Homologically arc-homogeneous ENRs

J L BRYANT

We prove that an arc-homogeneous Euclidean neighborhood retract is a homology manifold.

57P05; 57T05

1 Introduction

The so-called Modified Bing–Borsuk Conjecture, which grew out of a question in [1], asserts that a homogeneous Euclidean neighborhood retract is a homology manifold. At this mini-workshop on exotic homology manifolds, Frank Quinn asked whether a space that satisfies a similar property, which he calls homological arc-homogeneity, is a homology manifold. The purpose of this note is to show that the answer to this question is yes.

2 Statement and proof of the main result

Theorem 2.1 Suppose that X is an n-dimensional homologically arc-homogeneous ENR. Then X is a homology n-manifold.

Definitions A homology n-manifold is a space X having the property that, for each $x \in X$,

$$H_k(X, X - x; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & k = n \\ 0 & k \neq n. \end{cases}$$

A Euclidean neighborhood retract (ENR) is a space homeomorphic to a closed subset of Euclidean space that is a retract of some neighborhood of itself. A space X is homologically arc-homogeneous provided that for every path $\alpha: [0, 1] \to X$, the inclusion induced map

$$H_* (X \times 0, X \times 0 - (\alpha(0), 0)) \to H_* (X \times I, X \times I - \Gamma(\alpha))$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α. The local homology sheaf \mathcal{H}_k in dimension k on a space X is the sheaf with stalks $H_k(X, X - x), x \in X$.

Published: 22 April 2006

DOI: 10.2140/gtm.2006.9.1
By a result of Bredon [2, Theorem 15.2], if an \(n \)-dimensional space \(X \) is cohomologically locally connected (over \(\mathbb{Z} \)), has finitely generated local homology groups \(H_k(X, X - x) \) for each \(k \), and if each \(H_k \) is locally constant, then \(X \) is a homology manifold. We shall show that an \(n \)-dimensional, homologically arc-connected ENR satisfies the hypotheses of Bredon’s theorem.

Assume from now on that \(X \) represents an \(n \)-dimensional, homologically arc-homogeneous ENR. Unless otherwise specified, all homology groups are assumed to have integer coefficients. The following lemma is a straightforward application of the definition and the Mayer–Vietoris theorem.

Lemma 2.2 Given a path \(\alpha \colon [0, 1] \to X \) and \(t \in [0, 1] \), the inclusion induced map

\[
H_\ast(X \times t, X \times t - (\alpha(t), t)) \to H_\ast(X \times I, X \times I - \Gamma(\alpha))
\]

is an isomorphism.

Given points \(x, y \in X \), an arc \(\alpha \colon I \to X \) from \(x \) to \(y \), and an integer \(k \geq 0 \), let \(\alpha_* \colon H_k(X, X - x) \to H_k(X, X - y) \) be defined by the composition

\[
H_k(X, X - x) \xrightarrow{\times 0} H_\ast(X \times I, X \times I - \Gamma(\alpha)) \xrightarrow{\times 1} H_k(X, X - y).
\]

Clearly \((\alpha^{-1})_* = \alpha_*^{-1} \) and \((\alpha \beta)_* = \beta_* \alpha_* \), whenever \(\alpha \beta \) is defined.

Lemma 2.3 Given \(x \in X \) and \(\eta \in H_k(X, X - x) \), there is a neighborhood \(U \) of \(x \) in \(X \) such that if \(\alpha \) and \(\beta \) are paths in \(U \) from \(x \) to \(y \), then \(\alpha_* (\eta) = \beta_* (\eta) \in H_k(X, X - y) \).

Proof We will prove the equivalent statement: for each \(x \in X \) and \(\eta \in H_k(X, X - x) \) there is a neighborhood \(U \) of \(x \) with \(\alpha_* (\eta) = \eta \) for any loop \(\alpha \) in \(U \) based at \(x \).

