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On fibrations related to real spectra

NITU KITCHLOO

W STEPHEN WILSON

We consider real spectra, collections of Z=.2/–spaces indexed over Z˚ Z˛ with
compatibility conditions. We produce fibrations connecting the homotopy fixed points
and the spaces in these spectra. We also evaluate the map which is the analogue of
the forgetful functor from complex to reals composed with complexification. Our
first fibration is used to connect the real 2nC2.2n � 1/–periodic Johnson–Wilson
spectrum ER.n/ to the usual 2.2n� 1/–periodic Johnson–Wilson spectrum, E.n/ .
Our main result is the fibration †�.n/ER.n/ ! ER.n/ ! E.n/ , where �.n/ D
22nC1� 2nC2C 1 .

55N20, 55Q51, 55R45

1 Introduction

In 1968, Landweber [11] introduced the idea of a real complex cobordism by taking
the homotopy fixed points of complex cobordism under complex conjugation. A few
years later this theory was studied again by Araki and Murayama [1; 2; 3]. Recently
there has been a flurry of activity around this theory by Hu and Kriz [4; 5; 6; 7; 8; 9].

In [6], Hu and Kriz produce real versions, ER.n/, of the Johnson–Wilson spectra
E.n/ (see Johnson and Wilson [10]) and compute their homotopy. The homotopy of
E.n/ is Z.2/Œv1; v2; : : : ; v

˙1
n �. E.n/ is periodic of period jvnj D 2.2n�1/, ER.n/ is

periodic of period
ˇ̌
v2nC1

n

ˇ̌
D 2nC2.2n�1/, and the construction gives maps of spectra:

ER.n/!E.n/.

In the case nD 1 this is just the map KO.2/!KU.2/ and Wood identified the fibre
as †KO.2/ .

The main purpose of this paper is to identify the fibre of ER.n/!E.n/, producing
the fibration:

(1) †�.n/ER.n/!ER.n/!E.n/:

where �.n/D 22nC1� 2nC2C 1. These fibrations should make these theories much
more accessible.
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Let E be a real spectrum as defined in [6]. In particular, E is given by a collection
of pointed Z=.2/–spaces EV indexed by the representation ring RO.Z=.2// of the
group Z=.2/. Recall that RO.Z=.2//D Z˚Z˛ , where ˛ is the sign representation.
Moreover, we require that the spaces EV be compatible in the following sense.

Given a representation U , and a pointed Z=.2/–space X , let �U X denote the space
Map�.S

U ;X /, where SU is the one-point compactification of U . The space �U X

has an induced diagonal action of the group Z=.2/. For the spectrum E, we require the
existence of a family of equivariant homeomorphisms ˛U;V W �

U EU˚V ! EV , that
satisfy obvious compatibility.

A multiplicative real spectrum E is one that admits a multiplication preserving the real
structure (see [6]).

Example 1.1 The real complex bordism spectrum MU is defined as follows. Let
M U.n/ denote the Thom space of the universal bundle over BU.n/. Complex
conjugation induces an action of Z=.2/ on M U.n/. Define MUV as the space
lim
�!n

�n.1C˛/�V M U.n/ for V 2 RO.Z=.2//. Notice that n.1C ˛/ � V is a well
defined representation of Z=.2/ for sufficiently large values of n. It is left to the reader
to verify that MU has the properties of a multiplicative real spectrum.

Example 1.2 The Brown–Peterson spectrum has a real analogue BP. The real
Johnson–Wilson spectra E.n/ may also be defined along similar lines [6]. These
spectra are in fact multiplicative real spectra. E.1/ is 2–localized real K–theory of
Atiyah [6].

We will use the notation ERV to denote the homotopy fixed points of the Z=.2/–action
on EV . Notice that for a fixed V 2RO.Z=.2//, the collection of spaces fERnCV ; n2Zg

form a spectrum in the usual sense. We shall abuse notation and refer to the spectra
fERnCV ; n 2 Zg and fEnCV ; n 2 Zg as the spectra ERV and EV respectively. The
purpose of this paper is to relate ERV to EV via a fibration. Of particular interest to us
will be the case when the spectrum E is E.n/. We need the following result which we
assume is well known to the experts:

Proposition 1.3 There are fibrations of spectra:

ERV�˛
a
�! ERV

�
�! EV ; EV

1C�
�! ERV

a
�! ERVC˛;

where the map a is induced by the map aW S0 �! S˛ given by the inclusion of the
poles. The map � is the standard inclusion, and the map .1C�/ is a lift of the Norm map
on EV . Moreover, if E is a multiplicative real spectrum, then ERV is a ER0 –module
spectrum for all V , and the above fibrations are fibrations of ER0 –module spectra.
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Remark 1.4 On the level of individual spaces we have fibrations

ERmC.n�1/˛! ERmCn˛! EmCn˛:

This is a great help to computations as we hope to demonstrate in a future paper.

