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Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we
have framed our definitions in such generality, although our main concern is with
2-knots (embeddings of S2 in S4 ). In particular, we show how the classification
of higher dimensional knots may be reduced (essentially) to the classification
of certain closed manifolds, and we give Kervaire’s characterization of high
dimensional knot groups. In the final sections we comment briefly on links and
the groups of links, homology spheres and their groups.

14.1 Knots

The standard orientation of Rn induces an orientation on the unit n-disc Dn =
{(x1, . . . xn) ∈ Rn | Σx2

i ≤ 1} and hence on its boundary Sn−1 = ∂Dn , by the
convention “outward normal first”. We shall assume that standard discs and
spheres have such orientations. Qualifications shall usually be omitted when
there is no risk of ambiguity. In particular, we shall often abbreviate X(K),
M(K) and πK (defined below) as X , M and π , respectively.

An n-knot is a locally flat embedding K : Sn → Sn+2 . (We shall also use the
terms “classical knot” when n = 1, “higher dimensional knot” when n ≥ 2 and
“high dimensional knot” when n ≥ 3.) It is determined up to (ambient) isotopy
by its image K(Sn), considered as an oriented codimension 2 submanifold of
Sn+2 , and so we may let K also denote this submanifold. Let rn be an orienta-
tion reversing self homeomorphism of Sn . Then K is invertible, +amphicheiral
or −amphicheiral if it is isotopic to Kρ = Krn , rK = rn+2K or −K = rKρ,
respectively. An n-knot is trivial if it is isotopic to the composite of equatorial
inclusions Sn ⊂ Sn+1 ⊂ Sn+2 .

Every knot has a product neighbourhood: there is an embedding j : Sn ×D2

onto a closed neighbourhood N of K , such that j(Sn × {0}) = K and ∂N is
bicollared in Sn+2 [KS75, FQ]. We may assume that j is orientation preserving.
If n ≥ 2 it is then unique up to isotopy rel Sn × {0}. The exterior of K is
the compact (n+ 2)-manifold X(K) = Sn+2 \ intN with boundary ∂X(K) ∼=
Sn × S1 , and is well defined up to homeomorphism. It inherits an orientation
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272 Chapter 14: Knots and links

from Sn+2 . An n-knot K is trivial if and only if X(K) ' S1 ; this follows from
Dehn’s Lemma if n = 1, is due to Freedman if n = 2 ([FQ] – see Corollary
17.1.1 below) and is an easy consequence of the s-cobordism theorem if n ≥ 3.

The knot group is πK = π1(X(K)). An oriented simple closed curve isotopic
to the oriented boundary of a transverse disc {j} × S1 is called a meridian for
K , and we shall also use this term to denote the corresponding elements of π .
If µ is a meridian for K , represented by a simple closed curve on ∂X then
X ∪µ D2 is a deformation retract of Sn+2 − {∗} and so is contractible. Hence
π is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that n ≥ 2. The group of pseu-
doisotopy classes of self homeomorphisms of Sn×S1 is (Z/2Z)3 , generated by
reflections in either factor and by the map τ given by τ(x, y) = (ρ(y)(x), y)
for all x in Sn and y in S1 , where ρ : S1 → SO(n + 1) is an essential map
[Gl62, Br67, Kt69]. As any self homeomorphism of Sn × S1 extends across
Dn+1 × S1 the knot manifold M(K) = X(K) ∪ (Dn+1 × S1) obtained from
Sn+2 by surgery on K is well defined, and it inherits an orientation from Sn+2

via X . Moreover π1(M(K)) ∼= πK and χ(M(K)) = 0. Conversely, suppose
that M is a closed orientable 4-manifold with χ(M) = 0 and π1(M) is gener-
ated by the conjugacy class of a single element. (Note that each conjugacy class
in π corresponds to an unique isotopy class of oriented simple closed curves in
M .) Surgery on a loop in M representing such an element gives a 1-connected
4-manifold Σ with χ(Σ) = 2 which is thus homeomorphic to S4 and which con-
tains an embedded 2-sphere as the cocore of the surgery. We shall in fact study
2-knots through such 4-manifolds, as it is simpler to consider closed manifolds
rather than pairs.

There is however an ambiguity when we attempt to recover K from M =
M(K). The cocore γ = {0} × S1 ⊂ Dn+1 × S1 ⊂ M of the original surgery is
well defined up to isotopy by the conjugacy class of a meridian in πK = π1(M).
(In fact the orientation of γ is irrelevant for what follows.) Its normal bundle
is trivial, so γ has a product neighbourhood, P say, and we may assume that
M \ intP = X(K). But there are two essentially distinct ways of identifying
∂X with Sn×S1 = ∂(Sn×D2), modulo self homeomorphisms of Sn×S1 that
extend across Sn×D2 . If we reverse the original construction of M we recover
(Sn+2,K) = (X ∪j Sn × D2, Sn × {0}). If however we identify Sn × S1 with
∂X by means of jτ we obtain a new pair

(Σ,K∗) = (X ∪jτ Sn ×D2, Sn × {0}).

It is easily seen that Σ ' Sn+2 , and hence Σ ∼= Sn+2 . We may assume that
the homeomorphism is orientation preserving. Thus we obtain a new n-knot
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K∗ , which we shall call the Gluck reconstruction of K . The knot K is reflexive
if it is determined as an unoriented submanifold by its exterior, i.e., if K∗ is
isotopic to K , rK , Kρ or −K .

If there is an orientation preserving homeomorphism from X(K1) to X(K) then
K1 is isotopic to K , K∗ , Kρ or K∗ρ. If the homeomorphism also preserves
the homology class of the meridians then K1 is isotopic to K or to K∗ . Thus
K is determined up to an ambiguity of order at most 2 by M(K) together with
the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V of Sn+2 with (oriented) boundary K . By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
pr2j

−1 : ∂X → Sn × S1 → S1 extends to a map p : X → S1 [Ke65]. By
topological transversality we may assume that p−1(1) is a bicollared, proper
codimension 1 submanifold of X . The union p−1(1) ∪ j(Sn × [0, 1]) is then
a Seifert hypersurface for K .) We shall say that V is minimal if the natural
homomorphism from π1(V ) to πK is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is fibred if there is such a map p : X → S1

which is the projection of a fibre bundle. (Clearly K∗ is then fibred also.) The
exterior is then the mapping torus of a self homeomorphism θ of the fibre F
of p, called the (geometric) monodromy of the bundle. Such a map p extends
to a fibre bundle projection q : M(K)→ S1 , with fibre F̂ = F ∪Dn+1 , called
the closed fibre of K . Conversely, if M(K) fibres over S1 then the cocore γ is
homotopic (and thus isotopic) to a cross-section of the bundle projection, and
so K is fibred. If the monodromy is represented by a self-homeomorphism of
finite order then it has nonempty fixed point set, and the closed monodromy
θ̂ has finite order. However the results of [Hn] and [La] may be used to show
that the closed monodromy of the spun trefoil knot σ31 has finite order, but as
π1(F ) ∼= F (2) has no automorphism of order 6 [Me74] there is no representative
of finite order with nonempty fixed point set.

14.2 Covering spaces

Let K be an n-knot. Then H1(X(K);Z) ∼= Z and Hi(X(K);Z) = 0 if
i > 1, by Alexander duality. The meridians are all homologous and generate
π/π′ = H1(X;Z), and so determine a canonical isomorphism with Z . Moreover
H2(π;Z) = 0, since it is a quotient of H2(X;Z) = 0.
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274 Chapter 14: Knots and links

We shall let X ′(K) and M ′(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X ′/X is also known as the infinite
cyclic cover of the knot.) Since π/π′ = Z the (co)homology groups of X ′ are
modules over the group ring Z[Z], which may be identified with the ring of
integral Laurent polynomials Λ = Z[t, t−1]. If A is a Λ-module, let zA be the
Z-torsion submodule, and let eiA = ExtiΛ(A,Λ).

Since Λ is noetherian the (co)homology of a finitely generated free Λ-chain
complex is finitely generated. The Wang sequence for the projection of X ′ onto
X may be identified with the long exact sequence of homology corresponding
to the exact sequence of coefficients

0→ Λ→ Λ→ Z→ 0.

Since X has the homology of a circle it follows easily that multiplication by
t− 1 induces automorphisms of the modules Hi(X; Λ) for i > 0. Hence these
homology modules are all finitely generated torsion Λ-modules. It follows that
HomΛ(Hi(X; Λ),Λ) is 0 for all i, and the UCSS collapses to a collection of
short exact sequences

0→ e2Hi−2(X; Λ)→ H i(X; Λ)→ e1Hi−1(X; Λ)→ 0.

The infinite cyclic covering spaces X ′ and M ′ behave homologically much like
(n+1)-manifolds, at least if we use field coefficients [Mi68, Ba80]. If Hi(X; Λ) =
0 for 1 ≤ i ≤ (n+ 1)/2 then X ′ is acyclic; thus if also π = Z then X ' S1 and
so K is trivial. All the classifications of high dimensional knots to date assume
that π = Z and that X ′ is highly connected.

When n = 1 or 2 knots with π = Z are trivial, and it is more profitable to
work with the universal cover X̃ (or M̃ ). In the classical case X̃ is contractible
[Pa57]. In higher dimensions X is aspherical only when the knot is trivial
[DV73]. Nevertheless the closed 4-manifolds M(K) obtained by surgery on 2-
knots are often aspherical. (This asphericity is an additional reason for choosing
to work with M(K) rather than X(K).)

14.3 Sums, factorization and satellites

The sum of two knots K1 and K2 may be defined (up to isotopy) as the n-knot
K1]K2 obtained as follows. Let Dn(±) denote the upper and lower hemispheres
of Sn . We may isotope K1 and K2 so that each Ki(D

n(±)) contained in
Dn+2(±), K1(Dn(+)) is a trivial n-disc in Dn+2(+), K2(Dn(−)) is a trivial
n-disc in Dn+2(−) and K1|Sn−1 = K2|Sn−1 (as the oriented boundaries of
the images of Dn(−)). Then we let K1]K2 = K1|Dn(−) ∪ K2|Dn(+) . By van
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Kampen’s theorem π(K1]K2) = πK1∗ZπK2 where the amalgamating subgroup
is generated by a meridian in each knot group. It is not hard to see that
X ′(K1]K2) ' X ′(K1) ∨X ′(K2), and so π(K1]K2)′ ∼= π(K1)′ ∗ π(K2)′ .

The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-
knots whose groups have finitely generated commutator subgroups this follows
easily from the Grushko-Neumann theorem on factorizations of groups as free
products.) In the classical case the factorization is essentially unique, but if
n ≥ 3 there are n-knots with several distinct such factorizations [BHK81].
Almost nothing is known about the factorization of 2-knots.

If K1 and K2 are fibred then so is their sum, and the closed fibre of K1]K2 is the
connected sum of the closed fibres of K1 and K2 . However in the absence of an
adequate criterion for a 2-knot to fibre, we do not know whether every summand
of a fibred 2-knot is fibred. In view of the unique factorization theorem for
oriented 3-manifolds we might hope that there would be a similar theorem for
fibred 2-knots. However the closed fibre of an irreducible 2-knot need not be
an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an
irreducible fibred 2-knot, but its closed fibre is (S2 × S1)](S2 × S1).)

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately
connected with the notion of torus decomposition, we shall describe only the
higher-dimensional version of [Kn83]. Let K1 and K2 be n-knots (with n ≥ 2)
and let γ be a simple closed curve in X(K1), with a product neighbourhood
U . Then there is a homeomomorphism h which carries Sn+2 \ intU ∼= Sn ×D2

onto a product neighbourhood of K2 . The knot Σ(K2;K1, γ) = hK1 is called
the satellite of K1 about K2 relative to γ . We also call K2 a companion of
hK1 . If either γ = 1 or K2 is trivial then Σ(K2;K1, γ) = K1 . If γ is a
meridian for K1 then Σ(K2;K1, γ) = K1]K2 . If γ has finite order in πK1

let q be that order; otherwise let q = 0. Let w be a meridian in πK2 . Then
πΣ(K2;K1, γ) ∼= (πK2/〈〈wq〉〉)∗Z/qZ πK1 , where w is identified with γ in πK1 ,
by Van Kampen’s theorem.

14.4 Spinning, twist spinning and deform spinning

The first nontrivial examples of higher dimensional knots were given by Artin
[Ar25]. We may paraphrase his original idea as follows. As the half space
R3

+ = {(w, x, y, z) ∈ R4 | w = 0, z ≥ 0} is spun about the axis A = {(0, x, y, 0)}
it sweeps out R4 , and any arc in R3

+ with endpoints on A sweeps out a 2-sphere.
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276 Chapter 14: Knots and links

This construction has been extended, first to twist-spinning and roll-spinning
[Fo66, Ze65], and then more generally to deform spinning [Li79]. Let g an
orientation preserving self-homeomorphism of Sn+2 which is the identity on
the n-knot K . If g does not twist the normal bundle of K in Sn+2 then
the sections of M(g) determined by points of K have canonical “constant”
framings, and surgery on such a section in the pair (M(g),K × S1) gives an
(n + 1)-knot, called the deform spin of K determined by g . The deform spin
is untwisted if g preserves a Seifert hypersurface for K . If g is the identity this
gives the Artin spin σK , and πσK = πK .

Twist spins are defined by maps supported in a collar of ∂X = K × S1 . (If
n = 1 we use the 0-framing.) Let r be an integer. The self-map tr of Sn+2

defined by tr(k, z, x) = (k, e2πirxz, x) on ∂X × [0, 1] and the identity elsewhere
gives the r -twist spin τrK . Clearly τ0K = σK . The group of τrK is obtained
from πK by adjoining the relation making the rth power of (any) meridian
central. Zeeman discovered the remarkable fact that if r 6= 0 then τrK is fibred,
with closed fibre the r -fold cyclic branched cover of Sn+2 , branched over K , and
monodromy the canonical generator of the group of covering transformations
[Ze65]. Hence τ1K is always trivial. More generally, if g is an untwisted
deformation of K and r 6= 0 then the knot determined by trg is fibred [Li79].
(See also [GK78, Mo83, Mo84] and [Pl84’].) Twist spins of −amphicheiral
knots are −amphicheiral, while twist spinning interchanges invertibility and
+amphicheirality [Li85].

If K is a classical knot the factors of the closed fibre of τrK are the cyclic
branched covers of the prime factors of K , and are Haken, hyperbolic or Seifert
fibred. With some exceptions for small values of r , the factors are aspherical,
and S2 × S1 is never a factor [Pl84]. If r > 1 and K is nontrivial then τrK
is nontrivial, by the Smith Conjecture. If K is a deform spun 2-knot then the
order ideal of H1(πK;QΛ) is invariant under the involution t 7→ t−1 [BM09].

14.5 Ribbon and slice knots

Two n-knots K0 and K1 are concordant if there is a locally flat embedding
K : Sn × [0, 1]→ Sn+2 × [0, 1] such that Ki = K ∩ Sn × {i} for i = 0, 1. They
are s-concordant if there is a concordance whose exterior is an s-cobordism (rel
∂ ) from X(K0) to X(K1). (If n > 2 this is equivalent to ambient isotopy, by
the s-cobordism theorem.)

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if
it bounds a properly embedded (n+ 1)-disc ∆ in Dn+3 . Such a disc is called
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a slice disc for K . Doubling the pair (Dn+3,∆) gives an (n + 1)-knot which
meets the equatorial Sn+2 of Sn+3 transversally in K ; if the (n+ 1)-knot can
be chosen to be trivial then K is doubly slice. All even-dimensional knots are
slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion
is yet known. The sum K]−K is a slice of τ1K and so is doubly slice [Su71].
Twist spins of doubly slice knots are doubly slice.

An n-knot K is a ribbon knot if it is the boundary of an immersed (n+ 1)-disc
∆ in Sn+2 whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a “ribbon” (n + 1)-disc
∆ in Sn+2 the cartesian product ∆×Dp ⊂ Sn+2×Dp ⊂ Sn+2+p determines a
ribbon (n+ 1 + p)-disc in Sn+2+p . All higher dimensional ribbon knots derive
from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation
reversing involution, this easily imples that all ribbon n-knots with n ≥ 2 are
−amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon
2-knot has a Seifert hypersurface which is a once-punctured connected sum of
copies of S1 × S2 [Yn69]. Hence such knots are reflexive. (See [Su76] for more
on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it is a slice knot with a slice disc
whose exterior W has a handlebody decomposition consisting of 0-, 1- and
2-handles. The dual decomposition of W relative to ∂W = M(K) has only
handles of index ≥ n+ 1, and so (W,M) is n-connected. (The definition of
“homotopically ribbon” for 1-knots used in Problem 4.22 of [GK] requires only
that this latter condition be satisfied.) More generally, we shall say that K is
π1 -slice if the inclusion of X(K) into the exterior of some slice disc induces an
isomorphism on fundamental groups.

Every ribbon knot is homotopy ribbon and hence slice [Hi79], while if n ≥ 2
every homotopy ribbon n-knot is π1 -slice. Nontrivial classical knots are never
π1 -slice, since the longitude of a slice knot is nullhomotopic in the exterior of
a slice disc. It is an open question whether every classical slice knot is ribbon.
However in higher dimensions “slice” does not even imply “homotopy ribbon”.
(The simplest example is τ231 - see below.)

Most of the conditions considered here depend only on the h-cobordism class of
M(K). An n-knot K is slice if and only if M = ∂W , where W is an homology
S1 ×Dn+2 and the image of πK normally generates π1(W ), and it is π1 -slice
if and only if we may assume also that the inclusion of M into ∂W induces an
isomorphism on π1 . The knot K is doubly slice if and only if M embeds in
S1 × Sn+2 via a map which induces an isomorphism on first homology.
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14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such
an element is called a weight element for G, and its conjugacy class is called a
weight class for G. If G is solvable then it has weight 1 if and only if G/G′ is
cyclic, for a solvable group with trivial abelianization must be trivial.

If π is the group of an n-knot K then

(1) π is finitely presentable;

(2) π is of weight 1;

(3) H1(π;Z) = π/π′ ∼= Z ; and

(4) H2(π;Z) = 0.

Kervaire showed that any group satisfying these conditions is an n-knot group,
for every n ≥ 3 [Ke65]. These conditions are also necessary when n = 1 or
2, but are then no longer sufficient, and there are as yet no corresponding
characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger
condition that def(π) = 1 then π is a 2-knot group, but this condition is not
necessary [Ke65]. (See §9 of this chapter, §4 of Chapter 15 and §4 of Chapter 16
for examples with deficiency ≤ 0.) Gonzalez-Acuña has given a characterization
of 2-knot groups as groups admitting certain presentations [GA94]. (Note also
that if π is a high dimensional knot group then q(π) ≥ 0, and q(π) = 0 if and
only if π is a 2-knot group.)

Every knot group has a Wirtinger presentation, i.e., one in which the relations
are all of the form xj = wjx0w

−1
j , where {xi, 0 ≤ i ≤ n} is the generating set

[Yj70]. If K is a nontrivial 1-knot then πK has a Wirtinger presentation of
deficiency 1. A group has such a presentation if and only if it has weight 1 and
has a deficiency 1 presentation P such that the presentation of the trivial group
obtained by adjoining the relation killing a weight element is AC-equivalent to
the empty presentation [Yo82’]. Any such group is the group of a 2-knot which
is a smooth embedding in the standard smooth structure on S4 [Le78]. The
group of a nontrivial 1-knot K has one end [Pa57], so X(K) is aspherical, and
X(K) collapses to a finite 2-complex, so g.d.πK = 2. If π is an n-knot group
then g.d.π = 2 if and only if c.d.π = 2 and def(π) = 1, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n ≥ 2) is the fundamental
group of a (n + 3)-manifold W with χ(W ) = 0 and which can be built with
0-, 1- and 2-handles only, such groups also have deficiency 1. Conversely, if a
finitely presentable group π has weight 1 and deficiency 1 then we may use such
a presentation to construct a 5-dimensional handlebody W = D5 ∪{h1

i }∪ {h2
j}
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with π1(∂W ) = π1(W ) ∼= π and χ(W ) = 0. Adjoining another 2-handle h
along a loop representing a weight class for π1(∂W ) gives a homotopy 5-ball B
with 1-connected boundary. Thus ∂B ∼= S4 , and the boundary of the cocore of
the 2-handle h is clearly a homotopy ribbon 2-knot with group π . (In fact any
group of weight 1 with a Wirtinger presentation of deficiency 1 is the group of
a ribbon n-knot, for each n ≥ 2 [Yj69] – see [H3].)

The deficiency may be estimated in terms of the minimum number of generators
of the Λ-module e2(π′/π′′). Using this observation, it may be shown that if
K is the sum of m + 1 copies of τ231 then def(πK) = −m [Le78]. There are
irreducible 2-knots whose groups have deficiency −m, for each m ≥ 0 [Kn83].

A knot group π has two ends if and only if π′ is finite. We shall determine
all such 2-knots in §4 of Chapter 15. Nontrivial torsion-free knot groups have
one end [Kl93]. There are also many 2-knot groups with infinitely many ends
[GM78]. The simplest is perhaps the group with presentation

〈a, b, t | a3 = 1, aba−1 = b2, tat−1 = a2〉.

The first two relations imply that b7 = 1, and so this group is an HNN extension
of 〈a, b〉 ∼= Z/7Z o2 Z/3Z , with associated subgroups both 〈a〉 ∼= Z/3Z . It is
also the group of a satellite of τ231 with companion Fox’s Example 10.

14.7 Weight elements, classes and orbits

Two 2-knots K and K1 have homeomorphic exteriors if and only if there is
a homeomorphism from M(K1) to M(K) which carries the conjugacy class of
a meridian of K1 to that of K (up to inversion). In fact if M is any closed
orientable 4-manifold with χ(M) = 0 and with π = π1(M) of weight 1 then
surgery on a weight class gives a 2-knot with group π . Moreover, if t and u
are two weight elements and f is a self homeomorphism of M such that u is
conjugate to f∗(t

±1) then surgeries on t and u lead to knots whose exteriors
are homeomorphic (via the restriction of a self homeomorphism of M isotopic
to f ). Thus the natural invariant to distinguish between knots with isomorphic
groups is not the weight class, but rather the orbit of the weight class under
the action of self homeomorphisms of M . In particular, the orbit of a weight
element under Aut(π) is a well defined invariant, which we shall call the weight
orbit. If every automorphism of π is realized by a self homeomorphism of
M then the homeomorphism class of M and the weight orbit together form a
complete invariant for the (unoriented) knot, up to Gluck reconstruction. (This
is the case if M is an infrasolvmanifold.)
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For oriented knots we need a refinement of this notion. If w is a weight element
for π then we shall call the set {α(w) | α ∈ Aut(π), α(w) ≡ w mod π′} a strict
weight orbit for π . A strict weight orbit determines a transverse orientation for
the corresponding knot (and its Gluck reconstruction). An orientation for the
ambient sphere is determined by an orientation for M(K). If K is invertible or
+amphicheiral then there is a self homeomorphism of M which is orientation
preserving or reversing (respectively) and which reverses the transverse orien-
tation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly,
if K is −amphicheiral there is an orientation reversing self homeomorphism of
M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with G/G′ ∼= Z . Let t be
an element of G whose image generates G/G′ and let ct be the automorphism
of G′ induced by conjugation by t. Then

(1) t is a weight element if and only if ct is meridianal;

(2) two weight elements t, u are in the same weight class if and only if there
is an inner automorphism cg of G′ such that cu = cgctc

−1
g ;

(3) two weight elements t, u are in the same strict weight orbit if and only if
there is an automorphism d of G′ such that cu = dctd

−1 and dctd
−1c−1

t

is an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g′′t)±1 for some
g′′ in G′′ .

Proof The verification of (1-3) is routine. If t and u are weight elements then,
up to inversion, u must equal g′t for some g′ in G′ . Since multiplication by
t − 1 is invertible on G′/G′′ we have g′ = khth−1t−1 for some h in G′ and k
in G′′ . Let g′′ = h−1kh. Then u = g′t = hg′′th−1 .

An immediate consequence of this theorem is that if t and u are in the same
strict weight orbit then ct and cu have the same order. Moreover if C is the
centralizer of ct in Aut(G′) then the strict weight orbit of t contains at most
[Aut(G′) : C.Inn(G′)] ≤ |Out(G′)| weight classes. In general there may be
infinitely many weight orbits [Pl83’]. However if π is metabelian the weight
class (and hence the weight orbit) is unique up to inversion, by part (4) of the
theorem.
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14.8 The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the auto-
morphism of the commutator subgroup induced by conjugation by a meridian.
An automorphism φ of a group G is meridianal if 〈〈g−1φ(g) | g ∈ G〉〉G = G.
If H is a characteristic subgroup of G and φ is meridianal the induced au-
tomorphism of G/H is then also meridianal. In particular, H1(φ) − 1 maps
H1(G;Z) = G/G′ onto itself. If G is solvable an automorphism satisfying the
latter condition is meridianal, for a solvable perfect group is trivial.

It is easy to see that no group G with G/G′ ∼= Z can have G′ ∼= Z or D . It
follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 [HK78],[Le78] A finitely presentable group π is a high dimen-
sional knot group if and only if π ∼= π′oθ Z for some meridianal automorphism
θ of π′ such that H2(θ)− 1 is an automorphism of H2(π′;Z).

If π is a knot group then π′/π′′ is a finitely generated Λ-module. Levine and
Weber have made explicit the conditions under which a finitely generated Λ-
module may be the commutator subgroup of a metabelian high dimensional
knot group [LW78]. Leaving aside the Λ-module structure, Hausmann and
Kervaire have characterized the finitely generated abelian groups A that may
be commutator subgroups of high dimensional knot groups [HK78]. “Most”
can occur; there are mild restrictions on 2- and 3-torsion, and if A is infinite
it must have rank at least 3. We shall show that the abelian groups which are
commutator subgroups of 2-knot groups are Z3 , Z[1

2 ] (the additive group of
dyadic rationals) and the cyclic groups of odd order. (See Theorems 15.7 and
15.12.) The commutator subgroup of a nontrivial classical knot group is never
abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group
could be the centre of a high dimensional knot group [HK78’]. We shall show
that the centre of a 2-knot group is either Z2 , torsion-free of rank 1, finitely
generated of rank 1 or is a torsion group. (See Theorems 15.7 and 16.3. In all
known cases the centre is Z2 , Z ⊕ (Z/2Z), Z , Z/2Z or 1.) A classical knot
group has nontrivial centre if and only if the knot is a torus knot [BZ]; the
centre is then Z .

Silver has given examples of high dimensional knot groups π with π′ finitely
generated but not finitely presentable [Si91]. He has also shown that there
are embeddings j : T → S4 such that π1(S4 \ j(T ))′ is finitely generated but
not finitely presentable [Si97]. However no such 2-knot groups are known. If
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the commutator subgroup is finitely generated then it is the unique HNN base
[Si96]. Thus knots with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups
made use of Poincaré duality with coefficients Λ. Farber [Fa77] and Levine
[Le77] independently found the following theorem.

Theorem 14.3 (Farber, Levine) Let K be a 2-knot and A = H1(M(K); Λ).
Then H2(M(K); Λ) ∼= e1A, and there is a nondegenerate Z-bilinear pairing
[ , ] : zA× zA→ Q/Z such that [tα, tβ] = [α, β] for all α and β in zA.

Most of this theorem follows easily from Poincaré duality with coefficients Λ,
but some care is needed in order to establish the symmetry of the pairing. When
K is a fibred 2-knot, with closed fibre F̂ , the Farber-Levine pairing is just the
standard linking pairing on the torsion subgroup of H1(F̂ ;Z), together with
the automorphism induced by the monodromy. In particular, Farber observed
that although the group π with presentation

〈a, t | tat−1 = a2, a5 = 1〉

is a high dimensional knot group, if ` is any nondegenerate Z-bilinear pairing
on π′ ∼= Z/5Z with values in Q/Z then `(tα, tβ) = −`(α, β) for all α, β in π′ ,
and so π is not a 2-knot group.

Corollary 14.3.1 [Le78] H2(π′;Z) is a quotient of HomΛ(π′/π′′,Q(t)/Λ).

Every orientation preserving meridianal automorphism of a torsion-free 3-manifold
group is realizable by a fibred 2-knot.

Theorem 14.4 Let N be a closed orientable 3-manifold such that ν = π1(N)
is torsion-free. If K is a 2-knot such that (πK)′ ∼= ν then M(K) is homotopy
equivalent to the mapping torus of a self homeomorphism of N . If θ is a
meridianal automorphism of ν then π = ν oθ Z is the group of a fibred 2-knot
with fibre N if and only if θ∗(cN∗[N ]) = cN∗[N ].

Proof The first assertion follows from Corollary 4.5.4.

The classifying maps for the fundamental groups induce a commuting diagram
involving the Wang sequences of M(K) and π from which the necessity of the
orientation condition follows easily. (It is vacuous if ν is a free group.)

Let N = P]R where P is a connected sum of r copies of S1 × S2 and the
summands of R are aspherical. If θ∗(cN∗[N ]) = cN∗[N ] then θ may be realized

Geometry & Topology Monographs, Volume 5 (2002)



14.9 Deficiency and geometric dimension 283

by an orientation preserving self homotopy equivalence g of N [Sw74]. We may
assume that g is a connected sum of homotopy equivalences between the irre-
ducible factors of R and a self homotopy equivalence of P , by the Splitting The-
orem of [HL74]. The factors of R are either Haken, hyperbolic or Seifert-fibred,
by the Geometrization Conjecture (see [B-P]), and homotopy equivalences be-
tween such manifolds are homotopic to homeomorphisms, by [Hm], Mostow
rigidity and [Sc83], respectively. A similar result holds for P = ]r(S1×S2), by
[La]. Thus we may assume that g is a self homeomorphism of N . Surgery on
a weight class in the mapping torus of g gives a fibred 2-knot with closed fibre
N and group π .

If N is hyperbolic, Seifert fibred or if its prime factors are Haken or S1 × S2

then the mapping torus is determined up to homeomorphism among fibred 4-
manifolds by its homotopy type, since homotopy implies isotopy in each case,
by Mostow rigidity, [Sc85, BO91] and [HL74], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of
some HNN extension which is a high dimensional knot group if and only if
it satisfies the restrictions on torsion of [HK78], while if a knot group has a
non-finitely generated abelian base then it is metabelian. Moreover a 2-knot
group π which is an HNN extension with abelian base is either metabelian
or has base Z ⊕ (Z/βZ) for some odd β ≥ 1 [Yo86, Yo92]. We shall show
that in the latter case β must be 1, and so π has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉. (See Theorem 15.14.) No nontrivial classical knot
group is an HNN extension with abelian base. (This is implicit in Yoshikawa’s
work, and can also be deduced from the facts that classical knot groups have
cohomological dimension ≤ 2 and symmetric Alexander polynomial.)

14.9 Deficiency and geometric dimension

J.H.C.Whitehead raised the question “is every subcomplex of an aspherical 2-
complex also aspherical?” This is so if the fundamental group of the subcomplex
is a 1-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial
superperfect normal subgroup [Dy87]. Whitehead’s question has interesting
connections with knot theory. (For instance, the exterior of a ribbon n-knot
or of a ribbon concordance between classical knots is homotopy equivalent to
such a 2-complex. The asphericity of such ribbon exteriors has been raised in
[Co83] and [Go81].)

If the answer to Whitehead’s question is YES, then a high dimensional knot
group has geometric dimension at most 2 if and only if it has deficiency 1 (in

Geometry & Topology Monographs, Volume 5 (2002)



284 Chapter 14: Knots and links

which case it is a 2-knot group). For let G be a group of weight 1 and with
G/G′ ∼= Z . If C(P ) is the 2-complex corresponding to a presentation of defi-
ciency 1 then the 2-complex obtained by adjoining a 2-cell to C(P ) along a loop
representing a weight element for G is 1-connected and has Euler characteristic
1, and so is contractible. The converse follows from Theorem 2.8. On the other
hand a positive answer in general implies that there is a group G such that
c.d.G = 2 and g.d.G = 3 [BB97].

If the answer is NO then either there is a finite nonaspherical 2-complex X such
that X ∪f D2 is contractible for some f : S1 → X or there is an infinite as-
cending chain of nonaspherical 2-complexes whose union is contractible [Ho83].
In the finite case χ(X) = 0 and so π = π1(X) has deficiency 1; moreover, π
has weight 1 since it is normally generated by the conjugacy class represented

by f . Such groups are 2-knot groups. Since X is not aspherical β
(2)
1 (π) 6= 0,

by Theorem 2.4, and so π′ cannot be finitely generated, by Lemma 2.1.

A group is called knot-like if it has abelianization Z and deficiency 1. If the
commutator subgroup of a classical knot group is finitely generated then it is
free. Using the result of Corollary 2.5.1 above and the fact that the Novikov
completions of Z[G] with respect to epimorphisms from G onto Z are weakly
finite Kochloukova has shown that this holds more generally for all knot-like
groups [Ko06]. (See Corollary 4.3.1 above.) This answers an old question of
Rapaport, who established this in the 2-generator, 1-relator case [Rp60].

