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Abstract This article introduces a universal moduli space for the set
whose archetypal element is a pair that consists of a metric and second
fundamental form from a compact, oriented, positive genus minimal sur-
face in some hyperbolic 3–manifold. This moduli space is a smooth, finite
dimensional manifold with canonical maps to both the cotangent bundle
of the Teichmüller space and the space of SO3(C) representations for the
given genus surface. These two maps embed the universal moduli space as
a Lagrangian submanifold in the product of the latter two spaces.
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1 Introduction

Immersed, compact, minimal surfaces are now known to appear in every com-
pact, hyperbolic 3–manifold. Indeed, Schoen and Yau [14] proved that a Haken
hyperbolic manifold has at least one stable minimal surface. More recently, Pitts
and Rubinstein [11, 10, 12], (see also [3]) proved that all compact, hyperbolic
3–manifolds have at least one unstable, immersed, minimal surface. Other au-
thors, for example Freedman, Hass and Scott [8] and Hass and Scott [9] also
have foundational papers on this subject. The ubiquity of minimal surfaces
in hyperbolic 3–manifolds motivates the introduction and study of a universal
moduli space for the set whose archetypal element is a pair that consists of a
metric and second fundamental form from a compact, oriented, positive genus
minimal surface in some hyperbolic 3–manifold. This article introduces such a
moduli space and takes some (very) small steps to elucidate its properties.

In this regard, the moduli space introduced below has components that are
labeled in part by the Euler class, −χ, of the surface. As explained below,
the component with label χ is a smooth, orientable manifold of dimension 6χ.
Numerologists might notice that this number is the dimension of the cotangent
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70 Clifford Henry Taubes

bundle to the Euler class −χ Teichmüller space, and that it is also the dimension
of the adjoint action quotient of the space of homomorphisms from the surface
fundamental group to PSL2(C) in its guise as the group SO3(C). In fact, the
moduli space introduced here admits a canonical map to each of the latter two
spaces, and these maps play a central role in what follows.

The symbol H is used below to denote the union of the fixed χ components of
the moduli space.

Before starting, please note that there is a tremendous body of published re-
search on the subject of minimal surfaces in 3–manifolds. The fact is that such
surfaces are an old and well used tool for studying hyperbolic 3–manifolds and
3–manifolds in general. Meanwhile, the author pleads the case of a noviate
to the subjects of minimal surfaces and hyperbolic 3–manifolds. On the basis
of this meager excuse, the author hereby asks to be forgiven for his rhyolitic
ignorance of the fundamental work of others, and also for belaboring what may
appear obvious to the experts.

In any event, Rubinstein [12] has an excellent review of various aspects of
the minimal surface story as applied to 3–manifolds. Meanwhile, Colding and
Minnicozzi [4] have a recent monograph that reviews many of the more analytic
aspects of the subject. On the bigger subject of 3–manifolds, Scott’s exposition
[15] is still very much worth reading.

Finally, take note that moduli spaces of minimal surfaces have been introduced
by others (Brian White [17] and also Colding and Minnicozzi [5], for example);
however, the results in these studies do not appear to speak directly to the
moduli space defined here.

The remainder of this article is organized as follows: The subsequent parts of
this section provide the precise definition of H and describes its canonical maps
to the cotangent bundle of Teichmüller space and to

Hom(π1(Σ); SO3(C))/SO3(C).

Section 2 explains why H is a smooth manifold, while Section 3 describes the
critical loci of its two canonical maps. Section 4 next describes the pull-backs
via these maps of certain natural symplectic structures on the Teichmüller space
cotangent bundle and on Hom(π1(Σ); SO3(C))/SO3(C). Section 5 explains why
every element in H arises as a minimal surface in some (usually incomplete)
hyperbolic 3–manifold. Finally, Section 6 describes an open subset of H whose
elements arise as minimal surfaces in certain complete, quasi-Fuchsian hyper-
bolic metrics on Σ×R. There are also a number of appendices for novices that
provide derivations of more or less classical formulas.
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Minimal surfaces in germs of hyperbolic 3–manifolds 71

1.1 The definition of H

In what follows, Σ denotes a compact, oriented, 2–dimensional manifold with
negative Euler characteristic. The absolute value of the Euler characteristic is
denoted as χ. A pair (g,m) of Riemannian metric and symmetric section of
T ∗Σ⊗ T ∗Σ will be called a “hyperbolic germ” on Σ if the following conditions
are met:

dCmAB − dBmAC = 0

r + (|m|2 +
1

3
) − k2 = 0

(1.1a)

Here, and below, the notation is as follows: First, the subscripts indicate com-
ponents with respect to some local frame for T ∗Σ. Second, dC denotes the
covariant derivative defined by the metric g , the norms are defined by the met-
ric g , and the respective functions r and k are the scalar curvature for the
metric g and the trace of m as defined using the metric g . Finally, repeated
indices are to be summed.

A “minimal hyperbolic germ” on Σ is a pair, (g,m), of metric and symmetric
tensor that obeys both (1.1a) together with the auxiliary condition

k = gABmAB ≡ 0. (1.1b)

With regards to the terminology, an argument is given below to prove that
there is an honest hyperbolic metric on a neighborhood of Σ × {0} in Σ × R

whose respective first and second fundamental forms on Σ × {0} are g and m
when (g,m) is a hyperbolic germ. The latter metric and that defined by the
line element

ds2 = (gAB + 2tmAB +
1

2
t2(|m|2 +

1

3
)gAB)dzAdzB + dt2 (1.2)

agree to order t3 near t = 0. In this regard, a metric given by (1.2) has
Rij = −1

3gij at t = 0 if and only if (1.1a) holds. Thus, (1.1a) insures that the
metric in (1.2) is hyperbolic to first order at t = 0. Granted (1.1a), the surface
Σ × {0} has zero mean, extrinsic curvature with respect to this same metric
if and only if (1.1b) holds. Thus, it is a minimal surface with respect to the
metric in (1.2) and to the associated hyperbolic metric on a neighborhood of
Σ × {0} in Σ × R. In this regard, keep in mind that the normalization used
here is such that the scalar curvature of the 3–dimensional hyperbolic metric
is −1; thus its sectional curvatures are −1

3 .

Define an equivalence relation on the space of hyperbolic germs whereby any
given pair of such germs are identified when one is obtained from the other by
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a diffeomorphism of Σ that lies in the component of the identity in Diff(Σ). In
this regard, the infinitesimal form of the diffeomorphism group’s action on the
space of hyperbolic germs has a vector field, vA∂A , sending gAB and mAB to

δgAB = dAvB + dBvA

and δmAB = vCdCmAB + mBCdAvC + mACdBvC .
(1.3)

Note that this equivalence relation preserves the subset of minimal hyperbolic
germs.

Let H denote the quotient. Thus, H = {minimal hyperbolic germs}/Diff0(Σ),
where Diff0(Σ) is the component of the identity in the diffeomorphism group of
Σ. The set H inherits the quotient topology with the understanding that the
hyperbolic germs have the induced topology as a subset of the space of smooth,
symmetric, 2 × 2 tensor fields on Σ. Please tolerate the notation used below
whereby a pair of metric and traceless, symmetric tensor is said to “be in” H .
Of course, this means that the Diff0(Σ) orbit of the given pair is in H .

By the way, H is assuredly non-empty; indeed, if g is a hyperbolic metric on Σ
with scalar curvature −1

3 , then the pair (g, 0) defines a point in H . According
to the upcoming Theorem 2.1, this is but a small slice of H . In any event, the
space H is the subject of this article. What follows is a brief summary of the
story.

The space H is a smooth, orientable manifold whose dimension is 6χ where
χ denotes the absolute value of the Euler characteristic of Σ. Moreover, H
admits smooth maps to the cotangent bundle of Σ’s Teichmüller space and to
the moduli space of flat, SO3(C) connections on Σ, both spaces with dimension
6χ. Neither map is proper and both admit critical points. This said, here is
a surprise: The critical loci of these maps are identical, this being the loci of
pairs in H where Σ × {0} has isotopies in Σ × R that preserve its minimality
to first order. However, even as the critical loci agree, the kernels of the re-
spective differentials are linearly independent. The reasons for this coincidence
are mysterious, though almost surely related to the following added surprise:
The canonical symplectic forms on the cotangent bundle to Teichmüller space
and on the space of flat SO3(C) connections agree upon pull-back to H . In
particular, with the signs of these symplectic forms suitably chosen, these maps
immerse H as a Lagrangian subvariety in the product of the cotangent bundle
to Teichmüller space and the smooth portion of Hom(π1; SO3(C))/SO3(C).

