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Open string instantons and relative stable morphisms

JUN LI

YUN S SONG

We show how topological open string theory amplitudes can be computed by using
relative stable morphisms in the algebraic category. We achieve our goal by explicitly
working through an example which has been previously considered by Ooguri and
Vafa from the point of view of physics. By using the method of virtual localization, we
successfully reproduce their results for multiple covers of a holomorphic disc, whose
boundary lies in a Lagrangian submanifold of a Calabi–Yau 3–fold, by Riemann
surfaces with arbitrary genera and number of boundary components. In particular we
show that in the case we consider there are no open string instantons with more than
one boundary component ending on the Lagrangian submanifold.

14N35; 14D21

Reproduced by kind permission of International Press from:
Advances in Theoretical and Mathematical Physics, Volume 5 (2002) pages 69–91

0 Introduction

The astonishing link between intersection theories on moduli spaces and topological
closed string theories has by now taken a well-established form, a progress for which E
Witten first plowed the ground in his seminal paper [21]. As a consequence, there now
exist rigorous mathematical theories of Gromov–Witten invariants, which naturally arise
in the aforementioned link. In the symplectic category, Gromov–Witten invariants were
first constructed for semi-positive symplectic manifolds by Y Ruan and G Tian [18]. To
define the invariants in the algebraic category, J Li and G Tian constructed the virtual
fundamental class of the moduli space of stable maps by endowing the moduli space
with an extra structure called a perfect tangent-obstruction complex [15].1 Furthermore,
Gromov–Witten theory was later extended to general symplectic manifolds by Fukaya
and Ono [3], and by Li and Tian [14]. In contrast to such an impressive list of advances
just described, no clear link currently exists between topological open string theories
and intersection theories on moduli spaces. One of the most formidable obstacles that

1Alternative constructions were also made by Y Ruan [17] and by B Siebert [19].
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stand in the way to progress is that it is not yet known how to construct well-defined
moduli spaces of maps between manifolds with boundaries. The main goal of this
paper is to contribute to narrowing the existing gap between topological open string
theory and Gromov–Witten theory. In so doing we hope that our work will serve as a
stepping-stone that will take us a bit closer to answering how relative stable morphisms
can be used to study topological open string theory.

In order to demonstrate the proposed link between topological open string theory and
Gromov–Witten theory, we will focus on an explicit example throughout the paper. The
same example was also considered by string theorists Ooguri and Vafa in [16], where
they used results from Chern–Simons theory and M–theory to give two independent
derivations of open string instanton amplitudes. A more detailed description of the
problem will be presented later in the paper. We just mention here that, by using our
mathematical approach, we have successfully reproduced their answers for multiple
covers of a holomorphic disc by Riemann surfaces of arbitrary genera and number of
holes. In fact we show that there are no open string instantons with more than one hole,
a result which was anticipated in [16] from their physical arguments.

The invariants we compute are a generalization of absolute Gromov–Witten invariants
that should be more familiar to string theorists. Our case involves relative stable maps
which intersect a specified complex-codimension-two submanifold of the target space
in a finite set of points with multiplicity. It will become clear later in the paper that
the theory of relative stable maps is tailor-made for studying topological open string
theory. The construction of relative stable maps was first developed in the symplectic
category (Li–Ruan [11], Ionel–Parker [6; 7]). Recently in [13; 12] the first author of
the present paper has given an algebro-geometric definition of the moduli space of
relative stable morphisms and has constructed relative Gromov–Witten invariants in
the algebraic category. The foundation of our work will be based on those papers.

The organization of this paper is as follows: In Section 1 we give a brief description of
the multiple cover problem that arose in [16] and state what we wish to reproduce using
relative stable morphisms. In Section 2 we define the moduli space of relative stable
morphisms and describe how multiple covers of a holomorphic disc can be viewed as a
problem regarding relative stable morphisms. We investigate the obstruction theory
of the moduli space in Section 3. In Section 4 we study the localization of the virtual
fundamental class and compute the equivariant Euler class of the virtual normal bundle
to the fixed locus. In Section 5 we evaluate the relevant invariants for the case where
the source Riemann surface has only one boundary component. The cases with more
than one boundary component are subsequently discussed in Section 6. We conclude
in Section 7 with some comments.
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Note While this manuscript was in its final stage of preparation, Katz and Liu an-
nounced their results [9] which deal with the same subject matter as our paper.

1 A brief description of the problem

The notion of duality has been one of the most important common threads that run
through modern physics. A duality draws intricate connections between two seemingly
unrelated theories and often allows one to learn about one theory from studying the other.
A very intriguing duality correspondence has been proposed by Gopakumar and Vafain
[4], where the authors provide several supporting arguments for a duality between
the large–N expansion of SU.N / Chern–Simons theory on S3 and a topological
closed string theory on the total space of the vector bundle OP1.�1/˚OP1.�1/ over
P1 .2 The equivalence was established in [4] at the level of partition functions. We
know from Witten’s work in [22], however, that there are Wilson loop observables in
Chern–Simons theory which correspond to knot invariants. The question then is, “What
do those invariants that arise in Chern–Simons theory correspond to on the topological
string theory side?”

The first explicit answer to the above question was given by Ooguri and Vafa in [16].
In the case of a simple knot on S3 , by following through the proposed duality in close
detail, they showed that the corresponding quantities on the topological string theory
side are open string instanton amplitudes. More precisely, in the particular example they
consider, the open string instantons map to either the upper or the lower hemisphere of
the base P1 .3

According to [16], the generating function for topological open string amplitudes is

(1–1) F.t;V /D

1X
gD0

1X
hD0

1X
d1;:::;dh

�2g�2ChFgId1;:::;dh
.t/

hY
iD1

trV di ;

where t is the Kähler modulus of P1 ; V is a path-ordered exponential of the gauge
connection along the equator and trV di arises from the i th boundary component which

2See [4] and references therein for a more precise account of the proposal.
3We clarify that the geometric set up in the present case is no longer that described above. There is a

unique Lagrangian 3–cycle CK in T �S3 which intersects S3 along a given knot K in S3 . Associated
to such a 3–cycle CK in T �S3 there is a Lagrangian 3–cycle zCK in the local Calabi–Yau three-fold X

of the topological string theory side. For the simple knot S considered by Ooguri and Vafa, the latter
3–cycle zCS intersects the base P1 of X along its equator. It is the presence of this 3–cycle that allows
for the existence of holomorphic maps from Riemann surfaces with boundaries to either the upper or the
lower hemisphere. See [16] for a more detailed discussion.
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winds around the equator jdi j–times with orientation, which determines the sign of
di ; � is the string coupling constant; and FgId1;:::;dh

is the topological open string
amplitude on a genus–g Riemann surface with h boundary components. Furthermore,
by utilizing the aforementioned duality with Chern–Simons theory, Ooguri and Vafa
concluded that

