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Seifert Klein bottles for knots with
common boundary slopes

Luis G Valdez-Sánchez

Abstract We consider the question of how many essential Seifert Klein
bottles with common boundary slope a knot in S3 can bound, up to ambient
isotopy. We prove that any hyperbolic knot in S3 bounds at most six
Seifert Klein bottles with a given boundary slope. The Seifert Klein bottles
in a minimal projection of hyperbolic pretzel knots of length 3 are shown
to be unique and π1 –injective, with surgery along their boundary slope
producing irreducible toroidal manifolds. The cable knots which bound
essential Seifert Klein bottles are classified; their Seifert Klein bottles are
shown to be non-π1–injective, and unique in the case of torus knots. For
satellite knots we show that, in general, there is no upper bound for the
number of distinct Seifert Klein bottles a knot can bound.
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1 Introduction

For any knot in S3 all orientable Seifert surfaces spanned by the knot have the
same boundary slope. The smallest genus of such a surface is called the genus
of the knot, and such a minimal surface is always essential in the knot exterior.
Moreover, by a result of Schubert–Soltsien [21], any simple knot admits finitely
many distinct minimal genus Seifert surfaces, up to ambient isotopy, while for
satellite knots infinitely many isotopy classes may exist (cf [7, 14]).

The smallest genus of the nonorientable Seifert surfaces spanned by a knot is
the crosscap number of the knot (cf [4]). Unlike their orientable counterparts,
nonorientable minimal Seifert surfaces need not have a unique boundary slope.
In fact, by [13], any knot K ⊂ S3 has at most two boundary slopes r1, r2

corresponding to essential (incompressible and boundary incompressible, in the
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geometric sense) Seifert Klein bottles, and if so then ∆(r1, r2) = 4 or 8, the
latter distance occurring only when K is the figure–8 knot. The knots for
which two such slopes exist were classified in [19] and, with the exception of the
(2, 1, 1) and (−2, 3, 7) pretzel knots (the figure–8 knot and the Fintushel–Stern
knot, respectively), all are certain satellites of 2–cable knots. Also, a minimal
crosscap number Seifert surface for a knot need not even be essential in the
knot exterior (cf [13]).

In this paper we study the uniqueness or non-uniqueness, up to ambient isotopy,
of essential Seifert Klein bottles for a knot with a fixed boundary slope; we will
regard any two such surfaces as equivalent iff they are ambient isotopic. Our
main result states that any crosscap number two hyperbolic knot admits at
most 6 nonequivalent Seifert Klein bottles with a given slope; before stating
our results in full we will need some definitions.

We work in the PL category; all 3–manifolds are assumed to be compact and
orientable. We refer to ambient isotopies simply as isotopies. Let M3 be a 3–
manifold with boundary. The pair (M3, ∂M3) is irreducible if M3 is irreducible
and ∂M3 is incompressible in M3 . Any embedded circle in a once punctured
Klein bottle is either a meridian (orientation preserving and nonseparating),
a longitude (orientation preserving and separating), or a center (orientation
reversing); any two meridians are isotopic within the surface, but there are
infinitely many isotopy classes of longitudes and centers (cf Lemma 3.1). For
a knot K in S3 with exterior XK = S3 \ intN(K) and a nontrivial slope r
in ∂XK , K(r) = XK(r) denotes the manifold obtained by Dehn–filling XK

along r , that is, the result of surgering K along r . We denote by SK(K, r)
the collection of equivalence classes of essential Seifert Klein bottles in XK

with boundary slope r ; as pointed out above, SK(K, r) is nonempty for at
most two distinct integral slopes r1, r2 . If |SK(K, r)| ≥ 2, we will say that the
collection SK(K, r) is meridional if any two distinct elements can be isotoped
so as to intersect transversely in a common meridian, and that it is central if
there is a link c1 ∪ c2 in XK such that any two distinct elements of SK(K, r)
can be isotoped so as to intersect transversely in c1 ∪ c2 , and c1, c2 are disjoint
centers in each element. For P ∈ SK(K, r), N(P ) denotes a small regular
neighborhood of P , and H(P ) = XK \ intN(P ) denotes the exterior of P in
XK . We say P is unknotted if H(P ) is a handlebody, and knotted otherwise; if
the pair (H(P ), ∂H(P )) is irreducible, we say P is strongly knotted. If µ, λ is a
standard meridian–longitude pair for a knot L, and K is a circle embedded in
∂XL representing pµ+ qλ for some relatively prime integers p, q with |q| ≥ 2,
we say K is a (p, q) cable of L; we also call K a q–cable knot, or simply a cable
knot. In particular, the torus knot T (p, q) is the (p, q)–cable of the trivial knot.
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Seifert Klein bottles for knots with common boundary slopes 29

If X is a finite set or a topological space, |X| denotes its number of elements
or of connected components.

Theorem 1.1 Let K be a hyperbolic knot in S3 and r a slope in ∂XK

for which SK(K, r) is nonempty. Then any element of SK(K, r) is either
unknotted or strongly knotted, and

(a) if |SK(K, r)| ≥ 2 then SK(K, r) is either central or meridional; in the first
case the link c1 ∪ c2 is unique up to isotopy in XK and |SK(K, r)| ≤ 3,
in the latter case |SK(K, r)| ≤ 6;

(b) if SK(K, r) is central then each of its elements is strongly knotted; if some
element of SK(K, r) is unknotted then |SK(K, r)| ≤ 2, and SK(K, r) is
meridional if |SK(K, r)| = 2;

(c) if some element of SK(K, r) is not π1–injective then it is unknotted, K
has tunnel number one, and K(r) is a Seifert fibered space over S2 with
at most 3 singular fibers of indices 2, 2, n and finite fundamental group;

(d) if some element of SK(K, r) is π1–injective and unknotted then K(r) is
irreducible and toroidal.

Corollary 1.2 Let K ⊂ S3 be a hyperbolic knot and P an unknotted element
of SK(K, r). Then π1(K(r)) is finite iff P is not π1–injective. In particular, if
r = 0, then P is π1–injective.

In the case when SK(K, r) is meridional and contains an unknotted element
we give examples in Section 6.1 realizing the bound |SK(K, r)| = 2 for K a
hyperbolic knot. Such examples are obtained from direct variations on the
knots constructed by Lyon in [16]; M. Teragaito (personal communication) has
constructed more examples along similar lines. It is not known if the other
bounds given in Theorem 1.1 are optimal, but see the remark after Lemma 6.8
for a discussion on possible ways of realizing the bound |SK(K, r)| = 4, and
Section 6.2 for a construction of possible examples of central families SK(K, r)
with |SK(K, r)| = 2. On the other hand, hyperbolic knots which span a unique
Seifert Klein bottle per slope are not hard to find: if we call algorithmic any
black or white surface obtained from some regular projection of a knot, then the
algorithmic Seifert Klein bottles in minimal projections of hyperbolic pretzel
knots provide the simplest examples.

Theorem 1.3 Let K ⊂ S3 be a hyperbolic pretzel knot, and let P be any
algorithmic Seifert Klein bottle in a minimal projection of K . Then P is
unknotted, π1–injective, and unique up to equivalence; moreover, K(∂P ) is
irreducible and toroidal.
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We remark that any crosscap number two 2–bridge knot is a hyperbolic pretzel
knot. Also, as mentioned before, the only hyperbolic knots which bound Seifert
Klein bottles of distinct boundary slope are the (2, 1, 1) and (−2, 3, 7) pretzel
knots. The standard projection of the (2, 1, 1) pretzel knot simultaneously
realizes two algorithmic Seifert Klein bottles of distinct slopes (in fact, this
is the only nontrivial knot in S3 with such property), so they are handled
by Theorem 1.3. The (−2, 3, 7) pretzel knot has both an algorithmic and a
non algorithmic Seifert Klein bottle; it can be proved that the non algorithmic
surface also satisfies the conclusion of Theorem 1.3, but we omit the details.

In contrast, no universal bound for |SK(K, r)| exists for satellite knots:

Theorem 1.4 For any positive integer N , there are satellite knots K ⊂ S3

with |SK(K, 0)| ≥ N .

Among non hyperbolic knots, the families of cable or composite knots are of
particular interest; we classify the crosscap number two cable knots, and find
information about the Seifert Klein bottles bounded by composite knots.

Theorem 1.5 Let K be a knot in S3 whose exterior contains an essential
annulus and an essential Seifert Klein bottle. Then either

(a) K is a (2(2m + 1)n ± 1, 4n)–cable for some integers m,n, n 6= 0,

(b) K is a (2(2m+ 1)(2n+ 1)± 2, 2n+ 1)–cable of a (2m+ 1, 2)–cable knot
for some integers m,n,

(c) K is a (6(2n + 1) ± 1, 3)–cable of some (2n + 1, 2)–cable knot for some
integer n, or

(d) K is a connected sum of two 2–cable knots.

Any Seifert Klein bottle bounded by any composite knot is π1–injective, while
the opposite holds for any cable knot; in case (a), such a surface is unique up
to equivalence.

The next result follows from the proof of Theorem 1.5:

Corollary 1.6 The crosscap number two torus knots are T (±5, 3), T (±7, 3),
and T (2(2m+ 1)n± 1, 4n) for some m,n, n 6= 0; each bounds a unique Seifert
Klein bottle, which is unknotted and not π1–injective.

Geometry & Topology Monographs, Volume 7 (2004)



Seifert Klein bottles for knots with common boundary slopes 31

The crosscap numbers of torus knots have been determined in [23]; our clas-
sification of these knots follows from Theorem 1.5, whose proof gives detailed
topological information about the construction of Seifert Klein bottles for cable
knots in general. The classification of crosscap number two composite knots also
follows from [22] (where many-punctured Klein bottles are considered); these
knots serve as examples of satellite knots any of whose Seifert Klein bottles
is π1–injective. The Seifert Klein bottles for the knots in Theorem 1.5(a),(b)
are disjoint from the cabling annulus, and in (b) one expects the number of
Seifert Klein bottles bounded by the knot to depend on the nature of its com-
panions, as in [15, Corollary D]; in (c),(d) the Seifert Klein bottles intersect the
cabling or splitting annulus, so in (d) one would expect there to be infinitely
nonequivalent Seifert Klein bottles bounded by such knots, as in [7].

The paper is organized as follows. Section 2 collects a few more definitions
and some general properties of Seifert Klein bottles. In Section 3 we look at
a certain family of crosscap number two satellite knots which bound Seifert
Klein bottles with zero boundary slope, and use it to prove Theorem 1.4. In
Section 4 we first identify the minimal intersection between an essential annulus
and an essential Seifert Klein bottle in a knot exterior, which is the starting
point of the proof of Theorem 1.5 and its corollary. Section 5 contains some
results on non boundary parallel separating annuli and pairs of pants contained
in 3–manifolds with boundary, from both algebraic and geometric points of
view. These results have direct applications to the case of unknotted Seifert
Klein bottles, but we will see in Lemma 6.3 that if K is any hyperbolic knot
and P,Q ∈ SK(K, r) are any two distinct elements, then Q splits the exterior
H(P ) of P into two pieces, at least one of which is a genus two handlebody;
this observation eventually leads to the proof of Theorem 1.1 in Section 6. After
these developments, a proof of Theorem 1.3 is given within a mostly algebraic
setting in Section 7.
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2 Preliminaries

In this section we set some more notation we will use in the sequel, and establish
some general properties of essential Seifert Klein bottles. Let M3 be a 3–
manifold with boundary. For any surface F properly embedded in M3 and
c the union of some components of ∂F , F̂ denotes the surface in M3(c) =
M3 ∪ {2–handles along c} obtained by capping off the circles of ∂F isotopic
to c in ∂M3 suitably with disjoint disks in M3(c). If G is a second surface
properly embedded in M3 which intersects F transversely with ∂F ∩ ∂G = ∅,
let N(F ∩G) be a small regular neighborhood of F ∩G in M3 , and let A be
the collection of annuli obtained as the closures of the components of ∂N(F ∩
G) \ (F ∪ G). We use the notation F � G to represent the surface obtained
by capping off the boundary components in intM3 of F ∪ G \ intN(F ∩ G)
with suitable annuli from A. As usual, ∆(α, β) denotes the minimal geometric
intersection number between circles of slopes α, β embedded in a torus.