In particular, if the group of a fibred 2-knot has a presentation of deficiency
1 then its commutator subgroup is free. Any 2-knot with such a group is s-
concordant to a fibred homotopy ribbon knot. (See §6 of Chapter 17.) As
S2 × S1 is never a factor of the closed fibre of a nontrivial twist spin τrK
[Pl84], it follows that if r > 1 and K is nontrivial then def(πτrK) ≤ 0 and
τrK is not a homotopy ribbon 2-knot.

If a knot group has a 2-generator 1-relator Wirtinger presentation it is an HNN
extension with free base and associated subgroups [Yo88]. This paper also gives
an example π with g.d.π = 2 and a deficiency 1 Wirtinger presentation which
also has a 2-generator 1-relator presentation but which is not such an HNN
extension (and so has no 2-generator 1-relator Wirtinger presentation).

Lemma 14.5 If G is a group with def(G) = 1 and e(G) = 2 then G ∼= Z .

Proof The group G has an infinite cyclic subgroup A of finite index, since
e(G) = 2. Let C be the finite 2-complex corresponding to a presentation of
deficiency 1 for G, and let D be the covering space corresponding to A. Then
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D is a finite 2-complex with π1(D) = A ∼= Z and χ(D) = [π : A]χ(C) = 0.
Since H2(D;Z[A]) = H2(D̃;Z) is a submodule of a free Z[A]-module and is of
rank χ(D) = 0 it is 0. Hence D̃ is contractible, and so G must be torsion-free
and hence abelian.

This lemma is also a consequence of Theorem 2.5. It follows immediately that
def(πτ231) = 0, since πτ231

∼= (Z/3Z) o−1 Z . Moreover, if K is a classical
knot such that π′ finitely generated but nontrivial then H1(π;Z[π]) = 0, and
so X(K) is aspherical, by Poincaré duality.

Theorem 14.6 Let K be a 2-knot. Then π = πK ∼= Z if and only if
def(π) = 1 and π2(M(K)) = 0.

Proof The conditions are necessary, by Theorem 11.1. If they hold then

β
(2)
j (M) = β

(2)
j (π) for j ≤ 2, by Theorem 6.54 of [Lü], and so 0 = χ(M) =

β
(2)
2 (π) − 2β

(2)
1 (π). Now β

(2)
1 (π) − β

(2)
2 (π) ≥ def(π) − 1 = 0, by Corollary

2.4.1. Therefore β
(2)
1 (π) = β

(2)
2 (π) = 0 and so g.d.π ≤ 2, by the same Corol-

lary. In particular, the manifold M is not aspherical. Hence H1(π;Z[π]) ∼=
H3(M ;Z[π]) 6= 0. Since π is torsion-free it is indecomposable as a free product
[Kl93]. Therefore e(π) = 2 and so π ∼= Z , by Lemma 14.5.

In fact K must be trivial ([FQ] - see Corollary 17.1.1). A simpler argument
is used in [H1] to show that if def(π) = 1 then π2(M) maps onto H2(M ; Λ),
which is nonzero if π′ 6= π′′ .

14.10 Asphericity

The outstanding property of the exterior of a classical knot is that it is aspher-
ical. Swarup extended the classical Dehn’s lemma criterion for unknotting to
show that if K is an n-knot such that the natural inclusion of Sn (as a factor
of ∂X(K)) into X(K) is null homotopic then X(K) ' S1 , provided πK is
accessible [Sw75]. Since it is now known that finitely presentable groups are
accessible [DD], it follows that the exterior of a higher dimensional knot is as-
pherical if and only if the knot is trivial. Nevertheless, we shall see that the
closed 4-manifolds M(K) obtained by surgery on 2-knots are often aspherical.

Theorem 14.7 Let K be a 2-knot. Then M(K) is aspherical if and only if
π = πK is a PD4 -group, which must then be orientable.
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Proof The condition is clearly necessary. Suppose that it holds. Let M+ be
the covering space associated to π+ = Ker(w1(π)). Then [π : π+] ≤ 2, so
π′ < π+ . Since π/π′ ∼= Z and t− 1 acts invertibly on H1(π′;Z) it follows that
β1(π+) = 1. Hence β2(M+) = 0, since M+ is orientable and χ(M+) = 0.
Hence β2(π+) is also 0, so χ(π+) = 0, by Poincaré duality for π+ . Therefore
χ(π) = 0 and so M must be aspherical, by Corollary 3.5.1.

We may use this theorem to give more examples of high dimensional knot groups
which are not 2-knot groups. Let A ∈ GL(3,Z) be such that det(A) = −1,
det(A−I) = ±1 and det(A+I) = ±1. The characteristic polynomial of A must
be either f1(X) = X3−X2−2X+1, f2(X) = X3−X2+1, f3(X) = X3f1(X−1)
or f4(X) = X3f2(X−1). (There are only two conjugacy classes of such matrices,
up to inversion, for it may be shown that the rings Z[X]/(fi(X)) are principal
ideal domains.) The group Z3 oA Z satifies the Kervaire conditions, and is a
PD4 -group. However it cannot be a 2-knot group, since it is nonorientable.
(Such matrices have been used to construct fake RP 4 s [CS76’].)

Is every (torsion-free) 2-knot group π with Hs(π;Z[π]) = 0 for s ≤ 2 a PD4 -
group? Is every 3-knot group which is also a PD+

4 -group a 2-knot group? (Note
that by Theorem 3.6 such a group cannot have deficiency 1.)

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8 Let K = Σ(K2;K1, γ) be a satellite 2-knot. If π = πK is a
PD4 -group then K = K1 or K2 . In particular, K is irreducible.

Proof Let q be the order of γ in πK1 . Then π ∼= πK1 ∗C B , where B =
πK2/〈〈wq〉〉, and C is cyclic. Since π is torsion-free q = 0 or 1. Suppose
that K 6= K1 . Then q = 0, so C ∼= Z , while B 6= C . If πK1 6= C then
πK1 and B have infinite index in π , and so c.d.πK1 ≤ 3 and c.d.B ≤ 3, by
Strebel’s Theorem. A Mayer-Vietoris argument then gives 4 = c.d.π ≤ 3, which
is impossible. Therefore K1 is trivial and so K = K2 .

14.11 Links

A µ-component n-link is a locally flat embedding L : µSn → Sn+2 . The
exterior of L is X(L) = Sn+2 \ intN(L), where N(L) ∼= µSn ×D2 is a regular
neighbourhood of the image of L, and the group of L is πL = π1(X(L)). Let
M(L) = X(L)∪µDn+1×S1 be the closed manifold obtained by surgery on L.
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An n-link L is trivial if it bounds a collection of µ disjoint locally flat 2-
discs in Sn . It is split if it is isotopic to one which is the union of nonempty
sublinks L1 and L2 whose images lie in disjoint discs in Sn+2 , in which case
we write L = L1 q L2 , and it is a boundary link if it bounds a collection of
µ disjoint hypersurfaces in Sn+2 . Clearly a trivial link is split, and a split
link is a boundary link; neither implication can be reversed if µ > 1. Knots
are boundary links, and many arguments about knots that depend on Seifert
hypersurfaces extend readily to boundary links. The definitions of slice and
ribbon knots and s-concordance extend naturally to links.

A 1-link is trivial if and only if its group is free, and is split if and only if its
group is a nontrivial free product, by the Loop Theorem and Sphere Theorem,
respectively. (See Chapter 1 of [H3].) Gutiérrez has shown that if n ≥ 4 an
n-link L is trivial if and only if πL is freely generated by meridians and the
homotopy groups πj(X(L)) are all 0, for 2 ≤ j ≤ (n + 1)/2 [Gu72]. His
argument applies also when n = 3. While the fundamental group condition is
necessary when n = 2, we cannot yet use surgery to show that it is a complete
criterion for triviality of 2-links with more than one component. We shall settle
for a weaker result.

Theorem 14.9 Let M be a closed 4-manifold with π1(M) free of rank r and
χ(M) = 2(1− r). If M is orientable it is s-cobordant to ]r(S1 × S3), while if
it is nonorientable it is s-cobordant to (S1×̃S3)](]r−1(S1 × S3)).

Proof We may assume without loss of generality that π1(M) has a free basis
{x1, ...xr} such that xi is an orientation preserving loop for all i > 1, and
we shall use cM∗ to identify π1(M) with F (r). Let N = ]r(S1 × S3) if M
is orientable and let N = (S1×̃S3)](]r−1(S1 × S3)) otherwise. (Note that
w1(N) = w1(M) as homomorphisms from F (r) to {±1}.) Since c.d.π1(M) ≤ 2
and χ(M) = 2χ(π1(M)) we have π2(M) ∼= H2(F (r);Z[F (r)]), by Theorem

3.12. Hence π2(M) = 0 and so π3(M) ∼= H3(M̃ ;Z) ∼= D = H1(F (r);Z[F (r)]),
by the Hurewicz theorem and Poincaré duality. Similarly, we have π2(N) = 0
and π3(N) ∼= D .

Let cM = gMhM be the factorization of cM through P3(M), the third stage
of the Postnikov tower for M . Thus πi(hM ) is an isomorphism if i ≤ 3 and
πj(P3(M)) = 0 if j > 3. As K(F (r), 1) = ∨rS1 each of the fibrations gM
and gN clearly have cross-sections and so there is a homotopy equivalence
k : P3(M) → P3(N) such that gM = gNk . (See Section 5.2 of [Ba].) We
may assume that k is cellular. Since P3(M) = M ∪ {cells of dimension ≥ 5}
it follows that khM = hNf for some map f : M → N . Clearly πi(f) is an
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isomorphism for i ≤ 3. Since the universal covers M̃ and Ñ are 2-connected
open 4-manifolds the induced map f̃ : M̃ → Ñ is an homology isomorphism,
and so is a homotopy equivalence. Hence f is itself a homotopy equivalence.
As Wh(F (r)) = 0 any such homotopy equivalence is simple.

If M is orientable [M,G/TOP ] ∼= Z , since H2(M ;Z/2Z) = 0. As the surgery
obstruction in L4(F (r)) ∼= Z is given by a signature difference, it is a bijection,
and so the normal invariant of f is trivial. Hence there is a normal cobordism
F : P → N × I with F |∂−P = f and F |∂+P = idN . There is another
normal cobordism F ′ : P ′ → N × I from idN to itself with surgery obstruction
σ5(P ′, F ′) = −σ5(P, F ) in L5(F (r)), by Theorem 6.7 and Lemma 6.9. The
union of these two normal cobordisms along ∂+P = ∂−P

′ is a normal cobordism
from f to idN with surgery obstruction 0, and so we may obtain an s-cobordism
W by 5-dimensional surgery (rel ∂ ).

A similar argument applies in the nonorientable case. The surgery obstruction
is then a bijection from [N ;G/TOP ] to L4(F (r),−) = Z/2Z , so f is normally
cobordant to idN , while L5(Z,−) = 0, so L5(F (r),−) ∼= L5(F (r− 1)) and the
argument of [FQ] still applies.

Corollary 14.9.1 Let L be a µ-component 2-link such that πL is freely
generated by µ meridians. Then L is s-concordant to the trivial µ-component
link.

Proof Since M(L) is orientable, χ(M(L)) = 2(1− µ) and π1(M(L)) ∼= πL =
F (µ), there is an s-cobordism W with ∂W = M(L) ∪ M(µ), by Theorem
14.9. Moreover it is clear from the proof of that theorem that we may assume
that the elements of the meridianal basis for πL are freely homotopic to loops
representing the standard basis for π1(M(µ)). We may realise such homotopies
by µ disjoint embeddings of annuli running from meridians for L to such stan-
dard loops in M(µ). Surgery on these annuli (i.e., replacing D3×S1× [0, 1] by
S2×D2×[0, 1]) then gives an s-concordance from L to the trivial µ-component
link.

A similar strategy may be used to give an alternative proof of the higher di-
mensional unlinking theorem of [Gu72] which applies uniformly for n ≥ 3. The
hypothesis that πL be freely generated by meridians cannot be dropped en-
tirely [Po71]. On the other hand, if L is a 2-link whose longitudes are all null
homotopic then the pair (X(L), ∂X(L)) is homotopy equivalent to the pair
(]µS1 ×D3, ∂(]µS1 ×D3)) [Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links.
However we can give a stable version for 2-links.
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Theorem 14.10 Let M be a closed 4-manifold such that π = π1(M) is
isomorphic to a nontrivial free product G∗H . Then M is stably homeomorphic
to a connected sum MG]MH with π1(MG) ∼= G and π1(MH) ∼= H .

Proof Let K = KG ∪ [−1, 1] ∪KH/(∗G ∼ −1,+1 ∼ ∗H), where KG and KH

are K(G, 1)- and K(H, 1)-spaces with basepoints ∗G and ∗H (respectively).
Then K is a K(π, 1)-space and so there is a map f : M → K which induces an
isomorphism of fundamental groups. We may assume that f is transverse to
0 ∈ [−1, 1], so V = f−1(0) is a submanifold of M with a product neighbourhood
V × [−ε, ε]. We may also assume that V is connected, by the arc-chasing
argument of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm].) Let
j : V → M be the inclusion. Since fj is a constant map and π1(f) is an
isomorphism π1(j) is the trivial homomorphism, and so j∗w1(M) = 0. Hence
V is orientable and so there is a framed link L ⊂ V such that surgery on L
in V gives S3 [Li62]. The framings of the components of L in V extend to
framings in M . Let W = M× [0, 1]∪L×D2×[−ε,ε]×{1} (µD

2×D2× [−ε, ε]), where
µ is the number of components of L. Note that if w2(M) = 0 then we may

choose the framed link L so that w2(W ) = 0 also [Kp79]. Then ∂W = M ∪M̂ ,

where M̂ is the result of surgery on L in M . The map f extends to a map
F : W → K such that π1(F |

M̂
) is an isomorphism and (F |

M̂
)−1(0) ∼= S3 .

Hence M̂ is a connected sum as in the statement. Since the components of
L are null-homotopic in M they may be isotoped into disjoint discs, and so
M̂ ∼= M](]µS2 × S2). This proves the theorem.

Note that if V is a homotopy 3-sphere then M is a connected sum, for V ×R
is then homeomorphic to S3 ×R, by 1-connected surgery.

Theorem 14.11 Let L be a µ-component 2-link with sublinks L1 and L2 =
L \ L1 such that there is an isomorphism from πL to πL1 ∗ πL2 which is
compatible with the homomorphisms determined by the inclusions of X(L)
into X(L1) and X(L2). Then X(L) is stably homeomorphic to X(L1 q L2).

Proof By Theorem 14.10, M(L)](]aS2 × S2) ∼= N]P , where π1(N) ∼= πL1

and π1(P ) ∼= πL2 . On undoing the surgeries on the components of L1 and L2 ,
respectively, we see that M(L2)](]aS2×S2) ∼= N]P̄ , and M(L1)](]aS2×S2) ∼=
N̄]P , where N̄ and P̄ are simply connected. Since undoing the surgeries on
all the components of L gives ]aS2×S2 ∼= N̄]P̄ , N̄ and P̄ are each connected
sums of copies of S2 × S2 , so N and P are stably homeomorphic to M(L1)
and M(L2), respectively. The result now follows easily.
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Similar arguments may be used to show that, firstly, if L is a 2-link such
that c.d.πL ≤ 2 and there is an isomorphism θ : πL → πL1 ∗ πL2 which
is compatible with the natural maps to the factors then there is a map fo :
M(L)o = M(L)\intD4 →M(L1)]M(L2) such that π1(fo) = θ and π2(fo) is an
isomorphism; and secondly, if moreover fo extends to a homotopy equivalence
f : M(L) → M(L1)]M(L2) and the factors of πL are either classical link
groups or are square root closed accessible then L is s-concordant to the split
link L1qL2 . (The surgery arguments rely on [AFR97] and [Ca73], respectively.)
However we do not know how to bridge the gap between the algebraic hypothesis
and obtaining a homotopy equivalence.

14.12 Link groups

If π is the group of a µ-component n-link L then

(1) π is finitely presentable;

(2) π is of weight µ;

(3) H1(π;Z) = π/π′ ∼= Zµ ; and

(4) (if n > 1) H2(π;Z) = 0.

Conversely, any group satisfying these conditions is the group of an n-link, for
every n ≥ 3 [Ke65’]. (Note that q(π) ≥ 2(1 − µ), with equality if and only
if π is the group of a 2-link.) If (4) is replaced by the stronger condition that
def(π) = µ (and π has a deficiency µ Wirtinger presentation) then π is the
group of a (ribbon) 2-link which is a sublink of a (ribbon) link whose group is
a free group. (See Chapter 1 of [H3].) The group of a classical link satisfies
(4) if and only if the link splits completely as a union of knots in disjoint
balls. If subcomplexes of aspherical 2-complexes are aspherical then a higher-
dimensional link group group has geometric dimension at most 2 if and only if
it has deficiency µ (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from π(L) to
the free group F (µ) which carries a set of meridians to a free basis. If the lat-
ter condition is dropped L is said to be an homology boundary link. Although
sublinks of boundary links are clearly boundary links, the corresponding result
is not true for homology boundary links. It is an attractive conjecture that
every even-dimensional link is a slice link. This has been verified under addi-
tional hypotheses on the link group. For a 2-link L it suffices that there be a
homomorphism φ : πL → G where G is a high-dimensional link group such
that H3(G;F2) = H4(G;Z) = 0 and where the normal closure of the image of

Geometry & Topology Monographs, Volume 5 (2002)



14.12 Link groups 291

φ is G [Co84]. In particular, sublinks of homology boundary 2-links are slice
links.

A choice of (based) meridians for the components of a link L determines a ho-
momorphism f : F (µ)→ πL which induces an isomorphism on abelianization.
If L is a higher dimensional link H2(πL;Z) = H2(F (µ);Z) = 0 and hence f in-
duces isomorphisms on all the nilpotent quotients F (µ)/F (µ)[n]

∼= πL/(πL)[n] ,
and a monomorphism F (µ)→ πL/(πL)[ω] = πL/ ∩n≥1 (πL)[n] [St65]. (In par-
ticular, if µ ≥ 2 then πL contains a nonabelian free subgroup.) The latter map
is an isomorphism if and only if L is a homology boundary link. In that case
the homology groups of the covering space X(L)ω corresponding to πL/(πL)[ω]

are modules over Z[πL/(πL)[ω]] ∼= Z[F (µ)], which is a coherent ring of global
dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism
e2e2(πL/(πL)[ω]) ∼= e2(πL/(πL)[ω]), where ei(M) = ExtiZ[F (µ)](M,Z[F (µ)]),
which is the analogue of the Farber-Levine pairing for 2-knots.

The argument of [HK78’] may be adapted to show that every finitely generated
abelian group is the centre of the group of some µ-component boundary n-link,
for any µ ≥ 1 and n ≥ 3. However the centre of the group of a 2-link with more
than one component must be finite. (All known examples have trivial centre.)

Theorem 14.12 Let L be a µ-component 2-link. If µ > 1 then

(1) πL has no infinite amenable normal subgroup;

(2) πL is not an ascending HNN extension over a finitely generated base.

Proof Since χ(M(L)) = 2(1 − µ) the L2 -Euler characteristic formula gives

β
(2)
1 (πL) ≥ µ − 1. Therefore β

(2)
1 (πL) 6= 0 if µ > 1, and so the result follows

from Lemma 2.1 and Corollary 2.3.1.

In particular, the exterior of a 2-link with more than one component never
fibres over S1 . (This is true of all higher dimensional links: see Theorem 5.12
of [H3].) Moreover a 2-link group has finite centre and is never amenable. In
contrast, we shall see that there are many 2-knot groups which have infinite
centre or are solvable.

The exterior of a classical link is aspherical if and only the link is unsplittable,
while the exterior of a higher dimensional link with more than one component
is never aspherical [Ec76]. Is M(L) ever aspherical?
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14.13 Homology spheres

A closed connected n-manifold M is an homology n-sphere if Hq(M ;Z) = 0
for 0 < q < n. In particular, it is orientable and so Hn(M ;Z) ∼= Z . If π is the
group of an homology n-sphere then

(1) π is finitely presentable;

(2) π is perfect, i.e., π = π′ ; and

(3) H2(π;Z) = 0.

A group satisfying the latter two conditions is said to be superperfect. Every
finitely presentable superperfect group is the group of an homology n-sphere,
for every n ≥ 5 [Ke69], but in low dimensions more stringent conditions hold.
As any closed 3-manifold has a handlebody structure with one 0-handle and
equal numbers of 1- and 2-handles, homology 3-sphere groups have deficiency
0. Every perfect group with a presentation of deficiency 0 is superperfect, and is
an homology 4-sphere group [Ke69]. However none of the implications “G is an
homology 3-sphere group” ⇒ “G is finitely presentable, perfect and def(G) =
0” ⇒ “G is an homology 4-sphere group” ⇒ “G is finitely presentable and
superperfect” can be reversed, as we shall now show.

Although the finite groups SL(2,Fp) are perfect and have deficiency 0 for each
prime p ≥ 5 [CR80], the binary icosahedral group I∗ = SL(2,F5) is the only
nontrivial finite perfect group with cohomological period 4, and thus is the only
finite homology 3-sphere group.

Let G = 〈x, s | x3 = 1, sxs−1 = x−1〉 be the group of τ231 and let

H = 〈a, b, c, d | bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2〉

be the Higman group [Hg51]. Then H is perfect and def(H) = 0, so there is
an homology 4-sphere Σ with group H . Surgery on a loop representing sa−1

in Σ]M(τ231) gives an homology 4-sphere with group π = (G ∗ H)/〈〈sa−1〉〉.
Then π is the semidirect product ρ o H , where ρ = 〈〈G′〉〉π is the normal
closure of the image of G′ in π . The obvious presentation for this group has
deficiency -1. We shall show that this is best possible.

Let Γ = Z[H]. Since H has cohomological dimension 2 [DV73’] the augmenta-
tion ideal I = Ker(ε : Γ→ Z) has a short free resolution

C∗ : 0→ Γ4 → Γ4 → I → 0.

Let B = H1(π; Γ) ∼= ρ/ρ′ . Then B ∼= Γ/Γ(3, a + 1) as a left Γ-module and
there is an exact sequence

0→ B → A→ I → 0,
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in which A = H1(π, 1; Γ) is a relative homology group [Cr61]. Since B ∼=
Γ⊗Λ (Λ/Λ(3, a+ 1)), where Λ = Z[a, a−1], there is a free resolution

0→ Γ
(3,a+1)−−−−−→ Γ2

(
a+1
−3

)
−−−−−→ Γ→ B → 0.

Suppose that π has deficiency 0. Evaluating the Jacobian matrix associated
to an optimal presentation for π via the natural epimorphism from Z[π] to Γ
gives a presentation matrix for A as a module [Cr61, Fo62]. Thus there is an
exact sequence

D∗ : · · · → Γn → Γn → A→ 0.

A mapping cone construction leads to an exact sequence of the form

D1 → C1 ⊕D0 → B ⊕ C0 → 0

and hence to a presentation of deficiency 0 for B of the form

D1 ⊕ C0 → C1 ⊕D0 → B.

Hence there is a free resolution

0→ L→ Γp → Γp → B → 0.

Schanuel’s Lemma gives an isomorphism Γ1+p+1 ∼= L ⊕ Γp+2 , on comparing
these two resolutions of B . Since Γ is weakly finite the endomorphism of Γp+2

given by projection onto the second summand is an automorphism. Hence
L = 0 and so B has a short free resolution. In particular, TorΓ

2 (R,B) = 0 for
any right Γ-module R. But it is easily verified that if B ∼= Γ/(3, a + 1)Γ is
the conjugate right Γ-module then TorΓ

2 (B,B) 6= 0. Thus our assumption was
wrong, and def(π) = −1 < 0.

Our example of an homology 4-sphere group with negative deficiency is “very
infinite” in the sense that the Higman group H has no finite quotients, and
therefore no finite-dimensional representations over any field [Hg51]. Livingston
has constructed examples with arbitrarily large negative deficiency, which are
extensions of I∗ by groups which map onto Z . His argument uses only homo-
logical algebra for infinite cyclic covers [Li05].

Let I∗ = SL(2,F5) act diagonally on (F2
5)k , and let Gk be the universal central

extension of the perfect group (F2
5)k o I∗ . In [HW85] it is shown that for k

large, the superperfect group is not the group of an homology 4-sphere. In
particular, it has negative deficiency. It seems unlikely that deficiency 0 is a
necessary condition for a finite perfect group to be an homology 4-sphere group.

Kervaire’s criteria may be extended further to the groups of links in homology
spheres. Unfortunately, the condition χ(M) = 0 is central to most of our
arguments, and is satisfied only when the link has one component.
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We may also use the Higman group H to construct fibred knots with group of
cohomological dimension d, for any finite d ≥ 1. If Σ is an homology 4-sphere
with π1(Σ) ∼= H then surgery on a loop in Σ× S1 representing (a, 1) ∈ H × Z
gives a homotopy 5-sphere, and so H × Z is the group of a fibred 3-knot.
Every superperfect group is the group of an homology 5-sphere, and a similar
construction shows that Hk × Z is the group of a fibred 4-knot, for all k ≥ 0.
Similarly, π = Hk × π31 is a high-dimensional knot group with π′ finitely
presentable and c.d.π = 2k + 2, for all k ≥ 0.

On the other hand, if K is a 2-knot with group π = πK such that π′ is
finitely generated then M(K)′ is a PD3 -space, by Theorem 4.5. Hence π′ has
a factorization as a free product of PD3 -groups and indecomposable virtually
free groups, by the theorems of Turaev and Crisp. In particular, v.c.d.π′ = 0,
1 or 3, and so v.c.d.π = 1, 2 or 4. Thus Hk×Z is not a 2-knot group, if k ≥ 1.

These observations suggest several questions:

(1) are there any 2-knot groups π with c.d.π = 3?

(2) what are the groups of fibred n-knots?

(3) in particular, is Hk × π31 realized by a fibred 3-knot, if k ≥ 2?
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Chapter 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group π = πK has an infinite
restrained normal subgroup N then either π′ is finite or π ∼= Φ (the group of
Fox’s Example 10) or M(K) is aspherical and

√
π 6= 1 or N is virtually Z and

π/N has infinitely many ends. In this chapter we shall give some evidence in this
direction. In order to clarify the statements and arguments in later sections, we
begin with several characterizations of Φ, which plays a somewhat exceptional
role. In §2 we assume that N is almost coherent and locally virtually indicable,
but not locally finite. In §3 we establish the above tetrachotomy for the cases
with N nilpotent and h(N) ≥ 2 or abelian of rank 1. In §4 we determine all
such π with π′ finite, and in §5 we give a version of the Tits alternative for
2-knot groups. In §6 we shall complete Yoshikawa’s determination of the 2-knot
groups which are HNN extensions over abelian bases. We conclude with some
observations on 2-knot groups with infinite locally finite normal subgroups.

15.1 The group Φ

Let Φ ∼= Z∗2 be the group with presentation 〈a, t | tat−1 = a2〉. This group is
an ascending HNN extension with base Z , is metabelian, and has commutator
subgroup isomorphic to the dyadic rationals. The 2-complex corresponding to
this presentation is aspherical and so g.d.Φ = 2.

The group Φ is the group of Example 10 of Fox, which is the boundary of the
ribbon D3 in S4 obtained by “thickening” a suitable immersed ribbon D2 in
S3 for the stevedore’s knot 62 [Fo62]. Such a ribbon disc may be constructed by
applying the method of §7 of Chapter 1 of [H3] to the equivalent presentation
〈t, u, v | vuv−1 = t, tut−1 = v〉 for Φ (where u = ta and v = t2at−1 ).

Theorem 15.1 Let π be a group such that π/π′ ∼= Z , c.d.π = 2 and π has a
nontrivial normal subgroup E which is either elementary amenable or almost
coherent, locally virtually indicable and restrained. Then either π ∼= Φ or π is
an iterated free product of (one or more) torus knot groups, amalgamated over
central subgroups, E ≤ ζπ and ζπ ∩ π′ = 1. In either case def(π) = 1.
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Proof If π is solvable then π ∼= Z∗m , for some m 6= 0, by Corollary 2.6.1.
Since π/π′ ∼= Z we must have m = 2 and so π ∼= Φ.

Otherwise E ∼= Z , by Theorem 2.7. Then [π : Cπ(E)] ≤ 2 and Cπ(E)′ is
free, by Bieri’s Theorem. This free subgroup must be nonabelian for otherwise
π would be solvable. Hence E ∩ Cπ(E)′ = 1 and so E maps injectively to
H = π/Cπ(E)′ . As H has an abelian normal subgroup of index at most 2 and
H/H ′ ∼= Z we must in fact have H ∼= Z . It follows easily that Cπ(E) = π , and
so π′ is free. The further structure of π is then due to Strebel [St76]. The final
observation follows readily.

The following alternative characterizations of Φ shall be useful.

Theorem 15.2 Let π be a 2-knot group with maximal locally finite normal
subgroup T . Then π/T ∼= Φ if and only if π is elementary amenable and
h(π) = 2. Moreover the following are equivalent:

(1) π has an abelian normal subgroup A of rank 1 such that π/A has two
ends;

(2) π is elementary amenable, h(π) = 2 and π has an abelian normal sub-
group A of rank 1;

(3) π is almost coherent, elementary amenable and h(π) = 2;

(4) π ∼= Φ.

Proof Since π is finitely presentable and has infinite cyclic abelianization it
is an HNN extension π ∼= B∗φ with base B a finitely generated subgroup of
π′ , by Theorem 1.13. Since π is elementary amenable the extension must be
ascending. Since h(π′/T ) = 1 and π′/T has no nontrivial locally-finite normal
subgroup [π′/T :

√
π′/T ] ≤ 2. The meridianal automorphism of π′ induces

a meridianal automorphism on (π′/T )/
√
π′/T and so π′/T =

√
π′/T . Hence

π′/T is a torsion-free rank 1 abelian group. Let J = B/B ∩ T . Then h(J) = 1
and J ≤ π′/T so J ∼= Z . Now φ induces a monomorphism ψ : J → J and
π/T ∼= J∗ψ . Since π/π′ ∼= Z we must have J∗ψ ∼= Φ.

If (1) holds then π is elementary amenable and h(π) = 2. Suppose (2) holds.
We may assume without loss of generality that A is the normal closure of
an element of infinite order, and so π/A is finitely presentable. Since π/A
is elementary amenable and h(π/A) = 1 it is virtually Z . Therefore π is
virtually an HNN extension with base a finitely generated subgroup of A, and
so is coherent. If (3) holds then π ∼= Φ, by Corollary 3.17.1. Since Φ clearly
satisfies conditions (1-3) this proves the theorem.

Corollary 15.2.1 If T is finite and π/T ∼= Φ then T = 1 and π ∼= Φ.
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15.2 Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially
correct, under mild coherence hypotheses on πK or N . Recall that a restrained
group has no noncyclic free subgroups. Thus if N is a countable restrained
group either it is elementary amenable and h(N) ≤ 1 or it is an increasing
union of finitely generated one-ended groups.

Theorem 15.3 Let K be a 2-knot whose group π = πK is an ascending
HNN extension over an FP2 base B with finitely many ends. Then either π′

is finite or π ∼= Φ or M(K) is aspherical.

Proof This follows from Theorem 3.17, since a group with abelianization Z
cannot be virtually Z2 .

Is M(K) still aspherical if we assume only that B is finitely generated and
one-ended?

Corollary 15.3.1 If π′ is locally finite then it is finite.

Corollary 15.3.2 If B is FP3 and has one end then π′ = B and is a PD+
3 -

group.

Proof This follows from Lemma 3.4 of [BG85], as in Theorem 2.13.

Does this remain true if we assume only that B is FP2 and has one end?

Corollary 15.3.3 If π is an ascending HNN extension over an FP2 base B
and has an infinite restrained normal subgroup A then either π′ is finite or
π ∼= Φ or M(K) is aspherical or π′ ∩A = 1 and π/A has infinitely many ends.

Proof If B is finite or A ∩ B is infinite then B has finitely many ends (cf.
Corollary 1.15.1) and Theorem 15.3 applies. Therefore we may assume that B
has infinitely many ends and A∩B is finite. But then A 6≤ π′ , so π is virtually
π′×Z . Hence π′ = B and M(K)′ is a PD3 -complex. In particular, π′∩A = 1
and π/A has infinitely many ends.

In §4 we shall determine all 2-knot groups with π′ finite. If K is the r -twist
spin of an irreducible 1-knot then the rth power of a meridian is central in π
and either π′ is finite or M(K) is aspherical. (See §3 of Chapter 16.) The final
possibility is realized by Artin spins of nontrivial torus knots.
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Theorem 15.4 Let K be a 2-knot whose group π = πK is an HNN extension
with FP2 base B and associated subgroups I and φ(I) = J . If π has a

restrained normal subgroup N which is not locally finite and β
(2)
1 (π) = 0 then

either π′ is finite or π ∼= Φ or M(K) is aspherical or N is locally virtually Z
and π/N has infinitely many ends.