(1–2) F.t;V /D i

1X
dD1

trV d C trV �d

2d sin.d�=2/
e�dt=2;

which they confirmed by using an alternative approach in the M–theory limit of type
IIA string theory.4 By comparing (1–1) and (1–2), one immediately sees that there
are no open string instantons with more than one boundary component ending on the
equator; that is, FgId1;:::;dh

D 0 for h > 1. To extract the topological open string
amplitude on a genus–g Riemann surface with one boundary component .hD 1/, we
need to expand (1–2) in powers of �. After some algebraic manipulation, we see that

F.t;V /D i

1X
dD1

0@ 1

d2
��1
C

1X
gD1

d 2g�2 22g�1� 1

22g�1

jB2gj

.2g/!
�2g�1

1A
e�dt=2

�
trV d

C trV �d
�
;

where B2g are the Bernoulli numbers defined by

1X
nD0

Bn
xn

n!
D

x

ex � 1
:

Hence, topological open string amplitudes, which correspond to multiple covers of either
the upper or the lower hemisphere inside the local Calabi–Yau three-fold described
above, are
(1–3)

�iFgId1;:::;dh
.0/D

8̂̂̂<̂
ˆ̂:

d�2; g D 0; hD 1; jd1j D d > 0;

d 2g�2

 
22g�1� 1

22g�1

jB2gj

.2g/!

!
; g > 0; hD 1; jd1j D d > 0;

0; otherwise:

In the remainder of this paper, we will work towards reproducing these results using
relative stable morphisms.

4We refer the reader to the original reference [16] for further description of this approach.
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2 Relative stable maps and Lagrangian submanifolds

In this section, we will formulate the problem in terms of the moduli space of stable
holomorphic maps. Throughout this paper, we fix two points q0 and q1 2 P1 , and
choose a homogeneous coordinate Œw1; w2� of P1 so that q0 (resp. q1 ) is the point
Œ0; 1� (resp. Œ1; 0�). We will use w to denote the standard coordinate of CD P1� q1
so that w is related to the homogeneous coordinate Œw0; w1� via w D w0=w1 . Hence
q0 and q1 become 0 and 1, respectively. We let W be the total space of the vector
bundle 1C ˚ 1C over C D P1 � q1 . (In this paper, we will use 1X to denote the
trivial holomorphic line bundle over X .) For any r 2 RC we denote by Dr � C
the closed disk jwj � rd and denote the boundary of Dr by @Dr . Furthermore, we
let Wr D �

�1.Dr /, where � W W ! C is the projection. In the present section, we
will consider the space of holomorphic maps from Riemann surfaces to Wr whose
boundary lies in a Lagrangian submanifold in @Wr .

We now describe this Lagrangian submanifold, following Ooguri and Vafa [16]. We let
e1 and e2 be the constant 1 section of the first and the second factor of 1C˚1C . Then
any vector � 2 1C˚ 1C over s 2 C is expressed uniquely as � D .s;ue1C ve2/. In
case w is the coordinate of s 2 C, we say .w;u; v/ is the coordinate of � 2W . The
Lagrangian submanifold introduced by Ooguri and Vafa in [16] is5

(2–1) Br D f.w;u; v/ j jwj D rd ; uD xwxvg:

As a convention in this paper, we will use t D ei� to denote a general element in the
group S1 . We fix an S1 –action on C� P1 via

(2–2) Œw; 1�t D Œtw; 1�:

Then wt D t�1w , where wt is the push-forward of the function w under the group
action, which is the pull-back of w under the inverse of (2–2). We next choose an
S1 –linearization of W ! C so that it leaves Br invariant. We choose

(2–3) et
1 D te1 and et

2 D e2:

Then .s;ue1C ve2/
t D .st ;uet

1
C vet

2
/, or equivalently

.w;u; v/t D .t�1w; tu; v/:

Hence .u� xwxv/t D tu� t xwxv and thus Br is S1 –invariant.

5The authors of [16] considered the Lagrangian submanifold u� Dwxv� , where u� and v� are given
as sections of OP1.�1/ using a frame over P1 � q0 . The transition between u and u� is u� D wu .
Under this condition, our equation is equivalent to that of Ooguri and Vafa.
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We now define the moduli space Mrel
g;�.Wr ;Br / of relative holomorphic maps from

genus–g Riemann surfaces with boundaries to .Wr ;Br /, with prescribed winding
numbers along the boundaries of the domain Riemann surfaces. We let g � 0 be an
integer, and �D .d1; � � � ; dn/ an n–tuple of positive integers. In this paper, we will call
connected, holomorphic nodal curves with ordered smooth boundaries prestable nodal
holomorphic curves with ordered boundaries. When † is such a curve we will use
@k† to denote the k th boundary component of †. Naturally, we give each boundary
@k† its induced orientation. Now let † be a holomorphic nodal curve with n ordered
boundary components and let f W .†; @†/! .W;Br / be a holomorphic map. We say
f has winding number dk along the k th boundary component if the degree of

� ıf j@k† W @k†! @Dr

has degree dk . We say f is a relative holomorphic map (with � D .d1; � � � ; dn/

implicitly understood) if, for all k , it has winding number dk along its k th boundary
component. A relative holomorphic map is said to be stable if there is no irreducible
component of † that is isomorphic to P1 that contains only one nodal point and that
is mapped to a single point in Wr . As usual, two such relative stable maps .f1; †1/

and .f2; †2/ are equivalent if there is an isomorphism �W †1!†2 that preserves the
order of the boundary components so that f1 D � ıf2 . We define Mrel

g;�.W;Br / to be
the moduli space of all relative stable maps from genus–g curves to .Wr ;Br /, modulo
equivalence. Similarly, we define Mrel

g;�.Dr / to be the moduli space of all relative stable
maps from genus–g curves with ordered boundaries to .Dr ; @Dr /, modulo equivalence
relation. Since .Dr ; @Dt /� .Wr ;Br /, Mrel

g;�.Dr / is a subspace of Mrel
g;�.Wr ;Br /.

