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On the Rothenberg–Steenrod spectral sequence
for the mod 3 cohomology

of the classifying space of the exceptional Lie group E8

MASAKI KAMEKO

MAMORU MIMURA

We show that the Rothenberg–Steenrod spectral sequence converging to the mod
3 cohomology of the classifying space of the exceptional Lie group E8 does not
collapse at the E2 –level.

55R40; 55T99

1 Introduction

One of the most powerful tools in the study of the mod p cohomology of classifying
spaces of connected compact Lie groups is the Rothenberg–Steenrod spectral sequence.
For a connected compact Lie group G , there is a strongly convergent first quadrant
spectral sequence of graded Fp –algebras

fEp;q
r ; dr W E

p;q
r !EpCr;q�rC1

r g

such that E
p;q
2
DCotor p;q

H �G
.Fp; Fp/ and E1D gr H�BG . The Rothenberg–Steenrod

spectral sequence, sometimes mentioned as the Eilenberg–Moore spectral sequence,
has been successful in computing the mod p cohomology of classifying spaces of
connected compact Lie groups. In all known cases, for an odd prime p , the Rothenberg–
Steenrod spectral sequence converging to the mod p cohomology of the classifying
space of a connected compact Lie group collapses at the E2 –level. So, one might
expect that this collapse should always occur. In this paper, however, we show that this
is not the case for the mod 3 cohomology of the classifying space of the exceptional
Lie group E8 .

Theorem 1.1 The Rothenberg–Steenrod spectral sequence converging to the mod 3

cohomology of the classifying space of the exceptional Lie group E8 does not collapse
at the E2 –level.
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We prove Theorem 1.1 by computing the ring of invariants of the mod 3 cohomology
of a nontoral elementary abelian 3–subgroup of E8 . According to Andersen, Grodal,
Møller and Viruel [1], up to conjugates, there are exactly two maximal nontoral
elementary abelian 3–subgroups, which they call E5a

E8
and E5b

E8
. They described the

action of Weyl groups on these nontoral elementary abelian 3–subgroups explicitly.
In this paper, we compute the ring of invariants of the polynomial part of the mod 3

cohomology of BE5a
E8

. By comparing degrees of algebra generators of the above ring of
invariants with those of algebra generators of the cotorsion product CotorH �E8

.F3; F3/

computed by Mimura and Sambe [2], we prove Theorem 1.1.

In Section 2, we set up a tool, Theorem 2.5, for the computation of certain rings of
invariants. In Section 3, we recall some facts on maximal nontoral elementary abelian
p–subgroups of simply connected compact simple Lie groups and their Weyl groups.
Then using Theorem 2.5, we compute some of rings of invariants of the above Weyl
groups. In Section 4, we complete the proof of Theorem 1.1.

The first named author was partially supported by the Japan Society for the Promotion
of Science, Grant-in-Aid for Scientific Research (C) 13640090.

2 Invariant theory

In this section, we consider the invariant theory over the finite field Fq of q elements
where q D pk with k � 1 and p is a prime number. For a finite set fv1; : : : ; vng,
we denote by Fqfv1; : : : ; vng the n–dimensional vector space over Fq spanned by
fv1; : : : ; vng.

Let us write GLn.Fq/ for the set of invertible n� n matrices whose entries are in Fq .
We also write Mm;n.Fq/ for the set of m� n matrices whose entries are in Fq . Let
G be a subgroup of GLn.Fq/. The group G acts on the n–dimensional vector space
V D Fqfv1; : : : ; vng as follows: for g in G ,

gvi D

nX
jD1

aj ;i.g/vj ;

where ai;j .g/ is the .i; j /–entry of the matrix g . We denote by fx1; : : : ;xng the dual
basis of fv1; : : : ; vng and write V � for the dual of V , that is,

V � D HomFq
.V; Fq/D Fqfx1; : : : ;xng:

We denote by Fq ŒV �D Fq Œx1; : : : ;xn�
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The Rothenberg–Steenrod spectral sequence 215

the polynomial algebra over Fq in n variables x1 , . . . , xn . Then the group G acts on
both V � and Fq ŒV � as follows: for g in G ,