Proof If π′∩N is locally finite then it follows from Britton’s lemma (on normal
forms in HNN extensions) that either B∩N = I∩N or B∩N = J∩N . Moreover
N 6≤ π′ (since N is not locally finite), and so π′/π′ ∩ N is finitely generated.
Hence B/B ∩ N ∼= I/I ∩ N ∼= J/J ∩ N . Thus either B = I or B = J and
so the HNN extension is ascending. If B has finitely many ends we may apply
Theorem 15.3. Otherwise B∩N is finite, so π′∩N = B∩N and N is virtually
Z . Hence π/N is commensurable with B/B ∩N , and e(π/N) =∞.

If π′∩N is locally virtually Z and π/π′∩N has two ends then π is elementary
amenable and h(π) = 2, so π ∼= Φ. Otherwise we may assume that either
π/π′ ∩N has one end or π′ ∩N has a finitely generated, one-ended subgroup.
In either case Hs(π;Z[π]) = 0 for s ≤ 2, by Theorem 1.18, and so M(K) is
aspherical, by Theorem 3.5.

Note that β
(2)
1 (π) = 0 if N is amenable. Every knot group is an HNN extension

with finitely generated base and associated subgroups, by Theorem 1.13, and
in all known cases these subgroups are FP2 .

Theorem 15.5 Let K be a 2-knot such that π = πK has an almost coherent,
locally virtually indicable, restrained normal subgroup E which is not locally
finite. Then either π′ is finite or π ∼= Φ or M(K) is aspherical or E is abelian
of rank 1 and π/E has infinitely many ends or E is locally virtually Z and
π/E has one or infinitely many ends.

Proof Let F be a finitely generated subgroup of E . Since F is FP2 and
virtually indicable it has a subgroup of finite index which is an HNN extension
over a finitely generated base, by Theorem 1.13. Since F is restrained the HNN

extension is ascending, and so β
(2)
1 (F ) = 0, by Lemma 2.1. Hence β

(2)
1 (E) = 0

and so β
(2)
1 (π) = 0, by part (3) of Theorem 7.2 of [Lü].

If every finitely generated infinite subgroup of E has two ends, then E is
elementary amenable and h(E) = 1. If π/E is finite then π′ is finite. If π/E
has two ends then π is almost coherent, elementary amenable and h(π) = 2,
and so π ∼= Φ, by Theorem 15.2. If E is abelian and π/E has one end, or if E
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has a finitely generated, one-ended subgroup and π is not elementary amenable
of Hirsch length 2 then Hs(π;Z[π]) = 0 for s ≤ 2, by Theorem 1.17. Hence
M(K) is aspherical, by Theorem 3.5.

The remaining possibility is that E is locally virtually Z and π/E has one or
infinitely many ends.

Does this theorem hold without any coherence hypothesis? Note that the other
hypotheses hold if E is elementary amenable and h(E) ≥ 2. If E is elementary
amenable, h(E) = 1 and π/E has one end is H2(π;Z[π]) = 0?

Corollary 15.5.1 Let K be a 2-knot with group π = πK . Then either π′ is
finite or π ∼= Φ or M(K) is aspherical and

√
π is nilpotent or h(

√
π) = 1 and

π/
√
π has one or infinitely many ends or

√
π is locally finite.

Proof Finitely generated nilpotent groups are polycyclic. If π/
√
π has two

ends we may apply Theorem 15.3. If h(
√
π) = 2 then

√
π ∼= Z2 , by Theorem

9.2, while if h > 2 then π is virtually poly-Z , by Theorem 8.1.

If M(K) is aspherical then c.d.E ≤ 4 and c.d.E ∩ π′ ≤ 3. Slightly stronger
hypotheses on E then imply that π has a nontrivial torsion-free abelian normal
subgroup.

Theorem 15.6 Let N be a group which is either elementary amenable or
locally FP3 , virtually indicable and restrained. If c.d.N ≤ 3 then N is virtually
solvable.

Proof Suppose first that N is locally FP3 and virtually indicable, and let
E be a finitely generated subgroup of N which maps onto Z . Then E is an
ascending HNN extension B∗φ with FP3 base B and associated subgroups.
If c.d.B = 3 then H3(B;Z[E]) ∼= H3(B;Z[B])⊗Z[B] Z[E] 6= 0 and the ho-
momorphism H3(B;Z[E]) → H3(B;Z[E]) in the Mayer-Vietoris sequence for
the HNN extension is not onto, by Lemma 3.4 and the subsequent Remark
3.5 of [BG85]. But then H4(E;Z[E]) 6= 0, contrary to c.d.N ≤ 3. Therefore
c.d.B ≤ 2, and so B is elementary amenable, by Theorem 2.7. Hence N is
elementary amenable, and so is virtually solvable by Theorem 1.11.

In particular, ζ
√
N is a nontrivial, torsion-free abelian characteristic subgroup

of N . A similar argument shows that if N is locally FPn , virtually indicable,
restrained and c.d.N ≤ n then N is virtually solvable.
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15.3 Nilpotent normal subgroups

In this section we shall consider 2-knot groups with infinite nilpotent normal
subgroups. The class of groups with such subgroups includes the groups of
torus knots and twist spins, Φ, and all 2-knot groups with finite commutator
subgroup. If there is such a subgroup of rank > 1 the knot manifold is as-
pherical; this case is considered further in Chapter 16. (Little is known about
infinite locally-finite normal subgroups: see §15.7 below.)

Lemma 15.7 Let G be a group with normal subgroups T < N such that T
is a torsion group, N is nilpotent, N/T ∼= Z and G/N is finitely generated.
Then G has an infinite cyclic normal subgroup C ≤ N .

Proof Let z ∈ N have infinite order, and let P = 〈〈z〉〉. Then P is nilpotent
and P/P ∩ T ∼= Z . We may choose g0, . . . , gn ∈ G such that their images
generate G/N , and such that g0zg

−1
0 = zεt0 and gizg

−1
i = zti , where ε = ±1

and ti has finite order, for all 0 ≤ i ≤ n. The conjugates of t0, . . . , tn generate
the torsion subgroup of P/P ′ , and so it has bounded exponent, e say.

Let Q = 〈〈ze〉〉. If P is abelian then we may take C = Q. Otherwise, we
may replace P by Q, which has strictly smaller nilpotency class, and the result
follows by induction on the nilpotency class.

Theorem 15.8 Let K be a 2-knot whose group π = πK has a nilpotent
normal subgroup N with h = h(N) ≥ 1. Then h ≤ 4 and

(1) if π′ is finitely generated then so is N ;

(2) if h = 1 then either π′ is finite or π ∼= Φ or M(K) is aspherical or
e(π/N) = 1 and h(ζN) = 0 or e(π/N) =∞;

(3) if h = 1 and N 6≤ π′ then N is finitely generated and M(K)′ is a
PD+

3 -complex, and M(K)′ is aspherical if and only if e(π′) = 1;

(4) if h = 1, N ≤ π′ and e(π/N) =∞ then N is finitely generated;

(5) if h = 2 then N ∼= Z2 and M(K) is aspherical;

(6) if h = 3 or 4 then M(K) is homeomorphic to an infrasolvmanifold.

In all cases, π has a nontrivial torsion-free abelian normal subgroup A ≤ N .

Proof If π′ is finitely generated and N ∩ π′ is infinite then M is aspherical
and π′ is the fundamental group of a Seifert fibred 3-manifold or is virtually
poly-Z , by Theorems 4.5 and 2.14. Thus N must be finitely generated.
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The four possibilities in case (2) correspond to whether π/N is finite or has one,
two or infinitely many ends, by Theorem 15.5. These possibilities are mutually
exclusive; if e(π/N) = ∞ then a Mayer-Vietoris argument as in Lemma 14.8
implies that π cannot be a PD4 -group.

If h = 1 and N 6≤ π′ then T = π′ ∩ N is the torsion subgroup of N and
N/T ∼= Z . There is an infinite cyclic subgroup S ≤ N which is normal in π , by
Lemma 15.6. Since S ∩ π′ = 1 and Aut(S) is abelian S is in fact central, and
π′S has finite index in π . Hence π′S ∼= π′×S , and so π′ is finitely presentable.
Therefore M(K)′ is a PD+

3 -complex, and is aspherical if and only if e(π′) = 1,
by Theorem 4.5. (Note also that T is finite, and so e(π′) = e(π/N).)

Suppose that h = 1, N ≤ π′ and N is not finitely generated. We may write π′

as an increasing union π′ = ∪n≥1Gn of subgroups Gn which contain N , and
such that Gn/N is finitely generated. If Gn/N is elementary amenable for all
n then so are π′/N and π . Hence e(π/N) < ∞. Thus we may also assume
that Gn/N is not elementary amenable, for all n.

Since Gn/N is finitely generated, Gn has an infinite cyclic normal subgroup
Cn , by Lemma 15.6. Let Jn = Gn/Cn . Then Gn is an extension of Jn by
Z , and Jn is in turn an extension of Gn/N by N/Cn . Since Gn/N is finitely
generated Jn is an increasing union Jn = ∪m≥1Jn,m of finitely generated infinite
subgroups which are extensions of Gn/N by torsion groups. If these torsion
subgroups are all finite then Jn is not finitely generated, since N/Cn is infinite,
and [Jn,m+1 : Jn,m] < ∞ for all m. Moreover, H0(Jn,m;Z[Jn,m]) = 0, for all
m, since Jn,m is infinite. Therefore Hs(Jn;F ) = 0 for s ≤ 1 and any free
Z[Jn]-module F , by the Gildenhuys-Strebel Theorem (with r = 1). Otherwise,
Jn,m has one end for m large, and we may apply Theorem 1.15 to obtain the
same conclusion. An LHSSS argument now shows that Hs(Gn;F ) = 0 for
s ≤ 2 and any free Z[Gn]-module F . Another application of Theorem 1.15
shows that Hs(π′;F ) = 0 for s ≤ 2 and any free Z[π′]-module F , and then
another LHSSS argument gives Hs(π;Z[π]) = 0 for s ≤ 2. Thus M(K) is
aspherical. Thus if e(π/N) =∞ then N must be finitely generated.

Since h ≤ h(
√
π) parts (5) and (6) follow immediately from Theorems 9.2 and

8.1, respectively.

The final assertion is clear.

If h(N) ≥ 1 and N is not finitely generated then N is torsion-free abelian of
rank 1, and π ∼= Φ or M(K) is aspherical. (It is not known whether abelian
normal subgroups of PDn groups must be finitely generated.)
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If π has a nilpotent normal subgroup N with h(N) ≥ 1 and
√
π/N is infinite

then e(π/N) ≤ 2. It then follows from the theorem that
√
π is nilpotent. Is√

π always nilpotent?

Corollary 15.8.1 If π′ is infinite and π′/π′ ∩N is finitely generated then N
is torsion-free.

Does this corollary hold without assuming that π′/π′∩N is finitely generated?

Corollary 15.8.2 If π′ finitely generated and infinite then N is torsion-free
poly-Z and either π′∩N = 1 or M(K)′ is homotopy equivalent to an aspherical
Seifert fibred 3-manifold or M(K) is homeomorphic to an infrasolvmanifold. If
moreover h(π′ ∩N) = 1 then ζπ′ 6= 1.

Proof If π′∩N is torsion-free and h(π′∩N) = 1 then Aut(π′∩N) is abelian.
Hence π′ ∩N ≤ ζπ′ . The rest of the corollary is clear from the theorem, with
Theorems 8.1 and 9.2.

Twists spins of classical knots give examples with N abelian, of rank 1, 2 or 4,
and π′ finite, M aspherical or e(π/N) = ∞. If π′ ∩ N = 1 and π′ is torsion
free then π′ is a free product of PD+

3 -groups and free groups. Is every 2-knot
K such that ζπ 6≤ π′ and π is torsion-free s-concordant to a fibred knot?

We may construct examples of 2-knot groups π such that ζπ′ 6= 1 as follows.
Let N be a closed 3-manifold such that ν = π1(N) has weight 1 and ν/ν ′ ∼= Z ,
and let w = w1(N). Then H2(N ;Zw) ∼= Z . Let Me be the total space of the
S1 -bundle over N with Euler class e ∈ H2(N ;Zw). Then Me is orientable,
and π1(Me) has weight 1 if e = ±1 or if w 6= 0 and e is odd. In such cases
surgery on a weight class in Me gives S4 , so Me

∼= M(K) for some 2-knot K .

In particular, we may take N to be the result of 0-framed surgery on a 1-knot.
If the 1-knot is 31 or 41 (i.e., is fibred of genus 1) then the resulting 2-knot
group has commutator subgroup Γ1 . If instead we assume that the 1-knot is
not fibred then N is not fibred [Ga87] and so we get a 2-knot group π with
ζπ ∼= Z but π′ not finitely generated. For examples with w 6= 0 we may take
one of the nonorientable surface bundles with group

〈t, ai, bi (1 ≤ i ≤ n) | Π[ai, bi] = 1, tait
−1 = bi, tbit

−1 = aibi (1 ≤ i ≤ n)〉,

where n is odd. (When n = 1 we get the third of the three 2-knot groups with
commutator subgroup Γ1 . See Theorem 16.14.)
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Theorem 15.9 Let K be a 2-knot with a minimal Seifert hypersurface, and
such that π = πK has an abelian normal subgroup A. Then A ∩ π′ is finite
cyclic or is torsion-free, and ζπ is finitely generated.

Proof By assumption, π = HNN(B;φ : I ∼= J) for some finitely presentable
group B and isomorphism φ of subgroups I and J , where I ∼= J ∼= π1(V ) for
some Seifert hypersurface V . Let t ∈ π be the stable letter. Either B∩A = I∩A
or B ∩A = J ∩A (by Britton’s Lemma). Hence π′ ∩A = ∪n∈Ztn(I ∩A)t−n is
a monotone union. Since I ∩A is an abelian normal subgroup of a 3-manifold
group it is finitely generated, by Theorem 2.14, and since V is orientable I ∩A
is torsion-free or finite. If A ∩ I is finite cyclic or is central in π then A ∩ I =
tn(A ∩ I)t−n , for all n, and so A ∩ π′ = A ∩ I . (In particular, ζπ is finitely
generated.) Otherwise A ∩ π′ is torsion-free.

This argument derives from [Yo92, Yo97], where it was shown that if A is a
finitely generated abelian normal subgroup then π′ ∩A ≤ I ∩ J .

Corollary 15.9.1 Let K be a 2-knot with a minimal Seifert hypersurface. If
π = πK has a nontrivial abelian normal subgroup A then π′∩A is finite cyclic
or is torsion-free. Moreover ζπ ∼= 1, Z/2Z , Z , Z ⊕ (Z/2Z) or Z2 .

The knots τ041 , the trivial knot, τ331 and τ631 are fibred and their groups
have centres 1, Z , Z ⊕ (Z/2Z) and Z2 , respectively. A 2-knot with a minimal
Seifert hypersurface and such that ζπ = Z/2Z is constructed in [Yo82]. This
paper also gives an example with ζπ ∼= Z , ζπ < π′ and such that π/ζπ has
infinitely many ends. In all known cases the centre of a 2-knot group is cyclic,
Z ⊕ (Z/2Z) or Z2 .

15.4 Finite commutator subgroup

It is a well known consequence of the asphericity of the exteriors of classical
knots that classical knot groups are torsion-free. The first examples of higher
dimensional knots whose groups have nontrivial torsion were given by Mazur
[Ma62] and Fox [Fo62]. These examples are 2-knots whose groups have finite
commutator subgroup. We shall show that if π is such a group π′ must be a
CK group, and that the images of meridianal automorphisms in Out(π′) are
conjugate, up to inversion. In each case there is just one 2-knot group with
given finite commutator subgroup. Many of these groups can be realized by
twist spinning classical knots. Zeeman introduced twist spinning in order to
study Mazur’s example; Fox used hyperplane cross sections, but his examples
(with π′ ∼= Z/3Z ) were later shown to be twist spins [Kn83’].
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Lemma 15.10 An automorphism of Q(8) is meridianal if and only if it is
conjugate to σ .

Proof Since Q(8) is solvable an automorphism is meridianal if and only if the
induced automorphism of Q(8)/Q(8)′ is meridianal. It is easily verified that all
such elements of Aut(Q(8)) ∼= (Z/2Z)2 o SL(2,F2) are conjugate to σ .

Lemma 15.11 All nontrivial automorphisms of I∗ are meridianal. Moreover
each automorphism is conjugate to its inverse. The nontrivial outer automor-
phism class of I∗ cannot be realised by a 2-knot group.

Proof The first assertion is immediate, since ζI∗ is the only nontrivial proper
normal subgroup of I∗ . Each automorphism is conjugate to its inverse, since
Aut(I∗) ∼= S5 . Considering the Wang sequence for the map : M(K)′ →M(K)
shows that the meridianal automorphism induces the identity on H3(π′;Z), and
so the nontrivial outer automorphism class cannot occur, by Lemma 11.4.

The elements of order 2 in A5
∼= Inn(I∗) are all conjugate, as are the elements

of order 3. There are two conjugacy classes of elements of order 5.

Lemma 15.12 An automorphism of T ∗k is meridianal if and only if it is con-

jugate to ρ3k−1
or ρ3k−1

η . These have the same image in Out(T ∗k ).

Proof Since T ∗k is solvable an automorphism is meridianal if and only if the
induced automorphism of T ∗k /(T

∗
k )′ is meridianal. Any such automorphism is

conjugate to either ρ2j+1 or to ρ2j+1η for some 0 ≤ j < 3k−1 . (Note that 3
divides 22j−1 but does not divide 22j+1−1.) However among them only those
with 2j + 1 = 3k−1 satisfy the isometry condition of Theorem 14.3.

Theorem 15.13 Let K be a 2-knot with group π = πK . If π′ is finite then
π′ ∼= P × (Z/nZ) where P = 1, Q(8), I∗ or T ∗k , and (n, 2|P |) = 1, and the
meridianal automorphism sends x and y in Q(8) to y and xy , is conjugation
by a noncentral element on I∗ , sends x, y and z in T ∗k to y−1 , x−1 and z−1 ,
and is −1 on the cyclic factor.

Proof Since χ(M(K)) = 0 and π has two ends π′ has cohomological period
dividing 4, by Theorem 11.1, and so is among the groups listed in §2 of Chapter
11. As the meridianal automorphism of π′ induces a meridianal automorphism
on the quotient by any characteristic subgroup, we may eliminate immediately
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the groups O∗(k), A(m, e) and Z/2mZ and their products with Z/nZ since
these all have abelianization cyclic of even order. If k > 1 the subgroup gener-
ated by x in Q(8k) is a characteristic subgroup of index 2. Since Q(2na) is a
quotient of Q(2na, b, c) by a characteristic subgroup (of order bc) this eliminates
this class also. Thus there remain only the above groups.

Automorphisms of a group G = H × J such that (|H|, |J |) = 1 correspond to
pairs of automorphisms φH and φJ of H and J , respectively, and φ is merid-
ianal if and only if φH and φJ are. Multiplication by s induces a meridianal
automorphism of Z/mZ if and only if (s − 1,m) = (s,m) = 1. If Z/mZ is a
direct factor of π′ then it is a direct summand of π′/π′′ = H1(M(K); Λ) and
so s2 ≡ 1 modulo (m), by Theorem 14.3. Hence we must have s ≡ −1 modulo
(m). The theorem now follows from Lemmas 15.10–15.12.

Finite cyclic groups are realized by the 2-twist spins of 2-bridge knots, while
Q(8), T ∗1 and I∗ are realized by τ331 , τ431 and τ531 , respectively. As the
groups of 2-bridge knots have 2 generator 1 relator presentations the groups of
these twist spins have 2 generator presentations of deficiency 0. In particular,
πτr31 has the presentation 〈a, t | tat−1 = at2at−2, tra = atr〉.

The groups with π′ ∼= Q(8)× (Z/nZ) also have such optimal presentations:

〈t, a | ta2t−1 = a−2, tant−1 = ant2ant−2〉.

For let x = an , y = tant−1 and z = a4 . Then xz = zx, y = txt−1 and the
relations imply tyt−1 = x−1y , tzt−1 = z−1 and y2 = x−2 . Hence yz = zy and
x2 = (x−1y)2 . It follows easily that x4 = 1, so zn = 1, and π′ ∼= Q(8)×(Z/nZ)
(since n is odd). Conjugation by tx induces the meridianal automorphism of
Theorem 15.13. When n = 1 the generators correspond to those of the above
presentation for πτ331 . These groups are realized by fibred 2-knots [Yo82], but
if n > 1 no such group can be realized by a twist spin. (See §3 of Chapter 16.)
An extension of the twist spin construction may be used to realize such groups
by smooth fibred knots in the standard S4 , if n = 3, 5, 11, 13, 19, 21 or 27
[Kn88, Tr90]. Is this so in general?

The other groups are realized by the 2-twist spins of certain pretzel knots [Yo82].
If π′ ∼= T ∗k × (Z/nZ) then π has a presentation

〈s, x, y, z | x2 = (xy)2 = y2, zα = 1, zxz−1 = y, zyz−1 = xy,

sxs−1 = y−1, sys−1 = x−1, szs−1 = z−1〉,

where α = 3kn. This is equivalent to the presentation

〈s, x, y, z | zα = 1, zxz−1 = y, zyz−1 = xy, sxs−1 = y−1, szs−1 = z−1〉.

Geometry & Topology Monographs, Volume 5 (2002)



306 Chapter 15: Restrained normal subgroups

For conjugating zxz−1 = y by s gives z−1y−1z = sys−1 , so sys−1 = x−1 ,
while conjugating zyz−1 = xy by s gives x = yxy , so x2 = (xy)2 , and conju-
gating this by s gives y2 = (xy)2 . On replacing s by t = xzs we obtain the
presentation

〈t, x, y, z | zα = 1, zxz−1 = y, zyz−1 = xy, txt−1 = xy, tzt−1 = yz−1〉.

We may use the second and final relations to eliminate the generators x and
y to obtain a 2-generator presentation of deficiency -1. (When n = k = 1 we
may relate this to the above presentation for πτ431 by setting a = zx2 .) Are
there presentations of deficiency 0?

If π′ ∼= I∗ × (Z/nZ) then π ∼= I∗ × (π/I∗) and π has a presentation

〈t, w | twnt−1 = wnt2wnt−2, t5wn = wnt5, tw10t−1 = w−10〉.

For if G is the group with this presentation t 7→ t and a 7→ wn defines a
homomorphism from πτ531 to G, and so the first two relations imply that
w10n = 1, since a10 = 1 in (πτ531)′ . (In particular, if n = 1 the third relation
is redundant.) Since G′ is generated by the conjugates of w the final relation
implies that w10 is central in G′ . We assume that (n, 30) = 1 and so there is
an integer p such that np ≡ 1 mod (10). Then t 7→ t and w 7→ ap defines an
epimorphism from G to πτ531 . Since the image of w in G/〈〈wn〉〉 clearly has
order n it follows that G′ ∼= π′ , and conjugation by t induces the meridianal
automorphism of Theorem 15.13. Thus π has a 2-generator presentation of
deficiency -1. Are there presentations of deficiency 0?

If P = 1 or Q(8) the weight class is unique up to inversion, while T ∗k and I∗

have 2 and 4 weight orbits, respectively, by Theorem 14.1. If π′ = T ∗1 or I∗

each weight orbit is realized by a branched twist spun torus knot [PS87].

The group πτ531
∼= Z × I∗ = Z × SL(2,F5) is the common member of two

families of high dimensional knot groups which are not otherwise 2-knot groups.
If p is a prime greater than 3 then SL(2,Fp) is a finite superperfect group. Let
ep = ( 1 1

0 1 ). Then (1, ep) is a weight element for Z×SL(2,Fp). Similarly, (I∗)m

is superperfect and (1, e5, . . . , e5) is a weight element for G = Z × (I∗)m , for
any m ≥ 0. However SL(2,Fp) has cohomological period p− 1 (see Corollary
1.27 of [DM85]), while ζ(I∗)m ∼= (Z/2Z)m and so (I∗)m does not have periodic
cohomology if m > 1.

Let G(n) ∼= Q(8n)∗Q(8) be the HNN extension with presentation

〈t, x, y | x2n = y2, yxy−1 = x−1, tyt−1 = yx−1, ty−1xnt−1 = xn〉.

Then G(n) is a 2-knot group with an element of order 4n, for all n ≥ 1 [Kn89].
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15.5 The Tits alternative

An HNN extension (such as a knot group) is restrained if and only if it is
ascending and the base is restrained. The class of groups considered in the next
result probably includes all restrained 2-knot groups.

Theorem 15.14 Let π be a 2-knot group. Then the following are equivalent:

(1) π is restrained, locally FP3 and locally virtually indicable;

(2) π is an ascending HNN extension B∗φ where B is FP3 , restrained and
virtually indicable;

(3) π is elementary amenable and has a nontrivial torsion-free normal sub-
group N ;

(4) π is elementary amenable and has an abelian normal subgroup of rank
> 0;

(5) π is elementary amenable and is an ascending HNN extension B∗φ where
B is FP2 ;

(6) π′ is finite or π ∼= Φ or π is torsion-free virtually poly-Z and h(π) = 4.

Proof Condition (1) implies (2) by Theorem 1.13. If (2) holds then either
π′ is finite or π ∼= Φ or π′ = B and is a PD3 -group, by Theorem 15.3 and
Corollary 15.3.2. In the latter case B has a subgroup of finite index which maps
onto Z2 , since it is virtually indicable and admits a meridianal automorphism.
Hence B is virtually poly-Z , by Corollary 2.13.1 (together with the remark
following it). Hence (2) implies (6). If (3) holds then either Hs(π;Z[π]) = 0 for
all s ≥ 0 or N is virtually solvable, by Proposition 3 of [Kr93’]. Hence either
π is torsion-free virtually poly-Z and h(π) = 4, by Theorem 8.1, or (4) holds.
Conditions (4) and (5) imply (6) by Theorems 1.17 and 15.2, and by Theorem
15.3, respectively. On the other hand (6) implies (1-5).

In particular, if K is a 2-knot with a minimal Seifert hypersurface, πK is
restrained and the Alexander polynomial of K is nontrivial then either π ∼= Φ
or π is torsion-free virtually poly-Z and h(π) = 4.

15.6 Abelian HNN bases

We shall complete Yoshikawa’s study of 2-knot groups which are HNN exten-
sions with abelian base. The first four paragraphs of the following proof outline
the arguments of [Yo86, Yo92]. (Our contribution is the argument in the final
paragraph, eliminating possible torsion when the base has rank 1.)
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Theorem 15.15 Let π be a 2-knot group which is an HNN extension with
abelian base. Then either π is metabelian or it has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉 for some n > 1.

Proof Suppose that π = A∗φ = HNN(A;φ : B → C) where A is abelian.
Let j and jC be the inclusions of B and C into A, and let φ̃ = jCφ. Then
φ̃−j : B → A is an isomorphism, by the Mayer-Vietoris sequence for homology
with coefficients Z for the HNN extension. Hence rank(A) = rank(B) = r ,
say, and the torsion subgroups TA, TB and TC of A, B and C coincide.

Suppose first that A is not finitely generated. Since π is finitely presentable
and π/π′ ∼= Z it is also an HNN extension with finitely generated base and
associated subgroups, by the Bieri-Strebel Theorem (1.13). Moreover we may
assume the base is a subgroup of A. Considerations of normal forms with
respect to the latter HNN structure imply that it must be ascending, and so π
is metabelian [Yo92].

Assume now that A is finitely generated. Then the image of TA in π is a
finite normal subgroup N , and π/N is a torsion-free HNN extension with base
A/TA ∼= Zr . Let jF and φF be the induced inclusions of B/TB into A/TA,
and let Mj = |det(jF )| and Mφ = |det(φF )|. Applying the Mayer-Vietoris
sequence for homology with coefficients Λ, we find that tφ̃− j is injective and
π′/π′′ ∼= H1(π; Λ) has rank r as an abelian group. Now H2(A;Z) ∼= A ∧ A
(see page 334 of [Ro]) and so H2(π; Λ) ∼= Cok(t ∧2 φ̃ − ∧2j) has rank

(
r
2

)
.

Let δi(t) = ∆0(Hi(π; Λ)), for i = 1 and 2. Then δ1(t) = det(tφF − jF ) and
δ2(t) = det(tφF ∧ φF − jF ∧ jF ). Moreover δ2(t−1) divides δ1(t), by Theorem
14.3. In particular,

(
r
2

)
≤ r , and so r ≤ 3.

If r = 0 then clearly B = A and so π is metabelian. If r = 2 then
(
r
2

)
= 1

and δ2(t) = ±(tMφ −Mj). Comparing coefficients of the terms of highest and
lowest degree in δ1(t) and δ2(t−1), we see that Mj = Mφ , so δ2(1) ≡ 0 mod
(2), which is impossible since |δ1(1)| = 1. If r = 3 a similar comparison of
coefficients in δ1(t) and δ2(t−1) shows that M3

j divides Mφ and M3
φ divides

Mj , so Mj = Mφ = 1. Hence φ is an isomorphism, and so π is metabelian.

There remains the case r = 1. Yoshikawa used similar arguments involving
coefficients FpΛ instead to show that in this case N ∼= Z/βZ for some odd
β ≥ 1. The group π/N then has a presentation 〈t, x | txnt−1 = xn+1〉 (with
n ≥ 1). Let p be a prime. There is an isomorphism of the subfields Fp(Xn)
and Fp(Xn+1) of the rational function field Fp(X) which carries Xn to Xn+1 .
Therefore Fp(X) embeds in a skew field L containing an element t such that
tXnt−1 = Xn+1 , by Theorem 5.5.1 of [Cn]. It is clear from the argument of
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this theorem that the group ring Fp[π/N ] embeds as a subring of L, and so
this group ring is weakly finite. Therefore so is the subring Fp[Cπ(N)/N ]. It
now follows from Lemma 3.16 that N must be trivial. Since π is metabelian if
n = 1 this completes the proof.

15.7 Locally finite normal subgroups

Let K be a 2-knot such that π = πK has an infinite locally finite normal

subgroup T , which we may assume maximal. As π has one end and β
(2)
1 (π) = 0,

by Gromov’s Theorem (2.3), H2(π;Z[π]) 6= 0. For otherwise M(K) would be
aspherical and so π would be torsion-free, by Theorem 3.5. Moreover T < π′

and π/T is not virtually Z , so e(π/T ) = 1 or ∞. (No examples of such 2-knot
groups are known, and we expect that there are none with e(π/T ) = 1.)

Suppose that Z[π/T ] has a safe extension S with an involution extending that
of the group ring. If e(π/T ) = 1 then either H2(π/T ;Q[π/T ]) 6= 0 or π/T is a
PD+

4 -group over Q, by the Addendum to Theorem 2.6 of [H2].

In particular, if π/T has a nontrivial locally nilpotent normal subgroup U/T ,
then U/T is torsion-free, by Proposition 5.2.7 of [Ro], and so Z[π/T ] has such
a safe extension, by Theorem 1.7 of [H2]. Moreover e(π/T ) = 1. An iterated
LHSSS argument shows that if h(U/T ) > 1 or if U/T ∼= Z and e(π/U) = 1
then H2(π/T ;Q[π/T ]) = 0. (This is also the case if h(U/T ) = 1, e(π/U) = 1
and π/T is finitely presentable, by Theorem 1 of [Mi87] with [GM86].) Thus
if H2(π/T ;Q[π/T ]) 6= 0 then U/T is abelian of rank 1 and either e(π/U) = 2
(in which case π/T ∼= Φ, by Theorem 15.2), e(π/U) = 1 (and U/T not finitely
generated and π/U not finitely presentable) or e(π/U) = ∞. As Aut(U/T )
is then abelian U/T is central in π′/T . Moreover π/U can have no nontrivial
locally finite normal subgroups, for otherwise T would not be maximal in π ,
by an easy extension of Schur’s Theorem (Proposition 10.1.4 of [Ro]).

Hence if π has an ascending series whose factors are either locally finite or
locally nilpotent then either π/T ∼= Φ or h(

√
π/T ) ≥ 2. In the latter case π/T

is an elementary amenable PD+
4 -group over Q. Since it has no nontrivial locally

finite normal subgroup, it is virtually solvable, by the argument of Theorem
1.11. It can be shown that π/T is virtually poly-Z and (π/T )′ ∩

√
π/T ∼= Z3

or Γq for some q ≥ 1. (See Theorem VI.2 of [H1].) The possibilities for (π/T )′

are examined in Theorems VI.3-5 and VI.9 of [H1]. We shall not repeat this
discussion here as we expect that if G is finitely presentable and T is an infinite
locally finite normal subgroup such that e(G/T ) = 1 then H2(G;Z[G]) = 0.