We now introduce another moduli space, the moduli space of relative stable morphisms
of genus–g to .P1; q1/, with prescribed ramification orders. Let g and � be as above.
An ordinary relative stable morphism of genus–g and of ramification order � consists
of a connected n–pointed nodal algebraic curve .C; ;x1; � � � ;xn/ and a morphism
f W C ! P1 , so that

f �1.q1/D d1x1C � � �C dnxn

as a divisor. We say .f;C / (with � understood implicitly) is a relative stable morphism
if f is stable as a morphism from C to P1 . We let Mrel

g;�.P1/0 be the moduli space of
ordinary relative stable morphisms, with ramification order �, from genus–g algebraic
curves to P1 . It is a Deligne–Mumford stack. In [13], the first author of the present
paper has constructed the moduli space Mrel

g;�.P1/ of relative stable morphisms, with
ramification order �, from genus–g algebraic curves to P1 . The space Mrel

g;�.P1/ is a
proper Deligne–Mumford stack. It admits a natural perfect obstruction theory and hence
admits a virtual moduli cycle. The moduli stack Mrel

g;�.P1/ contains Mrel
g;�.P1/0 as its

open substack. The new ingredient of this moduli space is that a relative stable morphism
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f 2Mrel
g;�.P1/ consists of an n–pointed genus–g algebraic curves .C;x1; � � � ;xn/

and a morphism f W C ! P1Œm�, so that

f �1.q1/D d1x1C � � �C dnxn:

Here P1Œm� is the nodal curve that has m ordered irreducible components, each
isomorphic to P1 , so that the j th component intersects with the .j C 1/th component
of P1Œm� at exactly one point. P1Œm� also contains a distinguished divisor q1 in the
first component of P1Œm�, and it comes with a projection 'W P1Œm�! P1 that maps
q1 2 P1Œm� to q1 2 P1 . Moreover, the restriction of ' to the last component is an
isomorphism to P1 , and ' contracts all other components of P1Œm�. For any morphism
f W C ! P1Œm� we define Aut.f /rel to be the set of pairs .a; b/, where aW C ! C

are automorphisms of .C;x1; � � � ;xn/ and bW P1Œm�! P1Œm� are automorphisms6 so
that f ı aD b ı f . We say f is stable if Aut.f /rel is finite. From this description,
we see that Mrel

g;�.P1/0 �Mrel
g;�.P1/ is the open subset consisting of relative stable

morphisms f whose codomain is P1Œ1�D P1 .

We now investigate the moduli space Mrel
g;�.Wr ;Br / of relative stable holomorphic

maps. Let .f;†/ 2 Mrel
g;�.Wr ;Br / be any relative stable map. Composed with

� W Wr ! Br , we obtain a new map

zf D � ıf W †!Dr :

Since fibers of Wr !Dr are vector spaces, . zf ;†/ is also relative stable and hence is
in Mrel

g;�.Dr /. This defines a map

Mrel
g;�.Wr ;Br / �!Mrel

g;�.Dr /:

We now show that this is an isomorphism. Given f 2Mrel
g;�.Wr ;Br / and its induced

zf 2Mrel
g;�.Dr /, the original f is given by a holomorphic section

(2–4) s 2 �.†; zf �L1˚
zf �L2/:

We now show that s D 0. We let †2 be the nodal curve † with the conjugate
holomorphic structure. Namely, †2 is diffeomorphic to †, its conformal structure
on each irreducible components is identical to that of †, and its orientation is the
opposite of that of †. We let †1 be the identical copy of †. We then let z† be the
nodal holomorphic curve derived by identifying the boundary of †1 with the boundary
of †2 using the identity map between their boundaries. By the reflection principle, the
complex structures of †1 and †2 �

z† extend to a holomorphic structure on z†. The

6By this we mean that b is an isomorphism of P1Œm� that preserves q1 2 P1Œm� and the projection
'W P1Œm�! P1 .
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new curve z† is a nodal curve without boundary. We next introduce a line bundle zL
on z†. We pick a sufficiently small open neighborhood Vi �

z† of †i �
z†. We let

zLjVi
ŠOVi

and let �i be the section 1 in OVi
. The identification of zLjV1

with zLjV2

over V1\V2 is given by
�1 D f

�.w/r�2d�2:

Now let s in (2–4) be given by s.z/D u.z/e1C v.z/e2 . Then u.z/�1 is naturally a
holomorphic section of zLj†1

and xv.z/�2 also is a holomorphic section of zLj†2
. The

condition that f .z/ 2 Br for z 2 @† implies that u.z/ D f .z/v.z/ z 2 @†. Since
jf .z/j D rd , we have

u.z/�1 D f .z/v.z/f .z/r
�2d�2 D v.z/�2:

This implies that u �1 and xv �2 patch together to form a continuous section of zL.
Since u �1 and xv �2 are holomorphic over †1 and †2 , respectively, zs is holomorphic.
Finally, it is straightforward to check that deg zLD�

P
dk < 0. Hence zs � 0, which

shows that f � zf . This proves that Mrel
g;�.Wt ;Br /DMrel

g;�.Dr / as sets. However,
since the above construction works for analytic families of relative stable maps in
Mrel

g;�.Wr ;Br /, this argument also shows that the two moduli spaces Mrel
g;�.Wr ;Br /

and Mrel
g;�.Dr / are isomorphic as analytic schemes (stacks).

