism
from B = ρ/A to Aut(A) induced by conjugation in ρ is injective. Since
Aut(A) is isomorphic to a subgroup of Q× and h(B) = 1 either B ∼= Z or
B ∼= Z⊕(Z/2Z). We must in fact have B ∼= Z , since ρ is torsion-free. Moreover
A is not finitely generated and the centre of ρ is trivial. The quotient group
π/A has one end as the image of ρ is an infinite cyclic normal subgroup of
infinite index.

As A is a characteristic subgroup every automorphism of ρ restricts to an au-
tomorphism of A. This restriction from Aut(ρ) to Aut(A) is an epimorphism,
with kernel isomorphic to A, and so Aut(ρ) is solvable. Let C = Cπ(ρ) be the
centralizer of ρ in π . Then C is nontrivial, for otherwise π would be isomor-
phic to a subgroup of Aut(ρ) and hence would be virtually poly-Z . But then A
would be finitely generated, ρ would be virtually abelian and h(A) = 2. More-
over C ∩ ρ = ζρ = 1, so Cρ ∼= C × ρ and c.d.C + c.d.ρ = c.d.Cρ ≤ c.d.π = 4.
The quotient group π/Cρ is isomorphic to a subgroup of Out(ρ).

If c.d.Cρ ≤ 3 then as C is nontrivial and h(ρ) = 2 we must have c.d.C = 1 and
c.d.ρ = h(ρ) = 2. Therefore C is free and ρ is of type FP [Kr86]. By Theorem
1.13 ρ is an ascending HNN group with base a finitely generated subgroup
of A and so has a presentation 〈a, t | tat−1 = an〉 for some nonzero integer
n. We may assume |n| > 1, as ρ is not virtually abelian. The subgroup of
Aut(ρ) represented by (n− 1)A consists of inner automorphisms. Since n > 1
the quotient A/(n − 1)A ∼= Z/(n − 1)Z is finite, and as Aut(A) ∼= Z[1/n]×

it follows that Out(ρ) is virtually abelian. Therefore π has a subgroup σ of
finite index which contains Cρ and such that σ/Cρ is a finitely generated free
abelian group, and in particular c.d.σ/Cρ is finite. As σ is a PD4 -group it
follows from Theorem 9.11 of [Bi] that Cρ is a PD3 -group and hence that ρ is
a PD2 -group. We reach the same conclusion if c.d.Cρ = 4, for then [π : Cρ]
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is finite, by Strebel’s Theorem, and so Cρ is a PD4 -group. As a solvable
PD2 -group is virtually Z2 our original assumption must have been wrong.

Therefore h(A) = 2. As every finitely generated subgroup of ρ is either iso-
morphic to Z o−1 Z or is abelian [ρ : A] ≤ 2.

If h(ρ) = 2, ρ is torsion-free and [π : ρ] = ∞ then H2(π;Z[π]) = 0, by
Theorem 1.17. Can the latter hypothesis in the above theorem be replaced by
“[π : ρ] = ∞”? Some such hypothesis is needed, for if M = S2 × T then
χ(M) = 0 and π ∼= Z2 .

Theorem 9.2 Let M be a PD4 -complex with fundamental group π . If
h(
√
π) = 2, [π :

√
π] =∞ and χ(M) = 0 then M is aspherical and

√
π ∼= Z2 .

Proof As Hs(π;Z[π]) = 0 for s ≤ 2, by Theorem 1.17, M is aspherical, by
Theorem 9.1. We may assume henceforth that

√
π is a torsion-free abelian

group of rank 2 which is not finitely generated.

Suppose first that [π : C] = ∞, where C = Cπ(
√
π). Then c.d.C ≤ 3, by

Strebel’s Theorem. Since
√
π is not finitely generated c.d.

√
π = h(

√
π) +

1 = 3, by Theorem 7.14 of [Bi]. Hence C =
√
π , by Theorem 8.8 of [Bi], so

the homomorphism from π/
√
π to Aut(

√
π) determined by conjugation in π

is a monomorphism. Since
√
π is torsion-free abelian of rank 2 Aut(

√
π) is

isomorphic to a subgroup of GL(2,Q) and therefore any torsion subgroup of
Aut(

√
π) is finite, by Corollary 1.3.1. Thus if π′

√
π/
√
π is a torsion group π′

√
π

is elementary amenable and so π is itself elementary amenable, contradicting
our assumption. Hence we may suppose that there is an element g in π′ which
has infinite order modulo

√
π . The subgroup 〈

√
π, g〉 generated by

√
π and

g is an extension of Z by
√
π and has infinite index in π , for otherwise π

would be virtually solvable. Hence c.d.〈
√
π, g〉 = 3 = h(〈

√
π, g〉), by Strebel’s

Theorem. By Theorem 7.15 of [Bi], L = H2(
√
π;Z) is the underlying abelian

group of a subring Z[m−1] of Q, and the action of g on L is multiplication by a
rational number a/b, where a and b are relatively prime and ab and m have the
same prime divisors. But g acts on

√
π as an element of GL(2,Q)′ ≤ SL(2,Q).

Since L =
√
π∧
√
π , by Proposition 11.4.16 of [Ro], g acts on L via det(g) = 1.

Therefore m = 1 and so L must be finitely generated. But then
√
π must also

be finitely generated, again contradicting our assumption.

Thus we may assume that C has finite index in π . Let A <
√
π be a subgroup of√

π which is free abelian of rank 2. Then A1 is central in C and C/A is finitely
presentable. Since [π : C] is finite A has only finitely many distinct conjugates
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in π , and they are all subgroups of ζC . Let N be their product. Then N is a
finitely generated torsion-free abelian normal subgroup of π and 2 ≤ h(N) ≤
h(
√
C) ≤ h(

√
π) = 2. An LHSSS argument gives H2(π/N ;Z[π/N ]) ∼= Z , and

so π/N is virtually a PD2 -group, by Bowditch’s Theorem. Since
√
π/N is a

torsion group it must be finite, and so
√
π ∼= Z2 .

Corollary 9.2.1 Let M be a closed 4-manifold with fundamental group π .
Then M is homotopy equivalent to one which is Seifert fibred with general fibre
T or Kb over a hyperbolic 2-orbifold if and only if h(

√
π) = 2, [π :

√
π] = ∞

and χ(M) = 0.

Proof This follows from the theorem together with Theorem 7.3.

9.2 The Seifert geometries: H2 × E2 and S̃L× E1

A manifold with geometry H2×E2 or S̃L×E1 is Seifert fibred with base a hy-
perbolic orbifold. However not all such Seifert fibred 4-manifolds are geometric.
We shall show that geometric Seifert fibred 4-manifolds may be characterized
in terms of their fundamental groups. With [Vo77], Theorems 9.5 and 9.6 imply
the main result of [Ke].

Theorem 9.3 Let M be a closed H3 × E1 -, S̃L × E1 - or H2 × E2 -manifold.
Then M has a finite covering space which is diffeomorphic to a product N×S1 .

Proof If M is an H3 × E1 -manifold then π = π1(M) is a discrete cocompact
subgroup of G = Isom(H3 × E1). The radical of this group is Rad(G) ∼= R,
and Go/Rad(G) ∼= PSL(2,C), where Go is the component of the identity in
G. Therefore A = π ∩ Rad(G) is a lattice subgroup, by Proposition 8.27 of
[Rg]. Since R/A is compact the image of π/A in Isom(H3) is again a discrete
cocompact subgroup. Hence

√
π = A ∼= Z .

On passing to a 2-fold covering space, if necessary, we may assume that π ≤
Isom(H3)×R and (hence) ζπ =

√
π . Projection to the second factor maps

√
π

monomorphically to R. Hence on passing to a further finite covering space, if
necessary, we may assume that π ∼= ν×Z , where ν = π/

√
π ∼= π1(N) for some

closed orientable H3 -manifold N . (Note that we do not claim that π = ν × Z
as a subgroup of PSL(2,C)×R.) The foliation of H3×R by lines is preserved
by π , and so induces an S1 -bundle structure on M , with base N . As such
bundles (with aspherical base) are determined by their fundamental groups, M
is diffeomorphic to N × S1 .
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Similar arguments apply if the geometry is X4 = H2 × E2 or S̃L × E1 . If
G = Isom(X4) then Rad(G) ∼= R2 , and PSL(2,R) is a cocompact subgroup
of Go/Rad(G). The intersection A = π ∩ Rad(G) is again a lattice subgroup,
and π/A has a subgroup of finite index which is a discrete cocompact subgroup
of PSL(2,R). Hence

√
π = A ∼= Z2 . Moreover, on passing to a finite covering

space we may assume that ζπ =
√
π and π/

√
π is a PD2 -group. If X4 = H2×E2

then projection to the second factor maps
√
π monomorphically and π preserves

the foliation of H2×R2 by planes. If X4 = S̃L×E1 then
√
π∩ Isom(S̃L) must

be nontrivial, since Isom(S̃L) has no subgroups which are PD2 -groups. (See
page 466 of [Sc83’].) Hence π is virtually a product ν × Z with ν = π1(N)

for some closed orientable S̃L-manifold N . In each case, M is virtually a
product.

There may not be such a covering which is geometrically a cartesian product.
Let ν be a discrete cocompact subgroup of Isom(X) where X = H3 or S̃L
which admits an epimorphism α : ν → Z . Define a homomorphism θ : ν×Z →
Isom(X × E1) by θ(g, n)(x, r) = (g(x), r + n + α(g)

√
2) for all g ∈ ν , n ∈ Z ,

x ∈ X and r ∈ R. Then θ is a monomorphism onto a discrete subgroup which
acts freely and cocompactly on X ×R, but its image in E(1) has rank 2.

Lemma 9.4 Let π be a finitely generated group with normal subgroups A ≤
N such that A is free abelian of rank r , [π : N ] < ∞ and N ∼= A × N/A.
Then there is a homomorphism f : π → E(r) with image a discrete cocompact
subgroup and such that f |A is injective.

Proof Let G = π/N and M = Nab ∼= A⊕(N/AN ′). Then M is a finitely gen-
erated Z[G]-module and the image of A in M is a Z[G]-submodule. Extending
coefficients to the rationals Q gives a natural inclusion QA ≤ QM , since A is
a direct summand of M (as an abelian group), and QA is a Q[G]-submodule
of QM . Since G is finite Q[G] is semisimple, and so QA is a Q[G]-direct
summand of QM . Let K be the kernel of the homomorphism from M to QA
determined by a splitting homomorphism from QM to QA, and let K̃ be the
preimage of K in π . Then K is a Z[G]-submodule of M and M/K ∼= Zr ,
since it is finitely generated and torsion-free of rank r . Moreover K̃ is a nor-
mal subgroup of π and A ∩ K̃ = 1. Hence H = π/K̃ is an extension of G
by M/K and A maps injectively onto a subgroup of finite index in H . Let
T be the maximal finite normal subgroup of H . Then H/T is isomorphic to
a discrete cocompact subgroup of E(r), and the projection of π onto H/T is
clearly injective on A.
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Theorem 9.5 Let M be a closed 4-manifold with fundamental group π . Then
the following are equivalent:

(1) M is homotopy equivalent to a H2 × E2 -manifold;

(2) π has a finitely generated infinite subgroup ρ such that [π : Nπ(ρ)] <∞,√
ρ = 1, ζCπ(ρ) ∼= Z2 and χ(M) = 0;

(3)
√
π ∼= Z2 , [π :

√
π] =∞, [π : Cπ(

√
π)] <∞, eQ(π) = 0 and χ(M) = 0.

Proof If M is a H2×E2 -manifold it is finitely covered by B× T , where B is
a closed hyperbolic surface. Thus (1) implies (2), on taking ρ = π1(B).

If (2) holds M is aspherical and so π is a PD4 -group, by Theorem 9.1. Let
C = Cπ(ρ). Then C is also normal in ν = Nπ(ρ), and C∩ρ = 1, since

√
ρ = 1.

Hence ρ×C ∼= ρ.C ≤ π . Now ρ is nontrivial. If ρ were free then an argument
using the LHSSS for H∗(ν;Q[ν]) would imply that ρ has two ends, and hence
that

√
ρ = ρ ∼= Z . Hence c.d.ρ ≥ 2. Since moreover Z2 ≤ C we must have

c.d.ρ = c.d.C = 2 and [π : ρ.C] < ∞. It follows easily that
√
π ∼= Z2 and

[π : Cπ(
√
π)] <∞. Moreover π has a normal subgroup K of finite index which

contains
√
π and is such that K ∼=

√
π×K/

√
π . In particular, eQ(K) = 0 and

so eQ(π) = 0. Thus (2) implies (3).

If (3) holds M is homotopy equivalent to a manifold which is Seifert fibred over
a hyperbolic orbifold, by Corollary 9.2.1. Since eQ(π) = 0 this manifold has a
finite regular covering which is a product B × T , with π1(T ) =

√
π . Let H be

the maximal solvable normal subgroup of π . Since π/
√
π has no infinite solvable

normal subgroup H/
√
π is finite, and since π is torsion-free the preimage of

any finite subgroup of π/
√
π is

√
π or Z o−1 Z . Then [H :

√
π] ≤ 2, π1(B)

embeds in π/H as a subgroup of finite index and π/H has no nontrivial finite
normal subgroup. Therefore there is a homomorphism h : π → Isom(H2) with
kernel H and image a discrete cocompact subgroup, by the solution to the
Nielsen realization problem for surfaces [Ke83]. By the lemma there is also a
homomorphism f : π → E(2) which maps

√
π to a lattice. The homomorphism

(h, f) : π → Isom(H2×E2) is injective, since π is torsion-free, and its image is
discrete and cocompact. Therefore it is a lattice, and so (3) implies (1).

A similar argument may be used to characterize S̃L× E1 -manifolds.

Theorem 9.6 Let M be a closed 4-manifold with fundamental group π . Then
the following are equivalent:

(1) M is homotopy equivalent to a S̃L× E1 -manifold;

Geometry & Topology Monographs, Volume 5 (2002)



9.3 H3 × E1 -manifolds 185

(2)
√
π ∼= Z2 , [π :

√
π] =∞, [π : Cπ(

√
π)] <∞, eQ(π) 6= 0 and χ(M) = 0.

Proof (Sketch) These conditions are clearly necessary. If they hold M is
aspherical and π has a normal subgroup K of finite index which is a central
extension of a PD+

2 -group G by
√
π . Let e(K) ∈ H2(G;Z2) ∼= Z2 be the class

of this extension. There is an epimorphism λ : Z2 → Z such that λ](e(K)) = 0
in H2(G;Z), and so K/Ker(λ) ∼= G × Z . Hence K ∼= ν × Z , where ν is a

S̃L-manifold group. Let A <
√
π be an infinite cyclic normal subgroup of π

which maps onto K/ν , and let H be the preimage in π of the maximal finite
normal subgroup of π/A. Then [H : A] ≤ 2, ν embeds in π/H as a subgroup
of finite index and π/H has no nontrivial finite normal subgroup. Hence π/H

is a S̃L-orbifold group, by Satz 2.1 of [ZZ82]. (This is another application of
[Ke83]). A homomorphism f : π → E(1) which is injective on H and with
image a lattice may be constructed and the sufficiency of these conditions may
then be established as in Theorem 9.5.

Corollary 9.6.1 A group π is the fundamental group of a closed H2×E2 - or
S̃L×E1 -manifold if and only if it is a PD4 -group,

√
π ∼= Z2 and the action α has

finite image in GL(2,Z). The geometry is H2×E2 if and only if eQ(π) = 0.

Corollary 9.6.2 [Ke] An aspherical Seifert fibred 4-manifold is geometric if
and only if it is finitely covered by a geometric 4-manifold.

A closed 4-manifold M is an H2 × E2 -manifold if and only if it is both Seifert
fibred and also the total space of an orbifold bundle over a flat 2-orbifold and
with general fibre a hyperbolic surface, for the two projections determine a
direct product splitting of a subgroup of finite index, and so eQ(π) = 0.

Similarly, M is a product T ×B with χ(B) < 0 if and only if it fibres both as
a torus bundle and as a bundle with hyperbolic fibre.

9.3 H3 × E1-manifolds

An argument related to that of Theorem 9.5 (using the Virtual Fibration The-
orem [Ag13], and using Mostow rigidity instead of [Ke83]) shows that a 4-
manifold M is homotopy equivalent to an H3 × E1 -manifold if and only if
χ(M) = 0 and π = π1(M) has a normal subgroup of finite index which is iso-
morphic to ρ× Z , where ρ has an infinite FP2 normal subgroup ν of infinite
index, but has no noncyclic abelian subgroup. Moreover, ν is then a PD2 -
group, and every torsion free group π with such subgroups is the fundamental
group of an H3 × E1 -manifold.
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If every PD3 -group is the fundamental group of a closed 3-manifold we could
replace the condition on ν by the simpler condition that ρ have one end. For
then M would be aspherical and hence ρ would be a PD3 -group. An aspheri-
cal 3-manifold whose fundamental group has no noncyclic abelian subgroup is
atoroidal, and hence hyperbolic [B-P].

The foliation of H3 × R by copies of H3 induces a codimension 1 foliation of
any closed H3 × E1 -manifold. If all the leaves are compact then the manifold
is either a mapping torus or the union of two twisted I -bundles. Is this always
the case?

Theorem 9.7 Let M be a closed H3 × E1 -manifold. If ζπ ∼= Z then M is
homotopy equivalent to a mapping torus of a self homeomorphism of an H3 -
manifold; otherwise M is homotopy equivalent to the union of two twisted
I -bundles over H3 -manifold bases.

Proof There is a homomorphism λ : π → E(1) with image a discrete cocom-
pact subgroup and with λ(

√
π) 6= 1, by Lemma 9.4. Let K = Ker(λ). Then

K ∩
√
π = 1, so K is isomorphic to a subgroup of finite index in π/

√
π . There-

fore K ∼= π1(N) for some closed H3 -manifold, since it is torsion-free. If ζπ = Z
then Im(λ) ∼= Z (since ζD = 1); if ζπ = 1 then Im(λ) ∼= D . The theorem now
follows easily.

9.4 Mapping tori

In this section we shall use 3-manifold theory to characterize mapping tori with
one of the geometries H3 × E1 , S̃L× E1 or H2 × E2 .

Theorem 9.8 Let φ be a self homeomorphism of a closed 3-manifold N which
admits the geometry H2×E1 or S̃L. Then the mapping torus M(φ) = N×φS1

admits the corresponding product geometry if and only if the outer automor-
phism [φ∗] induced by φ has finite order. The mapping torus of a self homeo-
morphism φ of an H3 -manifold N admits the geometry H3 × E1 .

Proof Let ν = π1(N) and let t be an element of π = π1(M(φ)) which projects

to a generator of π1(S1). If M(φ) has geometry S̃L × E1 then after passing
to the 2-fold covering space M(φ2), if necessary, we may assume that π is a

discrete cocompact subgroup of Isom(S̃L)×R. As in Theorem 9.3 the intersec-
tion of π with the centre of this group is a lattice subgroup L ∼= Z2 . Since the
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centre of ν is Z the image of L in π/ν is nontrivial, and so π has a subgroup
σ of finite index which is isomorphic to ν × Z . In particular, conjugation by
t[π:σ] induces an inner automorphism of ν .

If M(φ) has geometry H2×E2 a similar argument implies that π has a subgroup
σ of finite index which is isomorphic to ρ×Z2 , where ρ is a discrete cocompact
subgroup of PSL(2,R), and is a subgroup of ν . It again follows that t[π:σ]

induces an inner automorphism of ν .

Conversely, suppose that N has a geometry of type H2 × E1 or S̃L and that
[φ∗] has finite order in Out(ν). Then φ is homotopic to a self homeomorphism
of (perhaps larger) finite order [Zn80] and is therefore isotopic to such a self
homeomorphism [Sc85, BO91], which may be assumed to preserve the geomet-
ric structure [MS86]. Thus we may assume that φ is an isometry. The self
homeomorphism of N × R sending (n, r) to (φ(n), r + 1) is then an isometry
for the product geometry and the mapping torus has the product geometry.

If N is hyperbolic then φ is homotopic to an isometry of finite order, by Mostow
rigidity [Ms68], and is therefore isotopic to such an isometry [GMT03], so the
mapping torus again has the product geometry.

A closed 4-manifold M which admits an effective T -action with hyperbolic base
orbifold is homotopy equivalent to such a mapping torus. For then ζπ =

√
π

and the LHSSS for homology gives an exact sequence

H2(π/ζπ;Q)→ H1(ζπ;Q)→ H1(π;Q).

As π/ζπ is virtually a PD2 -group H2(π/ζπ;Q) ∼= Q or 0, so ζπ/ζπ ∩ π′ has
rank at least 1. Hence π ∼= ν oθ Z where ζν ∼= Z , ν/ζν is virtually a PD2 -
group and [θ] has finite order in Out(ν). If moreover M is orientable then it
is geometric ([Ue90, Ue91] – see also §7 of Chapter 7). Note also that if M is

a S̃L× E1 -manifold then ζπ =
√
π if and only if π ≤ Isomo(S̃L× E1).

Let F be a closed hyperbolic surface and α : F → F a pseudo-Anasov home-
omorphism. Let Θ(f, z) = (α(f), z̄) for all (f, z) in N = F × S1 . Then
N is an H2 × E1 -manifold. The mapping torus of Θ is homeomorphic to an
H3 × E1 -manifold which is not a mapping torus of any self-homeomorphism of
an H3 -manifold. In this case [Θ∗] has infinite order. However if N is a S̃L-
manifold and [φ∗] has infinite order then M(φ) admits no geometric structure,
for then

√
π ∼= Z but is not a direct factor of any subgroup of finite index.

If ζν ∼= Z and ζ(ν/ζν) = 1 then Hom(ν/ν ′, ζν) embeds in Out(ν), and thus
ν has outer automorphisms of infinite order, in most cases [CR77].
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Let N be an aspherical closed X3 -manifold where X3 = H3 , S̃L or H2×E1 , and
suppose that β1(N) > 0 but N is not a mapping torus. Choose an epimorphism
λ : π1(N) → Z and let N̂ be the 2-fold covering space associated to the
subgroup λ−1(2Z). If ν : N̂ → N̂ is the covering involution then µ(n, z) =
(ν(n), z̄) defines a free involution on N × S1 , and the orbit space M is an
X3 × E1 -manifold with β1(M) > 0 which is not a mapping torus.

9.5 The semisimple geometries: H2 ×H2 , H4 and H2(C)

In this section we shall consider the remaining three geometries realizable by
closed 4-manifolds. (Not much is known about H4 or H2(C).)

Let P = PSL(2,R) be the group of orientation preserving isometries of H2 .
Then Isom(H2×H2) contains P ×P as a normal subgroup of index 8. If M is
a closed H2×H2 -manifold then σ(M) = 0 and χ(M) > 0, and M is a complex
surface if (and only if) π1(M) is a subgroup of P ×P . It is reducible if it has a
finite cover isometric to a product of closed surfaces. The fundamental groups
of such manifolds may be characterized as follows.

Theorem 9.9 A group π is the fundamental group of a reducible H2 × H2 -
manifold if and only if it is torsion-free,

√
π = 1 and π has a subgroup of finite

index which is isomorphic to a product of PD2 -groups.

Proof The conditions are clearly necessary. Suppose that they hold. Then π is
a PD4 -group and has a normal subgroup of finite index which is a direct product
K.L ∼= K × L, where K and L are PD2 -groups and ν = Nπ(K) = Nπ(L) has
index at most 2 in π , by Corollary 5.5.2. After enlarging K and L, if necessary,
we may assume that L = Cπ(K) and K = Cπ(L). Hence ν/K and ν/L have no
nontrivial finite normal subgroup. (For if K1 is normal in ν and contains K as a
subgroup of finite index then K1∩L is finite, hence trivial, and so K1 ≤ Cπ(L).)
The action of ν/L by conjugation on K has finite image in Out(K), and so
ν/L embeds as a discrete cocompact subgroup of Isom(H2), by the Nielsen
conjecture [Ke83]. Together with a similar embedding for ν/K we obtain a
homomorphism from ν to a discrete cocompact subgroup of Isom(H2 ×H2).

If [π : ν] = 2 let t be an element of π \ ν , and let j : ν/K → Isom(H2) be an
embedding onto a discrete cocompact subgroup S . Then tKt−1 = L and con-
jugation by t induces an isomorphism f : ν/K → ν/L. The homomorphisms
j and j ◦ f−1 determine an embedding J : ν → Isom(H2×H2) onto a discrete
cocompact subgroup of finite index in S × S . Now t2 ∈ ν and J(t2) = (s, s),
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where s = j(t2K). We may extend J to an embedding of π in Isom(H2×H2)
by defining J(t) to be the isometry sending (x, y) to (y, s.x). Thus (in either
case) π acts isometrically and properly discontinuously on H2×H2 . Since π is
torsion-free the action is free, and so π = π1(M), where M = π\(H2×H2).

Corollary 9.9.1 Let M be a H2 ×H2 -manifold. Then M is reducible if and
only if it has a 2-fold covering space which is homotopy equivalent to the total
space of an orbifold bundle over a hyperbolic 2-orbifold.

Proof That reducible manifolds have such coverings was proven in the the-
orem. Conversely, an irreducible lattice in P × P cannot have any nontrivial
normal subgroups of infinite index, by Theorem IX.6.14 of [Ma]. Hence an
H2 ×H2 -manifold which is finitely covered by the total space of a surface bun-
dle is virtually a cartesian product.

Is the 2-fold covering space itself such a bundle space over a 2-orbifold? In
general we cannot assume that M is itself fibred over a 2-orbifold. Let G be
a PD2 -group with ζG = 1 and let λ : G → Z be an epimorphism. Choose
x ∈ λ−1(1). Then y = x2 is in K = λ−1(2Z), but is not a square in K , and so

π = 〈K ×K, t | t(k, l)t−1 = (xlx−1, k) for all (k, l) ∈ K ×K, t4 = (y, y))〉

is torsion-free. A cocompact free action of G on H2 determines a cocompact
free action of π on H2 × H2 by (k, l).(h1, h2) = (k.h1, l.h2) and t(h1, h2) =
(x.h2, h1), for all (k, l) ∈ K ×K and (h1, h2) ∈ H2 ×H2 . The group π has
no normal subgroup which is a PD2 -group. (Note also that if K is orientable
π\(H2 ×H2) is a compact complex surface.)

We may use Theorem 9.9 to give several characterizations of the homotopy
types of such manifolds.

Theorem 9.10 Let M be a closed 4-manifold with fundamental group π .
Then the following are equivalent:

(1) M is homotopy equivalent to a reducible H2 ×H2 -manifold;

(2) π has an ascendant subgroup G which is FP2 , has one end and such that
Cπ(G) is not a free group, π2(M) = 0 and χ(M) 6= 0;

(3) π has a subgroup ρ of finite index which is isomorphic to a product of
two PD2 -groups and χ(M)[π : ρ] = χ(ρ) 6= 0.

(4) π is virtually a PD4 -group,
√
π = 1 and π has a torsion-free subgroup

of finite index which is isomorphic to a nontrivial product σ × τ where
χ(M)[π : σ × τ ] = (2− β1(σ))(2− β1(τ)).
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Proof As H2 ×H2 -manifolds are aspherical (1) implies (2), by Theorem 9.8.

Suppose now that (2) holds. Then π has one end, by transfinite induction, as in
Theorem 4.8. Hence M is aspherical and π is a PD4 -group, since π2(M) = 0.

Since χ(M) 6= 0 we must have
√
π = 1. (For otherwise β

(2)
i (π) = 0 for

all i, by Theorem 2.3, and so χ(M) = 0.) In particular, every ascendant
subgroup of π has trivial centre. Therefore G ∩ Cπ(G) = ζG = 1 and so
G × Cπ(G) ∼= ρ = G.Cπ(G) ≤ π . Hence c.d.Cπ(G) ≤ 2. Since Cπ(G) is
not free c.d.G × Cπ(G) = 4 and so ρ has finite index in π . (In particular,
[Cπ(Cπ(G)) : G] is finite.) Hence ρ is a PD4 -group and G and Cπ(G) are
PD2 -groups, so π is virtually a product. Thus (2) implies (1), by Theorem 9.9.

It is clear that (1) implies (3). If (3) holds then on applying Theorems 2.2 and
3.5 to the finite covering space associated to ρ we see that M is aspherical,
so π is a PD4 -group and (4) holds. Similarly, M is asperical if (4) holds. In
particular, π is a PD4 -group and so is torsion-free. Since

√
π = 1 neither σ

nor τ can be infinite cyclic, and so they are each PD2 -groups. Therefore π is
the fundamental group of a reducible H2 ×H2 -manifold, by Theorem 9.9, and
M ' π\H2 ×H2 , by asphericity.

The asphericity of M could be ensured by assuming that π be PD4 and
χ(M) = χ(π), instead of assuming that π2(M) = 0.

For H2 ×H2 -manifolds we can give more precise criteria for reducibility.

Theorem 9.11 Let M be a closed H2×H2 -manifold with fundamental group
π . Then the following are equivalent:

(1) π has a subgroup of finite index which is a nontrivial direct product;

(2) Z2 < π ;

(3) π has a nontrivial element with nonabelian centralizer;

(4) π ∩ ({1} × P ) 6= 1;

(5) π ∩ (P × {1}) 6= 1;

(6) M is reducible.

Proof Since π is torsion-free each of the above conditions is invariant under
passage to subgroups of finite index, and so we may assume without loss of
generality that π ≤ P × P . Suppose that σ is a subgroup of finite index in
π which is a nontrivial direct product. Since χ(σ) 6= 0 neither factor can be
infinite cyclic, and so the factors must be PD2 -groups. In particular, Z2 < σ
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and the centraliser of any element of either direct factor is nonabelian. Thus
(1) implies (2) and (3).

Suppose that (a, b) and (a′, b′) generate a subgroup of π isomorphic to Z2 .
Since centralizers of elements of infinite order in P are cyclic the subgroup of
P generated by {a, a′} is infinite cyclic or is finite. We may assume without
loss of generality that a′ = 1, and so (2) implies (4). Similarly, (2) implies (5).

Let g = (g1, g2) ∈ P ×P be nontrivial. Since centralizers of elements of infinite
order in P are infinite cyclic and CP×P (〈g〉) = CP (〈g1〉) × CP (〈g2〉) it follows
that if Cπ(〈g〉) is nonabelian then either g1 or g2 has finite order. Thus (3)
implies (4) and (5).