The following lemma suggests that there may be a homological route to showing
that solvable 2-knot groups are virtually torsion-free.
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Lemma 15.16 Let G be an FP2 group with a torsion normal subgroup T
such that Z[G/T ] is coherent. Then T/T ′ has finite exponent as an abelian
group. In particular, if G is solvable then T = 1 if and only if H1(T ;Fp) = 0
for all primes p.

Proof Let C∗ be a free Z[G]-resolution of the augmentation module Z which
is finitely generated in degrees ≤ 2. Then T/T ′ = H1(Z[G/T ]⊗GC∗), and so it
is finitely presentable as a Z[G/T ]-module, since Z[G/T ] is coherent. If T/T ′

is generated by elements ti of order ei then Πei is a finite exponent for T/T ′ .

If G is solvable then so is T , and T = 1 if and only if T/T ′ = 1. Since T/T ′

has finite exponent T/T ′ = 1 if and only if H1(T ;Fp) = 0 for all primes p.

If G/T is virtually Z∗m or virtually poly-Z then Z[G/T ] is coherent [BS79].
Note also that Fp[Z∗m] is a coherent Ore domain of global dimension 2, while
if J is a torsion-free virtually poly-Z group then Fp[J ] is a noetherian Ore
domain of global dimension h(J). (See §4.4 and §13.3 of [Pa].)
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Chapter 16

Abelian normal subgroups of rank
≥ 2

If K is a 2-knot such that h(
√
πK) = 2 then

√
πK ∼= Z2 , by Corollary 15.5.1.

The most familiar examples of such knots are the branched twist spins of torus
knots, but there are others. In all cases, the knot manifolds are s-cobordant to
SL × E1 -manifolds. The groups of the branched twist spins of torus knots are
the 3-knot groups which are PD+

4 -groups and have centre of rank 2, with some
power of a weight element being central. There are related characterizations of
the groups of branched twist spins of other prime 1-knots.

If h(
√
πK) > 2 then M(K) is homeomorphic to an infrasolvmanifold, so K

is determined up to Gluck reconstruction and change of orientations by πK
and a weight orbit. We find the groups and their strict weight orbits, and give
optimal presentations for most such groups. Two are virtually Z4 ; otherwise,
h(
√
πK) = 3. Whether K is amphicheiral or invertible is known, and in most

cases whether it is reflexive is also known. (See Chapter 18 and [Hi11’].)

16.1 The Brieskorn manifolds M(p, q, r)

Let M(p, q, r) = {(u, v, w) ∈ C3 | up + vq + wr = 0} ∩ S5 . Thus M(p, q, r) is a
Brieskorn 3-manifold (the link of an isolated singularity of the intersection of
n algebraic hypersurfaces in Cn+2 , for some n ≥ 1). It is clear that M(p, q, r)
is unchanged by a permutation of {p, q, r}.
Let s = hcf{pq, pr, qr}. Then M(p, q, r) admits an effective S1 -action given
by z(u, v, w) = (zqr/su, zpr/sv, zpq/sw) for z ∈ S1 and (u, v, w) ∈ M(p, q, r),
and so is Seifert fibred. More precisely, let ` = lcm{p, q, r}, p′ = lcm{p, r},
q′ = lcm{q, r} and r′ = lcm{p, q}, s1 = qr/q′ , s2 = pr/p′ and s3 = pq/r′ and
t1 = `/q′ , t2 = `/p′ and t3 = `/r′ . Let g = (2 + (pqr/`)−s1−s2−s3)/2. Then
M(p, q, r) = M(g; s1(t1, β1), s2(t2, β2), s3(t3, β3)), in the notation of [NR78],
where the coefficients βi are determined mod ti by the equation

e = −(qrβ1 + prβ2 + pqβ3)/`) = −pqr/`2

for the generalized Euler number. (See [NR78].) If p−1 + q−1 + r−1 ≤ 1 the
Seifert fibration is essentially unique. (See Theorem 3.8 of [Sc83’].) In most
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cases the triple {p, q, r} is determined by the Seifert structure of M(p, q, r).
(Note however that, for example, M(2, 9, 18) ∼= M(3, 5, 15) [Mi75].)

The map f : M(p, q, r) → CP1 given by f(u, v, w) = [up : vq] is constant on
the orbits of the S1 -action, and the exceptional fibres are those above 0, −1
and ∞ in CP1 . In particular, if p, q and r are pairwise relatively prime f is
the orbit map and M(p, q, r) is Seifert fibred over the orbifold S2(p, q, r). The
involution c of M(p, q, r) induced by complex conjugation in C3 is orientation
preserving and is compatible with f and complex conjugation in CP1 . Let
A(u, v, w) = (u, v, e2πi/rw) and h(u, v, w) = (u, v)/(|u|2 + |v|2), for (u, v, w)
∈M(p, q, r). The Z/rZ -action generated by A commutes with the S1 -action,
and these actions agree on their subgroups of order r/s. The projection to the
orbit space M(p, q, r)/〈A〉 may be identified with the map h : M(p, q, r)→ S3 ,
which is an r -fold cyclic branched covering, branched over the (p, q)-torus link.
(See Lemma 1.1 of [Mi75].)

The 3-manifold M(p, q, r) is a S3 -manifold if and only if p−1 + q−1 + r−1 > 1.
The triples (2, 2, r) give lens spaces. The other triples with p−1 +q−1 +r−1 > 1
are permutations of (2, 3, 3), (2, 3, 4) or (2, 3, 5), and give the three CK 3-
manifolds with fundamental groups Q(8), T ∗1 and I∗ . The manifolds M(2, 3, 6),
M(3, 3, 3) and M(2, 4, 4) are Nil3 -manifolds; in all other cases M(p, q, r) is a

S̃L-manifold (in fact, a coset space of S̃L [Mi75]), and
√
π1(M(p, q, r)) ∼= Z .

If p, q and r are pairwise relatively prime M(p, q, r) is a Z-homology 3-sphere.

16.2 Rank 2 subgroups

In this section we shall show that an abelian normal subgroup of rank 2 in a
2-knot group is free abelian and not contained in the commutator subgroup.

Lemma 16.1 Let ν be the fundamental group of a closed H2 × E1 -, Sol3 - or
S2 × E1 -manifold. Then ν admits no meridianal automorphism.

Proof The fundamental group of a closed Sol3 - or S2 × E1 -manifold has a
characteristic subgroup with quotient having two ends. If ν is a lattice in
Isom+(H2×E1) then

√
ν ∼= Z , and either

√
ν = ζν and is not contained in ν ′

or Cν(
√
ν) is a characteristic subgroup of index 2 in ν . In none of these cases

can ν admit a meridianal automorphism.

Theorem 16.2 Let π be a finitely presentable group. Then the following are
equivalent:
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(1) π is a PD+
4 -group of type FF and weight 1, and with an abelian normal

subgroup A of rank 2;

(2) π = πK where K is a 2-knot and π has an abelian normal subgroup A
of rank 2;

(3) π = πK where K is a 2-knot such that M(K) is an aspherical Seifert
fibred 4-manifold.

If so, then A ∼= Z2 , π′ ∩ A ∼= Z , π′ ∩ A ≤ ζπ′ ∩ I(π′), [π : Cπ(A)] ≤ 2 and

π′ = π1(N), where N is a Nil3 - or S̃L-manifold. If π is solvable then M(K)
is homeomorphic to a Nil3 × E1 -manifold. If π is not solvable then M(K) is

s-cobordant to a S̃L × E1 -manifold which fibres over S1 with fibre N , and
closed monodromy of finite order.

Proof If (1) holds then χ(π) = 0 [Ro84], and so β1(π) > 0, by Lemma 3.14.
Hence H1(π;Z) ∼= Z, since π has weight 1. If h(

√
π) = 2 then A ∼= Z2 , by

Theorem 9.2. Otherwise, π is virtually poly-Z , and so A ∼= Z2 again. We
may assume that A is maximal among such subgroups. Then π/A ∼= πorb1 (B),
for some aspherical 2-orbifold B , and π = π1(M), where M is an orientable
4-manifold which is Seifert fibred over B , by Corollary 7.3.1. Surgery on a loop
in M representing a normal generator of π gives a 2-knot K with M(K) ∼= M
and πK ∼= π . Thus (2) and (3) hold. Conversely, these each imply (1).

Since no 2-orbifold group has infinite cyclic abelianization, A 6≤ π′ , and so
π′ ∩ A ∼= Z . If τ is the meridianal automorphism of π′/I(π′) then τ − 1 is
invertible, and so cannot have ±1 as an eigenvalue. Hence π′ ∩A ≤ I(π′). (In
particular, π′ is not abelian.) The image of π/Cπ(A) in Aut(A) ∼= GL(2,Z) is
triangular, since π′ ∩ A ∼= Z is normal in π . Therefore as π/Cπ(A) has finite
cyclic abelianization it must have order at most 2. Thus [π : Cπ(A)] ≤ 2, so
π′ < Cπ(A) and π′ ∩A < ζπ′ . The subgroup H generated by π′ ∪A has finite
index in π and so is also a PD+

4 -group. Since A is central in H and maps
onto H/π′ we have H ∼= π′ × Z . Hence π′ is a PD+

3 -group with nontrivial
centre. As the nonabelian flat 3-manifold groups either admit no meridianal
automorphism or have trivial centre, π′ = π1(N) for some Nil3 - or S̃L-manifold
N , by Theorem 2.14 and Lemma 16.1.

The manifold M(K) is s-cobordant to the mapping torus M(Θ) of a self home-
omorphism of N , by Theorem 13.2. If N is a Nil3 -manifold M(K) is homeo-
morphic to M(Θ), by Theorem 8.1, and M(K) must be a Nil3×E1 -manifold,
since Sol41 -lattices do not have rank 2 abelian normal subgroups, while Nil4 -
lattices cannot have abelianization Z , as they have characteristic rank 2 sub-
groups contained in their commutator subgroups. Since [π : Cπ(A)] ≤ 2 and

Geometry & Topology Monographs, Volume 5 (2002)



314 Chapter 16: Abelian normal subgroups of rank ≥ 2

A 6≤ π′ the meridianal outer automorphism class has finite order. Therefore if
N is a S̃L-manifold then M(Θ) is a S̃L× E1 -manifold, by Theorem 9.8.

Since β = πorb1 (B) has weight 1 the space underlying B is S2 , RP 2 or D2 .
However the possible bases are not yet known. If A = ζπ then B is orientable,
and so B = S2(α1, . . . , αr), for some r ≥ 3. Hence β is a one-relator product
of r cyclic groups. Must r = 3 or 4? (See also Lemma 16.7 below.)

If (p, q, r) = (2, 3, 5) or (2, 3, 7) then π1(M(p, q, r)) is perfect, and has the
presentation

〈a1, a2, a3, h | ap1 = aq2 = ar3 = a1a2a3 = h〉.

(See [Mi75].) The involution c of M(p, q, r) induces the automorphism c∗
of ν determined by c∗(a1) = a−1

1 , c∗(a2) = a−1
2 and c∗(h) = h−1 . (Hence

c∗(a3) = a2a
−1
3 a−1

2 .) Surgery on the mapping torus of c gives rise to a 2-knot
whose group ν oc∗ Z has an abelian normal subgroup A = 〈t2, h〉. If r = 5
then h2 = 1 and A is central, but if r = 7 then A ∼= Z2 and is not central.
The groups of 2-twist spins of Montesinos knots have noncentral rank 2 abelian
normal subgroups. See Theorem 16.15 below for the virtually poly-Z case.

Theorem 16.3 Let π be a 2-knot group such that ζπ has rank r > 0. If ζπ
has nontrivial torsion it is finitely generated and r = 1. If r > 1 then ζπ ∼= Z2 ,
ζπ′ = π′ ∩ ζπ ∼= Z , and ζπ′ ≤ π′′ .

Proof The first assertion follows from Theorem 15.7. If ζπ had rank greater
than 2 then π′ ∩ ζπ would contain an abelian normal subgroup of rank 2,
contrary to Theorem 16.2. Therefore ζπ ∼= Z2 and π′ ∩ ζπ ∼= Z . Moreover
π′ ∩ ζπ ≤ π′′ , since π/π′ ∼= Z . In particular π′ is nonabelian and π′′ has

nontrivial centre. Hence π′ is the fundamental group of a Nil3 - or S̃L-manifold,
by Theorem 16.2, and so ζπ′ ∼= Z . It follows easily that π′ ∩ ζπ = ζπ′ .

16.3 Twist spins of torus knots

The commutator subgroup of the group of the r -twist spin of a classical knot
K is the fundamental group of the r -fold cyclic branched cover of S3 , branched
over K [Ze65]. The r -fold cyclic branched cover of a sum of knots is the con-
nected sum of the r -fold cyclic branched covers of the factors, and is irreducible
if and only if the knot is prime. Moreover the cyclic branched covers of a prime
knot are either aspherical or finitely covered by S3 ; in particular no summand
has free fundamental group [Pl84]. The cyclic branched covers of prime knots
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with nontrivial companions are Haken 3-manifolds [GL84]. The r -fold cyclic
branched cover of the (p, q)-torus knot kp,q is the Brieskorn manifold M(p, q, r)
[Mi75]. The r -fold cyclic branched cover of a simple nontorus knot is a hyper-
bolic 3-manifold if r ≥ 3, excepting only the 3-fold cyclic branched cover of
the figure-eight knot, which is the Hanztsche-Wendt flat 3-manifold [Du83]. (In
particular, there are only four r -fold cyclic branched covers of nontrivial knots
for any r > 2 which have finite fundamental group.)

Theorem 16.4 Let M be the r -fold cyclic branched cover of S3 , branched
over a knot K , and suppose that r > 2 and that

√
π1(M) is infinite. Then K

is uniquely determined by M and r , and either K is a torus knot or K ∼= 41

and r = 3.

Proof As the connected summands of M are the cyclic branched covers of the
factors of K , any homotopy sphere summand must be standard, by the proof
of the Smith conjecture. Therefore M is aspherical, and is either Seifert fibred
or is a Sol3 -manifold, by Theorem 2.14. It must in fact be a E3 -, Nil3 - or S̃L-
manifold, by Lemma 16.1. If there is a Seifert fibration which is preserved by
the automorphisms of the branched cover the fixed circle (the branch set of M )
must be a fibre of the fibration (since r > 2) which therefore passes to a Seifert
fibration of X(K). Thus K must be a (p, q)-torus knot, for some relatively
prime integers p and q [BZ]. These integers may be determined arithmetically
from r and the formulae for the Seifert invariants of M(p, q, r) given in §1.
Otherwise M is flat [MS86] and so K ∼= 41 and r = 3, by [Du83].

All the knots whose 2-fold branched covers are Seifert fibred are torus knots or
Montesinos knots. (This class includes the 2-bridge knots and pretzel knots,
and was first described in [Mo73].) The number of distinct knots whose 2-
fold branched cover is a given Seifert fibred 3-manifold can be arbitrarily large
[Be84]. Moreover for each r ≥ 2 there are distinct simple 1-knots whose r -fold
cyclic branched covers are homeomorphic [Sa81, Ko86].

If K is a fibred 2-knot with monodromy of finite order r and if (r, s) = 1 then
the s-fold cyclic branched cover of S4 , branched over K is again a 4-sphere
and so the branch set gives a new 2-knot, which we shall call the s-fold cyclic
branched cover of K . This new knot is again fibred, with the same fibre and
monodromy the sth power of that of K [Pa78, Pl86]. If K is a classical knot
we shall let τr,sK denote the s-fold cyclic branched cover of the r -twist spin of
K . We shall call such knots branched twist spins, for brevity.

Using properties of S1 -actions on smooth homotopy 4-spheres, Plotnick obtains
the following result [Pl86].
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Theorem (Plotnick) A 2-knot is fibred with periodic monodromy if and only
if it is a branched twist spin of a knot in a homotopy 3-sphere.

Here “periodic monodromy” means that the fibration of the exterior of the knot
has a characteristic map of finite order. It is not in general sufficient that the
closed monodromy be represented by a map of finite order. (For instance, if K
is a fibred 2-knot with π′ ∼= Q(8)× (Z/nZ) for some n > 1 then the meridianal
automorphism of π′ has order 6, and so it follows from the observations above
that K is not a twist spin.)

The homotopy 3-sphere must be standard, by Perelman’s work (see [B-P]). In
our application in the next theorem we are able to show this directly.

Theorem 16.5 A group G which is not virtually solvable is the group of a
branched twist spin of a torus knot if and only if it is a 3-knot group and a
PD+

4 -group with centre of rank 2, some nonzero power of a weight element
being central.

Proof If K is a cyclic branched cover of τrkp,q then M(K) fibres over S1 with
fibre M(p, q, r) and monodromy of order r , and so the rth power of a meridian
is central. Moreover the monodromy commutes with the natural S1 -action on
M(p, q, r) (see Lemma 1.1 of [Mi75]) and hence preserves a Seifert fibration.
Hence the meridian commutes with ζπ1(M(p, q, r)), which is therefore also
central in G. Since π1(M(p, q, r)) is either a PD+

3 -group with infinite centre
or is finite, the necessity of the conditions is evident.

Conversely, if G is such a group then G′ is the fundamental group of a Seifert
fibred 3-manifold, N say, by Theorem 2.14. Moreover N is “sufficiently com-
plicated” in the sense of [Zn79], since G′ is not virtually solvable. Let t be an
element of G whose normal closure is the whole group, and such that tn is cen-
tral for some n > 0. Let θ be the automorphism of G′ determined by t, and let
m be the order of the outer automorphism class [θ] ∈ Out(G′). By Corollary
3.3 of [Zn79] there is a fibre preserving self homeomorphism τ of N inducing
[θ] such that the group of homeomorphisms of Ñ ∼= R3 generated by the cover-
ing group G′ together with the lifts of τ is an extension of Z/mZ by G′ , and
which is a quotient of the semidirect product Ĝ = G/〈〈tn〉〉 ∼= G′ oθ (Z/nZ).
Since the self homeomorphism of Ñ corresponding to the image of t has finite
order it has a connected 1-dimensional fixed point set, by Smith theory. The
image P of a fixed point in N determines a cross-section γ = {P} × S1 of
the mapping torus M(τ). Surgery on γ in M(τ) gives a 2-knot with group G
which is fibred with monodromy (of the fibration of the exterior X ) of finite
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order. We may then apply Plotnick’s Theorem to conclude that the 2-knot is
a branched twist spin of a knot in a homotopy 3-sphere. Since the monodromy
respects the Seifert fibration and leaves the centre of G′ invariant, the branch
set must be a fibre, and the orbit manifold a Seifert fibred homotopy 3-sphere.
Therefore the orbit knot is a torus knot in S3 , and the 2-knot is a branched
twist spin of a torus knot.

If K is a 2-knot with group as in Theorem 16.5 then M(K) is aspherical, and so
is homotopy equivalent to some such knot manifold. (See also Theorem 16.2.)

Can we avoid the appeal to Plotnick’s Theorem in the above argument? There is
a stronger result for fibred 2-knots. The next theorem is a version of Proposition
6.1 of [Pl86], starting from more algebraic hypotheses.

Theorem 16.6 Let K be a fibred 2-knot such that πK has centre of rank 2,
some power of a weight element being central. Then M(K) is homeomorphic
to M(K1), where K1 is some branched twist spin of a torus knot.

Proof Let F be the closed fibre and φ : F → F the characteristic map.
Then F is a Seifert fibred manifold, as above. Now the automorphism of F
constructed as in Theorem 16.5 induces the same outer automorphism of π1(F )
as φ, and so these maps must be homotopic. Therefore they are in fact isotopic
[Sc85, BO91]. The theorem now follows.

If (p, q) = (r, s) = 1 then M(τr,skp,q) is Seifert fibred over S2(p, q, r). (This
can be derived from §16.1.) More generally, we have the following lemma.

Lemma 16.7 Let B be an aspherical orientable 2-orbifold. If β = πorb1 (B) is
normally generated by an element of finite order r then B = S2(m,n, r), where
(m,n) = 1.

Proof Since β is infinite and β/β′ is finite cyclic B = S2(α1, . . . , αk), for
some αi > 1 and k ≥ 3. Hence β has the presentation

〈x1, . . . , xk | xαii = 1 ∀ 1 ≤ i ≤ k, Πxi = 1〉.

Every such group is nontrivial, and elements of finite order are conjugate to
powers of a cone point generator xi , by Theorem 4.8.1 of [ZVC]. If xsk is a weight
element then so is xk , and so 〈x1, . . . , xk−1 | xαii = 1 ∀ 1 ≤ i ≤ k − 1, Πxi = 1〉
is trivial. Hence k − 1 = 2 and (α1, α2) = 1. Similarly, (s, α3) = 1, so r = α3 .
Setting m = α1 and n = α2 , we see that B = S2(m,n, r) and (m,n) = 1.
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The central extension of πorb1 (S2(6, 10, 15)) by Z2 with presentation

〈u, v, x, y, z | u, v central, x6 = u5, y10 = uv, z15 = uv−1, xyz = u〉
is torsion-free, has abelianization Z , and is normally generated by yz−1 . The
corresponding Seifert 4-manifold with base S2(6, 10, 15) is a knot manifold.

The manifold obtained by 0-framed surgery on the reef knot 31# − 31 is the
Seifert fibred 3-manifold N = M(0; (2, 1), (2,−1), (3, 1), (3,−1)), and the total
space of the S1 -bundle over N with Euler class a generator of H2(N ;Z) is a
knot manifold which is Seifert fibred over S2(2, 2, 3, 3). (Using kp,q instead of
31 gives a knot manifold with Seifert base S2(p, p, q, q).)

In each of these cases, it follows from Lemma 16.7 that no power of any weight
element is central. Thus no such knot is a branched twist spin, and the final
hypothesis of Theorem 16.5 is not a consequence of the others.

If p, q and r are pairwise relatively prime then M(p, q, r) is an homology
sphere and π = πτrkp,q has a central element which maps to a generator of
π/π′ . Hence π ∼= π′ × Z and π′ has weight 1. Moreover if t is a generator for
the Z summand then an element h of π′ is a weight element for π′ if and only if
ht is a weight element for π . This correspondance also gives a bijection between
conjugacy classes of such weight elements. If we exclude the case (2, 3, 5) then
π′ has infinitely many distinct weight orbits, and moreover there are weight
elements such that no power is central [Pl83]. Therefore we may obtain many
2-knots whose groups are as in Theorem 16.5 but which are not themselves
branched twist spins by surgery on weight elements in M(p, q, r)× S1 .

We may apply arguments similar to those of Theorems 16.5 and 16.6 in at-
tempting to understand twist spins of other knots. As only the existence of
homeomorphisms of finite order and “homotopy implies isotopy” require differ-
ent justifications, we shall not give proofs for the following assertions.

Let G be a 3-knot group such that G′ is the fundamental group of an aspherical
3-manifold N and in which some nonzero power of a weight element is central.
Then N is Seifert fibred, hyperbolic or Haken, by Perelman’s work [B-P]. If
N is hyperbolic we may use Mostow rigidity to show that G is the group
of some branched twist spin K of a simple non-torus knot. Moreover, if K1

is another fibred 2-knot with group G and hyperbolic fibre then M(K1) is
homeomorphic to M(K). In particular the simple knot and the order of the
twist are determined by G. Similarly if N is Haken, but neither hyperbolic
nor Seifert fibred, then we may use [Zn82] to show that G is the group of some
branched twist spin of a prime non-torus knot. Moreover, the prime knot and
the order of the twist are determined by G [Zn86], since all finite group actions
on N are geometric [B-P].
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16.4 Solvable PD4-groups

If K is a 2-knot such that h(
√
πK > 2 then πK is virtually poly-Z and

h(π) = 4, by Theorem 8.1. In this section we shall determine all such groups
and their weight orbits.

Lemma 16.8 Let G be torsion-free and virtually poly-Z with h(G) = 4
and G/G′ ∼= Z . Then G′ ∼= Z3 or G6 or

√
G′ ∼= Γq (for some q > 0) and

G′/
√
G′ ∼= Z/3Z or 1.

Proof Let H = G/
√
G′ . Then H/H ′ ∼= Z and h(H ′) ≤ 1, since

√
G′ =

G′ ∩
√
G and h(G′ ∩

√
G) ≥ h(

√
G)− 1 ≥ 2, by Theorem 1.4. Now H ′ cannot

have two ends, since H/H ′ ∼= Z , and so H ′ = G′/
√
G′ is finite.

If
√
G′ ∼= Z3 then G′ ∼= Z3 or G6 , since these are the only flat 3-manifold

groups which admit meridianal automorphisms.

If
√
G′ ∼= Γq for some q > 0 then ζ

√
G′ ∼= Z is normal in G and so is central

in G′ . Using the known structure of automorphisms of Γq , it follows that the
finite group G′/

√
G′ must act on

√
G′/ζ

√
G′ ∼= Z2 via SL(2,Z) and so must

be cyclic. Moreover it must have odd order, and hence be 1 or Z/3Z , since
G/
√
G′ has infinite cyclic abelianization.

There is a fibred 2-knot K with πK ∼= G if and only if G is orientable, by
Theorems 14.4 and 14.7.

Theorem 16.9 Let π be a 2-knot group with π′ ∼= Z3 , and let C be the
image of the meridianal automorphism in SL(3,Z). Then ∆C(t) = det(tI−C)
is irreducible, |∆C(1)| = 1 and π′ is isomorphic to an ideal in the domain R =
Λ/(∆C(t)). Two such groups are isomorphic if and only if the polynomials are
equal (after inverting t, if necessary) and the ideal classes then agree. There are
finitely many ideal classes for each such polynomial and each class (equivalently,
each such matrix) is realized by some 2-knot group. Moreover

√
π = π′ and

ζπ = 1. Each such group π has two strict weight orbits.

Proof Let t be a weight element for π and let C be the matrix of the action
of t by conjugation on π′ , with respect to some basis. Then det(C − I) = ±1,
since t−1 acts invertibly. Moreover if K is a 2-knot with group π then M(K) is
orientable and aspherical, so det(C) = +1. Conversely, surgery on the mapping
torus of the self homeomorphism of S1×S1×S1 determined by such a matrix
C gives a 2-knot with group Z3 oC Z .
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The Alexander polynomial of K is the characteristic polynomial ∆K(t) =
det(tI − C) which has the form t3 − at2 + bt − 1, for some a and b = a ± 1.
It is irreducible, since it does not vanish at ±1. Since π′ is annihilated by
∆K(t) it is an R-module; moreover as it is torsion-free it embeds in Q ⊗ π′ ,
which is a vector space over the field of fractions Q ⊗ R. Since π′ is finitely
generated and π′ and R each have rank 3 as abelian groups it follows that π′

is isomorphic to an ideal in R. Moreover the characteristic polynomial of C
cannot be cyclotomic and so no power of t can commute with any nontrivial
element of π′ . Hence

√
π = π′ and ζπ = 1.

By Lemma 1.1 two such semidirect products are isomorphic if and only if the
matrices are conjugate up to inversion. The conjugacy classes of matrices in
SL(3,Z) with given irreducible characteristic polynomial ∆(t) correspond to
the ideal classes of Λ/(∆(t)), by Theorem 1.4. Therefore π is determined by
the ideal class of π′ , and there are finitely many such 2-knot groups with given
Alexander polynomial.

Since π′′ = 1 there are just two strict weight orbits, by Theorem 14.1.

We shall call 2-knots with such groups Cappell-Shaneson 2-knots.

In [AR84] matrix calculations are used to show that any matrix C as in Theorem
16.9 is conjugate to one with first row (0, 0, 1). Given this, it is easy to see that
the corresponding Cappell-Shaneson 2-knot group has a presentation

〈t, x, y, z | xy = yx, xz = zx, txt−1 = z, tyt−1 = xmynzp, tzt−1 = xqyrzs〉.

Since p and s must be relatively prime these relations imply yz = zy . We may
reduce the number of generators and relations on setting z = txt−1 . The next
lemma gives a more conceptual exposition of part of this result.

Lemma 16.10 Let ∆a(t) = t3 − at2 + (a − 1)t − 1 for some a ∈ Z, and let
M be an ideal in the domain R = Λ/(∆a(t)). Then M can be generated by 2
elements as an R-module.

Proof Let D = a(a − 2)(a − 3)(a − 5) − 23 be the discriminant of ∆a(t). If
a prime p does not divide D then ∆a(t) has no repeated roots mod (p). If
p divides D then p > 5, and there are integers αp , βp such that ∆a(t) ≡
(t− αp)2(t− βp) mod (p). Let Kp = {m ∈M | (t− βp)m ∈ pM}.

If βp ≡ αp mod (p) then α3
p ≡ 1 and (1− αp)3 ≡ −1 mod (p). Together these

congruences imply that αp ≡ 2 mod (p), and hence that p = 7. Assume that
this is so, and A be the matrix of multiplication by t on M ∼= Z3 , with respect to
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some basis. If M/7M ∼= (R/(7, t−2))3 then A = 2I+7B for some Z-matrix B .
On expanding det(A) = det(2I+7B) and det(A−I) = det(I+7B) mod (49), we
find that det(A) = 1 and det(A−I3) = ±1 cannot both hold. (Compare Lemma
A2 of [AR84].) Thus M/7M ∼= R/(7, (t− 2)3) or R/(7, (t−2)2)⊕R/(7, t− 2),
and K7 has index at least 7 in M . For all primes p 6= 7 dividing D the index
of Kp is p2 . Therefore M − ∪p|DKp is nonempty, since

1

7
+ Σp|D,p6=7

1

p2
<

1

7
+

∫ ∞
2

1

t2
dt < 1.

Let x be an element of M − ∪p|DKp which is not Z-divisible in M . Then
N = M/Rx is finite, and is generated by at most two elements as an abelian
group, since M ∼= Z3 as an abelian group. For each prime p the Λ/pΛ-
module M/pM is an extension of N/pN by the submodule Xp generated by
the image of x and its order ideal is generated by the image of ∆a(t) in the
P.I.D. Λ/pΛ ∼= Fp[t, t−1]. If p does not divide D the image of ∆a(t) in Λ/pΛ
is square free. If p|D the order ideal of Xp is divisible by t − αp . In all cases
the order ideal of N/pN is square free and so N/pN is cyclic as a Λ-module.
By the Chinese Remainder Theorem there is an element y ∈ M whose image
is a generator of N/pN , for each prime p dividing the order of N . The image
of y in N generates N , by Nakayama’s Lemma.

The cited result of [AR84] is equivalent to showing that M has an element x
such that the image of tx in M/Zx is indivisible, from which it follows that M
is generated as an abelian group by x, tx and some third element y .

Lemma 16.11 Let π be a finitely presentable group such that π/π′ ∼= Z , and
let R = Λ or Λ/pΛ for some prime p ≥ 2. Then

(1) if π can be generated by 2 elements H1(π;R) is cyclic as an R-module;

(2) if def(π) = 0 then H2(π;R) is cyclic as an R-module.

Proof If π is generated by two elements t and x, say, we may assume that
the image of t generates π/π′ and that x ∈ π′ . Then π′ is generated by the
conjugates of x under powers of t, and so H1(π;R) = R⊗Λ (π′/π′′) is generated
by the image of x.

If X is the finite 2-complex determined by a deficiency 0 presentation for π then
H0(X;R) = R/(t− 1) and H1(X;R) are R-torsion modules, and H2(X;R) is
a submodule of a finitely generated free R-module. Hence H2(X;R) ∼= R, as
it has rank 1 and R is an UFD. Therefore H2(π;R) is cyclic as an R-module,
since it is a quotient of H2(X;R), by Hopf’s Theorem.
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If M(K) is aspherical H2(π;R) ∼= Ext1R(H1(π;R), R), by Poincaré duality and
the UCSS. In particular, if R = Λ/pΛ for some prime p ≥ 2 then H1(π;R) and
H2(π;R) are non-canonically isomorphic.

Theorem 16.12 Let π = Z3 oC Z be the group of a Cappell-Shaneson 2-
knot, and let ∆(t) = det(tI − C). Then π has a 3 generator presentation of
deficiency −2. Moreover the following are equivalent.

(1) π has a 2 generator presentation of deficiency 0;

(2) π is generated by 2 elements;

(3) def(π) = 0;

(4) π′ is cyclic as a Λ-module.

Proof The first assertion follows immediately from Lemma 16.10. Condition
(1) implies (2) and (3), since def(π) ≤ 0, by Theorem 2.5, while (2) implies
(4), by Lemma 16.11. If def(π) = 0 then H2(π; Λ) is cyclic as a Λ-module,

by Lemma 16.11. Since π′ = H1(π; Λ) ∼= H3(π; Λ) ∼= Ext1Λ(H2(π; Λ),Λ), by
Poincaré duality and the UCSS, it is also cyclic and so (3) also implies (4). If
x generates π′ as a Λ-module it is easy to see that π has a presentation

〈t, x | xtxt−1 = txt−1x, t3xt−3 = t2xat−2txbt−1x〉,

for some integers a, b, and so (1) holds.