We now show that Mrel
g;�.Dr / is naturally an open subset of Mrel

g;�.P1/0 . Let .f;†/
be a relative holomorphic map in Mrel

g;�.Dr /. We let D�
r be f.r � �/d < jwj � rdg,

which is a neighborhood of @Dr �Dr . Since f .†/�Dr , f .@†/� @Dr and dk > 0,
the derivative of f along @† is nowhere vanishing. Note that f is analytic up to
the boundary by the reflection principle. Hence there is a positive � > 0 so that
f �1.D�

r /! D�
r is a covering space. Furthermore, if we let Uk be the connected

component of f �1.D�
r / containing @k†, then Uk!D�

r is a dk –fold covering. Hence,
there is a biholomorphic map

�k W f.r � �/
�1 > jzk j> r�1

g �! Uk

so that f ı �k is given by w D z
�dk

k
. We then attach the disk fjzk j < .r � �/

�1g to
† using the isomorphism �k . We let C be the complete nodal curve resulting from
attaching n disks to the n holes, following the procedure described. Then the map
f W †!Dr extends to a holomorphic map C ! P1 , which we denote by xf , so that
xf restricting to the disk fjzk j< .r � �/

�1g is given by w D z
�dk

k
. Thus . xf ;C / is a

relative stable morphism in Mrel
g;�.P1/. It is straightforward to check that any two such

extensions (to .f;C /) are equivalent. This way we obtain a map

(2–5) Mrel
g;�.Dr / �!Mrel

g;�.P
1/:
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This map is obviously injective and the image is an open subset in Mrel
g;�.P1/. On the

other hand, this construction works for any analytic family of relative stable maps in
Mrel

g;�.Dr /. This shows that (2–5) is an open embedding. In the following, we will
view Mrel

g;�.Dr / as an open subset of Mrel
g;�.P1/. It is straightforward to check that,

for r > r 0 , Mrel
g;�.Dr / �Mrel

g;�.P1/ is contained in Mrel
g;�.Dr 0/ �Mrel

g;�.P1/. When
we take the union of all these open subsets, we obtain[

r>0

Mrel
g;�.Dr /DMrel

g;�.P
1/0:

3 Obstruction theory of Mrel
g;�.Wr;Br/

We now investigate the obstruction theory of Mrel
g;�.Wr /. First, since Mrel

g;�.Wr /

is identical to Mrel
g;�.Br / as analytic schemes (stacks), the space of the first order

deformations of f 2Mrel
g;�.Wr ;Br / is naturally isomorphic to the space of the first

order deformations of f as an elements in Mrel
g;�.Dr /. As to the obstruction, since

there are no first order deformations of f 2Mrel
g;�.Wr / along the fiber direction of

Wr ! Dr , the obstruction classes to extending families in Mrel
g;�.Wr / are exactly

the obstruction classes to extending them as families in Mrel
g;�.Dr /. Furthermore, the

obstruction spaces (sheaves) to extending families in Mrel
g;�.Wr / will then be the direct

sum of the obstruction spaces (sheaves) to extending them in Mrel
g;�.Dr / with the

obstruction spaces (sheaves) to deforming them along the fiber directions of Wr . Let
V be the obstruction bundle to extending families along the fiber directions of Wr .
According to the theory of virtual moduli cycles (Li–Tian [14; 15]), the virtual moduli
cycle of Mrel

g;�.Wr / is the top Chern class of the obstruction bundle V paired with the
virtual moduli cycle of Mrel

g;�.Dr /.

We now derive this obstruction bundle V . Let .fr ; †r / 2Mrel
g;�.Wr / be any relative

map. We let .f;C / be the canonical extension of .fr ; †r / to C ! P1 constructed
before. For any r 0� r we let †r 0DC\f �1.Dr 0/. Then fr 0Df j†r 0

W †r 0!Dr 0 is an
element in Mrel

g;�.Dr 0/DMrel
g;�.Wr 0/. In the following we will identify the obstruction

space V .fr / to deforming fr along the fiber directions of Wr . As expected, the space
V .fr / will be canonically isomorphic to V .fr 0/.

We now derive the space V .fr /. We first consider the case where f D 1 and C is
smooth. We pick a sufficiently small � >0 so that Ur;1Df

�1.D�
r /�†r is isomorphic

to fr�1 � jzj< r�1C �g and that f jUr;1
W Ur;1!C is defined by w D z�d . Now we

let Ur;0 D†r � @†r . Then Ur;0 and Ur;1 are an open covering of †r with

Ur;1\Ur;0 Š fr
�1 < jzj< r�1

C �g:

Geometry & Topology Monographs, Volume 8 (2006)



58 Jun Li and Yun S Song

Our first task is to describe the deformations of fr jUr;0
and fr jUr;1

along the fiber
directions of Wr . Clearly, deformations of fr jUr;0

are given by the space of sections

s0 2 �.Ur;0; f
�

r L1˚f
�

r L2/;

whereas deformations of fr jUr;1
are given by the sections

s1 2 �.Ur;1; f
�

r L1˚f
�

r L2/

subject to the boundary condition (2–1). We now investigate the boundary condition in
detail. Using the distinguished basis e1 and e2 , we can express s1 as

s1 D u1.z/f
�

r e1Cu2.z/f
�

r e2;

where u1 and u2 are continuous functions over Ur;1 that are holomorphic in the
interior of Ur;1 . We let u1.z/ D

P1
kD�1 akzk and u2.z/ D

P1
kD�1 bkzk be the

Laurent series expansions of u1 and u2 . Then the boundary condition (2–1) (after
substituting z by r�1ei� ) is equivalent to

1X
kD�1

akr�keik�
D .r�1e�i� /�d

1X
kD�1

xbkr�ke�ik� ; � 2 R:

This forces

(3–1) akr�k
D xbd�krk

for all k 2 Z. When r !1, the above relations reduce to

(3–2) ak D 0 for k < 0I bk D 0 for k < d and a0 D
xbd :

We let

(3–3) �.Ur;1; f
�

r L1˚f
�

r L2//r Dfs 2�.Ur;0; f
�

r L1˚f
�

r L2/ j s satisfies .3–1/ g;

and

(3–4) �.Ur;1; f
�

r L1˚f
�

r L2/1D fs 2 �.Ur;1; f
�

r L1˚f
�

r L2/ j s satisfies .3–2/ g

According to the receipt of the obstruction theory, the obstruction space to deforming

fr W .†r ; @†r / �! .Wr /

along the fiber directions of Wr is the cokernel of

�.Ur;1; f
�

r L1˚f
�

r L2/r ˚�.Ur;0; f
�

r L1˚f
�

r L2/ �!(3–5)

�.Ur;0\Ur;1; f
�

r L1˚f
�

r L2/:
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Using the relation (3–1) it is easy to see that the above cokernel is canonically isomorphic
to the cokernel of

�.Ur;1; f
�

r L1˚f
�

r L2/1˚�.Ur;0; f
�

r L1˚f
�

r L2/ �!(3–6)

�.Ur;0\Ur;1; f
�

r L1˚f
�

r L2/:

Our next step is to repress this cokernel in terms of some cohomology groups of line
bundles over C . For this we need to extend the line bundles f �r L1 and f �r L2 to line
bundles over C . We extend both line bundle to trivial line bundles over C so that the
constant sections ei of Li pull back to a constant section of OC . With this choice of
extensions, �.Ur;1; f

�
r L1˚f

�
r L2/1 then is canonically isomorphic to

(3–7) �.OU1
.�x//˚�.OU1

.�dx//:

Here U1 is the disk fjzj< �g � C , x 2 xUr;1 is the point ramified over q1 2 P1 and
U0 D C �x . Hence the cokernel of (3–5) becomes the cokernel of

�.U1;OC .�x/˚OC .�dx//˚�.U0;OC .�x/˚OC .�dx// �!(3–8)

�.U0\U1;OC .�x/˚OC .�dx//;

which by the definition of Čech cohomology is

(3–9) H 1.OC .�x//˚H 1.OC .�dx//:

This shows that the obstruction space V .fr / of fr 2Mrel
g;�.Wr / is the cohomology

group (3–9).