Suppose \(x \in X \) and \(\eta \in H_k(X, X - x) \). Since \(H_k(X, X - x) \) is the direct limit of the groups \(H_k(X, X - W) \), where \(W \) ranges over the (open) neighborhoods of \(x \) in \(X \), there is a neighborhood \(U \) of \(x \) and an \(\eta_U \in H_k(X, X - U) \) that goes to \(\eta \) under the inclusion \(H_k(X, X - U) \to H_k(X, X - x) \).

Suppose \(\alpha \) is a loop in \(U \) based at \(x \). Let \(\eta_0 \in H_k(X \times I, X \times I - \Gamma(\alpha)) \) correspond to \(\eta \) under the isomorphism \(H_k(X, X - x) \xrightarrow{\times 0} H_k(X \times I, X \times I - \Gamma(\alpha)) \) guaranteed by homological arc-homogeneity.

Let

\[
\eta_{U \times I} = \eta_U \times 0 \in H_k(X \times I, X \times I - U \times I).
\]
Then the image of $\eta_{U \times I}$ in $H_k(X \times I, X \times I - \Gamma(\alpha))$ is η_α, as can be seen by chasing the following diagram around the lower square.

\[
\begin{array}{ccc}
H_k(X, X - U) & \xrightarrow{\times 1} & H_k(X, X - x) \\
\downarrow{\cong} & & \downarrow{\cong} \\
H_k(X \times I, X \times I - U \times I) & \xrightarrow{\times 0} & H_k(X \times I, X \times I - \Gamma(\alpha)) \\
\downarrow{\cong} & & \downarrow{\cong} \\
H_k(X, X - U) & \xrightarrow{\times 0} & H_k(X, X - x)
\end{array}
\]

But from the upper square we see that η_α must also come from η after including into $X \times 1$. That is, $\alpha_*(\eta) = \eta$. \qed

Corollary 2.4 Suppose the neighborhood U above is path connected and F is the cyclic subgroup of $H_k(X, X - U)$ generated by η_U. Then, for every $y \in U$, the inclusion $H_k(X, X - U) \to H_k(X, X - y)$ takes F one-to-one onto the subgroup F_y generated by $\alpha_*(\eta)$, where α is any path in U from x to y.

Lemma 2.5 Suppose $x, y \in X$ and α and β are path-homotopic paths in X from x to y. Then $\alpha_* = \beta_*: H_k(X, X - x) \to H_k(X, X - y)$.

Proof By a standard compactness argument it suffices to show that, for a given path α from x to y and element $\eta \in H_k(X, X - x)$, there is an $\epsilon > 0$ such that $\alpha_*(\eta) = \beta_*(\eta)$ for any path β from x to y ϵ-homotopic (rel $\{x, y\}$) to α.

Given a path α from x to y, $\eta \in H_k(X, X - x)$, and $t \in I$, let U_t be a path-connected neighborhood of $\alpha(t)$ associated with $(\alpha_t)_*(\eta) \in H_k(X, X - \alpha(t))$ given by Lemma 2.3, where α_t is the path $\alpha|[0, t]$. There is a subdivision

$$\{0 = t_0 < t_1 < \cdots < t_m = 1\}$$

of I such that $\alpha([t_{i-1}, t_i]) \subseteq U_t$ for each $i = 1, \ldots, m$, where $U_t = U_t$ for some t. There is an $\epsilon > 0$ so that if $H: I \times I \to X$ is an ϵ-path-homotopy from α to a path β, then $H([t_{i-1}, t_i] \times I) \subseteq U_t$.