In fact Theorem A.3 of [AR84] implies that any such group has a 3 generator
presentation of deficiency -1, as remarked before Lemma 16.10. Since ∆(t)
is irreducible the Λ-module π′ is determined by the Steinitz-Fox-Smythe row
ideal (t−n,m+np) in the domain Λ/(∆(t)). (See Chapter 3 of [H3].) Thus π′

is cyclic if and only if this ideal is principal. In particular, this is not so for the
concluding example of [AR84], which gives rise to the group with presentation

〈t, x, y, z | xz = zx, yz = zy, txt−1 = y−5z−8, tyt−1 = y2z3, tzt−1 = xz−7〉.

Since (∆a(t)) 6= (∆a(t
−1)) (as ideals of QΛ), for all a, no Cappell-Shaneson

2-knot is a deform spin, by the criterion of [BM09].

Let G(+) and G(−) be the extensions of Z by G6 with presentations

〈t, x, y | xy2x−1y2 = 1, txt−1 = (xy)∓1, tyt−1 = x±1〉.

In each case, using the final relation to eliminate the generator x gives a 2-
generator presentation of deficiency 0, which is optimal, by Theorem 2.5.
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Theorem 16.13 Let π be a 2-knot group with π′ ∼= G6 . Then π ∼= G(+)
or G(−). In each case π is virtually Z4 , π′ ∩ ζπ = 1 and ζπ ∼= Z . Every
strict weight orbit representing a given generator t for π/π′ contains an unique
element of the form x2nt, and every such element is a weight element.

Proof Since Out(G6) is finite π is virtually G6×Z and hence is virtually Z4 .
The groups G(+) and G(−) are the only orientable flat 4-manifold groups with
π/π′ ∼= Z . The next assertion (π′∩ζπ = 1) follows as ζG6 = 1. It is easily seen
that ζG(+) and ζG(−) are generated by the images of t3 and t6x−2y2(xy)−2 ,
respectively, and so in each case ζπ ∼= Z .

If t ∈ π represents a generator of π/π′ it is a weight element, since π is solvable.
We shall use the notation of §2 of Chapter 8 for automorphisms of G6 .

Suppose first that π = G(+) and ct = ja. If u is another weight element with
the same image in π/π′ then we may assume that u = gt for some g ∈ π′′ = G′6 ,
by Theorem 14.1. Suppose that g = x2my2nz2p . Let λ(g) = m + n − p and
w = x2ny2p . Then w−1gtw = x2λ(g)t. On the other hand, if ψ ∈ Aut(G6)
then ψcgtψ

−1 = cht for some h ∈ G′6 if and only if the images of ψ and ja in
Aut(G6)/G′6 commute. If so, ψ is in the subgroup generated by {def−1, jb, ce}.
It is easily verified that λ(h) = λ(g) for any such ψ . (It suffices to check this
for the generators of Aut(G6).) Thus x2nt is a weight element representing
[ja], for all n ∈ Z, and x2mt and x2nt are in the same strict weight orbit if and
only if m = n.

The proof is very similar when π = G(−) and ct = jb. The main change is
that we should define the homomorphism λ by λ(x2my2nz2p) = m− n+ p.

The group G(+) is the group of the 3-twist spin of the figure eight knot (G(+) ∼=
πτ341 .) Although G(−) is the group of a fibred 2-knot, by Theorem 14.4, it is
not the group of any twist spin, by Theorem 16.4. We can also see this directly.

Corollary 16.13.1 No 2-knot with group G(−) is a twist-spin.

Proof If G(−) = πτrK for some 1-knot K then the rth power of a meridian
is central in G(−). The power (x2nt)r is central if and only if (d2njb)r = 1
in Aut(G6). But (d2njb)3 = d2nf2ne−2n(jb)3 = (de−1f)2n+1 . Therefore d2njb
has infinite order, and so G(−) is not the group of a twist-spin.

Theorem 16.14 Let π be a 2-knot group with π′ ∼= Γq for some q > 0, and
let θ be the image of the meridianal automorphism in Out(Γq). Then either
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q = 1 and θ is conjugate to [
(

1 −1
1 0

)
, 0] or [( 1 1

1 2 ) , 0], or q is odd and θ is
conjugate to [( 1 1

1 0 ) , 0] or its inverse. Each such group π has two strict weight
orbits.

Proof If (A,µ) is a meridianal automorphism of Γq the induced automor-
phisms of Γq/ζΓq ∼= Z2 and tors(Γq/Γ

′
q)
∼= Z/qZ are also meridianal, and so

det(A−I) = ±1 and det(A)−1 is a unit mod (q). Therefore q must be odd and
det(A) = −1 if q > 1, and the characteristic polynomial ∆A(X) of A must be
X2−X+ 1, X2−3X+ 1, X2−X−1 or X2 +X−1. Since the corresponding
rings Z[X]/(∆A(X)) are isomorphic to Z[(1+

√
−3)/2] or Z[(1+

√
5)/2]), which

are PIDs, A is conjugate to one of
(

1 −1
1 0

)
, ( 1 1

1 2 ), ( 1 1
1 0 ), or ( 1 1

1 0 )
−1

=
(

0 1
1 −1

)
,

by Theorem 1.4. Now [A,µ][A, 0][A,µ]−1 = [A,µ(I − det(A)A)−1] in Out(Γq).
(See §7 of Chapter 8.) As in each case I − det(A)A is invertible, it follows
that θ is conjugate to [A, 0] or to [A−1, 0] = [A, 0]−1 . Since π′′ ≤ ζπ′ the final
observation follows from Theorem 14.1.

The groups Γq are discrete cocompact subgroups of the Lie group Nil3 and
the coset spaces are S1 -bundles over the torus. Every automorphism of Γq is
orientation preserving and each of the groups allowed by Theorem 16.14 is the
group of some fibred 2-knot, by Theorem 14.4. The automorphism [

(
1 −1
1 0

)
, 0]

is realised by τ631 , and M(τ631) is Seifert fibred over S2(2, 3, 6). In all the
other cases θ has infinite order and the group is not the group of any twist
spin. If q > 1 no such 2-knot is deform spun, by the criterion of [BM09], since
(t2 − t− 1) 6= (t−2 − t−1 − 1) (as ideals of QΛ).

The 2-knot groups with commutator subgroup Γ1 have presentations

〈t, x, y | xyxy−1 = yxy−1x, txt−1 = xy, tyt−1 = w〉,
where w = x−1 , xy2 or x (respectively), while those with commutator subgroup
Γq with q > 1 have presentations

〈t, u, v, z | uvu−1v−1 = zq, tut−1 = v, tvt−1 = zuv, tzt−1 = z−1〉.
(Note that as [v, u] = t[u, v]t−1 = [v, zuv] = [v, z]z[v, u]z−1 = [v, z][v, u], we
have vz = zv and hence uz = zu also.) These are easily seen to have 2
generator presentations of deficiency 0 also.

The other Nil3 -manifolds which arise as the closed fibres of fibred 2-knots are
Seifert fibred over S2(3, 3, 3). (In all other cases the fundamental group has no
meridianal automorphism.) These are 2-fold branched covers of (S3, k(e, η)),
where k(e, η) = m(e; (3, 1), (3, 1), (3, η)) is a Montesinos link, for some e ∈ Z
and η = ±1 [Mo73, BZ]. If e is even this link is a knot, and is invertible, but
not amphicheiral. (See §12E of [BZ].) Let π(e, η) = πτ2k(e, η).
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Theorem 16.15 Let π be a 2-knot group such that
√
π′ ∼= Γq (for some

q ≥ 1) and π′/
√
π′ ∼= Z/3Z . Then q is odd and either

(1) π = π(e, η), where e is even and η = 1 or −1, and has the presentation
〈t, x, z | x3 = (x3e−1z−1)3 = z3η, txt−1 = x−1, tzt−1 = z−1〉; or

(2) π has the presentation
〈t, x | x3 = t−1x−3t, x3e−1t−1xt = xtx−1t−1x−1〉, where e is even.

Every strict weight orbit representing a given generator t for π/π′ contains an
unique element of the form unt, where u = z−1x in case (1) and u = t−1xtx
in case (2), and every such element is a weight element.

Proof It follows easily from Lemma 16.8 that ζ
√
π′ = ζπ′ and G = π′/ζπ′ is

isomorphic to πorb1 (S2(3, 3, 3)) ∼= Z2 o−B (Z/3Z), where −B =
(

0 −1
1 −1

)
. As π′

is a torsion-free central extension of G by Z it has a presentation

〈h, x, y, z | x3 = y3 = z3η = h, xyz = he〉

for some η = ±1 and e ∈ Z. The image of h in π′ generates ζπ′ , and the images
of u = z−1x and v = zuz−1 in G = π′/〈h〉 form a basis for the translation
subgroup T (G) ∼= Z2 . Hence

√
π′ is generated by u, v and h. Since

vuv−1u−1 = xz−2xzx−2z = xz−3.zxzx.x−3z = x.x−3z−3(y−1he)3x−1 = h3e−2−η,

we must have q = |3e−2−η|. Since π′ admits a meridianal automorphism and
π′/(π′)2 ∼= Z/(2, e − 1), e must be even, and so q is odd. Moreover, η = 1 if
and only if 3 divides q . In terms of the new generators, π′ has the presentation

〈u, v, z | zuz−1 = v, zvz−1 = u−1v−1z9e−6η−3, vuv−1u−1 = z9e−6−3η〉.

Since π′/π′′ is finite, Hom(π′, ζπ′) = 0, and so the natural homomorphism
from Aut(π′) to Aut(G) is injective. An automorphism φ of π′ must preserve
characteristic subgroups such as ζπ′ = 〈z3〉 and

√
π′ = 〈u, v, z3〉. Let K be the

subgroup of Aut(π′) consisting of automorphisms which induce the identity on
the subquotients π′/

√
π′ ∼= Z/3Z and

√
π′/ζπ′ ∼= Z2 . Automorphisms in K

also fix the centre, and are of the form km,n , where

km,n(u) = uz3ηs, km,n(v) = vz3ηt and km,n(z) = z3ηp+1umvn,

for (m,n) ∈ Z2 . These formulae define an automorphism if and only if

s− t = −n(3e− 2− η), s+ 2t = m(3e− 2− η) and

6p = (m+ n)((m+ n− 1)(3e− 2− η) + 2(η − 1)).

In particular, the parameters m and n determine p, s and t. Conjugation by
u and v give cu = k−2,−1 and cv = k1,−1 , respectively. Let k = k1,0 . If η = 1
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these equations have solutions p, s, t ∈ Z for all m,n ∈ Z, and K = 〈k, cu〉. If
η = −1 we must have m + n ≡ 0 mod (3), and K = 〈cu, cv〉. In each case,
K ∼= Z2 . We may define further automorphisms b and r by setting

b(u) = v−1z3ηe−3, b(v) = uvz3η(e−1) and b(z) = z; and

r(u) = v−1, r(v) = u−1 and r(z) = z−1.

Then b6 = r2 = (br)2 = 1 and rk = kr , while b4 = cz is conjugation by z . If
η = −1 then Out(π′) ∼= (Z/2Z)2 is generated by the images of b and r , while
if η = 1 then Out(π′) ∼= S3 × Z/2Z is generated by the images of b, k and r .
Since bknr(u) ≡ u mod π′′ , such automorphisms are not meridianal. Thus if
η = +1 there are two classes of meridianal automorphisms (up to conjugacy
and inversion in Out(π′)), represented by r and kr , while if η = −1 there is
only one, represented by r . It is easily seen that π(e, η) ∼= π′orZ . If η = 1 and
the meridianal automorphism is kr then kr(x) = x−1zx2−3e and kr(z) = x−1 ,
which leads to the presentation (2).

In each case, π has an automorphism which is the identity on π′ and sends t
to th, and the argument of Theorem 16.13 may be adapted to prove the final
assertion.

If π ∼= π(e, η) then H1(π; Λ/3Λ) ∼= H2(π; Λ/3Λ) ∼= (Λ/(3, t + 1))2 , and so the
presentation in (1) is optimal, by Lemma 16.11. The subgroup A = 〈t2, x3〉 ∼=
Z2 is normal but not central. The quotient π(e, η)/A is πorb1 (D2(3, 3, 3)), and
M(τ2k(e, η)) is Seifert fibred over D2(3, 3, 3).

The presentation in (2) is also optimal, by Theorem 3.6. Since k3 = c−1
u cv

and (kr)6 = k6 in Aut(π′), t6u2v−2 is central in π . The subgroup A =
〈t6u2v−2, x3〉 ∼= Z2 is again normal but not central. The quotient π/A is
πorb1 (D2(3, 3)), and the knot manifold is Seifert fibred over D2(3, 3).

The knot k(0,−1) = 946 is doubly slice, and hence so are all of its twist spins.
Since M(τ2k(0,−1)) is a Nil3×E1 -manifold it is determined up to homeomor-
phism by its group. Hence every knot with group π(0,−1) must be doubly slice.
No other non-trivial 2-knot with torsion-free, elementary amenable group is
doubly slice. (The Alexander polynomials of Fox’s knot, the Cappell-Shaneson
2-knots and the knots of Theorem 16.14 are irreducible and not constant, while
the Farber-Levine pairings of the others are not hyperbolic.)
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Chapter 17

Knot manifolds and geometries

In this chapter we shall attempt to characterize certain 2-knots in terms of
algebraic invariants. As every 2-knot K may be recovered (up to orientations
and Gluck reconstruction) from M(K) together with the orbit of a weight
class in π = πK under the action of self homeomorphisms of M , we need
to characterize M(K) up to homeomorphism. After some general remarks on
the algebraic 2-type in §1, and on surgery in §2, we shall concentrate on three
special cases: when M(K) is aspherical, when π′ is finite and when g.d.π = 2.

When π is torsion-free and virtually poly-Z the surgery obstructions vanish,
and when it is poly-Z the weight class is unique. The surgery obstruction
groups are notoriously difficult to compute if π has torsion. However we can
show that there are infinitely many distinct 2-knots K such that M(K) is
simple homotopy equivalent to M(τ231); among these knots only τ231 has a
minimal Seifert hypersurface. If π = Φ the homotopy type of M(K) determines
the exterior of the knot; the difficulty here is in finding a homotopy equivalence
from M(K) to a standard model.

In the final sections we shall consider which knot manifolds are homeomorphic
to geometric 4-manifolds or complex surfaces. If M(K) is geometric then either
K is a Cappell-Shaneson knot or the geometry must be one of E4 , Nil3 × E1 ,
Sol41 , S̃L × E1 , H3 × E1 or S3 × E1 . If M(K) is homeomorphic to a complex
surface then either K is a branched twist spin of a torus knot or M(K) admits

one of the geometries Nil3 × E1 , Sol40 or S̃L× E1 .

17.1 Homotopy classification of M(K)

Let K and K1 be 2-knots and suppose that α : π = πK → πK1 and
β : π2(M) → π2(M1) determine an isomorphism of the algebraic 2-types of
M = M(K) and M1 = M(K1). Since the infinite cyclic covers M ′ and M ′1 are
homotopy equivalent to 3-complexes there is a map h : M ′ → M ′1 such that
π1(h) = α|π and π2(h) = β . If π = πK has one end then π3(M) ∼= Γ(π2(M))
and so h is a homotopy equivalence. Let t and t1 = α(t) be corresponding
generators of Aut(M ′/M) and Aut(M ′1/M1), respectively. Then h−1t−1

1 ht is
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a self homotopy equivalence of M ′ which fixes the algebraic 2-type. If this is
homotopic to idM ′ then M and M1 are homotopy equivalent, since up to ho-
motopy they are the mapping tori of t and t1 , respectively. Thus the homotopy
classification of such knot manifolds may be largely reduced to determining the
obstructions to homotoping a self-map of a 3-complex to the identity.

We may use a similar idea to approach this problem in another way. Under
the same hypotheses on K and K1 there is a map fo : M \ intD4 → M1

inducing isomorphisms of the algebraic 2-types. If π has one end π3(fo) is an
epimorphism, and so fo is 3-connected. If there is an extension f : M → M1

then it is a homotopy equivalence, as it induces isomorphisms on the homology
of the universal covering spaces.

If c.d.π ≤ 2 the algebraic 2-type is determined by π , for then π2(M) ∼=
H2(π;Z[π]), by Theorem 3.12, and the k -invariant is 0. In particular, if π′

is free of rank r then M(K) is homotopy equivalent to the mapping torus of a
self-homeomorphism of ]rS1 × S2 , by Corollary 4.5.1. If π = Φ then K is one
of Fox’s examples [Hi09].

The related problem of determining the homotopy type of the exterior of a 2-
knot has been considered in [Lo81, Pl83] and [PS85]. The examples considered
in [Pl83] do not test the adequacy of the algebraic 2-type for the present prob-
lem, as in each case either π′ is finite or M(K) is aspherical. The examples
of [PS85] probably show that in general M(K) is not determined by π and
π2(M(K)) alone.

17.2 Surgery

The natural transformations IG : G → Ls5(G) defined in Chapter 6 clearly
factor through G/G′ . If α : G→ Z induces an isomorphism on abelianization
the homomorphism ÎG = IGα

−1I−1
Z is a canonical splitting for L5(α).

Theorem 17.1 Let K be a 2-knot. If Ls5(πK) ∼= Z and N is simple homotopy
equivalent to M(K) then N is s-cobordant to M(K).

Proof Since M = M(K) is orientable and [M,G/TOP ] ∼= H4(M ;Z) ∼= Z
the surgery obstruction map σ4 : [M(K), G/TOP ] → Ls4(πK) is injective, by
Theorem 6.6. The image of L5(Z) under ÎπK acts trivially on SsTOP (M(K)),
by Theorem 6.7. Hence there is a normal cobordism with obstruction 0 from
any simple homotopy equivalence f : N →M to idM .
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Corollary 17.1.1 (Freedman) A 2-knot K is trivial if and only if πK ∼= Z .

Proof The condition is clearly necessary. Conversely, if πK ∼= Z then M(K)
is homeomorphic to S3 × S1 , by Theorem 6.11. Since the meridian is unique
up to inversion and the unknot is clearly reflexive the result follows.

Theorem 17.1 applies if π is a classical knot group [AFR97], or if c.d.π = 2 and
π is square root closed accessible [Ca73].

Surgery on an s-concordance K from K0 to K1 gives an s-cobordism from
M(K0) to M(K1) in which the meridians are conjugate. Conversely, if M(K)
and M(K1) are s-cobordant via such an s-cobordism then K1 is s-concordant
to K or K∗ . In particular, if K is reflexive then K and K1 are s-concordant.

The next lemma follows immediately from Perelman’s work (see [B-P]). In the
original version of this book, we used a 4-dimensional surgery argument. We
retain the statement so that the numbering of the other results not be changed.

Lemma 17.2 Let K be a 2-knot. Then K has a Seifert hypersurface which
contains no fake 3-cells.

17.3 The aspherical cases

Whenever the group of a 2-knot K contains a sufficiently large abelian normal
subgroup M(K) is aspherical. This holds for most twist spins of prime knots.

Theorem 17.3 Let K be a 2-knot with group π = πK . If
√
π is abelian of

rank 1 and e(π/
√
π) = 1 or if h(

√
π) ≥ 2 then M̃(K) is homeomorphic to R4 .

Proof If
√
π is abelian of rank 1 and π/

√
π has one end M is aspherical,

by Theorem 15.5, and π is 1-connected at ∞, by Theorem 1 of [Mi87]. If
h(
√
π) = 2 then

√
π ∼= Z2 and M is s-cobordant to the mapping torus of a

self homeomorphism of a S̃L-manifold, by Theorem 16.2. If h(
√
π) ≥ 3 then

M is homeomorphic to an infrasolvmanifold, by Theorem 8.1. In all cases, M̃
is contractible and 1-connected at ∞, and so is homeomorphic to R4 [FQ].

Is there a 2-knot K with M̃(K) contractible but not 1-connected at ∞?

Theorem 17.4 Let K be a 2-knot such that π = πK is torsion-free and
virtually poly-Z . Then K is determined up to Gluck reconstruction by π
together with a generator of H4(π;Z) and the strict weight orbit of a meridian.
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Proof If π ∼= Z then K must be trivial, and so we may assume that π is
torsion-free and virtually poly-Z of Hirsch length 4. Hence M(K) is aspherical
and is determined up to homeomorphism by π , and every automorphism of π
may be realized by a self homeomorphism of M(K), by Theorem 6.11. Since
M(K) is aspherical its orientation is determined by a generator of H4(π;Z).

This theorem applies in particular to the Cappell-Shaneson 2-knots, which
have an unique strict weight orbit, up to inversion. (A similar argument ap-
plies to Cappell-Shaneson n-knots with n > 2, provided we assume also that
πi(X(K)) = 0 for 2 ≤ i ≤ (n+ 1)/2.)

Theorem 17.5 Let K be a 2-knot with group π = πK . Then K is s-
concordant to a fibred knot with closed fibre a S̃L-manifold if and only if π′

is finitely generated, ζπ′ ∼= Z and π is not virtually solvable. The fibred knot
is determined up to Gluck reconstruction by π together with a generator of
H4(π;Z) and the strict weight orbit of a meridian.

Proof The conditions are clearly necessary. If they hold then M(K) is as-
pherical, by Theorem 15.8.(2), so every automorphism of π is induced by a self
homotopy equivalence of M(K). Moreover π′ is a PD3 -group, by Theorem
4.5.(3). As ζπ′ ∼= Z and π is not virtually solvable, π′ is the fundamental

group of a S̃L-manifold, by Lemma 16.1. Therefore M(K) is determined up to
s-cobordism by π , by Theorem 13.2. The rest is standard.

Branched twist spins of torus knots are perhaps the most important examples
of such knots, but there are others. (See Chapter 16.) Is every 2-knot K such
that π = πK is a PD+

4 -group determined up to s-concordance and Gluck
reconstruction by π together with a generator of H4(π;Z) and a strict weight
orbit? Is K s-concordant to a fibred knot with aspherical closed fibre if and
only if π′ is finitely generated and has one end? (This follows from [Ro11] and
Theorem 6.8 if Wh(π) = 0.)

17.4 Quasifibres and minimal Seifert hypersurfaces

Let M be a closed 4-manifold with fundamental group π . If f : M → S1

is a map which is transverse to p ∈ S1 then V̂ = f−1(p) is a codimension
1 submanifold with a product neighbourhood N ∼= V̂ × [−1, 1]. If moreover
the induced homomorphism f∗ : π → Z is an epimorphism and each of the
inclusions j± : V̂ ∼= V̂ ×{±1} ⊂W = M \V × (−1, 1) induces monomorphisms
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on fundamental groups then we shall say that V̂ is a quasifibre for f . The
group π is then an HNN extension with base π1(W ) and associated subgroups
j±∗(π1(V̂ ), by Van Kampen’s Theorem. Every fibre of a bundle projection is
a quasifibre. We may use the notion of quasifibre to interpolate between the
homotopy fibration theorem of Chapter 4 and a TOP fibration theorem. (See
also Theorem 6.12 and Theorem 17.7.)

Theorem 17.6 Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by a finitely generated normal subgroup ν . If
there is a map f : M → S1 inducing an epimorphism with kernel ν and which
has a quasifibre V̂ then the infinite cyclic covering space Mν associated with
ν is homotopy equivalent to V̂ .

Proof As ν is finitely generated the monomorphisms j±∗ must be isomor-
phisms. Therefore ν is finitely presentable, and so Mν is a PD3 -complex, by
Theorem 4.5. Now Mν

∼= W × Z/ ∼, where (j+(v), n) ∼ (j−(v), n + 1) for all
v ∈ V̂ and n ∈ Z . Let j̃(v) be the image of (j+(v), 0) in Mν . Then π1(j̃) is
an isomorphism. A Mayer-Vietoris argument shows that j̃ has degree 1, and
so j̃ is a homotopy equivalence.

One could use duality instead to show that Hs = Hs(W,∂±W ;Z[π]) = 0 for
s 6= 2, while H2 is a stably free Z[π]-module, of rank χ(W,∂±W ) = 0. Since
Z[π] is weakly finite this module is 0, and so W is an h-cobordism.

Corollary 17.6.1 Let K be a 2-knot with group π = πK . If π′ is finitely
generated and K has a minimal Seifert hypersurface V such that every self
homotopy equivalence of V̂ is homotopic to a homeomorphism then M(K) is
homotopy equivalent to M(K1), where M(K1) is a fibred 2-knot with fibre V .

Proof Let j−1
+ : M(K)′ → V̂ be a homotopy inverse to the homotopy equiva-

lence j+ , and let θ be a self homeomorphism of V̂ homotopic to j−1
+ j− . Then

j+θj
−1
+ is homotopic to a generator of Aut(M(K)′/M(K)), and so the mapping

torus of θ is homotopy equivalent to M(K). Surgery on this mapping torus
gives such a knot K1 .

If a Seifert hypersurface V for a 2-knot has fundamental group Z then the
Mayer-Vietoris sequence for H∗(M(K); Λ) gives H1(X ′) ∼= Λ/(ta+−a−), where
a± : H1(V )→ H1(S4 \ V ). Since H1(X) = Z we must have a+ − a− = ±1. If
a+a− 6= 0 then V is minimal. However one of a+ or a− could be 0, in which
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case V may not be minimal. The group Φ is realized by ribbon knots with
such minimal Seifert hypersurfaces (homeomorphic to S2× S1 \ intD3 ) [Fo62].
Thus minimality does not imply that π′ is finitely generated.

If a 2-knot K has a minimal Seifert hypersurface then πK is an HNN extension
with finitely presentable base and associated subgroups. It remains an open
question whether every 2-knot group is of this type. (There are high dimensional
knot groups which are not so [Si91, Si96].) Yoshikawa has shown that there are
ribbon 2-knots whose groups are HNN extensions with base a torus knot group
and associated subgroups Z but which cannot be expressed as HNN extensions
with base a free group [Yo88].

An argument of Trace implies that if V is a Seifert hypersurface for a fibred
n-knot K then there is a degree-1 map from V̂ = V ∪Dn+1 to the closed fibre
F̂ [Tr86]. For the embedding of V in X extends to an embedding of V̂ in M ,
which lifts to an embedding in M ′ . Since the image of [V̂ ] in Hn+1(M ;Z) is
Poincaré dual to a generator of H1(M ;Z) = Hom(π,Z) = [M,S1] its image in
Hn+1(M ′;Z) ∼= Z is a generator. In particular, if K is a fibred 2-knot and F̂
has a summand which is aspherical or whose fundamental group is a nontrivial
finite group then π1(V ) cannot be free. Similarly, as the Gromov norm of a 3-
manifold does not increase under degree 1 maps, if F̂ is a H3 -manifold then V̂
cannot be a graph manifold [Ru90]. Rubermann observes also that the “Seifert

volume” of [BG84] may be used instead to show that if F̂ is a S̃L-manifold
then V̂ must have nonzero Seifert volume. (Connected sums of E3 -, S3 -, Nil3 -,
Sol3 -, S2 × E1 - or H2 × E1 -manifolds all have Seifert volume 0 [BG84].)

17.5 The spherical cases

Let π be a 2-knot group with commutator subgroup π′ ∼= P × (Z/(2r + 1)Z),
where P = 1, Q(8), T ∗k or I∗ . The meridianal automorphism induces the
identity on the set of irreducible real representations of π′ , except when P =
Q(8). (It permutes the three nontrivial 1-dimensional representations when
π′ ∼= Q(8), and similarly when π′ ∼= Q(8) × (Z/nZ).) It then follows as in
Chapter 11 that Ls5(π) has rank r + 1, 3(r + 1), 3k−1(5 + 7r) or 9(r + 1),
respectively. Hence if π′ 6= 1 then there are infinitely many distinct 2-knots
with group π , since the group of self homotopy equivalences of M(K) is finite.

The simplest nontrivial such group is π = (Z/3Z) o−1 Z . If K is any 2-
knot with this group then M(K) is homotopy equivalent to M(τ231). Since
Wh(Z/3Z) = 0 [Hg40] and L5(Z/3Z) = 0 [Ba75] we have Ls5(π) ∼= L4(π′) ∼=
Z2 , but we do not know whether Wh(π) = 0.
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Theorem 17.7 Let K be a 2-knot with group π = πK such that π′ ∼= Z/3Z ,
and which has a minimal Seifert hypersurface. Then K = τ231 .

Proof Let V be a minimal Seifert hypersurface for K . Let V̂ = V ∪D3 and
W = M(K)\V ×(−1, 1). Then W is an h-cobordism from V̂ to itself. (See the
remark following Theorem 6.) Therefore W ∼= V̂ × I , by surgery over Z/3Z .
(Note that Wh(Z/3Z) = L5(Z/3Z) = 0.) Hence M fibres over S1 . The closed
fibre must be the lens space L(3, 1), by Perelman’s work (see [B-P]), and so K
must be τ231 .

As none of the other 2-knots with this group has a minimal Seifert surface, they
are all further counter-examples to the most natural 4-dimensional analogue of
Farrell’s fibration theorem. We do not know whether any of these knots (other
than τ231 ) is PL in some PL structure on S4 .

Let F be an S3 -group, and let W = (W ; j±) be an h-cobordism with home-
omorphisms j± : N → ∂±W , where N = S3/F . Then W is an s-cobordism
[KS92]. The set of such s-cobordisms from N to itself is a finite abelian group
with respect to stacking of cobordisms. All such s-cobordisms are products if
F is cyclic, but there are nontrivial examples if F ∼= Q(8) × (Z/pZ), for any
odd prime p [KS95]. If φ is a self-homeomorphism of N the closed 4-manifold
Zφ obtained by identifying the ends of W via j+φj

−1
− is homotopy equivalent

to M(φ). However if Zφ is a mapping torus of a self-homeomorphism of N
then W is trivial. In particular, if φ induces a meridianal automorphism of F
then Zφ ∼= M(K) for an exotic 2-knot K with π′ ∼= F and which has a minimal
Seifert hypersurface, but which is not fibred with geometric fibre.

17.6 Finite geometric dimension 2

Knot groups with finite 2-dimensional Eilenberg-Mac Lane complexes have de-
ficiency 1, by Theorem 2.8, and so are 2-knot groups. This class includes all
classical knot groups, all knot groups with free commutator subgroup and all
knot groups in the class X (such as those of Theorems 15.1 and 15.14).

Theorem 17.8 Let K be a 2-knot. If πK is a 1-knot group or an X -group
then M(K) is determined up to s-cobordism by its homotopy type.

Proof This is an immediate consequence of Lemma 6.9, if π is an X -group.
If π is a nontrivial classical knot group it follows from Theorem 17.1, since
Wh(πK) = 0 [Wd78] and Ls5(πK) ∼= Z [AFR97].
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Corollary 17.8.1 Any 2-knot K with group Φ is ambient isotopic to one of
Fox’s examples.

Proof In [Hi09] it is shown that the homotopy type of a closed orientable 4-
manifold M with π1(M) = Φ and χ(M) = 0 is unique. Since Φ is metabelian
s-cobordism implies homeomorphism and there is an unique weight class up
to inversion, so X(K) is determined by the homotopy type of M(K). Since
Examples 10 and 11 of [Fo62] are ribbon knots they are −amphicheiral and
determined by their exterior.

Fox’s examples are mirror images. Since their Alexander polynomials are asym-
metric, they are not invertible. (Thus they are not isotopic.) Nor are they
deform spins, by the criterion of [BM09].

Theorem 17.9 A 2-knot K with group π = πK is s-concordant to a fibred
knot with closed fibre ]r(S1 × S2) if and only if def(π) = 1 and π′ is finitely
generated. Moreover any such fibred 2-knot is reflexive and homotopy ribbon.

Proof The conditions are clearly necessary. If they hold then π′ ∼= F (r), for
some r ≥ 0, by Corollary 4.3.1. Then M = M(K) is homotopy equivalent to a
PL 4-manifold N which fibres over S1 with fibre ]r(S1×S2), by Corollary 4.5.1.
Moreover Wh(π) = 0, by Lemma 6.3, and π is square root closed accessible, so
Iπ is an isomorphism, by Lemma 6.9, so there is an s-cobordism W from M
to N , by Theorem 17.1. We may embed an annulus A = S1 × [0, 1] in W so
that M ∩A = S1×{0} is a meridian for K and N ∩A = S1×{1}. Surgery on
A in W then gives an s-concordance from K to such a fibred knot K1 , which
is reflexive [Gl62] and homotopy ribbon [Co83].

Based self homeomorphisms of N = ]r(S1 × S2) which induce the same auto-
morphism of π1(N) = F (r) are conjugate up to isotopy if their images in E0(N)
are conjugate [HL74]. Their mapping tori are then orientation-preserving home-
omorphic. (Compare Corollary 4.5.) The group E0(N) is a semidirect product
(Z/2Z)roAut(F (r)), with the natural action [Hn]. It follows easily that every
fibred 2-knot with π′ free is determined (among such knots) by its group to-
gether with the weight orbit of a meridian. (However, π31 has infinitely many
weight orbits [Su85].) Is every such group the group of a ribbon knot?

