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Homotopy theoretical considerations of the Bauer–Furuta
stable homotopy Seiberg–Witten invariants

MIKIO FURUTA

YUKIO KAMETANI

HIROFUMI MATSUE

NORIHIKO MINAMI

We show the “non-existence” results are essential for all the previous known applica-
tions of the Bauer–Furuta stable homotopy Seiberg–Witten invariants. As an example,
we present a unified proof of the adjunction inequalities.

We also show that the nilpotency phenomenon explains why the Bauer–Furuta stable
homotopy Seiberg–Witten invariants are not enough to prove 11/8–conjecture.

57R57, 55P91, 55P92; 55P42, 57M50

1 Background

Nowadays, there are many applications of the Bauer–Furuta stable homotopy Seiberg–
Witten invariants (see the work of Bauer and Furuta [1; 2; 5]). Amongst of all, we
single out the following:

(1) 10=8–theorem (see Furuta [6]),

(2) Adjunction inequalities (see the work of Furuta, Kametani, Matsue and Minami
[9; 8; 11]),

(3) Constructions of spin 4–manifolds without Einstein metric and computations of
their Yamabe invariants (see the work of Ishida and LeBrun [12; 13; 15]).

However, there is some ramification amongst the proofs of these results. Actually, (1)
is proven by reducing to “non-existence” results, whereas (2) and (3) are proven by
reducing to “non-triviality” results. Furthermore, the techniques employed to show
these “non-existence” and “non-triviality” results have been different so far, and experts
have regarded them as rather independent results.

In this paper, we unify these two approaches and deliver the following message: To
apply the Bauer–Furuta stable homotopy Seiberg–Witten invariants in the direction of
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(1), (2), and (3), it suffices to prove the “non-existence” results (which is the standard
way to attack 11=8–conjecture ever since Furuta’s celebrated paper [6]).

Now, there are a couple of advantages of our approach. First, we can generalize the
known results for (2) and (3) to slightly wider classes of 4–manifolds. Second, in the
course of our proof, we can conceptually recognize how the “nilpotency phenomenon”
is responsible for the fact why we can never prove the 11=8–conjecture affirmatively
by the Bauer–Furuta stable homotopy Seiberg–Witten invariants.

The basic ingredient of the present paper was originally announced in the JAMI
conference on Geometry and Physics at the Johns Hopkins University in March, 2002.
The authors would like to thank JAMI for its hospitality. The fourth author was partially
supported by Grant-in-Aid for Scientific Research No.13440020, Japan Society for the
Promotion of Science.

2 Level and the 11=8–conjecture

In this section we review the concept of level for free Z=2–spaces, and recall the results
of Stolz [19], Furuta [5], Furuta–Kametani [7] and others in this terminology.

Definition 2.1 (see Dai–Lam [3] and Dai–Lam–Peng [4]) For a free Z=2–space X;

define the level of X; which we denote by level.X /; as follows:

level.X / WD the smallest n such that ŒX;Sn�1�Z=2
¤∅;

where Sn�1 is endowed with the antipodal Z=2–action.

Example 2.2 (i) The classical Borsuk–Ulam theorem states level.Sm/DmC 1.

(ii) (see Stolz [19]) For RP2m�1 D S.Cm/=hi2i with multiplication by i;

level.RP2m�1/D

8̂<̂
:

mC 1 if m� 0; 2 mod 8

mC 2 if m� 1; 3; 4; 5; 7 mod 8

mC 3 if m� 6 mod 8

The concept of level comes into the picture of 4–manifolds because of the following
consequence of the Bauer–Furuta stable homotopy Seiberg–Witten invariants for closed
Spin 4–manifolds (see Furuta [6], Furuta–Kametani [7], and Section 6), via the “G –join
theorem” (see Minami [17] and Schmidt [18]):
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Theorem 2.3 If there is a closed Spin 4–manifold with k D�
sign.X /

16
and l D bC

2
.X /,

then
l � level.CP2k�1/:

Here, via the unit sphere S.Hk/ of the direct sum of the k –copies of the quaternions
H; CP2k�1 D S.Hk/=fcos � C i sin � j 0 � � � 2�g is endowed with Z=2–action
induced by multiplication by j 2 H:

Such a result is interesting because the celebrated Yukio Matsumoto November the 8th
birthday conjecture [16] (commonly called “11=8–conjecture”) predicts:

l � 3k

Thus, the determination of level.CP2k�1/ is clearly important. It is easy to see
level.CP2k�1/� 3k: On the other hand, since RP4k�1 D S.Hk/=f˙1g; there is an
obvious Z=2–map RP4k�1! CP2k�1; and so

3k � level.CP2k�1/� level.RP4k�1/D

8̂̂̂̂
<̂
ˆ̂̂:

2kC 1 if k � 1 mod 4

2kC 2 if k � 2 mod 4

2kC 3 if k � 3 mod 4

2kC 1 if k � 4 mod 4

where we used Stolz’ theorem.

Clearly, the interesting questions are: how large level.CP2k�1/ could be, and whether
level.CP2k�1/ is ever shown to be 3k:

However, John Jones realized level.CP2k�1/¤ 3k via explicit computations for some
small k; and conjectured

level.CP2k�1/D

8̂̂̂̂
<̂
ˆ̂̂:

2kC 2 if k � 1 mod 4; k > 1

2kC 2 if k � 2 mod 4

2kC 3 if k � 3 mod 4

2kC 4 if k � 4 mod 4

Now the current best result in this direction is the following:

Theorem 2.4 (Furuta–Kametani [7])

level.CP2k�1/�

8̂̂̂̂
<̂
ˆ̂̂:

2kC 1 if k � 1 mod 4

2kC 2 if k � 2 mod 4

2kC 3 if k � 3 mod 4

2kC 3 if k � 4 mod 4
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We note that the Bauer–Furuta stable homotopy Seiberg–Witten invariants are defined
“stably,” (see Section 6) and Furuta–Kametani [7] (also the original work of Furuta [6])
actually proved the “stable” version (which is actually equivalent to the above statement
via the G –join theorem).

Whereas Stolz [19] and Furuta–Kametani [7] are “non-existence” results, other kinds
of applications of the Bauer–Furuta stable homotopy Seiberg–Witten invariants (see
Section 1 for more details) require “non-triviality” results.

To unify “non-existence” and “non-triviality” approaches, we generalize the concept of
level in the next section.

3 Level, colevel, and their stable analogues

In this section, we present some very general definitions.

Definition 3.1 Fix a topological group G and a non-empty G–space A; and let X

and Y be arbitrary G –spaces.

(i) Denote the iterated join �kA inductively so that �0ADA; �kADA� .�k�1A/:

We also understand .��1A/ � Y D Y: Then, set linkA.X;Y /; link of X to Y with
respect to A; by

linkA.X;Y / WD

(
Minfn 2 Z�0 j ŒX; .�

n�1A/�Y �G ¤∅g if ŒX;Y �G ¤∅I
�Maxfn 2 N j Œ.�n�1A/�X;Y �G ¤∅g if ŒX;Y �G D∅;

where we set8̂̂̂̂
<̂
ˆ̂̂:

Minfn 2 Z�0 j ŒX; .�
n�1A/�Y �G ¤∅g D C1

if fn 2 Z�0 j ŒX; .�
n�1A/�Y �G ¤∅g D∅

�Maxfn 2 N j Œ.�n�1A/�X;Y �G ¤∅g D �1
if Œ.�n�1A/�X;Y �G ¤∅ for any n 2 N:

(ii) Furthermore, set slinkA.X;Y /; stable link of X to Y with respect to A; by

slinkA.X;Y / WD lim
q!1

link
��
�

q�1 A
�
�X;

�
�

q�1 A
�
�Y

�
:

(iii) For extreme cases, set the level, stable level, colevel, and stable colevel with
respect to A by:

levelA.X / WD linkA.X;A/C 1 slevelA.X / WD slinkA.X;A/C 1

colevelA.Y / WD �linkA.A;Y /C 1 scolevelA.Y / WD �slinkA.A;Y /C 1
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Remark 3.2 (i) Clearly, slinkA.X;Y /� linkA.X;Y /: Consequently, slevelA.X /�
levelA.X / and scolevelA.X /� colevelA.X /:

(ii) When G D Z=2 and A D Z=2 with the free Z=2–action, then levelZ=2 and
colevelZ=2 are respectively the classical level and the colevel in the sense of Dai and
Lam [3] (and Section 2). This is because

�
n�1Z=2D �n�1S.R/D S.Rn/D Sn�1;

where R with the sign representation, Sn�1 with the antipodal action.

(iii) Suppose X is a free Z=2–space such that

dim X � 2 � slevelZ=2.X /� 1;

then slevelZ=2.X /D levelZ=2.X /D level.X /:

Actually, this is a direct consequence of the G–join theorem (see Schmidt [18] and
Minami [17], and examples satisfying this condition include Sm;RP2m�1;CP2k�1

(cf Stolz [19] and Furuta [6]).

4 Level and “non-triviality”

We begin with the fundamental question which relates “non-triviality” problem to the
concept of level.

Question 4.1 When n WD levelG=H .X /; does the restriction ŒX;�n�1G=H �G !

ŒX;�n�1G=H �H ever hit a constant map?

Remark 4.2 (i) When G D Z=2; H D feg and n > levelG=H .X /; the non-empty
image of the composite

ŒX;�n�2G=H �G! ŒX;�n�1G=H �G! ŒX;�n�1G=H �H

consists of the constant maps. In fact, this follows immediately from the triviality of
the bottom arrow in the following commutative diagram:

ŒX;�n�2G=H �G ����! ŒX;�n�1G=H �G??y ??y
ŒX;�n�2G=H �H ����! ŒX;�n�1G=H �H 

ŒX;Sn�2� ����! ŒX;Sn�1�
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(ii) When G D Z=2; H D feg and X D Sn�1 with the antipodal Z=2–action, as was
remarked in Example 2.2 (ii), the classical Borsuk–Ulam theorem states levelG=H .X /D

n: In this case, the other version of the classical Borsuk–Ulam theorem states that

ŒX;�n�1G=H �G ����! ŒX;�n�1G=H �H 
ŒSn�1;Sn�1�Z=2 ����! ŒSn�1;Sn�1�

never hits a constant map.

(iii) Suppose the restriction

ŒX;�n�1G=H �G! ŒX;�n�1G=H �H

never hit the constant map for G D Z=2; H D feg and X D CP2k�1 with the Z=2–
action as in Theorem 2.3. Then the Bauer–Furuta stable homotopy Seiberg–Witten
invariant (see Section 6), applied to closed Spin 4–manifolds M 4 with

b1.M
4/D 0; k D�

sign.M 4/

16
; bC

2
.M 4/D level.CP2k�1/;

imply the following geometric consequences for M 4 :

(1) (adjunction inequality, see the work of Furuta, Kametani, Matsue and Minami
[14; 11; 9]) For any embedded oriented closed surface †�M 4;

j2g.†/� 2j � Œ†� � Œ†�:

(2) (Ishida–LeBrun [15; 13; 12]) Non-existence of Einstein metrics and computa-
tions of the Yamabe invariants under some circumstances.

In this way, the concept of level, which arises naturally in “non-existence” problems,
also show up “non-triviality” problems.

5 Main Theorem

We now state our main theorem, which partially answers Question 4.1.

Theorem 5.1 (i) When n WD slinkG=H .X;Y /;

lim
q!1

ŒX �
�
�

q�1 G=H
�
;Y �

�
�

nCq�1 G=H
�
�G

�! lim
q!1

ŒX �
�
�

q�1 G=H
�
;Y �

�
�

nCq�1 G=H
�
�H
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never hits a constant map.