.gx/.v/D x.g�1v/ for x in V �; v in V I

g.y � z/D .gy/ � .gz/ for y; z in Fq ŒV �:

Using entries of a matrix g 2G , we may describe the action of g as follows:

Proposition 2.1

gxi D

nX
jD1

ai;j .g
�1/xj :

Proof

.gxi/.vj /D xi.g
�1vj /D xi

� nX
kD1

ak;j .g
�1/vk

�
D ai;j .g

�1/:

In order to prove Theorem 2.5 below, we recall a strategy of Wilkerson [4, Section 3].
It can be stated in the following form.

Theorem 2.2 Let G be a subgroup of GLn.Fq/ acting on V as above. Let f1; : : : ; fn

be homogeneous polynomials in Fq ŒV �. We have

Fq ŒV �
G
D Fq Œf1; : : : ; fn�

if and only if the following three conditions hold:
(1) f1; : : : ; fn are G –invariant;

(2) Fq ŒV � is integral over the subalgebra R generated by f1; : : : ; fn ;

(3) degf1 � � � degfn D jGj.

In the statement of Theorem 2.2, degf is the homogeneous degree of f , that is, we
define the degree deg xi of indeterminate xi to be 1. For the proof of this theorem,
we refer the reader to Corollaries 2.3.2 and 5.5.4 and Proposition 5.5.5 in Smith’s book
[3] and Wilkerson’s paper [4, Section 3].

To state Theorem 2.5, we need to set up the notation. Let G1 � GLm.Fq/ and
G2 � GLn�m.Fq/. Let V1 D Fqfv1; : : : ; vmg and V2 D FqfvmC1; : : : ; vng. Let G1

and G2 act on V1 and V2 by

g1vi D

mX
kD1

ak;i.g1/vk and g2vj D

n�mX
kD1

ak;j�m.g2/vmCk ;

respectively, where i D 1; : : : ;m and j DmC 1; : : : ; n. The following proposition is
immediate from the definition and Proposition 2.1.
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Proposition 2.3 The following hold:

(1) If f .x1; : : : ;xm/ 2 Fq ŒV1� is G1 –invariant, then for all g1 2G1 , we have

f
� mX

kD1

a1;k.g
�1
1 /xk ; : : : ;

mX
kD1

am;k.g
�1
1 /xk

�
D f .x1; : : : ;xm/I

(2) If f .xmC1; : : : ;xn/ 2 Fq ŒV2� is G2 –invariant, then for all g2 2G2 , we have

f
� n�mX

kD1

a1;k.g
�1
2 /xmCk ; : : : ;

n�mX
kD1

an�m;k.g
�1
2 /xmCk

�
D f .xmC1; : : : ;xn/:

Suppose that G consists of the matrices of the form0@ g1 m0

0 g2

1A ;
where g1 2 G1 � GLm.Fq/, g2 2 G2 � GLn�m.Fq/ and m0 2Mm;n�m.Fq/. We
denote respectively by xG0 , xG1 , xG2 the subgroups of G consisting of matrices of the
form 0@ 1m m0

0 1n�m

1A ;
0@ g1 0

0 1n�m

1A ;
0@ 1m 0

0 g2

1A ;
where g12G1 , g22G2 , m02Mm;n�m.Fq/ and 1k is the identity matrix in Mk;k.Fq/.
We denote by xg1 , xg2 the elements in xG1 , xG2 corresponding to g1 , g2 , respectively.

Considering V �
2

as a subspace of V � , let us define OX in Fq ŒV �ŒX � by

OX D
Y

x2V �
2

.X Cx/:

The following proposition is well-known (see Wilkerson [4, Section 1]).

Proposition 2.4 There are cn�m;k 2 Fq ŒV2� such that

OX D

n�mX
kD0

.�1/n�m�kcn�m;kX qk

;

where cn�m;n�m D 1.

