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Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we
have framed our definitions in such generality, although our main concern is with
2-knots (embeddings of S? in S*). In particular, we show how the classification
of higher dimensional knots may be reduced (essentially) to the classification
of certain closed manifolds, and we give Kervaire’s characterization of high
dimensional knot groups. In the final sections we comment briefly on links and
the groups of links, homology spheres and their groups.

14.1 Knots

The standard orientation of R™ induces an orientation on the unit n-disc D" =
{(z1,...2,) € R" | $2? < 1} and hence on its boundary S"~1 = 9D", by the
convention “outward normal first”. We shall assume that standard discs and
spheres have such orientations. Qualifications shall usually be omitted when
there is no risk of ambiguity. In particular, we shall often abbreviate X (K),
M(K) and 7K (defined below) as X, M and m, respectively.

An n-knot is a locally flat embedding K : 8™ — S"*2. (We shall also use the
terms “classical knot” when n = 1, “higher dimensional knot” when n > 2 and
“high dimensional knot” when n > 3.) It is determined up to (ambient) isotopy
by its image K (S™), considered as an oriented codimension 2 submanifold of
S™+2 " and so we may let K also denote this submanifold. Let r, be an orienta-
tion reversing self homeomorphism of S™. Then K is invertible, + amphicheiral
or —amphicheiral if it is isotopic to Kp = Kry, rK = rpi0K or —K =1rKp,
respectively. An n-knot is trivial if it is isotopic to the composite of equatorial
inclusions S™ c S"*t! c §7+2,

Every knot has a product neighbourhood: there is an embedding j : S™ x D?
onto a closed neighbourhood N of K, such that j(S™ x {0}) = K and ON is
bicollared in S™*? [KS75,[FQ]. We may assume that j is orientation preserving.
If n > 2 it is then unique up to isotopy rel S™ x {0}. The exterior of K is
the compact (n + 2)-manifold X (K) = S"*2\ intN with boundary 0X (K) =
S™ x S, and is well defined up to homeomorphism. It inherits an orientation
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272 Chapter 14: Knots and links

from S™*2. An n-knot K is trivial if and only if X (K) ~ S'; this follows from
Dehn’s Lemma if n = 1, is due to Freedman if n = 2 ([FQ] — see Corollary
17.1.1 below) and is an easy consequence of the s-cobordism theorem if n > 3.

The knot group is 1K = m(X(K)). An oriented simple closed curve isotopic
to the oriented boundary of a transverse disc {j} x St is called a meridian for
K, and we shall also use this term to denote the corresponding elements of .
If p is a meridian for K, represented by a simple closed curve on 90X then
X U, D? is a deformation retract of S"™? — {x} and so is contractible. Hence
7 is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that n > 2. The group of pseu-
doisotopy classes of self homeomorphisms of S™ x S' is (Z/27)3, generated by
reflections in either factor and by the map 7 given by 7(x,y) = (p(y)(x),y)
for all z in S™ and y in S!, where p : S' — SO(n + 1) is an essential map
[GI62, Br67, Kt69]. As any self homeomorphism of S x S! extends across
D"t x St the knot manifold M(K) = X(K) U (D" x S') obtained from
S™*2 by surgery on K is well defined, and it inherits an orientation from S™*2
via X. Moreover 71 (M (K)) = nK and x(M(K)) = 0. Conversely, suppose
that M is a closed orientable 4-manifold with x(M) =0 and m (M) is gener-
ated by the conjugacy class of a single element. (Note that each conjugacy class
in 7w corresponds to an unique isotopy class of oriented simple closed curves in
M .) Surgery on a loop in M representing such an element gives a 1-connected
4-manifold ¥ with y(X) = 2 which is thus homeomorphic to S* and which con-
tains an embedded 2-sphere as the cocore of the surgery. We shall in fact study
2-knots through such 4-manifolds, as it is simpler to consider closed manifolds
rather than pairs.

There is however an ambiguity when we attempt to recover K from M =
M(K). The cocore v = {0} x S ¢ D""! x §1 € M of the original surgery is
well defined up to isotopy by the conjugacy class of a meridian in 7K = m(M).
(In fact the orientation of -« is irrelevant for what follows.) Its normal bundle
is trivial, so v has a product neighbourhood, P say, and we may assume that
M \ intP = X(K). But there are two essentially distinct ways of identifying
0X with S™ x St = 9(S™ x D?), modulo self homeomorphisms of S™ x S! that
extend across S" x D?. If we reverse the original construction of M we recover
(S"2 K) = (X U; S™ x D?,5™ x {0}). If however we identify S™ x S! with
0X by means of j7 we obtain a new pair

(2, K*) = (X Ujr 8™ x D?, 8" x {0}).

It is easily seen that ¥ ~ S"t2 and hence ¥ = S"t2. We may assume that
the homeomorphism is orientation preserving. Thus we obtain a new n-knot
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K*, which we shall call the Gluck reconstruction of K. The knot K is reflexive
if it is determined as an unoriented submanifold by its exterior, i.e., if K* is
isotopic to K, rK, Kp or —K.

If there is an orientation preserving homeomorphism from X (K;) to X (K) then
K is isotopic to K, K*, Kp or K*p. If the homeomorphism also preserves
the homology class of the meridians then K is isotopic to K or to K*. Thus
K is determined up to an ambiguity of order at most 2 by M (K) together with
the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V' of S"*2 with (oriented) boundary K. By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
proj~t 1 0X — 8" x S — S! extends to a map p : X — S! [Ke65]. By
topological transversality we may assume that p~!(1) is a bicollared, proper
codimension 1 submanifold of X. The union p~1(1) U j(S™ x [0,1]) is then
a Seifert hypersurface for K.) We shall say that V' is minimal if the natural
homomorphism from 71 (V') to 7K is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is fibred if there is such a map p : X — S*
which is the projection of a fibre bundle. (Clearly K* is then fibred also.) The
exterior is then the mapping torus of a self homeomorphism 6 of the fibre F
of p, called the (geometric) monodromy of the bundle. Such a map p extends
to a fibre bundle projection ¢ : M(K) — S, with fibre F=FuUD"! called
the closed fibre of K. Conversely, if M(K) fibres over S! then the cocore 7 is
homotopic (and thus isotopic) to a cross-section of the bundle projection, and
so K is fibred. If the monodromy is represented by a self-homeomorphism of
finite order then it has nonempty fixed point set, and the closed monodromy
0 has finite order. However the results of [Hn] and [La] may be used to show
that the closed monodromy of the spun trefoil knot ¢3; has finite order, but as
m1(F) = F(2) has no automorphism of order 6 [Me74] there is no representative
of finite order with nonempty fixed point set.

14.2 Covering spaces

Let K be an n-knot. Then H(X(K);Z) = Z and H;(X(K);Z) = 0 if
i > 1, by Alexander duality. The meridians are all homologous and generate
w/7" = H1(X;Z), and so determine a canonical isomorphism with Z. Moreover
Hy(m;Z) = 0, since it is a quotient of Hy(X;Z) = 0.
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274 Chapter 14: Knots and links

We shall let X'(K) and M’'(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X’/X is also known as the infinite
cyclic cover of the knot.) Since /7" = Z the (co)homology groups of X’ are
modules over the group ring Z[Z], which may be identified with the ring of
integral Laurent polynomials A = Z[t,t7!]. If A is a A-module, let zA be the
Z-torsion submodule, and let e!A = Exti (A, A).

Since A is noetherian the (co)homology of a finitely generated free A-chain
complex is finitely generated. The Wang sequence for the projection of X’ onto
X may be identified with the long exact sequence of homology corresponding
to the exact sequence of coefficients

0=A=>A—=>7Z—=0.

Since X has the homology of a circle it follows easily that multiplication by
t — 1 induces automorphisms of the modules H;(X;A) for ¢ > 0. Hence these
homology modules are all finitely generated torsion A-modules. It follows that
Homp (H;(X;A),A) is 0 for all 7, and the UCSS collapses to a collection of
short exact sequences

0— e?H; o(X;A) — H(X;A) — ' H;_1(X;A) — 0.