The vector spaces V .fr / over fr 2Mrel
g;�.Wr / form a vector bundles over Mrel

g;�.Wr /.
Since V .fr / is independent of r , this vector bundle extends to Mrel

g;�.P1/0 via the
same formula. We denote this vector bundle over Mrel

g;�.P1/0 by V .

Proposition 3.1 Let fr 2 Mrel
g;�.P1/ be any relative stable morphism with C the

domain of f and let Dd D d1x1C � � �Cdhxh be the distinguished divisor in C . We
let D D x1C � � � C xh and let V be the vector bundle over Mrel

g;�.P1/ whose fibers
over f are

V .f /DH 1.OC .�D/˚OC .�Dd//:

Then the obstruction bundle to deforming maps in Mrel
g;�.Wr / along the fiber directions

of Wr is given by the vector bundle V jMrel
g;�.Wr /

.

Proof The proof is exactly the same as the case h D 1 and †r is smooth, except
that, in deriving this cohomology space, we need to cover †r by more than two open
subsets.
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According to the general principle of virtual moduli cycles, the expected (virtual)
number of maps in Mrel

g;�.Wr / should be

(3–10)
Z
ŒMrel

g;�.Wr /�vir
ctop.V /:

Here ŒMrel
g;�.Wr /�

vir is the virtual moduli cycle of Mrel
g;�.Wr / and ctop is the top Chern

class of a vector bundle. Clearly, this integration is not well defined mathematically
because Mrel

g;�.Wr / is not compact. To make sense of this integral we need to com-
pactify Mrel

g;�.Wr / and then extend V . Since Mrel
g;�.Wr / is naturally an open subset

of Mrel
g;�.P1/, we can use Mrel

g;�.P1/ to compactify Mrel
g;�.P1/0 . It was proved by the

first author of the present paper that Mrel
g;�.P1/ is a proper Deligne–Mumford stack,

and that it admits a perfect obstruction theory and thus comes with a natural choice of
virtual moduli cycles, denoted by ŒMrel

g;�.P1/�vir .

Extending V to Mrel
g;�.P1/ needs more work. There is an obvious extension as follows:

Let f 2Mrel
g;�.P1/ be any relative stable morphism with domain C and distinguished

divisor Dd as before. The the vector bundle zV whose fiber over f is the vector space
V .f /, is a vector bundle over Mrel

g;�.P1/. However, there probably are other extensions,
and at the moment we have no reason as to which one is a natural choice of extension.
Note that different extensions may give different numerical answers to the integral. The
choice of the right extension requires a detailed analysis of the obstruction theory of f
near the boundary of Mrel

g;�.Wr /, and we will address this issue in our future research.

4 Relative stable morphisms and localization

In this and the next sections, we will use localization to evaluate the integral (3–10). In
Section 2, we defined an S1 –action on Wr via the rule

.w;u; v/t D .t�1w; tu; v/; t D e2�i� where � 2 R:

This action extends to the total space 1C˚ 1C via the same rule. As we mentioned
before, this action preserves the boundary condition Br �Wr , and thus it is reasonable
to expect that localization using this S1 –action will give us the correct answer.

Let Mrel
g;�.P1/0 be the moduli space of ordinary relative stable morphisms defined

before. The given S1 –action on Wr induces a natural S1 –action on Mrel
g;�.P1/0 . In

this section, we will study the fixed loci of the induced S1 –action on Mrel
g;�.P1/0 and

its related information required in the later computation. Let f 2Mrel
g;�.P1/0 be any
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relative stable map. As before, we denote by .C;Dd/ the pair of the domain of f and
the distinguished divisor of f . Since f 2Mrel

g;�.P1/0 , the codomain of f is P1 and
f �1.q1/DDd . We recall that if we denote by gt the S1 –action then

gt Œw; 1�D Œtw; 1� and gt�.w/D g�
t�1w D t�1w:

If we use zt to denote the weight of the S1 –action, then the function w has weight �zt .
The two fixed points of the S1 –action on P1 are q0 D Œ0; 1�2P1 and q1D Œ1; 0�2P1 .

In the above notation, considering source Riemann surfaces with one hole corresponds
to setting hD 1, and in the remainder of this section that is what we will do. For genus
g D 0, there is only one fixed point in Mrel

g;�.P1/S
1

0
given by the map

f W P1
! P1; f .Œz; 1�/D Œzd ; 1�:

For g > 0, the fixed loci are the image of the embedding

Mg;1 �!Mrel
g;�.P

1/S
1

0

that sends any .C2;p/ 2Mg;1 to the relative stable morphism

f W .C; dx/ �! P1

defined as follows: First, the curve C is the gluing of P1 with C2 along the points
0 2 P1 and p 2 C2 ; the restriction of f to C2 is the constant map sending C2 to q0

and the restriction of f to C1 � P1 is define by Œz; 1� 7! Œzd ; 1�. Since w D zd and
the weight of w is �zt , the weight of the function z is �zt=d . For simplicity, in the
following we will simply denote f jCi

by fi . We will use p to denote the node in C .

If we consider the full moduli space Mrel
g;�.P1/, however, there are other fixed loci

of the S1 –action. As described in the previous section, a relative stable morphism
f 2Mrel

g;�.P1/ is a morphism f W C ! P1Œm�. The S1 –action extends to P1Œm� an
S1 –action on Mrel

g;�.P1/. We will denote the fixed loci of Mrel
g;�.P1/ contained in

Mrel
g;�.P1/0 by ‚I . The rest of the S1 –fixed loci of Mrel

g;�.P1/ will be denoted by
‚II .