Now, we state our main theorem of this section.
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The Rothenberg–Steenrod spectral sequence 217

Theorem 2.5 With the above assumption on G , suppose that rings of invariants
Fq ŒV1�

G1 and Fq ŒV2�
G2 are polynomial algebras

Fq Œf1; : : : ; fm� and Fq ŒfmC1; : : : ; fn�;

respectively, where f1; : : : ;fm are homogeneous polynomials in m variables x1; : : : ;xm

and fmC1; : : : ; fn are homogeneous polynomials in .n�m/ variables xmC1; : : : ;xn .
Then the ring of invariants Fq ŒV �

G is also a polynomial algebra

Fq Œ xf1; : : : ; xfm; fmC1; : : : ; fn�;

where for i D 1, . . . , m,
xfi D fi.Ox1; : : : ;Oxm/:

To prove Theorem 2.5, we verify that the conditions (1), (2) and (3) in Theorem 2.2
hold for the polynomials xf1; : : : ; xfm , fmC1; : : : ; fn in Theorem 2.5.

Step 1 To prove that xf1; : : : ; xfm; fmC1; : : : ; fn are G –invariant, it suffices to prove
the following propositions.

Proposition 2.6 Suppose f .x1; : : : ;xm/ 2 Fq ŒV1�
G1 . Then f .Ox1; : : : ;Oxm/ is

G –invariant in Fq ŒV �.

Proposition 2.7 Suppose f .xmC1; : : : ;xn/ 2 Fq ŒV2�
G2 . Then f .xmC1; : : : ;xn/ is

G –invariant in Fq ŒV �.

To simplify the argument, we use the following.

Lemma 2.8 f 2 Fq ŒV � is G–invariant if f is xG0 –invariant, xG1 –invariant and xG2 –
invariant.

Proof We may express each g in G as a product of elements xg0 , xg1 , xg2 in xG0 , xG1 ,
xG2 respectively, say g D xg0xg1xg2 as follows:0@ g1 m0

0 g2

1AD
0@ 1m m0g�1

2

0 1n�m

1A0@ g1 0

0 1n�m

1A0@ 1m 0

0 g2

1A :
Firstly, we prove Proposition 2.6.

Lemma 2.9 O is an Fq –linear homomorphism from V � to Fq ŒV �.
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Proof For ˛ , ˇ 2 Fq and for x , y 2 V � , we have .˛xCˇy/q
k

D ˛xqk

Cˇyqk

. By
Proposition 2.4, we have

O.˛xCˇy/D

n�mX
kD0

.�1/n�m�kcn�m;k.˛xCˇy/q
k

D

n�mX
kD0

.�1/n�m�kcn�m;k.˛xqk

Cˇyqk

/

D ˛OxCˇOy:

Lemma 2.10 The following hold for k D 1; : : : ;m:

(1) xg0Oxk DOxk ;

(2) xg1Oxk D

mX
`D1

ak;`.g
�1
1 /Ox` ;

(3) xg2Oxk DOxk .

Proof (1) We have xg0xk D xk Cy for some y in V �
2

, and xg0x D x for any x in
V �

2
. Then yCx ranges over V �

2
as x ranges over V �

2
. Hence, we have

xg0Oxk D

Y
x2V �

2

.xk CyCx/DOxk :

(2) We have xg1xk D
Pm

`D1 ak;`.g
�1
1
/x` , and xg1x D x for any x in V �

2
. Hence, by

Lemma 2.9, we have

xg1Oxk D

Y
x2V �

2

� mX
`D1

ak;`.g
�1
1 /x`Cx

�
D O

� mX
`D1

ak;`.g
�1
1 /x`

�
D

mX
`D1

ak;`.g
�1
1 /Ox`:

(3) We have xg2xk D xk . Then xg2x ranges over V �
2

as x ranges over V �
2

. Hence,

xg2Oxk D

Y
x2V �

2

.xk C xg2x/DOxk :
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The Rothenberg–Steenrod spectral sequence 219

Proof of Proposition 2.6 By Lemma 2.8, it suffices to show that

f .Ox1; : : : ;Oxm/

is xGi –invariant for i D 0, 1, 2. By Lemma 2.10 (1) and (3), it is clear that the above
element is invariant with respect to the action of xGi for i D 0, 2. By Lemma 2.10 (2)
and by Proposition 2.3 (1), we have

xg1f .Ox1; : : : ;Oxm/ D f
� mX

kD1

a1;k.g
�1
1 /Oxk ; : : : ;

mX
kD1

am;k.g
�1
1 /Oxk

�
D f .Ox1; : : : ;Oxm/:

Secondly, we prove Proposition 2.7.