By the way, an analysis of the critical loci of these maps from H leads to the
following observation: The nullity of a compact, oriented and immersed minimal
surface in a hyperbolic 3–manifold is no larger than 3 times the absolute value
of its Euler class.
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1.2 H and Teichmüller space

The additive group of smooth functions acts on the space of metrics to change
the conformal factor. This is to say that a function u sends a metric g to e−ug .
This action extends to one on the space of pairs (g,m) with m left unchanged.
Defined in this way, the first equation in (1.1a) is preserved by this action,
as is the equation in (1.1b). The second equation is not invariant under such
a change. As demonstrated in the appendix, the second equation changes as
follows:

re−ug + |m|2e−ug +
1

3
= eu(rg + ∆gu + eu|m|2g +

1

3
e−u). (1.4)

In any event, the quotient of the space of smooth metrics on Σ by the action of
the semi-direct product of Diff0 and C∞(Σ) is called Teichmüller space. Here
it is denoted by T ; it is a smooth manifold of dimension 3χ. The projection
from the space of metrics to T induces a smooth map from H to TT . For
certain purposes, it is often convenient to view this projection as a map to
T ∗T ; this is done by using the second component of any pair (g,m) to define a
measure on Σ with values in Sym2(TΣ), this denoted by m̂. In particular m̂
has components

m̂AB = det(g)
1

2 gACgBDmCD (1.5)

in a local coordinate frame. The tensor-valued measure m̂ then defines a linear
functional on the tangent space to the space of metrics, this the functional
whose value on a symmetric tensor h is given by

∫

Σ
m̂ABhAB =

∫

Σ
gACgBDmCDhABd volg . (1.6)

Because m is traceless and obeys the top equation in (1.1a), the linear function
defined by (1.6) annihilates tangent vectors at g to the orbit of Diff0(Σ) ×
C∞(Σ). Thus, it descends with g to define an element in T ∗T .

Granted the preceding, any pair (g,m) ∈ H gives a point in T ∗T , and these
assignments thus define a canonical map from H to T ∗T .

1.3 H and SO3(C)

Change gears now to consider the assertion that any given pair (g,m) ∈ H can
also be used to define a flat SO3(C) connection over Σ. To elaborate, these
will be connections on the complexification, E , of T ∗Σ ⊕ R. For the purpose
of defining such a connection, use the metric g with the Euclidean metric to
define an inner product, 〈, 〉g , on T ∗Σ ⊕ R. The latter induces a C–bilinear,
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quadratic form on E which will be denoted in the same way. Since E is the
complexification of a real 3–plane bundle, it inherits a tautological complex
conjugation involution; this denoted by an overbar. Of course, this complex
conjugation and the bilinear form define a hermitian inner product on E in the
usual way; this the polarization of the norm whose square sends η to 〈η, η〉g .

An SO3(C) connection on E is defined by its covariant derivative, ∇. In this
regard, the latter must have the property that

d
〈

η, η′
〉

g
=
〈

∇η, η′
〉

g
+
〈

η,∇η′
〉

g
(1.7)

whenever η and η′ are sections of E .

The flat SO3(C) connection defined by (g,m) is best expressed using a local,
oriented orthonormal frame {eA}A=1,2 for T ∗Σ and the unit vector, e3 , on R

that points in the positive direction. With respect to such a frame, any given
section η of E that is defined where the local frame is defined can be written
as a column vector,

η =

(

ηB

η3

)

(1.8)

The covariant derivative defined by the pair (g,m) sends such a section to
∇η = ∇AηeA with

∇Aη ≡
(

dAηB + θABη3

dAη3 − θACηC

)

(1.9)

and

θAB = mAB +
i√
6
εAB . (1.10)

Here, dA now denotes the metric’s covariant derivative when acting on a section
of T ∗ΣC , and it denotes the exterior derivative when acting on a complex-valued
function.

For use below, note parenthetically that three related, flat connections can also
be defined on E . To define the first, introduce the isometry T : E → E that acts
trivially on the R factor and as multiplication by −1 on the T ∗Σ factor. This
done, the new covariant derivative, ∇′ , is given by the formula ∇′ ≡ T∇T. In
particular, ∇′ is given with respect to the orthonormal frame {eA} by replacing
every θAB by −θAB in (1.9). Note that T defines an automorphism of E with
values in SO(3), so ∇ and ∇′ are gauge equivalent.

The remaining two flat connections are also defined by their covariant deriva-
tives, these denoted by ∇ and ∇′

. In this regard, ∇′ ≡ T∇T while ∇ is defined
by the formula

∇η ≡ ∇η. (1.11)
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In particular, the formula for ∇ with respect to a local frame is obtained
from (1.9) by replacing every θAB by its complex conjugate. Note that the for-
mal L2 adjoint of ∇ as defined using the Hermitian inner product on C∞(E)

is ∇† = −∇. Likewise, ∇′† = −∇′
.

With an inner product fixed on T ∗ Σ ⊕ R, let M denote the moduli space of
flat SO3(C) connections on the complexification, E . This is the quotient of the
space of flat SO3(C) connections by the action of the group of automorphisms
of E . In this regard, note that parallel transport around a fixed basis for π1(Σ)
identifies M with the quotient in (SO3(C))χ+2 of a codimension 6 subvariety
by the adjoint action of SO3(C). Here, the subvariety in question is the inverse
image of the identity in SO3(C) under the map that sends a (χ + 2)–tuple of
matrices (U1, . . . , Uχ+2) to

(U1U2U
−1
1 U−1

2 ) . . . (Uχ+1Uχ+2U
−1
χ+1U

−1
χ+2). (1.12)

It is useful at times to fix a base point, z0 ∈ Σ, and take the quotient by the
group of automorphisms that act as the identity on the fiber of E over z0 .
The choice of a generating basis for the fundamental group π1(Σ; z0) identifies
the latter space, M0 , with the aforementioned codimension 6 subvariety in
(SO3(C))χ+2 . With regards to the structure of M0 , note that the differential
of the map f has a cokernel only at those (χ+2)–tuples that consist of matrices
that all fix a non-zero element in the lie algebra under the adjoint representation.
A connection that corresponds to the latter sort of (χ + 2)–tuple is said to be
“reducible”. In particular, note that a connection is reducible if and only if
there exists a non-zero section of E that is annihilated by the corresponding
covariant derivative. The complement in M of the set reducible connections is
a smooth manifold of dimension 6χ.

The association of the covariant derivative ∇ to a pair (g,m) ∈ H defines a
continuous map from H to M. As argued below, the image of H avoids the
reducible connections.

2 The structure of H

The following theorem is the principle result of this subsection:

Theorem 2.1 The space H has the structure of a smooth, orientable manifold
of dimension 6χ. Moreover, H comes equipped with a smooth action of S1 ,
this provided by the map that sends τ ∈ S1 = R/(2πZ) and (g,m) ∈ H to
(g, cos τ m + sin τ ε · m) where ε · m is the symmetric, traceless tensor with
components εACmCB in a local, g–orthonormal frame.
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Note that this circle action is free away from the locus in H whose elements are
pairs of the form (g, 0) where g is a metric on Σ with constant scalar curvature
−1

3 .

The remainder of this subsection is occupied with the proof of this proposition.

To start the proof, remark first that the linearization of the equations in (1.1a)
and (1.1b) about any given pair (g,m) defines a differential operator; the latter
denoted by L(g,m) in what follows. In local coordinates, this operator sends
a pair consisting of a symmetric tensor and a symmetric, traceless tensor to a
pair consisting of a 1–form and a functions. In particular, the map sends a pair
(hAB , nAB) to the vector/function pair

γB ≡ εCAdCnAB +
1

2
εAC(dChDB)mAD

+
1

2
(εEF dEhFC)mBC +

1

2
εCBdC(hEF mEF ),

γ3 ≡ 1

2
(
1

3
− |m|2)hAA + dAdBhAB − dBdBhAA + 2nABmAB .