Let K1 = π∩ ({1}×P ) and K2 = π∩ (P ×{1}). Then Ki is normal in π , and
there are exact sequences

1→ Ki → π → Li → 1,

where Li = pri(π) is the image of π under projection to the ith factor of P×P ,
for i = 1 and 2. Moreover Ki is normalised by L3−i , for i = 1 and 2. Suppose
that K1 6= 1. Then K1 is non abelian, since it is normal in π and χ(π) 6= 0. If
L2 were not discrete then elements of L2 sufficiently close to the identity would
centralize K1 . As centralizers of nonidentity elements of P are abelian, this
would imply that K1 is abelian. Hence L2 is discrete. Now L2\H2 is a quotient
of π\H ×H and so is compact. Therefore L2 is virtually a PD2 -group. Now
c.d.K2 + v.c.d.L2 ≥ c.d.π = 4, so c.d.K2 ≥ 2. In particular, K2 6= 1 and so a
similar argument now shows that c.d.K1 ≥ 2. Hence c.d.K1 ×K2 ≥ 4. Since
K1×K2

∼= K1.K2 ≤ π it follows that π is virtually a product, and M is finitely
covered by (K1\H2) × (K2\H2). Thus (4) and (5) are equivalent, and imply
(6). Clearly (6) implies (1).

The idea used in showing that (4) implies (5) and (6) derives from one used in
the proof of Theorem 6.3 of [Wl85]. Orientable reducible H2 × H2 -manifolds
with isomorphic fundamental group are diffeomorphic [Ca00].

If Γ is a discrete cocompact subgroup of P × P such that M = Γ\H2 ×H2 is
irreducible then Γ ∩ P × {1} = Γ ∩ {1} × P = 1, by the theorem. Hence the
natural foliations of H2 ×H2 descend to give a pair of transverse foliations of
M by copies of H2 . Conversely, if M is a closed Riemannian 4-manifold with a
codimension 2 metric foliation by totally geodesic surfaces then M has a finite
cover which either admits the geometry H2 × E2 or H2 × H2 , or is the total
space of an S2 - or T -bundle over a closed surface, or is the mapping torus of a
self homeomorphism of R3/Z3 , S2 × S1 or a lens space [Ca90].
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An irreducible H2×H2 -lattice is an arithmetic subgroup of Isom(H2×H2), and
has no nontrivial normal subgroups of infinite index, by Theorems IX.6.5 and
14 of [Ma]. Such irreducible lattices are rigid, and so the argument of Theorem
8.1 of [Wa72] implies that there are only finitely many irreducible H2 × H2 -
manifolds with given Euler characteristic. What values of χ are realized by
such manifolds? If M is a closed orientable H2×H2 -manifold then σ(M) = 0,
so χ(M) is even, and χ(M) > 0 [Wl86]. There are examples (“fake quadrics”)
with β1 = 0 and χ(M) = 4 [Dz13].

Irreducible arithmetic H2 × H2 -lattices are commensurable with lattices con-
structed as follows. Let F be a totally real number field, with ring of integers
OF . Let H be a skew field which is a quaternion algebra over F such that
H ⊗σ R ∼= M2(R) for exactly two embeddings σ of F in R. If A is an order in
H (a subring which is also a finitely generated OF -submodule and such that
F.A = H ) then the quotient of the group of units A× by ±1 embeds as a
cocompact irreducible H2×H2 -lattice Γ(A). (It is difficult to pin down a refer-
ence for the claim that this construction realizes all commensurability classes,
but it appears to be “well-known to the experts”. See [Sh63, Bo81].)

Much less is known about closed H4 - or H2(C)-manifolds. There are only
finitely many such manifolds with a given Euler characteristic. (See Theorem
8.1 of [Wa72].) If M is a closed orientable H4 -manifold then σ(M) = 0, so
χ(M) is even, and χ(M) > 0 [Ko92]. The examples of [CM05] and [Da85] have
β1 > 0, and so covers of these realize all positive multiples of 16 and of 26.
No closed H4 -manifold admits a complex structure. If M is a closed H2(C)-
manifold it is orientable and χ(M) = 3σ(M) > 0 [Wl86]. The isometry group
of H2(C) has two components; the identity component is SU(2, 1) and acts via
holomorphic isomorphisms on the unit ball

{(w, z) ∈ C2 : |w|2 + |z|2 < 1}.

There are H2(C)-manifolds with β1 = 2 and χ = 3 [CS10], and so all positive
multiples of 3 are realized. Since H4 and H2(C) are rank 1 symmetric spaces
the fundamental groups can contain no noncyclic abelian subgroups [Pr43]. In
each case there are cocompact lattices which are not arithmetic. At present
there are not even conjectural intrinsic characterizations of such groups. (See
also [Rt] for the geometries Hn and [Go] for the geometries Hn(C).)

Each of the geometries H2 × H2 , H4 and H2(C) admits cocompact lattices
which are not almost coherent. (See §1 of Chapter 4 above, [BM94] and [Ka13],
respectively.) Is this true of every such lattice for one of these geometries?
(Lattices for the other geometries are coherent.)
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9.6 Miscellany

A homotopy equivalence between two closed Hn - or Hn(C)-manifolds of dimen-
sion ≥ 3 is homotopic to an isometry, by Mostow rigidity [Ms68]. Farrell and
Jones have established “topological” analogues of Mostow rigidity, for mani-
folds with a metric of nonpositive sectional curvature and dimension ≥ 5. By
taking cartesian products with S1 , we can use their work in dimension 4 also.

Theorem 9.12 Let X4 be a geometry of aspherical type. A closed 4-manifold
M with fundamental group π is s-cobordant to an X4 -manifold if and only if
π is isomorphic to a cocompact lattice in Isom(X4) and χ(M) = χ(π).

Proof The conditions are clearly necessary. If they hold cM : M → π\X
is a homotopy equivalence, by Theorem 3.5. If X4 is of solvable type cM is
homotopic to a homeomorphism, by Theorem 8.1. In most of the remaining
cases (excepting only S̃L × E1 – see [[Eb82]) the geometry has nonpositive
sectional curvatures, so Wh(π) = Wh(π×Z) = 0 and M×S1 is homeomorphic
to (π\X)× S1 [FJ93’]. Hence M and π\X are s-cobordant, by Lemma 6.10.

The case X4 = S̃L × E1 follows from [NS85] if π ≤ Isomo(S̃L × E1), so that

π\(S̃L×R) admits an effective T -action, and from [HR11] in general.

If M is an aspherical closed 4-manifold with a geometric decomposition π =
π1(M) is built from the fundamental groups of the pieces by amalgamation
along torsion-free virtually poly-Z subgroups. As the Whitehead groups of the
geometric pieces are trivial (by the argument of [FJ86]) and the amalgamated
subgroups are regular noetherian it follows from the K -theoretic Mayer-Vietoris
sequence of Waldhausen that Wh(π) = 0. Is M s-rigid? This is so if all the
pieces are H4 - or H2(C)-manifolds or irreducible H2 × H2 -manifolds, for then
the inclusions of the cuspidal subgroups into the fundamental groups of the
pieces are square-root closed.

For the semisimple geometries we may avoid the appeal to L2 -methods to estab-
lish asphericity as follows. Since χ(M) > 0 and π is infinite and residually finite
there is a subgroup σ of finite index such that the associated covering spaces
Mσ and σ\X are orientable and χ(Mσ) = χ(σ) > 2. In particular, H2(Mσ;Z)
has elements of infinite order. Since the classifying map cMσ : Mσ → σ\X is
2-connected it induces an isomorphism on H2 and hence is a degree-1 map, by
Poincaré duality. Therefore it is a homotopy equivalence, by Theorem 3.2.

Theorem 9.13 An aspherical closed 4-manifold M which is finitely covered
by a geometric manifold is homotopy equivalent to a geometric 4-manifold.
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Proof The result is clear for infrasolvmanifolds, and follows from Theorems
9.5 and 9.6 if the geometry is H2×E2 or S̃L×E1 , and from Theorem 9.9 if M
is finitely covered by a reducible H2×H2 -manifold. It holds for the other closed
H2 × H2 -manifolds and for the geometries H4 and H2(C) by Mostow rigidity.
If the geometry is H3 ×E1 then

√
π ∼= Z and π/

√
π is virtually the group of a

H3 -manifold. Hence π/
√
π acts isometrically and properly discontinuously on

H3 , by Mostow rigidity. Moreover as the hypotheses of Lemma 9.4 are satisfied,
by Theorem 9.3, there is a homomorphism λ : π → D < Isom(E1) which maps√
π injectively. Together these actions determine a discrete and cocompact

action of π by isometries on H3×R. Since π is torsion-free this action is free,
and so M is homotopy equivalent to an H3 × E1 -manifold.

The result holds also for S4 and CP2 , but is not yet clear for S2×E2 or S2×H2 .
It fails for S3 × E1 or S2 × S2 . In particular, there is a closed nonorientable
4-manifold which is doubly covered by S2×S2 but is not homotopy equivalent
to an S2 × S2 -manifold. (See Chapters 11 and 12.)

If π is the fundamental group of an aspherical closed geometric 4-manifold

then β
(2)
s (π) = 0 for s = 0 or 1, and so β

(2)
2 (π) = χ(π), by Theorem 1.35

of [Lü]. Therefore def(π) ≤ min{0, 1− χ(π)}, by Theorems 2.4 and 2.5. If π
is orientable this gives def(π) ≤ 2β1(π) − β2(π) − 1. When β1(π) = 0 this
is an improvement on the estimate def(π) ≤ β1(π) − β2(π) derived from the
ordinary homology of a 2-complex with fundamental group π . (In particular,
the fundamental groups of “fake complex projective planes” – compact complex
surfaces with the rational homology of CP2 , but with geometry H2(C) – have
deficiency ≤ −2.)
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Chapter 10

Manifolds covered by S2 ×R2

If the universal covering space of a closed 4-manifold with infinite fundamental
group is homotopy equivalent to a finite complex then it is either contractible
or homotopy equivalent to S2 or S3 , by Theorem 3.9. The cases when M is
aspherical have been considered in Chapters 8 and 9. In this chapter and the
next we shall consider the spherical cases. We show first that if M̃ ' S2 then M
has a finite covering space which is s-cobordant to a product S2×B , where B
is an aspherical surface, and π is the group of a S2×E2 - or S2×H2 -manifold. In
§2 and §3 we show that there are at most two homotopy types of such manifolds
for each such group π and action u : π → Z/2Z . In §4 we show that all S2 -
and RP 2 -bundles over aspherical closed surfaces are geometric. We shall then
determine the nine possible elementary amenable groups (corresponding to the
geometry S2 × E2 ). Six of these groups have infinite abelianization, and in
§6 we show that for these groups the homotopy types may be distinguished
by their Stiefel-Whitney classes. After some remarks on the homeomorphism
classification, we conclude by showing that every 4-manifold whose fundamental
group is a PD2 -group admits a 2-connected degree-1 map to the total space of
an S2 -bundle. For brevity, we shall let X2 denote both E2 and H2 .

10.1 Fundamental groups

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S2 rests on Bowditch’s Theorem, via Theorem 5.14.

Theorem 10.1 Let M be a closed 4-manifold with fundamental group π .
Then the following conditions are equivalent:

(1) π is virtually a PD2 -group and χ(M) = 2χ(π);

(2) π 6= 1 and π2(M) ∼= Z ;

(3) M has a covering space of degree dividing 4 which is s-cobordant to
S2 ×B , where B is an aspherical closed orientable surface;

(4) M is virtually s-cobordant to an S2 × X2 -manifold.

If these conditions hold then M̃ is homeomorphic to S2 ×R2 .
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Proof If (1) holds then π2(M) ∼= Z , by Theorem 5.10, and so (2) holds. If
(2) holds then the covering space associated to the kernel of the natural action
of π on π2(M) is homotopy equivalent to the total space of an S2 -bundle ξ
over an aspherical closed surface with w1(ξ) = 0, by Lemma 5.11 and Theorem
5.14. On passing to a 2-fold covering space, if necessary, we may assume that
w2(ξ) = w1(M) = 0 also. Hence ξ is trivial and so the corresponding covering
space of M is s-cobordant to a product S2 × B with B orientable. Moreover
M̃ ∼= S2 ×R2 , by Theorem 6.16. It is clear that (3)⇒ (4) and (4)⇒ (1).

This follows also from [Fa74] instead of [Bo04], if we know also that χ(M) ≤ 0.
If π 6= 1 and π2(M) ∼= Z then π and the action u : π → Aut(π2(M)) = Z/2Z
may be realized geometrically.

Theorem 10.2 Let u : π → Z/2Z be a homomorphism such that κ = Ker(u)
is a PD2 -group. Then the pair (π, u) is realized by a closed S2 ×E2 -manifold,
if π is virtually Z2 , and by a closed S2 ×H2 -manifold otherwise.

Proof Let X be R2 , if π is virtually Z2 , or the hyperbolic plane, otherwise.
If π is torsion-free then it is itself a surface group. If π has a nontrivial finite
normal subgroup then it is a direct product (Z/2Z) × κ. In either case π is
the fundamental group of a corresponding product of surfaces. Otherwise π is
a semidirect product κo (Z/2Z) and is a plane motion group, by a theorem of
Nielsen ([Zi]; see also Theorem A of [EM82]). Thus there is a monomorphism
f : π → Isom(X2) with image a discrete subgroup which acts cocompactly on
X , with quotient B = π\X an X2 -orbifold. The homomorphism

(u, f) : π → {±I} × Isom(X2) ≤ Isom(S2 × X2)

is then a monomorphism onto a discrete subgroup which acts freely and cocom-
pactly on S2×X . In all cases the pair (π, u) may be realised geometrically.

The manifold M constructed in Theorem 10.2 is a cartesian product with S2

if u is trivial and fibres over RP 2 otherwise. If π 6∼= (Z/2Z)× κ projection to
X induces an orbifold bundle projection from M to B with general fibre S2 .

10.2 The first k-invariant

The main result of this section is that if π = π1(M) is not a product then
k1(M) = βu(U2), where U ∈ H1(π;F2) = Hom(π, Z/2Z) corresponds to the
action u : π → Aut(π2(M)) and βu is a “twisted Bockstein” described below.

We shall first show that the orientation character w and the action u of π on
π2 determine each other.
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Lemma 10.3 Let M be a PD4 -complex with fundamental group π 6= 1 and
such that π2(M) ∼= Z . Then H2(π;Z[π]) ∼= Z and w1(M) = u + v , where
u : π → Aut(π2(M)) = Z/2Z and v : π → Aut(H2(π;Z[π])) = Z/2Z are the
natural actions.

Proof Since π 6= 1 it is infinite, by Theorem 10.1. Thus HomZ[π](π2(M),Z[π])

= 0 and so Poincaré duality determines an isomorphism D : H2(π;Z[π]) ∼=
π2(M), by Lemma 3.3. Let w = w1(M). Then gD(c) = (−1)w(g)cg−1 =
(−1)v(g)+w(g)c for all c ∈ H2(π;Z[π]) and g ∈ π , and so u = v + w .

Note that u and w1(M) are constrained by the further conditions that κ =
Ker(u) is torsion-free and Ker(w1(M)) has infinite abelianization if χ(M) ≤ 0.
If π < Isom(X2) is a plane motion group then v(g) detects whether g ∈ π
preserves the orientation of X2 . If π ∼= (Z/2Z) × κ then v|Z/2Z = 0 and
v|κ = w1(κ). If π is torsion-free then M is homotopy equivalent to the total
space of an S2 -bundle ξ over an aspherical closed surface B , and the equation
u = w1(M) + v follows from Lemma 5.11.

Let βu be the Bockstein operator associated with the coefficient sequence

0→ Zu → Zu → F2 → 0,

and let βu be the composition with reduction mod (2). In general βu is NOT
the Bockstein operator for the untwisted sequence 0→ Z→ Z→ F2 → 0, and
βu is not Sq1 , as can be seen already for cohomology of the group Z/2Z acting
nontrivially on Z, as βu(H1(Z/2Z : F2)) = 0 if u is nontrivial.

Lemma 10.4 Let M be a PD4 -complex with fundamental group π and such
that π2(M) ∼= Z . If π has nontrivial torsion Hs(M ;F2) ∼= Hs(π;F2) for s ≤ 2.
The Bockstein operator βu : H2(π;F2) → H3(π;Zu) is onto, and reduction
mod (2) from H3(π;Zu) to H3(π;F2) is a monomorphism. The restriction of
k1(M) to each subgroup of order 2 is nontrivial. Its image in H3(M ;Zu) is 0.

Proof These assertions hold vacuously if π is torsion-free, so we may assume
that π has an element of order 2. Then M has a covering space M̂ homotopy
equivalent to RP 2 , and so the mod-2 Hurewicz homomorphism from π2(M)

to H2(M ;F2) is trivial, since it factors through H2(M̂ ;F2). Since we may
construct K(π, 1) from M by adjoining cells to kill the higher homotopy of M
the first assertion follows easily.

The group H3(π;Zu) has exponent dividing 2, since the composition of restric-
tion to H3(κ;Z) = 0 with the corestriction back to H3(π;Zu) is multiplication
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by the index [π : κ]. Consideration of the long exact sequence associated to the
coefficient sequence shows that βu is onto. If f : Z/2Z → π is a monomorphism

then f∗k1(M) is the first k -invariant of M̃/f(Z/2Z) ' RP 2 , which generates
H3(Z/2Z;π2(M)) = Z/2Z . The final assertion is clear.

Lemma 10.5 Let α = ∗kZ/2Z = 〈xi, 1 ≤ i ≤ k | x2
i = 1 ∀ i〉 and let u(xi) =

−1 for all i. Then restriction from α to φ = Ker(u) induces an epimorphism
from H1(α;Zu) to H1(φ;Z).

Proof Let x = x1 and yi = x1xi for all i > 1. Then φ = Ker(u) is free with
basis {y2, . . . , yk} and so α ∼= F (k − 1)o Z/2Z . If k = 2 then α is the infinite
dihedral group D and the lemma follows by direct calculation with resolutions.
In general, the subgroup Di generated by x and yi is an infinite dihedral group,
and is a retract of α. The retraction is compatible with u, and so restriction
maps H1(α;Zu) onto H1(Di;Zu). Hence restriction maps H1(α;Zu) onto each
summand H1(〈yi〉;Z) of H1(φ;Z), and the result follows.

In particular, if k is even then z = Πxi generates a free factor of φ, and
restriction maps H1(α;Zu) onto H1(〈z〉;Z).

Theorem 10.6 Let B be an aspherical 2-orbifold with non-empty singular
locus, and let u : π = πorb1 (B) → Z/2Z be an epimorphism with torsion-free
kernel κ. Suppose that B has r reflector curves and k cone points. Then
H2(π;Zu) ∼= (Z/2Z)r if k > 0 and H2(π;Zu) ∼= Z⊕ (Z/2Z)r−1 if k = 0. In all
cases βu(U2) is the unique element of H3(π;Zu) which restricts non-trivially
to each subgroup of order 2.

Proof If g has order 2 in π then u(g) = −1, and so βu(U2) restricts non-
trivially to the subgroup generated by g .

Suppose first that B has no reflector curves. Then B is the connected sum
of a closed surface G with S(2k), the sphere with k cone points of order 2.
If B = S(2k) then k ≥ 4, since B is aspherical. Hence π ∼= µ ∗Z ν , where
µ = ∗k−2Z/2Z and ν = Z/2Z ∗Z/2Z are generated by cone point involutions.
Otherwise π ∼= µ ∗Z ν , where µ = ∗kZ/2Z and ν = π1(G \D2) is a non-trivial
free group. Every non-trivial element of finite order in such a generalized free
product must be conjugate to one of the involutions. In each case a generator
of the amalgamating subgroup is identified with the product of the involutions
which generate the factors of µ and which is in φ = Ker(u|µ).
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Restriction from µ to Z induces an epimorphism from H1(µ;Zu) to H1(Z;Z),
by Lemma 10.5, and so

H2(π;Zu) ∼= H2(µ;Zu)⊕H2(ν;Zu) = 0,

by the Mayer-Vietoris sequence with coefficients Zu . Similarly,

H2(π;F2) ∼= H2(µ;F2)⊕H2(ν;F2),

by the Mayer-Vietoris sequence with coefficients F2 . Let ei ∈ H2(π;F2) =
Hom(H2)(π);F2),F2) correspond to restriction to the ith cone point. Then
{e1, . . . , e2g+2} forms a basis for H2(π;F2) ∼= F2g+2

2 , and Σei is clearly the
only element with nonzero restriction to all the cone point involutions. Since
H2(π;Zu) = 0 the u-twisted Bockstein maps H2(π;F2) isomorphically onto
H3(π;Zu), and so βu(U2) is the unique such element of H3(π;Zu)

Suppose now that r > 0. Then B = Bo ∪ rJ, where Bo is a connected 2-
orbifold with r boundary components and k cone points, and J = S1 × [[0, 1)
is a product neighbourhood of a reflector circle. Hence π = πG , where G is a
graph of groups with underlying graph a tree having one vertex of valency r with
group ν = πorb1 (Bo), r terminal vertices, with groups γi ∼= πorb1 (J) = Z⊕Z/2Z ,
and r edge groups ωi ∼= Z . If k > 0 then restriction maps H1(ν;Zu) onto
⊕H1(ωi;Z), and then H2(π;Zu) ∼= ⊕H2(γi;Zu) ∼= Z/2Zr . However if k = 0
then H2(π;Zu) ∼= Z ⊕ (Z/2Z)r−1 . The Mayer-Vietoris sequence now gives

H2(π;F2) ∼= H2(ν;F2)⊕ (H2(Z ⊕ Z/2Z;F2))r ∼= F2r+k
2 .

The generator of the second summand of H2(Z ⊕ Z/2Z;F2) is in the image
of reduction modulo (2) from H2(Z ⊕ Z/2Z;Zu), and so is in the kernel of
βu . Therefore the image of βu has a basis corresponding to the cone points
and reflector curves, and we again find that βu(U2) is the unique element of
H3(π;Zu) with non-trivial restriction to each subgroup of order 2.

If π is torsion-free it is a PD2 -group and so k1(M) and βu(U2) are both 0. If
π ∼= (Z/2Z) × κ then the torsion subgroup is unique, and u and w each split
the inclusion of this subgroup. In this case H3(π;Zu) ∼= (Z/2Z)2 , and there are
two classes with nontrivial restriction to the torsion subgroup. Can it be seen a
priori (i.e., without appealing to Theorem 5.16) that the k -invariant must be
standard?

10.3 Homotopy type

Let M be the 4-manifold realizing (π, u) in Theorem 10.2. If u is trivial then
P2(M) ' CP∞×K(π, 1). Otherwise, we may construct a model for P2(M) as
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follows. Let ζ be the involution of K(π, 1) inducing the action of π/κ on κ,
and let σ be the involution of CP∞ given by σ(~z) = [−z1 : z0 : · · · : zn] for all
~z = [z0 : z1 : · · · : zn] in CP∞ = lim−→CPn . Then σ extends the antipodal map

of S2 = CP 1 . Let

P = CP∞ × S∞ ×K(κ, 1)/(z, s, k) ∼ (σ(z),−s, ζ(k)).

The diagonal map of S2 into CP 1 × S2 gives rise to a natural inclusion of M
into P . This map is 3-connected, and so may be identified with fM .

Every PD4 -complex X with π1(X) ∼= (Z/2Z)×κ and π2(X) ∼= Z is homotopy
equivalent to the total space of an RP 2 -bundle, and there are two such bundle
spaces for each pair (π, u), distinguished by w2 . (See §5.3.) As this case is
well-understood, we shall assume in this section that π 6∼= (Z/2Z) × κ. Hence
M is an S2 -orbifold bundle space, and k1(M) = βu(U2), by Theorem 10.6.

Theorem 10.7 Let M be an S2 -orbifold bundle space with π = π1(M) 6= 1.
Then (π, u) is realized by at most two homotopy types of PD4 -complexes X .

Proof Let p : P̃ ' K(Z, 2)→ P be the universal covering of P = P2(M). The
action of π on π2(M) also determines w1(M), by Lemma 10.3. As fM : M → P
is 3-connected we may define a class w in H1(P ;Z/2Z) by f∗Mw = w1(M). Let
SPD4 (P ) be the set of “polarized” PD4 -complexes (X, f), where f : X → P is
3-connected and w1(X) = f∗w , modulo homotopy equivalence over P . (Note
that as π is one-ended the universal cover of X is homotopy equivalent to S2 ).
Let [X] be the fundamental class of X in H4(X;Zw). It follows as in Lemma
1.3 of [HK88] that given two such polarized complexes (X, f) and (Y, g) there
is a map h : X → Y with gh = f if and only if f∗[X] = g∗[Y ] in H4(P ;Zw).
Since X̃ ' Ỹ ' S2 and f and g are 3-connected such a map h must be a
homotopy equivalence.

From the Cartan-Leray homology spectral sequence for the classifying map
cP : P → K(π, 1) we see that there is an exact sequence

0→ H2(π;H2(P̃ )⊗ Zw)/Im(d2
5,0)→ H4(P ;Zw)/J → H4(π;Zw),

where J = H0(π;H4(P̃ ;Z)⊗Zw)/Im(d2
3,2 +d4

5,0) is the image of H4(P̃ ;Z)⊗ Zw
in H4(P ;Zw). On comparing this spectral sequence with that for cX we see
that H3(f ;Zw) is an isomorphism and that f induces an isomorphism from
H4(X;Zw) to H4(P ;Zw)/J . Hence

J ∼= Coker(H4(f ;Zw)) = H4(P,X;Zw) ∼= H0(π;H4(P̃ , X̃;Z)⊗ Zw),
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by the exact sequence of homology with coefficients Zw for the pair (P,X).
Since H4(P̃ , X̃;Z) ∼= Z as a π -module this cokernel is Z if w = 0 and Z/2Z
otherwise. (In particular, d2

32 = d4
50 = 0, since E2

04 is Z or Z/2Z and Hi(π;Z)
is finite for i > 2.) In other words, p and fM induce an isomorphism

H0(π;H4(P̃ ;Zw))⊕H4(M ;Zw) = H0(π;Zw)⊕H4(M ;Zw) ∼= H4(P ;Zw).

Let µ = fM∗[M ] ∈ H4(P ;Zw), and let G be the group of (based) self homotopy
equivalences of P which induce the identity on π and π2(P ). Then G ∼=
H2(π;Zu) [Ru92]. We shall show that there are at most 2 orbits of fundamental
classes of such polarized complexes (up to sign) under the action of G.

This is clear if w 6= 0, so we may assume that w = 0. Suppose first that
u = 0, so π is a PD+

2 -group and k1(M) = 0. Let S = K(π, 1) and C =
CP∞ = K(Z, 2). Then P ' S ×C , so [P, P ] ∼= [P, S]× [P,C] and G ∼= [S,C].
The group structure on [S,C] is determined by the loop-space multiplication
m : C × C → C ' ΩK(Z, 3). This is characterized by the property m∗z =
z ⊗ 1 + 1 ⊗ z , where z is a generator of H2(CP∞;Z). The action of G on P
is given by g̃(s, c) = (s,m(g(s), c)) for all g ∈ G and (s, c) ∈ S × C .

Let σ and γ be fundamental classes for S and CP 1 , respectively. The inclusion
of CP 1 into C induces a bijection [S,CP 1] = [S,C], and the degree of a rep-
resentative map of surfaces determines an isomorphism d : [S,C] = H2(π;Z).
Let j : S × CP 1 → S × C be the natural inclusion. Then ω = j∗(σ ⊗ γ) is
the image of the fundamental class of S × C in H4(P ;Zw) and µ ≡ ω mod-
ulo H0(π;H4(P̃ ;Z)w). Since g̃∗σ = σ + d(g)γ and g̃∗γ = γ , it follows that
g̃∗ω = ω + d(g)m∗[γ ⊗ γ].

Since m∗(z2) = z2 ⊗ 1 + 2z ⊗ z + 1 ⊗ z2 and the restriction of z2 to CP 1 is
trivial it follows that m∗(z2)([γ ⊗ γ]) = 2, and so m∗[γ ⊗ γ] = 2[CP 2], where
[CP 2] is the canonical generator of H4(CP∞;Z). Hence there are two G-orbits
of elements in H4(P ;Zw) whose images agree with µ modulo H0(π;H4(P̃ ;Z)).

In general let Mκ and Pκ denote the covering spaces corresponding to the
subgroup κ, and let Gκ be the group of self homotopy equivalences of Pκ .
Lifting self homotopy equivalences defines a homomorphism from G to Gκ ,
which may be identified with the restriction from H2(π;Zu) to H2(κ;Z) ∼= Z,
and which has image of index ≤ 2 (see [Ts80]). Let q : Pκ → P and qM :
Mκ →M be the projections. Then q∗fMκ∗[Mκ] = 2µ modulo H0(π;H4(P̃ ;Z)).
It follows easily that if g ∈ G and d(g|κ) = d then g̃∗(µ) = µ + d[CP 2]. Thus
there are again at most two G-orbits of elements in H4(P ;Zw) whose images
agree with µ modulo H0(π;H4(P̃ ;Z)w). This proves the theorem.
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It is clear from the above argument that the polarized complexes are detected
by the image of the mod-(2) fundamental class in H4(P ;F2) ∼= F2

2 , which is
generated by the images of [M ] and [CP 2].

Theorem 10.8 Let M be a S2 -orbifold bundle space with π = π1(M) 6= 1.
Then the images of [M ] and [M τ ] in H4(P2(M);F2) are distinct.

Proof We may assume that M is the geometric 4-manifold realizing (π, u), as
constructed in Theorem 10.2. Let κ = Ker(u). The Postnikov map fM (given
by fM ([s, x]) = [s, s, x] for (s, x) ∈ S2 × X ) embeds M as a submanifold of
CP 1 × S2 ×K(κ, 1)/ ∼ in P = P2(M). The projection of CP∞ × S∞ ×K(κ, 1)
onto its first two factors induces a map g : P → Q = CP∞ × S∞/(z, s) ∼
(σ(z),−s) which is in fact a bundle projection with fibre K(κ, 1). Since gfM
factors through S2 the image of [M ] in H4(Q;F2) is trivial.

Let v : S2 × D2 → V ⊂ M be a fibre-preserving homeomorphism onto a
regular neighbourhood of a general fibre. Since V is 1-connected fM |V factors
through CP∞ × S∞ ×K(κ, 1). Let f1 and f2 be the composites of a fixed lift
of fMvτ : S2 × S1 → P with the projections to CP∞ and S∞ , respectively.
Let F1 be the extension of f1 given by

F1([z0 : z1], d) = [dz0 : z1 : (1− |d|)z0]

for all [z0 : z1] ∈ S2 = CP 1 and d ∈ D2 . Since f2 maps S2 × S1 to S2 it is
nullhomotopic in S3 , and so extends to a map F2 : S2 ×D2 → S3 . Then the
map F : M τ → P given by f on M \N and F (s, d) = [F1(s), F2(s), d] for all
(s, d) ∈ S2 ×D2 is 3-connected, and so F = fMτ .