Lemma 2.11 The following hold for k DmC 1; : : : ; n:
(1) xg0xk D xk ;

(2) xg1xk D xk ;

(3) xg2xk D

n�mX
`D1

ak�m;`.g
�1
2 /xmC` .

Proof (1) and (2) are immediate from the definitions of xg0 and xg1 . (3) follows
immediately from the fact that

ak;`.xg
�1
2 /D ak�m;`�m.g

�1
2 /

for `�mC 1 and that ak;`.xg
�1
2
/D 0 for `�m.

Proof of Proposition 2.7 As in the proof of Proposition 2.6, it suffices to show that

f .xmC1; : : : ;xn/

is xGi –invariant for i D 0, 1, 2. It is clear from Lemma 2.11 (1)–(2) that the above
element is xGi –invariant for i D 0, 1. By Lemma 2.11 (3) and by Proposition 2.3 (2),

xg2f .xmC1; : : : ;xn/ D f
� n�mX

kD1

a1;k.g
�1
2 /xmCk ; : : : ;

n�mX
kD1

an�m;k.g
�1
2 /xmCk

�
D f .xmC1; : : : ;xn/:

Step 2 We prove that the inclusion R! Fq ŒV � is an integral extension, for R the sub-
algebra of Fq ŒV � generated by xf1; : : : ; xfm , fmC1; : : : ; fn . Let S be the subalgebra of
Fq ŒV � generated by xf1; : : : ; xfm , cn�m;0; : : : ; cn�m;n�m�1 . Since G2 �GLn�m.Fq/,
we see that cn�m;k 2R. So, S is a subalgebra of R. Therefore, it suffices to prove
the following proposition.
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Proposition 2.12 For k D 1; : : : ; n, the element xk is integral over S .

Proof Firstly, we prove that xk is integral over S for kD 1; : : : ;m. By Theorem 2.2,
xk is integral over Fq ŒV1�

G1 . Hence, there exists a monic polynomial F.X / and
polynomials 'j ’s over Fq in m variables for j D 0; : : : ; r � 1 such that

F.X /DX r
C

r�1X
jD0

'j .f1.x1; : : : ;xm/; : : : ; fm.x1; : : : ;xm//X
j

and that F.xk/D 0 in Fq Œx1; : : : ;xm�.

Replacing xi in the equality F.xk/D 0 above by Oxi for i D 1; : : : ;m, we have the
following equality in Fq ŒV �:

.Oxk/
r
C

r�1X
jD0

'j .f1.Ox1; : : : ;Oxm/; : : : ; fm.Ox1; : : : ;Oxm//.Oxk/
j
D 0:

F 0.X /D .OX /r C

r�1X
jD0

'j . xf1; : : : ; xfm/.OX /j :Let

By Proposition 2.4, F 0.X / is a monic polynomial in S ŒX �. Since, by definition,
xfi D fi.Ox1; : : : ;Oxm/, it is clear that F 0.xk/D 0 in Fq ŒV �. Hence xk is integral

over S .

Secondly, we verify that xk is integral over S for k DmC 1; : : : ; n. By Proposition
2.4, OX is a monic polynomial in S ŒX �. It is immediate from the definition that
Ox D 0 for x 2 V �

2
. Therefore, xk is integral over S .