Now let P be a Seifert Klein bottle for a knot K ⊂ S3 , and let N(P ) be a small
regular neighborhood of P in XK ; N(P ) is an I –bundle over P , topologically a
genus two handlebody. Let H(P ) = XK \ intN(P ) be the exterior of P in XK .
Let AK , A′K denote the annuli N(P )∩∂XK ,H(P )∩∂XK , respectively, so that
AK ∪A′K = ∂XK and AK ∩A′K = ∂AK = ∂A′K . Then ∂P is a core of AK , and
we denote the core of A′K by K ′ . Finally, let TP denote the frontier of N(P ) in
XK . TP is a twice-punctured torus such that N(P )∩H(P ) = TP ; since N(P )
is an I –bundle over P , P is π1–injective in N(P ) and TP is incompressible in
N(P ).

For any meridian circle m of P , there is an annulus A(m) properly embedded
in N(P ) with P ∩ A(m) = m and ∂A(m) ⊂ TP ; we call the circles ∂A(m) =
m1 ∪m2 the lifts of m (to TP ). Similarly, for any center circle c of P , there
is a Moebius band B(c) properly embedded in N(P ) with P ∩ B(c) = c and
∂B(c) ⊂ TP ; we call l = ∂B(c) the lift of c (to TP ). For a pair of disjoint
centers in P , similar disjoint Moebius bands can be found in N(P ). Since the
meridian of P is unique up to isotopy, the lifts of a meridian of P are also
unique up to isotopy in TP ; the lift of a center circle of P depends only on the
isotopy class of the center circle in P .

We denote the linking form in S3 by `k(·, ·).

Lemma 2.1 Let P be a Seifert Klein bottle for a knot K ⊂ S3 . If m is the
meridian circle of P , then the boundary slope of P is ± 2 `k(K,m).
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Proof For m a meridian circle of P let P ′ be the pair of pants P \ intN(m)
and A′ the annulus P ∩ N(m), where N is a small regular neighborhood of
m in XK ; thus P = P ′ ∪ A′ , and ∂P ′ = ∂P ∪ ∂A′ . Fixing an orientation of
P ′ induces an orientation on ∂P ′ such that the circles ∂A′ become coherently
oriented in A′ . In this way an orientation on m is induced, coherent with that
of ∂A′ , such that `k(K,m1) = `k(K,m2) = `k(K,m). As the slope of ∂P is
integral, hence equal to ±`k(K,∂P ), and `k(K,m1∪m2∪∂P ) = 0, the lemma
follows.

Lemma 2.2 If P ∈ SK(K, r) then P̂ is incompressible in K(r).

Proof If P̂ compresses in K(r) along a circle γ then γ must be orientation-
preserving in P̂ . Thus, surgering P̂ along a compression disk D with ∂D = γ
produces either a nonseparating 2–sphere (if γ is a meridian) or two disjoint
projective planes (if γ is a longitude) in K(r), neither of which is possible as
K satisfies Property R [8] and K(r) has cyclic integral homology.

Lemma 2.3 Let m be a meridian circle and c1, c2 be two disjoint center circles
of P ; let m1,m2 and l1, l2 be the lifts of m and c1, c2 , respectively. Then,

(a) neither circle K ′, l1, l2 bounds a surface in H(P ),

(b) neither pair m1,m2 nor l1, l2 cobound a surface in H(P ),

(c) none of the circles mi, li cobounds an annulus in H(P ) with K ′ , and

(d) if A is an annulus in H(P ) with ∂A = ∂A′K , then A is not parallel in
XK into AK .

Proof Let Bi be a Moebius band in N(P ) bounded by li . If K ′ or li bounds
a surface F in H(P ) then out of the surfaces P,Bi, F it is possible to construct
a nonorientable closed surface in S3 , which is impossible; thus (a) holds.

Consider the circles K ′, α1, α2 in ∂H(P ), where α1, α2 = m1,m2 or l1, l2 ;
such circles are mutually disjoint. Let P1 be the closure of some component of
∂H(P ) \ (K ′ ∪ α1 ∪ α2); P1 is a pair of pants. If α1, α2 cobound a surface F
properly embedded in H(P ) then F ∪α1∪α2P1 is a surface in H(P ) bounded by
K ′ , which can not be the case by (a). Hence α1, α2 do not cobound a surface
in H(P ) and so (b) holds.

If any circle m1,m2, l1, l2 cobounds an annulus in H(P ) with K ′ then P̂ com-
presses in K(∂P ), which is not the case by Lemma 2.2; thus (c) holds.

Finally, if A ⊂ H(P ) is parallel to AK then the region V cobounded by A∪AK
is a solid torus with P ⊂ V and ∂P a core of AK , hence V (∂P ) = S3 contains
the closed Klein bottle P̂ , which is impossible. This proves (d).
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Figure 1: The pair of pants Fn = A′ ∪Bn ∪A′′ and the knot Kn ⊂ ∂Fn

The next result follows from [10, Theorem 1.3] and [19, Lemma 4.2]:

Lemma 2.4 Let K be a nontrivial knot in S3 . If P is a once-punctured Klein
bottle properly embedded in XK then P is essential iff K is not a 2–cable knot,
and in such case P has integral boundary slope.

3 The size of SK(K, 0)

In this section we consider a special family of crosscap number two satellite
knots {Kn}, which generalizes the example of W.R. Alford in [1]; the knots in
this family are constructed as follows. For each i ≥ 1 let Ki be a nontrivial
prime knot in S3 . Figure 1 shows a pair of pants Fn , n ≥ 2, with only
one shaded side, constructed with a band Bn whose core ‘follows the pattern’
of K1#K2# · · ·#Kn , and which is attached to two disjoint, unknotted, and
untwisted annuli A′, A′′ ; we define the knot Kn to be the boundary component
of Fn indicated in the same figure.

For each 1 ≤ s < n, let Ps be the Seifert Klein bottle bounded by Kn
constructed by attaching an annulus As to the two boundary circles of Fn
other than Kn , which swallows the factors K1, . . . ,Ks and follows the factors
Ks+1, . . . ,Kn , as indicated in Figure 2.

Notice that the core of As , which has linking number zero with Kn , is a meridian
circle of Ps , so the boundary slope of Ps is zero by Lemma 2.1. Our goal is to
show that Pr and Ps are not equivalent for r 6= s, so that |SK(Kn, 0)| ≥ n−1,
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Figure 2: The Seifert Klein bottle Ps = Fn ∪As and center cs ⊂ Ps

which will prove Theorem 1.4. In fact, we will prove the stronger statement
that Pr and Ps are not equivalent for r 6= s even under homeomorphisms of
S3 .

The following elementary result on intersection properties between essential
circles in a once-punctured Klein bottle will be useful in determining all centers
of any of the above Seifert Klein bottles of Kn ; we include its proof for the
convenience of the reader.

Lemma 3.1 Let P = A ∪ B be a once-punctured Klein bottle, where A is
an annulus and B is a rectangle with A ∩ B = ∂A ∩ ∂B consisting of two
opposite edges of ∂B , one in each component of ∂A. Let m be a core of A (ie
a meridian of P ) and b a core arc in B parallel to A∩B . If ω is any nontrivial
circle embedded in P and not parallel to ∂P which has been isotoped so as
to intersect m ∪ b transversely and minimally, then ω is a meridian, center, or
longitude circle of P iff (|ω ∩m|, |ω ∩ b|) = (0, 0), (1, 1), or (2, 2), respectively.

Proof Let I1, I2 denote the components of A∩B = ∂A∩∂B . After isotoping
ω so as to intersect m∪ b transversely and minimally, either ω lies in intA and
is parallel to m, or ω∩B consists of disjoint spanning arcs of B with endpoints
in I1 ∪ I2 , while ω ∩A consists of disjoint arcs which may split into at most 4
parallelism classes, denoted α, β, γ, δ ; the situation is represented in Figure 3.

Suppose we are in the latter case. As ω is connected and necessarily |α| = |δ|,
if |α| > 0 then ω ∩ A must consist of one arc of type α and one arc of type
δ ; but then ω is parallel to ∂P , which is not the case. Thus we must have
|α| = |δ| = 0, in which case |β| + |γ| = |ω ∩ b| = n for some integer n ≥ 1.
Notice that ω is a center if n = 1 and a longitude if n = 2; in the first case
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Figure 3: The arcs ω ∩B ⊂ B and ω ∩A ⊂ A

{|β|, |γ|} = {0, 1}, while in the latter {|β|, |γ|} = {0, 2} . These are the only
possible options for ω and n whenever |β| = 0 or |γ| = 0.

Assume that |β|, |γ| ≥ 1, so n ≥ 3, and label the endpoints of the arcs ω ∩ A
and ω ∩ B in I1, I2 consecutively with 1, 2, . . . , n, as in Figure 3. We assume,
as we may, that |β| ≤ |γ|. We start traversing ω from the point labelled 1 in
I1 ⊂ ∂B in the direction of I2 ⊂ ∂B , within B , then reach the endpoint of an
arc component of ω ∩ A in I2 ⊂ ∂A, then continue within A to an endpoint
in I1 ⊂ ∂A, and so on until traversing all of ω . The arc components of ω ∩B
and ω ∩ A traversed in this way give rise to permutations σ, τ of 1, 2, . . . , n,
respectively, given by σ(x) = n− x+ 1 for 1 ≤ x ≤ n, and τ(x) = n+ x− |β|
for 1 ≤ x ≤ |β|, τ(x) = x− |β| for |β| < x ≤ n.

Clearly, the number of components of ω equals the number of orbits of the
permutation τ ◦ σ . But, since |β| ≤ |γ|, the orbit of τ ◦ σ generated by 1
consists only of the numbers 1 and n − |β|; as ω is connected, we must then
have n ≤ 2, which is not the case. Therefore, the only possibilities for the pair
(|ω ∩m|, |ω ∩ b|) are the ones listed in the lemma.

For a knot L ⊂ S3 , we will use the notation C2(L) to generically denote any
2–cable of L; observe that any nontrivial cable knot is prime.

Lemma 3.2 For 1 ≤ s < n, any center of Ps is a knot of type

K1# · · ·#Ks#C2(Ks+1# · · ·#Kn).

Proof By Lemma 3.1, any center cs ⊂ Ps can be constructed as the union
of two arcs: one that runs along the band Bn and the other any spanning
arc of As . Since the annulus ‘swallows’ the factor K1# · · ·#Ks and ‘follows’

Geometry & Topology Monographs, Volume 7 (2004)



Seifert Klein bottles for knots with common boundary slopes 37

full twists
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Figure 4: The knot cs ⊂ S3

Ks+1# · · ·#Kn , any such center circle cs (shown in Figure 2) isotopes into a
knot of the type represented in Figure 4, which has the given form.

Lemma 3.3 For 1 ≤ r < s < n, there is no homeomorphism f : S3 → S3

which maps Pr onto Ps .

Proof Suppose there is a homeomorphism f : S3 → S3 with f(Pr) = Ps ; then
for any center cr of Pr , cs = f(cr) is a center of Ps . But then cr and cs have
the same knot type in S3 , which by Lemma 3.2 can not be the case since cr
has r + 1 prime factors while cs has s+ 1 prime factors.

Proof of Theorem 1.4 By Lemma 3.3, the Seifert Klein bottles Pr and Ps
for Kn are not equivalent for 1 ≤ r < s < n, hence |SK(Kn, 0)| ≥ n − 1 and
the theorem follows.

4 Cable and composite knots

In this section we assume that K is a nontrivial knot in S3 whose exterior XK

contains an essential annulus A and an essential Seifert Klein bottle P ; that is,
K is a crosscap number two cable or composite knot. We assume that A and
P have been isotoped so as to intersect transversely with |A∩P | minimal, and
denote by GA = A∩P ⊂ A and GP = A∩P ⊂ P their graphs of intersection.
We classify these graphs in the next lemma; the case when A has meridional
boundary slope is treated in full generality in [7, Lemma 7.1].