The infinite cyclic covering spaces X’ and M’ behave homologically much like
(n+1)-manifolds, at least if we use field coefficients [Mi68|,[Ba80]. If H;(X;A) =
0 for 1 <i < (n+1)/2 then X’ is acyclic; thus if also 7 = Z then X ~ S! and
so K is trivial. All the classifications of high dimensional knots to date assume
that # = Z and that X’ is highly connected.

When n = 1 or 2 knots with m = Z are trivial, and it is more profitable to
work with the universal cover X (or M). In the classical case X is contractible
[Pab7]. In higher dimensions X is aspherical only when the knot is trivial
[DV73]. Nevertheless the closed 4-manifolds M (K) obtained by surgery on 2-
knots are often aspherical. (This asphericity is an additional reason for choosing
to work with M (K) rather than X (K).)

14.3 Sums, factorization and satellites

The sum of two knots K7 and Ky may be defined (up to isotopy) as the n-knot
K1§K>5 obtained as follows. Let D™ (%) denote the upper and lower hemispheres
of S™. We may isotope K; and Kj so that each K;(D"(£)) contained in
D"2(4), K{(D™(+)) is a trivial n-disc in D"*2(4), Ky(D™(—)) is a trivial
n-disc in D"*2(—) and Kj|gn-1 = Ka|gn-1 (as the oriented boundaries of
the images of D"(—)). Then we let Ki#Ky = Ki|[pn—) U Ka|pn(4). By van
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Kampen’s theorem 7(K1§K9) = mK7*z7 Ko where the amalgamating subgroup
is generated by a meridian in each knot group. It is not hard to see that
X/(KlﬁKg) ~ X/(Kl) vV X,(KQ), and so W(KlﬁKg)/ = W(Kl)/ * ﬂ'(KQ)/.

The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-
knots whose groups have finitely generated commutator subgroups this follows
easily from the Grushko-Neumann theorem on factorizations of groups as free
products.) In the classical case the factorization is essentially unique, but if
n > 3 there are n-knots with several distinct such factorizations [BHKSI].
Almost nothing is known about the factorization of 2-knots.

If K1 and K are fibred then so is their sum, and the closed fibre of K1#K5 is the
connected sum of the closed fibres of K1 and K5. However in the absence of an
adequate criterion for a 2-knot to fibre, we do not know whether every summand
of a fibred 2-knot is fibred. In view of the unique factorization theorem for
oriented 3-manifolds we might hope that there would be a similar theorem for
fibred 2-knots. However the closed fibre of an irreducible 2-knot need not be

an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an
irreducible fibred 2-knot, but its closed fibre is (5% x S')#(5? x S1).)

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately
connected with the notion of torus decomposition, we shall describe only the
higher-dimensional version of [Kn83|. Let K; and K2 be n-knots (with n > 2)
and let v be a simple closed curve in X (K7), with a product neighbourhood
U. Then there is a homeomomorphism h which carries "2\ intU = S™ x D?
onto a product neighbourhood of K. The knot X (Ko; K1,v) = hK; is called
the satellite of K; about Ks relative to 7. We also call Ko a companion of
hKj. If either v = 1 or Ky is trivial then X(Ky; Kj,v) = K;. If v is a
meridian for K; then X (Ko; K1,v) = KiK. If 4 has finite order in wK;
let ¢ be that order; otherwise let ¢ = 0. Let w be a meridian in wK5. Then
T8(Ko; K1,7) = (mK2/((w))) *7/q7z K1, where w is identified with « in mK7,
by Van Kampen’s theorem.

14.4 Spinning, twist spinning and deform spinning

The first nontrivial examples of higher dimensional knots were given by Artin
[Ar25]. We may paraphrase his original idea as follows. As the half space
Ri ={(w,z,y,2) € R* | w =0,z > 0} is spun about the axis A = {(0,x,y,0)}
it sweeps out R*, and any arc in Ri with endpoints on A sweeps out a 2-sphere.
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This construction has been extended, first to twist-spinning and roll-spinning
[Fo66l [Ze65], and then more generally to deform spinning [Li79]. Let g an
orientation preserving self-homeomorphism of S™*? which is the identity on
the n-knot K. If g does not twist the normal bundle of K in S"*2? then
the sections of M(g) determined by points of K have canonical “constant”
framings, and surgery on such a section in the pair (M (g), K x S') gives an
(n + 1)-knot, called the deform spin of K determined by g. The deform spin
is untwisted if g preserves a Seifert hypersurface for K. If g is the identity this
gives the Artin spin oK, and no K = 7K.

Twist spins are defined by maps supported in a collar of 0X = K x S'. (If
n = 1 we use the O-framing.) Let 7 be an integer. The self-map t, of S™+2
defined by t,(k, z,7) = (k,e* 2 x) on 0X x [0,1] and the identity elsewhere
gives the r-twist spin 7K. Clearly 19K = 0K . The group of 7K is obtained
from 7K by adjoining the relation making the r** power of (any) meridian
central. Zeeman discovered the remarkable fact that if » # 0 then 7. K is fibred,
with closed fibre the r-fold cyclic branched cover of $”*2, branched over K , and
monodromy the canonical generator of the group of covering transformations
[Ze65]. Hence 7 K is always trivial. More generally, if g is an untwisted
deformation of K and r # 0 then the knot determined by ¢,g is fibred [Li79].
(See also |[GKT8, Mo83, Mo84] and [PI84’].) Twist spins of —amphicheiral
knots are —amphicheiral, while twist spinning interchanges invertibility and
+amphicheirality [Li85].

If K is a classical knot the factors of the closed fibre of 7,.K are the cyclic
branched covers of the prime factors of K, and are Haken, hyperbolic or Seifert
fibred. With some exceptions for small values of r, the factors are aspherical,
and S2 x S! is never a factor [PI84]. If » > 1 and K is nontrivial then 7, K
is nontrivial, by the Smith Conjecture. If K is a deform spun 2-knot then the
order ideal of Hy(mK;QA) is invariant under the involution ¢+ ¢t~! [BMO09].

14.5 Ribbon and slice knots

Two n-knots Ky and K; are concordant if there is a locally flat embedding
K:8™x[0,1] = S™*2 x [0,1] such that K; = KN S™ x {i} for i = 0,1. They
are s-concordant if there is a concordance whose exterior is an s-cobordism (rel
0) from X (Kp) to X(K7). (If n > 2 this is equivalent to ambient isotopy, by
the s-cobordism theorem.)

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if
it bounds a properly embedded (n + 1)-disc A in D"*3. Such a disc is called
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a slice disc for K. Doubling the pair (D"*3 A) gives an (n + 1)-knot which
meets the equatorial S™*2 of S™*3 transversally in K; if the (n + 1)-knot can
be chosen to be trivial then K is doubly slice. All even-dimensional knots are
slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion
is yet known. The sum Kf — K is a slice of 71 K and so is doubly slice [Su7l].
Twist spins of doubly slice knots are doubly slice.

An n-knot K is a ribbon knot if it is the boundary of an immersed (n+ 1)-disc
A in S™*? whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a “ribbon” (n + 1)-disc
A in S™*2 the cartesian product A x DP C S"+2 x DP C S"+2+P determines a
ribbon (n + 1+ p)-disc in $"+2+P. All higher dimensional ribbon knots derive
from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation
reversing involution, this easily imples that all ribbon n-knots with n > 2 are
—amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon
2-knot has a Seifert hypersurface which is a once-punctured connected sum of
copies of S! x S? [Yn69]. Hence such knots are reflexive. (See [Su76|] for more
on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it is a slice knot with a slice disc
whose exterior W has a handlebody decomposition consisting of 0-, 1- and
2-handles. The dual decomposition of W relative to OW = M(K) has only
handles of index > n+ 1, and so (W, M) is n-connected. (The definition of
“homotopically ribbon” for 1-knots used in Problem 4.22 of |[GK] requires only
that this latter condition be satisfied.) More generally, we shall say that K is
m1-slice if the inclusion of X (K) into the exterior of some slice disc induces an
isomorphism on fundamental groups.