Now F1 maps the open subset U = C× intD2 with z0 6= 0 bijectively onto its
image in CP 2 , and maps V onto CP 2 . Let ∆ be the image of CP 1 under the
diagonal embedding in CP 1×CP 1 ⊂ CP 2 × S3 . Then (F1, F2) carries [V, ∂V ]
to the image of [CP 2, CP 1] in H4(CP 2 × S3,∆;F2). The image of [V, ∂V ]
generates H4(M,M \U ;F2). A diagram chase now shows that [M τ ] and [CP 2]
have the same image in H4(Q;F2), and so [M τ ] 6= [M ] in H4(P2(M);F2).

It remains to consider the action of Aut(P ). Since M is geometric Aut(π) acts
isometrically. The antipodal map on the fibres defines a self-homeomorphism
which induces −1 on π2(M). These automorphisms clearly fix H4(P ;F2). Thus
it is enough to consider the action of G = H2(π;Zu) on H2(π;Zu).

Corollary 10.8.1 Every 4-manifold realizing (π, u) is homotopy equivalent
to M or M τ . If B = X/π has no reflector curves then M τ 6'M .
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Proof The first assertion holds since the image of the fundamental class in
H4(P2(M);F2) must generate mod [CP 2], and so be [M ] or [M ] + [CP 2].

If B is nonsingular then Gluck reconstruction changes the self-intersection of
a section, and hence changes the Wu class v2(M). If B has cone points but
no reflector curves then H2(π;Zu) = 0, by Theorem 10.6, and so M τ 6'M , by
Theorem 10.8.

If the base B has a reflector curve which is “untwisted” for u, then p and pτ

are isomorphic as orbifold bundles over B , and so M τ ∼= M . (See [Hi13].)

10.4 Bundle spaces are geometric

All S2×X2 -manifolds are total spaces of orbifold bundles over X2 -orbifolds. We
shall determine the S2 - and RP 2 -bundle spaces among them in terms of their
fundamental groups, and then show that all such bundle spaces are geometric.

Lemma 10.9 Let J = (A, θ) ∈ O(3) × Isom(X2) be an isometry of order 2
which is fixed point free. Then A = −I . If moreover J is orientation reversing
then θ = idX or has a single fixed point.

Proof Since any involution of R2 (such as θ) must fix a point, a line or be
the identity, A ∈ O(3) must be a fixed point free involution, and so A = −I .
If J is orientation reversing then θ is orientation preserving, and so must fix a
point or be the identity.

Theorem 10.10 Let M be a closed S2×X2 -manifold with fundamental group
π . Then

(1) M is the total space of an orbifold bundle with base an X2 -orbifold and
general fibre S2 or RP 2 ;

(2) M is the total space of an S2 -bundle over a closed aspherical surface if
and only if π is torsion-free;

(3) M is the total space of an RP 2 -bundle over a closed aspherical surface
if and only if π ∼= (Z/2Z)×K , where K is torsion-free.

Proof (1) The group π is a discrete subgroup of Isom(S2 × X2) = O(3) ×
Isom(X2) which acts freely and cocompactly on S2 ×R2 . In particular, N =
π ∩ (O(3)× {1}) is finite and acts freely on S2 , so has order ≤ 2. Let p1 and
p2 be the projections of Isom(S2×X2) onto O(3) and Isom(X2), respectively.
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Then p2(π) is a discrete subgroup of Isom(X2) which acts cocompactly on R2 ,
and so has no nontrivial finite normal subgroup. Hence N is the maximal finite
normal subgroup of π . Projection of S2 × R2 onto R2 induces an orbifold
bundle projection of M onto p2(π)\R2 and general fibre N\S2 . If N 6= 1
then N ∼= Z/2Z and π ∼= (Z/2Z) × κ, where κ = Ker(u) is a PD2 -group, by
Theorem 5.14.

(2) The condition is clearly necessary. (See Theorem 5.10). The kernel of the
projection of π onto its image in Isom(X2) is the subgroup N . Therefore if π
is torsion-free it is isomorphic to its image in Isom(X2), which acts freely on
R2 . The projection ρ : S2 × R2 → R2 induces a map r : M → π\R2 , and we
have a commutative diagram:

S2 ×R2 ρ−−−−→ R2yf yf̄
M = π\(S2 ×R2)

r−−−−→ π\R2

where f and f̄ are covering projections. It is easily seen that r is an S2 -bundle
projection.

(3) The condition is necessary, by Theorem 5.16. Suppose that it holds. Then
K acts freely and properly discontinuously on R2 , with compact quotient.
Let g generate the torsion subgroup of π . Then p1(g) = −I , by Lemma
10.9. Since p2(g)2 = idR2 the fixed point set F = {x ∈ R2 | p2(g)(x) = x}
is nonempty, and is either a point, a line, or the whole of R2 . Since p2(g)
commutes with the action of K on R2 we have KF = F , and so K acts freely
and properly discontinuously on F . But K is neither trivial nor infinite cyclic,
and so we must have F = R2 . Hence p2(g) = idR2 . The result now follows, as
K\(S2 × R2) is the total space of an S2 -bundle over K\R2 , by part (1), and
g acts as the antipodal involution on the fibres.

If the S2×X2 -manifold M is the total space of an S2 -bundle ξ then w1(ξ) = u
and is detected by the determinant: det(p1(g)) = (−1)w1(ξ)(g) for all g ∈ π .

The total space of an RP 2 -bundle over B is the quotient of its orientation dou-
ble cover (which is an S2 -bundle over B ) by the fibrewise antipodal involution,
and so there is a bijective correspondance between orientable S2 -bundles over
B and RP 2 -bundles over B .

Let i = ( 1
0 )) and j = ( 0

1 )), and let (A, β,C) ∈ O(3)×E(2) = O(3)×(R2oO(2))
be the S2 × E2 -isometry which sends (v, x) ∈ S2 ×R2 to (Av,Cx+ β).
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Theorem 10.11 Let M be the total space of an S2 - or RP 2 -bundle over T
or Kb. Then M admits the geometry S2 × E2 .

Proof Let Ri ∈ O(3) be the reflection of R3 which changes the sign of the ith

coordinate, for i = 1, 2, 3. If A and B are products of such reflections then the
subgroups of Isom(S2 × E2) generated by α = (A, i, I) and β = (B, j, I) are
discrete, isomorphic to Z2 and act freely and cocompactly on S2×R2 . Taking

(1) A = B = I ;

(2) A = R1R2, B = R1R3 ;

(3) A = R1, B = I ; and

(4) A = R1, B = R1R2

gives four S2 -bundles ηi over the torus. If instead we use the isometries α =
(A, 1

2 i,
(

1 0
0 −1

)
) and β = (B, j, I) we obtain discrete subgroups isomorphic to

Zo−1Z which act freely and cocompactly. Taking

(1) A = R1, B = I ;

(2) A = R1, B = R2R3 ;

(3) A = I,B = R1 ;

(4) A = R1R2, B = R1 ;

(5) A = B = I ; and

(6) A = I,B = R1R2

gives six S2 -bundles ξi over the Klein bottle.

To see that these are genuinely distinct, we check first the fundamental groups,
then the orientation character of the total space; consecutive pairs of genera-
tors determine bundles with the same orientation character, and we distinguish
these by means of the second Stiefel-Whitney classes, by computing the self-
intersections of sections of the bundle. (See Lemma 5.11.(3).) We shall use the
stereographic projection of S2 ⊂ R3 = C×R onto CP 1 = C∪{∞}, to identify
the reflections Ri : S2 → S2 with the antiholomorphic involutions:

z
R17−→ − z, z

R27−→z, z
R37−→z−1.

Let T = {(s, t) ∈ R2|0 ≤ s, t ≤ 1} be the fundamental domain for the standard
action of Z2 on R2 . Sections of ξi correspond to functions σ : T→ S2 such that
σ(1, t) = A(σ(0, t)) and σ(s, 1) = B(σ(s, 0)) for all (s, t) ∈ ∂T. In particular,
points of S2 fixed by both A and B determine sections.
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As the orientable cases (η1 , η2 , ξ1 and ξ2 ) have been treated in [Ue90] we
may concentrate on the nonorientable cases. In the case of η3 fixed points of
A determine sections, since B = I , and the sections corresponding to distinct
fixed points are disjoint. Since the fixed-point set of A on S2 is a circle all such
sections are isotopic. Therefore σ ·σ = 0, so v2(M) = 0 and hence w2(η3) = 0.

We may define a 1-parameter family of sections for η4 by

σλ(s, t) = λ(2t2 − 1 + i(2s− 1)(2t− 1)).

Now σ0 and σ1 intersect transversely in a single point, corresponding to s = 1
2

and t = 1√
2

. Hence σ · σ = 1, so v2(M) 6= 0 and w2(η4) 6= 0.

The remaining cases correspond to S2 -bundles over Kb with nonorientable total
space. We now take K = {(s, t) ∈ R2|0 ≤ s ≤ 1

2 , |t| ≤
1
2} as the fundamental

domain for the action of Zo−1Z on R2 , and seek functions σ : K → S2 such
that σ(1

2 , t) = A(σ(0,−t)) and σ(s, 1
2) = B(σ(s,−1

2)) for all (s, t) ∈ ∂K.

The cases of ξ3 and ξ5 are similar to that of η3 : there are obvious one-parameter
families of disjoint sections, and so w2(ξ3) = w2(ξ5) = 0. However w1(ξ3) 6=
w1(ξ5). (In fact ξ5 is the product bundle).

The functions σλ(s, t) = λ(4s− 1 + it) define a 1-parameter family of sections
for ξ4 such that σ0 and σ1 intersect transversely in one point, so that σ ·σ = 1.
Hence v2(M) 6= 0 and so w2(ξ4) 6= 0.

For ξ6 the functions σλ(s, t) = λ(4s−1)t+i(1−λ)(4t2−1) define a 1-parameter
family of sections such that σ0 and σ1(s, t) intersect transversely in one point,
so that σ · σ = 1. Hence v2(M) 6= 0 and so w2(ξ6) 6= 0.

Thus these bundles are all distinct, and so all S2 -bundles over T or Kb are
geometric of type S2 × E2 .

Adjoining the fixed point free involution (−I, 0, I) to any one of the above ten
sets of generators for the S2 -bundle groups amounts to dividing out the S2

fibres by the antipodal map and so we obtain the corresponding RP 2 -bundles.
(Note that there are just four such RP 2 -bundles – but each has several distinct
double covers which are S2 -bundles).

Theorem 10.12 Let M be the total space of an S2 - or RP 2 -bundle over a
closed hyperbolic surface. Then M admits the geometry S2 ×H2 .

Proof Let Tg be the closed orientable surface of genus g , and let Tg ⊂ H2 be
a 2g -gon representing the fundamental domain of Tg . The map Ω : Tg → T
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that collapses 2g − 4 sides of Tg to a single vertex in the rectangle T induces
a degree-1 map Ω̂ from Tg to T that collapses g− 1 handles on T g to a single
point on T . (We may assume the induced epimorphism from

π1(Tg) = 〈a1, b1, . . . , ag, bg | Πg
i=1[ai, bi] = 1〉

to Z2 kills the generators aj , bj for j > 1). Hence given an S2 -bundle ξ over
T with total space Mξ = Γξ\(S2 × E2), where

Γξ = {(ξ(h), h) | h ∈ π1(T )} ≤ Isom(S2 × E2)

and ξ : Z2 → O(3) is as in Theorem 10.11, the pullback Ω̂∗(ξ) is an S2 -bundle
over Tg , with total space MξΩ = ΓξΩ\(S2 × H2), where ΓξΩ = {(ξΩ̂∗(h), h) |
h ∈ Π1(T g)} ≤ Isom(S2 ×H2). As Ω̂ is a degree-1 map, it induces monomor-
phisms in cohomology, so w(ξ) is nontrivial if and only if w(Ω̂∗(ξ)) = Ω̂∗w(ξ)
is nontrivial. Hence all S2 -bundles over T g for g ≥ 2 are geometric of type
S2 ×H2 .

Suppose now that B is the closed surface ]3RP 2 = T]RP 2 = Kb]RP 2 . Then
there is a map Ω̂ : T]RP 2 → RP 2 that collapses the torus summand to a single
point. This map Ω̂ is again a degree-1 map, and so induces monomorphisms
in cohomology. In particular Ω̂∗ preserves the orientation character, that is
w1(Ω̂∗(ξ)) = Ω̂∗w1(RP 2) = w1(B), and is an isomorphism on H2 . We may
pull back the four S2 -bundles ξ over RP 2 along Ω̂ to obtain the four bundles
over B with first Stiefel-Whitney class w1(Ω̂∗ξ) either 0 or w1(B).

Similarly there is a map Υ̂ : Kb]RP 2 → RP 2 that collapses the Klein bot-
tle summand to a single point. This map Υ̂ has degree 1 mod (2) so that
Υ̂∗w1(RP 2) has nonzero square since w1(RP 2)2 6= 0. Note that in this case
Υ̂∗w1(RP 2) 6= w1(B). Hence we may pull back the two S2 -bundles ξ over
RP 2 with w1(ξ) = w1(RP 2) to obtain a further two bundles over B with
w1(Υ̂∗(ξ))2 = Υ̂∗w1(ξ)2 6= 0, as Υ̂ is a ring monomorphism.

There is again a map Θ̂ : Kb]RP 2 → Kb that collapses the projective plane
summand to a single point. Once again Θ̂ is of degree 1 mod (2), so that we
may pull back the two S2 -bundles ξ over Kb with w1(ξ) = w1(Kb) along Θ̂ to
obtain the remaining two S2 -bundles over B . These two bundles Θ̂∗(ξ) have
w1(Θ̂∗(ξ)) 6= 0 but w1(Θ̂∗(ξ))2 = 0; as w1(Kb) 6= 0 but w1(Kb)2 = 0 and Θ̂∗

is a monomorphism.

Similar arguments apply to bundles over ]nRP 2 where n > 3.

Thus all S2 -bundles over all closed aspherical surfaces are geometric. Further-
more since the antipodal involution of a geometric S2 -bundle is induced by an
isometry (−I, idH2) ∈ O(3) × Isom(H2) we have that all RP 2 -bundles over
closed aspherical surfaces are geometric.
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An alternative route to Theorems 10.11 and 10.12 would be to first show that
orientable 4-manifolds which are total spaces of S2 -bundles are geometric, then
deduce that RP 2 -bundles are geometric (as above); and finally observe that
every S2 -bundle space double covers an RP 2 -bundle space.

The other S2 × X2 -manifolds are S2 -orbifold bundle spaces. It can be shown
that there are at most two such orbifold bundles with given base orbifold B and
action u, differing by (at most) Gluck reconstruction. If B has a reflector curve
they are isomorphic as orbifold bundles. Otherwise B has an even number of
cone points and the bundles are distinct. The bundle space is geometric except
when B is orientable and π is generated by involutions, in which case the action
is unique and there is one non-geometric orbifold bundle. (See [Hi13].)

If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then every F -bundle over RP 2 is geometric,
by Lemma 5.21 and the remark following Theorem 10.2.

It is not generally true that the projection of S2 × X onto S2 induces an
orbifold bundle projection from M to an S2 -orbifold. For instance, if ρ and
ρ′ are rotations of S2 about a common axis which generate a rank 2 abelian
subgroup of SO(3) then (ρ, (1, 0)) and (ρ′, (0, 1)) generate a discrete subgroup
of SO(3)×R2 which acts freely, cocompactly and isometrically on S2×R2 . The
orbit space is homeomorphic to S2×T . (It is an orientable S2 -bundle over the
torus, with disjoint sections, detemined by the ends of the axis of the rotations).
Thus it is Seifert fibred over S2 , but the fibration is not canonically associated
to the metric structure, for 〈ρ, ρ′〉 does not act properly discontinuously on S2 .

10.5 Fundamental groups of S2 × E2-manifolds

We shall show first that if M is a closed 4-manifold any two of the conditions
“χ(M) = 0”, “π1(M) is virtually Z2” and “π2(M) ∼= Z” imply the third, and
then determine the possible fundamental groups.

Theorem 10.13 Let M be a closed 4-manifold with fundamental group π .
Then the following conditions are equivalent:

(1) π is virtually Z2 and χ(M) = 0;

(2) π has an ascendant infinite restrained subgroup and π2(M) ∼= Z ;

(3) χ(M) = 0 and π2(M) ∼= Z ; and

(4) M has a covering space of degree dividing 4 which is homeomorphic to
S2 × T .

(5) M is virtually homeomorphic to an S2 × E2 -manifold.
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Proof If π is virtually a PD2 -group and either χ(π) = 0 or π has an ascen-
dant infinite restrained subgroup then π is virtually Z2 . Hence the equivalence
of these conditions follows from Theorem 10.1, with the exception of the asser-
tions regarding homeomorphisms, which then follow from Theorem 6.11.

We shall assume henceforth that the conditions of Theorem 10.13 hold, and shall
show next that there are nine possible groups. Seven of them are 2-dimensional
crystallographic groups, and we shall give also the name of the corresponding
E2 -orbifold, following Appendix A of [Mo]. (The restriction on finite subgroups
eliminates the remaining ten E2 -orbifold groups from consideration).

Theorem 10.14 Let M be a closed 4-manifold such that π = π1(M) is
virtually Z2 and χ(M) = 0. Let F be the maximal finite normal subgroup of
π . If π is torsion-free then either

(1) π =
√
π ∼= Z2 (the torus); or

(2) π ∼= Zo−1Z (the Klein bottle).
If F = 1 but π has nontrivial torsion and [π :

√
π] = 2 then either

(3) π ∼= D × Z ∼= (Z ⊕ (Z/2Z)) ∗Z (Z ⊕ (Z/2Z)), with the presentation
〈s, x, y | x2 = y2 = 1, sx = xs, sy = ys〉 (the silvered annulus A); or

(4) π ∼= D oτ Z ∼= Z ∗Z (Z ⊕ (Z/2Z)), with the presentation
〈t, x | x2 = 1, t2x = xt2〉 (the silvered Möbius band Mb); or

(5) π ∼= (Z2)o−I (Z/2Z) ∼= D ∗Z D , with the presentations
〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, st = ts〉 and (setting y = xt)
〈s, x, y | x2 = y2 = 1, xsx = ysy = s−1〉 (the pillowcase S(2222)).
If F = 1 and [π :

√
π] = 4 then either

(6) π ∼= D ∗Z (Z ⊕ (Z/2Z)), with the presentations
〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, tst−1 = s−1〉 and
(setting y = xt) 〈s, x, y | x2 = y2 = 1, xsx = s−1, ys = sy〉 (D(22)); or

(7) π ∼= Z ∗Z D , with the presentations
〈r, s, x | x2 = 1, xrx = r−1, xsx = rs−1, srs−1 = r−1〉 and
(setting t = xs) 〈t, x | x2 = 1, xt2x = t−2〉 (P (22)).
If F is nontrivial then either

(8) π ∼= Z2 ⊕ (Z/2Z); or

(9) π ∼= (Zo−1Z)× (Z/2Z).

Proof Let u : π → {±1} = Aut(π2(M)) be the natural homomorphism. Since
κ = Ker(u) is torsion-free it is either Z2 or Zo−1Z ; since it has index at most 2
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it follows that [π :
√
π] divides 4 and F has order at most 2. If F = 1 then

√
π ∼=

Z2 and π/
√
π acts effectively on

√
π , so π is a 2-dimensional crystallographic

group. If F 6= 1 then it is central in π and u maps F isomorphically to Z/2Z ,
so π ∼= (Z/2Z)× κ.

Each of these groups may be realised geometrically, by Theorem 10.2. It is easy
to see that any S2×E2 -manifold whose fundamental group has infinite abelian-
ization is a mapping torus, and hence is determined up to diffeomorphism by its
homotopy type. (See Theorems 10.11 and 10.15). We shall show next that there
are four affine diffeomorphism classes of S2 ×E2 -manifolds whose fundamental
groups have finite abelianization.

Let Ω be a discrete subgroup of Isom(S2 × E2) = O(3) × E(2) which acts
freely and cocompactly on S2 × R2 . If Ω ∼= D ∗Z D or D ∗Z (Z ⊕ (Z/2Z))
it is generated by elements of order 2, and so p1(Ω) = {±I}, by Lemma 10.9.
Since p2(Ω) < E(2) is a 2-dimensional crystallographic group it is determined
up to conjugacy in Aff(2) = R2 o GL(2,R) by its isomorphism type, Ω is
determined up to conjugacy in O(3)×Aff(2) and the corresponding geometric
4-manifold is determined up to affine diffeomorphism.

Although Z ∗Z D is not generated by involutions, a similar argument applies.
The isometries T = (τ, 1

2 j,
(−1 0

0 1

)
) and X = (−I, 1

2(i + j),−I) generate a
discrete subgroup of Isom(S2×E2) isomorphic to Z ∗ZD and which acts freely
and cocompactly on S2 × R2 , provided τ2 = I . Since x2 = (xt2)2 = 1 this
condition is necessary, by Lemma 10.6. Conjugation by the reflection across the
principal diagonal of R2 induces an automorphism which fixes X and carries
T to XT . Thus we may assume that T is orientation preserving, i.e., that
det(τ) = −1. (The isometries T 2 and XT then generate κ = Ker(u)). Thus
there are two affine diffeomorphism classes of such manifolds, corresponding to
the choices τ = −I or R3 .

None of these manifolds fibre over S1 , since in each case π/π′ is finite. However
if Ω is a S2 ×E2 -lattice such that p1(Ω) ≤ {±I} then Ω\(S2 ×R2) fibres over
RP 2 , since the map sending (v, x) ∈ S2×R2 to [±v] ∈ RP 2 is compatible with
the action of Ω. If p1(Ω) = {±I} the fibre is ω\R2 , where ω = Ω∩({1}×E(2));
otherwise it has two components. Thus three of these four manifolds fibre over
RP 2 (excepting perhaps only the case Ω ∼= Z ∗Z D and R3 ∈ p1(Ω)).

10.6 Homotopy types of S2 × E2-manifolds

Our next result shows that if M satisfies the conditions of Theorem 10.13 and
its fundamental group has infinite abelianization then it is determined up to
homotopy by π1(M) and its Stiefel-Whitney classes.
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Theorem 10.15 Let M be a closed 4-manifold such that π = π1(M) is
virtually Z2 and χ(M) = 0. If π/π′ is infinite then M is homotopy equivalent
to an S2 × E2 -manifold which fibres over S1 .

Proof The infinite cyclic covering space of M determined by an epimorphism
λ : π → Z is a PD3 -complex, by Theorem 4.5, and therefore is homotopy
equivalent to

(1) S2 × S1 (if Ker(λ) ∼= Z is torsion-free and w1(M)|Ker(λ) = 0),

(2) S2×̃S1 (if Ker(λ) ∼= Z and w1(M)|Ker(λ) 6= 0),

(3) RP 2 × S1 (if Ker(λ) ∼= Z ⊕ (Z/2Z)) or

(4) RP 3]RP 3 (if Ker(λ) ∼= D).

Therefore M is homotopy equivalent to the mapping torus M(φ) of a self
homotopy equivalence of one of these spaces.

The group of free homotopy classes of self homotopy equivalences E(S2×S1) is
generated by the reflections in each factor and the twist map, and has order 8.
The groups E(S2×̃S1) and E(RP 2×S1) are each generated by the reflection in
the second factor and a twist map, and have order 4. (See [KR90] for the case
of S2×̃S1 .) Two of the corresponding mapping tori of self-homeomorphisms of
S2×̃S1 also arise from self homeomorphisms of S2 × S1 . The other two have
nonintegral w1 . As all these mapping tori are also S2 - or RP 2 -bundles over
the torus or Klein bottle, they are geometric by Theorem 10.11.

The group E(RP 3]RP 3) is generated by the reflection interchanging the sum-
mands and the fixed point free involution (cf. page 251 of [Ba’]), and has order
4. Let α = (−I, 0,

(−1 0
0 1

)
), β = (I, i, I) γ = (I, j, I) and δ = (−I, j, I). Then

the subgroups generated by {α, β, γ}, {α, β, δ}, {α, βγ} and {α, βδ}, respec-
tively, give the four RP 3]RP 3 -bundles. (Note that these may be distinguished
by their groups and orientation characters).

A T -bundle over RP 2 with ∂ = 0 which does not also fibre over S1 has
fundamental group D ∗Z D , while the group of a Kb-bundle over RP 2 which
does not also fibre over S1 is D ∗Z (Z ⊕ (Z/2Z)) or Z ∗Z D .

When π is torsion-free every homomorphism from π to Z/2Z is the orientation
character of some M with fundamental group π . However if π ∼= D × Z or
D oτ Z the orientation character must be trivial on all elements of order 2,
while it is determined up to composition with an automorphism of π if F 6= 1.
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Theorem 10.16 Let M be a closed 4-manifold such that χ(M) = 0 and
π = π1(M) is an extension of Z by a finitely generated infinite normal subgroup
ν with a nontrivial finite normal subgroup F . Then M is homotopy equivalent
to the mapping torus of a self homeomorphism of RP 2 × S1 .

Proof The covering space Mν corresponding to the subgroup ν is a PD3 -
space, by Theorem 4.5. Therefore Mν ' RP 2 × S1 , by Theorem 2.11. Since
every self-homotopy equivalence of RP 2×S1 is homotopic to a homeomorphism
M is homotopy equivalent to a mapping torus.

The possible orientation characters for the groups with finite abelianization
are restricted by Lemma 3.14, which implies that Ker(w1) must have infinite
abelianization. For D ∗Z D we must have w1(x) = w1(y) = 1 and w1(s) = 0.
For D ∗Z (Z ⊕ (Z/2Z)) we must have w1(s) = 0 and w1(x) = 1; since the
subgroup generated by the commutator subgroup and y is isomorphic to D×Z
we must also have w1(y) = 0. Thus the orientation characters are uniquely
determined for these groups. For Z ∗Z D we must have w1(x) = 1, but w1(t)
may be either 0 or 1. As there is an automorphism φ of Z ∗Z D determined by
φ(t) = xt and φ(x) = x we may assume that w1(t) = 0 in this case.

In all cases, to each choice of orientation character there corresponds an unique
action of π on π2(M), by Lemma 10.9. However the homomorphism from π to
Z/2Z determining the action may differ from w1(M). (Note also that elements
of order 2 must act nontrivially, by Theorem 10.1).

In the first version of this book we used elementary arguments involving cochain
computations of cup product in low degrees and Poincaré duality to compute
the cohomology rings H∗(M ;F2), k1(M) = βu(U2) and v2(M) = U2 , for the
cases with π/π′ finite. The calculation of k1(M) has been subsumed into the
(new) Theorem 10.6 above, while v2(M) is determined by π whenever π has
torsion but is not a direct product. (See [Hi13].)

Gluck reconstruction of the S2 × E2 -manifolds with group D ∗Z D or Z ∗Z D
changes the homotopy type, by Corollary 10.8.1. The two geometric manifolds
with π ∼= Z ∗Z D are Gluck reconstructions of each other, but there is a non-
geometric 4-manifold with π ∼= D ∗Z D and χ = 0. The S2×E2 -manifold with
π ∼= D ∗Z (Z ⊕ (Z/2Z)) is isomorphic to its Gluck reconstruction, and thus
every closed manifold with π ∼= D ∗Z (Z ⊕ (Z/2Z)) and χ = 0 is homotopy
equivalent to this manifold. In summary, there are 22 affine diffeomorphism
classes of closed S2×E2 -manifolds and 23 homotopy types of closed 4-manifolds
covered by S2 ×R2 and with Euler characteristic 0. (See [Hi13].)
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10.7 Some remarks on the homeomorphism types

In Chapter 6 we showed that if π is Z2 or Zo−1Z then M must be homeo-
morphic to the total space of an S2 -bundle over the torus or Klein bottle, and
we were able to estimate the size of the structure sets when π ∼= κ × Z/2Z .
We may apply the Shaneson-Wall exact sequence and results on L∗(D,w) from
[CD04] to obtain L∗(π,w) for π = D × Z or D oτ Z . It follows also that
L1(π,w) is not finitely generated if π = D ∗Z D or D ∗Z (Z ⊕ (Z/2Z)) and
w is as in §5 above. For these groups retract onto D compatibly with w|D .
Although Z ∗Z D does not map onto D , Lück has shown that L1(Z ∗Z D,w)
is not finitely generated (private communication). (The groups L∗(π) ⊗ Z[1

2 ]
have been computed for all cocompact planar groups π , with w trivial [LS00].)

In particular, if π ∼= D × Z and M is orientable then [SM ;G/TOP ] has rank
1, while L1(D×Z) has rank 3, and so STOP (M) is infinite. On the other hand,
if π ∼= D×Z and M is non-orientable then L1(D×Z,w) = 0 and so STOP (M)
has order at most 32.

If M is geometric then Aut(π) acts isometrically on M . The natural map
from π0(E(M)) to π0(E(P3(M))) has kernel of order at most 2, and hence the
subgroup which induces the identity on all homotopy groups is finitely gener-
ated, by Corollary 2.9 of [Ru92]. In particular, if π = D ∗Z D , Z ∗Z D or
D ∗Z (Z ⊕ (Z/2Z)) this subgroup is finite. Thus π0(E(M)) acts on STOP (M)
through a finite group, and so there are infinitely many manifolds in the homo-
topy type of each such geometric manifold.

10.8 Minimal models

Let X be a PD4 -complex with fundamental group π . A PD4 -complex Z is a
model for X if there is a 2-connected degree-1 map f : X → Z . It is strongly
minimal if λX = 0. A strongly minimal PD4 -complex Z is minimal with
respect to the partial order given by X ≥ Y if Y is a model for X .

We shall show that every PD4 -complex with fundamental group a PD2 -group
π has a strongly minimal model which is the total space of an S2 -bundle over
the surface F ' K(π, 1). (More generally, a PD4 -complex X has a strongly
minimal model if and only if λX is nonsingular and Cok(H2(cX ;Z[π])) is a
finitely generated projective Z[π]-module [Hi06’, Hi13c].)

The group Z/2Z acts on CP∞ via complex conjugation, and so a homomor-
phism u : π → Z/2Z determines a product action of π on F̃ × CP∞ . Let
L = Lπ(Zu, 2) = (F̃ × CP∞)/π be the quotient space. Projection on the first
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factor induces a map qu = cL : L→ F . In all cases the fixed point set of the ac-
tion of u on CP∞ is connected and contains RP∞ . Thus qu has cross-sections
σ , and any two are isotopic. Let j : CP∞ → L be the inclusion of the fibre
over the basepoint of F . If u is trivial Lπ(Zu, 2) ∼= F × CP∞ .

The (co)homology of L with coefficients in a Z[π]-module is split by the ho-
momorphisms induced by qu and σ . In particular, H2(L;Zu) ∼= H2(F ;Zu) ⊕
H2(CP∞;Z), with the projections to the summands induced by σ and j . Let
ωF be a generator of H2(F ;Zw1(F )) ∼= Z, and let φ be a generator of H2(F ;Zu).
If u = w1(F ) choose φ = ωF ; otherwise H2(F ;Zu) has order 2. Let [c]2 de-
note the reduction mod (2) of a cohomology class c (with coefficients Zw1(F )

or Zu ). Then [φ]2 = [ωF ]2 in H2(F ;Z/2Z). Let ιu ∈ H2(L;Zu) generate the
complementary Z summand. Then (ιu)2 and ιu ∪ q∗uφ generate H4(L;Z).