Lemma 4.1 Either A ∩ P = ∅ or ∆(∂A, ∂P ) = 1 and A ∩ P consists of a
single arc which is spanning in A and separates P into two Moebius bands.
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Proof Suppose first that ∆(∂A, ∂P ) = 0, so that ∂A∩ ∂P = ∅; in particular,
the boundary slopes of A and P are integral and K is a cable knot with cabling
annulus A. If A∩P 6= ∅ then A∩P consists of nontrivial orientation preserving
circles in A and P . If any such circle γ ⊂ A∩P is parallel to ∂P in P , we may
assume it cobounds an annulus Aγ with ∂P in P such that A∩ intAγ = ∅, so,
by minimality of |A ∩ P |, Aγ must be an essential annulus in the closure V of
the component of XK \ A containing it; as K is a cable knot, V must be the
exterior of some nontrivial knot of whom K is a q–cable for some q ≥ 2. But
then the boundary slope of Aγ in V is of the form a/q , that is, nonintegral nor
∞, contradicting the fact that Aγ is essential. Hence no component of A ∩ P
is parallel to ∂P in P and so P̂ compresses in K(∂P ) along a subdisk of Â,
which is not possible by Lemma 2.2. Therefore A and P are disjoint in this
case.

Suppose now that ∆(∂A, ∂P ) 6= 0; by minimality of |A ∩ P |, A ∩ P consists
only of arcs which are essential in both A and P . If α is one such arc then,
as α is a spanning arc of A, |∂P | = 1, and XK is orientable, it is not hard
to see that α must be a positive arc in P , in the sense of [13] (this fact does
not follow directly from the parity rule in [13] since |∂A| 6= 1, but its proof is
equally direct). Thus all the arcs of GP are positive in P .

Suppose a, b are arcs of GP which are parallel and adjacent in P , and let R
be the closure of the disk component of P \ (a ∪ b). Then R lies in the closure
of some component of XK \ A and, by minimality of |A ∩ P |, the algebraic
intersection number ∂R · core(A) must be ±2. But then K must be a 2–cable
knot, with cabling annulus A, contradicting Lemma 2.4 since P is essential.
Therefore no two arcs of GP are parallel.

Since any two disjoint positive arcs in P are mutually parallel, and A separates
XK , the above arguments show that GP consists of exactly one essential arc
which is separating in P . The lemma follows.

Proof of Theorem 1.5 By Lemma 4.1, A∩P = ∅ or |A∩P | = 1. Through-
out the proof, none of the knots considered will be a 2–cable, hence any Seifert
Klein bottle constructed for them will be essential by Lemma 2.4. Let V,W be
the closures of the components of XK \A.

Case 1 A ∩ P = ∅

Here K must be a cable knot: for the slope of ∂A must be integral or ∞,
the latter case being impossible since otherwise P̂ is a closed Klein bottle in
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K(∞) = S3 . Hence ∂V and ∂W are parallel tori in S3 , and we may regard
them as identical for framing purposes. We will assume P ⊂ V .

Suppose that V is a solid torus; then P is not π1–injective in XK . Let µ, λ
be a standard meridian–longitude pair for ∂V , framed as the boundary of the
exterior of a core of V in S3 . Since V is a solid torus and P is essential in
XK , P must boundary compress in V to some Moebius band B in V with
∆(∂P, ∂B) = 2. Suppose the slope of ∂P in V is pµ+qλ; as the slope of ∂B is of
the form (2m+1)µ+2λ for some integer m, we must have (2m+1)q−2p = ±2,
hence q ≡ 0 mod 4 and p is odd. Therefore, the slope of ∂P (and hence that of
∂A) must be of the form (2(2m+1)n±1)µ+4nλ for some n 6= 0. Conversely, it
is not hard to see that any such slope bounds an incompressible once-punctured
Klein bottle in V , which is easily seen to be unique up to equivalence. Therefore,
K is a (2(2m+1)n±1, 4n) cable of the core of V for some integers m,n, n 6= 0,
and (a) holds.

If V is not a solid torus then W is a solid torus and, since ∂V and ∂W are
parallel in S3 , we can frame ∂V as the boundary of the exterior of a core
of W in S3 via a standard meridian–longitude pair µ, λ. Then a core of A
has slope pµ + qλ in ∂V with |q| ≥ 2, so P has nonintegral boundary slope
in V and hence must boundary compress in V by Lemmas 2.2 and 2.4 to an
essential Moebius band B in V with ∆(∂P, ∂B) = 2; in particular, P is not
π1–injective in V , hence neither in XK . The slope of ∂B in ∂V must be of
the form 2(2m + 1)µ + λ for some integer m, and so the slope of ∂P in ∂V
is be of the form (2(2m + 1)(2n + 1) ± 2)µ + (2n + 1)λ for some integer n. It
follows that K is a (2(2m + 1)(2n + 1) ± 2, 2n + 1) cable of some (2m + 1, 2)
cable knot for some integers m,n, and (b) holds.

Case 2 |A ∩ P | = 1

By Lemma 4.1, B1 = P ∩ V and B2 = P ∩ W are Moebius bands whose
boundaries intersect A in a single spanning arc.

If the slope of ∂A in XK is ∞ then K = K1#K2 for some nontrivial knots
K1,K2 with V = XK1 and W = XK2 . Moreover, as Bi ⊂ XKi , the Ki ’s are
2–cable knots and (d) holds.

Suppose now that ∂A has integral slope in XK ; then at least one of V,W , say
V , is a solid torus. As in Case 1, we may regard ∂V and ∂W as identical tori
for framing purposes. If, say, W is not a solid torus, frame ∂V and ∂W via a
standard meridian–longitude pair µ, λ as the boundary of the exterior of a core
of V in S3 . Then ∂A has slope pµ+ qλ for some integers p, q with |q| ≥ 2 in
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V and W . Also, ∂B1 has slope rµ+ 2λ in V while ∂B2 has slope 2sµ+ λ in
W , for some odd integers r, s. As ∆(∂A, ∂Bi) = 1 for i = 1, 2, we must have
2p − rq = ε and p − 2sq = δ for some ε, δ = ±1. Hence p = 2sq + δ and so
2(2sq + δ) − rq = ε, that is, |(4s − r)q| = |ε − 2δ| = 1 or 3. As |q| ≥ 2, it
follows that |q| = 3, hence p = 6s± 1. Therefore, K is a (6s± 1, 3) cable of a
(s, 2) cable knot for some odd integer s, and (c) holds.

The situation is somewhat different if both V and W are solid tori. Here one
can find meridian–longitude framings µ, λ for ∂V and ∂W , such that µ bounds
a disk in V and λ bounds a disk in W . Now, the slope of ∂A in ∂V is of the
form pµ + qλ for some integers p, q with |p|, |q| ≥ 2. The slope of ∂B1 in V
is of the form aµ + 2λ, while that of ∂B2 in W is of the form 2µ + bλ. As
∆(∂A, ∂Bi) = 1 for i = 1, 2, it follows that 2p − aq = ε and 2q − bp = δ for
some ε, δ = ±1. Assuming, without loss of generality, that |p| > |q| ≥ 2, the
only solutions to the above equations can be easily shown to be (|p|, |q|) = (5, 3)
or (7, 3). Hence K must be the torus knot T (±5, 3) or T (±7, 3). Notice that
this case fits in Case (c) with n = −1, 0.

Thus in each of the above cases the knot K admits an essential Seifert Klein
bottle, which is unique in Case (a). We have also seen that in Cases (a) and
(b) such a surface is never π1–injective.

In case (c), K is a cable knot with cabling annulus A such that XK = V ∪AW ,
where V is a solid torus and W is the exterior of some (possibly trivial) knot
in S3 , and B1 = P ∩ V , B2 = P ∩W are Moebius bands. Using our notation
for H(P ), TP ,K ′ relative to the surface P , as N(P ) = N(B1)∪A∩N(P ) N(B2),
we can see that

H(P ) = (V \ intN(B1)) ∪D (W \ intN(B2))

where D = cl(A \N(P ∩A)) ⊂ A is a disk (a rectangle). Observe that

(i) V \ intN(B1) = A1 × I , where A1 = A1 × 0 is the frontier annulus of
N(B1) in V ,

(ii) the rectangle D ⊂ A has one side along one boundary component of the
annulus A′1 = ∂(A1 × I) \ intA1 ⊂ ∂(A1 × I) and the opposite side along
the other boundary component, and

(iii) K ′ ∩ (A1 × I) is an arc with one endpoint on each of the sides of the
rectangle ∂D interior to A′1 .

Let α be a spanning arc of A′1 which is parallel and close to one of the arcs of
∂D interior to A′1 , and which is disjoint from D ; such an arc exists by (i)–(iii),
and α intersects K ′ transversely in one point by (iii). Therefore α×I ⊂ A1×I
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is a properly embedded disk in H(P ) which intersects K ′ transversely in one
point, so TP is boundary compressible in XK and hence P is not π1–injective.

In case (d), keeping the same notation as above, if P is not π1–injective then
TP is not π1–injective either, so TP compresses in XK , and in fact in H(P ),
producing a surface with at least one component an annulus AP ⊂ H(P ) prop-
erly embedded in XK with the same boundary slope as P . Notice that AP
can not be essential in XK : for AP must separate XK , and if it is essential
then not both graphs of intersection A∩AP ⊂ A, A∩AP ⊂ AP can consist of
only essential arcs by the Gordon–Luecke parity rule [6]. Therefore AP must
be boundary parallel in XK and the region of parallelism must lie in H(P ) by
Lemma 2.3(d), so TP is boundary compressible and there is a disk D′ in H(P )
intersecting K ′ transversely in one point. As before,

H(P ) = (V \ intN(B1)) ∪D (W \ intN(B2)),

where V = XK1 and W = XK2 . Isotope D′ so as to intersect D transversely
with |D∩D′| minimal. If |D∩D′| > 0 and E′ is an outermost disk component
of D′ \D , then, as |D′ ∩K ′| = 1, E′ is a nontrivial disk in, say, V \ intN(B1)
with |E′ ∩K ′| = 0 or 1. Hence V \ intN(B1) is a solid torus whose boundary
intersects K ′ in a single arc K ′1 with endpoints on D ⊂ ∂V , and using E′ it is
possible to construct a meridian disk E′′ of V \intN(B1) disjoint from D which
intersects K ′ coherently and transversely in one or two points. If |D ∩D′| = 0
we set E′′ = D′ .

Let L1 be the trivial knot whose exterior XL1 is the solid torus V \ intN(B1),
so that K1 is a 2–cable of L1 . As XK1 = XL1 ∪ N(B1), where the gluing
annulus XL1 ∩N(B1) is disjoint from the arc K ′∩XL1 in ∂XL1 , E′′ must also
intersect ∂B1 coherently and transversely in one or two points. In the first case
K1 must be a trivial knot, while in the second case XK1 ⊂ S3 contains a closed
Klein bottle. As neither option is possible, P must be π1–injective.

Proof of Corollary 1.6 That any crosscap number two torus knot is of the
given form follows from the proof of Theorem 1.5. The uniqueness of the slope
bounded by a Seifert Klein bottle in each case follows from [19], and that no
such surface is π1–injective also follows from the proof of Theorem 1.5. For
a knot K of the form T (·, 4n), any Seifert Klein bottle P is disjoint from
the cabling annulus and can be constructed on only one side of the cabling
annulus. Since P is not π1–injective, TP compresses in H(P ) giving rise to
the cabling annulus of K ; thus uniqueness and unknottedness follows. For
the knots T (±5, 3), T (±7, 3) any Seifert Klein bottle P is separated by the
cabling annulus into two Moebius bands; as a Moebius band in a solid torus is
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unique up to ambient isotopy fixing its boundary, uniqueness of P again follows.
Since, in the notation of the proof of Theorem 1.5, H(P ) = (V \ intN(B1))∪D
(W \ intN(B2)), and V \ intN(B1), W \ intN(B2) are solid tori, H(P ) is a
handlebody and so any Seifert Klein bottle in these last cases is unknotted.