(2.1)

In this regard, the first order variation of mAB is not nAB , but rather nAB +
1
2gAB(hEF mEF ); this an imposition from (1.1b).

This L(g,m) extends as a bounded, linear map from various Sobolev space
completions of its domain to corresponding completions of the range space
as a semi-Fredholm map, a map with infinite dimensional kernel, closed range
and finite dimensional cokernel. For example, it has such an extension from
L2

2(Sym2 T ∗Σ) ⊕ L2
1(Sym2 T ∗Σ) to L2(T ∗Σ) ⊕ L2(Σ).

By the way, the kernel is infinite dimensional due to the fact that all pairs (h, n)
that induce (1.3) are in its kernel. This said, introduce the operator l(g,m) that
maps 1–forms to the domain of L(g,m) by the rule

vB → (dAvB + dBvA, vCdCmAB + mBCdAvC + mACdBvC − gAB(mEF dEvF )).
(2.2)

The restriction of L(g,m) to the L2–orthogonal complement of the image of
l(g,m) is then Fredholm. Let L∗(g,m) denote this restricted operator. The im-
plicit function theorem in conjunction with “off the shelf” differential equation
technology can be employed to prove the following:

Lemma 2.2 Let (g,m) ∈ H . There exists a ball B about the origin in the
kernel of L∗(g,m) , a smooth map,

f : B → cokernel(L∗(g,m)) (2.3)
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that maps 0 to 0, and a homeomorphism from f−1(0) to a neighborhood of
(g,m) in H that sends the origin to (g,m). Moreover, if L∗(g,m) has trivial
cokernel at a given (g,m), then the corresponding cokernel is trivial at all points
in some neighborhood of (g,m) in H ; and this neighborhood has the structure
of a smooth manifold of dimension 6χ.

Those points in H where the cokernel of the operator L(·) is trivial will be called
“regular points”. This understood, the fact that the space H is a manifold
follows from

Proposition 2.3 All points in H are regular points.

Proof of Proposition 2.3 A pair (σB , σ3) is in the cokernel of L(g,m) if and
only if it is L2–orthogonal to all pairs (γB , γ3) that can be written as in (2.1). It
proves useful for this and other purposes to replace (σB , σ3) with vb ≡ −εBCσC

and v3 ≡ −2σ3 . As is explained in Appendix D, the fact that (σB , σ3) is in the
cokernel of L(g,m) implies that

ηB ≡ vB + i
√

6(−εCBdCv3 + vEεCBmEC),

η3 ≡ v3 + i

√

3

2
εEF dEvF ,

uB ≡ 0, and

u3 = −i

√

3

2
dCvC

(2.4)

gives respective complex-valued sections η and u of T ∗Σ ⊕ R that obey the
equation

∇Aη = εAB∇′
Bu. (2.5)

Granted that such is the case, it then follows that both

∇′
A∇Aη = 0 and ∇A∇′

Au = 0. (2.6)

With (2.7) noted, the proof of Proposition 2.3 is obtained by invoking

Lemma 2.4 The operators ∇′
A∇A and ∇A∇′

A are equal. Moreover, if η is
annihilated by either, then ηB = 0 and η3 obeys the equation

dAdAη3 + (|m|2 − 1

3
)η3 = 0. (2.7)
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The proof of the Lemma 2.4 is given momentarily. To obtain Proposition 2.3,
note that in the case at hand, with η given by (2.4), this lemma implies that
the cokernel element to L(g,m) defined by (vB , v3) has vB ≡ 0 since the latter
is the real part of ηB . This then implies via the third and fourth lines in (2.4)
that u ≡ 0 and then (2.5) requires that v3 = 0 as well.

Proof of Lemma 2.4 Written in their components, the equation ∇′
A∇Aη =

0 and the equation ∇A∇′
Au = 0 read:

dAdAηB +
1

2
(|m|2 − 1

3
)ηB +

i√
6
(mABεAC + εABmAC)ηC = 0

dAdAη3 + (|m|2 − 1

3
)η3 = 0.

(2.8)

To see that only ηB = 0 solves the top equation, take its C–linear inner product
with ηB and then integrate over Σ. After an integration by parts, one obtains
the equality
∫

Σ
(dAηBdAηB) =

1

2

∫

Σ
(|m|2 − 1

3
)ηBηB +

i√
6

∫

Σ
(mABεAC + εABmAC)ηBηC .

(2.9)
Now, the second term on the right side in (2.9) is purely imaginary by virtue
of the fact that the tensor mABεAC is symmetric when (1.1b) holds. As the
other terms in (2.9) are real, it follows that

∫

Σ
(dAηBdAηB) =

1

2

∫

Σ
(|m|2 − 1

3
)ηBηB. (2.10)

To see that no such equality can hold if ηB is nonzero, note that
∫

Σ
(dAηBdAηB) =

∫

Σ
(|εACdAηC |2 + |dAηA|2) −

1

2

∫

Σ
rηBηB . (2.11)

In particular, with the value for r from (1.1a), these last two equations imply
that

1

2

∫

Σ
(|m|2 +

1

3
)ηBηB ≤ 1

2

∫

Σ
(|m|2 − 1

3
)ηBηB (2.12)

which requires that ηB ≡ 0.

As is explained next, the fact that H is orientable follows using the Atiyah–
Singer index theorem for families of operators. To elaborate, remark first
that the family in question is that defined by the pair of operators D(g,m) ≡
(L(g,m), l

∗
(g,m)), where l∗(g,m) is the formal L2–adjoint of the operator l(g,m) that

appears in (2.2). Thus, D(g,m) maps a pair consisting of a symmetric tensor
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and a symmetric, traceless tensor to a triple consisting of a 1–form, a func-
tion, and a vector field on Σ. This operator is defined for any pair (g,m) of
metric on Σ and traceless, symmetric tensor. It is equivariant with respect to
the action of Diff0(Σ) on the space of such pairs, and it is Fredholm for any
given pair (g,m). This noted, the Atiyah–Singer index theorem for families of
operators [2] asserts that the kernels and cokernels of this operator as the pair
(g,m) vary defines a class in the real, Diff0(Σ)–invariant real K–theory of the
space of pairs of metric and symmetric, traceless tensor on Σ.

The relevance of this last point to the orientation question stems from the fact
that the kernel of D(g,m) along the inverse image of H projects to H as its
tangent space. Thus, the first Stiefel–Whitney class of the corresponding K–
theory class along H is that of the tangent bundle to H . In particular, H is
orientable if the first Stiefel–Whitney class of this K–theory class is zero.

To prove that such is the case, note that the space of pairs (g,m) deformation
retracts in the obvious manner onto its m = 0 subspace. On the latter subspace,
a given version of this operator sends a pair (h, n) in its domain to

(εACdCnAB,
1

6
hAA + dAdBhAB − dBdBhAA,−2dAhAB)

∈ C∞(T ∗Σ) ⊕ C∞(Σ) ⊕ C∞(TΣ). (2.13)

The kernel of such a (g, 0) version of D(g,m) consists of the pairs (h, n) where
both are traceless and symmetric and both the w = h and w = n versions of
the equation εACdCwCB = 0 are satisfied. Meanwhile, the cokernel is trivial
in all cases because no metric on a surface with genus greater then 1 has a
non-trivial, conformal Killing vector field.

As just identified, the kernel space of D(g,0) admits the evident almost complex
structure that sends a pair (h, n) to (ε·h, ε·n); thus it can be viewed as a vector
space over C. This complex structure is compatible with the Diff0(Σ) action,
and so the Diff0(Σ)–equivariant K–theory class in question comes from a com-
plex K–theory class. As such, its first Stiefel–Whitney class is automatically
zero.