If K = σk is the Artin spin of a fibred 1-knot then M(K) fibres over S1 with
fibre ]r(S2 × S1). However not all such fibred 2-knots arise in this way. It
follows easily from Lemma 1.1 and the fact that Out(F (2)) ∼= GL(2,Z) that
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there are just three knot groups G ∼= F (2) o Z , namely π31 (the trefoil knot
group), π41 (the figure eight knot group) and the group with presentation

〈x, y, t | txt−1 = y, tyt−1 = xy〉.

(Two of the four presentations given in [Rp60] present isomorphic groups.) The
Alexander polynomial of the latter example is t2−t−1, which is not symmetric,
and so this is not a classical knot group. (See also [AY81, Rt83].)

Theorem 17.10 Let K be a 2-knot with group π = πK . Then

(1) if c.d.π ≤ 2 then K is π1 -slice;

(2) if K is π1 -slice then H3(cM ′(K);Z) = 0;

(3) if π′ is finitely generated then K is π1 -slice if and only if π′ is free;

Proof Let M = M(K). If c.d.π ≤ 2 then Hp(π; ΩSpin
4−p ) = 0 for p > 0, and

so signature gives an isomorphism ΩSpin
4 (K(π, 1)) ∼= Z. Hence M = ∂W for

some Spin 5-manifold W with a map f to K(π, 1) such that f |M = cM . We
may modify W by elementary surgeries to make π1(f) an isomorphism and
H2(W ;Z) = 0. Attaching a 2-handle to W along a meridian for K then gives
a contractible 5-manifold, and so K is π1 -slice.

Let R be an open regular neighbourhood in D5 of a π1 -slice disc ∆. Since cM
factors through D5 \ R the first assertion follows from the exact sequence of
homology (with coefficients Λ) for the pair (D5 \R,M).

If π′ is finitely generated then M ′ is a PD3 -space, by Theorem 4.5. The image
of [M ′] in H3(π′;Z) determines a projective homotopy equivalence of modules
C2/∂1(C1) ' A(π′), by the argument of Theorem 4 of [Tu90]. (This does not
need Turaev’s assumption that π′ be finitely presentable.) If this image is 0
then idA(π′) ∼ 0, so A(π′) is projective and c.d.π′ ≤ 1. Therefore π′ is free.
The converse follows from Theorem 17.9, or from part (1) of this theorem.

If π′ is free must K be homotopy ribbon? This would follow from “homotopy
connectivity implies geometric connectivity”, but our situation is just beyond
the range of known results. Is M(K) determined up to s-cobordism by its group
whenever g.d.π ≤ 2? If g.d.π ≤ 2 then def(π) = 1, and so π is the group of a
homotopy ribbon 2-knot. (See §6 of Chapter 14.) The conditions “g.d.π ≤ 2”
and “def(π) = 1” are equivalent if the Whitehead Conjecture holds. (See §9 of
Chapter 14.) Are these conditions also equivalent to “homotopy ribbon”? (See
[Hi08’] for further connections between these properties.)
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17.7 Geometric 2-knot manifolds

The 2-knots K for which M(K) is homeomorphic to an infrasolvmanifold are
essentially known. There are three other geometries which may be realized by
such knot manifolds. All known examples are fibred, and most are derived
from twist spins of classical knots. However there are examples (for instance,
those with π′ ∼= Q(8)× (Z/nZ) for some n > 1) which cannot be constructed
from twist spins. The remaining geometries may be eliminated very easily; only
H2 × E2 and S2 × E2 require a little argument.

Theorem 17.11 Let K be a 2-knot with group π = πK . If M(K) admits
a geometry then the geometry is one of E4 , Nil3 × E1 , Sol40 , Sol41 , Sol4m,n (for

certain m 6= n only), S3×E1 , H3×E1 or S̃L×E1 . All these geometries occur.

Proof The knot manifold M(K) is homeomorphic to an infrasolvmanifold if
and only if h(

√
π) ≥ 3, by Theorem 8.1. It is then determined up to home-

omorphism by π . We may then use the observations of §10 of Chapter 8 to
show that M(K) admits a geometry of solvable Lie type. By Lemma 16.7 and
Theorems 16.12 and 16.14 π must be either G(+) or G(−), π(e, η) for some
even b and ε = ±1 or π′ ∼= Z3 or Γq for some odd q . We may identify the
geometry on looking more closely at the meridianal automorphism.

If π ∼= G(+) or G(−) then M(K) admits the geometry E4 . If π ∼= π(e, η)
then M(K) is the mapping torus of an involution of a Nil3 -manifold, and so
admits the geometry Nil3 × E1 . If π′ ∼= Z3 then M(K) is homeomorphic to
a Sol4m,n - or Sol40 -manifold. More precisely, we may assume (up to change of
orientations) that the Alexander polynomial of K is t3 − (m − 1)t2 + mt − 1
for some integer m. If m ≥ 6 all the roots of this cubic are positive and the
geometry is Sol4m−1,m . If 0 ≤ m ≤ 5 two of the roots are complex conjugates

and the geometry is Sol40 . If m < 0 two of the roots are negative and π has a
subgroup of index 2 which is a discrete cocompact subgroup of Sol4m′,n′ , where

m′ = m2 − 2m+ 2 and n′ = m2 − 4m+ 1, so the geometry is Sol4m′,n′ .

If π′ ∼= Γq and the image of the meridianal automorphism in Out(Γq) has finite
order then q = 1 and K = τ631 or (τ631)∗ = τ6,531 . In this case M(K) admits
the geometry Nil3×E1 . Otherwise (if π′ ∼= Γq and the image of the meridianal
automorphism in Out(Γq) has infinite order) M(K) admits the geometry Sol41 .

If K is a branched r -twist spin of the (p, q)-torus knot then M(K) is a S3 × E1 -

manifold if p−1+q−1+r−1 > 1, and is a S̃L×E1 -manifold if p−1+q−1+r−1 < 1.
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(The case p−1+q−1+r−1 = 1 gives the Nil3×E1 -manifold M(τ631).) The man-
ifolds obtained from 2-twist spins of 2-bridge knots and certain other “small”
simple knots also have geometry S3 × E1 . Branched r -twist spins of simple
(nontorus) knots with r > 2 give H3 × E1 -manifolds, excepting M(τ341) ∼=
M(τ3,241), which is the E4 -manifold with group G(+).

Every orientable H2×E2 -manifold is double covered by a Kähler surface [Wl86].
Since the unique double cover of a 2-knot manifold M(K) has first Betti number
1 no such manifold can be an H2×E2 -manifold. (If K is fibred we could instead
exclude this geometry by Lemma 16.1.) Since π is infinite and χ(M(K)) = 0 we
may exclude the geometries S4 , CP2 and S2×S2 , and H4 , H2(C), H2×H2 and
S2×H2 , respectively. The geometry S2×E2 may be excluded by Theorem 10.10
or Lemma 16.1 (no group with two ends admits a meridianal automorphism),
while F4 is not realized by any closed 4-manifold.

In particular, no knot manifold is a Nil4 -manifold or a Sol3×E1 -manifold, and
many Sol4m,n -geometries do not arise in this way. The knot manifolds which are
infrasolvmanifolds or have geometry S3×E1 are essentially known, by Theorems
8.1, 11.1, 15.12 and §4 of Chapter 16. The knot is uniquely determined up to
Gluck reconstruction and change of orientations if π′ ∼= Z3 (see Theorem 17.4
and the subsequent remarks above), Γq (see §3 of Chapter 18) or Q(8)×(Z/nZ)
(since the weight class is then unique up to inversion). There are only six knots
whose knot manifold admits the geometry Sol40 , for Z[X]/(∆a(X)) is a PID if
0 ≤ a ≤ 5. (See the tables of [AR84].) If the knot is fibred with closed fibre a
lens space it is a 2-twist spin of a 2-bridge knot [Tr89]. The other knot groups
corresponding to infrasolvmanifolds have infinitely many weight orbits.

Corollary 17.11.1 If M(K) admits a geometry then it fibres over S1 , and if
π is not solvable the closed monodromy has finite order.

Proof This is clear if M(K) is an S3 × E1 -manifold or an infrasolvmanifold,

and follows from Corollary 13.1.1 and Theorem 16.2 if the geometry is S̃L×E1 .

If M(K) is a H3 × E1 -manifold we refine the argument of Theorem 9.3. Since
π/π′ ∼= Z and

√
π = π ∩ ({1} × R) 6= 0 we may assume π ≤ Isom(H3)×R,

and so π′ ≤ Isom(H3)× {1}. Hence π′ is the fundamental group of a closed
H3 -manifold, N say, and M(K) is the quotient of N×R by the action induced
by a meridian. Thus M(K) is a mapping torus, and so fibres over S1 .

If the geometry is H3 ×E1 is M(K) ∼= M(K1) for some branched twist spin of
a simple non-torus knot? (See §3 of Chapter 16.)

Geometry & Topology Monographs, Volume 5 (2002)



338 Chapter 17: Knot manifolds and geometries

Corollary 17.11.2 If M(K) is Seifert fibred it is a S̃L × E1 -, Nil3 × E1 - or
S3 × E1 -manifold.

Proof This follows from Ue’s Theorem, Theorem 16.2 and Theorem 17.11.

Are any 2-knot manifolds M total spaces of orbifold bundles with hyperbolic
general fibre? (The base B must be flat, since χ(M) = 0, and πorb1 (B) must
have cyclic abelianization. Hence B = S2(2, 3, 6), D2(3, 3, 3), or D2(3, 3).)

It may be shown that if k is a nontrivial 1-knot and r ≥ 2 then M(τrk) is
geometric if and only if k is simple, and has a proper geometric decomposition
if and only if k is prime but not simple. (The geometries of the pieces are then

H2×E2 , S̃L×E1 or H3×E1 .) This follows from the fact that the r -fold cyclic
branched cover of (S3, k) admits an equivariant JSJ decomposition, and has
finitely generated π2 if and only if k is prime.

17.8 Complex surfaces and 2-knot manifolds

If a complex surface S is homeomorphic to a 2-knot manifold M(K) then S
is minimal, since β2(S) = 0, and has Kodaira dimension κ(S) = 1, 0 or −∞,
since β1(S) = 1 is odd. If κ(S) = 1 or 0 then S is elliptic and admits a

compatible geometric structure, of type S̃L × E1 or Nil3 × E1 , respectively
[Ue90,91, Wl86]. The only complex surfaces with κ(S) = −∞, β1(S) = 1
and β2(S) = 0 are Inoue surfaces, which are not elliptic, but admit compatible
geometries of type Sol40 or Sol41 , and Hopf surfaces [Tl94]. An elliptic surface
with Euler characteristic 0 has no exceptional fibres other than multiple tori.

If M(K) has a complex structure compatible with a geometry then the geome-

try is one of Sol40 , Sol41 , Nil3×E1 , S3×E1 or S̃L×E1 , by Theorem 4.5 of [Wl86].
Conversely, if M(K) admits one of the first three of these geometries then it
is homeomorphic to an Inoue surface of type SM , an Inoue surface of type

S
(+)
N,p,q,r;t or S

(−)
N,p,q,r , or an elliptic surface of Kodaira dimension 0, respectively.

(See [In74, EO94] and Chapter V of [BHPV].)

Lemma 17.12 Let K be a branched r -twist spin of the (p, q)-torus knot.
Then M(K) is homeomorphic to an elliptic surface.

Proof We shall adapt the argument of Lemma 1.1 of [Mi75]. (See also [Ne83].)
Let V0 = {(z1, z2, z3) ∈ C3 \ {0}|zp1 + zq2 + zr3 = 0}, and define an action of
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C× on V0 by u.v = (uqrz1, u
prz2, u

pqz3) for all u in C× and v = (z1, z2, z3)
in V0 . Define functions m : V0 → R+ and n : V0 → m−1(1) by m(v) =
(|z1|p + |z2|q + |z3|r)1/pqr and n(v) = m(v)−1.v for all v in V0 . Then the
map (m,n) : V0 → m−1(1) × R+ is an R+ -equivariant homeomorphism, and
so m−1(1) is homeomorphic to V0/R

+ . Therefore there is a homeomorphism
from m−1(1) to the Brieskorn manifold M(p, q, r), under which the action of
the group of rth roots of unity on m−1(1) = V0/R

+ corresponds to the group
of covering homeomorphisms of M(p, q, r) as the branched cyclic cover of S3 ,
branched over the (p, q)-torus knot [Mi75]. The manifold M(K) is the mapping
torus of some generator of this group of self homeomorphisms of M(p, q, r). Let
ω be the corresponding primitive rth root of unity. If t > 1 then tω generates
a subgroup Ω of C× which acts freely and holomorphically on V0 , and the
quotient V0/Ω is an elliptic surface over the curve V0/Ω. Moreover V0/Ω is
homeomorphic to the mapping torus of the self homeomorphism of m−1(1)
which maps v to m(tω.v)−1.tω.v = ωm(t.v)−1t.v . Since this map is isotopic to
the map sending v to ω.v this mapping torus is homeomorphic to M(K).

The Kodaira dimension of the elliptic surface in the above lemma is 1, 0 or −∞
according as p−1 + q−1 + r−1 is < 1, 1 or > 1. In the next theorem we shall
settle the case of elliptic surfaces with κ = −∞.

Theorem 17.13 Let K be a 2-knot. Then M(K) is homeomorphic to a Hopf
surface if and only if K or its Gluck reconstruction is a branched r -twist spin
of the (p, q)-torus knot for some p, q and r such that p−1 + q−1 + r−1 > 1.

Proof If K = τr,skp,q then M(K) is homeomorphic to an elliptic surface, by
Lemma 17.13, and the surface must be a Hopf surface if p−1 + q−1 + r−1 > 1.

If M(K) is homeomorphic to a Hopf surface then π has two ends, and there
is a monomorphism h : π = πK → GL(2,C) onto a subgroup which contains
a contraction c (Kodaira - see [Kt75]). Hence π′ is finite and h(π′) = h(π) ∩
SL(2,C), since det(c) 6= 1 and π/π′ ∼= Z . Finite subgroups of SL(2,C) are
conjugate to subgroups of SU(2) = S3 , and so are cyclic, binary dihedral or
isomorphic to T ∗1 , O∗1 or I∗ . Therefore π ∼= πτ2k2,n , πτ331 , πτ431 or πτ531 ,
by Theorem 15.12 and the subsequent remarks. Hopf surfaces with π ∼= Z or π
nonabelian are determined up to diffeomorphism by their fundamental groups,
by Theorem 12 of [Kt75]. Therefore M(K) is homeomorphic to the manifold of
the corresponding torus knot. If π′ is cyclic there is an unique weight orbit. The
weight orbits of τ431 are realized by τ2k3,4 and τ431 , while the weight orbits of
T ∗1 are realized by τ2k3,5 , τ3k2,5 , τ531 and τ5,231 [PS87]. Therefore K agrees
up to Gluck reconstruction with a branched twist spin of a torus knot.
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The Gluck reconstruction of a branched twist spin of a classical knot is another
branched twist spin of that knot, by §6 of [Pl84’].

Elliptic surfaces with β1 = 1 and κ = 0 are Nil3 × E1 -manifolds, and so a
knot manifold M(K) is homeomorphic to such an elliptic surface if and only if
πK is virtually poly-Z and ζπK ∼= Z2 . For minimal properly elliptic surfaces
(those with κ = 1) we must settle for a characterization up to s-cobordism.

Theorem 17.14 Let K be a 2-knot with group π = πK . Then M(K) is
s-cobordant to a minimal properly elliptic surface if and only if ζπ ∼= Z2 and
π′ is not virtually poly-Z .

Proof If M(K) is a minimal properly elliptic surface then it admits a compat-

ible geometry of type S̃L×E1 and π is isomorphic to a discrete cocompact sub-
group of Isomo(S̃L)×R, the maximal connected subgroup of Isomo(S̃L×E1),
for the other components consist of orientation reversing or antiholomorphic
isometries. (See Theorem 3.3 of [Wl86].) Since π meets ζ(Isomo(S̃L)×R)) ∼=
R2 in a lattice subgroup ζπ ∼= Z2 and projects nontrivially onto the second
factor π′ = π ∩ Isomo(S̃L) and is the fundamental group of a S̃L-manifold.
Thus the conditions are necessary.

Suppose that they hold. Then M(K) is s-cobordant to a S̃L × E1 -manifold

which is the mapping torus M(Θ) of a self homeomorphism of a S̃L-manifold,
by Theorem 16.2. As Θ must be orientation preserving and induce the identity
on ζπ′ ∼= Z the group π is contained in Isomo(S̃L) × R. Hence M(Θ) has a
compatible structure as an elliptic surface, by Theorem 3.3 of [Wl86].

An elliptic surface with Euler characteristic 0 is a Seifert fibred 4-manifold, and
so is determined up to diffeomorphism by its fundamental group if the base
orbifold is euclidean or hyperbolic [Ue90, Ue91]. Using this result (instead of
[Kt75]) together with Theorem 16.6 and Lemma 17.12, it may be shown that if
M(K) is homeomorphic to a minimal properly elliptic surface and some power
of a weight element is central in πK then M(K) is homeomorphic to M(K1),
where K1 is some branched twist spin of a torus knot. However in general
there may be infinitely many algebraically distinct weight classes in πK and
we cannot conclude that K is itself such a branched twist spin.
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Chapter 18

Reflexivity

The most familiar invariants of knots are derived from the knot complements,
and so it is natural to ask whether every knot is determined by its complement.
This has been confirmed for classical knots [GL89]. Given a higher dimensional
knot there is at most one other knot (up to change of orientations) with home-
omorphic exterior. The first examples of non-reflexive 2-knots were given by
Cappell and Shaneson [CS76]; these are fibred with closed fibre R3/Z3 . Gor-
don gave a different family of examples [Go76], and Plotnick extended his work
to show that no fibred 2-knot with monodromy of odd order is reflexive. It is
plausible that this may be so whenever the order is greater than 2, but this is
at present unknown.

We shall decide the questions of amphicheirality, invertibility and reflexivity for
most fibred 2-knots with closed fibre an E3 - or Nil3 -manifold, excepting only
the knots with groups as in part (ii) of Theorem 16.15, for which reflexivity
remains open. The other geometrically fibred 2-knots have closed fibre an S3 -,
H3 - or S̃L-manifold. Branched twist spins τr,sk of simple 1-knots k form an
important subclass. We shall show that such branched twist spins are reflexive
if and only if r = 2. If, moreover, k is a torus knot then τr,sk is +amphicheiral
but is not invertible.

This chapter is partly based on joint work with Plotnick and Wilson (in [HP88]
and [HW89], respectively).

18.1 Sections of the mapping torus

Let θ be a self-homeomorphism of a closed 3-manifold F , with mapping torus
M(θ) = F×θS1 , and canonical projection pθ : M(θ)→ S1 , given by pθ([x, s]) =
e2πis for all [x, s] ∈ M(θ). Then M(θ) is orientable if and only if θ is
orientation-preserving. If θ′ = hθh−1 for some self-homeomorphism h of F
then [x, s] 7→ [h(x), s] defines a homeomorphism m(h) : M(θ) → M(θ′) such
that pθ′m(h) = pθ . Similarly, if θ′ is isotopic to θ then M(θ′) ∼= M(θ).

If P ∈ F is fixed by θ then the image of P × [0, 1] in M(θ) is a section of
pθ . In particular, if the fixed point set of θ is connected there is a canonical
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isotopy class of sections. (Two sections are isotopic if and only if they represent
conjugate elements of π .) In general, we may isotope θ to have a fixed point P .
Let t ∈ π1(M(θ)) correspond to the constant section of M(θ), and let u = gt
with g ∈ π1(F ). Let γ : [0, 1]→ F be a loop representing g . There is an isotopy
hs from h0 = idF to h = h1 which drags P around γ , so that hs(P ) = γ(s)
for all 0 ≤ s ≤ 1. Then H([f, s]) = [(hs)

−1(f), s] defines a homeomorphism
M(θ) ∼= M(h−1θ). Under this homeomorphism the constant section of ph−1θ

corresponds to the section of pθ given by mu(t) = [γ(t), t], which represents u.
If F is a geometric 3-manifold we may assume that γ is a geodesic path.

Suppose henceforth that F is orientable, θ is orientation-preserving and fixes
a basepoint P , and induces a meridianal automorphism θ∗ of ν = π1(F ). The
loop sending [u] = e2πiu to [P, u], for all 0 ≤ u ≤ 1, is the canonical cross-
section of the mapping torus, and the corresponding element t ∈ π = π1(M) =
ν oθ∗ Z is a weight element for π . Surgery on the image C = {P} × S1 of
this section gives a 2-knot, with exterior the complement of an open regular
neighbourhood R of C . Choose an embedding J : D3 × S1 → M onto R.
Let Mo = M \ intR and let j = J |∂D3×S1 . Then Σ = Mo ∪j S2 × D2 and
Στ = Mo ∪jτ S2 × D2 are homotopy 4-spheres and the images of S2 × {0}
represent 2-knots K and K∗ with group π and exterior Mo .

Let F̃ be the universal covering space of F , and let θ̃ be the lift of θ which fixes
some chosen basepoint. Let M̂ = Ñ ×θ̃ S

1 be the (irregular) covering space
corresponding to the subgroup of π generated by t. This covering space shall
serve as a natural model for a regular neighbourhood of C in our geometric
arguments below.

18.2 Reflexivity for fibred 2-knots

Let K be an n-knot with exterior X and group π . If it is reflexive there is such
a self-homeomorphism which changes the framing of the normal bundle. This
restricts to a self-homeomorphism of X which (up to changes of orientations)
is the nontrivial twist τ on ∂X ∼= Sn × S1 . (See §1 of Chapter 14).

If K is invertible or ±amphicheiral there is a self-homeomorphism h of (Sn+2,K)
which changes the orientations appropriately, but does not twist the normal
bundle of K(Sn) ⊂ Sn+2 . Thus if K is −amphicheiral there is such an h which
reverses the orientation of M(K) and for which the induced automorphism h′∗
of π′ commutes with the meridianal automorphism ct , while if K is invertible
or +ampicheiral there is a self-homeomorphism h such that h′∗cth

′
∗ = c−1

t and
which preserves or reverses the orientation. We shall say that K is strongly
±amphicheiral or invertible if there is such an h which is an involution.
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Suppose now that n = 2. Every self-homeomorphism f of X extends “radially”
to a self-homeomorphism h of M(K) = X ∪ D3 × S1 which maps the cocore
C = {0} × S1 to itself. If f preserves both orientations or reverses both
orientations then it fixes the meridian, and we may assume that h|C = idC . If
f reverses the meridian, we may still assume that it fixes a point on C . We
take such a fixed point as the basepoint for M(K).

Now ∂X ∼= S2 ×A S1 , where A is the restriction of the monodromy to ∂(F \
intD3) ∼= S2 . (There is an unique isotopy class of homeomorphisms which
are compatible with the orientations of the spheres S1 , S2 and X ⊂ S4 .)
Roughly speaking, the local situation – the behaviour of f and A on D3 × S1

– determines the global situation. Assume that f is a fibre preserving self
homeomorphism of D3 ×A S1 which induces a linear map B on each fibre D3 .
If A has infinite order, the question as to when f “changes the framing”, i.e.,
induces τ on ∂D3×A S1 is delicate. (See §2 and §3 below). But if A has finite
order we have the following easy result.

Lemma 18.1 Let A in SO(3) be a rotation of order r ≥ 2 and let B in
O(3) be such that BAB−1 = A±1 , so that B induces a diffeomorphism fB of
D3 ×A S1 . If fB changes the framing then r = 2.

Proof We may choose coordinates for R3 so that A = ρs/r , where ρu is the
matrix of rotation through 2πu radians about the z -axis in R3 , and 0 < s < r .
Let ρ : D3 ×A S1 → D3 × S1 be the diffeomorphism given by ρ([x, u]) =
(ρ−su/r, e

2πiu), for all x ∈ D3 and 0 ≤ u ≤ 1.

If BA = AB then fB([x, u]) = [Bx, u]. If moreover r ≥ 3 then B = ρv
for some v , and so ρfBρ

−1(x, e2πiu) = (Bx, e2πiu) does not change the fram-
ing. But if r = 2 then A = diag[−1,−1, 1] and there is more choice for B .
In particular, B = diag[1,−1, 1] acts dihedrally: ρ−uBρu = ρ−2uB , and so
ρ−ufBρu(x, e2πiu) = (ρ−ux, e

2πiu), i.e., ρ−ufBρu is the twist τ .

If BAB−1 = B−1 then fB([x, u]) = [Bx, 1−u]. In this case ρfBρ
−1(x, e2πiu) =

(ρ−s(1−u)/rBρsu/rx, e
−2πiu). If r ≥ 3 then B must act as a reflection in the

first two coordinates, so ρfBρ
−1(x, e2πiu) = (ρ−s/rBx, e

−2πiu) does not change
the framing. But if r = 2 we may take B = I , and then ρfBρ

−1(x, e2πiu) =
(ρ(u−1)/2ρu/2x, e

−2πiu) = (ρ(u− 1
2

)x, e
−2πiu), which after reversing the S1 factor

is just τ .

We can sometimes show that reflexivity depends only on the knot manifold,
and not the weight orbit.

Geometry & Topology Monographs, Volume 5 (2002)



344 Chapter 18: Reflexivity

Lemma 18.2 Let K be a fibred 2-knot. If there is a self homeomorphism
h of X(K) which is the identity on one fibre and such that h|∂X = τ then
all knots K̃ with M(K̃) ∼= M(K) are reflexive. In particular, this is so if the
monodromy of K has order 2.

Proof We may extend h to a self-homeomorphism ĥ of M(K) which fixes
the surgery cocore C ∼= S1 . After an isotopy of h, we may assume that it is
the identity on a product neighbourhood N = F̂ × [−ε, ε] of the closed fibre.
Since any weight element for π may be represented by a section γ of the bundle
which coincides with C outside N , we may use h to change the framing of the
normal bundle of γ for any such knot. Hence every such knot is reflexive.

If the monodromy θ has order 2 the diffeomorphism h of F̂ ×θ S1 given by
h([x, s]) = [x, 1−s] which “turns the bundle upside down” changes the framing
of the normal bundle and fixes one fibre.

This explains why r = 2 is special. The reflexivity of 2-twist spins is due to
Litherland. See the footnote to [Go76] and also [Mo83, Pl84’].

The hypotheses in the next lemma seem very stringent, but are satisfied in our
applications below, where we shall seek a homeomorphism F̃ ∼= R3 which gives
convenient representations of the maps in question, and then use an isotopy
from the identity to θ̃ to identify M(θ̃) with R3 × S1 .

Lemma 18.3 Suppose that F̃ ∼= R3 and that h is an orientation preserving
self-homeomorphism of M which which fixes C pointwise. If h∗|π′ is induced
by a basepoint preserving self-homeomorphism ω of F which commutes with θ
and if there is an isotopy γ from id

F̃
to θ̃ which commutes with the basepoint

preserving lift ω̃ then h does not change the framing.

Proof Let h be an orientation preserving self homeomorphism of M which
fixes C pointwise. Suppose that h changes the framing. We may assume that
h|R is a bundle automorphism and hence that it agrees with the radial extension
of τ from ∂R = S2 × S1 to R. Since h fixes the meridian, h∗θ∗ = θ∗h∗ . Let
ω be a basepoint preserving self diffeomorphism of F which induces h∗|ν and
commutes with θ . Then we may define a self diffeomorphism hω of M by
hω([x, s]) = [ω(x), s] for all [x, s] in M = F ×θ S1 .

Since hω∗ = h∗ and M is aspherical, h and hω are homotopic. Therefore the
lifts ĥ and ĥω to basepoint preserving maps of M̂ are properly homotopic.
Let ω̃ be the lift of ω to a basepoint preserving map of F̃ . Note that ω̃ is
orientation preserving, and so is isotopic to id

F̃
.
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Given an isotopy γ from γ(0) = id
F̃

to γ(1) = θ̃ we may define a diffeomor-

phism ργ : F̃ × S1 → M̂ by ργ(x, e2πit) = [γ(t)(x), t]. Now ρ−1
γ ĥωργ(l, [u]) =

(γ(u)−1ω̃γ(u)(l), [u]). Thus if γ(t)ω̃ = ω̃γ(t) for all t then ρ−1
γ ĥωργ = ω̃× idS1 ,

and so ĥ is properly homotopic to id
M̂

.

Since the radial extension of τ and ρ−1
γ ĥργ agree on D3×S1 they are properly

homotopic on R3 × S1 and so τ is properly homotopic to the identity. Now τ
extends uniquely to a self diffeomorphism τ of S3 × S1 , and any such proper
homotopy extends to a homotopy from τ to the identity. Let p be the projec-
tion of S3 × S1 onto S3 . The suspension of pτ , restricted to the top cell of
Σ(S3 × S1) = S2 ∨ S4 ∨ S5 is the nontrivial element of π5(S4), whereas the
corresponding restriction of the suspension of p is trivial. (See [CS76, Go76]).
This is contradicts pτ ∼ p. Therefore h cannot change the framing.

Note that in general there is no isotopy from idF to θ .

We may use a similar argument to give a sufficient condition for knots con-
structed from mapping tori to be −amphicheiral. As we shall not use this
result below we shall only sketch a proof.

Lemma 18.4 Let F be a closed orientable 3-manifold with universal cover
F̃ ∼= R3 . Suppose now that there is an orientation reversing self diffeomorphism
ψ : F → F which commutes with θ and which fixes P . If there is a path γ
from I to Θ = Dθ(P ) which commutes with Ψ = Dψ(P ) then each of K and
K∗ is −amphicheiral.

Proof The map ψ induces an orientation reversing self diffeomorphism of M
which fixes C pointwise. We may use such a path γ to define a diffeomorphism
ργ : F̃ × S1 → M̃ . We may then verify that ρ−1

γ ĥργ is isotopic to Ψ × idS1 ,

and so ρ−1
γ ĥργ |∂D3×S1 extends across S2 ×D2 .

18.3 Cappell-Shaneson knots

Let A ∈ SL(3,Z) be such that det(A − I) = ±1, and let K be the Cappell-
Shaneson knot determined by A. Inversion in each fibre of M(K) fixes a
circle, and passes to an orientation reversing involution of (S4,K). Hence K is
strongly −amphicheiral. However, it is not invertible, since ∆K(t) = det(tI−A)
is not symmetric.

Cappell and Shaneson showed that if none of the eigenvalues of A are negative
then the knot is not reflexive. In a footnote they observed that if A has negative
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eigenvalues the two knots obtained from A are equivalent if and only if there
is a matrix B in GL(3,Z) such that AB = BA and the restriction of B to
the negative eigenspace of A has negative determinant. We shall translate this
matrix criterion into one involving algebraic numbers, and settle the issue by
showing that up to change of orientations there is just one reflexive Cappell-
Shaneson 2-knot.

We note first that on replacing A by A−1 (which corresponds to changing the
orientation of the knot), if necessary, we may assume that det(A− I) = +1.

Theorem 18.5 Let A ∈ SL(3,Z) satisfy det(A− I) = 1. If A has trace −1
then the corresponding Cappell-Shaneson knot is reflexive, and is determined
up to change of orientations among all 2-knots with metabelian group by its
Alexander polynomial t3 + t2 − 2t − 1. If the trace of A is not −1 then the
corresponding Cappell-Shaneson knots are not reflexive.

Proof Let a be the trace of A. Then the characteristic polynomial of A is
∆a(t) = t3−at2 +(a−1)t−1 = t(t−1)(t−a+1)−1. It is easy to see that ∆a is
irreducible; indeed, it is irreducible modulo (2). Since the leading coefficient of
∆a is positive and ∆a(1) < 0 there is at least one positive eigenvalue. If a > 5
all three eigenvalues are positive (since ∆a(0) = −1, ∆a(

1
2) = (2a− 11)/8 > 0

and ∆a(1) = −1). If 0 ≤ a ≤ 5 there is a pair of complex eigenvalues.

Thus if a ≥ 0 there are no negative eigenvalues, and so γ(s) = sA + (1 − s)I
(for 0 ≤ s ≤ 1) defines an isotopy from I to A in GL(3,R). Let h be a self
homeomorphism of (M,C) such that h(∗) = ∗. We may assume that h is
orientation preserving and preserves the meridian. Since M is aspherical h is
homotopic to a map hB , where B ∈ SL(3,Z) commutes with A. Applying
Lemma 18.3 with θ̃ = A and ω̃ = B , we see that h must preserve the framing
and so K is not reflexive.

We may assume henceforth that a < 0. There are then three real roots λi , for
1 ≤ i ≤ 3, such that a − 1 < λ3 < a < λ2 < 0 < 1 < λ1 < 2. Note that the
products λi(λi − 1) are all positive, for 1 ≤ i ≤ 3.

Since the eigenvalues of A are real and distinct there is a matrix P in GL(3,R)
such that Ã = PAP−1 is the diagonal matrix diag[λ1, λ2, λ3]. If B in GL(3,Z)
commutes with A then B̃ = PBP−1 commutes with Ã and hence is also
diagonal (as the λi are distinct). On replacing B by −B if necessary we may
assume that det(B) = +1. Suppose that B̃ = diag[β1, β2, β3]. We may isotope
PAP−1 linearly to diag[1,−1,−1]. If β2β3 > 0 for all such B then PBP−1

is isotopic to I through block diagonal matrices and we may again conclude
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that the knot is not reflexive. On the other hand if there is such a B with
β2β3 < 0 then the knot is reflexive. Since det(B) = +1 an equivalent criterion
for reflexivity is that β1 < 0.