5 Primitives, powers, and companion annuli

Let M3 be a compact orientable 3–manifold with boundary, and let A be an
annulus embedded in ∂M3 . We say that a separating annulus A′ properly
embedded in M3 is a companion of A if ∂A′ = ∂A and A′ is not parallel into
∂M3 ; we also say that A′ is a companion of any circle c embedded in ∂M3

which is isotopic to a core of A. Notice that the requirement of a companion
annulus being separating is automatically met whenever M3 ⊂ S3 , and that if
∂M3 has no torus component then we only have to check that A′ is not parallel
into A. The following general result will be useful in the sequel.

Lemma 5.1 Let M3 be an irreducible and atoroidal 3–manifold with con-
nected boundary, and let A′, B′ be companion annuli of some annuli A,B ⊂
∂M3 . Let R,S be the regions in M3 cobounded by A,A′ and B,B′ , respec-
tively. If A is incompressible in M3 then R is a solid torus, and if A and B
are isotopic in ∂M3 then R ∩ S 6= ∅. In particular, A′ is unique in M3 up to
isotopy.

Proof Let c be a core of A; push R slightly into intM3 via a small collar
∂M3× I of ∂M3 = ∂M3× 0, and let A′′ = c× I . Observe the annulus A′′ has
its boundary components c × 0 on ∂M3 and c × 1 on ∂R. Also, ∂R can not
be parallel into ∂M3 , for otherwise A′ would be parallel into ∂M3 ; M3 being
atoroidal, ∂R must compress in M3 .

Let D be a nontrivial compression disk of ∂R in M3 . If D lies in N3 =
M3 \ intR then ∂R compresses in N3∪ (2–handle along c×0) along the circles
∂D and c × 1 ⊂ ∂R, hence ∂D and c × 1 are isotopic in ∂R, which implies
that A compresses in M3 , contradicting our hypothesis. Thus D lies in R, so
R is a solid torus.

Suppose now that R ∩ S = ∅, so that A ∩B = ∅ = A′ ∩B′ , and that A,B are
isotopic in ∂M3 . Then one boundary component of A and one of B cobound an
annulus A∗ in ∂M3 with interior disjoint from A∪B (see Figure 5(a)). Since,
by the above argument, R and S are solid tori with A,B running more than
once around R,S , respectively, the region N(R ∪ S ∪ A∗) is a Seifert fibered
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space over a disk with two singular fibers, hence not a solid torus, contradicting
our initial argument. Therefore R ∩ S 6= ∅.
Finally, isotope B into the interior of A, carrying B′ along the way so that A′

and B′ intersect transversely and minimally. If A′ ∩B′ = ∅ then B′ lies in the
solid torus R and so must be parallel to A′ in R. Otherwise, any component
B′′ of B′ ∩ (M3 \ intR) is an annulus that cobounds a region V ⊂ M3 \ intR
with some subannulus A′′ of A′ (see Figure 5(b)). Since |A′ ∩ B′| is minimal,
A′′ and B′′ are not parallel within V and so R∪A′′ V is not a solid torus. But
then the frontier of R ∪A′′ V is a companion annulus of A, contradicting our
initial argument. The lemma follows.

Remark In the context of Lemma 5.1, if A ⊂ ∂M3 compresses in M3 and M3

is irreducible, then A has a companion iff the core of A bounds a nonseparating
disk in M3 , in which case A has infinitely many nonisotopic companion annuli.

In the special case when H is a genus two handlebody, an algebraic charac-
terization of circles in ∂H that admit companion annuli will be useful in the
sequel, particularly in Section 7; we introduce some terminology in this regard.
For H a handlebody and c a circle embedded in ∂H , we say c is algebraically
primitive if c represents a primitive element in π1(H) (relative to some base-
point), and we say c is geometrically primitive if there is a disk D properly
embedded in H which intersects c transversely in one point. It is well known
that these two notions of primitivity for circles in ∂H coincide, so we will refer
to such a circle c as being simply primitive in H . We say that c is a power in
H if c represents a proper power of some nontrivial element of π1(H).

The next result follows essentially from [3, Theorem 4.1]; we include a short
version of the argument for the convenience of the reader.

Lemma 5.2 Let H be a genus two handlebody and c a circle embedded in
∂H which is nontrivial in H . Then,
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(a) ∂H \ c compresses in H iff c is primitive or a proper power in H , and

(b) c has a companion annulus in H iff c is a power in H .

Proof For (a), let D ⊂ H be a compression disk of ∂H \ c. If D does not
separate H then, since c and ∂D can not be parallel in ∂H , there is a circle α
embedded in ∂H \ c which intersects ∂D transversely in one point, and so the
frontier of a regular neighborhood in H of D ∪ α is a separating compression
disk of ∂H \ c. Thus, we may assume that D separates H into two solid tori
V,W with D = V ∩W = ∂V ∩ ∂W and, say, c ⊂ V . Therefore c is either
primitive or a power in V and hence in H . Conversely, suppose c is primitive
or a power in H . Then π1(H(c)) is either free cyclic or has nontrivial torsion
by [17, Theorems N3 and 4.12] and so the pair (H(c), ∂H(c)) is not irreducible
by [12, Theorem 9.8]. Therefore, by the 2–handle addition theorem (cf [3]), the
surface ∂H \ c must be compressible in H .

For (b), let A be an annulus neighborhood of c in ∂H . If A′ is a companion
annulus of A then A′ must boundary compress in H into a compression disk
for ∂H \ A; as in (a), we can assume that ∂H \ A compresses along a disk D
which separates H into two solid tori V,W with D = V ∩W = ∂V ∩ ∂W and
c,A,A′ ⊂ V . Since A′ is parallel in V into ∂V but not into A, it follows that
c is a power in V , hence in H . The converse follows in a similar way.

A special family of incompressible pairs of pants properly embedded in a 3–
manifold H ⊂ S3 with ∂H a genus two surface, which are not parallel into
∂H , appear naturally in Section 6. We will establish some of their properties
in the next lemma; the following construction will be useful in this regard. If F
is a proper subsurface of ∂H , c is a component of ∂F , and A is a companion
annulus of c in H with ∂A = ∂1A ∪ ∂2A, we isotope A so that, say, ∂1A = c
and ∂2A ⊂ ∂H \ F , and denote by F ⊕A the surface F ∪A, isotoped slightly
so as to lie properly embedded in H .

For c1, c2, c3 disjoint circles embedded in ∂H and nontrivial in H , we say c1, c2
are simultaneously primitive away from c3 if there is some disk D in H disjoint
from c3 which transversely intersects c1 and c2 each in one point; notice that
if H is a handlebody and c1, c2 are simultaneously primitive away from some
other circle, then c1, c2 are indeed primitive in H . We also say c1, c2 are
coannular if they cobound an annulus in H .

Lemma 5.3 Let H ⊂ S3 be a connected atoroidal 3–manifold with connected
boundary of genus two. Let c1, c2, c3 be disjoint nonseparating circles embedded
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in ∂H which are nontrivial in H , no two are coannular, and separate ∂H into
two pairs of pants P1, P2 . Let Q0 be a pair of pants properly embedded in H
with ∂Q0 = c1 ∪ c2 ∪ c3 and not parallel into ∂H . Then Q0 is incompressible
and separates H into two components with closures H1,H2 and ∂Hi = Q0∪Pi ,
and if Q0 boundary compresses in H the following hold:

(a) ci has a companion annulus in H for some i = 1, 2, 3;

(b) if only c1 has a companion annulus in H , say A′1 , then,

(i) for i, j = 1, 2, Pi ⊕A′1 is isotopic to Pj in H iff H is a handlebody
and c2, c3 are simultaneously primitive in H away from c1 ;

(ii) if Q0 boundary compresses in Hi then it boundary compresses into
a companion annulus of c1 in Hi , Q0 = Pi ⊕ A′1 in H , Hi is a
handlebody, and any pair of pants in Hi with boundary ∂Q0 is
parallel into ∂Hi ,

(iii) if R0 is a boundary compressible pair of pants in H disjoint from
Q0 with ∂R0 isotopic to ∂Q0 in ∂H , then R0 is parallel to Q0 or
∂H .

Proof Observe H is irreducible and Q0 is incompressible in H ; since H ⊂
S3 , Q0 must separate H , otherwise Q0 ∪ Pi is a closed nonseparating surface
in S3 , which is impossible. Also, by Lemma 5.1, a companion annulus of
any ci is unique up to isotopy and cobounds a solid torus with ∂H . Let
H1,H2 be the closures of the components of H \ Q0 , with ∂Hi = Q0 ∪ Pi ; as
Q0 is incompressible, both H1 and H2 are irreducible and atoroidal, so again
companion annuli in Hi are unique up to isotopy and cobound solid tori with
∂Hi . Let D be a boundary compression disk for Q0 , say D ⊂ H1 . We consider
three cases.

Case 1 The arc Q0 ∩ ∂D does not separate Q0 .

Then D is a nonseparating disk in H1 , and we may assume the arc Q0 ∩ ∂D
has one endpoint in c1 and the other in c2 , so that |c1 ∩ D| = 1 = |c2 ∩ D|
and c3 ∩ D = ∅. Hence the frontier D′ of a small regular neighborhood of
c1 ∪ D is a properly embedded separating disk in H1 which intersects c2 in
two points and whose boundary separates c1 from c3 in ∂H ; the situation is
represented in Figure 6, with c1 = u, c2 = v, c3 = w and D = Σ,D′ = Σ′ .
Clearly, boundary compressing Q0 along D produces an annulus A′3 in H1

with boundaries parallel to c3 in ∂H1 , and if A′3 is parallel into ∂H1 then Q0

itself must be parallel into P1 ⊂ ∂H1 , which is not the case. Therefore c3 has
a companion annulus in H1 , hence in H .
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Notice that H1 must be a handlebody in this case since the region cobounded
by A′3 and ∂H1 is a solid torus by Lemma 5.1, and that Q0 = P1 ⊕ A′3 in H
and c1, c2 are simultaneously primitive in H1 away from c3 .

Case 2 The arc Q0 ∩ ∂D separates Q0 and D separates H1 .

Here the endpoints of the arc Q0 ∩ ∂D lie in the same component of ∂Q0 , so
we may assume that |c1 ∩D| = 2 with c1 ·D = 0 while c2, c3 are disjoint from
and separated by D ; the situation is represented in Figure 6, with c1 = v, c2 =
u, c3 = w , and D = Σ′ . Thus, boundary compressing Q0 along D produces
two annuli A′2, A

′
3 in H1 \ D with boundaries parallel to c2, c3 , respectively.

Since Q0 is not parallel into P1 ⊂ ∂H1 , at least one of these annuli must be a
companion annulus.

Notice that if only one such annulus, say A′2 , is a companion annulus then, as in
Case 1, H1 is a handlebody, Q0 = P1⊕A′2 in H , and c1, c3 are simultaneously
primitive in H1 away from c2 .

Case 3 The arc Q0 ∩ ∂D separates Q0 and D does not separate H1 .

As in Case 2, we may assume that |c1 ∩ D| = 2 with c1 · D = 0 while c2, c3
are disjoint from D . Since D does not separate H1 , boundary compressing Q0

along D produces two nonseparating annuli in H1 , each with one boundary
parallel to c2 and the other parallel to c3 . Since c2, c3 are not coannular in H ,
this case does not arise. Therefore (a) holds.

For (b)(i), let V,H ′ be the closures of the components of H \ A′1 , with V a
solid torus and Pj ⊂ ∂H ′ ; observe that ∂H ′ can be viewed as (Pi⊕A′1)∪Pj . If
Pi ⊕A′1 and Pj are isotopic in H then H ′ ≈ Pj × I with Pj corresponding to
Pj×0, from which it follows that c2, c3 are simultaneously primitive in H away
from c1 . Moreover, c1 is primitive in the handlebody H ′ , and so H = H ′∪A′1 V
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is also a handlebody. Conversely, suppose H is a handlebody and c2, c3 are
simultaneously primitive away from c1 ; notice that c2, c3, A′1 ⊂ ∂H ′ . Suppose
D is a disk in H realizing the simultaneous primitivity of c2, c3 away from c1 ;
we assume, as we may, that D lies in H ′ (see Figure 6 with D = Σ, c2 =
u, c3 = v, core(A′1) = w). Compressing ∂H ′ \ intA′1 in H ′ along D gives
rise to an annulus A′′1 in H which, due to the presence of A′1 , is necessarily a
companion annulus of c1 in H . It follows from Lemma 5.1 that A′′1 and A′1 are
parallel in H ′ , hence that Pi ⊕A′1 and Pj are parallel in H ′ and so in H .