Every ribbon knot is homotopy ribbon and hence slice [Hi79|, while if n > 2
every homotopy ribbon n-knot is 7 -slice. Nontrivial classical knots are never
m1-slice, since the longitude of a slice knot is nullhomotopic in the exterior of
a slice disc. It is an open question whether every classical slice knot is ribbon.
However in higher dimensions “slice” does not even imply “homotopy ribbon”.
(The simplest example is 73; - see below.)

Most of the conditions considered here depend only on the h-cobordism class of
M(K). An n-knot K is slice if and only if M = 0W, where W is an homology
S1 x D2 and the image of 7K normally generates m1(W), and it is m;-slice
if and only if we may assume also that the inclusion of M into W induces an
isomorphism on 7. The knot K is doubly slice if and only if M embeds in
S x §"*2 via a map which induces an isomorphism on first homology.
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14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G'. Such
an element is called a weight element for GG, and its conjugacy class is called a
weight class for G. If G is solvable then it has weight 1 if and only if G/G’ is
cyclic, for a solvable group with trivial abelianization must be trivial.

If 7 is the group of an n-knot K then

(1) = is finitely presentable;
(2) = is of weight I;

(3) Hi(mZ)=m/n"=Z; and
(4) Ha(m;Z) =0.

Kervaire showed that any group satisfying these conditions is an n-knot group,
for every n > 3 [Ke65]. These conditions are also necessary when n = 1 or
2, but are then no longer sufficient, and there are as yet no corresponding
characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger
condition that def(w) = 1 then 7 is a 2-knot group, but this condition is not
necessary [Ke65]. (See §9 of this chapter, §4 of Chapter 15 and §4 of Chapter 16
for examples with deficiency < 0.) Gonzalez-Acufia has given a characterization
of 2-knot groups as groups admitting certain presentations [GA94]. (Note also
that if 7 is a high dimensional knot group then ¢(7) > 0, and ¢(7) = 0 if and
only if 7 is a 2-knot group.)

Every knot group has a Wirtinger presentation, i.e., one in which the relations
are all of the form z; = wjxowj_l, where {z;,0 <1i < n} is the generating set
[Yj70]. If K is a nontrivial 1-knot then mK has a Wirtinger presentation of
deficiency 1. A group has such a presentation if and only if it has weight 1 and
has a deficiency 1 presentation P such that the presentation of the trivial group
obtained by adjoining the relation killing a weight element is AC-equivalent to
the empty presentation [Yo82']. Any such group is the group of a 2-knot which
is a smooth embedding in the standard smooth structure on S* [Le78]. The
group of a nontrivial 1-knot K has one end [Pa57], so X (K) is aspherical, and
X (K) collapses to a finite 2-complex, so g.d.7K = 2. If 7 is an n-knot group
then g.d.m =2 if and only if c.d.m = 2 and def(7) = 1, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n > 2) is the fundamental
group of a (n + 3)-manifold W with x(W) = 0 and which can be built with
0-, 1- and 2-handles only, such groups also have deficiency 1. Conversely, if a
finitely presentable group 7 has weight 1 and deficiency 1 then we may use such
a presentation to construct a 5-dimensional handlebody W = DU {h}}U {h?}
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with 71 (OW) = m(W) = m and x(W) = 0. Adjoining another 2-handle h
along a loop representing a weight class for m (OW) gives a homotopy 5-ball B
with 1-connected boundary. Thus 0B = S*, and the boundary of the cocore of
the 2-handle h is clearly a homotopy ribbon 2-knot with group =. (In fact any
group of weight 1 with a Wirtinger presentation of deficiency 1 is the group of
a ribbon n-knot, for each n > 2 [Yj69] — see [H3].)

The deficiency may be estimated in terms of the minimum number of generators
of the A-module e?(n’/7”). Using this observation, it may be shown that if
K is the sum of m + 1 copies of 73, then def(nK) = —m [Le78|. There are
irreducible 2-knots whose groups have deficiency —m, for each m > 0 [Kn83].

A knot group m has two ends if and only if 7’ is finite. We shall determine
all such 2-knots in §4 of Chapter 15. Nontrivial torsion-free knot groups have
one end [KI93]. There are also many 2-knot groups with infinitely many ends
[GMT8]. The simplest is perhaps the group with presentation

(a,b,t | a® =1, aba™' = b%, tat™' = a?).

The first two relations imply that b7 = 1, and so this group is an HNN extension
of (a,b) = Z/77Z x9 Z/3Z, with associated subgroups both (a) = Z/3Z. 1t is
also the group of a satellite of 7931 with companion Fox’s Example 10.

14.7 Weight elements, classes and orbits

Two 2-knots K and K; have homeomorphic exteriors if and only if there is
a homeomorphism from M (K7) to M(K) which carries the conjugacy class of
a meridian of K; to that of K (up to inversion). In fact if M is any closed
orientable 4-manifold with x(M) = 0 and with 7 = 71 (M) of weight 1 then
surgery on a weight class gives a 2-knot with group m. Moreover, if ¢ and u
are two weight elements and f is a self homeomorphism of M such that w is
conjugate to fi(tT!) then surgeries on ¢ and u lead to knots whose exteriors
are homeomorphic (via the restriction of a self homeomorphism of M isotopic
to f). Thus the natural invariant to distinguish between knots with isomorphic
groups is not the weight class, but rather the orbit of the weight class under
the action of self homeomorphisms of M. In particular, the orbit of a weight
element under Aut(m) is a well defined invariant, which we shall call the weight
orbit. If every automorphism of 7 is realized by a self homeomorphism of
M then the homeomorphism class of M and the weight orbit together form a
complete invariant for the (unoriented) knot, up to Gluck reconstruction. (This
is the case if M is an infrasolvmanifold.)

Geometry & Topology Monographs, Volume 5 (2002)



280 Chapter 14: Knots and links

For oriented knots we need a refinement of this notion. If w is a weight element
for 7 then we shall call the set {a(w) | @ € Aut(n), a(w) =w mod 7'} a strict
weight orbit for . A strict weight orbit determines a transverse orientation for
the corresponding knot (and its Gluck reconstruction). An orientation for the
ambient sphere is determined by an orientation for M (K). If K is invertible or
+amphicheiral then there is a self homeomorphism of M which is orientation
preserving or reversing (respectively) and which reverses the transverse orien-
tation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly,
if K is —amphicheiral there is an orientation reversing self homeomorphism of
M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with G/G' = Z. Let t be
an element of G whose image generates G/G' and let ¢; be the automorphism
of G' induced by conjugation by t. Then

(1) t is a weight element if and only if ¢; is meridianal;

(2) two weight elements t, u are in the same weight class if and only if there

is an inner automorphism c, of G’ such that ¢, = cgctcg_l;

(3) two weight elements t, u are in the same strict weight orbit if and only if

there is an automorphism d of G' such that ¢, = de;d™! and dctd_lc;l
is an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g"t)*! for some

g’ in G".

Proof The verification of (1-3) is routine. If ¢ and u are weight elements then,
up to inversion, u must equal ¢'t for some ¢’ in G’. Since multiplication by
t — 1 is invertible on G’/G” we have ¢’ = khth='t~! for some h in G’ and k
in G”. Let ¢"” = h='kh. Then u = ¢'t = hg"th™!. O

An immediate consequence of this theorem is that if ¢ and u are in the same
strict weight orbit then ¢; and ¢, have the same order. Moreover if C is the
centralizer of ¢; in Aut(G’) then the strict weight orbit of ¢ contains at most
[Aut(G") : C.Inn(G")] < |Out(G")| weight classes. In general there may be
infinitely many weight orbits [PI83]. However if 7 is metabelian the weight
class (and hence the weight orbit) is unique up to inversion, by part (4) of the
theorem.
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14.8 The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the auto-
morphism of the commutator subgroup induced by conjugation by a meridian.
An automorphism ¢ of a group G is meridianal if ((g7¢(g) | g € G))a = G.
If H is a characteristic subgroup of G and ¢ is meridianal the induced au-
tomorphism of G/H is then also meridianal. In particular, Hi(¢) — 1 maps
H{(G;Z) = G/G" onto itself. If G is solvable an automorphism satisfying the
latter condition is meridianal, for a solvable perfect group is trivial.