(ii) When n WD linkG=H .X;Y /� 0;

ŒX �
�
�
�n�1 G=H

�
;Y �G! ŒX �

�
�
�n�1 G=H

�
;Y �H

never hits a constant map.

Corollary 5.2 (i) When l WD slevelG=H .X /;

lim
q!1

ŒX �
�
�

q�1G=H
�
;
�
�

lCq�1G=H
�
�G! lim

q!1
ŒX �

�
�

q�1G=H
�
;
�
�

lCq�1G=H
�
�H

never hits a constant map.

(ii) When c WD colevelG=H .Y /;

Œ
�
�

c�1 G=H
�
;Y �G! Œ

�
�

c�1 G=H
�
;Y �H

never hits a constant map.

Proof of Theorem 5.1 For both (i) and (ii), it suffices to show ŒX 0�.G=H /;Y 0�G¤∅
if the restriction map

ŒX 0;Y 0�G! ŒX 0;Y 0�H Š ŒX 0 �G=H;Y 0�G

hits a constant map. But, this follows easily from the following observations:

(1) The restriction ŒX 0;Y 0�G ! ŒX 0;Y 0�H Š ŒX 0 �G=H;Y 0�G is induced by the
first projection X 0 �G=H !X 0:

(2) Any constant map in ŒX 0;Y 0�H corresponds to a map factorizing the second
projection X 0 �G=H !G=H in ŒX 0 �G=H;Y 0�G :

(3) There is a homotopy push-out diagram

X 0 �G=H ����! G=H??y ??y
X 0

i
����! X 0 � .G=H /:

From Theorem 5.1 and the G –join theorem [17; 18] (see Remark 3.2 (ii)), we obtain
the following important consequence.

Theorem 5.3 G D Z=2; H D feg; X W a free Z=2–space such that

dim X � 2n� 1;
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where nD slevelZ=2.X /: Then

ŒX;Sn�1�Z=2
! ŒX;Sn�1�

never hit a constant map.

Theorem 5.3 has the following applications:

(1) It recovers the classical Borsuk–Ulam theorem (which was quoted as “the other
version” in the sense of Remark 4.2 (ii)).

(2) It yields non-trivial family of elements of ��.RP2m�1/ together with Stolz’
result.

(3) It offers some applications to 4–manifolds via the Bauer–Furuta Seiberg–Witten
invariants, along the line of Remark 4.2 (iii).

To give some flavor, we single out a statement about adjunction inequalities, by applying
Theorems 5.3 and 2.4:

Theorem 5.4 Let M 4 be a closed Spin 4–manifolds M 4 with b1.M
4/D 0 such that

bC
2
.M 4/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
�

sign.M 4/
8
C 1 if � sign.M 4/

16
� 1 mod 4

�
sign.M 4/

8
C 2 if � sign.M 4/

16
� 2 mod 4

�
sign.M 4/

8
C 3 if � sign.M 4/

16
� 3 mod 4

�
sign.M 4/

8
C 3 if � sign.M 4/

16
� 4 mod 4

Then, for any embedded oriented closed surface †�M 4;

j2g.†/� 2j � Œ†� � Œ†�:

We remark the case � sign.M 4/
16

D 1; 2; 3 were already treated in more direct “non-
triviality” approach (cf Kronheimer–Mrowka [14], and Furuta, Kametani, Matsue and
Minami [11; 9]). On the other hand, we have shown it by reducing to a “non-existence”
result: Theorem 2.4.

6 Nilpotency rules!

In this section, we explains the conceptual reason why we can never prove the 11=8–
conjecture affirmatively by use of the Bauer–Furuta stable homotopy Seiberg–Witten
invariants.
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For this purpose, we briefly recall the Furuta–Bauer stable homotopy Seiberg–Witten
invariant [5; 2]. We begin with notations:

Let M 4 be an oriented closed 4–manifold with b1.M
4/D 0; c a Spinc –structure of

M 4; and [oM 4 ] an orientation of HC.M 4/; the maximal positive definite subspace
of H 2.M 4;R/: Set

m WD
c1.c/

2� sign.M 4/

8
; n WD bC

2
.M 4/

and assume m� 0; by changing the orientation of M 4 if necessary.