3 The maps from H to M and T
∗T

The purpose of this section is to describe certain aspects of the maps from H
to M and from H to T ∗T . The map to M is considered first. In this regard,
note that Lemma 2.4 has the following immediate corollary:
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Proposition 3.1 The image of H in M has no reducible connections.

Proof of Proposition 3.1 Indeed, if A is reducible, then there is a non-
trivial section of E that is annihilated by ∇A . Such a section is then annihilated
by ∇′

A∇A and so it has only its third component non-trivial. However, since
θAB is invertible, this is impossible if it is annihilated by ∇A .

To study the differentiable aspects of the map to M, a preliminary digression
is needed to introduce a “Zariski tangent space” to the SO3(C)–orbit of a flat
connection: If ∇ is the corresponding covariant derivative on E , then this
Zariski tangent space is the vector space of E–valued 1–forms that obey

εAB∇AwB = 0 and −∇AwA = 0. (3.1)

Use TM|∇ to denote the vector space of such forms. In the case that the
connection is irreducible, then TM|∇ has dimension 6χ. Note that when a is
any given E–valued 1–form, then Hodge theory provides its decomposition as

aA = ∇Aα + εAB∇Bβ + wA (3.2)

where w ∈ TM|∇ and both α and β are sections of E . Note that this de-
composition is orthogonal with respect to the L2–hermitian inner product on
T ∗Σ⊗ E . Furthermore, w is uniquely defined by v ; and so are α and β when
the connection is irreducible.

Now, the tangent space to a pair (g,m) ∈ H can be identified with the vector
space of pairs (h, n) that make (γB , γ3) from (2.1) vanish identically and are
such that

−dAhAC +
1

2
nABdCmAB − dA(nABmBC +

1

2
hEF mEF mAC) = 0 (3.3)

In this regard, remember that both h and n are symmetric tensors with n
traceless, and that they define respective first order deformations of g and
m that are given by δgAB = hAB and δmAB = nAB + hEF mEF gAB . The
condition in (3.3) asserts only that this version of δg and δm is L2–orthogonal
to all versions of δg and δm that are given by (1.3).

To proceed, define an E–valued 1–form v by writing its components (vAB , vA3)
as

vAB = −εAEnEB +
1

2
εABhCDmCD − 1

2
εCBmFAhCF − i

2
√

6
hAB

vA3 = εAE(
1

2
dChCE − 1

2
dEhCC).

(3.4)
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The vanishing of the right hand side of the equations in (2.1) is then the asser-
tion that

εAC∇AvC = 0. (3.5)

This section v of E⊗T ∗Σ is introduced for the following reason: The “Zariski”
tangent space to M at the connection that defines ∇ is the vector space of
sections of E⊗T ∗Σ that obey the equations ∇†

AqA = 0 = εAB∇AqB . Moreover,
the L2–orthogonal projection of v onto this space provides the image of the
tangent vector (h, n) to H in this Zariski tangent space. This understood, the
kernel of the differential at (g,m) of the map from H to M is isomorphic to the
subspace of pairs (h, n) for which the corresponding v in (3.4) can be written
as vA = ∇Au with u a smooth section of E .

Proposition 3.2 The kernel of the differential at (g,m) of the map from
H to M is canonically isomorphic to the kernel of the operator ∆(g,m) ≡
−dCdC − |m|2 + 1

3 . Moreover, the isomorphism in question sends a function
σ ∈ kernel(∆(g,m)) to the pair (h, n) ∈ TH(g,m) that are given in a local frame
by

hAB = − (dAσB + dBσA) − 2mABσ

nCB = − (σF dF mBC + mCF dBσF + mBF dCσF − gCBmAF dAσF )

+ (dBdCσ − 1

2
gBCdAdAσ);

(3.6)

here {σA} are determined by requiring (h, n) to be orthogonal to the tangent
space to the orbit of Diff0(Σ) through (g,m).

Proof of Proposition 3.2 There are two parts to the proof. The first argues
that any pair (h, n) as given by the proposition defines a non-trivial tangent
vector to H at (g,m). The second part proves that the kernel of the differential
at (g,m) of the map to M has the asserted form.

Part 1: Suppose that dCdCσ + (|m|2 − 1
3 )σ = 0 and σ is not identically

zero. To prove that the pair (h, n) in (3.6) defines a non-zero tangent vector
to H it is necessary to explain why there is no choice for {σA} that makes
(h, n) identically zero, and why the pair (h, n) makes (γB , γ3) in (2.1) equal
to zero. For the first task, note that if hAB = 0, then dCσC = 0 and also
−|m|2u = mABdAσB . Thus, the vanishing of (3.6) is equivalent to the equations

dCσC = 0,

dAσB + dBσA − gABdCσC − 2mABσ = 0,

1

2
(
1

3
+ |m|2)gAB − dAdBσ + σF dF mAB + mCF dBσF + mBF dCσF = 0.

(3.7)
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With the substitute notation σA → vA and σ → v3 , this is a version of (D.2)
in Appendix D. As established in Appendix D, the latter equation is equivalent
to the assertion that complex-valued section, η , of T ∗Σ ⊕ R that is given by
the top line of (2.4) obeys the u ≡ 0 version of (2.5). However, according to
Proposition 3.1, this means that η ≡ 0, and such can not be the case unless
σ ≡ 0 as well.

The proof that (h, n) makes (γA, γ3) vanish is left as a chore for the reader.

Part 2: If (h, n) is mapped to zero by the differential of the map to M, then
v given by (3.4) as the form v = ∇u. This assumed, write u ≡ α + iβ where α
and β have purely real components. The equation v = ∇u implies that

hAB = −
√

6(dAβB + dBβA + εAB(εEF dEβF +

√

2

3
α3) + 2mABβ3). (3.8)

Note that this last equation implies straight off that

εEF dEβF +

√
2√
3
α3 = 0 (3.9)

because hAB is symmetric. Thus, the first line in (3.6) is seen to hold using
σB = −

√
6βB and σ ≡ −

√
6β3 .

To obtain the required equation of σ = −
√

6β3 , note first that as vA3 is purely
real, the equation v = ∇u also implies that

dAβ3 − mABβB − 1√
6
εABαB = 0. (3.10)

To continue, act by dA on both sides of this last equation, sum over the index
A, and invoke the requirement from (3.8) that mABhAB = −2

√
6mABdAβB −

2
√

6|m|2β3 . The resulting equation reads

dAdAβ3 + |m|2β3 +
1

2
√

6
mABhAB − 1√

6
εABdAαB = 0. (3.11)

Meanwhile, a return to (3.4) for vAB finds that

mABhAB = 2εABvAB = 2εABdAαB − 4√
6
β3 (3.12)

and so (3.11) asserts that

dAdAβ3 + (|m|2 − 1

3
)β3 = 0. (3.13)

To obtain the second line of (3.6), note that under the given assumptions, (3.4)
implies that

nCB − 1

2
mFBhCF = εCAdAαB + εCAmABα3 +

1√
6
gCBβ3. (3.14)
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Using (3.10) to write αB =
√

6(εDBdDβ3 − εDBmDCβC) then finds

nCB =
1

2
mFBhCF +

√
6εCAdA(εDBdDβ3 − εDBmDF βF )

−
√

3

2
εCAmABεEF dEβF +

1√
6
gCBβ3. (3.15)

This then rearranges as

nCB =
1

2
mFBhCF +

√
6dBdCβ3 −

√
6gCBdAdAβ3

+
1√
6
gCBβ3 −

√
6dB(mCF βF ) +

√
6gCBmAF dAβF

−
√

3

2
mABdCβA +

√

3

2
mABdAβC . (3.16)

Meanwhile, (3.8) also has

−1

2
mFBhCF =

1

2

√
6(mABdAβC + mABdCβA) +

1

2

√
6gCB |m|2β3. (3.17)

Inserting this into (3.12) finds the second assertion in (3.6).

The next proposition provides a characterization of the critical set for the map
from H to T ∗T .