The space L = Lπ(Zu, 2) is a generalized Eilenberg-Mac Lane complex of
type (Zu, 2) over K(π, 1), with characteristic element ιu . Homotopy classes
of maps from spaces X into L compatible with a fixed homomorphism θ :
π1(X) → π correspond bijectively to elements of H2(X;Zuθ), via the corre-
spondance f ↔ f∗ιu . (See Chapter III.§6 of [Ba’]). In particular, Eπ(L) is
the subset of H2(L;Zu) consisting of elements of the form ±(ιu + kφ), for
k ∈ Z. (Such classes restrict to generators of H2(L̃;Z) ∼= Z). As a group
Eπ(L) ∼= H2(π;Zu)o {±1}.

Let p : E → F be an S2 -bundle over F . Then Ẽ ∼= F̃ × S2 and p may
be identified with the classifying map cE . If Eu is the image of F̃ × CP 1 in
L and pu = qu|Eu then pu is an S2 -bundle over F with w1(pu) = u, and
w2(pu) = v2(Eu) = 0, since cross-sections determined by distinct fixed points
are isotopic and disjoint. (From the dual point of view, the 4-skeleton of L is
Eu ∪CP 1 j(CP 2) = Eu ∪η D4 , where η ∈ π3(Eu) ∼= π3(S2) is the Hopf map).

Theorem 10.17 Let E be the total space of an S2 -bundle over an aspherical
closed surface F , and let X be a PD4 -complex with π1(X) ∼= π = π1(F ).
Then there is a 2-connected degree-1 map h : X → E such that cE = cXh if
and only if (c∗X)−1w1(X) = (c∗E)−1w1(E) and ξ ∪ c∗XH2(π;F2) 6= 0 for some
ξ ∈ H2(X;F2) such that ξ2 = 0 if v2(E) = 0 and ξ2 6= 0 if v2(E) 6= 0.

Proof Compatibility of the orientation characters is clearly necessary in order
that the degree be defined as an integer; we assume this henceforth. Since cX is
2-connected there is an α ∈ H2(X;Zc∗Xw1(F )) such that cX∗α = [F ], and since
Zu ⊗ Zc∗Xw1(F ) ∼= Zw1(X) there is an x ∈ H2(X;Zu) such that x ∩ [X] = α,
by Poincaré duality. Hence (x ∪ c∗XωF ) ∩ [X] = 1. Clearly either [x]22 = 0 or
[x]22 = [x]2 ∪ c∗X [ωF ]2 .
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The map f : E → L = Lπ(Zu, 2) corresponding to a class f∗ιu ∈ H2(E;Zu)
which restricts to a generator for H2(S2;Z) induces isomorphisms on π1 and
π2 , and so f = fE . (We may vary this map by composition with a self homotopy
equivalence of L, replacing f∗ιu by f∗ιu + kf∗φ). Note also that f∗Eιu ∪ c∗EωF
generates H4(E;Zw1(X)) ∼= Z.

The action of π on π3(E) ∼= π3(S2) = ΓW (Z) is given by ΓW (u), and so is
trivial. Therefore the third stage of the Postnikov tower for E is a simple
K(Z, 3)-fibration over L, determined by a map κ : L→ K(Z, 4) corresponding
to a class in H4(L;Z). If L(m) is the space induced by κm = ι2u+mιu∪φ then

L̃(m) is induced from L̃ ' CP∞ by the canonical generator of H4(CP∞), and

so H3(L̃(m);Z) = H4(L̃(m);Z) = 0, by a spectral sequence argument. Hence
ΓW (Z) ∼= π3(L(m)) = Z.

The map fE factors through a map gE : E → L(m) if and only if f∗Eκm = 0. We
then have π3(gE) = ΓW (fE), which is an isomorphism. Thus gE is 4-connected,
and so is the third stage of the Postnikov tower for E . If v2(E) = 0 then f∗Eι

2
u =

2kf∗E(ιu ∪φ) for some k ∈ Z, and so fE factors through L(−2k); otherwise fE
factors through L(−2k−1), and thus these spaces provide models for the third
stages P3(E) of such S2 -bundle spaces. The self homotopy equivalence of L
corresponding to the class ±(ιu + kφ) in H2(L;Zu) carries κm = ι2u +mιu ∪ φ
to κm±2k , and thus cL(m) is fibre homotopy equivalent to cL(0) if m is even
and to cL(1) otherwise.

Since P3(E) may also be obtained from E by adjoining cells of dimension
≥ 5, maps from a complex X of dimension at most 4 to E compatible with
θ : π1(X) → π correspond to maps from X to P3(E) compatible with θ
and thus to elements y ∈ H2(X;Zuθ) such that [y]22 = 0 if v2(E) = 0 and
[y]22 = [y]2 ∪ c∗X [ωF ]2 otherwise. (In the next paragraph we omit θ = π1(cX)
from the notation.)

If g : X → E is a 2-connected degree-1 map then ξ = g∗f∗E [ιu]2 satis-
fies the conditions of the theorem, since cX ∼ cEg , which factors through
P3(E). Conversely, let ξ be such a class. Reduction mod (2) maps H2(X;Zu)
onto H2(X;F2), since H3(X;Zu) ∼= H1(X;Zw1(F )) ∼= H1(π;Z) is torsion free.
Therefore there is an x ∈ H2(X;Zu) such that [x]2 = ξ . Since ωF generates
a direct summand of H2(X;Zw1(F )), and (x ∪ ωF )[X] is odd, we may choose
x so that (x ∪ ωF )[X] = 1. Then x = h∗f∗Eιu for some h : X → E such that
cEh = cX and (f∗Eιu ∪ c∗EωF )h∗[X] = (x ∪ c∗XωF )[X] = 1. Thus π1(h) is an
isomorphism and h is a degree-1 map, and so h is 2-connected, by Lemma 2.2
of [Wl].
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We shall summarize related work on the homotopy types of PD4 -complexes.

Theorem [Hi06’] There is a strongly minimal model for X if and only if
H3(π;Z[π]) = 0 and HomZ[π](π2(X),Z[π]) is a finitely generated projective

Z[π]-module. If Z is strongly minimal π2(Z) ∼= H2(π;Z[π]) and λZ = 0, and
if v2(X) = 0 and Z is a model for X then v2(Z) = 0.

These conditions hold if c.d.π ≤ 2, and then χ(Z) = q(π), by Theorem 3.12.
The strongly minimal PD4 -complexes with π free, F (r)o Z or a PD2 -group
are given by Theorems 14.9, 4.5 and 5.10, respectively. (See also Theorem
10.17.) If v2(X̃) 6= 0 the minimal model may not be unique. For example, if C
is a compact complex curve of genus ≥ 1 the ruled surface C ×CP1 is strongly

minimal, but the blowup (C×CP1)]CP2
also has the nontrivial bundle space as

a strongly minimal model. (Many of the other minimal complex surfaces in the
Enriques-Kodaira classification are aspherical, and hence strongly minimal in
our sense. However 1-connected complex surfaces are never strongly minimal,
since the unique minimal 1-connected PD4 -complex is S4 , which has no almost
complex structure, by the theorem of Wu cited on page 149 above.)

Theorem [Hi06’] Let π be a finitely presentable group with c.d.π ≤ 2. Two
PD4 -complexes X and Y with fundamental group π , w1(X) = w1(Y ) = w
and π2(X) ∼= π2(Y ) are homotopy equivalent if and only if X and Y have a
common strongly minimal model Z and λX ∼= λY . Moreover λX is nonsingular
and every nonsingular w -hermitean pairing on a finitely generated projective
Z[π]-module is the reduced intersection pairing of some such PD4 -complex.

In particular, a Spin4 -manifold with fundamental group a PD2 -group π has a
well-defined strongly minimal model and so two such Spin4 -manifolds X and
Y are homotopy equivalent if and only if λX ∼= λY .
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Chapter 11

Manifolds covered by S3 ×R

In this chapter we shall show that a closed 4-manifold M is covered by S3×R
if and only if π = π1(M) has two ends and χ(M) = 0. Its homotopy type is
then determined by π and the first nonzero k -invariant k(M). The maximal
finite normal subgroup of π is either the group of a S3 -manifold or one of the
groups Q(8a, b, c) × Z/dZ with a, b, c and d odd. (There are examples of the
latter type, and no such M is homotopy equivalent to a S3 × E1 -manifold.)
The possibilities for π are not yet known even when F is a S3 -manifold group
and π/F ∼= Z . Solving this problem may involve first determining which k -
invariants are realizable when F is cyclic; this is also not yet known.

Manifolds which fibre over RP 2 with fibre T or Kb and ∂ 6= 0 have universal
cover S3 × R. In §6 we determine the possible fundamental groups, and show
that an orientable 4-manifold M with such a group and with χ(M) = 0 must
be homotopy equivalent to a S3 × E1 -manifold which fibres over RP 2 .

As groups with two ends are virtually solvable, surgery techniques may be
used to study manifolds covered by S3 × R. However computing Wh(π) and
L∗(π;w1) is a major task. Simple estimates suggest that there are usually
infinitely many nonhomeomorphic manifolds within a given homotopy type.

11.1 Invariants for the homotopy type

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S3 is based on the structure of groups with two ends.

Theorem 11.1 Let M be a closed 4-manifold with fundamental group π .
Then M̃ ' S3 if and only if π has two ends and χ(M) = 0. If so

(1) M is finitely covered by S3 × S1 and so M̃ ∼= S3 ×R ∼= R4 \ {0};
(2) the maximal finite normal subgroup F of π has cohomological period

dividing 4, acts trivially on π3(M) ∼= Z and the corresponding covering
space MF has the homotopy type of an orientable finite PD3 -complex;

(3) if v : π → Aut(H1(π;Z[π])) is the natural action and w = w1(M) then
the action u : π → Aut(π3(M)) is given by u = v + w ;
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(4) the homotopy type of M is determined by π , w1(M) and the orbit of
the first nontrivial k -invariant k(M) ∈ H4(π;Zu) under Out(π)×{±1};

(5) the restriction of k(M) to H4(F ;Z) is a generator;

(6) if π/F ∼= Z then H4(π;π3(M)) ∼= H4(F ;Z) ∼= Z/|F |Z .

Proof If M̃ ' S3 then H1(π;Z[π]) ∼= Z and so π has two ends. Hence
π is virtually Z . The covering space MA corresponding to an infinite cyclic
subgroup A is homotopy equivalent to the mapping torus of a self homotopy
equivalence of S3 ' M̃ , and so χ(MA) = 0. As [π : A] < ∞ it follows that
χ(M) = 0 also.

Suppose conversely that χ(M) = 0 and π is virtually Z . Then H3(M̃ ;Z) ∼= Z

and H4(M̃ ;Z) = 0. Let MZ be an orientable finite covering space with fun-
damental group Z . Then χ(MZ) = 0 and so H2(MZ ;Z) = 0. The homology

groups of M̃ = M̃Z may be regarded as modules over Z[t, t−1] ∼= Z[Z]. Mul-

tiplication by t − 1 maps H2(M̃ ;Z) onto itself, by the Wang sequence for the

projection of M̃ onto MZ . Therefore HomZ[Z](H2(M̃ ;Z),Z[Z]) = 0 and so

π2(M) = π2(MZ) = 0, by Lemma 3.3. Therefore the map from S3 to M̃
representing a generator of π3(M) is a homotopy equivalence. Since MZ is

orientable the generator of the group of covering translations Aut(M̃/MZ) ∼= Z

is homotopic to the identity, and so MZ ' M̃ × S1 ' S3 × S1 . Therefore
MZ
∼= S3 × S1 , by surgery over Z . Hence M̃ ∼= S3 ×R.

Let F be the maximal finite normal subgroup of π . Since F acts freely on M̃ '
S3 it has cohomological period dividing 4 and MF = M̃/F is a PD3 -complex.
In particular, MF is orientable and F acts trivially on π3(M). The image of the
finiteness obstruction for MF under the “geometrically significant injection” of
K0(Z[F ]) into Wh(F × Z) of [Rn86] is the obstruction to MF × S1 being a
simple PD -complex. If f : MF → MF is a self homotopy equivalence which
induces the identity on π1(MF ) ∼= F and on π3(MF ) ∼= Z then f is homotopic
to the identity, by obstruction theory. (See [Pl82].) Therefore π0(E(MF )) is
finite and so M has a finite cover which is homotopy equivalent to MF × S1 .
Since manifolds are simple PDn -complexes MF must be finite.

The third assertion follows from the Hurewicz Theorem and Poincaré duality, as
in Lemma 10.3. The first nonzero k -invariant lies in H4(π;Zu), since π2(M) =
0 and π3(M) ∼= Zu , and it restricts to the k -invariant for MF in H4(F ;Z).
Thus (4) and (5) follow as in Theorem 2.9. The final assertion follows from the
LHSSS (or Wang sequence) for π as an extension of Z by F , since π/F acts
trivially on H4(F ;Zu).
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The list of finite groups with cohomological period dividing 4 is well known
(see [Mi57, DM85]). There are the generalized quaternionic groups Q(2na, b, c)
(with n ≥ 3 and a, b, c odd), the extended binary tetrahedral groups T ∗k , the
extended binary octahedral groups O∗k , the binary icosahedral group I∗ , the
dihedral groups A(m, e) (with m odd > 1), and the direct products of any one
of these with a cyclic group Z/dZ of relatively prime order. (In particular, a
p-group with periodic cohomology is cyclic if p is odd and cyclic or quaternionic
if p = 2.) We shall give presentations for these groups in §2.

Each such group F is the fundamental group of some PD3 -complex [Sw60].
Such Swan complexes for F are orientable, and are determined up to homotopy
equivalence by their k -invariants, which are generators of H4(F ;Z) ∼= Z/|F |Z ,
by Theorem 2.9. Thus they are parametrized up to homotopy by the quotient
of (Z/|F |Z)× under the action of Out(F )×{±1}. The set of finiteness obstruc-
tions for all such complexes forms a coset of the “Swan subgroup” of K̃0(Z[F ])
and there is a finite complex of this type if and only if the coset contains 0.
(This condition fails if F has a subgroup isomorphic to Q(16, 3, 1) and hence if
F ∼= O∗k×(Z/dZ) for some k > 1, by Corollary 3.16 of [DM85].) If X is a Swan
complex for F then X×S1 is a finite PD+

4 -complex with π1(X×S1) ∼= F ×Z
and χ(X × S1) = 0.

Theorem 11.2 Let M be a closed 4-manifold such that π = π1(M) has two
ends and with χ(M) = 0. Then the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

Proof We may assume that M has a finite cell structure with a single 4-cell.
Suppose that f : M → M is a self homotopy equivalence which fixes a base
point and induces the identity on π and on π3(M) ∼= Z . Then there are no
obstructions to constructing a homotopy from f to id

M̃
on the 3-skeleton M0 =

M\intD4 , and since π4(M) = π4(S3) = Z/2Z there are just two possibilities
for f . It is easily seen that Out(π) is finite. Since every self map is homotopic
to one which fixes a basepoint the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

If π is a semidirect product F oθZ then Aut(π) is finite and the group of based
homotopy classes of based self homotopy equivalences is also finite.

11.2 The action of π/F on F

Let F be a finite group with cohomological period dividing 4. Automorphisms
of F act on H∗(F ;Z) and H∗(F ;Z) through Out(F ), since inner automor-
phisms induce the identity on (co)homology. Let J+(F ) be the kernel of the

Geometry & Topology Monographs, Volume 5 (2002)



220 Chapter 11: Manifolds covered by S3 ×R

action on H3(F ;Z), and let J(F ) be the subgroup of Out(F ) which acts by
±1.

An outer automorphism class induces a well defined action on H4(S;Z) for each
Sylow subgroup S of F , since all p-Sylow subgroups are conjugate in F and
the inclusion of such a subgroup induces an isomorphism from the p-torsion of
H4(F ;Z) ∼= Z/|F |Z to H4(S;Z) ∼= Z/|S|Z , by Shapiro’s Lemma. Therefore
an outer automorphism class of F induces multiplication by r on H4(F ;Z) if
and only if it does so for each Sylow subgroup of F , by the Chinese Remainder
Theorem.

The map sending a self homotopy equivalence h of a Swan complex XF for F
to the induced outer automorphism class determines a homomorphism from the
group of (unbased) homotopy classes of self homotopy equivalences E(XF ) to
Out(F ). The image of this homomorphism is J(F ), and it is a monomorphism
if |F | > 2, by Corollary 1.3 of [Pl82]. (Note that [Pl82] works with based
homotopies.) If F = 1 or Z/2Z the orientation reversing involution of XF

(' S3 or RP 3 , respectively) induces the identity on F .

Lemma 11.3 Let M be a closed 4-manifold with universal cover S3×R, and
let F be the maximal finite normal subgroup of π = π1(M). The quotient π/F
acts on π3(M) and H4(F ;Z) through multiplication by ±1. It acts trivially if
the order of F is divisible by 4 or by any prime congruent to 3 mod (4).

Proof The group π/F must act through ±1 on the infinite cyclic groups
π3(M) and H3(MF ;Z). By the universal coefficient theorem H4(F ;Z) is iso-
morphic to H3(F ;Z), which is the cokernel of the Hurewicz homomorphism
from π3(M) to H3(MF ;Z). This implies the first assertion.

To prove the second assertion we may pass to the Sylow subgroups of F , by
Shapiro’s Lemma. Since the p-Sylow subgroups of F also have cohomological
period 4 they are cyclic if p is an odd prime and are cyclic or quaternionic
(Q(2n)) if p = 2. In all cases an automorphism induces multiplication by a
square on the third homology [Sw60]. But −1 is not a square modulo 4 nor
modulo any prime p = 4n+ 3.

Thus the groups π ∼= F o Z realized by such 4-manifolds correspond to outer
automorphisms in J(F ) or J+(F ). We shall next determine these subgroups
of Out(F ) for F a group of cohomological period dividing 4. If m is an integer
let l(m) be the number of odd prime divisors of m.

Z/dZ = 〈x | xd = 1〉.
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Out(Z/dZ) = (Z/dZ)× . Hence J(Z/dZ) = {s ∈ (Z/dZ)× | s2 = ±1}.
J+(Z/dZ) = (Z/2Z)l(d) if d 6≡ 0 mod (4), (Z/2Z)l(d)+1 if d ≡ 4 mod (8),
and (Z/2Z)l(d)+2 if d ≡ 0 mod (8).

Q(8) = 〈x, y | x2 = y2 = (xy)2〉.

An automorphism of Q = Q(8) induces the identity on Q/Q′ if and only if it
is inner, and every automorphism of Q/Q′ lifts to one of Q. In fact Aut(Q) is
the semidirect product of Out(Q) ∼= Aut(Q/Q′) ∼= SL(2,F2) with the normal
subgroup Inn(Q) = Q/Q′ ∼= (Z/2Z)2 . Moreover J(Q) = Out(Q), generated
by the images of the automorphisms σ and τ , where σ sends x and y to y and
xy , respectively, and τ interchanges x and y .

Q(8k) = 〈x, y | x2k = y2, yxy−1 = x−1〉, where k > 1.

(The relations imply that x4k = y4 = 1.) All automorphisms of Q(8k) are
of the form [i, s], where (s, 2k) = 1, [i, s](x) = xs and [i, s](y) = xiy , and
Aut(Q(8k)) is the semidirect product of (Z/4kZ)× with the normal subgroup
〈[1, 1]〉 ∼= Z/4kZ . Out(Q(8k)) = (Z/2Z)⊕ ((Z/4kZ)×/(±1)), generated by the
images of the [0, s] and [1,1]. The automorphism [i, s] induces multiplication
by s2 on H4(Q(2n);Z) [Sw60]. Hence J(Q(8k)) = (Z/2Z)l(k)+1 if k is odd and
(Z/2Z)l(k)+2 if k is even.

T ∗k = 〈Q(8), z | z3k = 1, zxz−1 = y, zyz−1 = xy〉, where k ≥ 1.

Setting t = zx2 gives the balanced presentation 〈t, x | t2x = xtxt, t3
k

= x2〉.
Let ρ be the automorphism sending x, y and z to y−1 , x−1 and z2 respectively.
Let ξ , η and ζ be the inner automorphisms determined by conjugation by x,
y and z , respectively. Then Aut(T ∗k ) has the presentation

〈ρ, ξ, η, ζ | ρ2.3k−1
= η2 = ζ3 = (ηζ)3 = 1, ρζρ−1 = ζ2, ρηρ−1 = ζ−1ηζ = ξ〉.

An induction on k gives 43k−2 ≡ 1 + 3k−1 mod (3k). Hence the image of ρ
generates Aut(T ∗k /T

∗
k
′) ∼= (Z/3kZ)× , and so Out(T ∗k ) ∼= (Z/3kZ)× . The 3-

Sylow subgroup generated by z is preserved by ρ, and it follows that J(T ∗k ) =

Z/2Z (generated by the image of ρ3k−1
).

O∗k = 〈T ∗k , w | w2 = x2, wxw−1 = yx, wzw−1 = z−1〉, where k ≥ 1.

(The relations imply that wyw−1 = y−1 .) As we may extend ρ to an auto-
morphism of O∗k via ρ(w) = w−1z2 the restriction from Aut(O∗k) to Aut(T ∗k )
is onto. An automorphism in the kernel sends w to wv for some v ∈ T ∗k , and
the relations for O∗k imply that v must be central in T ∗k . Hence the kernel
is generated by the involution α which sends w, x, y, z to w−1 = wx2, x, y, z ,
respectively. Now ρ3k−1

= σα, where σ is conjugation by wz in O∗k , and so
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the image of ρ generates Out(O∗k). The subgroup 〈u, x〉 generated by u = xw
and x is isomorphic to Q(16), and is a 2-Sylow subgroup. As α(u) = u5 and
α(x) = x it is preserved by α, and H4(α|〈u,x〉;Z) is multiplication by 25. As
H4(ρ|〈z〉;Z) is multiplication by 4 it follows that J(O∗k) = 1.

I∗ = 〈x, y | x2 = y3 = (xy)5〉.
The map sending the generators x, y to ( 2 0

1 3 ) and y = ( 2 2
1 4 ), respectively, in-

duces an isomorphism from I∗ to SL(2,F5). Conjugation in GL(2,F5) induces
a monomorphism from PGL(2,F5) to Aut(I∗). The natural map from Aut(I∗)
to Aut(I∗/ζI∗) is injective, since I∗ is perfect. Now I∗/ζI∗ ∼= PSL(2,F5) ∼=
A5 . The alternating group A5 is generated by 3-cycles, and has ten 3-Sylow
subgroups, each of order 3. It has five subgroups isomorphic to A4 generated by
pairs of such 3-Sylow subgroups. The intersection of any two of them has order
3, and is invariant under any automorphism of A5 which leaves invariant each
of these subgroups. It is not hard to see that such an automorphism must fix
the 3-cycles. Thus Aut(A5) embeds in the group S5 of permutations of these
subgroups. Since |PGL(2,F5)| = |S5| = 120 it follows that Aut(I∗) ∼= S5 and
Out(I∗) = Z/2Z . The outer automorphism class is represented by the matrix
ω = ( 2 0

0 1 ) in GL(2,F5).

Lemma 11.4 [Pl83] J(I∗) = 1.

Proof The element γ = x3y = ( 1 1
0 1 ) generates a 5-Sylow subgroup of I∗ .

It is easily seen that ωγω−1 = γ2 , and so ω induces multiplication by 2 on
H2(Z/5Z;Z) ∼= H1(Z/5Z;Z) = Z/5Z . Since H4(Z/5Z;Z) ∼= Z/5Z is gen-
erated by the square of a generator for H2(Z/5Z;Z) we see that H4(ω;Z) is
multiplication by 4 = −1 on 5-torsion. Hence J(I∗) = 1.

In fact H4(ω;Z) is multiplication by 49 [Pl83].

A(m, e) = 〈x, y | xm = y2e = 1, yxy−1 = x−1〉, where e ≥ 1 and m > 1 is odd.

If m = 2n+1 then 〈x, y | xm = y2e , yxny−1 = xn+1〉 is a balanced presentation.
All automorphisms of A(m, e) are of the form [s, t, u], where (s,m) = (t, 2) = 1,
[s, t, u](x) = xs and [s, t, u](y) = xuyt . Out(A(m, e)) is generated by the images
of [s, 1, 0] and [1, t, 0] and is isomorphic to (Z/2e)×⊕ ((Z/mZ)×/(±1)). Hence
J(A(m, 1)) = {s ∈ (Z/mZ)× | s2 = ±1}/(±1), J(A(m, 2)) = (Z/2Z)l(m) , and
J(A(m, e)) = (Z/2Z)l(m)+1 if e > 2.

Q(2na, b, c) = 〈Q(2n), u | uabc = 1, xuab = uabx, xucx−1 = u−c, yuac = uacy,
yuby−1 = u−b〉, where a, b and c are odd and relatively prime, and either
n = 3 and at most one of a, b and c is 1 or n > 3 and bc > 1.
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An automorphism of G = Q(2na, b, c) must induce the identity on G/G′ .
If it induces the identity on the characteristic subgroup 〈u〉 ∼= Z/abcZ and
on G/〈u〉 ∼= Q(2n) it is inner, and so Out(Q(2na, b, c)) is a subquotient of
Out(Q(2n)) × (Z/abcZ)× . In particular, Out(Q(8a, b, c)) ∼= (Z/abcZ)× , and
J(Q(8a, b, c)) ∼= (Z/2Z)l(abc) . (We need only consider n = 3, by §5 below.)

As Aut(G×H) = Aut(G)× Aut(H) and Out(G×H) = Out(G)×Out(H) if
G and H are finite groups of relatively prime order, we have J+(G×Z/dZ) =
J+(G)×J+(Z/dZ). In particular, if G is not cyclic or dihedral J(G×Z/dZ) =
J+(G × Z/dZ) = J(G) × J+(Z/dZ). In all cases except when F is cyclic or
Q(8) × Z/dZ the group J(F ) has exponent 2 and hence π has a subgroup of
index at most 4 which is isomorphic to F × Z .

11.3 Extensions of D

We shall now assume that π/F ∼= D , and so π ∼= G ∗F H , where [G : F ] =
[H : F ] = 2. Let u, v ∈ D be a pair of involutions which generate D and let
s = uv . Then s−nusn = us2n , and any involution in D is conjugate to u or to
v = us. Hence any pair of involutions {u′, v′} which generates D is conjugate
to the pair {u, v}, up to change of order.

Theorem 11.5 Let M be a closed 4-manifold with χ(M) = 0, and such that
there is an epimorphism p : π = π1(M) → D with finite kernel F . Let û and
v̂ be a pair of elements of π whose images u = p(û) and v = p(v̂) in D are
involutions which together generate D . Then

(1) M is nonorientable and û, v̂ each represent orientation reversing loops;

(2) the subgroups G and H generated by F and û and by F and v̂ , respec-
tively, each have cohomological period dividing 4, and the unordered pair
{G,H} of groups is determined up to isomorphisms by π alone;

(3) conversely, π is determined up to isomorphism by the unordered pair
{G,H} of groups with index 2 subgroups isomorphic to F as the free
product with amalgamation π = G ∗F H ;

(4) π acts trivially on π3(M);

(5) the restrictions of k(M) generate the groups H4(G;Z) and H4(H;Z),
and H4(π;Z) ∼= {(ζ, ξ) ∈ (Z/|G|Z) ⊕ (Z/|H|Z) | ζ ≡ ξ mod (|F |)} ∼=
(Z/2|F |Z)⊕ (Z/2Z).
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Proof Let ŝ = ûv̂ . Suppose that û is orientation preserving. Then the sub-
group σ generated by û and ŝ2 is orientation preserving so the corresponding
covering space Mσ is orientable. As σ has finite index in π and σ/σ′ is finite
this contradicts Lemma 3.14. Similarly, v̂ must be orientation reversing.

By assumption, û2 and v̂2 are in F , and [G : F ] = [H : F ] = 2. If F
is not isomorphic to Q × Z/dZ then J(F ) is abelian and so the (normal)
subgroup generated by F and ŝ2 is isomorphic to F × Z . In any case the
subgroup generated by F and ŝk is normal, and is isomorphic to F × Z if k
is a nonzero multiple of 12. The uniqueness up to isomorphisms of the pair
{G,H} follows from the uniqueness up to conjugation and order of the pair of

generating involutions for D . Since G and H act freely on M̃ they also have
cohomological period dividing 4. On examining the list above we see that F
must be cyclic or the product of Q(8k), T (v) or A(m, e) with a cyclic group
of relatively prime order, as it is the kernel of a map from G to Z/2Z . It is
easily verified that in all such cases every automorphism of F is the restriction
of automorphisms of G and H . Hence π is determined up to isomorphism as
the amalgamated free product G∗F H by the unordered pair {G,H} of groups
with index 2 subgroups isomorphic to F (i.e., it is unnecessary to specify the
identifications of F with these subgroups).

The third assertion follows because each of the spaces MG = M̃/G and MH =

M̃/H are PD3 -complexes with finite fundamental group and therefore are ori-
entable, and π is generated by G and H .

The final assertion follows from a Mayer-Vietoris argument, as for parts (5) and
(6) of Theorem 11.1.

Must the spaces MG and MH be homotopy equivalent to finite complexes?

In particular, if π ∼= D the k -invariant is unique, and so any closed 4-manifold
M with π1(M) ∼= D and χ(M) = 0 is homotopy equivalent to RP 4]RP 4 .

11.4 S3 × E1-manifolds

With the exception of O∗k (with k > 1), A(m, 1) and Q(2na, b, c) (with either
n = 3 and at most one of a, b and c being 1 or n > 3 and bc > 1) and their
products with cyclic groups, all of the groups listed in §2 have fixed point free
representations in SO(4) and so act freely on S3 . (Cyclic groups, the binary
dihedral groups D∗4m = A(m, 2), with m odd, and D∗8k = Q(8k, 1, 1), with
k ≥ 1 and the three binary polyhedral groups T ∗1 , O∗1 and I∗ are subgroups
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of S3 .) We shall call such groups S3 -groups. A k -invariant in H4(F ;Z) is
linear if it is realized by an S3 -manifold S3/F , while it is almost linear if all
covering spaces corresponding to subgroups isomorphic to A(m, e) × Z/dZ or
Q(8k)× Z/dZ are homotopy equivalent to S3 -manifolds [HM86].

Let N be a S3 -manifold with π1(N) = F . Then the projection of Isom(N)
onto its group of path components splits, and the inclusion of Isom(N) into
Diff(N) induces an isomorphism on path components. Moreover if |F | >
2 isometries which induce the identity outer automorphism are isotopic to
the identity, and so π0(Isom(N)) maps injectively to Out(F ). The group
π0(Isom(N)) has order 2 or 4, except when F = Q(8)× (Z/dZ), in which case
it has order 6 (if d = 1) or 12 (if d > 1). (See [Mc02].)