It is easy to see that no group G with G/G' = Z can have G' < Z or D. It
follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 [HKT78],[Le78] A finitely presentable group m is a high dimen-
sional knot group if and only if m & 7/ x9 Z for some meridianal automorphism
0 of ' such that Hy(0) — 1 is an automorphism of Hy(n';Z). O

If 7 is a knot group then 7//7” is a finitely generated A-module. Levine and
Weber have made explicit the conditions under which a finitely generated A-
module may be the commutator subgroup of a metabelian high dimensional
knot group [LWT8]. Leaving aside the A-module structure, Hausmann and
Kervaire have characterized the finitely generated abelian groups A that may
be commutator subgroups of high dimensional knot groups [HKT78]. “Most”
can occur; there are mild restrictions on 2- and 3-torsion, and if A is infinite
it must have rank at least 3. We shall show that the abelian groups which are
commutator subgroups of 2-knot groups are Z3, Z [%] (the additive group of
dyadic rationals) and the cyclic groups of odd order. (See Theorems 15.7 and
15.12.) The commutator subgroup of a nontrivial classical knot group is never
abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group
could be the centre of a high dimensional knot group [HK78’]. We shall show
that the centre of a 2-knot group is either Z?, torsion-free of rank 1, finitely
generated of rank 1 or is a torsion group. (See Theorems 15.7 and 16.3. In all
known cases the centre is Z2, Z @ (Z/2Z), Z, Z/2Z or 1.) A classical knot
group has nontrivial centre if and only if the knot is a torus knot [BZ]; the
centre is then 7.

Silver has given examples of high dimensional knot groups 7 with «’ finitely
generated but not finitely presentable [Si91]. He has also shown that there
are embeddings j : T — S* such that 71(S*\ j(7)) is finitely generated but
not finitely presentable [Si97]. However no such 2-knot groups are known. If

Geometry & Topology Monographs, Volume 5 (2002)



282 Chapter 14: Knots and links

the commutator subgroup is finitely generated then it is the unique HNN base
[Si96]. Thus knots with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups
made use of Poincaré duality with coefficients A. Farber [Fa77] and Levine
[Le77] independently found the following theorem.

Theorem 14.3 (Farber, Levine) Let K be a 2-knot and A = Hi(M(K);A).
Then Hy(M(K);A) = el A, and there is a nondegenerate Z-bilinear pairing
[, ]:2Ax 2zA — Q/Z such that [ta,t5] = [«, 5] for all « and B in zA. O

Most of this theorem follows easily from Poincaré duality with coefficients A,
but some care is needed in order to establish the symmetry of the pairing. When
K is a fibred 2-knot, with closed fibre ﬁ, the Farber-Levine pairing is just the
standard linking pairing on the torsion subgroup of Hl(ﬁ; Z), together with
the automorphism induced by the monodromy. In particular, Farber observed
that although the group 7 with presentation

(a,t | tat™ =a? a® =1)
is a high dimensional knot group, if ¢ is any nondegenerate Z-bilinear pairing

on 7' = Z /57 with values in Q/Z then {(ta,tf) = —f(a, 8) for all «, B in 7/,

and so 7 is not a 2-knot group.

Corollary 14.3.1 [Le78] Ha(n';Z) is a quotient of Hom (7' /7", Q(t)/A). O

Every orientation preserving meridianal automorphism of a torsion-free 3-manifold
group is realizable by a fibred 2-knot.

Theorem 14.4 Let N be a closed orientable 3-manifold such that v = w1 (N)
is torsion-free. If K is a 2-knot such that (7 K)" = v then M(K) is homotopy
equivalent to the mapping torus of a self homeomorphism of N. If 0 is a
meridianal automorphism of v then ™ = v Xg Z is the group of a fibred 2-knot

with fibre N if and only if 0,(cn«[N]) = cn«[N].

Proof The first assertion follows from Corollary 4.5.4.

The classifying maps for the fundamental groups induce a commuting diagram
involving the Wang sequences of M (K) and 7 from which the necessity of the
orientation condition follows easily. (It is vacuous if v is a free group.)

Let N = P#R where P is a connected sum of r copies of S' x S? and the
summands of R are aspherical. If 0, (cn«[N]) = en«[N] then 6 may be realized
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by an orientation preserving self homotopy equivalence g of N [Sw74]. We may
assume that ¢ is a connected sum of homotopy equivalences between the irre-
ducible factors of R and a self homotopy equivalence of P, by the Splitting The-
orem of [HL74]. The factors of R are either Haken, hyperbolic or Seifert-fibred,
by the Geometrization Conjecture (see [B-P]), and homotopy equivalences be-
tween such manifolds are homotopic to homeomorphisms, by [Hm], Mostow
rigidity and [Sc83], respectively. A similar result holds for P = #"(S' x S2), by
[La]. Thus we may assume that g is a self homeomorphism of N. Surgery on
a weight class in the mapping torus of g gives a fibred 2-knot with closed fibre
N and group 7. |

If N is hyperbolic, Seifert fibred or if its prime factors are Haken or S* x S?
then the mapping torus is determined up to homeomorphism among fibred 4-
manifolds by its homotopy type, since homotopy implies isotopy in each case,
by Mostow rigidity, [Sc85, [BO9I] and [HLT4], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of
some HNN extension which is a high dimensional knot group if and only if
it satisfies the restrictions on torsion of [HKT7§|, while if a knot group has a
non-finitely generated abelian base then it is metabelian. Moreover a 2-knot
group m which is an HNN extension with abelian base is either metabelian
or has base Z @ (Z/BZ) for some odd g > 1 [Yo86l Y092]. We shall show
that in the latter case 8 must be 1, and so 7 has a deficiency 1 presentation
(t,x | tz™t~! = 2™*1). (See Theorem 15.14.) No nontrivial classical knot
group is an HNN extension with abelian base. (This is implicit in Yoshikawa’s
work, and can also be deduced from the facts that classical knot groups have
cohomological dimension < 2 and symmetric Alexander polynomial.)

14.9 Deficiency and geometric dimension

J.H.C.Whitehead raised the question “is every subcomplex of an aspherical 2-
complex also aspherical?” This is so if the fundamental group of the subcomplex
is a 1l-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial
superperfect normal subgroup [Dy87]. Whitehead’s question has interesting
connections with knot theory. (For instance, the exterior of a ribbon n-knot
or of a ribbon concordance between classical knots is homotopy equivalent to
such a 2-complex. The asphericity of such ribbon exteriors has been raised in
[Co83] and [Go8&1].)

If the answer to Whitehead’s question is YES, then a high dimensional knot
group has geometric dimension at most 2 if and only if it has deficiency 1 (in
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which case it is a 2-knot group). For let G be a group of weight 1 and with
G/G' = Z. If C(P) is the 2-complex corresponding to a presentation of defi-
ciency 1 then the 2-complex obtained by adjoining a 2-cell to C'(P) along a loop
representing a weight element for G is 1-connected and has Euler characteristic
1, and so is contractible. The converse follows from Theorem 2.8. On the other
hand a positive answer in general implies that there is a group G such that
c.d.G =2 and g.d.G = 3 [BB97].