For (b)(ii), if Q0 boundary compresses into, say, H1 , then it follows immediately
from the proof of (a) that H1 is a handlebody, Q0 = P1 ⊕ A′1 , and c2, c3
are simultaneously primitive in H1 away from c1 , so Q0 compresses into a
companion annulus of c1 in H1 . If R0 is any pair of pants in H1 with boundary
∂Q0 then by the same argument R0 must be isotopic in H1 to Q0 ⊕ A′1 or
P1 ⊕A′1 , hence by (b)(i) R0 is parallel into ∂H1 .

For (b)(iii), consider the disjoint pairs of pants Q0, R0 and suppose R0 is also
not parallel into ∂H . By (b)(ii), Q0 = Pi ⊕ A′1 and R0 = Pj ⊕ A′1 for some
i, j ∈ {1, 2}. Thus, if i 6= j , Q0 boundary compresses in the direction of Pi ,
away from R0 , into a companion annulus of c1 ; a similar statement holds for
R0 , and so such companion annuli of c1 are separated by Q0∪R0 , contradicting
Lemma 5.1. Therefore i = j , so Q0 is parallel to R0 . The lemma follows.

Remark If any two of the circles c1, c2, c3 in Lemma 5.3 are coannular in H
then part (a) need not hold; an example of this situation can be constructed as
follows. Let H be a genus two handlebody and let c1, c2 be disjoint, nonparallel,
nonseparating circles in ∂H which are nontrivial in H and cobound an annulus
A in H . Let α ⊂ ∂H be an arc with one endpoint in c1 and the other in c2
which is otherwise disjoint from A. We then take the pair of pants Q0 to be the
frontier of H1 = N(A∪α) in H so that, up to isotopy, ∂Q0 = c1∪c2∪K , where
K ⊂ ∂H is the sum of c1 and c2 along α. Observe Q0 boundary compresses in
H1 as in Case 3 of Lemma 5.3(a). Thus, if c1 and c2 are primitive in H then,
by Lemma 5.2, no component of ∂Q0 has a companion in H and Q0 need not
be parallel into ∂H , as illustrated by the example in Figure 7. Moreover, if P
is the once-punctured Klein bottle A ∪B , where B ⊂ ∂H is a band with core
α, pushed slightly off ∂H so as to properly embed in H1 , then ∂P is isotopic
to K , H1 is a regular neighborhood of P , and the two components of ∂Q0

isotopic to c1, c2 are lifts of the meridian of P .

Geometry & Topology Monographs, Volume 7 (2004)



48 Luis G Valdez-Sánchez

α
2

c1

c

Figure 7: Coannular primitive circles c1, c2 in the handlebody H

6 Hyperbolic knots

In this section we fix our notation and let K be a hyperbolic knot in S3 with ex-
terior XK . If P,Q are distinct elements of SK(K, r) which have been isotoped
so as to intersect transversely and minimally, then |P ∩Q| > 0, ∂P ∩ ∂Q = ∅,
and each circle component of P ∩ Q is nontrivial in P and Q. Notice that
any circle component γ of P ∩Q must be orientation preserving in both P,Q,
or orientation reversing in both P,Q. If γ is a meridian (longitude, center)
in both P and Q, we will say that γ is a simultaneous meridian (longitude,
center, respectively) in P,Q. Recall our notation for H(P ), TP ,K ′, A′K relative
to the surface P .

Lemma 6.1 Let m1,m2 ⊂ TP and l ⊂ TP be the lifts of a meridian circle and
a center circle of P , respectively. Then m1,m2 can not both have companions
in H(P ), and neither l nor K ′ ⊂ ∂H(P ) have companions.

Proof Let A1, A2, A be annular neighborhoods of m1,m2, l in TP , respec-
tively, with A1∩A2 = ∅. Let A′1, A

′
2 be companions of A1, A2 in H(P ), respec-

tively, and suppose they intersect transversely and minimally; then A′1∩A′2 = ∅
by Lemma 2.3(b). Let Vi be the region in H(P ) cobounded by Ai, A

′
i for

i = 1, 2. Now, the lifts m1,m2 cobound the annulus A(m) in N(P ) for some
meridian circle m ⊂ P . Since A′i and Ai are not parallel in Vi , it follows
that, for a small regular neighborhood N = A(m) × I of A(m) in N(P ),
V1 ∪ N ∪ V2 ⊂ XK is the exterior XL of some nontrivial knot L in S3 with
A1 ⊂ XL an essential annulus (see Figure 8(a)). Observe H(P ) is irreducible
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and atoroidal since K is hyperbolic and P is essential. As A1, A2 are in-
compressible in H(P ), the Vi ’s are solid tori by Lemma 5.1 and so L is a
nontrivial torus knot with cabling annulus A1 . However, as the pair of pants
P0 = P \ intXL has two boundary components coherently oriented in ∂XL

with the same slope as ∂A1 , K must be a satellite of L of winding number
two, contradicting the hyperbolicity of K .

Suppose A′ is a companion of A in H(P ), and let V be the region in H(P )
cobounded by A,A′ . The circle l bounds a Moebius band B(c) in N(P ) with
B(c) ∩ P some center circle c of P . If M is a small regular neighborhood of
B(c) in N(P ) then, as A,A′ are not parallel in V , V ∪M is the exterior XL of
some nontrivial knot L in S3 (see Figure 8(b)), and A is an essential annulus in
XL which, since M is a solid torus, necessarily has integral boundary slope in
∂XL . This time, P0 = P \ intXL is a once-punctured Moebius band with one
boundary component in ∂XL having the same slope as ∂A, so K is a nontrivial
satellite of L with odd winding number, again contradicting the hyperbolicity
of K .

Finally, if A′K has a companion annulus B′ then, as K is hyperbolic, B′ must
be boundary parallel in XK in the direction of P , contradicting Lemma 2.3(d).
The lemma follows.

Given distinct elements P,Q ⊂ SK(K, r), if P ∩ Q is a single simultaneous
meridian or some pair of disjoint simultaneous centers, we will say that P and
Q intersect meridionally or centrally, respectively.

Lemma 6.2 If P,Q ∈ SK(K, r) are distinct elements which intersect trans-
versely and minimally, then P,Q intersect meridionally or centrally.

Proof By minimality of |P ∩Q|, any component γ of P ∩Q must be nontrivial
in both P and Q, hence, in P or Q, γ is either a circle parallel to the boundary,
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a meridian, a longitude, or a center circle. Observe that if γ is a center in P
then, as it is orientation reversing in P it must be orientation reversing in Q,
and hence γ must also be a center in Q.

Suppose γ is parallel to ∂P in P ; without loss of generality, we may assume
that ∂P and γ cobound an annulus AP in P with Q ∩ intAP = ∅. Since γ
preserves orientation in P it must also preserve orientation in Q, hence γ is
either a meridian or longitude of Q, or parallel to ∂Q. In the first two cases, Q̂
would compress in K(∂Q) via the disk ÂP , which is not the case by Lemma 2.2;
thus, γ and ∂Q cobound an annulus AQ in Q. As K is hyperbolic, the annulus
AP ∪γAQ ⊂ H(P ) is boundary parallel in XK by Lemma 6.1; but then |P ∩Q|
is not minimal, which is not the case. Therefore no component of P ∩ Q is
parallel to ∂P, ∂Q in P,Q, respectively.

Suppose now that γ is a meridian in P and a longitude in Q. Then P ∩ Q
consists only of meridians of P and longitudes of Q. If γ is the only component
of P ∩Q then P � Q is a nonorientable (connected) surface properly embedded
in XK with two boundary components, which is impossible. Thus we must
have |P ∩ Q| ≥ 2; as the circles P ∩ Q are mutually parallel meridians in P ,
it follows that P ∩H(Q) consists of a pair of pants and at least one annulus
component A. But P ∩ N(Q) consists of a disjoint collection of annuli {Ai}
with {Ai ∩Q} disjoint longitude circles of Q, and so the circles ∪∂Ai form at
most two parallelism classes in TQ ⊂ ∂H(Q), corresponding to the lifts of some
disjoint pair of centers of Q. Since the circles ∂A are among those in ∪∂Ai ,
and A is not parallel into ∂H(Q) by minimality of |P ∩ Q|, we contradict
Lemmas 2.3 and 6.1.

Therefore, each component of P ∩Q is a simultaneous meridian, longitude, or
center of P,Q. There are now two cases left to consider.

Case 1 P ∩Q consists of simultaneous meridians.

Suppose |P ∩Q| = k + 1, k ≥ 0. Then Q ∩N(P ) consists of disjoint parallel
annuli A0, . . . , Ak , each intersecting P in a meridian circle, and Q ∩H(P ) =
Q0 ∪ A′1 ∪ · · · ∪A′k , where Q0 is a pair of pants with ∂Q ⊂ ∂Q0 and the A′i ’s
are annuli, none of which is parallel into ∂H(P ). The circles ∪∂Ai = ∪∂A′i
consist of two parallelism classes in ∂H , denoted I and II, corresponding to the
two distinct lifts of a meridian circle of P to ∂N(P ).

By Lemma 2.3, the circles ∂A′i are both of type I or both of type II, for each i.
Also, the components of ∂Q0 are ∂Q and two circles ∂1Q0, ∂2Q0 of type I or II.
If the circles ∂1Q0, ∂2Q0 are both of type I or both of type II, then the union of
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Q0 and an annulus in TP cobounded by ∂1Q0 and ∂2Q0 is a once-punctured
surface in XK disjoint from P , contradicting Lemma 2.3(b). Therefore, one of
the circles ∂1Q0, ∂2Q0 is of type I and the other of type II. Thus, if k > 0 then
some annulus A′i has boundaries of type I and some annulus A′j has boundaries
of type II, which contradicts Lemma 6.1. Therefore k = 0, and so P ∩ Q
consists of a single simultaneous meridian.

Case 2 P ∩Q consists of simultaneous longitudes or centers.

P ∩Q can have at most two simultaneous centers; if it has at most one simul-
taneous center then P � Q is a nonorientable surface properly embedded in
XK with two boundary components, which is not possible. Therefore P ∩ Q
contains a pair c1, c2 of disjoint center circles, so Q ∩ N(P ) consists of two
Moebius bands and, perhaps, some annuli, while Q∩H(P ) consists of one pair
of pants Q0 and, perhaps, some annuli. Thus the circles Q∩∂H(P ) are divided
into two parallelism classes, corresponding to the lifts of c1 and c2 , and we may
proceed as in Case 1 to show that Q∩H(P ) has no annulus components. Hence
P ∩Q = c1 ∪ c2 .

Remark Notice that if P,Q are any two distinct elements of SK(K, r), so
P ∩Q is central or meridional, and Q0 = Q∩H(P ), then by Lemma 2.3, since
K is hyperbolic, H(P ) and ∂Q0 satisfy the hypothesis of Lemma 5.3; however,
Q0 need not boundary compress in H(P ).

The following result gives constraints on the exteriors of distinct elements of
SK(K, r).

Lemma 6.3 Suppose P,Q ∈ SK(K, r) are distinct elements which intersect
centrally or meridionally; let Q0 = Q ∩H(P ), and let V,W be the closures of
the components of H(P ) \Q0 . Then Q0 is not parallel into ∂H(P ), and

(a) for X = V,W, or H(P ), either X is a handlebody or the pair (X,∂X)
is irreducible and atoroidal;

(b) if P ∩Q is central then (H(P ), ∂H(P )) is irreducible and Q0 is boundary
incompressible in H(P ), and

(c) if the pair (V, ∂V ) is irreducible then W is a handlebody.