Proposition 3.3 The kernel of the differential at (g,m) of the map from
H to T ∗T is canonically isomorphic to the kernel of the operator ∆(g,m) ≡
−dCdC − |m|2 + 1

3 . Moreover, the isomorphism in question sends a function
σ ∈ kernel(∆(g,m)) to the pair (h, n) ∈ TH(g,m) that are given in a local frame
by

hAB = −(dAσB + dBσA) + gABσ

nCB = −(σF dF mBC + mCF dBσF + mBF dCσF − gCBmAF dAσF )
(3.18)

where {σA} are determined by requiring (h, n) to be orthogonal to the tangent
space to the orbit of Diff0(Σ) through (g,m).

Proof of Proposition 3.3 Any element in the kernel of the differential of
the map to T ∗T must have the form given above for some function σ , so
the proposition follows by verifying two assertions: First, if σ is a non-trivial
element of the kernel of ∆(g,m) , then no choice for {σA} makes (3.6) vanish.
Second, if (h, n) ∈ TH|(g,m) and in the kernel of the differential of the map to
T ∗ T , then σ ∈ kernel(∆(g,m)).
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To verify the first assertion, suppose that the right hand side of (3.14) is zero.
Now define a real-valued section (vA, v3) of T ∗Σ ⊕ R by setting vA ≡ σA and
v3 ≡ 0. This section then satisfies (D.6) with κ = 0 and σ = dCvC . Now, as a
consequence of Lemma D.1, the section η as defined in (D.7) obeys ∇′

A∇Aη = 0
and then Lemma 2.4 asserts that ηB = 0. Thus, vB = σB = 0 and so σ = 0.

To verify the second assertion, it is sufficient to verify that the pair (h, n)
in (3.14) make (2.1)’s pair (γB , γ3) vanish if and only if σ ∈ kernel(∆(g,m)). In
this regard, it is sufficient to consider the case where {βA ≡ 0}. In this case,
nCB ≡ 0 and γB vanishes identically and the second line of (2.1) asserts that
σ ∈ kernel(∆(g,m)).

It is almost surely the case that neither the map from H to T ∗T nor that from H
to M is proper. In this regard, known results about the behavior of sequences
of immersed surfaces in a fixed 3–manifold (see, e.g. [1, 16, 13]) are surely
relevant. In any event, non-convergent sequences in H can be characterized to
some extent.

4 H and symplectic forms on T
∗T and M

Propositions 3.2 and 3.3 nix certain obvious candidate for a symplectic form on
H . To elaborate, let Met(Σ) denote the space of smooth Riemannian metrics
on Σ and let T ∗ Met(Σ) denote the bundle over Met(Σ) whose fiber is the
space of symmetric, measured valued sections of Λ2TΣ. Note that this space
is a linear subspace of the honest cotangent bundle of Σ, the latter being a
space of distribution valued sections of Λ2T ∗Σ. In any event, T ∗ Met(Σ) has a
canonical, Diff0–invariant symplectic form; it is defined as follows: If (δg, δm̂)
and (δg′, δm̂′) are tangent vectors to T ∗ Met, then their symplectic pairing is
by definition

∫

Σ
(δgABδm̂

′AB − δg′ABδm̂AB). (4.1)

Meanwhile, the set of pairs (g,m) that obey the conditions in (1.1) embeds in
T ∗Σ by the map that sends any given (g,m) to the pair (g, m̂) where m̂ is

given in local coordinates by the tensor m̂AB ≡ det(g)
1

2 gACgBDmCD . Thus,
H embeds in the quotient of T ∗ Met(Σ) by the action of Diff0(Σ). In this
regard, the symplectic form in (4.1) does not descend to the whole of the latter.
However, it does formally descend to the Diff0(Σ) quotient of the zero set in
T ∗ Met(Σ) of a certain “moment map”. This map, denoted by ℘, is the map
from T ∗ Met(Σ) to the dual of the space of smooth 1–forms on Σ that sends a
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pair (g, m̂) to the linear functional on C∞(TΣ) that assigns to any given vector
field (vA) the value

℘(g, m̂) · v ≡
∫

Σ
m̂ABdAvB . (4.2)

As the zero set of ℘ consists of those pairs (g, m̂) such that dAm̂AB = 0, it
follows from the first line in (1.1a) and (1.1b) that H lies in ℘−1(0)/Diff0(Σ).
As a consequence, the pairing in (4.1) defines a closed 2–form on H . This form
is denoted here by ωH .

To be explicit, the form ωH is defined on any two pair of tangent vectors at
the same given point in H as follows: Take any pair (g,m) that projects to the
given point in H and choose respective pairs (h, n) and (h′, n′) that project
to the given tangent vectors. Then, the pairing of the two vectors down on H
with the closed form is

∫

Σ
(hABn′

AB − h′
ABnAB). (4.3)

As (4.1) defines a closed form on T ∗ Met(Σ), so (4.3) defines a closed 2–form on
H . Thus, the latter is symplectic on H if it is non-degenerate. However, as will
now be explained, it is degenerate precisely on the critical locus for the map to
T ∗T . To see why, note first that the additive group of smooth functions acts
on T ∗ Met(Σ) where by a function σ sends a given pair (g, m̂) to (e−σg, eσm̂).
This action is compatible with that of Diff0 if the joint action is viewed as
one of a semi-direct product group. In any event, the action of C∞(Σ) also
preserves the symplectic form, it preserves ℘−1(0), and it has a moment map,
p, whose zero set is Diff0(Σ) invariant. In particular, the latter consists of
the pairs (g, m̂) for which gABm̂AB = 0. In this regard, note that any pair
(g,m) that solves (1.1) maps to the subset ℘−1(0) ∩ p−1(0) of T ∗ Met(Σ). In
particular, this means that H ⊂ (℘−1(0) ∩ p−1(0))/Diff0(Σ).

Granted these last points, note next that the quotient of ℘−1(0) ∩ p−1(0) by
the semi-direct product of Diff0(Σ) and C∞(Σ) is T ∗T . In addition, the pull-
back of the form in (4.1) to ℘−1(0) ∩ p−1(0) is the pull-back from T ∗T of the
canonical cotangent bundle symplectic form.

Coupled with the remarks of the previous paragraph, this then has the following
consequence: The form in (4.2) is non-degenerate on H at non-critical points
of the projection to T ∗T . Even so, it must annihilate the tangent vectors to H
that are mapped to 0 by the differential of the projection to T ∗T .

Meanwhile, the smooth locus in M also has a canonical symplectic form; this
induced from the complex, symplectic pairing on C∞(T ∗Σ⊗E) that assigns to
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an ordered pair (v, v′) of sections the number
∫

Σ
Tr(v ∧ v′). (4.4)

Here, Tr denotes the contraction of indices using the C–bilinear inner product
on E that is induced by the product metric on T ∗Σ ⊕ R.

To elaborate, note that when ∇ is the covariant derivative of a flat, irreducible
SO3(C) connection on E , then the tangent space at the image of ∇ in M
can be identified with the quotient of the kernel of the corresponding covariant
exterior derivative,

d∇ : C∞(T ∗Σ ⊗ E) → C∞(Λ2T ∗Σ ⊗ E) (4.5)

by the image of ∇ from C∞(E). This granted, an appeal to Stokes’ theorem
explains why the symplectic pairing in (4.4) sends a pair (v, v′) to zero whenever
v ∈ kernel(d∇) and v′ ∈ image(∇). Thus, (4.4) descends as a closed form to
M. The desired symplectic form is obtained by first taking the imaginary part
of the resulting complex-valued form and then multiplying the result by the
seemingly perverse factor of −2

√
6. Denote this form by ωM . To see that

ωM is non-degenerate, recall first that the quotient of the kernel of d∇ by the
image of ∇ is isomorphic to the vector space of sections v of T ∗Σ ⊗ E that
obey both εAB∇AvB = 0 and also ∇AvA = 0. This vector space admits the
anti-holomorphic involution that sends v to t(v) where t(v)A ≡ iεABvB . Then
ωM(t(v), v) =

∫

Σ |v|2d vol.

Now, the map from H to M pulls back the form ωM to a closed form on H
and one has:

Lemma 4.1 The pull-backs to H of the symplectic forms on T ∗T and M
agree.