Theorem 11.6 Let M be a closed 4-manifold with χ(M) = 0 and π =
π1(M) ∼= F oθ Z , where F is finite. Then M is homeomorphic to a S3 × E1 -
manifold if and only if M is the mapping torus of a self homeomorphism of a
S3 -manifold with fundamental group F , and such mapping tori are determined
up to homeomorphism by their homotopy type.

Proof Let p1 and p2 be the projections of Isom(S3×E1) = O(4)×E(1) onto
O(4) and E(1) respectively. If π is a discrete subgroup of Isom(S3×E1) which
acts freely on S3 ×R then p1 maps F monomorphically and p1(F ) acts freely
on S3 , since every isometry of R of finite order has nonempty fixed point set.
Moreover, p2(π) < E(1) acts discretely and cocompactly on R, and so has no
nontrivial finite normal subgroup. Hence F = π∩(O(4)×{1}). If t ∈ π maps to
a generator of π/F ∼= Z then conjugation by t induces an isometry θ of S3/F ,
and M ∼= M(θ). Conversely, any self homeomorphism h of a S3 -manifold is
isotopic to an isometry of finite order, and so M(h) is homeomorphic to a
S3 × E1 -manifold. The final assertion follows from Theorem 3 of [Oh90].

Every Swan complex for Z/dZ is homotopy equivalent to a lens space L(d, s).
(This follows from Theorem 2.9.) All lens spaces have isometries which induce
inversion on the group. If s2 ≡ ±1 mod (d) there are also isometries of L(d, s)
which induce multiplication by ±s. No other nontrivial automorphism of Z/dZ
is realized by a simple self homotopy equivalence of L(d, s). (See §30 of [Co].)
However (Z/dZ) os Z may also be realized by mapping tori of self homotopy
equivalences of other lens spaces. If d > 2 a PD4 -complex with this group and
Euler characteristic 0 is orientable if and only if s2 ≡ 1 mod (d).

If F is a noncyclic S3 -group there is an unique orbit of linear k -invariants
under the action of Out(F ) × {±1}, and so for each θ ∈ Aut(F ) at most one
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homeomorphism class of S3×E1 -manifolds has fundamental group π = F oθZ .
If F = Q(2k) or T ∗k for some k > 1 then S3/F is the unique finite Swan
complex for F [Th80]. In general, there may be other finite Swan complexes.
(In particular, there are exotic finite Swan complexes for T ∗1 .)

Suppose now that G and H are S3 -groups with index 2 subgroups isomorphic to
F . If F , G and H are each noncyclic then the corresponding S3 -manifolds are
uniquely determined, and we may construct a nonorientable S3 × E1 -manifold
with fundamental group π = G ∗F H as follows. Let u and v : S3/F → S3/F
be the covering involutions with quotient spaces S3/G and S3/H , respectively,
and let φ = uv . (Note that u and v are isometries of S3/F .) Then U([x, t]) =
[u(x), 1 − t] defines a fixed point free involution on the mapping torus M(φ)
and the quotient space has fundamental group π . A similar construction works
if F is cyclic and G ∼= H or if G is cyclic.

11.5 Realization of the invariants

Let F be a finite group with cohomological period dividing 4, and let XF

denote a finite Swan complex for F . If θ is an automorphism of F which
induces ±1 on H3(F ;Z) there is a self homotopy equivalence h of XF which
induces [θ] ∈ J(F ). The mapping torus M(h) is a finite PD4 -complex with
π1(M) ∼= F oθ Z and χ(M(h)) = 0. Conversely, every PD4 -complex M with
χ(M) = 0 and such that π1(M) is an extension of Z by a finite normal subgroup
F is homotopy equivalent to such a mapping torus. Moreover, if π ∼= F × Z
and |F | > 2 then h is homotopic to the identity and so M(h) is homotopy
equivalent to XF × S1 .

The question of interest here is which such groups π (and which k -invariants
in H4(F ;Z)) may be realized by closed 4-manifolds. Since every PDn -complex
may be obtained by attaching an n-cell to a complex which is homologically
of dimension < n, the exotic characteristic class (in H3(X;F2)) of the Spivak
normal fibration of a PD3 -complex X is trivial. Hence every 3-dimensional
Swan complex XF has a TOP reduction, i.e., there are normal maps (f, b) :
N3 → XF . Such a map has a “proper surgery” obstruction λp(f, b) in Lp3(F ),
which is 0 if and only if (f, b)×idS1 is normally cobordant to a simple homotopy
equivalence. In particular, a surgery semicharacteristic must be 0. Hence all
subgroups of F of order 2p (with p prime) are cyclic, and Q(2na, b, c) (with
n > 3 and b or c > 1) cannot occur [HM86]. As the 2p condition excludes
groups with subgroups isomorphic to A(m, 1) with m > 1 and as there are no
finite Swan complexes for O∗k with k > 1, the cases remaining to be decided
are when F ∼= Q(8a, b, c)×Z/dZ , where a, b and c are odd and at most one of
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them is 1. The main result of [HM86] is that in such a case F × Z acts freely
and properly with almost linear k -invariant if and only if some arithmetical
conditions depending on subgroups of F of the form Q(8a, b, 1) hold. (The
constructive part of the argument may be extended to the 4-dimensional case
by reference to [FQ].)

The following more direct argument for the existence of a free proper action
of F × Z on S3 × R was outlined in [KS88], for the cases when F acts freely
on an homology 3-sphere Σ. Let Σ and its universal covering space Σ̃ have
equivariant cellular decompositions lifted from a cellular decomposition of Σ/F ,
and let Π = π1(Σ/F ). Then C∗(Σ) = Z[F ]⊗ΠC∗(Σ̃) is a finitely generated free
Z[F ]-complex, and may be realized by a finite Swan complex X . The chain
map (over the epimorphism : Π → F ) from C∗(Σ̃) to C∗(X̃) may be realized
by a map h : Σ/F → X , since these spaces are 3-dimensional. As h × idS1

is a simple Z[F × Z]-homology equivalence it has surgery obstruction 0 in
Ls4(F × Z), and so is normally cobordant to a simple homotopy equivalence.
Is there a simple, explicit example of a free action of some Q(8a, b, 1) (with
a, b > 1) on an homology 3-sphere?

Although Q(24, 13, 1) cannot act freely on any homology 3-sphere [DM85], there
is a closed orientable 4-manifold M with fundamental group Q(24, 13, 1)×Z , by
the argument of [HM86]. The infinite cyclic cover MF is finitely dominated; is
the Farrell obstruction to fibration in Wh(π1(M)) nonzero? No such 4-manifold
can fibre over S1 , since Q(24, 13, 1) is not a 3-manifold group.

If F = T ∗k (with k > 1), Q(2nm) or A(m, 2) (with m odd) F × Z can only
act freely and properly on R4\{0} with the linear k -invariant. This follows
from Corollary C of [HM86’] for A(m, 2). Since Q(2nm) contains A(m, 2) as
a normal subgroup this implies that the restriction of the k -invariant for a
Q(2nm) action to the cyclic subgroup of order m must also be linear. The
nonlinear k -invariants for T ∗k (with k > 1) and Q(2n) have nonzero finiteness
obstruction. As the k -invariants of free linear representations of Q(2nm) are
given by elements in H4(Q(2nm);Z) whose restrictions to Z/mZ are squares
and whose restrictions to Q(2n) are squares times the basic generator (see page
120 of [Wl78]), only the linear k -invariant is realizable in this case also. However
in general it is not known which k -invariants are realizable. Every group of the
form Q(8a, b, c)×Z/dZ×Z admits an almost linear k -invariant, but there may
be other actions. (See [HM86, HM86’] for more on this issue.)

When F = Q(8), T ∗k , O∗1 , I∗ or A(pi, e) (for some odd prime p and e ≥ 2)
each element of J(F ) is realized by an isometry of S3/F [Mc02]. The study of
more general groups may largely reduce to the case when F is cyclic.
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Theorem 11.7 Let M be a PD4 -complex with χ(M) = 0 and π1(M) ∼=
FoθZ , where F is a noncyclic S3 -group, and with k(M) linear. If the covering
space associated to C oθ|C Z is homotopy equivalent to a S3×E1 -manifold for
all characteristic cyclic subgroups C < F then so is M .

Proof Let N = S3/F be the S3 -manifold with k(N) = k(M), and let NC =
S3/C for all subgroups C < F . We may suppose that F = G × Z/dZ where
G is an S3 -group with no nontrivial cyclic direct factor. If C = Z/dZ then
NC
∼= L(d, 1), and so θ|C = ±1. Hence θ is in J(G)×{±1}. If G ∼= Q(8), T ∗1 ,

O∗1 , I∗ or A(pi, 2) then π0(Isom(N)) = J(G) (if d = 1) or J(G) × {±1} (if
d > 1) [Mc02]. If G ∼= T ∗k with k > 1 then NζF

∼= L(3k−12d, 1), so θ|ζF = ±1,
and the nontrivial isometry of N induces the involution of ζF . In the remaining
cases F has a characteristic cyclic subgroup C ∼= Z/4kdZ of index 2, and F
acts on C through σ(c) = cs for c ∈ C , where s ≡ −1 mod (4k) and s ≡ 1
mod (d). Hence NC

∼= L(4kd, s). Restriction induces an epimorphism from
J(N) to J(C)/〈σ〉 with kernel of order 2, and which maps π0(Isom(N)) onto
π0(Isom(NC))/〈σ〉. In all cases θ is realized by an isometry of N . Since
E(N) ∼= Out(F ) the result now follows from Theorem 11.6.

When F is cyclic the natural question is whether k(M) and k(L(d, s)) agree,
if M is a 4-manifold and π1(M) ∼= (Z/dZ) os Z . If so, then every 4-manifold
M with χ(M) = 0, π1(M) ∼= F oθ Z for some S3 -group F and k(M) linear
is homotopy equivalent to a S3 × E1 -manifold. Davis and Weinberger have
settled the case when M is not orientable. Since −1 is then a square mod (d),
elementary considerations show that it suffices to assume that d is prime and
d ≡ 1 mod (4), and thus to prove the following lemma.

Lemma [DW07] Let p be a prime such that p ≡ 1 mod (4). Let M(g) be
the mapping torus of an orientation-reversing self-homotopy equivalence g of
L(p, q), where (p, q) = 1. Suppose that M(g) is homotopy equivalent to a
4-manifold. If p ≡ 1 mod (8) then q is a quadratic residue mod (p), while if
p ≡ 5 mod (8) then q is a quadratic nonresidue mod (p).

Since g is a self homotopy equivalence of a closed orientable 3-manifold there is
a degree-1 normal map F : W → L(p, q)× [0, 1] with F |∂W = gq idL(p,q) . (See
Theorem 2 of [JK03].) Gluing the ends gives a degree-1 normal map G : Z →
M(g), with domain a closed manifold. The key topological observation is that if
M(g) is also homotopy equivalent to a closed manifold then σh4 (G) ∈ Lh4(π,w)
is in the image of the assembly map from H4(M(g);L〈1〉w). (See Proposition
18.3 of [Rn].) The rest of the argument involves delicate calculations.
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If M is a closed non-orientable 4-manifold with π1(M) ∼= (Z/dZ) os Z and
χ(M) = 0 then M ' M(g), where g is a self homotopy equivalence of some
lens space L(d, q), and s2 ≡ −1 mod (d). Hence if a prime p divides d then
p ≡ 1 mod (4). The Lemma and the Chinese Remainder Theorem imply that
q ≡ sz2 mod (d), for some (z, d) = 1, and so M is homotopy equivalent to the
mapping torus of an isometry of L(d, s). See [DW07] for details.

In the orientable case s2 ≡ 1 mod (d), and so s ≡ ±1 mod (p), for each
odd prime factor of d. (If d is even then s ≡ ±1 mod (2p).) Elementary
considerations now show that it suffices to assume that d = 2r+1 , 2rp or pp′ ,
for some r ≥ 2 and odd primes p < p′ . However this question is open even for
the smallest cases (with d = 8 or 12).

It can be shown that when (d, q, s) = (5, 1, 2) or (8, 1, 3) the mapping torus
M(g) is a simple PD4 -complex. (This negates an earlier hope.)

When π/F ∼= D we have π ∼= G ∗F H , and we saw earlier that if G and H
are S3 -groups and F is noncyclic π is the fundamental group of a S3 × E1 -
manifold. However if F is cyclic but neither G nor H is cyclic there may be
no geometric manifold realizing π . If the double covers of G\S3 and H\S3

are homotopy equivalent then π is realised by the union of two twisted I -
bundles via a homotopy equivalence, which is a finite PD4 -complex with χ =
0. For instance, the spherical space forms corresponding to G = Q(40) and
H = Q(8)× (Z/5Z) are doubly covered by L(20, 1) and L(20, 9), respectively,
which are homotopy equivalent but not homeomorphic. The spherical space
forms corresponding to G = Q(24) and H = Q(8)×(Z/3Z) are doubly covered
by L(12, 1) and L(12, 5), respectively, which are not homotopy equivalent.

In each case it remains possible that some extensions of Z or D by normal
S3 -subgroups may be realized by manifolds with nonlinear k -invariants.

11.6 T - and Kb-bundles over RP 2 with ∂ 6= 0

Let p : E → RP 2 be a bundle with fibre T or Kb. Then π = π1(E) is an
extension of Z/2Z by G/∂Z , where G is the fundamental group of the fibre and
∂ is the connecting homomorphism. If ∂ 6= 0 then π has two ends, F is cyclic
and central in G/∂Z and π acts on it by inversion, since π acts nontrivially on
Z = π2(RP 2).

If the fibre is T then π has a presentation of the form

〈t, u, v | uv = vu, un = 1, tut−1 = u−1, tvt−1 = uavε, t2 = ubvc〉,

where n > 0 and ε = ±1. Either
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(1) F is cyclic, π ∼= (Z/nZ)o−1 Z and π/F ∼= Z ; or

(2) F = 〈s, u | s2 = um, sus−1 = u−1〉; or (if ε = −1)

(3) F is cyclic, π = 〈s, t, u | s2 = t2 = ub, sus−1 = tut−1 = u−1〉 and
π/F ∼= D .

In case (2) F cannot be dihedral. If m is odd F ∼= A(m, 2) while if m = 2rk
with r ≥ 1 and k odd F ∼= Q(2r+2k). On replacing v by u[a/2]v , if necessary,
we may arrange that a = 0, in which case π ∼= F × Z , or a = 1, in which case

π = 〈t, u, v | t2 = um, tut−1 = u−1, vtv−1 = tu, uv = vu〉,

so π/F ∼= Z .

If the fibre is Kb then π has a presentation of the form

〈t, u, w | uwu−1 = w−1, un = 1, tut−1 = u−1, twt−1 = uawε, t2 = ubwc〉,

where n > 0 is even (since Im(∂) ≤ ζπ1(Kb)) and ε = ±1. On replacing t by
ut, if necessary, we may assume that ε = 1. Moreover, tw2t−1 = w±2 since w2

generates the commutator subgroup of G/∂Z , so a is even and 2a ≡ 0 mod (n),
t2u = ut2 implies that c = 0, and t.t2.t−1 = t2 implies that 2b ≡ 0 mod (n).
As F is generated by t and u2 , and cannot be dihedral, we must have n = 2b.
Moreover b must be even, as w has infinite order and t2w = wt2 . Therefore

(4) F ∼= Q(8k), π/F ∼= D and

π = 〈t, u, w | uwu−1 = w−1, tut−1 = u−1, tw = uawt, t2 = u2k〉.

In all cases π has a subgroup of index at most 2 which is isomorphic to F ×Z .

Each of these groups is the fundamental group of such a bundle space. (This
may be seen by using the description of such bundle spaces given in §5 of
Chapter 5.) Orientable 4-manifolds which fibre over RP 2 with fibre T and
∂ 6= 0 are mapping tori of involutions of S3 -manifolds, and if F is not cyclic
two such bundle spaces with the same group are diffeomorphic [Ue91].

Theorem 11.8 Let M be a closed orientable 4-manifold with fundamental
group π . Then M is homotopy equivalent to an S3×E1 -manifold which fibres
over RP 2 if and only χ(M) = 0 and π is of type (1) or (2) above.

Proof If M is an orientable S3 ×E1 -manifold then χ(M) = 0 and π/F ∼= Z ,
by Theorem 11.1 and Lemma 3.14. Moreover π must be of type (1) or (2) if
M fibres over RP 2 , and so the conditions are necessary.
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Suppose that they hold. Then M̃ ∼= R4 \ {0} and the homotopy type of M is

determined by π and k(M), by Theorem 11.1. If F ∼= Z/nZ then MF = M̃/F
is homotopy equivalent to some lens space L(n, s). As the involution of Z/nZ
which inverts a generator can be realized by an isometry of L(n, s), M is
homotopy equivalent to an S3 × E1 -manifold which fibres over S1 .

If F ∼= Q(2r+2k) or A(m, 2) then F × Z can only act freely and properly on
R4 \ {0} with the “linear” k -invariant [HM86]. Therefore MF is homotopy
equivalent to a spherical space form S3/F . The class in Out(Q(2r+2k)) repre-
sented by the automorphism which sends the generator t to tu and fixes u is
induced by conjugation in Q(2r+3k) and so can be realized by a (fixed point
free) isometry θ of S3/Q(2r+2k). Hence M is homotopy equivalent to a bundle
space (S3/Q(2r+2k)) × S1 or (S3/Q(2r+2k)) ×θ S1 if F ∼= Q(2r+2k). A simi-
lar conclusion holds when F ∼= A(m, 2) as the corresponding automorphism is
induced by conjugation in Q(23d).

With the results of [Ue91] it follows in all cases that M is homotopy equivalent
to the total space of a torus bundle over RP 2 .

Theorem 11.8 makes no assumption that there be a homomorphism u : π →
Z/2Z such that u∗(x)3 = 0 (as in §5 of Chapter 5). If F is cyclic or A(m, 2)
this condition is a purely algebraic consequence of the other hypotheses. For
let C be a cyclic normal subgroup of maximal order in F . (There is an unique
such subgroup, except when F = Q(8).) The centralizer Cπ(C) has index 2 in
π and so there is a homomorphism u : π → Z/2Z with kernel Cπ(C).

When F is cyclic u factors through Z and so the induced map on cohomology
factors through H3(Z; Z̃) = 0.

When F ∼= A(m, 2) the 2-Sylow subgroup is cyclic of order 4, and the inclusion
of Z/4Z into τ induces isomorphisms on cohomology with 2-local coefficients.
In particular, Hq(F ; Z̃(2)) = 0 or Z/2Z according as q is even or odd. It

follows easily that the restriction from H3(π; Z̃(2)) to H3(Z/4Z; Z̃(2)) is an

isomorphism. Let y be the image of u∗(x) in H1(Z/4Z; Z̃(2)) = Z/2Z . Then

y2 is an element of order 2 in H2(Z/4Z; Z̃(2)⊗Z̃(2)) = H2(Z/4Z;Z(2)) ∼= Z/4Z ,
and so y2 = 2z for some z ∈ H2(Z/4Z;Z(2)). But then y3 = 2yz = 0 in

H3(Z/4Z; Z̃(2)) = Z/2Z , and so u∗(x)3 has image 0 in H3(π; Z̃(2)) = Z/2Z .
Since x is a 2-torsion class this implies that u∗(x)3 = 0.

Is there a similar argument when F is a generalized quaternionic group?

If M is nonorientable, χ(M) = 0 and has fundamental group π of type (1)
or (2) then M is homotopy equivalent to the mapping torus of the orientation
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reversing self homeomorphism of S3 or of RP 3 , and does not fibre over RP 2 .
If π is of type (3) or (4) then the 2-fold covering space with fundamental group
F × Z is homotopy equivalent to a product L(n, s) × S1 . However we do not
know which k -invariants give total spaces of bundles over RP 2 .

11.7 Some remarks on the homeomorphism types

In this brief section we shall assume that M is orientable and that π ∼= F oθZ .
In contrast to the situation for the other geometries, the Whitehead groups of
fundamental groups of S3×E1 -manifolds are usually nontrivial. Computation of
Wh(π) is difficult as the Nil groups occuring in the Waldhausen exact sequence
relating Wh(π) to the algebraic K -theory of F seem intractable.

We can however compute the relevant surgery obstruction groups modulo 2-
torsion and show that the structure sets are usually infinite. There is a Mayer-
Vietoris sequence Ls5(F ) → Ls5(π) → Lu4(F ) → Ls4(F ), where the superscript
u signifies that the torsion must lie in a certain subgroup of Wh(F ) [Ca73].
The right hand map is (essentially) θ∗ − 1. Now Ls5(F ) is a finite 2-group and
Lu4(F ) ∼ Ls4(F ) ∼ ZR mod 2-torsion, where R is the set of irreducible real
representations of F (see Chapter 13A of [Wl]). The latter correspond to the
conjugacy classes of F , up to inversion. (See §12.4 of [Se].) In particular, if
π ∼= F × Z then Ls5(π) ∼ ZR mod 2-torsion, and so has rank at least 2 if
F 6= 1. As [ΣM,G/TOP ] ∼= Z mod 2-torsion and the group of self homotopy
equivalences of such a manifold is finite, by Theorem 11.2, there are infinitely
many distinct topological 4-manifolds simple homotopy equivalent to M .

For instance, as Wh(Z ⊕ (Z/2Z)) = 0 [Kw86] and L5(Z ⊕ (Z/2Z),+) ∼= Z2 ,
by Theorem 13A.8 of [Wl], the set STOP (RP 3 × S1) is infinite. Although all
of the manifolds in this homotopy type are doubly covered by S3 × S1 only
RP 3 × S1 is itself geometric. Similar estimates hold for the other manifolds
covered by S3 × R (if π 6= Z ). An explicit parametrization of the set of
homeomorphism classes of manifolds homotopy equivalent to RP 4#RP 4 may
be found in [BDK07].
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Chapter 12

Geometries with compact models

There are three geometries with compact models, namely S4 , CP2 and S2 × S2 .
The first two of these are easily dealt with, as there is only one other geometric
manifold, namely RP 4 , and for each of the two projective spaces there is one
other (nonsmoothable) manifold of the same homotopy type. There are eight
S2 × S2 -manifolds, seven of which are total spaces of bundles with base and
fibre each S2 or RP 2 . We shall consider also the two other such bundle spaces
covered by S2×̃S2 , although they are not geometric.

The universal covering space M̃ of a closed 4-manifold M is homeomorphic
to S2 × S2 if and only if π = π1(M) is finite, χ(M)|π| = 4 and w2(M̃) = 0.

(The condition w2(M̃) = 0 may be restated entirely in terms of M , but at
somewhat greater length.) If these conditions hold and π is cyclic then M
is homotopy equivalent to an S2 × S2 -manifold, except when π = Z/2Z and
M is nonorientable, in which case there is one other homotopy type. The
F2 -cohomology ring, Stiefel-Whitney classes and k -invariants must agree with
those of bundle spaces when π ∼= (Z/2Z)2 . However there remains an ambiguity
of order at most 4 in determining the homotopy type. If χ(M)|π| = 4 and

w2(M̃) 6= 0 then either π = 1, in which case M ' S2×̃S2 or CP 2]CP 2 , or
M is nonorientable and π = Z/2Z ; in the latter case M ' RP 4]CP 2 , the

nontrivial RP 2 -bundle over S2 , and M̃ ' S2×̃S2 .

The number of homeomorphism classes within each homotopy type is one or
two if π = Z/2Z and M is orientable, two if π = Z/2Z , M is nonorientable

and w2(M̃) = 0, four if π = Z/2Z and w2(M̃) 6= 0, four if π ∼= Z/4Z , and at
most eight if π ∼= (Z/2Z)2 . In the final case we do not know whether there are
enough fake self homotopy equivalences to account for all the normal invariants
with trivial surgery obstruction. However, in (at least) nine of the 13 cases a PL
4-manifold with the same homotopy type as a geometric manifold or S2×̃S2 is
homeomorphic to it. (In seven of these cases the homotopy type is determined
by the Euler characteristic, fundamental group and Stiefel-Whitney classes.)
Each nonorientable manifold has a fake twin, with the same homotopy type
but opposite Kirby-Siebenmann invariant.

For the full details of some of the arguments in the cases π ∼= Z/2Z we refer to
the papers [KKR92, HKT94] and [Te97].
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12.1 The geometries S4 and CP2

The unique element of Isom(S4) = O(5) of order 2 which acts freely on S4 is
−I . Therefore S4 and RP 4 are the only S4 -manifolds. The manifold S4 is
determined up to homeomorphism by the conditions χ(S4) = 2 and π1(S4) = 1
[FQ].

Lemma 12.1 A closed 4-manifold M is homotopy equivalent to RP 4 if and
only if χ(M) = 1 and π1(M) = Z/2Z .

Proof The conditions are clearly necessary. Suppose that they hold. Then
M̃ ' S4 and w1(M) = w1(RP 4) = w , say, since any orientation preserving self

homeomorphism of M̃ has Lefshetz number 2. Since RP∞ = K(Z/2Z, 1) may
be obtained from RP 4 by adjoining cells of dimension at least 5 we may assume
cM = cRP 4f , where f : M → RP 4 . Since cRP 4 and cM are each 4-connected
f induces isomorphisms on homology with coefficients Z/2Z . Considering the
exact sequence of homology corresponding to the short exact sequence of coef-
ficients

0→ Zw → Zw → Z/2Z → 0,

we see that f has odd degree. By modifying f on a 4-cell D4 ⊂ M we may
arrange that f has degree 1, and the lemma then follows from Theorem 3.2.

This lemma may also be proven by comparison of the k -invariants of M and
RP 4 , as in Theorem 4.3 of [Wl67].

By Theorems 13.A.1 and 13.B.5 of [Wl] the surgery obstruction homomorphism
is determined by an Arf invariant and maps [RP 4;G/TOP ] onto Z/2Z , and
hence STOP (RP 4) has two elements. (See the discussion of nonorientable man-
ifolds with fundamental group Z/2Z in §6 below for more details.) As every
self homotopy equivalence of RP 4 is homotopic to the identity [Ol53] there is
one fake RP 4 . The fake RP 4 is denoted ∗RP 4 and is not smoothable [Ru84].

There is a similar characterization of the homotopy type of the complex pro-
jective plane.

Lemma 12.2 A closed 4-manifold M is homotopy equivalent to CP 2 if and
only if χ(M) = 3 and π1(M) = 1.

Proof The conditions are clearly necessary. Suppose that they hold. Then
H2(M ;Z) is infinite cyclic and so there is a map fM : M → CP∞ = K(Z, 2)
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which induces an isomorphism on H2 . Since CP∞ may be obtained from CP 2

by adjoining cells of dimension at least 6 we may assume fM = fCP 2g , where
g : M → CP 2 and fCP 2 : CP 2 → CP∞ is the natural inclusion. As H4(M ;Z)
is generated by H2(M ;Z), by Poincaré duality, g induces an isomorphism on
cohomology and hence is a homotopy equivalence.

In this case the surgery obstruction homomorphism is determined by the dif-
ference of signatures and maps [CP 2;G/TOP ] onto Z . The structure set
STOP (CP 2) again has two elements. Since [CP 2, CP 2] ∼= [CP 2, CP∞] ∼=
H2(CP 2;Z), by obstruction theory, there are two homotopy classes of self ho-
motopy equivalences, represented by the identity and by complex conjugation.
Thus every self homotopy equivalence of CP 2 is homotopic to a homeomor-
phism, and so there is one fake CP 2 . The fake CP 2 is also known as the
Chern manifold Ch or ∗CP 2 , and is not smoothable [FQ]. Neither of these
manifolds admits a nontrivial fixed point free action, as any self map of CP 2

or ∗CP 2 has nonzero Lefshetz number, and so CP 2 is the only CP2 -manifold.

12.2 The geometry S2 × S2

The manifold S2×S2 is determined up to homotopy equivalence by the condi-
tions χ(S2×S2) = 4, π1(S2×S2) = 1 and w2(S2×S2) = 0, by Theorem 5.19.
These conditions in fact determine S2×S2 up to homeomorphism [FQ]. Hence
if M is an S2 × S2 -manifold its fundamental group π is finite, χ(M)|π| = 4

and w2(M̃) = 0.

The isometry group of S2×S2 is a semidirect product (O(3)×O(3))o (Z/2Z).
The Z/2Z subgroup is generated by the involution τ which switches the factors
(τ(x, y) = (y, x)), and acts on O(3) × O(3) by τ(A,B)τ = (B,A) for A,B ∈
O(3). In particular, (τ(A,B))2 = id if and only if AB = I , and so such an
involution fixes (x,Ax), for any x ∈ S2 . Thus there are no free Z/2Z -actions
in which the factors are switched. The element (A,B) generates a free Z/2Z -
action if and only if A2 = B2 = I and at least one of A,B acts freely, i.e.
if A or B = −I . After conjugation with τ if necessary we may assume that
B = −I , and so there are four conjugacy classes in Isom(S2×S2) of free Z/2Z -
actions. (These may be distinguished by the multiplicity (0, 1, 2 or 3) of 1 as
an eigenvalue of A.) In each case projection onto the second factor induces a
fibre bundle projection from the orbit space to RP 2 , with fibre S2 . If A 6= −I
the other projection induces an orbifold bundle over D, S(2, 2) or RP 2 .

If the involutions (A,B) and (C,D) generate a free (Z/2Z)2 -action (AC,BD)
is also a free involution. By the above paragraph, one element of each of these
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ordered pairs must be −I . It follows that (after conjugation with τ if necessary)
the (Z/2Z)2 -actions are generated by pairs {(A,−I), (−I, I)}, where A2 = I .
Since A and −A give rise to the same subgroup, there are two free (Z/2Z)2 -
actions. The orbit spaces are the total spaces of RP 2 -bundles over RP 2 .

If (τ(A,B))4 = id then (BA,AB) is a fixed point free involution and so BA =
AB = −I . Since (A, I)τ(A,−A−1)(A, I)−1 = τ(I,−I) every free Z/4Z -action
is conjugate to the one generated by τ(I,−I). The manifold S2×S2/〈τ(I,−I)〉
does not fibre over a surface. It is however the union of the tangent disc bundle
of RP 2 (the image of the diagonal of S2 × S2 ) with the mapping cylinder of
the double cover of L(8, 1). (See §12.9 below.)

In the next section we shall see that these eight geometric manifolds may be
distinguished by their fundamental group and Stiefel-Whitney classes. Note
that if F is a finite group then q(F ) ≥ 2/|F | > 0, while qSG(F ) ≥ 2. Thus S4 ,
RP 4 and the geometric manifolds with |π| = 4 have minimal Euler character-
istic for their fundamental groups (i.e., χ(M) = q(π)), while S2×S2/(−I,−I)
has minimal Euler characteristic among PD+

4 -complexes realizing Z/2Z .