If the answer is NO then either there is a finite nonaspherical 2-complex X such
that X Uy D? is contractible for some f : S' — X or there is an infinite as-
cending chain of nonaspherical 2-complexes whose union is contractible [Ho83].
In the finite case x(X) = 0 and so 7 = m(X) has deficiency 1; moreover, =
has weight 1 since it is normally generated by the conjugacy class represented
by f. Such groups are 2-knot groups. Since X is not aspherical 69 (m) #0,
by Theorem 2.4, and so 7/ cannot be finitely generated, by Lemma 2.1.

A group is called knot-like if it has abelianization Z and deficiency 1. If the
commutator subgroup of a classical knot group is finitely generated then it is
free. Using the result of Corollary 2.5.1 above and the fact that the Novikov
completions of Z[G] with respect to epimorphisms from G onto Z are weakly
finite Kochloukova has shown that this holds more generally for all knot-like
groups [Ko06]. (See Corollary 4.3.1 above.) This answers an old question of
Rapaport, who established this in the 2-generator, 1-relator case [Rp60].

In particular, if the group of a fibred 2-knot has a presentation of deficiency
1 then its commutator subgroup is free. Any 2-knot with such a group is s-
concordant to a fibred homotopy ribbon knot. (See §6 of Chapter 17.) As
52 x S' is never a factor of the closed fibre of a nontrivial twist spin 7K
[P184], it follows that if » > 1 and K is nontrivial then def(n7,.K) < 0 and
7K is not a homotopy ribbon 2-knot.

If a knot group has a 2-generator 1-relator Wirtinger presentation it is an HNN
extension with free base and associated subgroups [Yo88]. This paper also gives
an example 7 with g.d.m = 2 and a deficiency 1 Wirtinger presentation which
also has a 2-generator 1l-relator presentation but which is not such an HNN
extension (and so has no 2-generator 1-relator Wirtinger presentation).

Lemma 14.5 If G is a group with def(G) =1 and e(G) = 2 then G = Z.

Proof The group G has an infinite cyclic subgroup A of finite index, since
e(G) = 2. Let C be the finite 2-complex corresponding to a presentation of
deficiency 1 for GG, and let D be the covering space corresponding to A. Then
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D is a finite 2-complex with m(D) = A = Z and x(D) = [r : A]x(C) = 0.
Since Hy(D;Z[A]) = H2(D;Z) is a submodule of a free Z[A]-module and is of
rank x(D) =0 it is 0. Hence D is contractible, and so G must be torsion-free
and hence abelian. |

This lemma is also a consequence of Theorem 2.5. It follows immediately that
def(mm231) = 0, since mm3; = (Z/3Z) x_1 Z. Moreover, if K is a classical
knot such that 7’ finitely generated but nontrivial then H!(7;Z[r]) = 0, and
so X(K) is aspherical, by Poincaré duality.

Theorem 14.6 Let K be a 2-knot. Then m = 7K 2 Z if and only if
def(m) =1 and m(M(K)) = 0.

Proof The conditions are necessary, by Theorem 11.1. If they hold then

BJ(Q)(M) = 6j(.2)(7r) for 7 < 2, by Theorem 6.54 of [Lul, and so 0 = x(M) =

B (r) — 280 (x). Now B (x) — gP(x) > def(n) — 1 = 0, by Corollary
2.4.1. Therefore ﬁf)(w) = g)(w) = 0 and so g.d.m < 2, by the same Corol-
lary. In particular, the manifold M is not aspherical. Hence H'(w;Z[r]) =
Hs(M;Z[r]) # 0. Since 7 is torsion-free it is indecomposable as a free product

[K193]. Therefore e(r) =2 and so 7 = Z, by Lemma 14.5. O

In fact K must be trivial ([FQ] - see Corollary 17.1.1). A simpler argument
is used in [H1] to show that if def(w) = 1 then mo(M) maps onto Hy(M;A),
which is nonzero if 7’ # 7.

14.10 Asphericity

The outstanding property of the exterior of a classical knot is that it is aspher-
ical. Swarup extended the classical Dehn’s lemma criterion for unknotting to
show that if K is an n-knot such that the natural inclusion of S™ (as a factor
of 0X(K)) into X(K) is null homotopic then X (K) ~ S!, provided 7K is
accessible [Sw75]. Since it is now known that finitely presentable groups are
accessible [DD], it follows that the exterior of a higher dimensional knot is as-
pherical if and only if the knot is trivial. Nevertheless, we shall see that the
closed 4-manifolds M (K) obtained by surgery on 2-knots are often aspherical.

Theorem 14.7 Let K be a 2-knot. Then M (K) is aspherical if and only if
m=7nK is a PDy-group, which must then be orientable.
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Proof The condition is clearly necessary. Suppose that it holds. Let M™ be
the covering space associated to 7™ = Ker(wi(w)). Then [r : 77] < 2, so
7/ < 7t. Since 7/7’ = Z and t — 1 acts invertibly on Hy(7’;Z) it follows that
fi(rT) = 1. Hence Bo(M™1) = 0, since M is orientable and x(M™) = 0.
Hence fo(7™) is also 0, so x(7+) = 0, by Poincaré duality for 7+. Therefore
x(m) = 0 and so M must be aspherical, by Corollary 3.5.1. ad

We may use this theorem to give more examples of high dimensional knot groups
which are not 2-knot groups. Let A € GL(3,Z) be such that det(A) = —1,
det(A—1I) = £1 and det(A+1I) = £1. The characteristic polynomial of A must
be either f1(X) = X3—X2-2X+1, fo(X) = X3—X2+1, f3(X) = X3f1(X 1)
or f1(X) = X3f(X ). (There are only two conjugacy classes of such matrices,
up to inversion, for it may be shown that the rings Z[X]/(f;(X)) are principal
ideal domains.) The group Z2 x4 Z satifies the Kervaire conditions, and is a
PDy-group. However it cannot be a 2-knot group, since it is nonorientable.
(Such matrices have been used to construct fake RP*s [CS767.)

Is every (torsion-free) 2-knot group 7 with H®(m;Z[r]) =0 for s <2 a PDy-
group? Is every 3-knot group which is also a P D} -group a 2-knot group? (Note
that by Theorem 3.6 such a group cannot have deficiency 1.)

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8 Let K = X(Ky; K1,7) be a satellite 2-knot. If m = 7K is a
PDy4-group then K = K, or Ks. In particular, K is irreducible.

Proof Let g be the order of v in wK;. Then w = 7Ky *¢ B, where B =
mKs/({(w)), and C is cyclic. Since 7 is torsion-free ¢ = 0 or 1. Suppose
that K # K;. Then ¢ = 0, so C = Z, while B # C. If 7K; # C then
7K1 and B have infinite index in 7, and so c.d.7K; < 3 and c.d.B < 3, by
Strebel’s Theorem. A Mayer-Vietoris argument then gives 4 = c.d.m < 3, which
is impossible. Therefore K7 is trivial and so K = K. O

14.11 Links

A pi-component n-link is a locally flat embedding L : uS™ — S™2. The
exterior of L is X (L) = S"*2\ intN(L), where N(L) = uS™ x D? is a regular
neighbourhood of the image of L, and the group of L is 7L = 7m1(X(L)). Let
M(L) = X(L)UpD™ 1! x S! be the closed manifold obtained by surgery on L.
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An n-link L is trivial if it bounds a collection of p disjoint locally flat 2-
discs in S™. It is split if it is isotopic to one which is the union of nonempty
sublinks L; and Ly whose images lie in disjoint discs in S™*2, in which case
we write L = L1 Il Lo, and it is a boundary link if it bounds a collection of
p disjoint hypersurfaces in S"*2. Clearly a trivial link is split, and a split
link is a boundary link; neither implication can be reversed if ;1 > 1. Knots
are boundary links, and many arguments about knots that depend on Seifert
hypersurfaces extend readily to boundary links. The definitions of slice and
ribbon knots and s-concordance extend naturally to links.