Step 3 Finally, we compute the product of degrees of xf1; : : : ; xfm , fmC1; : : : ; fn .
Since degOx is of degree qn�m for x 2 V � , we have

deg xfi D degfi � q
n�m:

By Theorem 2.2, we have

degf1 � � � degfm D jG1j

degfmC1 � � � degfn DjG2j:and

deg xf1 � � � deg xfm � degfmC1 � � � degfn D degf1 � � � degfn � q
m.n�m/Therefore

D jG1j � jG2j � q
m.n�m/

D jGj:

This completes the proof of Theorem 2.5.
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3 Rings of invariants of Weyl groups

Let p be an odd prime. Let G be a compact Lie group. We write H�BG and H�BG

for the mod p homology and cohomology of the classifying space BG of G . We
write A for an elementary abelian p–subgroup of the compact Lie group G . Let

�H�BG DH�BG=
p

0;

where
p

0 is the ideal of nilpotent elements in H�BG . It is clear that �H�BA is a
polynomial algebra

�H�BAD Fp Œt1; : : : ; tn�;

where the cohomological degree of each ti is 2 and n is the rank of A. We called it
the polynomial part of H�BA in Section 1.

Choosing a basis for A, we may consider the action of GLn.Fp/ on A. We recall the
relation between the action of GLn.Fp/ on A and the one on �H�BA. For the sake
of notational simplicity, let V DH1BA. On the one hand, V is identified with A as a
GLn.Fp/–module, where g2GLn.Fp/ acts on V as the induced homomorphism Bg� .
As an Fp –algebra, �H�BA is isomorphic to Fp ŒV �. As in the previous section, we may
consider the GLn.Fp/–module structure on Fp ŒV �. On the other hand, GLn.Fp/ acts
on H�BA by gx D B.g�1/�x , where x 2H�BA and g 2 GLn.Fp/. The relation
between these actions is given by the following proposition.

Proposition 3.1 As a GLn.Fp/–module, �H�BAD Fp ŒV �.

Proof The Bockstein homomorphism induces an isomorphism of GLn.Fp/–modules

ˇW H 1BA! �H 2BA:

Since, for x 2 V � DH 1BA, v 2 V DH1BA, we have

.gx/.v/D .x/.g�1v/D .x/.B.g�1/�v/D .B.g
�1/
�
x/.v/;

we see that �H 2BADH 1BAD V � as GLn.Fp/–modules. Hence, we may conclude
that �H�BAD Fp ŒV � as GLn.Fp/–modules.

The Weyl group W .A/DNG.A/=CG.A/ acts on A as inner automorphisms. So, we
have the action of W .A/ on �H�BA. Choosing a basis for A, we consider the Weyl
group W .A/ as a subgroup of GLn.Fp/.

In this section, we compute rings of invariants of Weyl groups of the polynomial part
of the mod p cohomology of the classifying spaces of maximal nontoral elementary
abelian p–subgroups of simply connected compact simple Lie groups.
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It is well-known that for an odd prime p , a simply connected compact simple Lie group
G does not have nontoral elementary abelian p–subgroups except for the cases pD 5,
G D E8 , and p D 3, G D F4 , E6 , E7 , E8 . Andersen, Grodal, Møller and Viruel
[1] described Weyl groups of maximal nontoral elementary abelian p–subgroups and
their action on the underlying elementary abelian p–subgroup explicitly for p D 3,
G D E6 , E7 , E8 . Up to conjugate, there are only 6 maximal nontoral elementary
abelian p–subgroups of simply connected compact simple Lie groups. For p D 5,
G DE8 and for p D 3, G D F4 , E6 , E7 , there is one maximal nontoral elementary
abelian p–subgroup for each G . We call them E3

E8
, E3

F4
, E4

3E6
, E4

2E7
, following

the notation in [1]. For p D 3, G DE8 , there are two maximal nontoral elementary
abelian p–subgroups, say E5a

E8
and E5b

E8
, where the superscript indicates the rank of

elementary abelian p–subgroup. For a detailed account on nontoral elementary abelian
p–subgroups, we refer the reader to [1, Section 8] and its references.

In this section, we compute
.�H�BA/W .A/

for ADE4
3E6

, E4
2E7

, E5a
E8

using Theorem 2.5.