For each $i = 1, \ldots, m$, let $\alpha_i = \alpha|[t_{i-1}, t_i]$ and $\beta_i = \beta|[t_{i-1}, t_i]$, and for $i = 0, \ldots, m$, let $\gamma_i = H|t_i \times I$ and $\eta_i = (\alpha_{ti})_*(\eta)$. By Corollary 2.4,

$$(\alpha_i)_*(\eta_{i-1}) = (\gamma_{i-1}\beta_i\gamma_i^{-1})_*(\eta_{i-1}) = \eta_i$$

where $\eta_0 = \eta$. Since γ_0 and γ_n are the constant paths, it follows easily that

$$\alpha_*(\eta) = (\alpha_n)_* \cdots (\alpha_1)_*(\eta) = (\beta_n)_* \cdots (\beta_1)_*(\eta) = \beta_*(\eta).$$

\qed

Geometry & Topology Monographs, Volume 9 (2006)
Proof of Theorem 2.1 As indicated at the beginning of this note, we need only show that the hypotheses of [2, Theorem 15.2] are satisfied.

Since X is an ENR, it is locally contractible, and hence cohomologically locally connected over \mathbb{Z}.

Given $x \in X$, let W be a path-connected neighborhood of x such that W is contractible in X. If α and β are two paths in W from x to a point $y \in W$, then α and β are path-homotopic in X. Hence, by Lemma 2.5, $\alpha_\#: H_k(X, X - x) \to H_k(X, X - y)$ is a well-defined isomorphism that is independent of α for every $k \geq 0$. Hence, $\mathcal{H}_k|W$ is the constant sheaf, and so \mathcal{H}_k is locally constant.

Finally, we need to show that the local homology groups of X are finitely generated. This can be seen by working with a mapping cylinder neighborhood of X. Assume X is nicely embedded in \mathbb{R}^{n+m}, for some $m \geq 3$, so that X has a mapping cylinder neighborhood $N = C_\phi$ of a map $\phi: \partial N \to X$, with mapping cylinder projection $\pi: N \to X$ (see [3]). Given a subset $A \subseteq X$, let $A^* = \pi^{-1}(A)$ and $\hat{A} = \phi^{-1}(A)$.

Lemma 2.6 If A is a closed subset of X, then $H_k(X, X - A) \cong \overline{H}_c^{n+m-k}(A^*, \hat{A})$.

Proof Suppose A is closed in X. Since $\pi: N \to X$ is a proper homotopy equivalence,

$H_k(X, X - A) \cong H_k(N, N - A^*)$.

Since ∂N is collared in N,

$H_k(N, N - A^*) \cong H_k(\text{int } N, \text{int } N - A^*)$,

and by Alexander duality,

$H_k(\text{int } N, \text{int } N - A^*) \cong \overline{H}_c^{n+m-k}(A^* - \hat{A})$

$\cong \overline{H}_c^{n+m-k}(A^*, \hat{A})$

(since \hat{A} is also collared in A^*).

Corollary 2.7 If A is a closed subset of X, then $\overline{H}^q(A^*, \hat{A}) = 0$, if $q < m$ or $q > n + m$.

Thus, the local homology sheaf \mathcal{H}_k of X is isomorphic to the Leray sheaf \mathcal{H}^{n+m-k} of the map $\pi: N \to X$ whose stalks are $\overline{H}_c^{n+m-k}(x^*, \hat{x})$. For each $k \geq 0$, this sheaf is also locally constant, so there is a path-connected neighborhood U of x such that
\(\mathcal{H}^q \big| U \) is constant for all \(q \geq 0 \). Given such a \(U \), there is a path-connected neighborhood \(V \) of \(x \) lying in \(U \) such that the inclusion of \(V \) into \(U \) is null-homotopic. Thus, for any coefficient group \(G \), the inclusion \(H^p(U, G) \to H^p(V, G) \) is zero if \(p \neq 0 \) and is an isomorphism for \(p = 0 \).