Proof of Lemma 4.1 Let (g,m) ∈ H and let ∇ denote the resulting flat
SO3(C) connection from (1.9) and (1.10). When (h, n) is a tangent vector to
H at (g,m), then the differential of the map from (g,m) to M assigns the d∇–
closed vector v in (3.4) to (h, n). If (h, n) and (h′, n′) are two such vectors,
then the imaginary part of the pairing in (4.4) on the corresponding ordered
pair (v, v′) is exactly (−2

√
6)−1 times the pairing in (4.3) between (h, n) and

(h′, n′).

This last result has the following amusing corollary:
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Lemma 4.2 Let (g,m) ∈ H and let KT and KM denote the respective
kernels in TH|(g,m) of the differentials of the maps to T ∗T and to M. Then
the following are true:

• KT ∩ KM = {0} and so the differential of the map to T ∗T is injective
on KM while that of the map to M is injective on KT .

• The cokernel at the image of (g,m) in T ∗T of the differential of the map
from H is the symplectic dual to the image of KM , while the cokernel
at the image of (g,m) in M of the map from H is the symplectic dual
of the image of KT .

• With suitable signs chosen for the symplectic forms on T ∗T and M, the
maps to these spaces immerse H in T ∗T ×M as a immersed, Lagrangian
subvariety.

With regards to this lemma, keep in mind that Propositions 3.2 and 3.3 respec-
tively identify KM and KT with the kernel of the operator ∆ ≡ −dCdC +(1

3 −
|m|2).

Proof of Lemma 4.2 To prove that KT ∩KM = {0}, appeal to Lemma D.1
in the Appendix to justify the remark that any element in this intersection
provides a non-zero pair of sections (η, u) of E that obey ∇Aη = εAB∇′

Bu As
argued in Section 2, there are no such pairs.

Granted the first point of Lemma 4.1, here is why the second point holds: Since
KM is annihilated by the differential of the map to M, it must have zero
pairing with the whole of TH|(g,m) using the pull-back of the symplectic from
from M. Thus, it has zero pairing with respect to the pull-back of the form
from T ∗T . However, as it is mapped injectively to T (T ∗T ) by the differential
of the map from H , this can happen only if the symplectic dual of its image in
T (T ∗T ) has trivial intersection with the image of TH|(g,m) . A comparison of
dimensions then establishes the assertion that the symplectic dual to the image
of KM in T (T ∗T ) is isomorphic to the cokernel of the differential at (g,m) of
the map to T ∗T . The analogous argument where the roles of M and T ∗T are
switched proves the assertion in the second point of the lemma about KT and
the cokernel of the differential of the map to M.

The third point of the lemma follows as an immediate consequence of Lemma 4.1
and the second point. In this regard, note that this consequence was pointed
out to the author by Curt McMullen.
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The nullity of an immersed, minimal surface in a three manifold is defined to be
the dimension of the null space of the Hessian at zero of a certain function on
the space of sections of the normal bundle. To be precise, the function assigns
to any given section the area of a corresponding surface in the 3–manifold; and
the corresponding surface is obtained by moving the original surface distance
1 along the geodesics that are tangent to the given section. When the ambient
3–manifold is hyperbolic, the null space of this Hessian is precisely the kernel
of −dCdC + (1

3 − |m|2). This understood, then Lemma 4.2 leads to

Lemma 4.3 Let M be any hyperbolic 3–manifold and let Σ ⊂ M be a
compact, oriented, immersed minimal surface with Euler characteristic −χ.
Then the nullity of Σ is no greater than 3χ.

5 Extending the germ as an honest hyperbolic met-
ric

The purpose of this section is to construct from any given (g,m) ∈ H a hyper-
bolic metric (with scalar curvature −1) on a neighborhood of Σ×{0} in Σ×R

whose respective first and second fundamental forms on Σ×{0} are g and m.
In this regard, the model for such an extension is that of the pair (g, 0) where
g is a metric on Σ with constant scalar curvature equal to −1

3 . In particular,
the latter pair comes from a complete hyperbolic metric on Σ × R, this the
metric given on the product of R with a local coordinate chart on Σ by the
line element with square

ds2 = cosh2(
1√
6
t) · gAB(z)dzAdzB + dt2. (5.1)

Now, suppose that (g,m) is some given pair from H . The plan is to seek a
hyperbolic metric near Σ × {0} whose line element has square

ds2 = γAB(t, z)dzAdzB + dt2. (5.2)

As it turns out, such a metric can be obtained by solving at each point in Σ
the ordinary differential equation

∂tγ = 2γµ

∂tµ = −µ2 +
1

6
I.

(5.3)

where γ and µ are 2 × 2 matrix functions of t with t = 0 values γ = g and
µ = g−1m. In this regard, standard techniques from the theory of ordinary
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differential equations can be used to prove that (5.3) with the attending t = 0
conditions has a unique solution on some interval about t = 0. Moreover, the
size of this interval can be bounded from below in terms of g and m. This last
point implies that there is a fixed interval about 0 in R on which (5.3) and its
attending t = 0 conditions has a unique solution for each point in Σ.

The equations of Gauss–Codazzi can be used to verify that the resulting γ(t, z)
defines a metric via (5.2) on a neighborhood of Σ × {0} in Σ × R that is
hyperbolic with scalar curvature −1.

6 A neighborhood of the Fuchsian locus

The purpose of this section is to describe the structure of H near the locus of
pairs of the form (g0, 0) where g0 is a metric on Σ with constant curvature equal
to −1

3 . This is called the “Fuchsian locus” because the image such a point in M
is a Fuchsian group. In any event, this locus is observedly a smooth submanifold
of H . Moreover, the latter has a tubular neighborhood that consists of the pairs
(g,m) that obey (1.1) with the auxiliary bound

|m|2 <
1

3
. (6.1)

In fact, the bound in (6.1) insures that the operator ∆(g,m) = −dCdC −|m|2+ 1
3

is strictly positive, and so the map from H to T ∗T identifies the open subset
of H where (6.1) holds with an open neighborhood of the zero section in T ∗T .
Let U denote the subset in H where (6.1) holds.

The set U has the following property:

Proposition 6.1 Each (g,m) ∈ U consists of the respective first and sec-
ond fundamental form of a surface in R × Σ that is minimal with respect to
some complete hyperbolic metric. Meanwhile, the corresponding flat SO3(C)
connection defines a homomorphism from π1(Σ) to PSL2(C) whose image is a
quasi-Fuchsian group.

Proof of Proposition 6.1 As explained in the previous section, the equa-
tions in (5.3) have a unique solution on an open neighborhood in Σ × R of
Σ × {0} if γ|t=0 = g and µ|t=0 = g−1m. This noted, suppose that this solu-
tion to (5.3) extends to the whole of Σ × R. Granted that such is the case, it
then follows from the algebraic structure of (5.3) that γ is a positive definite,
symmetric section over Σ×R of T ∗Σ⊗T ∗Σ and thus (5.2) defines a complete,

Geometry & Topology Monographs, Volume 7 (2004)



90 Clifford Henry Taubes

hyperbolic metric on the whole of Σ × R. Of course, by virtue of the t = 0
conditions, the surface Σ × {0} is minimal with respect to this metric with
(g,m) being its respective first and second fundamental forms.

To prove that the solution does indeed extend to Σ×R, let x denote the trace
of µ and let y denote the trace of µ2 . Since

tr(µ3) =
1

2
(3 tr(µ) tr(µ2) − (tr µ)3), (6.2)

the second equation implies that

∂tx = −y +
1

3
, and

∂ty = −x(3y − x2 − 1

3
).

(6.3)

Of interest are the solutions to these equations that start at t = 0 with x = 0
and y < 1

3 . Take note that the given initial conditions also imply that 1
3x2 ≤ y

at t = 0.

The analysis that follows considers the t ≥ 0 evolution. The identical analysis
holds for t ≤ 0 after reversing the sign of µ. In any event, to study the t ≥ 0
case, note first that the compact subset where

0 ≤ x and

1

2
x2 ≤ y ≤ 1

3

(6.4)

is a trapping region for the trajectories that obey (6.3). This is to say that no
trajectory can exit this region. To verify this claim, simply check the direction
of motion implied by (6.3) on the boundary. In this regard, note that

∂t(y − 1

2
x2) = −2x(y − 1

2
x2). (6.5)

The fact that the no trajectory can leave the region where (6.4) holds implies
that all trajectories that start in this region are defined for all t ≥ 0.