Proposition 3.2 We have the following isomorphisms of graded Fp –algebras:

(1) For p D 5, G DE8 , ADE3
E8

, .�H�BA/W .A/ D F5Œx62;x200;x240�I

(2) For p D 3, G D F4 , ADE3
F4

, .�H�BA/W .A/ D F3Œx26;x36;x48�I

(3) For p D 3, G DE6 , ADE4
3E6

, .�H�BA/W .A/ D F3Œx26;x36;x48;x54�I

(4) For p D 3, G DE7 , ADE4
2E7

, .�H�BA/W .A/ D F3Œx26;x36;x48;x108�I

(5) For pD 3, G DE8 , ADE5a
E8

, .�H�BA/W .A/D F3Œx4;x26;x36;x48;x324�;

where the subscript of x indicates its cohomological degree.

Proof We use Theorem 2.5 for (3), (4) and (5). In these cases, we described G1 , G2 ,
V �

1
, V �

2
, Fp ŒV1�

G1 , Fp ŒV2�
G2 in Theorem 2.5.

(1) The case pD 5, G DE8 . ADE3
E8

. The Weyl group W .A/ is the special linear
group SL3.F5/. The ring of invariants of the special linear group is well-known as
Dickson invariants. Then we have

F5Œt1; t2; t3�
W .A/

D F5Œx62;x200;x240�;

where x4
62
D c3;0 , x200D c3;2 , x240D c3;1 and c3;k ’s are Dickson invariants described

in Proposition 2.4.
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(2) The case p D 3, G D F4 , ADE3
F4

. The Weyl group W .A/ is the special linear
group SL3.F3/. The ring of invariants are known as Dickson invariants as before:

F3Œt1; t2; t3�
W .A/

D F3Œx26;x36;x48�;

where x2
26
D c3;0 , x36 D c3;2 , x48 D c3;1 as above.

(3) The case pD 3, G DE6 , ADE4
3E6

. The Weyl group W .A/ is the subgroup of
GL4.F3/ consisting of matrices of the form0@ g1 m0

0 g2

1A ;
where g12G1Df1g, g22G2DSL3.F3/, m02M1;3.F3/. Consider V �

1
DF3ft1g and

V �
2
DF3ft2; t3; t4g. Then we have F3ŒV1�

G1 D F3Œt1� and F3ŒV2�
G2 D F3Œx26;x36;x48�,

where x2
26
D c3;0 , x36D c3;2 , x48D c3;1 and c3;k ’s are Dickson invariants in F3ŒV2�.

By Theorem 2.5, we have

F3Œt1; t2; t3; t4�
W .A/

D F3Œx26;x36;x48;x54�;

where x54 D
Q

t2V �
2
.t1C t/.

(4) The case p D 3, G D E7 , AD E4
2E7

. The Weyl group W .A/ is a subgroup of
GL4.F3/ consisting of matrices of the form0@ g1 m0

0 g2

1A ;
where g1 2 G1 D GL1.F3/, g2 2 G2 D SL3.F3/ and m0 2 M1;3.F3/. Consider
V �

1
D F3ft1g and V �

2
D Fft2; t3; t4g. Then we have F3ŒV1�

G1 D F3Œt
2
1
� and F3ŒV2�

G2 D

F3Œx26;x36;x48� as in (3). By Theorem 2.5, we have

F3Œt1; t2; t3; t4�
W .A/

D F3Œx26;x36;x48;x108�;

where x108 D
Q

t2V �
2
.t1C t/2 .