12.3 Bundle spaces

There are two S2 -bundles over S2 , since π1(SO(3)) = Z/2Z . The total space
S2×̃S2 of the nontrivial S2 -bundle over S2 is determined up to homotopy
equivalence by the conditions χ(S2×̃S2) = 4, π1(S2×̃S2) = 1, w2(S2×̃S2) 6= 0
and σ(S2×̃S2) = 0, by Theorem 5.19. The bundle space is homeomorphic to
the connected sum CP 2] − CP 2 . However there is one fake S2×̃S2 , which is
homeomorphic to CP 2] − ∗CP 2 and is not smoothable [FQ]. The manifolds
CP 2]CP 2 and CP 2] ∗ CP 2 also have π1 = 0 and χ = 4. It is easily seen that
any self homotopy equivalence of either of these manifolds has nonzero Lefshetz
number, and so they do not properly cover any other 4-manifold.

Since the Kirby-Siebenmann obstruction of a closed 4-manifold is natural with
respect to covering maps and dies on passage to 2-fold coverings, the non-
smoothable manifold CP 2] − ∗CP 2 admits no nontrivial free involution. The
following lemma implies that S2×̃S2 admits no orientation preserving free in-
volution, and hence no free action of Z/4Z or (Z/2Z)2 .

Lemma 12.3 Let M be a closed 4-manifold with fundamental group π =
Z/2Z and universal covering space M̃ . Then

(1) w2(M̃) = 0 if and only if w2(M) = u2 for some u ∈ H1(M ;F2); and
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(2) if M is orientable and χ(M) = 2 then w2(M̃) = 0 and so M̃ ∼= S2 × S2 .

Proof The Cartan-Leray cohomology spectral sequence (with coefficients F2 )

for the projection p : M̃ →M gives an exact sequence

0→ H2(π;F2)→ H2(M ;F2)→ H2(M̃ ;F2),

in which the right hand map is induced by p and has image in the subgroup
fixed under the action of π . Hence w2(M̃) = p∗w2(M) is 0 if and only if
w2(M) is in the image of H2(π;F2). Since π = Z/2Z this is so if and only if
w2(M) = u2 for some u ∈ H1(M ;F2).

Suppose that M is orientable and χ(M) = 2. Then H2(π;Z) = H2(M ;Z) =
Z/2Z . Let x generate H2(M ;Z) and let x̄ be its image under reduction modulo
(2) in H2(M ;F2). Then x̄∪ x̄ = 0 in H4(M ;F2) since x∪x = 0 in H4(M ;Z).
Moreover as M is orientable w2(M) = v2(M) and so w2(M) ∪ x̄ = x̄ ∪ x̄ = 0.
Since the cup product pairing on H2(M ;F2) ∼= (Z/2Z)2 is nondegenerate it

follows that w2(M) = x̄ or 0. Hence w2(M̃) is the reduction of p∗x or is
0. The integral analogue of the above exact sequence implies that the natural
map from H2(π;Z) to H2(M ;Z) is an isomorphism and so p∗(H2(M ;Z)) = 0.

Hence w2(M̃) = 0 and so M̃ ∼= S2 × S2 .

There are two S2 -bundles over Mb, since π1(BO(3)) = Z/2Z . Each restricts
to a trivial bundle over ∂Mb. A map from ∂Mb to O(3) extends across Mb if
and only if it is homotopic to a constant map, since π1(O(3)) = Z/2Z , and so
there are four S2 -bundles over RP 2 = Mb ∪D2 . (See also Theorem 5.10.)

The orbit space M = (S2 × S2)/〈(A,−I)〉 fibres over RP 2 , and is orientable
if and only if det(A) = −1. If A has a fixed point P ∈ S2 then the image
of {P} × S2 in M is a section which represents a nonzero class in H2(M ;F2).
If A = I or is a reflection across a plane the fixed point set has dimension
> 0 and so this section has self intersection 0. As the fibre S2 intersects the
section in one point and has self intersection 0 it follows that v2(M) = 0 and
so w2(M) = w1(M)2 in these two cases. If A is the half-turn about the z -
axis let n(x, y) = 1

r (x, y, 1), where r =
√
x2 + y2 + 1, for (x, y) ∈ R2 . Let

σt[±s] = [n(tx, ty), s] ∈ M , for s = (x, y, z) ∈ S2 and |t| small. Then σt is an
isotopy of sections with self intersection 1. Finally, if A = −I then the image of
the diagonal {(x, x)|x ∈ S2} is a section with self intersection 1. Thus in these
two cases v2(M) 6= 0. Therefore, by part (1) of the lemma, w2(M) is the square
of the nonzero element of H1(M ;F2) if A = −I and is 0 if A is a rotation.
Thus these bundle spaces may be distinguished by their Stiefel-Whitney classes,
and every S2 -bundle over RP 2 is geometric.
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The group E(RP 2) is connected and the natural map from SO(3) to E(RP 2)
induces an isomorphism on π1 , by Lemma 5.15. Hence there are two RP 2 -
bundles over S2 , up to fibre homotopy equivalence. The total space of the
nontrivial RP 2 -bundle over S2 is the quotient of S2×̃S2 by the bundle invo-
lution which is the antipodal map on each fibre. If we observe that S2×̃S2 ∼=
CP 2]−CP 2 is the union of two copies of the D2 -bundle which is the mapping
cone of the Hopf fibration and that this involution interchanges the hemispheres
we see that this space is homeomorphic to RP 4]CP 2 .

There are two RP 2 -bundles over RP 2 . (The total spaces of each of the latter
bundles have fundamental group (Z/2Z)2 , since w1 : π → π1(RP 2) = Z/2Z
restricts nontrivially to the fibre, and so is a splitting homomorphism for the ho-
momorphism induced by the inclusion of the fibre.) They may be distinguished
by their orientation double covers, and each is geometric. (The nontrivial bun-
dle space is also the total space of an S2 -orbifold bundle over D(2).)

12.4 Cohomology and Stiefel-Whitney classes

We shall show that if M is a closed connected 4-manifold with fundamental
group π such that χ(M)|π| = 4 then H∗(M ;F2) is isomorphic to the coho-
mology ring of one of the above bundle spaces, as a module over the Steenrod
algebra A2 . (In other words, there is an isomorphism which preserves Stiefel-
Whitney classes.) This is an exercise in Poincaré duality and the Wu formulae.

The classifying map induces an isomorphism H1(π;F2) ∼= H1(M ;F2) and a
monomorphism H2(π;F2)→ H2(M ;F2). If π = 1 then M is homotopy equiv-
alent to S2 × S2 , S2×̃S2 or CP 2]CP 2 , and the result is clear.

π = Z/2Z . In this case β2(M ;F2) = 2. Let x generate H1(M ;F2). Then
x2 6= 0, so H2(M ;F2) has a basis {x2, u}. If x4 = 0 then x2u 6= 0, by Poincaré
duality, and so H3(M ;F2) is generated by xu. Hence x3 = 0, for otherwise
x3 = xu and x4 = x2u 6= 0. Therefore v2(M) = 0 or x2 , and clearly v1(M) = 0

or x. Since x restricts to 0 in M̃ we must have w2(M̃) = v2(M̃) = 0. (The
four possibilities are realized by the four S2 -bundles over RP 2 .)

If x4 6= 0 then we may assume that x2u = 0 and that H3(M ;F2) is generated
by x3 . In this case xu = 0. Since Sq1(x3) = x4 we have v1(M) = x, and

v2(M) = u+ x2 . In this case w2(M̃) 6= 0, since w2(M) is not a square. (This
possibility is realized by the nontrivial RP 2 -bundle over S2 .)

π ∼= (Z/2Z)2 . In this case β2(M ;F2) = 3 and w1(M) 6= 0. Fix a basis {x, y}
for H1(M ;F2). Then {x2, xy, y2} is a basis for H2(M ;F2), since H2(π;F2)
and H2(M ;F2) both have dimension 3.
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If x3 = y3 then x4 = Sq1(x3) = Sq1(y3) = y4 . Hence x4 = y4 = 0 and
x2y2 6= 0, by the nondegeneracy of cup product on H2(M ;F2). Hence x3 =
y3 = 0 and so H3(M ;F2) is generated by {x2y, xy2}. Now Sq1(x2y) = x2y2

and Sq1(xy2) = x2y2 , so v1(M) = x+ y . Also Sq2(x2) = 0 = x2xy , Sq2(y2) =
0 = y2xy and Sq2(xy) = x2y2 , so v2(M) = xy . Since the restrictions of x
and y to the orientation cover M+ agree we have w2(M+) = x2 6= 0. (This
possibility is realized by RP 2 ×RP 2 .)

If x3 , y3 and (x + y)3 are all distinct then we may assume that (say) y3 and
(x+y)3 generate H3(M ;F2). If x3 6= 0 then x3 = y3 +(x+y)3 = x3 +x2y+xy2

and so x2y = xy2 . But then we must have x4 = y4 = 0, by the nondegeneracy
of cup product on H2(M ;F2). Hence Sq1(y3) = y4 = 0 and Sq1((x + y)3) =
(x + y)4 = x4 + y4 = 0, and so v1(M) = 0, which is impossible, as M is
nonorientable. Therefore x3 = 0 and so x2y2 6= 0. After replacing y by x+ y ,
if necessary, we may assume xy3 = 0 (and hence y4 6= 0). Poincaré duality and
the Wu relations give v1(M) = x+y , v2(M) = xy+x2 and hence w2(M+) = 0.
(This possibility is realized by the nontrivial RP 2 -bundle over RP 2 .)

π = Z/4Z . In this case β2(M ;F2) = 1 and w1(M) 6= 0. Similar arguments
give H∗(M ;F2) ∼= F2[w, x, y]/(w2, wx, x2+wy, xy, x3, y2), where w = w1(M), x
has degree 2 and y has degree 3. Hence Sq1x = 0, Sq1y = wy and v2(M) = x.

Note that if π ∼= (Z/2Z)2 the ring H∗(M ;F2) is generated by H1(M ;F2) and
so determines the image of [M ] in H4(π;F2).

In all cases, a class x ∈ H1(M ;F2) such that x3 = 0 may be realized by a
map from M to K(Z/2Z, 1) = RP∞ which factors through P2(RP 2), since
k1(RP 2) generates H3(Z/2Z;π2(RP 2)) ∼= H3(Z/2Z;F2) = Z/2Z . However
there are such 4-manifolds which do not fibre over RP 2 .

12.5 The action of π on π2(M)

Let M be a closed 4-manifold with finite fundamental group π and orienta-
tion character w = w1(M). The intersection form S(M̃) on Π = π2(M) =

H2(M̃ ;Z) is unimodular and symmetric, and π acts w-isometrically (that is,
S(ga, gb) = w(g)S(a, b) for all g ∈ π and a, b ∈ Π).

The two inclusions of S2 as factors of S2 × S2 determine the standard basis
for π2(S2 × S2). Let J = ( 0 1

1 0 ) be the matrix of the intersection form • on
π2(S2×S2), with respect to this basis. The group Aut(±•) of automorphisms of
π2(S2×S2) which preserve this intersection form up to sign is the dihedral group
of order eight, and is generated by the diagonal matrices and J or K =

(
0 1
−1 0

)
.
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The subgroup of strict isometries has order four, and is generated by −I and
J . (Note that the isometry J is induced by the involution τ .)

Let f be a self homeomorphism of S2 × S2 and let f∗ be the induced auto-
morphism of π2(S2 × S2). The Lefshetz number of f is 2 + trace(f∗) if f
is orientation preserving and trace(f∗) if f is orientation reversing. As any
self homotopy equivalence which induces the identity on π2 has nonzero Lef-
shetz number the natural representation of a group π of fixed point free self
homeomorphisms of S2 × S2 into Aut(±•) is faithful.

Suppose first that f is a free involution, so f2
∗ = I . If f is orientation preserving

then trace(f∗) = −2 so f∗ = −I . If f is orientation reversing then trace(f∗) =
0, so f∗ = ±JK = ±

(
1 0
0 −1

)
. Note that if f ′ = τfτ then f ′∗ = −f∗ , so after

conjugation by τ , if necessary, we may assume that f∗ = JK .

If f generates a free Z/4Z -action the induced automorphism must be ±K .
Note that if f ′ = τfτ then f ′∗ = −f∗ , so after conjugation by τ , if necessary,
we may assume that f∗ = K .

Since the orbit space of a fixed point free action of (Z/2Z)2 on S2 × S2 has
Euler characteristic 1 it is nonorientable, and so the action is generated by two
commuting involutions, one of which is orientation preserving and one of which
is not. Since the orientation preserving involution must act via −I and the
orientation reversing involutions must act via ±JK the action of (Z/2Z)2 is
essentially unique.

The standard inclusions of S2 = CP 1 into the summands of CP 2] − CP 2 ∼=
S2×̃S2 determine a basis for π2(S2×̃S2) ∼= Z2 . Let J̃ =

(
1 0
0 −1

)
be the matrix

of the intersection form •̃ on π2(S2×̃S2) with respect to this basis. The group
Aut(±•̃) of automorphisms of π2(S2×̃S2) which preserve this intersection form
up to sign is the dihedral group of order eight, and is also generated by the
diagonal matrices and J = ( 0 1

1 0 ). The subgroup of strict isometries has order
four, and consists of the diagonal matrices. A nontrivial group of fixed point
free self homeomorphisms of S2×̃S2 must have order 2, since S2×̃S2 admits
no fixed point free orientation preserving involution, by Lemma 12.3. If f is
an orientation reversing free involution of S2×̃S2 then f∗ = ±J . Since the
involution of CP 2 given by complex conjugation is orientation preserving it is
isotopic to a selfhomeomorphism c which fixes a 4-disc. Let g = c]idCP 2 . Then
g∗ =

(−1 0
0 1

)
and so g∗Jg

−1
∗ = −J . Thus after conjugating f by g , if necessary,

we may assume that f∗ = J .

All self homeomorphisms of CP 2]CP 2 preserve the sign of the intersection
form, and thus are orientation preserving. With part (2) of Lemma 12.3, this
implies that no manifold in this homotopy type admits a free involution.
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12.6 Homotopy type

The quadratic 2-type of M is the quadruple [π, π2(M), k1(M), S(M̃)]. Two
such quadruples [π,Π, κ, S] and [π′,Π′, κ′, S′] with π a finite group, Π a finitely
generated, Z-torsion-free Z[π]-module, κ ∈ H3(π; Π) and S : Π × Π → Z a
unimodular symmetric bilinear pairing on which π acts ±-isometrically are
equivalent if there is an isomorphism α : π → π′ and an (anti)isometry β :
(Π, S)→ (Π′, (±)S′) which is α-equivariant (i.e., such that β(gm) = α(g)β(m)
for all g ∈ π and m ∈ Π) and β∗κ = α∗κ′ in H3(π, α∗Π′). Such a quadratic 2-
type determines homomorphisms w : π → Z× = Z/2Z (if Π 6= 0) and v : Π→
Z/2Z by the equations S(ga, gb) = w(g)S(a, b) and v(a) ≡ S(a, a) mod (2),
for all g ∈ π and a, b ∈ Π. (These correspond to the orientation character

w1(M) and the Wu class v2(M̃) = w2(M̃), of course.)

Let γ : A → Γ(A) be the universal quadratic functor of Whitehead. Then the
pairing S may be identified with an indivisible element of Γ(HomZ(Π,Z)). Via
duality, this corresponds to an element Ŝ of Γ(Π), and the subgroup generated
by the image of Ŝ is a Z[π]-submodule. Hence π3 = Γ(Π)/〈Ŝ〉 is again a
finitely generated, Z-torsion-free Z[π]-module. Let B be the Postnikov 2-stage
corresponding to the algebraic 2-type [π,Π, κ]. A PD4 -polarization of the
quadratic 2-type q = [π,Π, κ, S] is a 3-connected map f : X → B , where X is
a PD4 -complex, w1(X) = wπ1(f) and f̃∗(ŜX̃) = Ŝ in Γ(Π). Let SPD4 (q) be
the set of equivalence classes of PD4 -polarizations of q , where f : X → B ∼
g : Y → B if there is a map h : X → Y such that f ' gh.

Theorem 12.4 [Te] There is an effective, transitive action of the torsion
subgroup of Γ(Π)⊗Z[π] Z

w on SPD4 (q).

Proof (We shall only sketch the proof.) Let f : X → B be a fixed PD4 -
polarization of q . We may assume that X = K ∪g e4 , where K = X [3] is the
3-skeleton and g ∈ π3(K) is the attaching map. Given an element α in Γ(Π)
whose image in Γ(Π)⊗Z[π]Z

w lies in the torsion subgroup, let Xα = K∪g+α e4 .
Since π3(B) = 0 the map f |K extends to a map fα : Xα → B , which is again a
PD4 -polarization of q . The equivalence class of fα depends only on the image
of α in Γ(Π)⊗Z[π] Z

w . Conversely, if g : Y → B is another PD4 -polarization
of q then f∗[X]−g∗[Y ] lies in the image of Tors(Γ(Π)⊗Z[π]Z

w) in H4(B;Zw).
See §2 of [Te] for the full details.

Corollary 12.4.1 If X and Y are PD4 -complexes with the same quadratic
2-type then each may be obtained by adding a single 4-cell to X [3] = Y [3] .
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If w = 0 and the Sylow 2-subgroup of π has cohomological period dividing 4
then Tors(Γ(Π)⊗Z[π] Z

w) = 0 [Ba88]. In particular, if M is orientable and π
is finite cyclic then the equivalence class of the quadratic 2-type determines the
homotopy type [HK88]. Thus in all cases considered here the quadratic 2-type
determines the homotopy type of the orientation cover.

The group Aut(B) = Aut([π,Π, κ]) acts on SPD4 (q) and the orbits of this
action correspond to the homotopy types of PD4 -complexes X admitting such
polarizations f . When q is the quadratic 2-type of RP 2 × RP 2 this action is
nontrivial. (See below in this section. Compare also Theorem 10.5.)

The next lemma shall enable us to determine the possible k -invariants.

Lemma 12.5 Let M be a closed 4-manifold with fundamental group π =
Z/2Z and universal covering space S2 × S2 . Then the first k -invariant of M
is a nonzero element of H3(π;π2(M)).

Proof The first k -invariant is the primary obstruction to the existence of a
cross-section to the classifying map cM : M → K(Z/2Z, 1) = RP∞ and is the
only obstruction to the existence of such a cross-section for cP2(M) . The only
nonzero differentials in the Cartan-Leray cohomology spectral sequence (with

coefficients Z/2Z ) for the projection p : M̃ →M are at the E∗∗3 level. By the

results of Section 4, π acts trivially on H2(M̃ ;F2), since M̃ = S2×S2 . There-
fore E22

3 = E22
2
∼= (Z/2Z)2 and E50

3 = E50
2 = Z/2Z . Hence E22

∞ 6= 0, so E22
∞

maps onto H4(M ;F2) = Z/2Z and d12
3 : H1(π;H2(M̃ ;F2))→ H4(π;F2) must

be onto. But in this region the spectral sequence is identical with the corre-
sponding spectral sequence for P2(M). It follows that the image of H4(π;F2) =
Z/2Z in H4(P2(M);F2) is 0, and so cP2(M) does not admit a cross-section.
Thus k1(M) 6= 0.

If π = Z/2Z and M is orientable then π acts via −I on Z2 and the k -
invariant is a nonzero element of H3(Z/2Z;π2(M)) = (Z/2Z)2 . The isometry
which transposes the standard generators of Z2 is π -linear, and so there are
just two equivalence classes of quadratic 2-types to consider. The k -invariant
which is invariant under transposition is realised by (S2×S2)/〈(−I,−I)〉, while
the other k -invariant is realized by the other orientable S2 -bundle space. Thus
M must be homotopy equivalent to one of these spaces.

If π = Z/2Z , M is nonorientable and w2(M̃) = 0 then H3(π;π2(M)) = Z/2Z
and there is only one quadratic 2-type to consider. There are four equivalence
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classes of PD4 -polarizations, as Tors(Γ(Π) ⊗Z[π] Z
w) ∼= (Z/2Z)2 . The corre-

sponding PD4 -complexes have the form K∪fe4 , where K = (S2 ×RP 2) \ intD4

is the 3-skeleton of S2 × RP 2 and f ∈ π3(K). Two choices for f give total
spaces of S2 -bundles over RP 2 . A third choice gives RP 4]S1RP 4 = E ∪τ E ,
where E = S2 ×D2/(s, d) ∼ (−s,−d) and τ is the twist map of ∂E = S2×̃S1

[KKR92]. This is an orbifold S2 -bundle space over S(2, 2), but is not geomet-
ric. The fourth homotopy type has nontrivial Browder-Livesay invariant, and
so is not realizable by a closed manifold [HM78]. The product S2 × RP 2 is
characterized by the additional conditions that w2(M) = w1(M)2 6= 0 (i.e.,
v2(M) = 0) and that there is an element u ∈ H2(M ;Z) which generates an
infinite cyclic direct summand and is such that u∪u = 0. (See Theorem 5.19.)
The nontrivial nonorientable S2 -bundle space has w2(M) = 0. The manifold
RP 4]S1RP 4 also has w2(M) = 0, but it may be distinguished from the bundle
space by the Z/4Z -valued quadratic function on π2(M) ⊗ (Z/2Z) introduced
in [KKR92].

If π = Z/2Z and w2(M̃) 6= 0 then H3(π1;π2(M)) = 0, and the quadratic
2-type is unique. (Note that the argument of Lemma 12.5 breaks down here
because E22

∞ = 0.) There are two equivalence classes of PD4 -polarizations,
as Tors(Γ(Π) ⊗Z[π] Z

w) = Z/2Z . They are each of the form K ∪f e4 , where
K = (RP 4]CP 2) \ intD4 is the 3-skeleton of RP 4]CP 2 and f ∈ π3(K). The
bundle space RP 4]CP 2 is characterized by the additional condition that there
is an element u ∈ H2(M ;Z) which generates an infinite cyclic direct summand
and such that u∪u = 0. (See Theorem 5.19.) In [HKT94] it is shown that any

closed 4-manifold M with π = Z/2Z , χ(M) = 2 and w2(M̃) 6= 0 is homotopy
equivalent to RP 4]CP 2 .

If π ∼= Z/4Z then H3(π;π2(M)) ∼= Z2/(I − K)Z2 = Z/2Z , since Σk=4
k=1f

k
∗ =

Σk=4
k=1K

k = 0. The k -invariant is nonzero, since it restricts to the k -invariant
of the orientation double cover. In this case Tors(Γ(Π) ⊗Z[π] Z

w) = 0 and so
M is homotopy equivalent to (S2 × S2)/〈τ(I,−I)〉.
Finally, let π ∼= (Z/2Z)2 be the diagonal subgroup of Aut(±•) < GL(2,Z), and
let α be the automorphism induced by conjugation by J . The standard gen-
erators of π2(M) = Z2 generate complementary π -submodules, so that π2(M)
is the direct sum Z̃ ⊕ α∗Z̃ of two infinite cyclic modules. The isometry β = J
which transposes the factors is α-equivariant, and π and V = {±I} act non-
trivially on each summand. If ρ is the kernel of the action of π on Z̃ then
α(ρ) is the kernel of the action on α∗Z̃ , and ρ ∩ α(ρ) = 1. Let jV : V → π be
the inclusion. As the projection of π = ρ ⊕ V onto V is compatible with the
action, H∗(jV ; Z̃) is a split epimorphism and so H∗(V ; Z̃) is a direct sum-
mand of H∗(π; Z̃). This implies in particular that the differentials in the
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LHSSS Hp(V ;Hq(ρ; Z̃)) ⇒ Hp+q(π; Z̃) which end on the row q = 0 are all 0.
Hence H3(π; Z̃) ∼= H1(V ;F2)⊕H3(V ; Z̃) ∼= (Z/2Z)2 . Similarly H3(π;α∗Z̃) ∼=
(Z/2Z)2 , and so H3(π;π2(M)) ∼= (Z/2Z)4 . The k -invariant must restrict to
the k -invariant of each double cover, which must be nonzero, by Lemma 12.5.
Let KV , Kρ and Kα(ρ) be the kernels of the restriction homomorphisms from
H3(π;π2(M)) to H3(V ;π2(M)), H3(ρ;π2(M)) and H3(α(ρ);π2(M)), respec-
tively. Now H3(ρ; Z̃) = H3(α(ρ);α∗Z̃) = 0, H3(ρ;α∗Z̃) = H3(α(ρ); Z̃) =
Z/2Z and H3(V ; Z̃) = H3(V ;α∗Z̃) = Z/2Z . Since the restrictions are epimor-
phisms |KV | = 4 and |Kρ| = |Kα(ρ)| = 8. It is easily seen that |Kρ ∩Kα(ρ)| =
4. Moreover Ker(H3(jV ; Z̃)) ∼= H1(V ;H2(ρ; Z̃)) ∼= H1(V ;H2(ρ;F2)) restricts
nontrivially to H3(α(ρ); Z̃) ∼= H3(α(ρ);F2), as can be seen by reduction mod-
ulo (2), and similarly Ker(H3(jV ;α∗Z̃)) restricts nontrivially to H3(ρ;α∗Z̃).
Hence |KV ∩ Kρ| = |KV ∩ Kρ| = 2 and KV ∩ Kρ ∩ Kα(ρ) = 0. Thus
|KV ∪ Kρ ∪ Kα(ρ)| = 8 + 8 + 4 − 4 − 2 − 2 + 1 = 13 and so there are at
most three possible k -invariants. Moreover the automorphism α and the isom-
etry β = J act on the k -invariants by transposing the factors. The k -invariant
of RP 2 ×RP 2 is invariant under this transposition, while that of the nontriv-
ial RP 2 bundle over RP 2 is not, for the k -invariant of its orientation cover
is not invariant. Thus there are two equivalence classes of quadratic 2-types
to be considered. Since Tors(Γ(Π) ⊗Z[π] Z

w) ∼= (Z/2Z)2 each has four equiv-
alence classes of PD4 -polarizations. In each case the quadratic 2-type deter-
mines the F2 -cohomology ring, since it determines the orientation cover (see
§4). The canonical involution of the direct product interchanges two of these
polarizations in the RP 2 × RP 2 case, and so there are seven homotopy types
of PD4 -complexes to consider. The quotient of RP 4]S1RP 4 = E ∪τ E by
the free involution which sends [s, d] in one copy of E to [−s, d] in the other
gives a further homotopy type. (This has asymmetric k -invariant.) Thus there
are between three and seven homotopy types of closed 4-manifolds M with
π ∼= (Z/2Z)2 and χ(M) = 1.

12.7 Surgery

We may assume that M is a proper quotient of S2 × S2 or of S2×̃S2 , so
|π|χ(M) = 4 and π 6= 1. In the present context every homotopy equivalence is
simple since Wh(π) = 0 for all groups π of order ≤ 4 [Hg40].

Suppose first that π = Z/2Z . Then H1(M ;F2) = Z/2Z and χ(M) = 2,
so H2(M ;F2) ∼= (Z/2Z)2 . The F2 -Hurewicz homomorphism from π2(M) to
H2(M ;F2) has cokernel H2(π;F2) = Z/2Z . Hence there is a map β : S2 →M

such that β∗[S
2] 6= 0 in H2(M ;F2). If moreover w2(M̃) = 0 then β∗w2(M) =
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0, since β factors through M̃ . Then there is a self homotopy equivalence fβ of
M with nontrivial normal invariant in [M ;G/TOP ], by Lemma 6.5. Note also
that M is homotopy equivalent to a PL 4-manifold (see §6 above).

If M is orientable [M ;G/TOP ] ∼= Z⊕(Z/2Z)2 . The surgery obstruction groups
are L5(Z/2Z,+) = 0 and L4(Z/2Z,+) ∼= Z2 , where the surgery obstructions
are determined by the signature and the signature of the double cover, by
Theorem 13.A.1 of [Wl]. Hence it follows from the surgery exact sequence

that STOP (M) ∼= (Z/2Z)2 . Since w2(M̃) = 0 (by Lemma 12.3) there is a self
homotopy equivalence fβ of M with nontrivial normal invariant and so there
are at most two homeomorphism classes within the homotopy type of M . If
w2(M) = 0 then KS(M) = 0, since σ(M) = 0, and so M is homeomorphic
to the bundle space [Te97]. On the other hand if w2(M) 6= 0 there is an α ∈
H2(M ;F2) such that α2 6= 0, and α = kerv(f̂) for some homotopy equivalence
f : N → M . We then have KS(N) = f∗(KS(M) + α2) (see §2 of Chapter
6 above), and so KS(N) 6= KS(M). Thus there are three homeomorphism
classes of orientable closed 4-manifolds with π = Z/2Z and χ = 2. One of
these is a fake (S2 × S2)/〈(−I,−I)〉 and is not smoothable.

Suppose now that M is non-orientable, with orientable double cover M+ . The
natural maps from L4(1) to L4(Z/2Z,−) and L4((Z/2Z)2,−) are trivial, while
L4(Z/4Z,−) = 0 [Wl76]. Thus we may change the value of KS(M) at will, by
surgering the normal map M]E8 → M]S4 ∼= M . In all cases KS(M+) = 0,
and so M+ is the total space of an S2 -bundle over S2 or RP 2 .

Nonorientable closed 4-manifolds with fundamental group Z/2Z have been clas-
sified in [HKT94]. The surgery obstruction groups are L5(Z/2Z,−) = 0 and
L4(Z/2Z,−) = Z/2Z , and σ4(ĝ) = c(ĝ) for any normal map ĝ : M → G/TOP ,
by Theorem 13.A.1 of [Wl]. Therefore σ4(ĝ) = (w1(M)2 ∪ ĝ∗(k2))[M ], by The-
orem 13.B.5 of [Wl]. (See also §2 of Chapter 6 above.) As w1(M) is not the
reduction of a class in H1(M ;Z/4Z) its square is nonzero and so there is an
element ĝ∗(k2) in H2(M ;F2) such that this cup product is nonzero. Hence
STOP (M) ∼= (Z/2Z)2 , since [M ;G/TOP ] ∼= (Z/2Z)3 . There are two homeo-

morphism types within each homotopy type if w2(M̃) = 0; if w2(M̃) 6= 0 there
are four corresponding homeomorphism types [HKT94]: RP 4]CP 2 (the non-
trivial RP 2 -bundle over S2 ), RP 4] ∗ CP 2 , ∗RP 4]CP 2 , which have nontrivial
Kirby-Siebenmann invariant, and (∗RP 4)] ∗CP 2 , which is smoothable [RS97].
Thus there are ten homeomorphism classes of nonorientable closed 4-manifolds
with π = Z/2Z and χ = 2.