A 1-link is trivial if and only if its group is free, and is split if and only if its
group is a nontrivial free product, by the Loop Theorem and Sphere Theorem,
respectively. (See Chapter 1 of [H3|.) Gutiérrez has shown that if n > 4 an
n-link L is trivial if and only if wL is freely generated by meridians and the
homotopy groups m;(X(L)) are all 0, for 2 < j < (n+ 1)/2 [Gu72]. His
argument applies also when n = 3. While the fundamental group condition is
necessary when n = 2, we cannot yet use surgery to show that it is a complete
criterion for triviality of 2-links with more than one component. We shall settle
for a weaker result.

Theorem 14.9 Let M be a closed 4-manifold with 71 (M) free of rank r and
X(M) =2(1—r). If M is orientable it is s-cobordant to #"(S* x S3), while if
it is nonorientable it is s-cobordant to (S*xS3)4(§" (St x $3)).

Proof We may assume without loss of generality that (M) has a free basis
{z1,...z;} such that x; is an orientation preserving loop for all i > 1, and
we shall use cp« to identify 71(M) with F(r). Let N = §"(S! x 83) if M
is orientable and let N = (S'xS3)4(#"1(S' x 93)) otherwise. (Note that
w1 (N) = w1 (M) as homomorphisms from F(r) to {£1}.) Since c.d.m (M) < 2
and x(M) = 2x(m(M)) we have mo(M) = H?(F(r);Z[F(r)]), by Theorem
3.12. Hence (M) = 0 and so m3(M) = Hy(M;Z) = D = HYF(r); Z[F (1)),
by the Hurewicz theorem and Poincaré duality. Similarly, we have mo(N) =0
and m3(N) = D.

Let ¢y = garhar be the factorization of cps through P3(M), the third stage
of the Postnikov tower for M. Thus m;(hps) is an isomorphism if ¢ < 3 and
m;i(P3(M)) = 0 if 5 > 3. As K(F(r),1) = V"S! each of the fibrations gy
and gy clearly have cross-sections and so there is a homotopy equivalence
k : P3(M) — P3(N) such that gay = gnk. (See Section 5.2 of [Bal.) We
may assume that k is cellular. Since P3(M) = M U {cells of dimension > 5}
it follows that khy; = hyf for some map f : M — N. Clearly m;(f) is an
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isomorphism for ¢ < 3. Since the universal covers M and N are 2-connected
open 4-manifolds the induced map f : M — N is an homology isomorphism,
and so is a homotopy equivalence. Hence f is itself a homotopy equivalence.
As Wh(F(r)) =0 any such homotopy equivalence is simple.

If M is orientable [M,G/TOP] = Z, since H>(M;Z/2Z) = 0. As the surgery
obstruction in Ly(F(r)) & Z is given by a signature difference, it is a bijection,
and so the normal invariant of f is trivial. Hence there is a normal cobordism
F: P — N xI with FIJO_P = f and F|0+P = idy. There is another
normal cobordism F’ : P’ — N x I from idy to itself with surgery obstruction
o5(P',F') = —o5(P,F) in Ls(F(r)), by Theorem 6.7 and Lemma 6.9. The
union of these two normal cobordisms along 0, P = 0_ P’ is a normal cobordism
from f to idy with surgery obstruction 0, and so we may obtain an s-cobordism
W by 5-dimensional surgery (rel ).

A similar argument applies in the nonorientable case. The surgery obstruction
is then a bijection from [N;G/TOP] to L4(F(r),—) = Z/2Z, so f is normally
cobordant to idy, while Ls(Z,—) =0, so Ls(F(r),—) = Ls(F(r — 1)) and the
argument of [FQ] still applies. ad

Corollary 14.9.1 Let L be a p-component 2-link such that w[L is freely
generated by p meridians. Then L is s-concordant to the trivial p-component
link.

Proof Since M(L) is orientable, x(M (L)) =2(1 —p) and 71 (M (L)) = 7L =
F(u), there is an s-cobordism W with OW = M(L) U M(u), by Theorem
14.9. Moreover it is clear from the proof of that theorem that we may assume
that the elements of the meridianal basis for L are freely homotopic to loops
representing the standard basis for 71 (M (p)). We may realise such homotopies
by w disjoint embeddings of annuli running from meridians for L to such stan-
dard loops in M (p). Surgery on these annuli (i.e., replacing D3 x S x [0,1] by
S%x D? x[0,1]) then gives an s-concordance from L to the trivial p-component
link. |

A similar strategy may be used to give an alternative proof of the higher di-
mensional unlinking theorem of [Gu72] which applies uniformly for n > 3. The
hypothesis that wL be freely generated by meridians cannot be dropped en-
tirely [Po71]. On the other hand, if L is a 2-link whose longitudes are all null
homotopic then the pair (X(L),0X (L)) is homotopy equivalent to the pair
(#4St x D3, 0(4#S' x D3)) [Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links.
However we can give a stable version for 2-links.
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Theorem 14.10 Let M be a closed 4-manifold such that m = 71 (M) is
isomorphic to a nontrivial free product GxH . Then M is stably homeomorphic
to a connected sum MgiMpy with m1(Mg) = G and 7 (My) = H.

Proof Let K = KgU[-1,1]UKg/(xg ~ —1,+1 ~ =), where K5 and Ky
are K(G,1)- and K(H,1)-spaces with basepoints x¢ and % (respectively).
Then K is a K(m,1)-space and so there is a map f: M — K which induces an
isomorphism of fundamental groups. We may assume that f is transverse to
0 € [~1,1],s0 V = f~1(0) is a submanifold of M with a product neighbourhood
V x [—€,e]. We may also assume that V is connected, by the arc-chasing
argument of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm)].) Let
j V. — M be the inclusion. Since fj is a constant map and 7i(f) is an
isomorphism 7;(j) is the trivial homomorphism, and so j*w;(M) = 0. Hence
V' is orientable and so there is a framed link L C V such that surgery on L
in V gives S3 |Li62]. The framings of the components of L in V extend to
framings in M. Let W = M x [0, 11Uy p2x[—cqx{1} (uD? x D? x [—¢, €]), where
 is the number of components of L. Note that if we(M) = 0 then we may
choose the framed link L so that wy(W) = 0 also [Kp79]. Then oW = MUM,
where M is the result of surgery on L in M. The map f extends to a map
F : W — K such that m(F|5;) is an isomorphism and (F|5;)7'(0) = S°.
Hence M is a connected sum as in the statement. Since the components of
L are null-homotopic in M they may be isotoped into disjoint discs, and so
M= M#(8#S? x S%). This proves the theorem. O

Note that if V' is a homotopy 3-sphere then M is a connected sum, for V x R
is then homeomorphic to S® x R, by 1-connected surgery.

Theorem 14.11 Let L be a p-component 2-link with sublinks L, and Lo =
L\ L; such that there is an isomorphism from wL to wLy % mLy which is
compatible with the homomorphisms determined by the inclusions of X (L)
into X(Ly) and X (Lg2). Then X (L) is stably homeomorphic to X (L1 11 Ly).

Proof By Theorem 14.10, M (L)#(§%5% x S?) = N#P, where m(N) = 7Ly
and 71 (P) = wLy. On undoing the surgeries on the components of L; and Lo,
respectively, we see that M (Lo)#(4%S? x S?) =2 N4P, and M (L;)#(45? x §?) =
NP, where N and P are simply connected. Since undoing the surgeries on
all the components of L gives §%5? x S? = N4P, N and P are each connected
sums of copies of S% x S?, so N and P are stably homeomorphic to M (L)
and M (L2), respectively. The result now follows easily. O
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Similar arguments may be used to show that, firstly, if L is a 2-link such
that c.d.mL < 2 and there is an isomorphism 6 : nL — wLi % wLo which
is compatible with the natural maps to the factors then there is a map f, :
M(L), = M(L)\intD* — M (L1)M(Ls) such that 71(f,) = 6 and m2(f,) is an
isomorphism; and secondly, if moreover f, extends to a homotopy equivalence
f+ M(L) — M(L1)§M(L2) and the factors of wL are either classical link
groups or are square root closed accessible then L is s-concordant to the split
link L111Ly. (The surgery arguments rely on [AFR97] and [CaT73], respectively.)
However we do not know how to bridge the gap between the algebraic hypothesis
and obtaining a homotopy equivalence.