The next point to make is that the flow in (6.3) has two fixed points, both at
corners of the region that is delineated by (6.4); one fixed point is (x = 0, y = 1

3)

and the other is the point (x =
√

2
3 , y = 1

3). Since ∂tx > 0 where y < 1
3 , the

first point is repelling where y < 1
3 . On the other hand, the second point is an

attracting fixed point. Moreover, as ∂tx > 0 where y < 1
3 , all trajectories that

start where (6.4) holds and with y < 1
3 limit as t → ∞ to the (x =

√

2
3 , y = 1

3)

fixed point.
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To see what this all implies for solutions to (6.3), introduce ν ≡ µ− 1
2xI. Thus,

ν is the traceless part of µ. Then (5.3) asserts that

∂tν = −xν. (6.6)

Since x ∈ (0,
√

2
3) for all t ≥ 0, this last equation implies that the solution ν(t)

to (6.6) exists for all t ≥ 0. Moreover,

|ν(t)| ≤ constant e
−
√

2

3
t
. (6.7)

Thus, the solution µ to the second line in (5.3) exists for all t ≥ 0.

Granted (6.7), it then follows from the first line in (5.3) that γ exists for all
t > 0 as well. Moreover,

γ ∼ γ+e

√

2

3
t

(6.8)

as t → ∞, where γ+ is a smooth metric on Σ.

With the preceding understood, it remains only to establish that the image
of the pair (g,m) in M defines a quasi-Fuchsian representation of π1(Σ) into
PSL2(C). To this end, note that Σ × R with the (g,m) version of the metric
in (5.2) is uniformized by the hyperbolic ball, B, with its metric of constant
sectional curvature −1

3 . This is to say that the space Σ×R with its hyperbolic
metric is the quotient of B by the image, Γ, of π1(Σ) in PSL2(C). The inverse
image of Σ×{0} via this map is a properly embedded disk in B with principle
curvatures having absolute value less than 1√

6
. This understood, theorems of

Epstein in [6] and [7] imply that Γ is quasi-Fuchsian.

Appendices

A The curvature for the metric in (1.2)

The computation begins with the definition of the orthonormal frame

eA = dzA + tmABdzB +
1

12
t2dzA, and

e3 = dt,
(A.1)

where (zA) are Gaussian normal coordinates on Σ for the metric g . A computation
then finds

deA = tdCmABdzC ∧ dzB + mABdt ∧ dzB +
1

6
tdt ∧ dzA

= −ΓABeB − ΓA3e3

de3 = 0 = −ΓA3 ∧ eA.

(A.2)
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Thus,

ΓAB = t(dBmAC − dAmBC)dzC , and

ΓA3 = mABdzB +
1

6
tdzA.

(A.3)

To continue, the computation of the curvature 2–form Rij = 1
2Rij

kmek ∧ em finds it at
t = 0 equal to

RAB =
1

4
rεABεCDdzCdzD + (dBmAC − dAmBC)dt ∧ dzC

− mACmBDdzC ∧ dzD,

RA3 = dCmABdzC ∧ dzB +
1

6
dt ∧ dzA.

(A.4)

Thus, the curvature form at t = 0 is

RAB
CD =

1

2
rεABεCD − (mACmBD − mADmBC),

RAB
C3 = −(dBmAC − dAmBC),

RA3
B3 = −1

6
gAB.

(A.5)

This gives the t = 0 Ricci tensor with components

RAC =
1

2
(r − 1

3
)gAC + m0

ACm0
BC − 1

4
k2gAB,

RA3 = dBm0
AB − 1

2
dAk,

R33 = −1

3
,

(A.6)

where m0 is the traceless part of m . Thus, the t = 0 Ricci tensor obeys the hyperbol-
icity condition if and only if

r = −(
1

3
+ |m0|2) +

1

2
k2 and dCmAB − dBmAC = 0. (A.7)

Note that the second fundamental form for the t = 0 slice can be computed as follows:

κAB =
〈

∇Ae3, dzB

〉

= −Γ3B
A

= mAB,

(A.8)

by virtue of (A.3). Thus, the t = 0 slice has zero mean curvature when k = gABmAB =
0.
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B The variation of (1.1) with a conformal change of
the metric

The differential of the equation of (1.1) at a pair (g, m) can be computed in the
following manner: First of all, consider the change where (g, m) → (e−ug, m). The
change in the covariant derivative is computed as follows: Observe first that the new
orthonormal frame is {êA = e−

u

2 eA} and

dêA = −1

2
dCue−

u

2 eC ∧ eA − γAB ∧ êB. (B.1)

Thus,

γ̂AB = γAB − 1

2
(eAdBu − eBdAu). (B.2)

This then finds the new curvature 2–form

r̂AB = rAB − 1

2
(dCdBueC ∧ eA − dCdAueC ∧ eB). (B.3)

Hence,

r̂AB
CD = eu(rAB

CD − 1

2
(dCdBugAD − dDdBugAC − dCdAugBD + dDdAugBC)). (B.4)

Taking the necessary traces finds

r̂ = eu(r + ∆u). (B.5)

In terms of the coordinate frame {dzA} , the new Christoffel symbols are

δγD
CB ≡ γ̂D

CB − γD
CB

=
1

2
(dBugDC + dCugDB − dDugCB).

(B.6)

This then implies that d̂CmAB − d̂AmCB is equal to

= − δγD
CBmAD + δγD

ABmCB

=
1

2
(dBumAC + dCumAB − dDumADgCB)

− 1

2
(dBumCA + dAumCB − dDumCDgAB)

=
1

2
εCA(dDuεDF mFB − dDumDF εBF )

= 0

(B.7)

by virtue of the fact that the tensor εDF mFB is symmetric when m is symmetric
and tracefree. Thus, (e−ug, m) obeys the first equation in (1.1a) when (g, m) does.
Needless to say, the equation in (1.1b) is also obeyed by (e−ug, m).
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As for the second equation in (1.1a), introduce

f(g, m) ≡ rg + (|m|2 +
1

3
). (B.8)

Then by virtue of (B.5),

f(e−ug, m) = eu(r + ∆u + eu|m|2 +
1

3
e−u)

= eu(∆u + (eu − 1)|m|2 +
1

3
(e−u − 1)).

(B.9)

Note that if f(e−ug, m) is to vanish for small u , then

∆u + (|m|2 − 1

3
)u + O(u2) = 0. (B.10)

C The connection defined by (2.4)

The curvature of the covariant derivative in (2.4) at a given point in Σ is computed
most easily by choosing the frame {eA} for T ∗Σ to have zero metric covariant deriva-
tive at the point in question. This understood, then the curvature 2–form is the
SO3(C)–valued 2–form whose components are RAC = [∇A,∇C ] . Therefore, two ap-
peals to (2.4) find

RACη =

(

−rDBACηD + (dAθCB − dCθAB)η3 − (θABθCD − θCBθAD)ηD

−(dAθCD − dCθAD)ηD − (θADθCD − θCDθAD)η3

)

, (C.1)

where rDBAC = 1
2εDBεACr is the curvature tensor for the Riemannian metric g . Now,

the bottom term here is zero provided that

dAθCD − dCθAD = 0. (C.2)

This noted, the top term is zero provided that

−r − θABθBA + θAAθBB = 0. (C.3)

These are the equations in (1.1).