In particular, if P is not π1–injective then P is unknotted, P ∩Q is meridional,
and K ′ is primitive in H(P ).
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Figure 9: The manifold M̃3 = Ñ(P ) ∪P1∪(V ∩N(K)) V

Proof Let P1, P2 be the closures of the components of ∂H(P ) \ ∂Q0 . If Q0 is
parallel to, say P1 , then Q is isotopic in XK to P1∪(Q∩N(P )) ⊂ N(P ), which
is clearly isotopic to P in N(P ) (see Figure 9 and the proof of Lemma 6.7);
thus Q0 is not parallel into ∂H(P ).

Let R be the maximal compression body of ∂H(P ) = ∂+R in H(P ) (notation
as in [2, 3]). Since H(P ) is irreducible and atoroidal, either ∂−R is empty and
H(P ) is a handlebody or R is a trivial compression body and (H(P ), ∂H(P ))
is irreducible and atoroidal. As Q0 is incompressible in H(P ), a similar argu-
ment shows that either V (W ) is a handlebody or the pair (V, ∂V ) ((W,∂W ),
respectively) is irreducible and atoroidal; thus (a) holds.

If P ∩Q is central and either H(P ) is a handlebody or Q0 is boundary com-
pressible, then at least one of the circles K ′, l1, l2 , where l1, l2 are the lifts of
the simultaneous centers P ∩ Q, has a companion annulus by Lemma 5.3(a);
this contradicts Lemma 6.1, so (b) now follows from (a).

For part (c), let Ñ(P ) = N(P )∪AKN(K) = S3\intH(P ), the extended regular
neighborhood of P in S3 ; notice that K ′ ⊂ ∂Ñ(P ) and, since P has integral
boundary slope, that AK and A′K are parallel in N(K), so Ñ(P ) and N(P )
are homeomorphic in a very simple way.

Suppose the pair (V, ∂V ) is irreducible; without loss of generality, we may
assume P1 ⊂ ∂V and P2 ⊂ ∂W . As none of the circles ∂P1 bounds a disk
in N(P ), the pair of pants P1 is incompressible in N(P ) and hence in Ñ(P );
thus, since (V, ∂V ) is irreducible, it is not hard to see that, for the manifold
M̃3 = Ñ(P )∪P1∪(V ∩N(K)) V (see Figure 9), the pair (M̃3, ∂M̃3) is irreducible.
As S3 = M̃3 ∪W , ∂W must compress in W , so W is a handlebody by (a).

Finally, if P is not π1–injective then TP compresses in H(P ), so H(P ) is a
handlebody by (a), K ′ is primitive in H(P ) by Lemmas 5.2 and 6.1, and P ∩Q
is meridional by (b).
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Lemma 6.4 If P,Q,R ∈ SK(K, r) are distinct elements and each intersection
P ∩Q,P ∩R is central or meridional, then P ∩Q and P ∩R are isotopic in P .

Proof We will assume that P ∩Q and P ∩R are not isotopic in P and obtain
a contradiction in all possible cases. Since any two meridian circles of P are
isotopic in P , we may assume that P ∩Q = m or c1 ∪ c2 and P ∩R = c′1 ∪ c′2 ,
where m is the meridian of P and c1, c2 and c′1, c

′
2 are two non isotopic pairs of

disjoint centers of P ; we write ∂Q0 = ∂Q∪α1∪α2 and ∂R0 = ∂R∪l′1∪l′2 , where
α1, α2 ⊂ TP are the lifts m1,m2 of m or l1, l2 of c1, c2 , and l′1, l

′
2 ⊂ TP are the

lifts of c′1, c
′
2 . Isotope P ∩Q and P ∩R in P so as to intersect transversely and

minimally; then their lifts α1 ∪ α2 and l′1 ∪ l′2 will also intersect minimally in
∂H(P ). Finally, isotope Q0, R0 in H(P ) so as to intersect transversely with
|Q0 ∩ R0| minimal; necessarily, |Q0 ∩ R0| > 0, and any circle component of
Q0 ∩R0 is nontrivial in Q0 and R0 .

Let GQ0 = Q0∩R0 ⊂ Q0 , GR0 = Q0∩R0 ⊂ R0 be the graphs of intersection of
Q0, R0 . Following [6], we think of the components of ∂Q0 as fat vertices of GQ0 ,
and label each endpoint of an arc of GQ0 with 1′ or 2′ depending on whether
such endpoint arises from an intersection involving l′1 or l′2 , respectively; the
graph GR0 is labelled with 1, 2 in a similar way. Such a graph is essential if
each of its components is essential in the corresponding surface. As P ∩ R is
central, R0 is boundary incompressible in H(P ) by Lemma 6.3(b) and so GQ0

is essential; similarly, GR0 is essential if P ∩ Q is central. Thus, if GR0 has
inessential arcs then P ∩Q is meridional and, by minimality of |Q0 ∩R0|, Q0

boundary compresses along an essential arc of GQ0 . By Lemma 3.1, since the
meridian m and the centers c′1, c

′
2 can be isotoped so that |m ∩ c′j| = 1, it

follows by minimality of |∂Q0 ∩ ∂R0| that |mi ∩ l′j| = 1 for i, j = 1, 2. Hence
any inessential arc of GR0 has one endpoint in m1 and the other in m2 and so,
by Case 1 of Lemma 5.3(a), since Q0 is not parallel into ∂H(P ) by Lemma 6.3,
Q0 boundary compresses to a companion annulus of K ′ in H(P ), contradicting
Lemma 6.1.

Therefore the graphs GQ0 , GR0 are always essential. Since P ∩ Q and P ∩ R
are not isotopic in ∂H(P ), any circle component of Q0∩R0 must be parallel to
∂Q, ∂R in Q0, R0 , respectively, so, by minimality of |Q0 ∩ R0|, K ′ must have
a companion annulus in H(P ), contradicting Lemma 6.1. Thus Q0 ∩ R0 has
no circle components. We consider two cases.

Case 1 P ∩Q = m

In this case, we have seen that |mi ∩ l′j| = 1 for i, j = 1, 2. Therefore the
m1,m2 and l′1, l

′
2 fat vertices of GQ0 and GR0 , respectively, each have valence
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Figure 10: The possible graphs GQ0

2, and so, by essentiality, each graph GQ0 , GR0 consist of two parallel arcs, one
annulus face, and one disk face D . The situation is represented in Figure 10(a),
where only GQ0 is shown; notice that the labels 1′, 2′ must alternate around
∂D .

Let V,W be the closures of the components of H(P )\R0 , and suppose Q0∩V
contains the disk face D of GQ0 . By minimality of |Q0 ∩R0| and |∂Q0 ∩ ∂R0|,
∂D is nontrivial in ∂V , hence V is a handlebody by Lemma 6.3 and K ′ is
primitive in V by Lemmas 5.2 and 6.1. Since the labels 1′, 2′ alternate around
∂D , D must be nonseparating in V ; thus there is an essential disk D′ in V
disjoint from D such that D,D′ form a complete disk system for V . Now, for
i = 1, 2, |∂D ∩ l′i| = 2 and so D · l′i is even. If the intersection number D′ · l′i
is even for some i = 1, 2 then l′i is homologically trivial mod 2 in V , while if
D′ · l′i is odd for i = 1, 2 then l′1 ∪ l′2 is homologically trivial mod 2 in V . Thus
one of l′1, l

′
2, or l′1 ∪ l′2 bounds a surface in V , hence in H(P ), contradicting

Lemma 2.3. Therefore this case does not arise.

Case 2 P ∩Q = c1 ∪ c2

Recall that c1 ∪ c2 and c′1 ∪ c′2 intersect transversely and minimally in P , so
their lifts l1 ∪ l2 and l′1 ∪ l′2 also intersect minimally in ∂H(P ). Moreover,
after exchanging the roles of Q0, R0 or relabelling the pairs c1, c2 and c′1, c

′
2 , if

necessary, we must have that |c1∩(c′1∪c′2)| = 2n+1 and |c2∩(c′1∪c′2)| = |2n−1|
for some integer n ≥ 0: this can be easily seen by viewing P as the union of
an annulus A with core m and a rectangle B with core b, as in Lemma 3.1,
and isotoping c1 ∪ c2 and c′1 ∪ c′2 so as to intersect m∪ b minimally. Figure 11
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Figure 11: Minimally intersecting pairs c1 ∪ c2, c′1 ∪ c′2

represents two pairs c1 ∪ c2 and c′1 ∪ c′2 with minimal intersections; in fact,
all examples of such pairs can be obtained from Figure 11(a) by choosing the
rectangle B appropriately so that the arcs of (c1 ∪ c2) ∩ A are as shown, and
suitably Dehn–twisting the pair c′1 ∪ c′2 along m.

Thus |l1 ∩ (l′1 ∪ l′2)| = 4n+ 2 and |l2 ∩ (l′1 ∪ l′2)| = |4n− 2|, and so the essential
graphs GQ0 , GR0 must both be of the type shown in Figure 10(b) (which is in
fact produced by the intersection pattern of Figure 11(b), where n = 1). Let
V,W be the closures of the components of H(P ) \R0 . If n > 1 then the graph
GQ0 has the two disk components D1,D2 labelled ∗ and ∗∗ in Figure 10(b),
respectively, as well as an annulus face A with ∂1A = ∂Q, all lying in, say, V .
Thus V is a handlebody by Lemma 6.3 and, by minimality of |∂Q0 ∩ ∂R0| and
the essentiality of GQ0 , GR0 , the four disjoint circles ∂1A, ∂2A, ∂D1, ∂D2 are all
essential in ∂V and intersect ∂R0 minimally. Given that |∂1A ∩ (l′1 ∪ l′2)| = 0,
|∂2A ∩ (l′1 ∪ l′2)| = 2, |∂D1 ∩ (l′1 ∪ l′2)| = 6, and |∂D2 ∩ (l′1 ∪ l′2)| = 4, no two
of such four circles can be isotopic in ∂V , an impossibility since ∂V has genus
two. The case n = 0 is similar to Case 1 and yields the same contradiction.

Finally, for n = 1 the intersection pattern in P between c1 ∪ c2 and c′1 ∪ c′2
must be the one shown in Figure 11(b), and it is not hard to see that only two
labelled graphs GQ0 are produced, up to combinatorial isomorphism. The first
possible labelled graph is shown in Figure 12(a); capping off l1, l2 and l′1, l

′
2 with

the corresponding Moebius bands Q ∩ N(P ), we can see that Q ∩ R consists
of a single circle component (shown in Figure 12(a) as the union of the broken
and solid lines), which must be a meridian by Lemma 6.2, contradicting Case 1
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Figure 12: GQ0 graphs from central intersections

since Q∩P is central. In the case of Figure 12(b), the disk faces D1,D2 of GQ0

lie both in, say, V , so V is a handlebody by Lemma 6.3 and K ′ is primitive
in V by Lemmas 5.2 and 6.1. Moreover, since D1 and D2 do not intersect
l′1 ∪ l′2 in the same pattern, D1 and D2 are nonisotopic compression disks of
∂V \K ′ in V , so at least one of the disks D1,D2 must be nonseparating in V .
As either disk D1,D2 intersects each circle l′1, l

′
1 an even number of times, we

get a contradiction as in Case 1. Therefore this case does not arise either.

The next corollary summarizes some of our results so far.

Corollary 6.5 If K is hyperbolic and |SK(K, r)| ≥ 2 then SK(K, r) is ei-
ther meridional or central; in the latter case, the link c1 ∪ c2 obtained as the
intersection of any two distinct elements of SK(K, r) is unique in XK up to
isotopy.

If |SK(K, r)| ≥ 2 and P ∈ SK(K, r), let α1, α2 ⊂ H(P ) be the lifts of the
common meridian or pair of disjoint centers of P which, by Corollary 6.5, are
determined by the elements of SK(K, r), and define P (K, r) as the collection
of all pairs of pants X ⊂ H(P ) with ∂X = K ′ ∪ α1 ∪ α2 and not parallel into
∂H(P ), modulo isotopy. Notice that SK(K, r) \ {P} embeds in P (K, r) by
Corollary 6.5, and so |SK(K, r)| ≤ |P (K, r)| + 1. Our strategy for bounding
|SK(K, r)| in the next lemmas will be to bound |P (K, r)|.