14.12 Link groups

If 7 is the group of a p-component n-link L then

7 is finitely presentable;

)
2) 7 is of weight p;

) Hy(m;Z) =n/n’ =2 Z"; and

) (if n>1) Ha(m;Z) = 0.
Conversely, any group satisfying these conditions is the group of an n-link, for
every n > 3 [Ke65’. (Note that ¢(m) > 2(1 — u), with equality if and only
if 7 is the group of a 2-link.) If (4) is replaced by the stronger condition that
def(w) = p (and 7w has a deficiency p Wirtinger presentation) then 7 is the
group of a (ribbon) 2-link which is a sublink of a (ribbon) link whose group is
a free group. (See Chapter 1 of [H3].) The group of a classical link satisfies
(4) if and only if the link splits completely as a union of knots in disjoint
balls. If subcomplexes of aspherical 2-complexes are aspherical then a higher-
dimensional link group group has geometric dimension at most 2 if and only if
it has deficiency p (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from 7 (L) to
the free group F'(u) which carries a set of meridians to a free basis. If the lat-
ter condition is dropped L is said to be an homology boundary link. Although
sublinks of boundary links are clearly boundary links, the corresponding result
is not true for homology boundary links. It is an attractive conjecture that
every even-dimensional link is a slice link. This has been verified under addi-
tional hypotheses on the link group. For a 2-link L it suffices that there be a
homomorphism ¢ : 1L — G where G is a high-dimensional link group such
that Hs(G;F2) = H4(G;Z) = 0 and where the normal closure of the image of
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¢ is G [Co84]. In particular, sublinks of homology boundary 2-links are slice
links.

A choice of (based) meridians for the components of a link L determines a ho-
momorphism f : F(u) — 7L which induces an isomorphism on abelianization.
If L is a higher dimensional link Hy(7wL;Z) = H2(F(p);Z) = 0 and hence f in-
duces isomorphisms on all the nilpotent quotients F'(u)/F (1)) = 7L/ (7L)
and a monomorphism F(u) — 7L/(7L), = 7L/ Np>1 (TL)) [St65]. (In par-
ticular, if g > 2 then wL contains a nonabelian free subgroup.) The latter map
is an isomorphism if and only if L is a homology boundary link. In that case
the homology groups of the covering space X (L)“ corresponding to mL/(mL)j,,
are modules over Z[wL/(mL),] = Z[F(u)], which is a coherent ring of global
dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism
e’e*(nL/(wL)y)) = e*(nL/(nL)y,), where e'(M) = E:):t%[F(#)](M,Z[F(M)]),
which is the analogue of the Farber-Levine pairing for 2-knots.

The argument of [HK78’] may be adapted to show that every finitely generated
abelian group is the centre of the group of some p-component boundary n-link,
for any g > 1 and n > 3. However the centre of the group of a 2-link with more
than one component must be finite. (All known examples have trivial centre.)

Theorem 14.12 Let L be a p-component 2-link. If > 1 then

(1) wL has no infinite amenable normal subgroup;

(2) 7L is not an ascending HNN extension over a finitely generated base.

Proof Since x(M(L)) = 2(1 — pu) the L2-Euler characteristic formula gives

%2) (mL) > p— 1. Therefore ﬁf) (mL) # 0 if p > 1, and so the result follows
from Lemma 2.1 and Corollary 2.3.1. O

In particular, the exterior of a 2-link with more than one component never
fibres over S'. (This is true of all higher dimensional links: see Theorem 5.12
of [H3].) Moreover a 2-link group has finite centre and is never amenable. In
contrast, we shall see that there are many 2-knot groups which have infinite
centre or are solvable.

The exterior of a classical link is aspherical if and only the link is unsplittable,
while the exterior of a higher dimensional link with more than one component
is never aspherical [Ec76]. Is M (L) ever aspherical?
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14.13 Homology spheres

A closed connected n-manifold M is an homology n-sphere if Hy(M;Z) = 0
for 0 < ¢ < n. In particular, it is orientable and so H,(M;Z) = Z. If = is the
group of an homology n-sphere then

(1) = is finitely presentable;
(2) = is perfect, i.e., m = 7'; and
(3) Ha(mZ)=0.

A group satisfying the latter two conditions is said to be superperfect. Every
finitely presentable superperfect group is the group of an homology n-sphere,
for every n > 5 [Ke69], but in low dimensions more stringent conditions hold.
As any closed 3-manifold has a handlebody structure with one 0-handle and
equal numbers of 1- and 2-handles, homology 3-sphere groups have deficiency
0. Every perfect group with a presentation of deficiency 0 is superperfect, and is
an homology 4-sphere group [Ke69]. However none of the implications “G is an
homology 3-sphere group” = “G is finitely presentable, perfect and def(G) =
0” = “G is an homology 4-sphere group” = “G is finitely presentable and
superperfect” can be reversed, as we shall now show.

Although the finite groups SL(2,F,) are perfect and have deficiency 0 for each
prime p > 5 [CR&0], the binary icosahedral group I* = SL(2,F5) is the only
nontrivial finite perfect group with cohomological period 4, and thus is the only
finite homology 3-sphere group.

Let G = (x,5 | 23 = 1,525~ = 271) be the group of 53; and let

H = (a,b,c,d | bab™t = a?,cbe™ =%, ded ! = 2, ada™" = d?)

be the Higman group [Hg51]. Then H is perfect and def(H) = 0, so there is
an homology 4-sphere ¥ with group H. Surgery on a loop representing sa ™!
in Y#M(7231) gives an homology 4-sphere with group 7 = (G * H)/({sa™1)).
Then 7 is the semidirect product p x H, where p = ((G')), is the normal

closure of the image of G’ in w. The obvious presentation for this group has
deficiency -1. We shall show that this is best possible.

Let I' = Z[H]. Since H has cohomological dimension 2 [DV73’] the augmenta-
tion ideal I = Ker(e : I' — Z) has a short free resolution

Co: 0T ST T 0.

Let B = Hi(mT) = p/p’. Then B 2 T'/T(3,a+ 1) as a left I'-module and
there is an exact sequence

0—-B—-A—1-—0,
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in which A = Hy(m,1;T) is a relative homology group [Cr61]. Since B =
I'®p (A/A(3,a+ 1)), where A = Z[a,a"!], there is a free resolution

, (%)

Suppose that 7 has deficiency 0. Evaluating the Jacobian matrix associated
to an optimal presentation for 7 via the natural epimorphism from Z[r] to T
gives a presentation matrix for A as a module [Cr61) [Fo62]. Thus there is an
exact sequence

(3,a+1)

0—T r I' = B—0.

Di: - >T"=>I"—= A—0.
A mapping cone construction leads to an exact sequence of the form
Dy —-Ci@®@Dy—B®Cy—0
and hence to a presentation of deficiency 0 for B of the form
D1 ¢ Cy— C1® Dy — B.
Hence there is a free resolution
0—-L—->TI?—>T?”—B—0.

Schanuel’s Lemma gives an isomorphism I''*P*! =~ [, @ I'"*2 on comparing
these two resolutions of B. Since I' is weakly finite the endomorphism of I'?*+2
given by projection onto the second summand is an automorphism. Hence
L =0 and so B has a short free resolution. In particular, Tor} (R, B) = 0 for
any right T-module R. But it is easily verified that if B = T'/(3,a + 1)T is
the conjugate right I'-module then Torl (B, B) # 0. Thus our assumption was
wrong, and def(r) = —1 < 0.

Our example of an homology 4-sphere group with negative deficiency is “very
infinite” in the sense that the Higman group H has no finite quotients, and
therefore no finite-dimensional representations over any field [Hg51]. Livingston
has constructed examples with arbitrarily large negative deficiency, which are
extensions of I* by groups which map onto Z. His argument uses only homo-
logical algebra for infinite cyclic covers [Li05].