The next task for this appendix is to verify that any two solutions to (1.1) from the
same Diff0 orbit define gauge equivalent flat SO3(C) connections. For this purpose, it
proves more convenient to work with the metric in (1.2) on Σ×R . To start, let g now
denote a given metric on Σ × R . Fix an oriented, orthonormal frame, {ei}i=1,2,3 , for
the cotangent bundle of Σ × R and this frame can then be used to define from g the
SO3(C) connection on the trivial C

3 whose covariant derivative, ∇, is

(∇η)i = dηi − Γk
i ηk +

i√
6
εijkηkej. (C.4)
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Here, Γk
i denotes the Levi–Civita connection as defined by the given metric using the

given orthonormal frame. The covariant derivative defined by (2.4) in directions along
the t = 0 slice is the restriction of the version of (C.4) that is defined by the metric
in (1.2). If a first order change in the metric g is given by δg = h with h a symmetric,
3 × 3 tensor, then the associated orthonormal frame changes to first order so that

δek =
1

2
hkje

j . (C.5)

Meanwhile, the metric’s Levi–Civita covariant derivative changes to first order as

δΓk
i =

1

2
(∂ihkj − ∂khij)e

j

= εimk(
1

2
εnmp∂nhpje

j)

(C.6)

Here, ∂ is used to denote the covariant derivative of the metric g . Thus, the covariant
derivative in (C.4) changes to first order as

δ(∇η)i = εimk(−1

2
εnmp∂nhpj +

i√
6
hmj)e

jηk. (C.7)

As a parenthetical remark, note that such a change preserves the flatness condition to
first order if and only if the C3–valued 1–form

vi ≡ (−1

2
εnip∂nhpj +

i√
6
hij)e

j (C.8)

obeys D∇v = 0 where D∇ denotes the exterior covariant derivative that is defined by
∇.

By comparison, a change in the covariant derivative comes from a first order change in
the connection in a direction tangent to its gauge orbit if and only if the change in ∇
has the form

δ(∇η)i = εimk(∇σ)mηk (C.9)

where σ is some C3–valued function.

Granted the preceding, suppose now that the variation, h , in the metric g comes from
the action by Lie derivative of a vector field, v , on Σ × R . This being the case, then
hij = ∂ivj + ∂jvi and so (C.8) reads

vi = −1

2
εnip∂n(∂pvj + ∂jvp)e

j +
i√
6
(∂ivj + ∂jvi)e

j

= ∇(−1

2
εnip∂nvp +

i√
6
vi).

(C.10)

As this has the form given in (C.9), the infinitesimal action of Diff(Σ × R) on the
metric results in an infinitesimal action of the gauge group on the resulting connection.

To finish the story, note that this first order result can then by “integrated” to estab-
lish that any two solutions to (1.1) that lie on the same Diff0(Σ) orbit define gauge
equivalent, flat SO3(C)–connections along Σ.
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D The cokernel of the operator L(g,m)

A pair (σB, σ3) is in the cokernel of L(g,m) if and only if it is L2–orthogonal to all
pairs (γB, γ3) that can be written as in (2.1). This then implies that the pair satisfy
the following system of equations:

−1

2
(εCAdCσB + εCBdCσA − gABεEF dEσF ) + 2mABσ3 = 0 (D.1)

(

1

2
(
1

3
− |m|2)σ3 − dCdCσ3

)

gAB + dAdBσ3 −
1

4
εECdC(σBmEA + σAmEB)

− 1

4

(

εEAdE(σCmCB) + εEBdE(σCmCA)
)

− 1

2
εCDdCσDmAB = 0.

Now write σB = εBCvC and σ3 = − 1
2v3 . As is explained next, the equations just

written are equivalent to the following:

dAvB + dBvA − gABdCvC + 2mABv3 = 0 (D.2)

1

2
(
1

3
+ |m|2)v3gAB − dAdBv3 + vCdCmAB + dBvCmCA + dAvCmCB = 0

To start the explanation, make the indicated substitution and then up to a constant
factor, the following is the result:

dAvB + dBvA − gABdCvC + 2mABv3 = 0 (D.3)
(

dCdCv3 −
1

2
(
1

3
− |m|2)v3

)

gAB − dAdBv3

− 1

2
(2dCvCmAB − dBvCmCA − dAvCmCB)

− 1

2
(dCvAmCB + dCvBmCA − 2dCvCmAB − 2vCdCmAB)

+ dDvDmAB = 0.

Note that the first equation in (D.2) is identical to its mate in (D.3). To simplify the
second equation, begin by taking its trace to deduce that

dCdCv3 − (
1

3
− |m|2)v3 = 0. (D.4)

The second equation in (D.3) can now be rewritten using (D.4) and the first equation
in (D.3) to read

1

2
(
1

3
− |m|2)v3gAB − dAdBv3 −

1

2
(2dCvCmAB − 2dBvCmCA − 2dAvCmCB)

− 1

2

(

(gCAdDvD − 2mCAv3)mCB + (gCBdDvD − 2mCBv3)mCA

− 2dCvCmAB − 2vCdCmAB

)

+ dDvDmAB = 0. (D.5)
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The elimination of canceling terms and the use of the identity mABmBC = 1
2 |m|2gAC

makes (D.5) into the second equation in (D.2).

The next part of this appendix explains why (D.2) is equivalent to (2.5). As the next
lemma points out, a more general version of (D.2) and (2.4) together imply (2.5).

Lemma D.1 Suppose that (vA, v3) define a real-valued section of T ∗Σ ⊕ R , that κ
is a real-valued constant, and that the following equations hold:

dAvB + dBvA − gAB(dCvC + κ) + 2mABv3 = 0

1

2
(
1

3
+ |m|2)v3gAB − dAdBv3 + vCdCmAB + dBvCmCA + dAvCmCB = 0.

(D.6)

Then the complex-valued sections η and u of (T ∗Σ ⊕ R)C given by

ηB ≡ vB + i
√

6(−εCBdCv3 + vEεCBmEC),

η3 ≡ v3 + i

√

3

2
εEF dEvF ,

uB ≡ 0, and

v3 = −i

√

3

2
(dCvC + κ)

(D.7)

obey the equation ∇Aη = εAB∇′

Bu

Proof of Lemma D.1 Note first that the vanishing of the first term in (D.6) implies
that

dAvB − 1

2
εABεEF dEvF + mABv3 =

1

2
gAB(dCvC + κ). (D.8)

Then, since
1

2
gAB(dCvC + κ) = εAC(− i√

6
εCBu3), (D.9)

this last equation is the real part of the equation dAηB + θABη3 = εAC(−θCBu3).

To continue, the vanishing of the second term in (D.6) can be rewritten using (D.8) so
as to read

− dAdBv3 +
1

2
(
1

3
− |m|2)gABv3 + vCdCmAB

+ mACεBC(εEF dEvF ) = −mAB(dCvC + κ). (D.10)

Moreover, this is equivalent to

−dAdBv3 +
1

6
gABv3 + dA(vCmCB) +

1

2
mACεBC(εEF dEvF ) = −1

2
mAB(dCvC + κ).

(D.11)
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Finally, the latter gives

dA

√
6(−εBDdBv3 + vCεBDmCB) +

1√
6
εADv3 + mAD(

√

3

2
εEF dEvF )

= −
√

3

2
εBDmAB(dCvC + κ). (D.12)

The latter equation is the imaginary part of the equation

dAηD + θADη3 = εAC(−θCDu3).

As will now be explained, it is also the case that dAη3 − θABηB = εACdCu3 . To this
end, consider that the real part of θABηB can be written as follows:

re(θABηB) = mABvB + εABεCBdCv3 − εABεCBmECvE (D.13)

= dAv3

= re(dAη3).

Meanwhile, the imaginary part of θABηB can be written to read

im(θABηB) =
1√
6
εABvB +

√
6(−mABεCBdCv3 + mABεCBvEmEC) (D.14)

= εAB

(

1√
6
vB +

√

3

2
|m|2vB −

√
6dC(mCBv3)

)

= −
√

3

2
εAB (rvB + dC(2mCBv3)) .

On the other hand, commuting derivatives and invoking (D.8) allows the imaginary
part of dAη3 to be written as

im(dAη3) =

√

3

2
εEF (dAdEvF ) (D.15)

=

√

3

2
(εEA

1

2
rvE + εEF dEdAvF )

=

√

3

2

(

εBA

1

2
rvB − εEF dEdF vA − εEF dE(2mAF v3) + εEAdEdCvC

)

= −
√

3

2
εAB (rv + dC(2mBCv3)) + εAEdE(−(dCvC + κ)) .

Together, (D.11) and (D.13) imply the claim that dAη3 − θABηB = εACdCu3 .
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