The Leray spectral sequences of \(\pi \big| \pi^{-1}(U) \) and \(\pi \big| \pi^{-1}(V) \) have \(E_2 \) terms

\[
E_2^{p,q}(U) \cong H^p(U; \mathcal{H}^q), \quad E_2^{p,q}(V) \cong H^p(V; \mathcal{H}^q)
\]

and converge to

\[
E_\infty^{p,q}(U) \subseteq H^{p+q}(U^*, \bar{U}; \mathbb{Z}), \quad E_\infty^{p,q}(V) \subseteq H^{p+q}(V^*, \bar{V}; \mathbb{Z}),
\]

respectively (see [2, Theorem 6.1]). Since the sheaf \(\mathcal{H}^q \) is constant on \(U \) and \(V \), \(H^p(U; \mathcal{H}^q) \) and \(H^p(V; \mathcal{H}^q) \) represent ordinary cohomology groups with coefficients in \(G_q \cong \check{H}^q(x^*, \check{x}) \).

By naturality, we have the commutative diagram

\[
\begin{array}{ccc}
E_2^{0,q}(U) & \longrightarrow & E_2^{2,q-1}(U) \\
\downarrow & & \downarrow 0 \\
E_2^{0,q}(V) & \longrightarrow & E_2^{2,q-1}(V)
\end{array}
\]

which implies that the differential \(d_2: E_2^{0,q}(V) \to E_2^{2,q-1}(V) \) is the zero map. Hence,

\[
E_3^{0,q}(V) = \ker(E_2^{0,q}(V) \to E_2^{2,q-1}(V)) / \operatorname{im}(E_2^{-2,q+1}(V) \to E_2^{0,q}(V)) = E_2^{0,q}(V),
\]

and, similarly, \(E_3^{0,q}(V) = E_4^{0,q}(V) = \cdots = E_\infty^{0,q}(V) \). Thus,

\[
H^q(V^*, \check{V}; \mathbb{Z}) \supseteq E_\infty^{0,q}(V) \cong E_2^{0,q}(V) \cong H^0(V; \mathcal{H}^q) \cong H^0(V; G_q) \cong G_q.
\]

Applying the same argument to the inclusion \((x^*, \check{x}) \subseteq (V^*, \check{V}) \) yields the commutative diagram

\[
\begin{array}{ccc}
E_2^{0,q}(V) & \longrightarrow & E_2^{2,q-1}(V) \\
\downarrow & & \downarrow 0 \\
E_2^{0,q}(x) & \longrightarrow & E_2^{2,q-1}(x)
\end{array}
\]
which, in turn, gives

\[
\begin{align*}
G_q &\cong H^0(V; G_q) \xrightarrow{\cong} H^q(V^*; \hat{V}; \mathbb{Z}) \\
&\cong H^0(x; G_q) \xrightarrow{\cong} H^q(x^*; \hat{x}; \mathbb{Z}) \cong G_q
\end{align*}
\]

from which it follows that the inclusion \(H^q(V^*; \hat{V}; \mathbb{Z}) \to H^q(x^*; \hat{x}; \mathbb{Z}) \cong G_q \) is an isomorphism of \(G_q \). Since \((x^*, \hat{x})\) is a compact pair in the manifold pair \((V^*, \hat{V})\), it has a compact manifold pair neighborhood \((W, \partial W)\). Since the inclusion \(H^q(V^*, \hat{V}) \to \tilde{H}^q(x^*, \hat{x}) \) factors through \(H^q(W, \partial W) \), its image is finitely generated for each \(q \).

Hence, \(H_k(X, X - x) \cong \tilde{H}^{n+m-k}(x^*, \hat{x}) \) is finitely generated for each \(k \). \(\square \)

The following theorem, which may be of independent interest, emerges from the proof of Theorem 2.1.

Theorem 2.8 Suppose \(X \) is an \(n \)-dimensional ENR whose local homology sheaf \(\mathcal{H}_k \) is locally constant for each \(k \geq 0 \). Then \(X \) is a homology \(n \)-manifold.

References

3005 Brandemere Drive, Tallahassee, Florida 32312, USA
jbrant@math.fsu.edu

Received: 23 March 2004