The image of [M ;G/PL] in [M ;G/TOP ] is a subgroup of index 2 (see Section
15 of [Si71]). It follows that if M is the total space of an S2 -bundle over RP 2
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any homotopy equivalence f : N → M where N is also PL is homotopic to a
homeomorphism. (For then STOP (M) ∼= (Z/2Z)2 , and the nontrivial element
of the image of SPL(M) is represented by a self homotopy equivalence of M .
The case M = S2 × RP 2 was treated in [Ma79]. See also [Te97] for the cases
with π = Z/2Z and w1(M) = 0.) This is also true if M = S4 , RP 4 , CP 2 ,
S2 × S2 or S2×̃S2 .

If π ∼= Z/4Z or (Z/2Z)2 then χ(M) = 1, and so M is nonorientable. As the
F2 -Hurewicz homomorphism is 0 in these cases Lemma 6.5 does not apply to
give any exotic self homotopy equivalences.

If π ∼= (Z/2Z)2 then [M ;G/TOP ] ∼= (Z/2Z)4 and the surgery obstruction
groups are L5((Z/2Z)2,−) = 0 and L4((Z/2Z)2,−) = Z/2Z , by Theorem
3.5.1 of [Wl76]. Since w1(M) is a split epimorphism L4(w1(M)) is an isomor-
phism, so the surgery obstruction is detected by the Kervaire-Arf invariant. As
w1(M)2 6= 0 we find that STOP (M) ∼= (Z/2Z)3 . Thus there are between six
and 56 homeomorphism classes of closed 4-manifolds with π ∼= (Z/2Z)2 and
χ = 1, of which half are not stably smoothable.

If π ∼= Z/4Z then [M ;G/TOP ] ∼= (Z/2Z)2 and the surgery obstruction groups
L4(Z/4Z,−) and L5(Z/4Z,−) are both 0, by Theorem 3.4.5 of [Wl76]. Hence
STOP (M) ∼= (Z/2Z)2 . In the next section we show that self homotopy equiva-
lences of S2 × S2/〈τ(I,−I)〉 are homotopic to homeomorphisms. Hence there
are four homeomorphism classes of closed 4-manifolds with π ∼= Z/4Z and
χ = 1. In all cases the orientable double covering space has trivial Kirby-
Siebenmann invariant and so is homeomorphic to (S2 × S2)/(−I,−I). In the
final section we give a candidate for another PL 4-manifold in this homotopy
type. (This is from [HH14].)

12.8 The case π = Z/4Z

Let X be a connected cell complex, and let G#(X) be the group of based self
homotopy equivalences of X which induce the identity on all homotopy groups.
Let Pn(X) be the nth stage of the Postnikov tower for X . This may be
constructed by adjoining cells of dimension ≥ n+ 2 to X . Then G#(P2(X)) ∼=
H2(π;π2(X)), and there are exact sequences

Hn(Pn−1(X);πn(X))→ G#(Pn(X))→ G#(Pn−1(X)),

for n > 2, by Theorem 2.2 and Proposition 1.5 of [Ts80], respectively. (The
image on the right is the stabilizer in G#(Pn−1(X)) of the nth k -invariant.)
In particular, if Hk(Pk−1(X);πk(X)) = 0 for 2 ≤ k ≤ n then self homotopy
equivalences of Pn(X) are detected by their actions on the homotopy groups.
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Let M = S2 × S2/〈τ(I,−I)〉 be the geometric manifold with π = π1(M) ∼=
Z/4Z and χ = 1. Since M̃ = S2×S2 , πk(M) = πk(S

2)⊕πk(S2), for all k ≥ 2.
Let Π = π2(M), considered as a Z[π]-module. Fix a basepoint e = R1(e) on
the equator of S2 and let [s, t] be the image in M of (s, t) ∈ S2×S2 . We shall
take (e, e) and [e, e] as basepoints for S2 × S2 and M , respectively.

Theorem 12.6 Let M = S2 × S2/〈τ(I,−I)〉. Then the natural map from π
to Autπ(Π) is an isomorphism, while G#(M) has order ≤ 2.

Proof The group π = Z/4Z acts on Π = Z2 via
(

0 1
−1 0

)
, and so Π ∼=

Λ/(t2 + 1) = Z[i]. Hence the natural map from π to Autπ(Π) ∼= Z[i]× = 〈i〉
is an isomorphism. Similarly, π acts on π4(M) = (Z/2Z)2 via swapping the
summands.

The Hopf maps corresponding to the factors of M̃ generate π3(M) ∼= Z2 .
Hence π = Z/4Z acts on π3(M) via ( 0 1

1 0 ). Simple calculations using the
standard periodic resolution of the augmentation module Z give H0(π; Π) ∼=
H0(π;π3(M)) ∼= Z, while H2k−1(π; Π) = H2k(π;π3(M)) = Z/2Z and H2k(π; Π)
= H2k−1(π;π3(M)) = 0, for all k > 0.

The homotopy fibre of the classifying map from P2(M) to K(π, 1) is K(Π, 2).
Since K(Π, 2) has no cohomology in odd degrees, while H2(K(Π, 2);π3(M)) ∼=
π3(M)2 , all the terms with p+ q odd in the Leray-Serre spectral sequence

Hp(π;Hq(K(Π, 2);π3(M))⇒ Hp+q(P2(M);π3(M))

are 0. Hence the spectral sequence collapses, so H3(P2(M);π3(M)) = 0 and
H4(P2(M);π3(M)) ∼= Z ⊕ T , where T has order 4. Therefore G#(P2(M)) =
G#(P3(M)) = 0.

We may assume that P3(M) has a single 5-cell, attached along a map which

factors through one of the S2 factors of M̃ . Therefore the connecting ho-
momorphism from H4(M ;π4(M)) to H5(P3(M),M ;π4(M)) is 0, and restric-
tion from H4(P3(M);π4(M)) to H4(M ;π4(M)) is an isomorphism. Since
H4(M ;π4(M)) ∼= H0(M ;π4(M)) = Z/2Z , by Poincaré duality, we see that
G#(P4(M)) has order at most 2.

Every self homotopy equivalence of M extends to a self-homotopy equivalence
of Pn(M), for all n > 0. Conversely, if n ≥ 3 then every self-map f of
Pn(M) restricts to a self-map of M , by cellular approximation, and if f is a
self-homotopy equivalence then so is the restriction, by duality in the universal
cover M̃ = S2 × S2 and the Whitehead theorems. If, moreover, n ≥ 4 then
homotopies of self maps of Pn(M) restrict to homotopies of self-maps of M .
Thus G#(M) = G#(P4(M)), and so has order ≤ 2.
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Is G#(M) trivial? We may circumvent our ignorance of the answer to this
question by the argument of the next lemma.

Let Mo = M \D4 , and let jo : Mo →M be the natural inclusion.

Lemma 12.7 Let h be a based self homotopy equivalence of M which induces
the identity on π and Π. Then h is based homotopic to a self-homeomorphism
of M .

Proof The map h induces the identity on all homotopy groups, since πk(M) =
πk(S

2) ⊕ πk(S
2), for all k ≥ 2. Let Pj(h) be the extension of h to a self-

homotopy equivalence of Pj(M). Since P3(h) induces the identity on π , Π and
π3(M), there is a homotopy Ht from P3(h) to the identity, by Theorem 12.6 and
the exact sequences of [Ts80]. We may assume that H(Mo × [0, 1]) has image
in M . Thus h|Mo ∼ jo , and so we may assume that h|Mo = jo , by the HEP.
We then see that h may be obtained by the pinch construction; h = idM ∨ γ
for some γ ∈ π4(M). Now γ = µη2 for some µ ∈ Π, since π4(S2) = Z/2Z is
generated by η2 . Since H2(M ;F2) = H2(π;F2), the Hurewicz homomorphism
from Π to H2(M ;F2) is 0. Therefore kerv(h) = 0. Hence h has trivial normal
invariant. (See Theorem 6.6′ .) Thus h is homotopic to a self-homeomorphism
of M .

Theorem 12.8 Every based self-homotopy equivalence of M is based homo-
topy equivalent to a homeomorphism.

Proof Interchange of factors and reflection across the equator of S2 may be
used to define basepoint preserving homeomorphisms r and s of M , with
r([x, y]) = [y, x] and s([x, y]) = [R1x,R1y], for all [x, y] ∈ M . Let c be
the equatorial arc from c(0) = e to c(1) = −e in S2 . Then γ(t) = [c(t), e]
represents a generator of π , while rγ(t) = γ(1 − t) and sγ(t) = γ(t), for all
0 ≤ t ≤ 1. Therefore π1(r) = −1 and π1(s) = 1. Clearly π2(r) and π2(s) have
matrices ( 0 1

1 0 ) and −I , respectively.

Let h be the homeomorphism which drags the basepoint ? around a loop rep-
resenting a generator g of π . Then π1(h) = idπ , since π is abelian, while π2(h)
acts through g , and so has matrix

(
0 1
−1 0

)
or its inverse. It is now clear that if f

is a based self-homotopy equivalence of M there is a based self-homeomorphism
F such that πi(f) = πi(F ), for i = 1 and 2. Since F−1f induces the identity
on π and Π, the theorem follows from Lemma 12.7.

Corollary 12.8.1 There are four homeomorphism types of manifolds homo-
topy equivalent to M .
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12.9 A smooth fake version of S2 × S2/〈τ(I,−I)〉?

Let M = S2 × S2/〈τ(I,−I)〉, as in the previous section, and let M+ be its
orientable double cover. Let ∆ = {(s, s) | s ∈ S2} be the diagonal in S2 × S2 .
We may isotope ∆ to a nearby sphere which meets ∆ transversely in two
points, by rotating the first factor, and so ∆ has self-intersection ±2. The
diagonal is invariant under (−I,−I), and so δ = ∆/〈σ2〉 ∼= RP 2 embeds in
M+ = S2 × S2/〈(−I,−I)〉 with an orientable regular neighbourhood. Since
σ(∆) ∩ ∆ = ∅ this also embeds in M . We shall see that the complementary
region also has a simple description.

Let Cx = {(s, t) ∈ S2 × S2 | s • t = x}, for all x ∈ [−1, 1]. Then C1 = ∆
and C−1 = τ(I,−I)(∆), while Cx ∼= C0 for all |x| < 1. It is easily seen
that N = ∪x≥εCx and τ(I,−I)(N) are regular neighbourhoods of ∆ and
τ(I,−I)(∆), respectively, while C = ∪x∈[−ε,ε]Cx ∼= C0 × [−ε, ε]. In particular,
N and τ(I,−I)(N) are each homeomorphic to the total space of the unit disc
bundle in TS2 , and ∂N ∼= C0

∼= RP 3 .

The subsets Cx are invariant under (−I,−I). Hence N(δ) = N/〈(−I,−I)〉
is the total space of the tangent disc bundle of RP 2 . In particular, ∂N(δ) ∼=
L(4, 1) and δ represents the nonzero element of H2(M ;F2), since it has self-
intersection 1 in F2 . (It is not hard to show that any embedded surface rep-
resenting the nonzero element of H2(M ;F2) is non-orientable but lifts to M+ ,
and so has an orientable regular neighbourhood.)

We also see that C/〈(−I,−I)〉 ∼= L(4, 1) × [−ε, ε]. If we identify S3 with the
unit quaternions then the map p : S3 → C0 given by p(q) = (qiq−1, qjq−1) for
all q ∈ S3 is a 2-fold covering projection. It is easily seen that

p(q.
1√
2

(1 + k)) = τ(I,−I)(p(q)),

and so the self map of S3 defined by right multiplication by 1√
2
(1 + k) lifts

τ(I,−I). Hence C0/〈τ(I,−I)〉 = S3/〈 1√
2
(1 + k)〉 = L(8, 1), and so MC =

C/〈σ〉 is the mapping cylinder of the double cover L(4, 1) → L(8, 1). Since
S2 × S2 = N ∪ C ∪ τ(I,−I)(N) it follows that M = N(δ) ∪MC .

This construction suggests a candidate for another smooth 4-manifold in the
same (simple) homotopy type. Let M ′ = N(δ) ∪ MC ′ , where MC ′ is the
mapping cylinder of the double cover L(4, 1)→ L(8, 5). Then π1(M ′) ∼= Z/4Z
and χ(M ′) = 1, and so there is a homotopy equivalence h : M ′ ' M . In
this case, kerv(h) is a complete invariant. The difficulty is in finding an easily
analyzed explicit choice for h, for which we can compute kerv(h).
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Is there a computable homeomorphism (or diffeomorphism) invariant that can
be applied here? Most readily computable invariants are invariants of homotopy
type. These manifolds have w2 6= 0 but w2

1 = 0 and w1w2 = 0, so admit Pinc -
structures. Is it possible to distinguish them by consideration of the associated
Arf invariants?

If M and M ′ are not homeomorphic then every closed 4-manifold with π ∼=
Z/4Z and χ = 1 is homeomorphic to one of M , M ′ , ∗M or ∗M ′ .
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Chapter 13

Geometric decompositions of bundle
spaces

We begin by considering which closed 4-manifolds with geometries of euclidean
factor type are mapping tori of homeomorphisms of 3-manifolds. We also show
that (as an easy consequence of the Kodaira classification of surfaces) a complex
surface is diffeomorphic to a mapping torus if and only if its Euler characteristic
is 0 and its fundamental group maps onto Z with finitely generated kernel, and
we determine the relevant 3-manifolds and diffeomorphisms. In §2 we consider
when an aspherical 4-manifold which is the total space of a surface bundle
is geometric or admits a geometric decomposition. If the base and fibre are
hyperbolic the only known examples are virtually products. In §3 we shall give
some examples of torus bundles over closed surfaces which are not geometric,
some of which admit geometric decompositions of type F4 and some of which
do not. In §4 we apply some of our earlier results to the characterization of
certain complex surfaces. In particular, we show that a complex surfaces fibres
smoothly over an aspherical orientable 2-manifold if and only if it is homotopy
equivalent to the total space of a surface bundle. In the final two sections we
consider first S1 -bundles over geometric 3-manifolds and then the existence of
symplectic structures on geometric 4-manifolds.

13.1 Mapping tori

In §3-5 of Chapter 8 and §3 of Chapter 9 we used 3-manifold theory to char-
acterize mapping tori of homeomorphisms of geometric 3-manifolds which have
product geometries. Here we shall consider instead which 4-manifolds with
product geometries or complex structures are mapping tori.

Theorem 13.1 Let M be a closed geometric 4-manifold with χ(M) = 0
and such that π = π1(M) is an extension of Z by a finitely generated normal
subgroup K . Then K is the fundamental group of a geometric 3-manifold.

Proof Since χ(M) = 0 the geometry must be either an infrasolvmanifold
geometry or a product geometry X3×E1 , where X3 is one of the 3-dimensional
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geometries S3 , S2×E1 , H3 , H2×E1 or S̃L. If M is an infrasolvmanifold then
π is torsion-free and virtually poly-Z of Hirsch length 4, so K is torsion-free
and virtually poly-Z of Hirsch length 3, and the result is clear.

If X3 = S3 then π is a discrete cocompact subgroup of O(4)×E(1). Since O(4)
is compact the image of π in E(1) is infinite, and thus has no nontrivial finite
normal subgroup. Therefore K is a subgroup of O(4)×{1}. Since π acts freely
on S3 × R the subgroup K acts freely on S3 , and so K is the fundamental
group of an S3 -manifold. If X3 = S2 × E1 then π is virtually Z2 . Hence K
has two ends, and so K ∼= Z , Z ⊕ (Z/2Z) or D , by Corollary 4.5.2. Thus K
is the fundamental group of an S2 × E1 -manifold.

In the remaining cases X3 is of aspherical type. The key point here is that
a discrete cocompact subgroup of the Lie group Isom(X3 × E1) must meet
the radical of this group in a lattice subgroup. Suppose first that X3 = H3 .
After passing to a subgroup of finite index if necessary, we may assume that
π ∼= H × Z < PSL(2,C) × R, where H is a discrete cocompact subgroup of
PSL(2,C). If K ∩ ({1}×R) = 1 then K is commensurate with H , and hence
is the fundamental group of an X -manifold. Otherwise the subgroup generated
by K ∩H = K ∩ PSL(2,C) and K ∩ ({1} × R) has finite index in K and is
isomorphic to (K ∩ H) × Z . Since K is finitely generated so is K ∩ H , and
hence it is finitely presentable, since H is a 3-manifold group. Therefore K∩H
is a PD2 -group and so K is the fundamental group of a H2 × E1 -manifold.

If X3 = H2 × E1 then we may assume that π ∼= H × Z2 < PSL(2,R) × R2 ,
where H is a discrete cocompact subgroup of PSL(2,R). Since such groups
do not admit nontrivial maps to Z with finitely generated kernel K ∩H must
be commensurate with H , and we again see that K is the fundamental group
of an H2 × E1 -manifold.

A similar argument applies if X3 = S̃L. We may assume that π ∼= H × Z
where H is a discrete cocompact subgroup of Isom(S̃L). Since such groups H
do not admit nontrivial maps to Z with finitely generated kernel K must be
commensurate with H and so is the fundamental group of a S̃L-manifold.

Corollary 13.1.1 Suppose that M has a product geometry X× E1 . If X3 =
E3 , S3 , S2 × E1 , S̃L or H2 × E1 then M is the mapping torus of an isometry
of an X3 -manifold with fundamental group K . If X3 = Nil3 or Sol3 then K
is the fundamental group of an X3 -manifold or of a E3 -manifold. If X3 = H3

then K is the fundamental group of a H3 - or H2 × E1 -manifold.

Proof In all cases π is a semidirect product KoθZ and may be realised by the
mapping torus of a self homeomorphism of a closed 3-manifold with fundamental
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group K . If this manifold is an X3 -manifold then the outer automorphism class
of θ is finite (see Chapters 8 and 9) and θ may then be realized by an isometry
of an X3 -manifold. Infrasolvmanifolds are determined up to diffeomorphism by
their fundamental groups [Ba04], as are S̃L×E1 - and H2×E2 -manifolds [Vo77].
This is also true of S2 × E2 - and S3 × E1 -manifolds, provided K is not finite
cyclic, and when K is cyclic every such S3×E1 -manifold is a mapping torus of
an isometry of a suitable lens space [Oh90]. Thus if M is an X3×E1 -manifold
and K is the fundamental group of an X3 -manifold M is the mapping torus of
an isometry of an X3 -manifold with fundamental group K .

There are (orientable) Nil3 × E1 - and Sol3 × E1 -manifolds which are mapping
tori of self homeomorphisms of flat 3-manifolds, but which are not mapping tori
of self homeomorphisms of Nil3 - or Sol3 -manifolds. (See Chapter 8.) There
are analogous examples when X3 = H3 . (See §4 of Chapter 9.)

We may now improve upon the characterization of mapping tori up to homotopy
equivalence from Chapter 4.

Theorem 13.2 Let M be a closed 4-manifold with fundamental group π .
Then M is homotopy equivalent to the mapping torus M(Θ) of a self home-
omorphism of a closed 3-manifold with one of the geometries E3 , Nil3 , Sol3 ,
H2 × E1 , S̃L or S2 × E1 if and only if

(1) χ(M) = 0;

(2) π is an extension of Z by a finitely generated normal subgroup K ; and

(3) K has a nontrivial torsion-free abelian normal subgroup A.

If π is torsion-free M is s-cobordant to M(Θ), while if moreover π is solvable
M is homeomorphic to M(Θ).

Proof The conditions are clearly necessary. Since K has an infinite abelian
normal subgroup it has one or two ends. If K has one end then M is aspherical
and so K is a PD3 -group, by Theorem 4.1 and the Addendum to Theorem
4.5. Condition (3) then implies that M ′ is homotopy equivalent to a closed
3-manifold with one of the first five of the geometries listed above, by Theorem
2.14. If K has two ends then M ′ is homotopy equivalent to S2 × S1 , S2×̃S1 ,
RP 2 × S1 or RP 3]RP 3 , by Corollary 4.5.2.

In all cases K is isomorphic to the fundamental group of a closed 3-manifold N
which is either Seifert fibred or a Sol3 -manifold, and the outer automorphism
class [θ] determined by the extension may be realised by a self homeomorphism
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Θ of N . The manifold M is homotopy equivalent to the mapping torus M(Θ).
Since Wh(π) = 0, by Theorems 6.1 and 6.3, any such homotopy equivalence is
simple.

If K is torsion-free and solvable then π is virtually poly-Z , and so M is home-
omorphic to M(Θ), by Theorem 6.11. Otherwise N is a closed H2 × E1 - or

S̃L-manifold, and so Wh(π × Zn) = 0 for all n ≥ 0, by Theorem 6.3. The
surgery obstruction homorphisms σNi are isomorphism for all large i [Ro11].
Therefore M is s-cobordant to M(Θ), by Theorem 6.8.

Mapping tori of self homeomorphisms of H3 - and S3 -manifolds satisfy condi-
tions (1) and (2). In the hyperbolic case there is the additional condition

(3-H) K has one end and no noncyclic abelian subgroup.

An aspherical closed 3-manifold is hyperbolic if its fundamental group has no
noncyclic abelian subgroup [B-P]. If every PD3 -group is a 3-manifold group and
the group rings of such hyperbolic groups are regular coherent, then Theorem
13.2 extends to show that a closed 4-manifold M with fundamental group π
is s-cobordant to the mapping torus of a self homeomorphism of a hyperbolic
3-manifold if and only these three conditions hold.

In the spherical case the appropriate additional conditions are

(3-S) K is a fixed point free finite subgroup of SO(4) and (if K is not cyclic)
the characteristic automorphism of K determining π is realized by an isometry
of S3/K ; and

(4-S) the first nontrivial k -invariant of M is “linear”.

The list of fixed point free finite subgroups of SO(4) is well known. (See
Chapter 11.) If K is cyclic or Q × Z/pjZ for some odd prime p or T ∗k then
the second part of (3-S) and (4-S) are redundant, but the general picture is not
yet clear [HM86].

The classification of complex surfaces leads easily to a complete characterization
of the 3-manifolds and diffeomorphisms such that the corresponding mapping
tori admit complex structures. (Since χ(M) = 0 for any mapping torus M we
do not need to enter the imperfectly charted realm of surfaces of general type.)

Theorem 13.3 Let N be a closed orientable 3-manifold with π1(N) = ν
and let θ : N → N be an orientation preserving self diffeomorphism. Then
the mapping torus M(θ) admits a complex structure if and only if one of the
following holds:
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(1) N = S3/G where G is a fixed point free finite subgroup of U(2) and the
monodromy is as described in [Kt75];

(2) N = S2 × S1 (with no restriction on θ);

(3) N = S1 × S1 × S1 and the image of θ in SL(3,Z) either has finite order
or satisfies the equation (θ2 − I)2 = 0;

(4) N is the flat 3-manifold with holonomy of order 2, θ induces the identity
on ν/ν ′ and |tr(θ|ν′)| ≤ 2;

(5) N is one of the flat 3-manifolds with holonomy cyclic of order 3, 4 or 6
and θ induces the identity on H1(N ;Q);

(6) N is a Nil3 -manifold and either the image of θ in Out(ν) has finite order
or M(θ) is a Sol41 -manifold;

(7) N is a H2 × E1 - or S̃L-manifold, ζν ∼= Z and the image of θ in Out(ν)
has finite order.

Proof The mapping tori of these diffeomorphisms admit 4-dimensional geome-
tries, and it is easy to read off which admit complex structures from [Wl86].
In cases (3), (4) and (5) note that a complex surface is Kähler if and only if
its first Betti number is even, and so the parity of this Betti number should be
invariant under passage to finite covers. (See Proposition 4.4 of [Wl86].)

The necessity of these conditions follows from examining the list of minimal
complex surfaces X with χ(X) = 0 in Table 10 of [BHPV], together with
Bogomolov’s theorem on class V II0 surfaces [Tl94] and Perelman’s work on
geometrization. (Fundamental group considerations exclude blowups of ruled
surfaces of genus > 1. All other non-minimal surfaces have χ > 0.)

In particular, N must be Seifert fibred and most orientable Seifert fibred 3-
manifolds (excepting only the orientable H2×E1 -manifolds with nonorientable
base orbifolds, RP 3]RP 3 and the Hantzsche-Wendt flat 3-manifold) occur.
Moreover, in most cases (with exceptions as in (3), (4) and (6)) the image
of θ in Out(ν) must have finite order. Some of the resulting 4-manifolds arise
as mapping tori in several distinct ways. The corresponding result for complex
surfaces of the form N × S1 for which the obvious smooth S1 -action is holo-
morphic was given in [GG95]. In [EO94] it is shown that if β1(N) = 0 then
N × S1 admits a complex structure if and only if N is Seifert fibred, and the
possible complex structures on such products are determined. Conversely, the
following result is very satisfactory from the 4-dimensional point of view.
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Theorem 13.4 Let X be a complex surface. Then X is diffeomorphic to the
mapping torus of a self diffeomorphism of a closed 3-manifold if and only if
χ(X) = 0 and π = π1(X) is an extension of Z by a finitely generated normal
subgroup.

Proof The conditions are clearly necessary. Sufficiency of these conditions
again follows from the classification of complex surfaces, as in Theorem 13.3.

13.2 Surface bundles and geometries

Let p : E → B be a bundle with base B and fibre F aspherical closed surfaces.
Then p is determined up to bundle isomorphism by the epimorphism p∗ : π =
π1(E)→ π1(B). If χ(B) = χ(F ) = 0 then E has geometry E4 , Nil3×E1 , Nil4
or Sol3×E1 , by Ue’s Theorem. When the fibre is Kb the geometry must be E4

or Nil3×E1 , for then π has a normal chain ζπ1(Kb) ∼= Z <
√
π1(Kb) ∼= Z2 , so

ζ
√
π has rank at least 2. Hence a Sol3 × E1 - or Nil4 -manifold M is the total

space of a T -bundle over T if and only if β1(π) = 2. If χ(F ) = 0 but χ(B) < 0
then E need not be geometric. (See Chapter 7 and §3 below.) We shall assume
henceforth that F is hyperbolic, i.e. that χ(F ) < 0. Then ζπ1(F ) = 1 and so
the characteristic homomorphism θ : π1(B)→ Out(π1(F )) determines π up to
isomorphism, by Theorem 5.2.

Theorem 13.5 Let B and F be closed surfaces with χ(B) = 0 and χ(F ) < 0.
Let E be the total space of the F -bundle over B corresponding to a homomor-
phism θ : π1(B)→ Out(π1(F )). Then

(1) E admits the geometry H2 × E2 if and only if θ has finite image;

(2) E admits the geometry H3 × E1 if and only if Ker(θ) ∼= Z and Im(θ)
contains the class of a pseudo-Anasov homeomorphism of F ;

(3) otherwise E is not geometric.

If Ker(θ) 6= 1 then E virtually has a geometric decomposition.

Proof Let π = π1(E). Since E is aspherical, χ(E) = 0 and π is not solvable

the only possible geometries are H2 × E2 , H3 × E1 and S̃L × E1 . If E has a
proper geometric decomposition the pieces must all have χ = 0, and the only
other geometry that may arise is F4 . In all cases the fundamental group of each
piece has a nontrivial abelian normal subgroup.

If Ker(θ) 6= 1 then E is virtually a cartesian product N × S1 , where N is
the mapping torus of a self diffeomorphism ψ of F whose isotopy class in
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π0(Diff(F )) ∼= Out(π1(F )) generates a subgroup of finite index in Im(θ).
Since N is a Haken 3-manifold it has a geometric decomposition, and hence so
does E . The mapping torus N is an H3 -manifold if and only if ψ is pseudo-
Anasov. In that case the action of π1(N) ∼= π1(F ) oψ Z on H3 extends to
an embedding p : π/

√
π → Isom(H3), by Mostow rigidity. Since

√
π 6= 1 we

may also find a homomorphism λ : π → D < Isom(E1) such that λ(
√
π) ∼= Z .

Then Ker(λ) is an extension of Z by F and is commensurate with π1(N),
so is the fundamental group of a Haken H3 -manifold, N̂ say. Together these
homomorphisms determine a free cocompact action of π on H3×E1 . If λ(π) ∼=
Z then M = π\(H3 × E1) is the mapping torus of a self homeomorphism of
N̂ ; otherwise it is the union of two twisted I -bundles over N̂ . In either case
it follows from standard 3-manifold theory that since E has a similar structure
E and M are diffeomorphic.

If θ has finite image then π/Cπ(π1(F )) is a finite extension of π1(F ) and so
acts properly and cocompactly on H2 . We may therefore construct an H2×E2 -
manifold with group π and which fibres over B as in Theorems 7.3 and 9.9.
Since such bundles are determined up to diffeomorphism by their fundamental
groups E admits this geometry.

If E admits the geometry H2 × E2 then
√
π = π ∩ Rad(Isom(H2 × E2)) =

π ∩ ({1} ×R2) ∼= Z2 , by Proposition 8.27 of [Rg]. Hence θ has finite image.

If E admits the geometry H3×E1 then
√
π = π∩({1}×R) ∼= Z , by Proposition

8.27 of [Rg]. Hence Ker(θ) ∼= Z and E is finitely covered by a cartesian
product N×S1 , where N is a hyperbolic 3-manifold which is also an F -bundle
over S1 . The geometric monodromy of the latter bundle is a pseudo-Anasov
diffeomorphism of F whose isotopy class is in Im(θ).

If ρ is the group of a S̃L×E1 -manifold then
√
ρ ∼= Z2 and

√
ρ∩K ′ 6= 1 for all

subgroups K of finite index, and so E cannot admit this geometry.

Let X be the exterior of the figure eight knot, which is a fibred H3 -manifold
with fibre the punctured torus. Let φ be the self homeomorphism of ∂X × S1 =
S1×S1×S1 which preserves the longitude of the knot and swaps the meridian
and the third factor. Then M = X × S1 ∪φ X × S1 fibres over T with fibre
T]T and θ is injective. It is not geometric, but is the union of two pieces of
type H3 × E1 .

We shall assume henceforth that B is also hyperbolic. Then χ(E) > 0 and
π1(E) has no solvable subgroups of Hirsch length 3. Hence the only possible
geometries on E are H2×H2 , H4 and H2(C). (These are the least well under-
stood geometries, and little is known about the possible fundamental groups of
the corresponding 4-manifolds.)
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Theorem 13.6 Let B and F be closed hyperbolic surfaces, and let E be
the total space of the F -bundle over B corresponding to a homomorphism
θ : π1(B)→ Out(π1(F )). Then the following are equivalent:

(1) E admits the geometry H2 ×H2 ;

(2) E is finitely covered by a cartesian product of surfaces;

(3) θ has finite image.

Proof Let π = π1(E) and φ = π1(F ). If E admits the geometry H2 ×H2 it
is virtually a cartesian product, by Corollary 9.9.1, and so (1) implies (2).

If π is virtually a direct product of PD2 -groups then [π : φCπ(φ)] < ∞, by
Theorem 5.4. Therefore the image of θ is finite and so (2) implies (3).