Observe that the spaces EV�1D�EV and EV�˛D�
˛EV are homeomorphic. (Actually,

EmCn˛ and Em0Cn0˛ are the same when mCnDm0Cn0 .) In the statement of the next
theorem, we will use this homeomorphism to identify the two spaces. Note, however
that the action of Z=.2/ on the two spaces is different. If we let � denote the action of
the generator of Z=.2/ on EV�1 , and z� the action on EV�˛ , then the two actions are
related via z� D �˛� D�� .

Now consider the boundary map. This map @ is defined as the map EV�1! ERV�˛

given by looping back the first fibration above composed with the map ERV�˛! EV�˛

given by the inclusion of the fixed points. Therefore

@W EV�1 �! EV�˛:

We have the following proposition.

Proposition 1.5 Let EV�1 be identified with the space EV�˛ as explained above.
Then the map @ is given by @D Id � � D Id C z� .

The standard example of this result is the composition KU !KO!KU and this is
just a generalization of it. The boundary is the composition of two maps. The first can
be thought of as forgetting the complex structure and looking only at the underlying
real structure. The next map can be thought of as complexification. This boundary map
comes in useful in calculations we hope will appear in a future paper.

Our primary interest is the case when E D E.n/. The following theorem uses the
computation of the homotopy of ER.n/ given in [6].

Theorem 1.6 There exist nontrivial elements x.n/ 2 ��.n/.ER.n/0/, where �.n/ is
the integer defined by �.n/ D 22nC1 � 2nC2 C 1, such that one has a fibration of
ER.n/0 –module spectra:

†�.n/ER.n/V
x.n/
�! ER.n/V

�
�! E.n/V :

Remark 1.7 An interesting special case of the above theorem is when n D 1, and
V D 0. Note that E.1/DKU.2/ , and hence ER.1/DKO.2/ . Moreover, the element
x.1/ is none other than �. Hence one reproduces a well-known result

†KO.2/
�
�!KO.2/ �!KU.2/:
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More generally, fixing V D 0, we get the fibration (1).

Our dependence on the published work of Hu and Kriz is obvious. In addition, they
recently informed us they can prove a generalization of our result. By working with
the universal example, ie inverting vn in M U , they can show that any theory with vn

inverted has the same fibration we have for ER.n/. The proof is the same. Note that
this works for their version of real Morava K–theory in [6] making it a much more
interesting theory but unfortunately still not a ring theory.

2 The fibrations

In this section we will show the existence of the two fibration given in the introduction.

Let S˛ denote the one-point compactification of the one dimensional nontrivial repre-
sentation of Z=.2/. Notice that one has a Z=.2/–equivariant cofibration:

(2) Z=.2/C �! S0 a
�! S˛

where the map Z=.2/C! S0 is given by the pinch map. Let E be a real spectrum, and
for the purposes of this section, let EV denote the spectrum given by the collection of
spaces fEnCV ; n 2 Zg. Smashing the cofibration (2) yields a cofibration of equivariant
spectra

(3) EV ^Z=.2/C �! EV
a
�! EVC˛:

Notice that Z=.2/C may be identified with S0 _S0 , with the Z=.2/ action given by
the twist map. Under this identification, the pinch map Z=.2/C! S0 corresponds to
the fold map S0 _S0! S0 . Hence, in the category of spectra, EV ^Z=.2/C may
be identified with EV _ EV D EV � EV with the Z=.2/ action given by z�.x;y/ D
.�.y/; �.x//, where � denotes the generator of Z=.2/. Furthermore, the pinch map

EV ^Z=.2/C! EV corresponds to the sum map EV � EV
C
�! EV .

Consider the twisted diagonal map

�W EV �! EV � EV ; �.x/D .x; �.x//:

Notice that z��.x/D�.x/. From this it follows easily that � lifts to an equivalence
EV ! .EV � EV /

hZ=.2/ . Putting these results together, we get the following proofs.

Proof of the second fibration in Proposition 1.3. Taking homotopy fixed points of
(3) yields another fibration. If we identify .EV ^Z=.2/C/hZ=.2/ with EV , then the map
.EV ^Z=.2/C/hZ=.2/! .EV /

hZ=.2/ is a lift of .1C �/.
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Proof of the first fibration in Proposition 1.3. For the second fibration, one considers
the Spanier–Whitehead dual of (2):

S�˛
a
�! S0

�! Z=.2/C

where the map S0! Z=.2/C D S0_S0 corresponds to the diagonal. Smashing with
EV yields an equivariant fibration

EV�˛
a
�! EV �! EV � EV :

Taking homotopy fixed points of this fibration and making the identifications described
earlier, we get the remaining fibration:

ERV�˛
a
�! ERV

�
�! EV :

To complete the proof one simply observes that all the above constructions respect the
ER0 –module structure if E is a multiplicative real spectrum.