The roots of ∆−1(t) = t3+t2−2t−1 are the Galois conjugates of ζ7+ζ−1
7 , where

ζ7 is a primitive 7th root of unity. The discriminant of ∆−1(t) is 49, which is
not properly divisible by a perfect square, and so Z[t]/(∆−1(t)) is the full ring
of integers in the maximal totally real subfield of the cyclotomic field Q(ζ7).
As this ring has class number 1 it is a PID. Hence any two matrices in SL(3,Z)
with this characteristic polynomial are conjugate, by Theorem 1.4. Therefore
the knot group is unique and determines K up to Gluck reconstruction and
change of orientations, by Theorem 17.5. Since B = −A − I has determinant
1 and β1 = −λ1 − 1 < 0, the corresponding knot is reflexive.

Suppose now that a < −1. Let F be the field Q[t]/(∆a(t)) and let λ be
the image of X in F . We may view Q3 as a Q[t]-module and hence as a
1-dimensional F -vector space via the action of A. If B commutes with A
then it induces an automorphism of this vector space which preserves a lattice
and so determines a unit u(B) in OF , the ring of integers in F . Moreover
det(B) = NF/Qu(B). If σ is the embedding of F in R which sends λ to λ1

and P and B are as above we must have σ(u(B)) = β1 .

Let U = O×F be the group of all units in OF , and let Uν , Uσ , U+ and U2

be the subgroups of units of norm 1, units whose image under σ is positive,
totally positive units and squares, respectively. Then U ∼= Z2 × {±1}, since
F is a totally real cubic number field, and so [U : U2] = 8. The unit −1 has
norm −1, and λ is a unit of norm 1 in Uσ which is not totally positive. Hence
[U : Uν ] = [Uν ∩Uσ : U+] = 2. It is now easy to see that there is a unit of norm
1 that is not in Uσ (i.e., Uν 6= Uν ∩ Uσ ) if and only if every totally positive
unit is a square (i.e., U+ = U2 ).

The image of t(t − 1) in F is λ(λ − 1), which is totally positive and is a unit
(since t(t − 1)(t − a + 1) = 1 + ∆a(t)). Suppose that it is a square in F .
Then φ = λ − (a − 1) is a square (since λ(λ − 1)(λ − (a − 1)) = 1). The
minimal polynomial of φ is g(Y ) = Y 3 + (2a − 3)Y 2 + (a2 − 3a + 2)Y − 1. If
φ = ψ2 for some ψ in F then ψ is a root of h(Z) = g(Z2) and so the minimal
polynomial of ψ divides h. This polynomial has degree 3 also, since Q(ψ) = F ,
and so h(Z) = p(Z)q(Z) for some polynomials p(Z) = Z3 + rZ2 + sZ + 1 and
q(Z) = Z3 + r′Z2 + s′Z − 1 with integer coefficients. Since the coefficients
of Z and Z5 in h are 0 we must have r′ = −r and s′ = −s. Comparing
the coefficients of Z2 and Z4 then gives the equations 2s − r2 = 2a − 3 and
s2 − 2r = a2 − 3a+ 2. Eliminating s we find that r(r3 + (4a− 6)r − 8) = −1
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and so 1/r is an integer. Hence r = ±1 and so a = −1 or 3, contrary to
hypothesis. Thus there is no such matrix B and so the Cappell-Shaneson knots
corresponding to A are not reflexive.

18.4 The Hantzsche-Wendt flat 3-manifold

In §2 of Chapter 8 we determined the automorphisms of the flat 3-manifold
groups from a purely algebraic point of view. In this chapter we use instead the
geometric approach, to study fibred 2-knots with closed fibre the Hantzsche-
Wendt flat 3-manifold, HW = G6\R3 .

The group of affine motions of 3-space is Aff(3) = R3 o GL(3,R). The ac-
tion is given by (v,A)(x) = Ax + v , for all x ∈ R3 . Therefore (v,A)(w,B) =
(v + Aw,AB). Let {e1, e2, e3} be the standard basis of R3 , and let X,Y, Z ∈
GL(3,Z) be the diagonal matrices X = diag[1,−1,−1], Y = diag[−1, 1,−1]
and Z = diag[−1,−1, 1]. Let x = (1

2e1, X), y = (1
2(e2 − e3), Y ) and z =

(1
2(e1 − e2 + e3), Z). Then the subgroup of Aff(3) generated by x and y

is G6 . The translation subgroup T = G6 ∩ R3 is free abelian, with basis
{x2, y2, z2}. The holonomy group H = {I,X, Y, Z} ∼= (Z/2Z)2 is the im-
age of G6 in GL(3,R). (We may clearly take {1, x, y, z} as coset representa-
tives for H in G6 . The commutator subgroup G′6 is free abelian, with basis
{x4, y4, x2y2z−2}. Thus 2T < G′6 < T , T/G′6

∼= (Z/2Z)2 and G′6/2T
∼= Z/2Z .

Every automorphism of the fundamental group of a flat n-manifold is in-
duced by conjugation in Aff(n), by a theorem of Bieberbach. In particu-
lar, Aut(G6) ∼= N/C and Out(G6) ∼= N/CG6 , where C = CAff(3)(G6) and
N = NAff(3)(G6).

If (v,A) ∈ Aff(3) commutes with all elements of G6 then AB = BA for all
B ∈ H , so A is diagonal, and v + Aw = w + Bv for all (w,B) ∈ G6 . Taking
B = I , we see that Aw = w for all w ∈ Z3 , so A = I , and then v = Bv for all
B ∈ H , so v = 0. Thus C = 1, and so Aut(G6) ∼= N .

If (v,A) ∈ N then A ∈ NGL(3,R)(H) and A preserves T = Z3 , so A ∈
NGL(3,Z)(H). Therefore W = AXA−1 is in H . Hence WA = AX and so
WAe1 = Ae1 is up to sign the unique basis vector fixed by W . Applying
the same argument to AY A−1 and AZA−1 , we see that NGL(3,R)(H) is the
group of “signed permutation matrices”, generated by the diagonal matrices
and permutation matrices. Let

P =

0 1 0
1 0 0
0 0 −1

 and J =

0 1 0
0 0 −1
1 0 0

 .
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If A is a diagonal matrix in GL(3,Z) then (0, A) ∈ N . Thus ã = (0,−X),
b̃ = (0,−Y ) and c̃ = (0,−Z) are in N . It is easily seen that N ∩ R3 = 1

2Z
3 ,

with basis d̃ = (1
2e1, I), ẽ = (1

2e2, I) and f̃ = (1
2e3, I). It is also easily verified

that ĩ = (−1
4e3, P ) and j̃ = (1

4(e1 − e2), J) are in N , and that N is generated

by {ã, b̃, c̃, d̃, ẽ, f̃ , ĩ, j̃}. These generators correspond to the generators given in
§2 of Chapter 8, and we shall henceforth drop the tildes.

The natural action of N on R3 is isometric, since NGL(3,R)(H) < O(3), and
so N/G6 acts isometrically on the orbit space HW . In fact every isometry
of HW lifts to an affine transformation of R3 which normalizes G6 , and so
Isom(HW ) ∼= Out(G6). The isometries which preserve the orientation are
represented by pairs (v,A) with det(A) = 1.

Since G6 is solvable and H1(G6) ∼= (Z/4Z)2 , an automorphism (v,A) of G6 is
meridianal if and only if its image in Aut(G6/T ) ∼= GL(2, 2) has order 3. Thus
its image in Out(G6) is conjugate to [j], [j]−1 , [ja] or [jb]. The latter pair are
orientation-preserving and each is conjugate to its inverse (via [i]). However
(ja)3 = 1 while (jb)3 = de−1f , so [jb]3 = [ab] 6= 1. Thus [ja] is not conjugate
to [jb]± , and the knot groups G(+) = G6 o[ja] Z and G(−) = G6 o[jb] Z
are distinct. The corresponding knot manifolds are the mapping tori of the
isometries of HW determined by [ja] and [jb], and are flat 4-manifolds.

18.5 2-knots with group G(±)

We shall use the geometry of flat 3-manifolds to show that 2-knots with group
G(+) or G(−) are not reflexive, and that among these knots only τ341, τ34∗1
and the knots obtained by surgery on the section of M([jb]) defined by γ|[0,1]

admit orientation-changing symmetries.

Theorem 18.6 Let K be a 2-knot with group π ∼= G(+) or G(−). Then K
is not reflexive.

Proof The knot manifold M = M(K) is homeomorphic to the flat 4-manifold
R4/π , by Theorem 8.1 and the discussion in Chapter 16. The weight orbit of K
may be represented by a geodesic simple closed curve C through the basepoint
P of M . Let γ be the image of C in π . Let h be a self-homeomorphism
of M which fixes C pointwise. Then h is based-homotopic to an affine dif-
feomorphism α, and then α∗(γ) = h∗(γ) = γ . Let M̂ ∼= R3 × S1 be the
covering space corresponding to the subgroup 〈γ〉 ∼= Z , and fix a lift Ĉ . A
homotopy from h to α lifts to a proper homotopy between the lifts ĥ and α̂
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to self-homeomorphisms fixing Ĉ . Now the behaviour at ∞ of these maps is
determined by the behaviour near the fixed point sets, as in Lemma 18.3. Since
the affine diffeomorphism α̂ does not change the framing of the normal to Ĉ it
follows that ĥ and h do not change the normal framings either.

The orthogonal matrix −JX is a rotation though 2π
3 about the axis in the

direction e1 + e2 − e3 . The fixed point set of the isometry [ja] of HW is the
image of the line λ(s) = s(e1 + e2 − e3)− 1

4e2 . The knots corresponding to the
canonical section are τ341 and its Gluck reconstruction τ34∗1 .

Lemma 18.7 If n = 0 then CAut(G6)(ja) and NAut(G6)(〈ja〉) are generated
by {ja, def−1, abce} and {ja, ice, abce}, respectively. The subgroup which pre-
serves the orientation of R3 is generated by {ja, ice}.

If n 6= 0 then NAut(G6)(〈d2nja〉) = CAut(G6)(d
2nja), and is generated by

{d2nja, def−1}. This subgroup acts orientably on R3 .

Proof This is straightforward. (Note that abce = j3 and def−1 = (ice)2 .)

Lemma 18.8 The mapping torus M([ja]) has an orientation reversing invo-
lution which fixes a canonical section pointwise, and an orientation reversing
involution which fixes a canonical section setwise but reverses its orientation.
There is no orientation preserving involution of M which reverses the orienta-
tion of any section.

Proof Let ω = abcd−1f = abce(ice)−2, and let p = λ(1
4) = 1

4(e1 − e3). Then
ω = (2p,−I3), ω2 = 1, ωja = jaω and ω(p) = ja(p) = p. Hence Ω = m([ω]) is
an orientation reversing involution of M([ja]) which fixes the canonical section
determined by the image of p in HW .

Let Ψ([f, s]) = [[iab](f), 1 − s] for all [f, s] ∈ M([ja]). This is well-defined,
since (iab)ja(iab)−1 = (ja)−1 , and is an involution, since (iab)2 = 1. It is
clearly orientation reversing, and since iab(λ(1

8)) = λ(1
8) it reverses the section

determined by the image of λ(1
8) in HW .

On the other hand, 〈ja, ice〉 ∼= Z/3Z o−1 Z , and the elements of finite order in
this group do not invert ja.

Theorem 18.9 Let K be a 2-knot with group G(+) and weight element
u = x2nt, where t is the canonical section. If n = 0 then K is strongly
±amphicheiral, but is not strongly invertible. If n 6= 0 then K is neither
amphicheiral nor invertible.
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Proof Suppose first that n = 0. Since −JX has order 3 it is conjugate in

GL(3,R) to a block diagonal matrix Λ(−JX)Λ−1 =
(

1 0
0 R( 2π

3
)

)
, where R(θ) ∈

GL(2,R) is rotation through θ . Let Rs = R(2π
3 s) and ξ(s) = ((I3 −As)p,As),

where As = Λ−1
(

1 0
0 Rs

)
Λ, for s ∈ R. Then ξ is a 1-parameter subgroup of

Aff(3), such that ξ(s)(p) = p and ξ(s)ω = ωξ(s) for all s. In particular, ξ|[0,1]

is a path from ξ(0) = 1 to ξ(1) = ja in Aff(3). Let Ξ : R3 × S1 →M(ja) be
the homeomorphism given by Ξ(v, e2πis) = [ξ(v), s] for all (v, s) ∈ R3 × [0, 1].
Then Ξ−1ΩΞ = ω × idS1 and so Ω does not change the framing. Therefore K
is strongly −amphicheiral.

Similarly, if we let ζ(s) = ((I3 − As)λ(1
8), As) then ζ(s)(λ(1

8)) = λ(1
8) and

iabζ(s)iab = ζ(s)−1 , for all s ∈ R, and ζ|[0,1] is a path from 1 to ja in Aff(3).
Let Z : R3 × S1 → M(ja) be the homeomorphism given by Z(v, e2πis) =
[ζ(s)(v), s] for all (v, s) ∈ R3 × S1 . Then

Z−1ΨZ(v, z) = (ζ(1− s)−1iabζ(s)(v), z−1) = (ζ(1− s)−1ζ(s)−1iab(v), z−1)

= ((ja)−1iab(v), z−1)

for all (v, z) ∈ R3 × S1 . Hence Ψ does not change the framing, and so K is
strongly +amphicheiral. However it is not strongly invertible, by Lemma 18.15.

If n 6= 0 every self-homeomorphism h of M(K) preserves the orientation and
fixes the meridian, by Lemma 18.7, and so K is neither amphicheiral nor in-
vertible.

A similar analysis applies when the knot group is G(−), i.e., when the merid-
ianal automorphism is jb = (1

4(e1 − e2),−JY ). (The orthogonal matrix −JY
is now a rotation though 2π

3 about the axis in the direction e1 − e2 + e3 .) All
2-knots with group G(−) are fibred, and the characteristic map [jb] has finite
order, but none of these knots are twist-spins, by Corollary 16.12.1.

Lemma 18.10 If n = 0 then CAut(G6)(jb) and NAut(G6)(〈jb〉) are gener-
ated by {jb} and {jb, i}, respectively. If n 6= 0 then NAut(G6)(〈d2njb〉) =
CAut(G6)(d

2njb) and is generated by {d2njb, de−1f}. These subgroups act ori-
entably on R3 . �

The isometry [jb] has no fixed points in G6\R3 . We shall defined a preferred
section as follows. Let γ(s) = 2s−1

8 (e1 − e2) − 1
8e3 , for s ∈ R. Then γ(1) =

jb(γ(0)), and so γ|[0,1] defines a section of p[jb] . We shall let the image of
(γ(0), 0) be the basepoint for M([jb]).
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Theorem 18.11 Let K be a 2-knot with group G(−) and weight element
u = x2nt, where t is the canonical section. If n = 0 then K is strongly
+amphicheiral but not invertible. If n 6= 0 then K is neither amphicheiral nor
invertible.

Proof Suppose first that n = 0. Since i(γ(s)) = γ(1 − s) for all s ∈ R
the section defined by γ|[0,1] is fixed setwise and reversed by the orientation
reversing involution [f, s] 7→ [[i](f), 1− s]. Let Bs be a 1-parameter subgroup
of O(3) such that B1 = jb. Then we may define a path from 1 to jb in
Aff(3) by setting ζ(s) = ((I3 −Bs)γ(s), Bs) for s ∈ R. We see that ζ(0) = 1,
ζ(1) = jb, ζ(s)(γ(s)) = γ(s) and iζ(s)i = ζ(s)−1 for all 0 ≤ s ≤ 1. As in
Theorem 18.9 it follows that the involution does not change the framing and so
K is strongly +amphicheiral.

The other assertions follow from Lemma 18.10, as in Theorem 18.9.

18.6 Nil3-fibred knots

The 2-knot groups π with π′ a Nil3 -lattice were determined in Theorems 14
and 15 of Chapter 16. The group Nil = Nil3 is a subgroup of SL(3,R) and is
diffeomorphic to R3 , with multiplication given by

[r, s, t][r′, s′, t′] = [r + r′, s+ s′, rs′ + t+ t′].

(See Chapter 7). The kernel of the natural homomorphism from AutLie(Nil) to
AutLie(R

2) = GL(2,R) induced by abelianization (Nil/Nil′ ∼= R2 ) is isomor-
phic to HomLie(Nil, ζNil) ∼= R2 . The set underlying the group AutLie(Nil)
is the cartesian product GL(2,R)×R2 , with (A,µ) = (( a cb d ) , (m1,m2)) acting
via (A,µ)([r, s, t]) =

[ar + cs, br + ds,m1r +m2s+ (ad− bc)t+ bcrs+
ab

2
r(r − 1) +

cd

2
s(s− 1)].

The Jacobian of such an automorphism is (ad − bc)2 , and so it is orientation
preserving. The product of (A,µ) with (B, ν) = (

(
g j
h k

)
, (n1, n2)) is

(A,µ) ◦ (B, ν) = (AB,µB + det(A)ν +
1

2
η(A,B)),

where

η(A,B) = (abg(1− g) + cdh(1− h)− 2bcgh, abj(1− j) + cdk(1− k)− 2bcjk).

In particular, AutLie(Nil) is not a semidirect product of GL(2,R) with R2 .
For each q > 0 in Z the stabilizer of Γq in AutLie(Nil) is GL(2,Z)× (q−1Z2),
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which is easily verified to be Aut(Γq). (See §7 of Chapter 8). Thus every
automorphism of Γq extends to an automorphism of Nil . (This is a special
case of a theorem of Malcev on embeddings of torsion-free nilpotent groups in
1-connected nilpotent Lie groups - see [Rg]).

Let the identity element [0, 0, 0] and its images in Nq = Nil/Γq be the base-
points for Nil and for these coset spaces. The extension of each automorphism
of Γq to Nil induces a basepoint and orientation preserving self homeomor-
phism of Nq .

If K is a 2-knot with group π = πK and π′ ∼= Γq then M = M(K) is home-
omorphic to the mapping torus of such a self homeomorphism of Nq . (In fact,
such mapping tori are determined up to diffeomorphism by their fundamental
groups). Up to conjugacy and involution there are just three classes of merid-
ianal automorphisms of Γ1 and one of Γq , for each odd q > 1. (See Theorem
16.13). Since π′′ ≤ ζπ′ it is easily seen that π has just two strict weight orbits.
Hence K is determined up to Gluck reconstruction and changes of orientation
by π alone, by Theorem 17.4. (Instead of appealing to 4-dimensional surgery to
realize automorphisms of π by basepoint and orientation preserving self home-
omorphisms of M we may use the S1 -action on Nq to construct such a self
homeomorphism which in addition preserves the fibration over S1 ). We shall
show that the knots with π′ ∼= Γ1 and whose characteristic polynomials are
X2 − X + 1 and X2 − 3X + 1 are not reflexive, while all other 2-knots with
π′ ∼= Γq for some q > 1 are reflexive.

Lemma 18.12 Let K be a fibred 2-knot with closed fibre N1 and Alexander
polynomial X2 − 3X + 1. Then K is +amphicheiral.

Proof Let Θ = (A, (0, 0)) be the automorphism of Γ1 with A = ( 1 1
1 2 ). Then

Θ induces a basepoint and orientation preserving self diffeomorphism θ of N1 .
Let M = N1 ×θ S1 and let C be the canonical section. A basepoint and
orientation preserving self diffeomorphism ψ of N1 such that ψθψ−1 = θ−1

induces a self diffeomorphism of M which reverses the orientations of M and
C . If moreover it does not twist the normal bundle of C then each of the
2-knots K and K∗ obtained by surgery on C is +amphicheiral. We may check
the normal bundle condition by using an isotopy from Θ to idNil to identify
M̂ with Nil × S1 . Thus we seek an automorphism Ψ = (B,µ) of Γ1 such
that ΨΘtΨ

−1 = Θ−1
t , or equivalently ΘtΨΘt = Ψ, for some isotopy Θt from

Θ0 = idNil to Θ1 = Θ.

Let P =
(

0 −1
1 0

)
. Then PAP−1 = A−1 , or APA = P . It may be checked

that the equation Θ(P, µ)Θ = (P, µ) reduces to a linear equation for µ with
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unique solution µ = −(2, 3). Let Ψ = (P,−(2, 3)) and let h be the induced
diffeomorphism of M .

As the eigenvalues of A are both positive it lies on a 1-parameter subgroup,
determined by L = ln(A) = m

(
1 −2
−2 −1

)
, where m = (ln((3 +

√
5)/2))/

√
5. Now

PLP−1 = −L and so P exp(tL)P−1 = exp(−tL) = (exp(tL)−1 , for all t. We
seek an isotopy Θt = (exp(tL), vt) from idNil to Θ such that ΘtΨΘt = Ψ for
all t. It is easily seen that this imposes a linear condition on vt which has an
unique solution, and moreover v0 = v1 = (0, 0).

Now ρ−1hρ(x, u) = (Θ1−uΨΘu(x), 1 − u) = (ΨΘ1−uΘu, 1 − u). The loop u 7→
Θ1−uΘu is freely contractible in AutLie(Nil), since exp((1 − u)L) exp(uL) =
exp(L). It follows easily that h does not change the framing of C .

Instead of using the one-parameter subgroup determined by L = ln(A) we may
use the polynomial isotopy given by At =

(
1 t
t 1+t2

)
, for 0 ≤ t ≤ 1. A similar

argument could be used for the polynomial X2−X+1, which is realized by τ631

and its Gluck reconstruction. On the other hand, the polynomial X2 +X − 1
is not symmetric, and so the corresponding knots are not +amphicheiral.

Theorem 18.13 Let K be a fibred 2-knot with closed fibre Nq .

(1) If the fibre is N1 and the monodromy has characteristic polynomial X2−
X + 1 or X2 − 3X + 1 then K is not reflexive;

(2) If the fibre is Nq (q odd) and the monodromy has characteristic polyno-
mial X2 ±X − 1 then K is reflexive.

Proof As τ631 is shown to be not reflexive in §7 below, we shall concentrate
on the knots with polynomial X2 − 3X + 1, and then comment on how our
argument may be modified to handle the other cases.

Let Θ, θ and M = N1 ×θ S1 be as in Lemma 18.12, and let M̂ = Nil ×Θ S1

be as in §1. We shall take [0, 0, 0, 0] as the basepoint of M̂ and its image in M
as the basepoint there.

Suppose that Ω = (B, ν) is an automorphism of Γ1 which commutes with
Θ. Since the eigenvalues of A are both positive the matrix A(u) = uA +
(1 − u)I is invertible and A(u)B = BA(u), for all 0 ≤ u ≤ 1. We seek a
path of the form γ(u) = (A(u), µ(u)) with commutes with Ω. Equating the
second elements of the ordered pairs γ(u)Ω and Ωγ(u), we find that µ(u)(B −
det(B)I) is uniquely determined. If det(B) is an eigenvalue of B then there is
a corresponding eigenvector ξ in Z2 . Then BAξ = ABξ = det(B)Aξ , so Aξ
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is also an eigenvector of B . Since the eigenvalues of A are irrational we must
have B = det(B)I and so B = I . But then ΩΘ = (A, νA) and ΘΩ = (A, ν),
so ν(A − I) = 0 and hence ν = 0. Therefore Ω = idNil and there is no
difficulty in finding such a path. Thus we may assume that B − det(B)I is
invertible, and then µ(u) is uniquely determined. Moreover, by the uniqueness,
when A(u) = A or I we must have µ(u) = (0, 0). Thus γ is an isotopy from
γ(0) = idNil to γ(1) = Θ (through diffeomorphisms of Nil) and so determines

a diffeomorphism ργ from R3 × S1 to M̂ via ργ(r, s, t, [u]) = [γ(u)([r, s, t]), u].

A homeomorphism f from Σ to Στ carrying K to Kτ (as unoriented subman-
ifolds) extends to a self homeomorphism h of M which leaves C invariant, but
changes the framing. We may assume that h preserves the orientations of M
and C , by Lemma 18.12. But then h must preserve the framing, by Lemma
18.3. Hence there is no such homeomorphism and such knots are not reflexive.

If π ∼= πτ631 then we may assume that the meridianal automorphism is Θ =
(
(

1 −1
1 0

)
, (0, 0)). As an automorphism of Nil , Θ fixes the centre pointwise, and

it has order 6. Moreover (( 0 1
1 0 ) , (0, 0) is an involution of Nil which conjugates

Θ to its inverse, and so M admits an orientation reversing involution. It can
easily be seen that any automorphism of Γ1 which commutes with Θ is a power
of Θ, and the rest of the argument is similar.

If the monodromy has characteristic polynomial X2 ± X − 1 we may assume
that the meridianal automorphism is Θ = (D, (0, 0)), where D = ( 1 1

1 0 ) or its
inverse. As Ω = (−I, (−1, 1)) commutes with Θ (in either case) it determines
a self homeomorphism hω of M = Nq ×θ S1 which leaves the meridianal circle
{0} × S1 pointwise fixed. The action of hω on the normal bundle may be

detected by the induced action on M̂ . In each case there is an isotopy from Θ
to Υ = (

(
1 0
0 −1

)
, (1, 0)) which commutes with Ω, and so we may replace M̂ by

the mapping torus Nil×Υ S
1 . (Note also that Υ and Ω act linearly under the

standard identification of Nil with R3 ).

Let R(u) ∈ SO(2) be rotation through πu radians, and let v(u) = ( 0
u ), for

0 ≤ u ≤ 1. Then γ(u) =
(

1 0
v(u) R(u)

)
defines a path γ in SL(3,R) from

γ(0) = idNil to γ(1) = Υ which we may use to identify the mapping torus of
Υ with R3 × S1 . In the “new coordinates” hω acts by sending (r, s, t, e2πiu)
to (γ(u)−1Ωγ(u)(r, s, t), e2πiu). The loop sending e2πiu in S1 to γ(u)−1Ωγ(u)
in SL(3,R) is freely homotopic to the loop γ1(u)−1Ω1γ1(u), where γ1(u) =(

1 0
0 R(u)

)
and Ω1 = diag[−1,−1, 1]. These loops are essential in SL(3,R),

since Ω1γ1(u)−1Ω1γ1(u) =
(

1 0
0 R(2u)

)
. Thus hω induces the twist τ on the
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normal bundle of the meridian, and so the knot is equivalent to its Gluck
reconstruction.

We may refine one aspect of Litherland’s observations on symmetries of twist
spins [Li85] as follows. Let K be a strongly invertible 1-knot. Then there is
an involution h which rotates S3 about an unknotted axis A and such that
h(K) = K and A∩K = S0 . Let P ∈ A∩K and let B be a small ball about P
such that h(B) = B . Define an involution H of S4 = ((S3\B)×S1)∪(S2×D2)
by H(s, θ) = (ρ−rθhρ−rθ(s),−θ) for (S, θ) ∈ (S3 \ B) × S1 and H(s, z) =
(h(s), z̄) for (s, z) ∈ S2 ×D2 . Then H(τrK) = τrK and so τrK is strongly
+amphicheiral.

Since the trefoil knot 31 is strongly invertible τ631 is strongly +amphicheiral.
The involution of X(τ631) extends to an involution of M(τ631) which fixes the
canonical section C pointwise and does not change the framing of the normal
bundle, and hence (τ631)∗ is also +amphicheiral.

The other 2-knot groups π with π′ a Nil3 -lattice are as in Theorem 16.15.

Theorem 18.14 Let K be a 2-knot with group π(e, η). Then K is reflexive.
If K = τ2k(e, η) it is strongly +amphicheiral, but no other 2-knot with this
group is +amphicheiral.

Proof The first assertion follows from Lemma 18.2, while τ2k(e, η) is strongly
+amphicheiral since the Montesinos knot k(e, η) is strongly invertible. (See
the paragraph just above.)

Let t be the image of the canonical section in π . Every strict weight orbit
representing the preferred meridian in π/π′ contains an unique element of the
form unt, by Theorem 16.15. If n 6= 0 then unt is not conjugate to its inverse.
Hence K is not +amphicheiral.

The geometric argument used in [Hi11’] for the knots with group π(e, η) appears
to break down for the 2-knots with groups as in part (2) of Theorem 16.15, and
the question of reflexivity is open for these.

Automorphisms of Nil3 -lattices preserve orientation, and so no fibred 2-knot
with closed fibre a Nil3 -manifold is −amphicheiral or invertible.

It has been shown that for many of the Cappell-Shaneson knots at least one of
the (possibly two) corresponding smooth homotopy 4-spheres is the standard
S4 [AR84]. Can a similar study be made in the Nil cases?
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18.7 Other geometrically fibred knots

We shall assume henceforth throughout this section that k is a prime simple
1-knot, i.e., that k is either a torus knot or a hyperbolic knot.

Lemma 18.15 Let A and B be automorphisms of a group π such that AB =
BA, A(h) = h for all h in ζπ and the images of Ai and B in Aut(π/ζπ) are
equal. Let [A] denote the induced automorphism of π/π′ . If I−[A] is invertible
in End(π/π′) then B = Ai in Aut(π).

Proof There is a homomorphism ε : π → ζπ such that BA−i(x) = xε(x) for
all x in π . Moreover εA = ε, since BA = AB . Equivalently, [ε](I − [A]) = 0,
where [ε] : π/π′ → ζπ is induced by ε. If I − [A] is invertible in End(π/π′)
then [ε] = 0 and so B = Ai .

Let p = ap′ , q = bq′ and r = p′q′c, where (p, q) = (a, r) = (b, r) = 1. Let A de-
note both the canonical generator of the Z/rZ action on the Brieskorn manifold
M(p, q, r) given by A(u, v, w) = (u, v, e2πi/rw) and its effect on π1(M(p, q, r)).
The image of the Seifert fibration of M(p, q, r) under the projection to the orbit
space M(p, q, r)/〈A〉 ∼= S3 is the Seifert fibration of S3 with one fibre of multi-
plicity p and one of multiplicity q . The quotient of M(p, q, r) by the subgroup
generated by Ap

′q′ may be identified with M(p, q, p′q′). We may display the
factorization of these actions as follows:

M(p, q, r)
/S1

−−−−→ P 2(p, q, r)y y
M(p, q, p′q′)

/S1

−−−−→ P 2(p, q, p′q′)y y
(S3, (p, q))

/S1

−−−−→ S2

Sitting above the fibre in S3 of multiplicity p in both M ’s we find q′ fibres
of multiplicity a, and above the fibre of multiplicity q we find p′ fibres of
multiplicity b. But above the branch set, a principal fibre in S3 , we have one
fibre of multiplicity c in M(p, q, r), but a principal fibre in M(p, q, p′q′). (Note
that the orbit spaces P 2(p, q, r) and P 2(p, q, p′q′) are in fact homeomorphic.)

We have the following characterization of the centralizer of A in Aut(π).

Geometry & Topology Monographs, Volume 5 (2002)



358 Chapter 18: Reflexivity

Theorem 18.16 Assume that p−1 + q−1 + r−1 ≤ 1, and let A be the auto-
morphism of π = π1(M(p, q, r)) of order r induced by the canonical generator
of the branched covering transformations. If B in Aut(π) commutes with A
then B = Ai for some 0 ≤ i < r .

Proof The 3-manifold M = M(p, q, r) is aspherical, with universal cover R3 ,
and π is a central extension of Q(p, q, r) by Z . Here Q = Q(p, q, r) is a discrete
planar group with signature ((1−p′)(1−q′)/2; a . . . a, b . . . b, c) (where there are
q′ entries a and p′ entries b). Note that Q is Fuchsian except for Q(2, 3, 6) ∼=
Z2 . (In general, Q(p, q, pq) is a PD+

2 -group of genus (1− p)(1− q)/2).

There is a natural homomorphism from Aut(π) to Aut(Q) = Aut(π/ζπ). The
strategy shall be to show first that B = Ai in Aut(Q) and then lift to Aut(π).
The proof in Aut(Q) falls naturally into three cases.

Case 1. r = c. In this case M is a homology 3-sphere, fibred over S2 with three
exceptional fibres of multiplicity p, q and r . Thus Q ∼= ∆(p, q, r) = 〈q1, q2, q3 |
qp1 = qq2 = qr3 = q1q2q3 = 1〉, the group of orientation preserving symmetries of
a tesselation of H2 by triangles with angles π/p, π/q and π/r . Since Zr is
contained in S1 , A is inner. (In fact it is not hard to see that the image of A
in Aut(Q) is conjugation by q−1

3 . See §3 of [Pl83]).