Let I* = SL(2,F5) act diagonally on (F2)* and let G}, be the universal central
extension of the perfect group (F2)* x I*. In [HWS85] it is shown that for k
large, the superperfect group is not the group of an homology 4-sphere. In
particular, it has negative deficiency. It seems unlikely that deficiency 0 is a
necessary condition for a finite perfect group to be an homology 4-sphere group.

Kervaire’s criteria may be extended further to the groups of links in homology
spheres. Unfortunately, the condition x(M) = 0 is central to most of our
arguments, and is satisfied only when the link has one component.
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We may also use the Higman group H to construct fibred knots with group of
cohomological dimension d, for any finite d > 1. If ¥ is an homology 4-sphere
with 711 (X) = H then surgery on a loop in ¥ x S! representing (a,1) € H x Z
gives a homotopy 5-sphere, and so H x Z is the group of a fibred 3-knot.
Every superperfect group is the group of an homology 5-sphere, and a similar
construction shows that H* x Z is the group of a fibred 4-knot, for all k& > 0.
Similarly, 7 = H* x 73; is a high-dimensional knot group with 7’ finitely
presentable and c.d.w = 2k + 2, for all k > 0.

On the other hand, if K is a 2-knot with group 7 = 7K such that 7’ is
finitely generated then M (K)' is a PDs-space, by Theorem 4.5. Hence 7’ has
a factorization as a free product of PD3-groups and indecomposable virtually
free groups, by the theorems of Turaev and Crisp. In particular, v.c.d.w’ = 0,
1or3,and so v.c.d.w =1, 2 or 4. Thus H* x Z is not a 2-knot group, if k > 1.

These observations suggest several questions:

(1) are there any 2-knot groups 7 with c.d.m = 37
(2) what are the groups of fibred n-knots?
(3) in particular, is H* x w3, realized by a fibred 3-knot, if k > 27
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Chapter 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group m = wK has an infinite
restrained normal subgroup N then either 7’ is finite or 7 = ® (the group of
Fox’s Example 10) or M (K) is aspherical and /7 # 1 or N is virtually Z and
/N has infinitely many ends. In this chapter we shall give some evidence in this
direction. In order to clarify the statements and arguments in later sections, we
begin with several characterizations of ®, which plays a somewhat exceptional
role. In §2 we assume that IV is almost coherent and locally virtually indicable,
but not locally finite. In §3 we establish the above tetrachotomy for the cases
with N nilpotent and h(N) > 2 or abelian of rank 1. In §4 we determine all
such 7 with 7/ finite, and in §5 we give a version of the Tits alternative for
2-knot groups. In §6 we shall complete Yoshikawa’s determination of the 2-knot
groups which are HNN extensions over abelian bases. We conclude with some
observations on 2-knot groups with infinite locally finite normal subgroups.

15.1 The group ¢

Let ® = Zxy be the group with presentation (a,t | tat™! = a?). This group is
an ascending HNN extension with base Z, is metabelian, and has commutator
subgroup isomorphic to the dyadic rationals. The 2-complex corresponding to
this presentation is aspherical and so g.d.® = 2.

The group @ is the group of Example 10 of Fox, which is the boundary of the
ribbon D? in S* obtained by “thickening” a suitable immersed ribbon D? in
S3 for the stevedore’s knot 62 [Fo62]. Such a ribbon disc may be constructed by
applying the method of §7 of Chapter 1 of [H3|] to the equivalent presentation
{t,u,v | vuv! = ¢, tut~! = v) for ® (where u = ta and v = t2at™1).

Theorem 15.1 Let m be a group such that w/7’ = Z, c.d.m =2 and 7 has a
nontrivial normal subgroup E which is either elementary amenable or almost
coherent, locally virtually indicable and restrained. Then either m = ® or 7 is
an iterated free product of (one or more) torus knot groups, amalgamated over
central subgroups, E < (m and {(r N«' = 1. In either case def(m) = 1.
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Proof If 7 is solvable then m & Zx,,, for some m # 0, by Corollary 2.6.1.
Since w/n" = Z we must have m = 2 and so © = ®.

Otherwise F = Z, by Theorem 2.7. Then [ : Cr(E)] < 2 and Cr(E) is
free, by Bieri’s Theorem. This free subgroup must be nonabelian for otherwise
7w would be solvable. Hence E N Cr(E) = 1 and so E maps injectively to
H =7/Cr(E). As H has an abelian normal subgroup of index at most 2 and
H/H' = Z we must in fact have H = Z. It follows easily that C(EF) = 7, and
so 7' is free. The further structure of 7 is then due to Strebel [St76]. The final
observation follows readily. a

The following alternative characterizations of ® shall be useful.

Theorem 15.2 Let m be a 2-knot group with maximal locally finite normal
subgroup T'. Then w/T = & if and only if w is elementary amenable and
h(m) = 2. Moreover the following are equivalent:

(1) 7 has an abelian normal subgroup A of rank 1 such that w/A has two
ends;

(2) 7 is elementary amenable, h(m) = 2 and m has an abelian normal sub-
group A of rank 1;

(3) = is almost coherent, elementary amenable and h(mw) = 2;
(4) 7= 0.

Proof Since m is finitely presentable and has infinite cyclic abelianization it
is an HNN extension m = Bx4 with base B a finitely generated subgroup of
7', by Theorem 1.13. Since 7 is elementary amenable the extension must be
ascending. Since h(n’'/T) =1 and 7’/T has no nontrivial locally-finite normal
subgroup [7'/T : \/7'/T] < 2. The meridianal automorphism of 7’ induces
a meridianal automorphism on (7'/T)/\/7'/T and so 7'/T = y/«’/T. Hence
7' /T is a torsion-free rank 1 abelian group. Let J = B/BNT. Then h(J) =1
and J < 7'/T so J = Z. Now ¢ induces a monomorphism ¢ : J — J and
/T = Jxy. Since 7/n’' = Z we must have Jxy = O.

If (1) holds then 7 is elementary amenable and h(w) = 2. Suppose (2) holds.
We may assume without loss of generality that A is the normal closure of
an element of infinite order, and so m/A is finitely presentable. Since w/A
is elementary amenable and h(m/A) = 1 it is virtually Z. Therefore 7 is
virtually an HNN extension with base a finitely generated subgroup of A, and
so is coherent. If (3) holds then m = @&, by Corollary 3.17.1. Since ® clearly
satisfies conditions (1-3) this proves the theorem. O

Corollary 15.2.1 If T is finite and w/T = ® then T =1 and © = . d
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15.2 Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially
correct, under mild coherence hypotheses on 7K or N. Recall that a restrained
group has no noncyclic free subgroups. Thus if N is a countable restrained
group either it is elementary amenable and h(N) < 1 or it is an increasing
union of finitely generated one-ended groups.

Theorem 15.3 Let K be a 2-knot whose group m = wK is an ascending
HNN extension over an F'P, base B with finitely many ends. Then either w’
is finite or m = ® or M(K) is aspherical.

Proof This follows from Theorem 3.17, since a group with abelianization Z
cannot be virtually Z2. |

Is M(K) still aspherical if we assume only that B is finitely generated and
one-ended?

Corollary 15.3.1 If «’ is locally finite then it is finite. a

Corollary 15.3.2 If B is F'P3 and has one end then 7’ = B and is a PD3+-
group.

Proof This follows from Lemma 3.4 of [BG85|, as in Theorem 2.13. O

Does this remain true if we assume only that B is F'P, and has one end?

Corollary 15.3.3 If 7 is an ascending HNN extension over an F P, base B
and has an infinite restrained normal subgroup A then either 7' is finite or
m = ® or M(K) is aspherical or 1" N A =1 and 7 /A has infinitely many ends.

Proof If B is finite or AN B is infinite then B has finitely many ends (cf.
Corollary 