Now let N‚I
be the equivariant normal bundle to the fixed loci ‚I . In this part, we

will compute the equivariant Euler class e.N‚I
/ of ‚I . Let .f;C;Dd/ 2‚I be any

point. The tangent space and the obstruction space to deforming f are given by the
extension groups

T � WD Ext�C .Œf
��P1.log q1/!�C .x/�;OC /;
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which fit into the long exact sequence

0�! Ext0C .�C .x/;OC / �! Ext0C .f
��P1.log q1/;OC / �! T 1

�!

�! Ext1C .�C .x/;OC / �! Ext1C .f
��P1.log q1/;OC / �! T 2

�! 0:(4–1)

From this information, we can obtain the equivariant Euler class e.N‚I
/. Following

the notation of Graber and Pandharipande [5], it is given by

(4–2) e.N‚I
/D

e.Bm
II
/e.Bm

IV
/

e.Bm
I
/e.Bm

V
/
;

where Bm
i denotes the moving part of the i th term in the sequence (4–1).

We now consider the case g > 0. In this case C D C1[C2 with the node p . We let
i1W C1! C and i2W C2! C be inclusion maps. Then

�C D i1��C1
˚ i2��C2

˚Cp:

Then

Ext0C .�C .x/;OC /D HomC .i1��C1
.x/;OC /˚HomC .i2��C2

.x/;OC /

˚HomC .Cp;OC /

D HomC1
.�C1

.x/;OC1
.�p//D H0

C1
.TC1

.�p�x//:

It is easy to see that the second arrow in (4–1) is injective. Thus we can take e.Bm
I
/D 1

while keeping track of the term in e.Bm
II
/ to be cancelled.

As to the term e.Bm
II
/, we notice that

Ext0C .f
��P1.log q1/;OC /D H0

C1
.f �1 TP1.�d �x//:

H0
C1
.f �

1
TP1.�dx// has dimension d C 1 and its basis is given by�

@

@w
; z

@

@w
; z2 @

@w
; : : : ; zd�1 @

@w
; zd @

@w

�
with weights �

zt ;
d � 1

d
zt ;

d � 2

d
zt ; : : : ;

1

d
zt ; 0

�
:

Thus, modulo the weight-zero piece which was cancelled by the second arrow in (4–1),
we have

(4–3)
e.Bm

II
/

e.Bm
I
/
D

d�1Y
jD0

d � j

d
zt D

d!

dd
ztd :
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We now look at the term e.Bm
IV
/. We have

Ext1C .�C .x/;OC /D Ext0C .OC ; �C .x/˝!C /
_

D Ext0C2
.OC2

; !˝2
C2
.p//_˚Ext0C .OC ;Cp˝!C /

_

D Ext1C2
.�C2

.p/;OC2
/˚T _C1;p

˝T _C2;p
:

Since f .C2/Dq0 , Ext1C2
.�C2

.p/;OC2
/ lies in the fixed part of Ext1C .�C .x/;OC /

S1

.
On the other hand, T _

C1;p
has weight zt=d while T _

C2;p
has weight 0. Hence

(4–4) e.Bm
IV /D

1

d
zt � D

zt � d � 

d
;

where  D c1.Lp/ and Lp !M g;1 is the cotangent line bundle whose fiber over
.C2;p/ is T _

C2;p
.

Finally, it is direct to compute that

Ext1C .f
��P1.log q1/;OC /D H1

C2
.OC2

/˝Tq0
P1:(4–5)

Note that H1
C2
.OC2

/ gives the dual of the Hodge bundle E on M g;1 . Hence e.Bm
V
/

is the top Chern class of the bundle E_ ˝ Tq0
P1 . Since the representation of the

S1 –action induced on Tq0
P1 has weight zt , we obtain

e.Bm
V /D ctop.E

_
˝Tq0

P1/(4–6)

D

�
ztg
C c1.E

_/ ztg�1
C c2.E

_/ ztg�2
C � � �C cg.E

_/
�
:(4–7)

Hence, we arrive at the following result:

1
e.N‚I

/
D

dd

d!
zt�d

�
d

zt�d � 

�
(4–8) �

ztgC c1.E
_/ ztg�1C c2.E

_/ ztg�2C � � �C cg.E
_/
�
:

In the case g D 0, a similar computation yields

(4–9)
1

e.N‚I
/
D

1

d
�
dd

d!
zt1�d :

5 Localization of the integral

We now evaluate the contribution of the integral

(5–1)
Z
ŒMrel

g;�.P1/�vir
ctop.V /
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at the fixed loci ‚I using the S1 –action given before. Here V is the obstruction vector
bundle defined in Proposition 3.1. Using the localization theorem [5], we have"Z

ŒMrel
g;�.P1/�vir

ctop.V /

#
‚I

D

�
1

jA‚I
j

Z
‚I

��.ctop.V //

e.N‚I
/

�
0

;

where � is the inclusion ‚I !Mrel
g;�.P1/ and A‚I

is a automorphism group defined
as in [5].

We notice that by Riemann–Roch theorem,

dimC Mrel
g;�.P

1/D 2d C .1�g/.dimC P1
� 3/� .deg .d/� `.d//

D 2g� 2C hC d

D dimCH1.C;OC .�Dd/˚OC .�D//:

In this section, we focus on source Riemann surfaces with one hole .hD 1/, in which
case we need to find the equivariant Chern class ctop.V / where V is defined as follows.
Let f 2‚I be a point as before. Then the fiber of V over f is

H 1.OC .�x//˚H 1.OC .�dx//:

For simplicity, we denote by V1 the subbundle of V whose fibers over f are the
vector space H 1.OC .�x//, and by V2 the subbundle of V whose fibers over f are
H 1.OC .�dx//. The line bundle OC in the first cohomology group has weight �zt
while the line bundle OC in the second cohomology group has weight 0. We will
work out the genus-zero and higher genus cases separately.