(5) The case p D 3, G D E8 , A D E5a
E8

. The Weyl group W .A/ is a subgroup of
GL5.F3/ consisting of matrices of the form

0@ g1 m0

0 g2

1AD
0BBB@

g1 m0
0

m00o

0 g0
2

0

0 0 �

1CCCA ;
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where g1 2 G1 D GL1.F3/, g2 D .g
0
2
; �/ 2 G2 D SL3.F3/�GL1.F3/ � GL4.F3/

and m0D .m
0
0
;m00

0
/ 2M1;4.F3/DM1;3.F3/�M1;1.F3/. Consider V �

1
D F3ft1g and

V �
2
D F3ft2; t3; t4; t5g. Then we have F3ŒV1�

G1 D F3Œt
2
1
� and

F3ŒV2�
G2 D F3Œx26;x36;x48; t

2
5 �;

where x26 , x36 , x48 are Dickson invariants in F3Œt2; t3; t4� as in (3). By Theorem 2.5,
we have

F3Œt1; t2; t3; t4; t5�
W .A/

D F3Œx4;x26;x36;x48;x324�;

where x4 D t2
5

and x324 D
Q

t2V �
2
.t1C t/2:

4 Proof of Theorem 1.1

Let p be a prime, including pD 2. As in the previous section, let G be a compact Lie
group and A an elementary abelian p–subgroup of G . We denote by iA;G W A!G

the inclusion. Then the induced homomorphism

�Bi�A;G W �H�BG! �H�BA

factors through the ring of invariants of the Weyl group W .A/.

Proposition 4.1 The inclusion of the image

Im�Bi�A;G! .�H�BA/W .A/

is an integral extension.

Proof By the Peter–Weyl theorem, for a sufficiently large n, there exists an embedding
of a compact Lie group G into a unitary group U.n/, say

iG;U.n/W G! U.n/:

Through the induced homomorphism Bi�
G;U.n/

W H�BU.n/ ! H�BG , the mod p

cohomology H�BG is an H�BU.n/–module. Recall here that

H�BU.n/D Fp Œc1; : : : ; cn�;

where each ci is a Chern class and deg ci D 2i . So, H�BU.n/ is a Noetherian ring. It
is well-known that H�BG is a finitely generated H�BU.n/–module, so that H�BG

is a Noetherian H�BU.n/–module. We defined �H�BG as a quotient module of
H�BG . Therefore, �H�BG is also a Noetherian H�BU.n/–module. Considering
the case G D A, we may conclude that �H�BA is also a Noetherian H�BU.n/–
module. Since the ring of invariants .�H�BA/W .A/ is an H�BU.n/–submodule of a
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Noetherian H�BU.n/–module �H�BA, it is also a Noetherian H�BU.n/–module.
Hence, the ring of invariants .�H�BA/W .A/ is a finitely generated H�BU.n/–module.
Thus, the inclusion

Im�Bi�A;G! .�H�BA/W .A/

is an integral extension.

In the case pD 3, G DE8 , ADE5a
E8

, the ring of invariants of the Weyl group W .A/

is computed in the previous section and it is

F3Œx4;x26;x36;x48;x324�

as a graded F3 –algebra.

Now, we recall the computation of the cotorsion product

CotorH �E8
.F3; F3/

due to Mimura and Sambe in [2]. From this, we need just an upper bound for the
degree of algebra generators of the cotorsion product. Namely, the following result
which is immediate from the computation of Mimura and Sambe suffices to prove the
noncollapsing of the Rothenberg–Steenrod spectral sequence.

Proposition 4.2 As a graded F3 –algebra, the cotorsion product

CotorH �E8
.F3; F3/

is generated by elements of degree less than or equal to 168.

As a consequence of Proposition 4.2, if the Rothenberg–Steenrod spectral sequence
collapsed at the E2 –level, then H�BE8 and �H�BE8 would be generated by ele-
ments of degree less than or equal to 168 as graded F3 –algebras. The image of the
induced homomorphism �Bi�

A;E8
would also be generated by elements of degree less

than or equal to 168. Therefore, Im�Bi�
A;E8

would be a subalgebra of

F3Œx4;x26;x36;x48�:

It is clear that x324 is not integral over F3Œx4;x26;x36;x48�, and so the inclusion

Im�Bi�A;E8
! .�H�BA/W .A/

D F3Œx4;x26;x36;x48;x324�

would not be an integral extension. This contradicts Proposition 4.1. Hence, the
Rothenberg–Steenrod spectral sequence does not collapse at the E2 –level.
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