Lemma 6.6 Let K be a hyperbolic knot with |SK(K, r)| ≥ 2. If SK(K, r) is
central then |SK(K, r)| ≤ 3.

Proof Fix P ∈ SK(K, r), and suppose Q0, R0, S0 are distinct elements of
P (K, r), each with boundary isotopic to K ′∪ l1∪ l2 , where l1, l2 are the lifts of
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some fixed pair of disjoint centers of P . Since neither K ′, l1 , nor l2 have any
companion annuli in H(P ) by Lemma 6.1, Q0, R0, S0 can be isotoped in H(P )
so as to become mutually disjoint. Each of the surfaces Q0, R0, S0 separates
H(P ), and we may assume that R0 separates Q0 from S0 in H(P ).

Let V,W be the closures of the components of H(P )\R0 , with Q0 ⊂ V, S0 ⊂W ;
then V , say, is a handlebody by Lemma 6.3. As Q0 is not parallel into ∂V
by Lemma 6.3, it follows from Lemma 5.3(a) that one of the circles ∂Q0 has a
companion annulus in V , hence in H(P ), contradicting Lemma 6.1. Therefore
|P (K, r)| ≤ 2, and so |SK(K, r)| ≤ 3.

Lemma 6.7 Let K be a hyperbolic knot with |SK(K, r)| ≥ 2. If SK(K, r)
has an unknotted element P then SK(K, r) is meridional, |SK(K, r)| = 2, and
some lift of the meridian of P has a companion annulus in H(P ).

Proof Let P,Q ∈ SK(K, r) be distinct elements with P unknotted, and let
Q0 = Q ∩H(P ). Then P ∩Q is meridional by Lemma 6.3(b), so SK(K, r) is
meridional, and Q0 boundary compresses into a companion annulus A of ex-
actly one of the lifts m1 or m2 of the meridian circle m of P by Lemmas 5.3(a)
and 6.1. Now, if P1, P2 are the closures of the components of ∂H(P )\∂Q0 then,
by Lemma 5.3(b)(ii), Q0 = Pi ⊕A for some i = 1, 2, so if A(m) is an annulus
in N(P ) cobounded by m1,m2 then Q is equivalent to one of the Seifert Klein
bottles Ri = Pi⊕A∪A(m), i = 1, 2. But R1 and R2 are isotopic in XK : this
isotopy is described in Figure 13, where a regular neighborhood N(P ) of P is
shown (as a box) along with the lifts of the meridian m of P (as two of the solid
dots in the boundary of N(P )); regarding P1 as the closure of a component of
∂N(P ) \ (N(A(m) ∪P ), the idea is to construct P1 ⊕A∪A(m), start pushing
P1 onto P using the product structure of N(P ) \ A(m), and continue until
reaching P2 on the ‘other side’ of P ; as the annulus A∪A(m) is ‘carried along’
in the process, the end surface of the isotopy is P2 ⊕ A ∪ A(m). The lemma
follows.

Remark For a hyperbolic knot K ⊂ S3 with Seifert Klein bottle P and
meridian lifts m1,m2 , if there is a pair of pants Q0 ⊂ H(P ) with ∂Q0 =
K ′ ∪m1 ∪m2 which is not parallel into ∂H(P ), it may still be the case that
the Seifert Klein bottle Q = Q0∪A(m) is equivalent to P in XK . An example
of this situation is provided by the hyperbolic 2–bridge knots with crosscap
number two; see Section 7 and the proof of Theorem 1.3 for more details.

Lemma 6.8 Let K be a hyperbolic knot with |SK(K, r)| ≥ 2. If SK(K, r) is
meridional then |SK(K, r)| ≤ 6.
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Figure 13: An isotopy between (P1 ⊕A) ∪A(m) and (P2 ⊕A) ∪A(m)

Proof Fix P ∈ SK(K, r), and suppose Q0, R0, S0, T0 are distinct elements
of P (K, r) which can be isotoped in H(P ) so as to be mutually disjoint; we
may assume R0 separates Q0 from S0 ∪ T0 , while S0 separates Q0 ∪ R0 from
T0 . Let V,W be the closure of the components of H(P ) \ R0 , with Q0 ⊂ V
and S0 ∪ T0 ⊂ W . Then W can not be a handlebody by Lemma 5.3(b)(iii),
hence, by Lemmas 5.3(a) and 6.3(c), V is a handlebody and Q0 gives rise to a
companion annulus in V of some lift of the meridian of P . However, a similar
argument shows that T0 gives rise to a companion annulus of some lift of the
meridian of P in W , contradicting Lemmas 5.1 and 6.1.

Therefore at most three distinct elements of P (K, r) can be isotoped at a time
so as to be mutually disjoint in H(P ). Consider the case when three such
disjoint elements exist, say Q0, R0, S0 . Let E,F,G,H be the closure of the
components of H(P ) \ (Q0 ∪ R0 ∪ S0), and let P1, P2 be the closure of the
pair of pants components of ∂H(P ) \ ∂(Q0 ∪R0 ∪S0), as shown (abstractly) in
Figure 14.

Suppose T0 ∈ P (K, r) \ {Q0, R0, S0} has been isotoped in H(P ) so as to inter-
sect Q0 ∪R0 ∪ S0 transversely and minimally. Then |T0 ∩ (Q0 ∪R0 ∪ S0)| > 0
by the above argument. Since T0 ∩ (Q0 ∪ R0 ∪ S0) consists of circles parallel
to ∂T0 , at least one component of ∂T0 must have a companion annulus A1 in
H(P ); the annulus A1 may be constructed from an outermost annulus com-
ponent of T0 \ (Q0 ∪ R0 ∪ S0), and hence can be assumed to lie in one of the
regions E,F,G or H . By Lemma 6.1, A1 is a companion of some lift m1 of the
meridian of P , and by Lemma 2.3(b)(c) the components of T0 ∩ (Q0 ∪R0 ∪S0)
are all mutually parallel in each of T0, Q0, R0, S0 . So, if, say, |T0 ∩ Q0| ≥ 2,
then m1 gets at least one companion annulus on either side of Q0 , which is not
possible by Lemma 5.1; thus |T0 ∩X| ≤ 1 for X = Q0, R0, S0 .
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Figure 14: The possible pairs of pants T0 (in broken lines) in H(P )

Let T ′0 be the closure of the pants component of T0\(Q0∪R0∪S0); then T ′0 lies
in one of E,F,G, or H , and so T ′0 must be isotopic to P1, P2, Q0, R0 , or S0 .
Also, since A1 is unique up to isotopy by Lemma 5.1, we can write T0 = T ′0⊕A1 .
Therefore, the only choices for T0 are X ⊕A1 for X = P1, Q0, R0, S0 ; here we
exclude X = P2 since P1⊕A1 and P2⊕A1 give rise to isotopic once-punctured
Klein bottles in XK by the proof of Lemma 6.7.

If A1 ⊂ E (the case A1 ⊂ H is similar) then P1 ⊕A1 = Q0 and Q0 ⊕A1 = P1

(see Figure 14(a)), hence T0 = R0 ⊕ A1 or S0 ⊕ A1 . If A1 ⊂ F (the case
A1 ⊂ G is similar) then R0 ⊕ A1 = Q0 and Q0 ⊕A1 = R0 (see Figure 14(b)),
hence T0 = P1 ⊕ A1 or S0 ⊕ A1 . In either case we have |P (K, r)| ≤ 5, and
hence |SK(K, r)| ≤ 6. Finally, if at most two distinct elements of P (K, r) can
be isotoped so as to be disjoint in H(P ), it is not hard to see by an argument
similar to the above one that in fact the smaller bound |SK(K, r)| ≤ 4 holds.

Remark It is possible to realize the bound |P (K, r)| = 3, so |SK(K, r)| ≤ 4,
as follows. By [18, Theorem 1.1], any unknotted solid torus S1 × D2 in S3

contains an excellent properly embedded arc whose exterior V ⊂ S1 × D2 is
an excellent manifold with boundary of genus two; in particular, (V, ∂V ) is
irreducible, V is atoroidal and anannular, and S3 \ intV is a handlebody. Let
H,Q0, P be the genus two handlebody, pair of pants, and once-punctured Klein
bottle constructed in the remark just after Lemma 5.3 (see Figure 7). Let H ′

be the manifold obtained by gluing a solid torus U to H along an annulus in
∂U which runs at least twice along U and which is a regular neighborhood of
one of the components of ∂Q0 which is a lift of the meridian of P ; since such
a component is primitive in H , H ′ is a handlebody. Finally, glue V and H ′

together along their boundaries so that V ∪H ′ = S3 . Using our results so far
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in this section it can be proved (cf proof of Lemma 6.9) that K = ∂P becomes
a hyperbolic knot in S3 , H(P ) contains two disjoint nonparallel pair of pants
with boundary isotopic to K ′ and the lifts of a meridian m of P , and one of
the lifts of m has a companion annulus in H(P ), so |P (K, r)| = 3. The bound
|P (K, r)| = 5 could then be realized if V contained a pair of pants not parallel
into ∂V with the correct boundary.

Proof of Theorem 1.1 That SK(K, r) is either central or meridional and
parts (a),(b) follow from Corollary 6.5 and Lemmas 6.3, 6.6, 6.7, and 6.8.

Let P ∈ SK(K, r). If P is not π1–injective then P is unknotted and K ′ is
primitive in H(P ) by Lemma 6.3. Thus, there is a nonseparating compression
disk D of TP in H(P ); since K ′ has no companion annuli in H(P ), it follows
that N(P )∪N(D) is homeomorphic to XK , hence K has tunnel number one.
Moreover, if H(P )(K ′) is the manifold obtained from H(P ) by attaching a
2–handle along K ′ , then H(P )(K ′) is a solid torus and so K(r) = N(P̂ ) ∪∂
H(P )(K ′) is a Seifert fibered space over S2 with at most three singular fibers
of indices 2, 2, n. As the only such spaces with infinite fundamental group are
S1 × S2 and RP 3#RP 3 , that π1((K(r)) is finite follows from Property R [8]
and the fact that K(r) has cyclic integral first homology. Thus (c) holds.

If P is unknotted and π1–injective then TP is incompressible in H(P ), hence,
by the 2–handle addition theorem [3], the pair (H(P )(K ′), ∂H(P )(K ′)) is irre-
ducible. As K(r) = N(P̂ ) ∪∂ H(P )(K ′), (d) follows.

We discuss now two constructions of crosscap number two hyperbolic knots.
The first construction produces examples of meridional families SK(K, r) with
|SK(K, r)| = 2. The second one gives examples of knots K and surfaces P,Q
in SK(K, r) which intersect centrally and such that |SK(K, r)| ≤ 2.

6.1 Meridional families

It is not hard to produce examples of hyperbolic knots K bounding nonequiva-
lent Seifert Klein bottles P,Q which intersect meridionally: for in this case one
of the surfaces can be unknotted and the other knotted, making the surfaces
clearly non isotopic. This is the strategy followed by Lyon in [16] (thanks to
V. Núñez for pointing out this fact) to construct nonequivalent Seifert tori for
knots, and his construction can be easily modified to provide infinitely many
examples of hyperbolic knots K with |SK(K, r)| = 2, bounding an unknotted
Seifert Klein bottle and a strongly knotted one along the same slope.
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Figure 15: A modified Lyon’s knot

The construction of these knots goes as follows. As in [16], let V be a solid
torus standardly embedded in S3 , let A be an annulus embedded in ∂V whose
core is a (±4, 3) cable of the core of V , and let A′ be the closure of ∂V \ A.
We glue a rectangular band B to ∂A on the outside of V , as in Figure 15, with
an odd number of half-twists (−3 are shown). Then the knot K = ∂(A ∪ B)
bounds the Seifert Klein bottles P = A ∪ B and Q = A′ ∪ B with common
boundary slopes; clearly, P and Q can be isotoped so that P ∩Q = A ∩ A′ is
a simultaneous meridian. As in [16], P is unknotted and Q is knotted; this is
clear since B is a tunnel for the core of A but not for the core of A′ . It is not
hard to check that if m1,m2 are the lifts of the meridian of P then m1 , say,
is a power (a cube) in H(P ) while neither K ′,m2 is primitive nor a power in
H(P ). That K has the desired properties now follows from the next general
result.