We first look at the genus g D 0 case. In this case, H1.C;OC .�x//D 0 and hence
V DV2 . To analyze the contribution from H1.C;OC .�dx//, we use the exact sequence

0 �!OC .�dx/ �!OC �!Odx �! 0

and the induced cohomology exact sequence

0 �! H0.OC / �! H0.Odx/ �! H1.OC .�dx// �! 0:

A basis of H0.OC / is just f1g and that of H0.Odx/ is f1; z�1; z�2; : : : ; z�.d�1/g.
Hence a basis of H1.OC .�dx// is�

1

z
;

1

z2
; : : : ;

1

zd�1

�
with weights

(5–2)
�

1

d
zt ;

2

d
zt ; : : : ;

d � 1

d
zt

�
:
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Thus the top Chern class of the obstruction bundle V is

(5–3) ctop.V /D ctop.V2/D

d�1Y
jD1

j

d
zt D

.d � 1/!

dd�1
ztd�1:

In the cases with g > 0, C is a union of the two irreducible components C1 D P1 and
C2 D†g intersecting at the node p . Then there is the normalization exact sequence

(5–4) 0 �!OC .�dx/ �!OC1
.�dx/˚OC2

�!Op �! 0;

which gives the following exact sequence of cohomology:

0 �! H0
C2
.OC2

/
Š
�! H0

C .Op/ �! H1
C .OC .�dx// �!

H1
C1
.OC1

.�dx//˚H1
C2
.OC2

/ �! 0:

So H1.C;OC .�dx// is given by

(5–5) H1.C;OC .�dx//D H1.C1;OC1
.�dx//˚H1.C2;OC2

/:

We have already computed the contribution of H1.C1;OC1
.�dx// to the equivariant

Chern class ctop.V2/. Since OC2
in (5–5) has weight zero and there is no twisting,

the contribution from H1.C2;OC2
/ to ctop.V / is cg.E

_/D .�1/gcg.E/. Hence the
contribution from H1.C;OC .�dx// to the equivariant top Chern class ctop.V2/ is

.�1/g
.d � 1/!

dd�1
cg.E/ zt

d�1:

In a similar spirit, we can use the same line of reasoning to get

(5–6) H1.C;OC .�x//D H1.C1;OC1
.�x//˚H1.C2;OC2

/:

As discussed in the genus-zero case, H1.C1;OC1
.�x// has dimension zero and does

not contribute. To compute the contribution from H1.C2;OC2
/, we recall that, as

mentioned in the beginning of this section, OC2
in the present case has weight �zt .

Hence

ctop.V1/D .�1/g
�
ztg
� c1.E

_/ ztg�1
C c2.E

_/ ztg�2
C � � �C .�1/gcg.E

_/
�

D .�1/g
�
ztg
C c1.E/zt

g�1
C c2.E/zt

g�2
C � � �C cg.E/

�
:(5–7)

In summary, we have
(5–8)

ctop.V /D
.d � 1/!

dd�1
cg.E/

�
ztg
C c1.E/ zt

g�1
C c2.E/ zt

g�2
C � � �C cg.E/

�
ztd�1:
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We are now ready to evaluate the contribution from ‚I to the integral (5–1) in the case
hD 1. We begin with the case g D 0.

After taking into account the automorphism group A‚I
, which has order d , the genus-

zero answer is given by multiplying the expressions in (4–9) and (5–3). This gives the
virtual number in the genus-zero case invariant

(5–9)
1

d
�

1

d

dd

d!
zt1�d

�
.d � 1/!

dd�1
ztd�1

D
1

d2
;

which agrees with (1–3).

We now consider the cases g > 0. We need to use the results in (4–8) and (5–8) to get
the higher genus invariants. It follows from Mumford’s formula

.1C c1.E
_/C c2.E

_/C � � �C cg.E
_// � .1C c1.E/C c2.E/C � � �C cg.E//D 1

that

.ztgC c1.E
_/ ztg�1C c2.E

_/ ztg�2C � � �C cg.E
_// �

.ztgC c1.E/ zt
g�1C c2.E/ zt

g�2C � � �C cg.E//D zt
2g:

Hence we have"Z
ŒMrel

g;�.P1/0�vir
ctop.V /

#
‚I

D

"
1

jA‚I
j

Z
M g;1

d � zt2g�1

zt � d � 
cg.E/

#
0

D d2g�2

Z
M g;1

 2g�2cg.E/;(5–10)

where in the last equality we have used the fact that the moduli space M g;1 of Deligne–
Mumford stable curves has dimension dimC M g;1 D 3g � 2. The Hodge integral
above can be easily evaluated by using Faber and Pandharipande’s generating function
for Hodge integrals over the moduli space M g;1 [2]. Taking the result from [2], we
conclude that

(5–11)

"Z
ŒMrel

g;�.P1/0�vir
ctop.V /

#
‚I

D d 2g�2 22g�1� 1

22g�1

jB2gj

.2g/!
:

As promised, (5–11) is precisely equal to the expected answer (1–3).

Geometry & Topology Monographs, Volume 8 (2006)



Open string instantons and relative stable morphisms 67

6 Invariants for h> 1

As mentioned before, all invariants for h> 1 vanish. The main idea that underlies our
argument is that at least one of the weights of the S1 –action on the obstruction bundle
is zero. We will present our argument for genus-zero and higher genus cases separately.

We will first consider the genus-zero case. Assume that h D 2, in which case � D
.d1; d2/, where d1C d2 D d . In genus-zero C D C1 tp C2 , where C1 and C2 both
are rational curves and p is a node that gets mapped to q0 . For i D 1 or 2, di > 0 is
the degree of the map fi that maps Ci to P1 . If we denote the pre-images of q1 by
x1 2 C1 and x2 2 C2 , then we have the normalization exact sequence

0 �!OC .�d1x1� d2x2/ �!OC1
.�d1x1/˚OC2

.�d2x2/ �!

OC .�d1x1� d2x2/p �! 0;

which gives the long exact sequence of cohomology

0 �! H0.C;OC .�d1x1� d2x2/p/ �! H1.C;OC .�d1x1� d2x2// �!

�! H1.C1;OC1
.�d1x1//˚H1.C2;OC2

.�d2x2// �! 0:

From this we immediately see that one of the S1 –action weights on H1.C;OC .�d1x1�

d2x2// is zero, since the weight on H0.C;OC .�d1x1�d2x2/p/ is zero. This means
that the contribution of H1.C;OC .�d1x1� d2x2// to the equivariant top Chern class
of the obstruction bundle vanishes, thus rendering the invariant to vanish as well.

For h D 3, C contains a contracted genus-zero component zC0 which is connected
to 3 rational curves, say C1;C2;C3 , at 3 nodes, say p1;p2;p3 . Note that since zC0

contains 3 special points, it is stable and can be contracted to q0 . Each Ci maps to P1

with degree di > 0 and contains a special point xi that gets mapped to q1 . As usual
there is the exact normalization sequence

0�!OC .�

3X
i

dixi/�!