If θ has finite image then Ker(θ) 6= 1 and π/Cπ(φ) is a finite extension of φ.
Hence there is a homomorphism p : π → Isom(H2) with kernel Cπ(φ) and
with image a discrete cocompact subgroup. Let q : π → π1(B) < Isom(H2).
Then (p, q) embeds π as a discrete cocompact subgroup of Isom(H2 × H2),
and the closed 4-manifold M = π\(H2 × H2) clearly fibres over B . Such
bundles are determined up to diffeomorphism by the corresponding extensions
of fundamental groups, by Theorem 5.2. Therefore E admits the geometry
H2 ×H2 and so (3) implies (1).

If F is orientable and of genus g its mapping class group Mg = Out(π1(F ))
has only finitely many conjugacy classes of finite groups [Ha71]. In Corollary
13.7.2 we shall show that no such bundle space E is homotopy equivalent to a
H2(C)-manifold. U.Hamenstädt has announced that if such a bundle space has
word-hyperbolic fundamental group then σ(E) 6= 0, and so E cannot admit
the geometry H4 [Ha13]. Thus only finitely many orientable bundle spaces with
given Euler characteristic are geometric.

If Im(θ) contains the outer automorphism class determined by a Dehn twist
on F then E admits no metric of nonpositive curvature [KL96]. For any given
base and fibre genera there are only finitely many extensions of PD+

2 -groups
by PD+

2 -groups which contain no noncyclic abelian subgroups [Bo09]. For such
groups θ must be injective. There are bundle spaces with θ injective, since the
PD+

2 -group of genus 4 embeds in M2 . Are there infinitely many such with
given base and fibre?

If B and E are orientable and F has genus g then σ(E) = −θ∗τ ∩ [B], where
τ ∈ H2(Mg;Z) is induced from a universal class in H2(Sp2g(Z);Z) via the
natural representation of Mg as symplectic isometries of the intersection form
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on H1(F ;Z) ∼= Z2g . ([Me73] – see [En98, Ho01] for alternative approaches.) In
particular, if g = 2 then σ(E) = 0, since H2(M2;Q) = 0.

Every closed orientable H2×H2 -manifold has a 2-fold cover which is a complex
surface, and has signature 0. Conversely, if a bundle space E is a complex
surface and p is a holomorphic submersion then σ(E) = 0 implies that the fibres
are isomorphic, and so E is an H2×H2 -manifold [Ko99]. This is also so if p is a
holomorphic fibre bundle. (See §V.6 of [BHPV].) Any holomorphic submersion
with base of genus at most 1 or fibre of genus at most 2 is a holomorphic fibre
bundle [Ks68]. There are such holomorphic submersions in which σ(E) 6= 0
and so which are not virtually products. (See §V.14 of [BHPV].) The image of
θ must contain the outer automorphism class determined by a pseudo-Anasov
homeomorphism and not be virtually abelian [Sh97].

If a bundle space E has a proper geometric decomposition the pieces are re-
ducible H2×H2 -manifolds, the cusps are H2×E1 -manifolds and the inclusions
of the cusps induce injections on π1 .

13.3 Geometric decompositions of Seifert fibred 4-manifolds

Most Seifert fibred 4-manifolds with hyperbolic base orbifold have geometric
decompositions with all pieces of type H2×E2 , since Im(θ) ∼= πG , where G is a
finite graph of finite groups, and we may decompose the base correspondingly.
In particular, if the general fibre is Kb the manifold is geometric, by Theorem
9.5, since Out(Zo−1Z) is finite. However torus bundles over surfaces need not
be geometric, as we shall show. We also give a Seifert fibred 4-manifold with
no geometric decomposition. (This can happen only if the base orbifold has at
least two cone points of order 2, at which the action has one eigenvalue −1.)

We show first that there is no closed 4-manifold with the geometry F4 . If G =
Isom(F4) and Γ < G is an F4 -lattice then Γ∩Rad(G) is a lattice in Rad(G) ∼=
R2 , and Γ/Γ ∩ Rad(G) is a discrete cocompact subgroup of G/Rad(G), by
Proposition 8.27 of [Rg]. Hence

√
Γ = Γ ∩ Rad(G) ∼= Z2 and Γ/

√
Γ is a

subgroup of finite index in GL(2,Z). Therefore v.c.d.Γ = 3 and so Γ\F 4 is
not a closed 4-manifold. As observed in Chapter 7, such quotients are Seifert
fibred, and the base is a punctured hyperbolic orbifold. Thus if M is a compact
manifold with interior Γ\F 4 the double DM = M ∪∂M is Seifert fibred but is
not geometric, since

√
π ∼= Z2 but [π : Cπ(

√
π)] is infinite.

The orientable surface of genus 2 can be represented as a double in two distinct
ways; we shall give corresponding examples of nongeometric torus bundles which
admit geometric decompositions of type F4 .
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1. Let F (2) be the free group of rank two and let γ : F (2) → SL(2,Z)
have image the commutator subgroup SL(2,Z)′ , which is freely generated by
X = ( 2 1

1 1 ) and Y = ( 1 1
1 2 ). The natural surjection from SL(2,Z) to PSL(2,Z)

induces an isomorphism of commutator subgroups. (See §2 of Chapter 1.)
The parabolic subgroup PSL(2,Z)′ ∩ Stab(0) is generated by the image of
XY −1X−1Y =

(−1 0
−6 −1

)
. Hence [Stab(0) : PSL(2,Z)′ ∩ Stab(0)] = 6 =

[PSL(2,Z) : PSL(2,Z)′], and so PSL(2,Z)′ has a single cusp, represented
by 0. The quotient space PSL(2,Z)′\H2 is the once-punctured torus. Let
N ⊂ PSL(2,Z)′\H2 be the complement of an open horocyclic neighbourhood
of the cusp. The double DN is the orientable surface of genus 2. The semidi-
rect product Γ = Z2 oγ F (2) is a lattice in Isom(F4), and the double of the
bounded manifold with interior Γ\F 4 is a torus bundle over DN .

2. Let δ : F (2) → SL(2,Z) have image the subgroup which is freely gen-
erated by U = ( 1 0

2 1 ) and V = ( 1 2
0 1 ). Let δ̄ : F (2) → PSL(2,Z) be the

composed map. Then δ̄ is injective and [PSL(2,Z) : δ̄(F (2))] = 6. (Note that
δ(F (2)) and −I together generate the level 2 congruence subgroup.) Moreover
[Stab(0) : δ̄(F (2)) ∩ Stab(0)] = 2. Hence δ̄(F (2)) has three cusps, represented
by 0, ∞ and 1, and δ̄(F (2))\H2 is the thrice-punctured sphere. The corre-
sponding parabolic subgroups are generated by U , V and V U−1 , respectively.
Doubling the complement N of disjoint horocyclic neighbourhoods of the cusps
in δ̄(F (2))\H2 again gives an orientable surface of genus 2. The presentation
for π1(DN) derived from this construction is

〈U, V, U1, V1, s, t | s−1Us = U1, t
−1V t = V1, V U

−1 = V1U
−1
1 〉,

which simplifies to the usual presentation 〈U, V, s, t | s−1V −1sV = t−1U−1tU〉.
The semidirect product ∆ = Z2oδ F (2) is a lattice in Isom(F4), and doubling
again gives a torus bundle over DN .

3. Let π be the group with presentation

〈a, b, v, w, x, y, z | ab = ba, v2 = w2 = x2 = a, vb = bv, wbw−1 = xbx−1 = b−1,

y2 = z2 = ab, yay−1 = zaz−1 = ab2, yby−1 = zbz−1 = b−1, vwx = yz〉.

Then π = π1(E), where E is a Seifert manifold with base the hyperbolic
orbifold B = S2(2, 2, 2, 2, 2) and regular fibre T . The action θ of πorb1 (B) on√
π = 〈a, b〉 is generated by θ(u) =

(
1 0
0 −1

)
and θ(x) =

(
1 0
2 −1

)
. Hence Im(θ) ∼=

D is infinite and has infinite index in GL(2,Z). Thus E is not geometric and
has no pieces of type F4 . On the other hand B has no proper decomposition
into hyperbolic pieces, and so E has no geometric decomposition at all.
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13.4 Complex surfaces and fibrations

It is an easy consequence of the classification of surfaces that a minimal compact
complex surface S is ruled over a curve C of genus ≥ 2 if and only if π1(S) ∼=
π1(C) and χ(S) = 2χ(C). (See Table 10 of [BHPV].) We shall give a similar
characterization of the complex surfaces which admit holomorphic submersions
to complex curves of genus ≥ 2, and more generally of quotients of such surfaces
by free actions of finite groups. However we shall use the classification only to
handle the cases of non-Kähler surfaces.

Theorem 13.7 Let S be a complex surface. Then S has a finite covering
space which admits a holomorphic submersion onto a complex curve, with base
and fibre of genus ≥ 2, if and only if π = π1(S) has normal subgroups K < π̂
such that K and π̂/K are PD+

2 -groups, [π : π̂] < ∞ and [π : π̂]χ(S) =
χ(K)χ(π̂/K) > 0.

Proof The conditions are clearly necessary. Suppose that they hold. Then S
is aspherical, by Theorem 5.2. In particular, π is torsion-free and π2(S) = 0,
so S is minimal. Let Ŝ be the finite covering space corresponding to π̂ . Then
χ(Ŝ) > 0 and β1(Ŝ) ≥ 4. If β1(Ŝ) were odd then Ŝ would be minimally
properly elliptic, by the classification of surfaces. But then Ŝ would have a
singular fibre, since χ(Ŝ) > 0. Hence π1(Ŝ) ∼= πorb(B), where B is the base
orbifold of an elliptic fibration of a deformation of S , by Proposition 2 of [Ue86].
Therefore β1(Ŝ) is even, and hence Ŝ and S are Kähler. (See Theorem 3.1 of
Chapter 4 of [BHPV].)

After enlarging K if necessary we may assume that π/K has no nontrivial
finite normal subgroup. It is then isomorphic to a discrete cocompact group

of isometries of H2 . Since S is Kähler and β
(2)
1 (π/K) 6= 0 there is a prop-

erly discontinuous holomorphic action of π/K on H2 and a π/K -equivariant
holomorphic map from the covering space SK to H2 , with connected fibres,
by Theorems 4.1 and 4.2 of [ABR92]. Let B and B̂ be the complex curves
H2/(π/K) and H2/(π̂/K), respectively, and let h : S → B and ĥ : Ŝ → B̂ be
the induced maps. The quotient map from H2 to B̂ is a covering projection,
since π̂/K is torsion-free, and so π1(ĥ) is an epimorphism with kernel K .

The map h is a submersion away from the preimage of a finite subset D ⊂ B .
Let F be the general fibre and Fd the fibre over d ∈ D . Fix small disjoint discs
∆d ⊂ B about each point of D , and let B∗ = B \ ∪d∈D∆d , S∗ = h−1(B∗) and
Sd = h−1(∆d). Since h|S∗ is a submersion π1(S∗) is an extension of π1(B∗) by
π1(F ). The inclusion of ∂Sd into Sd \ Fd is a homotopy equivalence. Since Fd
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has real codimension 2 in Sd , the inclusion of Sd \ Fd into Sd is 2-connected.
Hence π1(∂Sd) maps onto π1(Sd).

Let md = [π1(Fd)] : Im(π1(F ))]. After blowing up S∗ at singular points of
Fd we may assume that Fd has only normal crossings. We may then pull h|Sd
back over a suitable branched covering of ∆d to obtain a singular fibre F̃d with
no multiple components and only normal crossing singularities. In that case
F̃d is obtained from F by shrinking vanishing cycles, and so π1(F ) maps onto
π1(F̃d). Since blowing up a point on a curve does not change the fundamental
group it follows from §9 of Chapter III of [BHPV] that in general md is finite.

We may regard B as an orbifold with cone singularities of order md at d ∈ D .
By the Van Kampen theorem (applied to the space S and the orbifold B ) the
image of π1(F ) in π is a normal subgroup and h induces an isomorphism from
π/π1(F ) to πorb1 (B). Therefore the kernel of the canonical map from πorb1 (B) to
π1(B) is isomorphic to K/Im(π1(F )). But this is a finitely generated normal
subgroup of infinite index in πorb1 (B), and so must be trivial. Hence π1(F )
maps onto K , and so χ(F ) ≤ χ(K).

Let D̂ be the preimage of D in B̂ . The general fibre of ĥ is again F . Let F̂d
denote the fibre over d ∈ D̂ . Then χ(Ŝ) = χ(F )χ(B) + Σ

d∈D̂(χ(F̂d) − χ(F ))

and χ(F̂d) ≥ χ(F ), by Proposition III.11.4 of [BHPV]. Moreover χ(F̂d) > χ(F )
unless χ(F̂d) = χ(F ) = 0, by Remark III.11.5 of [BHPV]. Since χ(B̂) =
χ(π̂/K) < 0, χ(Ŝ) = χ(K)χ(π̂/K) and χ(F ) ≤ χ(K) it follows that χ(F ) =
χ(K) < 0 and χ(F̂d) = χ(F ) for all d ∈ D̂ . Therefore F̂d ∼= F for all d ∈ D̂
and so ĥ is a holomorphic submersion.

Similar results have been found independently by Kapovich and Kotschick
[Ka98, Ko99]. Kapovich assumes instead that K is FP2 and S is aspheri-
cal. As these hypotheses imply that K is a PD2 -group, by Theorem 1.19, the
above theorem applies.

We may construct examples of such surfaces as follows. Let n > 1 and C1 and
C2 be two curves such that Z/nZ acts freely on C1 and with isolated fixed
points on C2 . The quotient of C1 × C2 by the diagonal action is a complex
surface S and projection from C1 × C2 to C2 induces a holomorphic mapping
from S onto C2/(Z/nZ) with critical values corresponding to the fixed points.

Corollary 13.7.1 The surface S admits such a holomorphic submersion onto
a complex curve if and only if π/K is a PD+

2 -group for some such K .

Corollary 13.7.2 No bundle space E is homotopy equivalent to a closed
H2(C)-manifold.
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Proof Since H2(C)-manifolds have 2-fold coverings which are complex sur-
faces, we may assume that E is homotopy equivalent to a complex surface S .
By the theorem, S admits a holomorphic submersion onto a complex curve.
But then χ(S) > 3σ(S) [Li96], and so S cannot be a H2(C)-manifold.

The relevance of Liu’s work was observed by Kapovich, who has also found a
cocompact H2(C)-lattice which is an extension of a PD+

2 -group by a finitely
generated normal subgroup, but which is not almost coherent [Ka98].

Similar arguments may be used to show that a Kähler surface S is a minimal
properly elliptic surface with no singular fibres if and only if χ(S) = 0 and
π = π1(S) has a normal subgroup A ∼= Z2 such that π/A is virtually torsion-
free and indicable, but is not virtually abelian. (This holds also in the non-
Kähler case as a consequence of the classification of surfaces.) Moreover, if S
is not ruled it is a complex torus, a hyperelliptic surface, an Inoue surface, a
Kodaira surface or a minimal elliptic surface if and only if χ(S) = 0 and π1(S)
has a normal subgroup A which is poly-Z and not cyclic, and such that π/A
is infinite and virtually torsion-free indicable. (See Theorem X.5 of [H2].)

We may combine Theorem 13.7 with some observations deriving from the clas-
sification of surfaces for our second result.

Theorem 13.8 Let S be a complex surface such that π = π1(S) 6= 1. If S is
homotopy equivalent to the total space E of a bundle over a closed orientable
2-manifold then S is diffeomorphic to E .

Proof Let B and F be the base and fibre of the bundle, respectively. Sup-
pose first that χ(F ) = 2. Then χ(B) ≤ 0, for otherwise S would be simply-
connected. Hence π2(S) is generated by an embedded S2 with self-intersection
0, and so S is minimal. Therefore S is ruled over a curve diffeomorphic to B ,
by the classification of surfaces.

Suppose next that χ(B) = 2. If χ(F ) = 0 and π 6∼= Z2 then π ∼= Z ⊕
(Z/nZ) for some n > 0. Then S is a Hopf surface and so is determined up to
diffeomorphism by its homotopy type, by Theorem 12 of [Kt75]. If χ(F ) = 0
and π ∼= Z2 or if χ(F ) < 0 then S is homotopy equivalent to S2 × F , so
χ(S) < 0, w1(S) = w2(S) = 0 and S is ruled over a curve diffeomorphic to F .
Hence E and S are diffeomorphic to S2 × F .

In the remaining cases E and F are both aspherical. If χ(F ) = 0 and χ(B) ≤
0 then χ(S) = 0 and π has one end. Therefore S is a complex torus, a
hyperelliptic surface, an Inoue surface, a Kodaira surface or a minimal properly
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elliptic surface. (This uses Bogomolov’s theorem on class V II0 surfaces [Tl94].)
The Inoue surfaces are mapping tori of self-diffeomorphisms of S1 × S1 × S1 ,
and their fundamental groups are not extensions of Z2 by Z2 , so S cannot be
an Inoue surface. As the other surfaces are Seifert fibred 4-manifolds E and S
are diffeomorphic, by [Ue91].

If χ(F ) < 0 and χ(B) = 0 then S is a minimal properly elliptic surface. Let
A be the normal subgroup of the general fibre in an elliptic fibration. Then
A ∩ π1(F ) = 1 (since π1(F ) has no nontrivial abelian normal subgroup) and
so [π : A.π1(F )] < ∞. Therefore E is finitely covered by a cartesian product
T × F , and so is Seifert fibred. Hence E and S are diffeomorphic, by [Ue91].

The remaining case (χ(B) < 0 and χ(F ) < 0) is an immediate consequence of
Theorem 13.7, since such bundles are determined by the corresponding exten-
sions of fundamental groups. (See Theorem 5.2.)

A 1-connected 4-manifold which fibres over a 2-manifold is homeomorphic to
CP 1 × CP 1 or CP 2]CP 2 . (See Chapter 12.) Is there such a complex surface
of general type? (No surface of general type is diffeomorphic to CP 1 × CP 1 or
CP 2]CP 2 [Qi93].)

Corollary 13.8.1 If moreover the base has genus 0 or 1 or the fibre has genus
2 then S is finitely covered by a cartesian product.

Proof A holomorphic submersion with fibre of genus 2 is the projection of a
holomorphic fibre bundle and hence S is virtually a product, by [Ks68].

Up to deformation there are only finitely many algebraic surfaces with given
Euler characteristic > 0 which admit holomorphic submersions onto curves
[Pa68]. By the argument of the first part of Theorem 13.1 this remains true
without the hypothesis of algebraicity, for any such complex surface must be
Kähler, and Kähler surfaces are deformations of algebraic surfaces. (See The-
orem 4.3 of [Wl86].) Thus the class of bundles realized by complex surfaces is
very restricted. Which extensions of PD+

2 -groups by PD+
2 -groups are realized

by complex surfaces (i.e., not necessarily aspherical)?

The equivalence of the conditions “S is ruled over a complex curve of genus
≥ 2”, “π = π1(S) is a PD+

2 -group and χ(S) = 2χ(π) < 0” and “π2(S) ∼= Z ,
π acts trivially on π2(S) and χ(S) < 0” also follows by an argument similar to
that used in Theorems 13.7 and 13.8. (See Theorem X.6 of [H2].)
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If π2(S) ∼= Z and χ(S) = 0 then π is virtually Z2 . The finite covering space
with fundamental group Z2 is Kähler, and therefore so is S . Since β1(S) > 0
and is even, we must have π ∼= Z2 , and so S is either ruled over an elliptic
curve or is a minimal properly elliptic surface, by the classification of complex
surfaces. In the latter case the base of the elliptic fibration is CP 1 , there
are no singular fibres and there are at most 3 multiple fibres. (See [Ue91].)
Thus S may be obtained from a cartesian product CP 1 × E by logarithmic
transformations. (See §V.13 of [BHPV].) Must S in fact be ruled?

If π2(S) ∼= Z and χ(S) > 0 then π = 1, by Theorem 10.1. Hence S ' CP 2

and so S is analytically isomorphic to CP 2 , by a result of Yau. (See Theorem
1.1 of Chapter 5 of [BHPV].)

13.5 S1-Actions and foliations by circles

For each of the geometries X4 = S3×E1,H3×E1,S2×E2,H2×E2, S̃L× E1 or E4

the radical of Isom(X4)o is a vector subgroup V = Rd , where d = 1, 1, 2, 2, 2
or 4, respectively. Similarly, if X4 = Sol41,Nil3 × E1,Nil4 or Sol3 × E1 the
nilradical or its commutator subgroup is a vector subgroup, of dimension 1, 2, 2
or 3, respectively. In each case the model space has a corresponding foliation
by copies of Rd , which is invariant under the isometry group.

If X4 6= E4 or Nil4 then V is central in Isom(X4)o . For Nil4 we may replace
V by the centre ζNil4 = R, while if X4 = E4 then V is a cocompact subgroup
of Isom(E4). In each case, if π is a lattice in Isom(X4) then π∩V ∼= Zd . The
corresponding closed geometric 4-manifolds have natural foliations with leaves
flat d-manifolds, and have finite coverings which admit an action by the torus
Rd/Zd with all orbits of maximal dimension d. These actions lift to principal
actions (i.e., without exceptional orbits) on suitable finite covering spaces. (This
does not hold for all actions. For instance, S3 admits non-principal S1 -actions
without fixed points.)

If a closed manifold M is the total space of an S1 -bundle then χ(M) = 0, and
if it is also aspherical then π1(M) has an infinite cyclic normal subgroup. As
lattices in Isom(Sol4m,n) or Isom(Sol40) do not have such subgroups, it follows
that no other closed geometric 4-manifold is finitely covered by the total space
of an S1 -bundle. Is every geometric 4-manifold M with χ(M) = 0 nevertheless
foliated by circles?

If a complex surface is foliated by circles it admits one of the above geometries,
and so it must be Hopf, hyperelliptic, Inoue of type S±N... , Kodaira, minimal
properly elliptic, ruled over an elliptic curve or a torus. With the exception of
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some algebraic minimal properly elliptic surfaces and the ruled surfaces over
elliptic curves with w2 6= 0 all such surfaces admit S1 -actions without fixed
points.

Conversely, the total space E of an S1 -orbifold bundle ξ over a geometric 3-
orbifold is geometric, except when the base B has geometry H3 or S̃L and the
characteristic class c(ξ) has infinite order. More generally, E has a (proper)

geometric decomposition if and only if B is a S̃L-orbifold and c(ξ) has finite
order or B has a (proper) geometric decomposition and the restrictions of c(ξ)
to the hyperbolic pieces of B each have finite order.

Total spaces of circle bundles over aspherical Seifert fibred 3-manifolds, Sol3 -
manifolds or H3 -manifolds have characterizations refining Theorem 4.12 and
parallel to those of Theorem 13.2.

Theorem 13.9 Let M be a closed 4-manifold with fundamental group π .
Then:

(1) M is s-cobordant to the total space E of an S1 -bundle over an aspherical
closed Seifert fibred 3-manifold or a Sol3 -manifold if and only if χ(M) = 0
and π has normal subgroups A < B such that A ∼= Z , π/A has finite
cohomological dimension and B/A is abelian. If h(B/A) > 1 then M is
homeomorphic to E .

(2) M is s-cobordant to the total space of an S1 -bundle over the mapping
torus of a self homeomorphism of an aspherical surface if and only if
χ(M) = 0 and π has normal subgroups A < B such that A ∼= Z , π/A is
torsion free, B is finitely generated and π/B ∼= Z .

(3) M is s-cobordant to the total space of an S1 -bundle over a closed H3 -
manifold if and only if χ(M) = 0,

√
π ∼= Z , π/

√
π is torsion free and

has no noncyclic abelian subgroup, and π has a finitely generated normal
subgroup B such that

√
π < B and e(π/B) = 2.

Proof (1) The conditions are clearly necessary. If they hold then h(
√
π) ≥

h(B/A) + 1 ≥ 2, and so M is aspherical. Since π/A has finite cohomological
dimension it is a PD3 -group, by Theorem 4.12. Hence it is the fundamental
group of a closed Seifert fibred 3-manifold or Sol3 -manifold, N say, by Theorem
2.14. If h(

√
π) = 2 then

√
π ∼= Z2 , by Theorem 9.2. Hence B/A ∼= Z and

[
√
π : B] <∞. Since conjugation in π preserves the chain of normal subgroups

A < B ≤
√
π it follows that Cπ(

√
π) has finite index in π . Hence M is s-

cobordant to an H2 × E2 - or S̃ × E1 -manifold E , by Theorems 9.5, 9.6 and
9.12. The Seifert fibration of E factors through an an S1 -bundle over N . If
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h(
√
π) > 2 then π is virtually poly-Z . Hence N is a E3 -, Nil3 - or Sol3 -manifold

and M is homeomorphic to E , by Theorem 6.11.

(2) The conditions are again necessary. If they hold then B/A is infinite, so B
has one end and hence is a PD3 -group, by Theorem 4.5. Since B/A is torsion-
free it is a PD2 -group, by Bowditch’s Theorem, and so π/A is the fundamental
group of a mapping torus, N say. As Wh(π) = 0, by Theorem 6.4, M is simple
homotopy equivalent to the total space E of an S1 -bundle over N . Since π×Z
is square root closed accessible M ×S1 is homeomorphic to E×S1 [Ca73], and
so M is s-cobordant to E .

(3) The conditions are necessary, by the Virtual Fibration Theorem [Ag13]. If
they hold then, π has a subgroup π̄ of index ≤ 2 such that B < π̄ and π̄/B ∼=
Z . Hence B/

√
π is a PD2 -group, as in (2), and π̄/

√
π is the fundamental

group of a closed H3 -manifold. Hence π/
√
π is also the fundamental group

of a closed H3 -manifold, N say [Zn86]. As Wh(π) = 0, by Theorem 6.4, M
is simple homotopy equivalent to the total space E of an S1 -bundle over N .
Hence M is s-cobordant to E , by Theorem 10.7 of [FJ89].

Simple homotopy equivalence implies s-cobordism for such bundles over as-
pherical 3-manifolds, using [Ro11]. However we do not yet have good intrinsic
characterizations of the fundamental groups of such 3-manifolds.

13.6 Symplectic structures

Let M be a closed orientable 4-manifold. If M fibres over an orientable surface
B and the image of the fibre in H2(M ;R) is nonzero then M has a symplectic
structure [Th76]. The tangent bundle along the fibres is an SO(2)-bundle on
M which restricts to the tangent bundle of each fibre, and so the homological
condition is automatic unless the fibre is a torus. This condition is also necessary
if the base B has genus g > 1 [Wc05], but if B is also a torus every such M
has a symplectic structure [Ge92]. Theorem 4.9 of [Wc05] implies that any such
bundle space M is symplectic if and only if it is virtually symplectic. If N is
an orientable 3-manifold then N ×S1 admits a symplectic structure if and only
if N is a mapping torus [FV08].

If M admits one of the geometries CP2 , S2 × S2 , S2 × E2 , S2 ×H2 , H2 × E2 ,
H2 × H2 or H2(C) then it has a 2-fold cover which is Kähler, and therefore
symplectic. If M admits one of the geometries E4 , Nil4 , Nil3×E1 or Sol3×E1

then it is symplectic if and only if β2(M) 6= 0. For this condition is clearly
necessary, while if β2(M) > 0 then β1(M) ≥ 2 and so M fibres over a torus.
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In particular, an E4 -manifold is symplectic if and only if it is one of the eight
flat Kähler surfaces, while a Nil4 -manifold is symplectic if and only if it is a
nilmanifold, i.e.,

√
π = π . Every such infrasolvmanifold is virtually symplectic.

As any closed orientable manifold with one of the geometries S4 , S3×E1 , Sol4m,n
(with m 6= n), Sol40 or Sol41 has β2 = 0 no such manifold is symplectic. A closed

S̃L × E1 -manifold is virtually a product N × S1 , but the 3-manifold factor is
not a mapping torus, and so no such manifold is symplectic [Et01, FV08].

All H3×E1 -manifolds are virtually symplectic, since they are virtually products,
by Theorem 9.3, and H3 -manifolds are virtually mapping tori [Ag13].

The issue is less clear for the geometry H4 . Symplectic 4-manifolds with index
0 have Euler characteristic divisible by 4, by Corollary 10.1.10 of [GS], and so
covering spaces of odd degree of the Davis 120-cell space are nonsymplectic.

Let p : S → B be a Seifert fibration with hyperbolic base, action α and Euler
class eQ(p). Then it follows from [Wc05] that S is virtually symplectic if and
only if either Im(α) is finite and eQ(p) = 0, or Im(α) is an infinite unipotent
group which leaves ±eQ(p) invariant, or tr(α(g)) > 2 for some g ∈ πorb1 (B).
Which Seifert fibred 4-manifolds are symplectic?

If M is symplectic and has a nontrivial S1 -action then either M is rational or
ruled, or the action is fixed-point free, with orbit space a mapping torus [Bo14].

Which orientable bundle spaces over nonorientable base surfaces are symplectic?
Which 4-dimensional mapping tori and S1 -bundle spaces are symplectic? The
question of which S1 -bundle spaces are virtually symplectic is largely settled
in [BF12].
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[GM78] González-Acuña, F. and Montesinos, J.M. Ends of knot groups,
Ann. Math. 108 (1978), 91–96.

[Go71] Gorbatsevich, V.V. Discrete subgroups of solvable Lie groups of type R ,
Math. USSR Sbornik 14 (1971), 233–251.

[Go76] Gordon, C. McA. Knots in the 4-sphere,
Comment. Math. Helvetici 51 (1976), 585–596.

[Go81] Gordon, C. McA. Ribbon concordance of knots in the 3-sphere,
Math. Ann. 257 (1981), 157–170.

[GL84] Gordon, C. McA. and Litherland, R.A. Incompressible surfaces in branched
coverings, in The Smith Conjecture (edited by J. Morgan and H. Bass),
Academic Press, New York - London (1984), 139–152.

[GL89] Gordon, C. McA. and Luecke, J, Knots are determined by their
complements, J. Amer. Math. Soc. 2 (1989), 371–415.

[Go65] Gottlieb, D.H. A certain subgroup of the fundamental group,
Amer. J. Math. 87 (1965), 840–856.

[Go68] Gottlieb, D.H. On fibre spaces and the evaluation map,
Ann. Math. 87 (1968), 42–55.

[Go79] Gottlieb, D.H. Poincaré duality and fibrations,
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fondamentaux des variétés de dimension 4,
Comment. Math. Helvetici 60 (1985), 139–144.

[He87] Hempel, J. Residual finiteness for 3-manifolds,
in Combinatorial Group Theory and Topology (edited by S.M.Gersten
and J.R.Stallings), Annals of Mathematics Study 111,
Princeton University Press, Princeton (1987), 379–396.

[Hn77] Hendriks, H. Obstruction theory in 3-dimensional topology: an extension
theorem, J. London Math. Soc. 16 (1977), 160–164.
Corrigendum, ibid. 18 (1978), 192.

[HL74] Hendriks, H. and Laudenbach, F. Scindement d’une équivalence
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