It is well known that the automorphisms of a triangle group correspond to
symmetries of the tessellation (see Chapters V and VI of [ZVC]). Since p, q
and r are pairwise relatively prime there are no self symmetries of the (p, q, r)
triangle. So, fixing a triangle T , all symmetries take T to another triangle.
Those that preserve orientation correspond to elements of Q acting by inner
automorphisms, and there is one nontrivial outerautomorphism, R say, given
by reflection in one of the sides of T . We can assume R(q3) = q−1

3 .

Let B in Aut(Q) commute with A. If B is conjugation by b in Q then
BA = AB is equivalent to bq3 = q3b, since Q is centreless. If B is R followed
by conjugation by b then bq3 = q−1

3 b. But since 〈q3〉 = Zr in Q is generated
by an elliptic element the normalizer of 〈q3〉 in PSL(2,R) consists of elliptic
elements with the same fixed point as q3 . Hence the normalizer of 〈q3〉 in Q is
just 〈q3〉. Since r > 2, q3 6= q−1

3 and so we must have bq3 = q3b, b = qi3 and
B = Ai . (Note that if r = 2 then R commutes with A in Aut(Q)).

Case 2. r = p′q′ so that Zr ∩ S1 = 1. The map from S2(p, q, p′q′) to S2 is
branched over three points in S2 . Over the point corresponding to the fibre
of multiplicity p in S3 the map is p′ -fold branched; it is q′ -fold branched over
the point corresponding to the fibre of multiplicity q in S3 , and it is p′q′ -fold
branched over the point ∗ corresponding to the branching locus of M over S3 .
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Represent S2 as a hyperbolic orbifold H2/∆(p, q, p′q′). (If (p, q, r) = (2, 3, 6)
we use instead the flat orbifold E2/∆(2, 3, 6)). Lift this to an orbifold structure
on S2(p, q, p′q′), thereby representing Q = Q(p, q, p′q′) into PSL(2,R). Lifting
the Zp′q′ -action to H2 gives an action of the semidirect product Q o Zp′q′ on
H2 , with Zp′q′ acting as rotations about a point ∗̃ of H2 lying above ∗. Since
the map from H2 to S2(p, q, p′q′) is unbranched at ∗̃ (equivalently, Zr∩S1 = 1),
Q ∩ Zp′q′ = 1. Thus Q o Zp′q′ acts effectively on H2 , with quotient S2 and
three branch points, of orders p, q and p′q′ .

In other words, Qo Zp′q′ is isomorphic to ∆(p, q, p′q′). The automorphism A
extends naturally to an automorphism of ∆, namely conjugation by an element
of order p′q′ , and B also extends to Aut(∆), since BA = AB .

We claim B = Ai in Aut(∆). We cannot directly apply the argument in Case
1, since p′q′ is not prime to pq . We argue as follows. In the notation of Case 1,
A is conjugation by q−1

3 . Since BA = AB , B(q3) = q−1
3 B(q3)q3 , which forces

B(q3) = qj3 . Now q−1
3 B(q2)q3 = AB(q2) = B(q−1

3 )B(q2)B(q3) = q−j3 B(q2)qj3 ,

or B(q2) = q1−j
3 B(q3)qj−1

3 . But B(q2) is not a power of q3 , so q1−j
3 = 1, or

j ≡ 1 modulo (r). Thus B(q3) = q3 . This means that the symmetry of the
tessellation that realizes B shares the same fixed point as A, so B is in the
dihedral group fixing that point, and now the proof is as before.

Case 3. r = p′q′c (the general case). We have Zp′q′c contained in Aut(π), but
Zp′q′c ∩ S1 = Zc , so that Zc is the kernel of the composition

Zr → Out(π)→ Out(Q).

Let Q̄ be the extension corresponding to the abstract kernel Zp′q′ → Out(Q).
(The extension is unique since ζQ = 1). Then Q̄ is a quotient of the semidirect
product Q(p, q, r) o (Z/rZ) by a cyclic normal subgroup of order c.

Geometrically, this corresponds to the following. The map from S2(p, q, r) to
S2 is branched as in Case 2, over three points with branching indices p, q and
p′q′ . This time, represent S2 as H2/∆(p, q, p′q′). Lift to an orbifold structure
on S2(p, q, r) with one cone point of order c. Lifting an elliptic element of order
r in ∆(p, q, r) to the universal orbifold cover of S2(p, q, r) gives Zr contained
in Aut(Q(p, q, r)) defining the semidirect product. But Q(p, q, r)∩Zr = Zc , so
the action is ineffective. Projecting to Zp′q′ and taking the extension Q̄ kills
the ineffective part of the action. Note that Q(p, q, r) and Zr inject into Q̄.

As in Case 2, Q̄ ∼= ∆(p, q, r), A extends to conjugation by an element of
order r in Q̄, and B extends to an automorphism of Q(p, q, r) o Zr , since
BA = AB . Now (q3, p

′q′) in Q(p, q, r) o Zr normally generates the kernel of
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Q(p, q, r)oZr → Q̄, where q3 is a rotation of order c with the same fixed point
as the generator of Zr . In other words, A in Aut(Q(p, q, r)) is such that Ap

′q′

is conjugation by q3 . Since BAp
′q′ = Ap

′q′B the argument in Case 2 shows that
B(q3) = q3 . So B also gives an automorphism of Q̄, and now the argument of
Case 2 finishes the proof.

We have shown that B = Ai in Aut(Q). Since A in Aut(π) is the monodromy
of a fibred knot in S4 (or, more directly, since A is induced by a branched cover
of a knot in a homology sphere), I − [A] is invertible. Thus the Theorem now
follows from Lemma 18.15.

Theorem 18.17 Let k be a prime simple knot in S3 . Let 0 < s < r , (r, s) = 1
and r > 2. Then τr,sk is not reflexive.

Proof We shall consider separately the three cases (a) k a torus knot and the
branched cover aspherical; (b) k a torus knot and the branched cover spherical;
and (c) k a hyperbolic knot.

Aspherical branched covers of torus knots. Let K = τr,s(kp,q) where r > 2
and M(p, q, r) is aspherical. Then X(K) = (M(p, q, r) \ intD3)×As S1 , M =
M(K) = M(p, q, r) ×As S1 and π = πK ∼= π1(M(p, q, r)) oAs Z . If K is
reflexive there is a homeomorphism f of X which changes the framing on ∂X .
Now kp,q is strongly invertible - there is an involution of (S3, kp,q) fixing two
points of the knot and reversing the meridian. This lifts to an involution of
M(p, q, r) fixing two points of the branch set and conjugating As to A−s , thus
inducing a diffeomorphism of X(K) which reverses the meridian. By Lemma
18.1 this preserves the framing, so we can assume that f preserves the meridian
of K . It must also preserve the orientation, by the remark following Theorem

2.14. Since M(p, q, r) is a S̃L-manifold ˜M(p, q, r) ∼= R3 and automorphisms of
π1(M(p, q, r)) are induced by fibre-preserving self-diffeomorphisms [Sc83’]. The
remaining hypothesis of Lemma 18.3 is satisfied, by Theorem 18.16. Therefore
there is no such self homeomorphism f , and K is not reflexive.

Spherical branched covers of torus knots. We now adapt the previous argument
to the spherical cases. The analogue of Theorem 18.16 is valid, except for
(2, 5, 3). We sketch the proofs.

(2, 3, 3): M(2, 3, 3 = S3/Q(8). The image in Aut(Q(8)/ζQ(8)) ∼= S3 of the
automorphism A induced by the 3-fold cover of the trefoil knot has order 3 and
so generates its own centralizer.

(2, 3, 4): M(2, 3, 4) = S3/T ∗1 . In this case the image of A in Aut(T ∗1 ) ∼= S4

must be a 4-cycle, and generates its own centralizer.
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(2, 3, 5): M(2, 3, 5) = S3/I∗ . In this case the image of A in Aut(I∗) ∼= S5 must
be a 5-cycle, and generates its own centralizer.

(2, 5, 3): We again have I∗ , but in this case A3 = I , say A = (123)(4)(5).
Suppose BA = AB . If B fixes 4 and 5 then it is a power of A. But B may
transpose 4 and 5, and then B = AiC , where C = (1)(2)(3)(45) represents the
nontrivial outer automorphism class of I∗ .

Now let K = τr,s(kp,q) as usual, with (p, q, r) one of the above four triples, and
let M = M(p, q, r) ×As S1 . As earlier, if K is reflexive we have a homeomor-
phism f which preserves the meridian t and changes the framing on D3×AsS1 .
Let M̂ = S3×ÂsS

1 be the cover of M corresponding to the meridian subgroup,

where Â is a rotation about an axis. Let f be a basepoint preserving self homo-
topy equivalence of M such that f∗(t) = t in π . Let B in Aut(π1(M(p, q, r))
be induced by f∗ , so BAs = AsB . The discussion above shows that B = Asi

except possibly for (2, 5, 3). But if B represented the outer automorphism of I∗

then after lifting to infinite cyclic covers we would have a homotopy equivalence
of S3/I∗ inducing C , contradicting Lemma 11.4. So we have an obvious fibre
preserving diffeomorphism fB of M .

The proof that f̂B is homotopic to id
M̂

is exactly as in the aspherical case. To

see that f̂B is homotopic to f̂ (the lift of f to a basepoint preserving proper

self homotopy equivalence of M̂ ) we investigate whether fB is homotopic to
f . Since π2(M) = 0 we can homotope fB to f on the 2-skeleton of M . On
the 3-skeleton we meet an obstruction in H3(M ;π3) ∼= H3(M ;Z) = Z , since
M has the homology of S3 × S1 . But this obstruction is detected on the
top cell of M(p, q, r) and just measures the difference of the degrees of f and
fB on the infinite cyclic covers [Ol53]. Since both f and fB are orientation
preserving homotopy equivalences this obstruction vanishes. On the 4-skeleton
we have an obstruction in H4(M ;π4) = Z/2Z , which may not vanish. But this

obstruction is killed when we lift to M̂ , since the map from M̂ to M has even
degree, proving that f̂B ' f̂ .

We now use radial homotopies on S3 × S1 to finish, as before.

Branched covers of hyperbolic knots. Let k be hyperbolic. Excluding N3(41)
(the 3-fold cyclic branched cover of the figure eight knot), N = Nr(k) is a
closed hyperbolic 3-manifold, with 〈α〉 ∼= Z/rZ acting by isometries. As usual,
we assume there is a homeomorphism f of M = M(τr,s(k)) which changes the
framing on D3 ×As S1 . As in the aspherical torus knot case, it shall suffice to
show that the lift f̂ on M̂ is properly homotopic to a map of (R3×S1, D3×S1)
that does not change the framing on D3 × S1 .
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Letting B = f∗ on ν = π1(N), we have BAsB−1 = A±s , depending on whether
f∗(t) = t±1 in π = ν oAs Z . There is an unique isometry β of N realizing the
class of B in Out(ν), by Mostow rigidity, and βαsβ−1 = α±s . Hence there is
an induced self diffeomorphism fβ of M = N ×αs S1 . Note that f∗ = (fβ)∗ in
Out(π), so f is homotopic to fβ . We cannot claim that β fixes the basepoint
of N , but β preserves the closed geodesic fixed by αs .

Now M̂ = H3 ×α̂s S1 where α̂s is an elliptic rotation about an axis L, and
f̂β is fibrewise an isometry β̂ preserving L. We can write H3 = R2 × L (non-
metrically!) by considering the family of hyperplanes perpendicular to L, and
then β̂ is just an element of O(2)×E(1) and α̂s is an element of SO(2)×{1}.
The proof of Lemma 18.1, with trivial modifications, shows that, after picking
coordinates and ignoring orientations, f̂β is the identity. This completes the
proof of the theorem.

The manifolds M(p, q, r) with p−1 + q−1 + r−1 < 1 are coset spaces of S̃L
[Mi75]. Conversely, let K be a 2-knot obtained by surgery on the canonical
cross-section of N ×θ S1 , where N is such a coset space. If θ is induced by an
automorphism of S̃L which normalizes ν = π1(N) then it has finite order, since
N
S̃L

(ν)/ν ∼= NPSL(2,R)(ν/ζν)/(ν/ζν). Thus if θ has infinite order we cannot
expect to use such geometric arguments to analyze the question of reflexivity.

We note finally that since torus knots are strongly invertible, their twist spins
are strongly +amphicheiral. (See the paragraph after Theorem 18.13.) How-

ever, since automorphisms of S̃L-lattices preserve orientation, no such knot is
−amphicheiral or invertible.
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[B-Z] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. and Zassenhaus, H.
Crystallographic Groups of Four-Dimensional Space,
John Wiley and Sons Inc., New York - London - Sydney - Toronto (1978).

[BZ] Burde, G. and Zieschang, H. Knots, second edition,
de Gruyter Studies in Mathematics 5,
W. de Gruyter, Berlin - New York (2003).

[Cb] Cobb, R. Infrasolvmanifolds of Dimension Four,
PhD thesis, The University of Sydney (1999).

[Co] Cohen, M.M. A Course in Simple Homotopy Theory,
Graduate Texts in Mathematics 10,
Springer-Verlag, Berlin - Heidelberg - New York (1973).

[Cn] Cohn, P.M. Skew Fields. Theory of General Division Rings,
Cambridge University Press (1995).

[De] Dekimpe, K. Almost-Bieberbach Groups: Affine and Polynomial Structures,
Lecture Notes in Mathematics 1639,
Springer-Verlag, Berlin - Heidelberg - New York (1996).

[DD] Dicks, W. and Dunwoody, M.J. Groups acting on Graphs,
Cambridge studies in advanced mathematics 17,
Cambridge University Press, Cambridge - New York - Melbourne (1989).

Geometry & Topology Monographs, Volume 5 (2002)



364 Bibliography

[FJ] Farrell, F.T. and Jones, L.E. Classical Aspherical Manifolds,
CBMS Regional Conference Series 75,
American Mathematical Society, Providence (1990).

[Fi] Filipkiewicz, R.O. Four-Dimensional Geometries,
Ph.D thesis, University of Warwick (1984).

[FQ] Freedman, M.H. and Quinn, F. Topology of 4-Manifolds,
Princeton University Press, Princeton (1990).

[Go] Goldman, W.M. Complex Hyperbolic Geometry,
Oxford Mathematical Monographs,
Oxford University Press, Oxford - New York (1999).

[GS] Gompf, R. and Stipsicz, A. 4-Manifolds and Kirby Calculus,
Graduate Studies in Mathematics 20,
American Mathematical Society, Providence (1999).

[GK] Gordon, C. McA. and Kirby, R.C. (editors) Four-Manifold Theory,
CONM 35, American Mathematical Society, Providence (1984).

[Gr] Gromov, M. Asymptotic Invariants of Infinite Groups,
London Mathematical Society Lecture Note Series 182,
Cambridge University Press, Cambridge - New York - Melbourne (1993).

[Hm] Hempel, J. 3-Manifolds,
Annals of Mathematics Study 86,
Princeton University Press, Princeton (1976).

[Hn] Hendriks, H. Applications de la théorie d’obstruction en dimension 3,
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[Fa75] Farrell, F.T. Poincaré duality and groups of type FP ,
Comment. Math. Helvetici 50 (1975), 187–195.

[Fa77’] Farrell, F.T. An extension of Tate cohomology to a class of infinite groups,
J. Pure Appl. Alg. 10 (1977), 153–161.

[FJ86] Farrell, F.T. and Jones, L.E. K -Theory and dynamics. I,
Ann. Math. 124 (1986), 531–569.

[FJ89] Farrell, F.T. and Jones, L.E. A topological analogue of Mostow’s rigidity
theorem, J. Amer. Math. Soc. 2 (1989), 257–370.

[FJ93] Farrell, F.T. and Jones, L.E. Isomorphism conjectures in algebraic K -
theory, J. Amer. Math. Soc. 6 (1993), 249–297.

[FJ93’] Farrell, F.T. and Jones, L.E. Topological rigidity for compact nonpositively
curved manifolds,
in Proceedings of Symposia in Pure Mathematics 54, Part 3,
American Mathematical Society (1993), 229–274.

Geometry & Topology Monographs, Volume 5 (2002)



372 Bibliography

[FJ97] Farrell, F.T. and Jones, L.E. Compact infrasolvmanifolds are smoothly rigid,
in Geometry from the Pacific Rim (edited by A.J.Berrick and H.-Y. Wang),
W.de Gruyter, Berlin - New York (1997), 85–97.

[FS93] Farrell, F.T. and Stark, C.W. Compact spherical-Euclidean spaceform
groups of infinite VCD, Bull. London Math. Soc. 25 (1993), 189–192.

[Fi78] Fintushel, R. Classification of circle actions on 4-manifolds,
Trans. Amer. Math. Soc. 242 (1978), 377–390.

[Fo62] Fox, R.H. A quick trip through knot theory,
in Topology of 3-Manifolds and Related Topics (edited by M.K.Fort, Jr),
Prentice-Hall, Englewood Cliffs, N.J.(1962), 120–167.

[Fo66] Fox, R.H. Rolling,
Bull. Amer. Math. Soc. 72 (1966), 162–164.

[FQ80] Freedman, M.H. and Quinn, F. A quick proof of the 4-dimensional stable
surgery theorem, Comment. Math. Helvetici 55 (1980), 668–671.

[FT95] Freedman, M.H. and Teichner, P. 4-Manifold topology I: subexponential
groups, Inventiones Math. 122 (1995), 509–529.

[FV08] Friedl, S. and Vidussi, S. Twisted Alexander polynomials and symplectic
structures, Amer. J. Math. 130 (2008), 455–484.

[Ga87] Gabai, D. Foliations and the topology of 3-manifolds. III,
J. Differential Geom. 26 (1987), 479–536.

[Ga92] Gabai, D. Convergence groups are Fuchsian groups,
Ann.Math. 136 (1992), 447–510.

[Ga97] Gabai, D. On the geometric and topological rigidity of hyperbolic
3-manifolds, J. Amer. Math. Soc. 10 (1997), 37–74.

[GMT03] Gabai, D., Meyerhoff, G.R. and Thurston, N. Homotopy hyperbolic
3-manifolds are hyperbolic, Ann. Math. 157 (2003), 335–431.

[Ga00] Gaboriau, D. Sur la (co-)homologie L2 des actions préservant une mesure,
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d’homotopie en dimension 3, Ann. Sci. Ecole Norm. Sup. 7 (1974), 203–217.

[Hg40] Higman, G. The units of group rings,
Proc. London Math. Soc. 46 (1940), 231–248.

[Hg51] Higman, G. A finitely generated infinite simple group,
J.London Math. Soc. 26 (1951), 61–64.

[Hi91] Hillman, J.A. Elementary amenable groups and 4-manifolds with Euler
characteristic 0, J. Aust. Math. Soc. 50 (1991), 160–170.

[Hi93] Hillman, J.A. On 3-dimensional Poincaré duality complexes and 2-knot
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Index

Expressions beginning with Greek
characters and non-alphabetic symbols
are listed at the end of this index.

(A, β,C) (isometry of S2 × E2 ), 204
A(m, e) (metacyclic group

of order 2em), 222
A(π) (augmentation ideal

of Z[π]), 36
action (of a Seifert fibration), 145
admits a geometry, 132
algebraic 2-type

([π, π2(M), k1(M)]), 26
algebraic mapping torus, 74
almost coherent, 16
almost complex structure, 150
almost finitely presentable (FP2 ), 14
almost linear k -invariant, 225
amenable group, 8
amphicheiral knot, 271
Artin spin of a knot (σK ), 276
ascendant, 5
aspherical (orbifold), 138
automorphisms of Γq , 168

B1 −B4 (nonorientable flat
3-manifold groups), 154

BE(X) (classifying space), 89
bad (orbifold), 138
Bieri’s Theorem

(Theorem 8.8 of [Bi]), 20
Bieri-Strebel Theorem [BS78], 14
Bogomolov’s Theorem, 149
boundary link, 287
Bowditch’s Theorem, 21
branched twist spin, 315
Brieskorn manifold

(M(p, q, r)), 311
Brown-Geoghegan Theorem

[BG85], 18

c(ĝ) (Kervaire-Arf invariant

of ĝ : M → G/TOP ), 117
cM : M → K(π1(M), 1)

(classifying map), 26
CP2 (geometry of complex

projective plane), 234
Ch = ∗CP 2 (the fake

complex projective plane), 235
CG(H) (centralizer

of a subgroup), 3
Cl (Waldhausen’s class

of groups), 112
canonical cross-section, 342
Cappell-Shaneson knot, 320
Cartan-Leray spectral sequence, 26
centre of a group G (ζG), 3
characteristic subgroup, 3
class V II (complex surface), 149
classifying map

(cM : M → K(π1(M), 1)), 26
closed fibre, 273
closed manifold, 26
codimension-2 Kervaire invariant, 117
coherent group, 15
coherent ring, 15
cohomology intersection pairing, 66
coinduced (module), 21
commutator subgroup

of a group G (G′ ), 3
companion, 275
complex surface, 148, 261
complex torus, 149
conjugate M̄ of a module M , 13
connecting homomorphism

∂ : π2(B)→ π1(F ), 89
Crisp’s Theorem [Cr00], 34
cusp, 139

D (infinite dihedral group
(Z/2Z) ∗ (Z/2Z)), 16

deficiency (def(P ), def(π)), 28
deform spin of a knot, 276
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dimN (π)(M) (von Neumann
dimension of M ), 24

doubly slice knot, 277

e(G) (number of ends of the group
G, = 0, 1, 2 or ∞), 16

eQ(π) (Euler class of an aspherical
Seifert fibration), 145

En (flat geometry), 134
E(n) (isometry group of En ), 134
E(X), E0(X) (space of self

homotopy equivalences), 89
EG (class of elementary amenable

groups), 9
ev , ev(2) (evaluation homomorphisms),

49
elementary amenable, 9
elliptic surface, 149, 263, 338
ends (and H1(G;Z[G])), 16
equivariant (co)homology, 25
Euler class (of a Seifert fibration), 145
evaluation homomorphism (ev , ev(2) ),

49
extension of groups, 4
exterior of a knot (X(K), X ), 271

fα (self homotopy equivalence
of a closed 4-manifold), 118

fM : M → P2(M) (second map
of Postnikov tower), 26

FF , FP , FPn (finiteness
conditions), 14

F (r) (free group), 3
F4 (geometry of TH2 ), 133, 260
Farrell’s Theorem [Fa74], 18
fibration theorem, 124
fibred knot, 273
finite k -skeleton, 23
finite PDn -complex, 33
finite PDn -space, 33
finitely dominated

(chain complex), 23
flat manifold, 134
flat n-manifold group, 134
foliation by circles, 265

Følner exhaustion, 9
fundamental triple

(of a PD3 -complex), 34

g.d. (geometric dimension), 28
G1 −G6 (orientable flat

3-manifold groups), 153
G(±) (flat 2-knot groups), 322
generalized Eilenberg-Mac Lane

complex, 214
geometric decomposition, 139
geometric dimension

of a group (g.d.), 28
geometry, 132
Gildenhuys-Strebel Theorem, 17
Gluck reconstruction of an

S2 -orbifold bundle, 139
Gluck reconstruction of a knot K

(K∗ ), 272
good (orbifold), 138
graph manifold, 114
Gromov’s Theorem (§8.A of [Gr]), 28

H2 ×H2 (semisimple product
geometry), 188

H4 , H2(C) (rank 1 geometries), 192
H2 × E2 (product geometry), 182
H3 × E1 (product geometry), 185
Hi(X;R[G/H]), Hi(X;R[G/H])

(equivariant (co)homology), 25
h(G) (Hirsch length

of a group G), 10
Haken 3-manifold, 114
Hantzsche-Wendt flat 3-manifold

group (G6 ), 154
Hendrik’s Theorem [Hn], 34
Hilbert N (π)-module, 23
Hilbert N (π)-complex, 24
Hirsch length of a group

(h(G)), 4, 10
Hirsch-Plotkin radical of a group G

(
√
G), 7

homology 4-sphere, 292
holonomy group, 134
homotopy ribbon knot, 277
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Hopf surface, 149, 338
hyperelliptic surface, 149

I(G) = {g ∈ G | ∃n > 0, gn ∈ G′}, 3
I∗ (binary icosahedral group), 222
Iπ (homomorphism

from H1(π;Z) to Ls1(π)), 119
I+π (homomorphism

from Ker(w) to Ls1(π,w)), 119
indicable group, 3
infinite cyclic covering space

(Eν , X ′(K), M ′(K)), 77, 273
infinite dihedral group

(D = (Z/2Z) ∗ (Z/2Z)), 16
infranilmanifold, 134
infrasolvmanifold, 135, 177
Inoue surface, 149, 338
intersection pairing, 66
invertible knot, 271
irreducible knot, 275
Isom(X), 132

J+(F ) (kernel of action of Out(F )
on H3(F ;Z)), 219

J(F ) (automorphisms of F inducing
±1 on H3(F ;Z)), 220

Johnson’s trichotomy
(surface bundle groups), 92, 145

k(e, η) (Montesinos knot), 324
k1(M) (first k -invariant), 26
Kaplansky rank (κ(P )), 14
Kb (Klein bottle), 89
kp,q ((p, q)-torus knot), 314
kerv(ĝ) (codimension-2 Kervaire

invariant of ĝ), 117
Kervaire-Arf invariant, 117
knot, 271
knot group (πK ), 272
knot-like group, 284
knot manifold (M(K)), 272
Kodaira surface, 149
KS(M) (Kirby-Siebenmann invariant),

117

`P (locally P ), 3

`2(π) (L2 -completion of C[π]), 23
L2 -Betti number, 24, 26
L2 -homology, 24
lattice, 132
linear k -invariant, 225
link, 286
link group, 286,290
LHSSS (Lyndon-Hochschild-Serre

spectral sequence), 16
locally P (`P ), 3
locally finite, 3
Lück’s Theorem [Lü94], 27

Mb (Möbius band), 106
M(K) (closed manifold

arising from a knot K ), 272
M(f) (mapping torus of a self

homotopy equivalence f ), 77
M(p, q, r) (Brieskorn manifold), 311
mapping torus, 77, 186, 251
maximal finite normal subgroup

(of a group with two ends), 16
Mayer-Vietoris sequence

of Waldhausen, 112
Melvin’s Theorem, 100
meridian, 272
meridianal automorphism, 281
minimal complex surface, 148
minimal model

(for a PD4 -complex), 213
minimal Seifert hypersurface, 273
monodromy, 273
morphism of Hilbert N (π)-module, 24
Mostow orbifold bundle, 139
Mostow rigidity, 192

n-dimensional geometry, 132
Nil3 (nilpotent Lie geometry), 134
Nil3 × E1 (nilpotent Lie geometry),

135, 164
Nil4 (nilpotent Lie geometry),

135, 164
N (π) (von Neumann algebra), 23
n-knot, 271
NG(H) (normalizer of a subgroup), 3
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nilradical, 135
normal closure of S in G

(〈〈S〉〉G ), 3
nonsingular (of λX ), 67
Novikov ring, 73

Out(G) (group of outer
automorphism classes), 3

O∗1 (binary octahedral group), 221
O∗k (extended binary octahedral

group), 221
orbifold bundle, 138
orientable PDn -group

(PD+
n -group), 21

outer automorphism group, 3

P (= PSL(2,R)), 188
P2(M) (second stage

of Postnikov tower), 26
PD3 -complex (3-dimensional

Poincaré duality complex), 33
PD3 -group, 37
PDn -complex, 33

PD
(+)
n -group, 21

PDn -space, 33
PD4 -polarization, 241
piece (of a geometric

decomposition), 139
Plotnick’s Theorem [Pl86], 316
Poincaré duality, 32
poly-, 4
problem of the four exponentials, 137
proper geometric decomposition, 139
proper graph manifold, 114

q(π), qSG(π) (minimal
Euler characteristic), 57

Q(2na, b, c) (generalized
quaternionic group), 223

Q(8k) (quaternionic group
of order 8k), 221

quadratic 2-type
([π, π2(M), k1(M), S(M̃)]), 241

quasifibre, 331
quaternion group (Q(8)), 221

rational surface, 149
reduced intersection pairing

(λX ), 67
reduced L2 -homology, 24
reducible (H2 ×H2 -manifold), 188
reflexive knot, 272
regular coherent ring, 15
regular noetherian ring, 15
restrained (group), 10
ribbon knot, 277
ruled surface, 149

SG (class generated by groups
of subexponential growth), 9

S1 -actions, 265
S3 -group, 225
SPD4 (P ) (polarized

PD4 -complexes), 200
SsTOP (M) (s-cobordism

structure set), 116
S4 (spherical geometry), 234
S2 × S2 (compact

product geometry), 235
Sol4m,n , Sol3 × E1 , (solvable

Lie geometries), 136, 164
Sol40 (solvable Lie geometry),

137, 164
Sol41 (solvable Lie geometry),

137, 165
S3 × E1 (2-ended spherical-euclidean

product geometry), 224
S2 × E2 (1-ended spherical-euclidean

product geometry), 203, 208
S2 ×H2 (spherical-hyperbolic

product geometry), 203

S̃L× E1 , 182
safe extension, 24
satellite, 275
s-concordant, 276
Seifert fibred (4-manifold), 145
Seifert hypersurface, 273
semidirect product (G×θZ ), 4
slice knot, 276
solvable Lie type, 132, 176
spin (Artin) of a knot (σK ), 276
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split link, 287
square-root closed, 121
s-rigid, 117
stably homeomorphic, 122
strict weight orbit, 280
Strebel’s Theorem [St77], 21
strongly minimal, 213
subnormal, 5
sum of knots (K1]K2 ), 274
superperfect, 292
surface bundles, 89, 256
surgery exact sequence, 116
Swan complex, 219
symplectic structure, 150, 267

T (torus), 89
T ∗1 (binary tetrahedral group), 221
T ∗k (extended binary tetrahedral

group), 221
T (π) (translation subgroup),

134, 136
Tits alternative, 29, 39, 306
translation subgroup (T (π)), 134, 136
triangular (solvable Lie group), 136
trivial knot, 271
trivial link, 287
Turaev’s Theorem [Tu90], 34
twist spin of a knot (τrK ), 276
type I, II, III (Johnson’s trichotomy

for surface bundle groups), 92
type R (solvable Lie group), 136

UCSS (universal coefficient
spectral sequence), 26

Ue’s Theorem, 146
unreduced L2 -homology, 24

vP (virtually P ), 4
virtual bundle group, 143
virtually (qualifying a property

of a group or space), 4
von Neumann dimension of a

Hilbert module (dimN (π)M ), 24

Waldhausen’s Mayer-Vietoris
sequence for K -theory, 112

Weak Bass Conjecture
(κ(P ) = dimQQ⊗π P ), 14

weak isomorphism, 24
weak PDr -group, 70
weakly exact, 24
weakly finite (ring), 15
weight (class, element), 278
weight orbit, 279
Whitehead quadratic functor

(Γ(−)), 241
Whitehead’s question, 283

X (class of groups), 31
X(K) (knot exterior), 271
XH (covering space with

fundamental group H ), 25
X-manifold, 132

Zw (w -twisted integers), 13
Z∗m (group with presentation
〈a, t | tat−1 = am〉), 29

Z×−1Z (fundamental group
of Klein bottle, ∼= Z∗−1 ), 29

Greek characters

α-twisted endomorphism, 73
βi(−) (Betti number), 25

β
(2)
i (−) (L2 -Betti number), 26
βu (u-twisted Bockstein), 197
Γ(−) (Whitehead quadratic

functor), 241
Γq (nilpotent group), 7
∆a(X) = X3−aX2 +(a−1)X−1, 319
ζG (centre of a group), 3
ζ2G (ζ2G/ζG = ζ(G/ζG)), 8
ηG (cohomology class), 70
κ(P ) (Kaplansky rank), 14
λX (reduced intersection

pairing), 67
Λ = Z[Z] ∼= Z[t, t−1]

(Laurent polynomial ring), 6
πK (knot group), 272
π1 -slice, 277
π(e, η) (group of 2-twist spin
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of Montesinos knot), 325
πorb(B), orbifold fundamental

group 138
[π,m]f -complex, 32
σK (Artin spin of K ), 276
τ (the twist of S2 × S1 ), 83
τrK (r -twist spin

of a knot K ), 276
τr,sK (branched twist spin

of a knot K ), 315
Φ (∼= Z∗2 , 2-knot group), 295
χ(π) (Euler characteristic

of vFP group π), 14

Non-alphabetic symbols

boundary ∂ : π2(B)→ π1(F )
(connecting homomorphism), 89

dagger †: L† = HomZ[π](L,Z[π])
the conjugate dual module, 67

double angle brackets 〈〈 〉〉: 〈〈S〉〉G
(normal closure of S in G), 3

overbar ¯: anti-involution ḡ = w(g)g−1 ,
conjugate module M , 13

prime ′ : commutator subgroup G′ ,
maximal abelian cover X ′ , 3, 273

semidirect product: GoθZ , 4
sharp ]: sum of knots K1]K2 , 274
star ∗ : K∗ (Gluck reconstruction

of a knot K ), 272
surd

√
:
√
G (Hirsch-Plotkin

radical of a group G), 7

tilde ˜: X̃ (universal cover), 25
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