3M
iD1

OCi
.�dixi/˚O zC0

�!

3M
iD1

OC .�

3X
i

dixi/pi
�! 0;

and the associated cohomology long exact sequence

0 �! H0. zC0;O zC0
/

 
�!

3M
i

H0.C;OC .�

3X
i

dixi/pi
/ �! H1.C;OC .�

3X
i

dixi/ �!

�!

3M
iD1

H1.Ci ;OCi
.�dixi//˚H1. zC0;O zC0

/ �! 0:
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Here,  is not surjective and it follows that not all of the zero weights on

3M
i

H0.C;OC .�

3X
i

dixi/pi
/

get cancelled in

H1.C;OC .�

3X
i

dixi//D

3M
iD1

H1.Ci ;OCi
.�dixi//˚H1. zC0;O zC0

/�H0. zC0;O zC0
/

C

3M
i

H0.C;OC .�

3X
i

dixi/pi
/:

Therefore, the equivariant top Chern class of the obstruction bundle in the localization
theorem vanishes. We can perform induction on h and conclude that genus-zero
invariants vanish for all h> 1. We will now sketch how that works. For h� n, assume
that the S1 –action on H1.C;OC .�

Ph
i dixi// has at least one zero weight and that

therefore the invariants vanish. At hD nC1, a S1 –fixed stable map can be constructed
from that at hD n by attaching a rational curve CnC1 to the contracted component,
such that deg.f jCnC1

/D dnC1 > 0. CnC1 contains the point xnC1 that gets mapped
to q1 and is joined to the contracted component at a new node. Such an operation
increases the number of nodes by 1, and analyzing the exact normalization sequence
and its associated cohomology long exact sequence shows that the number of zero
weights on H1.C;OC .�

Ph
i dixi// has increased by one. Therefore, the total number

of zero weights on H1.C;OC .�
Ph

i dixi// is again non-zero. This shows that the
equivariant top Chern class of the obstruction bundle vanishes at hD nC 1.

Now assume that g � 1 and hD 2. In addition to the two rational curves C1 and C2 ,
we introduce a stable genus–g curve zCg , which gets contracted to q0 . There are two
nodes p1 and p2 where C1 and C2 , respectively, intersect zCg . In our usual notation,
the normalization exact sequence in the present case is

0 �!OC .�d1x1� d2x2/ �!
L2

iD1OCi
.�dixi/˚O zCg

�!L2
iD1OC .�d1x1� d2x2/pi

�! 0:

This implies the following long exact sequence of cohomology:

0 �! H0. zCg;O zCg
/

'
�! H0.C;OC .�d1x1� d2x2/p1

/˚H0.C;OC .�d2x2� d2x2/p2
/ �!
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H1.C;OC .�d1x1� d2x2// �!

2M
iD1

H1.Ci ;OCi
.�dixi//˚H1. zCg;O zCg

/ �! 0:

Unlike in the hD 1 case, ' is not surjective and we need to compute

H1.C;OC .�d1x1� d2x2//

D
L2

iD1 H1.Ci ;OCi
.�dixi//˚H1. zCg;O zCg

/�H0. zCg;O zCg
/C

C H0.C;OC .�d1x1� d2x2/p1
/˚H0.C;OC .�d2x2� d2x2/p2

/:

The zero weight term from H0. zCg;O zCg
/ will cancel only one of the two zero weight

terms from the second line, leaving a zero weight term in H1.C;OC .�d1x1� d2x2//.
Hence the equivariant top Chern class of the obstruction bundle again vanishes, and so
does the invariant.

The vanishing of the invariants for g � 1 again follows from induction on h. As in
the genus-zero case, a S1 –fixed stable map at hD nC 1 can be constructed from that
at h D n by attaching a non-contracted rational curve, say CnC1 , to the contracted
component zCg at a new node. This addition of a node increases the number of zero
weights of the S1 –action on H1.C;OC .�

Ph
i dixi//, and therefore the equivariant

top Chern class of the obstruction bundle vanishes at hD nC 1 as it does at hD n.
Hence, all higher genus invariants vanish for h> 1.

To recapitulate, we have just established that"Z
ŒMrel

g;�.P1/�vir
ctop.V /

#
‚I

D 0 ; 8g � 0; d � h> 1;

in perfect agreement with what was expected from Section 1.

7 Conclusion

In this paper we have made an explicit connection between topological open string
theory and relative stable morphisms. In the particular example we consider, we have
successfully reproduced open string instanton multiple cover answers as invariants of
relative stable maps. So far several interesting proposals for studying open string in-
stanton effects have been made (Ooguri–Vafa [16], Kachru–Katz–Lawrence–McGreevy
[8] and Aganagic–Vafa [1]), but direct computational methods involving integrals over
moduli spaces of stable morphisms have been hitherto lacking. This is in marked
contrast to the closed string case, where there exist well-developed techniques in the
context of Gromov–Witten theory (Faber, Graber and Pandharipande [5; 2]).
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Open string instantons play an important role in string theory. For example, in the
Strominger–Yau–Zaslow conjecture of mirror symmetry, open string instanton effects
are crucial for modifying the geometry of D–brane moduli space [20]. Also, genus-zero
topological open string amplitudes are important for computing superpotentials in
N D 1 supersymmetric theories in 4–dimension—see [8; 16] and references therein. It
is clear that many illuminating implications can stem from understanding better how one
can directly compute open string instanton amplitudes. We hope we have made it clear
in this paper that relative stable morphisms could be the right framework for studying
open string instantons in general, and that the proposed link between topological open
string theory and relative stable maps well deserve further investigations.

Applying the theory of relative stable morphisms to topological open string theory is in
the incipient stage. In a sense we have studied in this paper what could be considered
the simplest example. As mentioned in Section 1, the quantities we have reproduced
correspond to the invariants of a simple knot in S3 . Labastida, Marino and Vafaof [10]
have extended the results in [16] to more non-trivial knots and links, and have described
how to construct Lagrangian submanifolds, for torus links at least, on the topological
string theory side of the duality. It will be interesting to apply our method to those
cases as well. Also, Aganagic and Vafa have recently announced some interesting
results on counting holomorphic discs in Calabi–Yau 3–folds [1], and we would like to
understand their results by means of relative stable morphisms.
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