Then the Furuta–Bauer stable homotopy Seiberg–Witten invariant SW .M 4; c; oM 4/

for the data .M 4; c; oM 4/ is defined so that

SW .M 4; c; oM 4/2fS.Cm/;S.Rn/gU.1/
WD lim

p;q!1
ŒS.CpCm

˚Rq/;S.Cp
˚RqCn/�U.1/

Suppose the Spinc –structure c comes from a Spin–structure s; and set:

k WD �
sign.M 4/

16
; l WD bC;

where we assume k � 0; by changing the orientation of M 4; if necessary. We also
prepare the following representation theoretic notations:

Pin2 The closed subgroup of the quaternions H; generated by j and
U.1/D fcos � C i sin � j 0� � < 2�g.

H The quaternions H; regarded as a right Pin2–module by the right
Pin2.� H/ multiplication.

zR R regarded as a right Pin2–module via the sign representation
of f˙1g Š Pin2 =U.1/.

Then the Furuta–Bauer stable homotopy Seiberg–Witten invariant SW .M 4; s; oM 4/

for the data .M 4; s; oM 4/ is defined so that

SW .M 4; s; oM 4/2fS.Hk/;S.zRl/gPin2 WD lim
p;q!1

ŒS.HpCk
˚zRq/;S.Hp

˚zRqCl/�Pin2

Furthermore, if we regard a Spin–structure s as as Spinc –structure c; then the forgetful
map via U.1/� Pin2 induces the natural correspondence:

fS.Hk/;S.zRl/gPin2 ! fS.C2k/;S.Rl/gU.1/

SW .M 4; s; oM 4/ 7! SW .M 4; c; oM 4/
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Now the key to relate the Bauer–Furuta stable homotopy Seiberg–Witten invariants to
our discussions in the previous sections is the following observation, which follows
from Furuta’s original work [6] (which showed l � 2kC 1) and the G –join theorem
[17; 18]: If fS.Hk/;S.zRl/gPin2 ¤∅; then

(6–1)

fS.Hk/;S.zRl/gPin2 ����! fS.C2k/;S.Rl/gU.1/ 
ŒX;S l�1�Z=2 ����! ŒX;S l�1�;

where X D CP2k�1 with the Z=2–action as in Theorem 2.3.

Now we are ready to offer a conceptual explanation why we can never prove the 11=8–
conjecture by use of the Bauer–Furuta stable homotopy Seiberg–Witten invariants.

We first note we should show

(6–2) l < 3k H) fS.Hk/;S.zRl/gPin2 D∅:

to prove the 11=8–conjecture via the Bauer–Furuta stable homotopy Seiberg–Witten
invariants. Then consider the following key commutative diagram, whose horizontal
arrows are induced by the .N � 1/–fold iterated join map:

fS.Hk/;S.zRl/gPin2
�N �1

����! fS.HN k/;S.zRN l/gPin2??y ??y
fS.C2k/;S.Rl/gU.1/ �N �1

����! fS.C2N k/;S.RN l/gU.1/

Now, because of the Bauer–Furuta Seiberg–Witten invariants of a K3–surface with
Spin–structure, we see

fS.H1/;S.zR3/gPin2 ¤∅

Thus we apply the above key commutative diagram with k D 1; l D 3;N � 0: Then,
because of the Nilpotency Theorem [10], the bottom horizontal arrow is the trivial map
for sufficiently large N (actually, straight-forward computations show this is trivial for
N � 5). Therefore, the right vertical map hits the constant map.

Now (6–1) allows us to apply Theorem 5.3, which implies

fS.HN /;S.zR3N�1/gPin2 ¤∅:

Of course, in view of (6–2), this means a failure of proving the 11=8–conjecture via
the Bauer–Furuta stable homotopy Seiberg–Witten invariants.
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