Lemma 6.9 Let K be a knot in S3 which spans two Seifert Klein bottles
P,Q with common boundary slope r , such that P is unknotted, Q is knotted,
and P ∩ Q is meridional. For m1,m2 lifts of the meridian m of P , suppose
m1 is a power in H(P ) but neither K ′,m2 is primitive nor a power in H(P ).
Then K is hyperbolic, P is π1–injective, and SK(K, r) = {P,Q}.

Proof As K ′ is not primitive nor a power in H(P ), TP is incompressible in
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XK by Lemma 5.2, so K is a nontrivial knot and P is π1–injective; moreover,
K is not a torus knot by Corollary 1.6 since Q is knotted. Hence by Lemma 6.7
it suffices to show XK is atoroidal.

Suppose T is an essential torus in XK which intersects P transversely and
minimally. Then P ∩ T is nonempty and P ∩ T ⊂ P consists of circles parallel
to ∂P and meridians or longitudes of P ; by Lemmas 2.3 and 6.1, since T is not
parallel into ∂XK , it is not hard to see that P ∩ T consists of only meridians
of P or only longitudes of P . Since the lift of a longitude of P is also a lift
of some center of P then, by Lemma 2.3, either the lift l of some center c of
P or both lifts m1,m2 of the meridian of P have companions in H(P ). The
second option can not be the case by Lemma 5.2 since only m1 is a power in
H(P ). For the first option, observe that, since m and c can be isotoped in P
so as to intersect transversely in one point, l can be isotoped in TP so as to
transversely intersect m1,m2 each in one point.

Suppose A∗ is a companion annulus of l in H(P ) with ∂A∗ = l1 ∪ l2 , and
let Q0 = Q ∩ H(P ); notice Q0 is not parallel into ∂H(P ), since Q and P
are not equivalent in XK . Isotope A∗, Q0 so as to intersect transversely and
minimally, and let GQ0 = Q0∩A∗ ⊂ Q0, GA∗ = Q0∩A∗ ⊂ A∗ be their graphs of
intersection; each graph has two arc components. If GQ0 is inessential then A∗

is either parallel into ∂H(P ) or boundary compresses in H(P ) into an essential
disk disjoint from K ′ ; the first option is not the case, while the latter can not be
the case either by Lemma 5.2 since, by hypothesis, K ′ is neither primitive nor
a power in H(P ). If GA∗ is inessential then Q0 boundary compresses in H(P )
into a companion annulus for K ′ , which is also not the case by Lemma 5.2
since K ′ is not a power in H(P ); for the same reason, Q0 ∩ A∗ has no circle
components. Thus GQ0 and GA∗ are essential graphs, as shown in Figure 16.
But, due to the disk face D0 of GQ0 , it follows that A∗ runs twice around
the solid torus region R cobounded by A∗ and TP ; hence R ∪N(B(c) ⊂ XK

contains a closed Klein bottle, which is impossible. Thus XK is atoroidal.

6.2 Central families

Let S be a closed genus two orientable surface embedded in S3 . Suppose there
are curves l1, l2 ⊂ S which bound disjoint Moebius bands B1, B2 , respectively,
embedded in S3 so that Bi ∩ S = li for i = 1, 2. Now let K be an embedded
circle in S \ (l1 ∪ l2) which is not parallel to either l1 or l2 , does not separate
S , and separates S \ (l1 ∪ l2) into two pairs of pants, each containing a copy of
both l1 and l2 in its boundary. Let P0, Q0 be the closures of the components of
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S \(K∪ l1∪ l2). Then K bounds the Seifert Klein bottles P = P0∪B1∪B2 and
Q = Q0∪B1∪B2 , which have common boundary slope and can be isotoped so as
to intersect centrally in the cores of B1, B2 . Any knot K bounding two Seifert
Klein bottles P,Q with common boundary slope which intersect centrally can
be constructed in this way, say via the surface S = (P � Q)∪A, where A is a
suitable annulus in N(K) bounded by ∂P ∪ ∂Q.

Specific examples can be constructed as follows; however checking the nonequiv-
alence of two Seifert Klein surfaces will not be as simple as in the meridional
case, as any two such surfaces are always strongly knotted. Let S be a genus
two Heegaard surface of S3 splitting S3 into genus 2 handlebodies H,H ′ . Let
l1, l2 be disjoint circles embedded in S which bound disjoint Moebius bands
B1, B2 in H , and let H0 ⊂ H be the closure of H \ N(B1 ∪ B2). Finally, let
K be a circle in ∂H \ (l1 ∪ l2) as specified above, with P,Q the Seifert Klein
bottles induced by K, l1, l2 . It is not hard to construct examples of K, l1, l2
satisfying the following conditions:

(C1) l1, l2 are not powers in H ′ ,

(C2) K is neither primitive nor a power in H0,H
′ .

The simplest such example is shown in Figure 17; here l1, l2 are primitive in
H ′ , and K represents y2x2y2x−2y−2x−2 , XYXY −1X−1Y −1 in π1(H), π1(H ′),
respectively, relative to the obvious (dual) bases shown in Figure 17. The
properties of K,P,Q are given in the next result.

Lemma 6.10 If K, l1, l2 ⊂ ∂H satisfy (C1) and (C2) and r is the common
boundary slope of P,Q, then K is hyperbolic, P and Q are strongly knot-
ted, and |SK(K, r)| ≤ 2; in particular, if P and Q are not equivalent then
SK(K, r) = {P,Q}.
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Figure 17: The circles K, l1, l2 in ∂H

Proof Observe that H(P ) = H0 ∪Q0 H
′ and H(Q) = H0 ∪P0 H

′ . That Q0

is incompressible and boundary incompressible in H(P ) follows from (C1) and
(C2) along with the fact that l1, l2 are primitive in H0 . Thus (H(P ), ∂H(P ))
is irreducible, so K is nontrivial and not a cable knot by Theorem 1.5, and
P (similarly Q) is strongly knotted. That K is hyperbolic follows now from
an argument similar to that of the proof of Lemma 6.9 and, since both H0

and H ′ are handlebodies, the bound |SK(K, r)| ≤ 2 follows from the proof of
Lemma 6.6.

7 Pretzel knots

We will denote a pretzel knot of length three with the standard projection
shown in Figure 18 by p(a, b, c), where the integers a, b, c, exactly one of which
is even, count the number of signed half-twists of each tangle in the boxes. It
is not hard to see that if {a′, b′, c′} = {εa, εb, εc} for ε = ±1 then p(a, b, c) and
p(a′, b′, c′) have the same knot type. For any pretzel knot p(a, b, c) with a even,
the black surface of its standard projection shown in Figure 18 is an algorithmic
Seifert Klein bottle with meridian circle m, which has integral boundary slope
±2(b + c) by Lemma 2.1; an algorithmic Seifert surface is always unknotted.
By [19], with the exception of the knots p(2, 1, 1) (which is the only knot that
has two algorithmic Seifert Klein bottles of distinct slopes produced by the
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Figure 18: The pretzel knot p(a, b, c) for a = 0, b = 1, c = 1

same projection diagram) and p(−2, 3, 7), this is the only slope of p(a, b, c)
which bounds a Seifert Klein bottle. Finally, if at least one of a, b, c is ±1
then p(a, b, c) has bridge number at most 2, the only pretzels p(a, b, c) with
|a|, |b|, |c| ≥ 2 which are torus knots are p(−2, 3, 3) and p(−2, 3, 5), and if one
of a, b, c is zero then p(a, b, c) is either a 2–torus knot or a connected sum of
two 2–torus knots.

Now let F be the free group on x, y . If w is a cyclically reduced word in x, y
which is primitive in F then, by [5] (cf [9]), the exponents of one of x or y , say
x, are all 1 or all −1, and the exponents of y are all of the form n, n + 1 for
some integer n. Finally, a word of the form xmyn is a proper power in F iff
{m,n} = {0, k} for some |k| ≥ 2.

Proof of Theorem 1.3 Let K be the hyperbolic pretzel knot p(a, b, c) for
some integers a, b, c with a even and b, c odd. Let P be the unknotted Seifert
Klein bottle spanned by K in its standard projection.

We will show that K ′ is never primitive in H(P ), so P is π1–injective by
Lemma 6.3; thus K(r) is irreducible and toroidal by Theorem 1.1(d). We will
also show that whenever a lift m1,m2 of the meridian m of P is a power in
H(P ) then K is a 2–bridge knot; in such case, by [11, Theorem 1], P is obtained
as a plumbing of an annulus and a Moebius band (cf [20]) and P is unique up
to isotopy. Along with Lemma 6.7, it will then follow that |SK(K, r)| = 1 in
all cases.

The proof is divided into cases, depending on the relative signs of a, b, c. Fig-
ure 19 shows the extended regular neighborhood Ñ(P ) = N(P ) ∪AK N(K) of
P , which is a standard unknotted handlebody in S3 , along with the circles
K ′,m1,m2 with a given orientation. The disks Dx,Dy shown form a complete
disk system for H(P ), and give rise to a basis x, y for π1(H(P )), oriented as
indicated by the head (for x) and the tail (for y) of an arrow. Figure 19 de-
picts the knot p(2, 3, 3) and illustrates the general case when a, b, c > 0; we will
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continue to use the same figure, with suitable modifications, in all other cases.
By the remarks at the beginning of this section, the following cases suffice.

Case 1 a = 2n > 0, b = 2p + 1 > 0, c = 2q + 1 > 0

In this case, up to cyclic order, the words for K ′,m1,m2 in π1(H(P )) are:

K ′ = yq+1(xy)pxn+1(yx)pyq+1x−n

m1 = yq(yx)p+1

m2 = yq+1(yx)p

Since n > 0 and p, q ≥ 0, the word for K ′ is cyclically reduced and both x and
x−1 appear in K ′ ; thus K ′ is not primitive in H(P ).

Consider now m1 and m2 ; as y and yx form a basis of π1(H(P )), if m1 is a
power in H(P ) then q = 0, while if m2 is a power then p = 0. In either case
K is a pretzel knot of the form p(·, ·, 1), hence K is a 2–bridge knot.

Case 2 a = −2n < 0, b = 2p+ 1 > 0, c = 2q + 1 > 0

This time words for K ′,m1,m2 are, up to cyclic order,

K ′ = yq+1(xy)px1−n(yx)pyq+1xn

m1 = yq(yx)p+1

m2 = yq+1(yx)p.

If n > 1 then the word for K ′ is cyclically reduced and both x and x−1 appear
in K ′ and so K ′ is not primitive in H(P ). If n = 1 then, switching to the
basis y, u = xy of π1(H(P )), K ′ is represented up to cyclic order by the word
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yqupyupyqu. Observe that if p = 0 or q = 0 then K = p(−2, 1, ·) which is a 2–
torus knot, so p, q > 0. Thus, if K ′ is primitive then necessarily {p, q} = {1, 2}
and so K = p(−2, 3, 5) is a torus knot. Therefore, K ′ is not primitive in H(P ).
The analysis of the words m1 and m2 is identical to that of Case 1 and yields
the same conclusion.

Case 3 a = 2n > 0, b = 2p + 1 > 0, c = −(2q + 1) < 0

Up to cyclic order, words for K ′,m1,m2 are:

K ′ = yq(xy−1)pxn+1(y−1x)pyqx−n

m1 = yq+1(xy−1)p+1

m2 = yq(y−1x)p.

If p, q > 0 then the word for K ′ is cyclically reduced and contains all of
x, x−1, y, y−1 , so K ′ is not primitive in H(P ). If p = 0 then K ′ = yqxn+1yqx−n ,
so K ′ is primitive iff q = 0, in which case K = p(2n, 1,−1) is a 2–torus knot.
The case when q = 0 is similar, therefore K ′ is not primitive in H(P ).

In this case m1 can not be a power in H(P ) for any values of p, q ≥ 0, while
if m2 is a power then p = 0 or q = 0 and hence K is a 2–bridge knot.
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