3 The boundary map

In this section, we analyse the boundary map for the above fibrations. This map @
is defined as the composite of the map EV�1 ! ERV�˛ given by looping back the
fibration constructed in the previous section, and the map ERV�˛! EV�˛ given by
the inclusion of the fixed points. Therefore

@W EV�1 �! EV�˛:

The map @ may be explicitly constructed as follows. Consider the composite equivariant
map given by the fold map followed by the pinch map:

(4) Z=.2/C ^S˛
f
�! S˛

p
�! Z=.2/C ^S1:

Notice that the Spanier-Whitehead dual of the pinch map pW S˛! Z=.2/C ^S1 is
the difference map .�/W Z=.2/C ^S�1! S�˛ . Taking the Spanier-Whitehead dual
of the composite (4) yields

Z=.2/C ^S�1 .�/
�! S�˛

�
�! Z=.2/C ^S�˛:

On smashing the above with EV , we obtain the composite map

�.�/W EV�1 � EV�1

.�/
�! EV�˛

�
�! EV�˛ � EV�˛:
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From the previous section, we can see that there is a commutative diagram

EV�1
@ //

.1;�/

��

EV�˛

.1;z�/

��
EV�1 � EV�1

�.�/ // EV�˛ � EV�˛

where � denotes the Z=.2/–action on EV�1 , and z� denotes the Z=.2/–action on EV�˛ .
Recall that the spaces EV�1 D�EV and EV�˛ D�

˛EV are homeomorphic and the
above two actions are related via z� D �˛� . Since ˛� is homotopic to the inversion,
we have z� D�� . From a diagram chase we get @.x/D x� �.x/D xC z�.x/.

4 The case of E.n/

We recall the computation (via the Borel spectral sequence) of the homotopy of BPR

given in [6], and described in the form we need in [4]. We will reproduce the Borel
spectral sequence with BP replaced by E.n/. The E2 –term of the Borel spectral
sequence for E.n/ is given by

E2 D Z.2/Œvk ; v
˙1
n ; a; �˙2�=.2a/; n> k � 0; v0 D 2:

The bidegrees of the generators are given by

jaj D �˛; jvk j D .2
k
� 1/.1C˛/; j�2

j D 2.˛� 1/:

The differentials are given by comparing with the Borel spectral sequence converging
to the homotopy of BPR. In particular, the elements vk and a are permanent cycles,
and the nontrivial differentials are

d2kC1�1.�
�2k

/D vka2kC1�1; 0< k � n:

Using the methods of [6], [4], we notice that the E1–term for the homotopy of ER.n/

is given by the following ring:

Z.2/Œvk�
l2kC1

; a; v˙1
n ; �˙2nC1

�=I; n> k � 0; l 2 Z

where I is the ideal generated by the relations:

v0 D 2;

a2kC1�1vk�
l2kC1

D 0;

vm�
l2mC1

:vk�
s2m�k2kC1

D vk :vm�
.lCs/2mC1

m� k:
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The bidegrees of the generators are given by

jaj D �˛;
ˇ̌
vk�

l2kC1 ˇ̌
D .2k

� 1/.1C˛/C l2kC1.˛� 1/:

Comparing with the homotopy of BPR , we notice that there are no extension problems,
and so the above is in fact isomorphic to the homotopy of ER.n/.

Now consider the element

y.n/D v2n�1
n ��2nC1.2n�1�1/; y.n/ 2 ��.n/.ER.n/�˛/

where �.n/ is the integer �.n/ D 22nC1 � 2nC2 C 1. The element y.n/ is clearly
invertible in the above ring. Hence we get the following claim.

Claim 4.1 Multiplication by the element y.n/ yields an equivalence of ER0 –module
spectra:

†�.n/ER.n/V
y.n/
�! ER.n/V�˛:

We define the element x.n/ to be the element

x.n/D a:y.n/; x.n/ 2 ��.n/.ER.n/0/:

This claim, along with the first fibration given in Proposition 1.3 yields the proof of
Theorem 1.6.

Remark 4.2 The spectrum ER.n/0 is periodic with period 2nC2.2n� 1/ generated
by the homotopy element v2nC1

n ��2nC1.2n�1/ .
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