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Interactions of strings and equivariant homology theories

SHINGO OKUYAMA

KAZUHISA SHIMAKAWA

We introduce the notion of the space of parallel strings with partially summable labels,
which can be viewed as a geometrically constructed group completion of the space
of particles with labels. We utilize this to construct a machinery which produces
equivariant generalized homology theories from such simple and abundant data as
partial monoids.

55N20, 55N91; 55P47

1 Introduction

In [6] we attached to any pair of a Euclidean space V and a partial abelian monoid
M a space C.V;M / whose points are pairs consisting of a finite subset c of V and a
map aW c!M , but .c; a/ is identified with .c0; a0/ if c � c0 , a0jc D a, and a0.v/D 0

for v 62 c . Any such pair .c; a/ can be identified with the set consisting of “labeled
particles” .v; a.v//, v 2 c . Suppose V is an orthogonal G–module for some finite
group G and M admits a G–action compatible with partial sum operations. Then
C.V;M / is a G –space with respect to the G –action

g.c; a/D .gc;gag�1/; g 2G; .c; a/ 2 C.V;M /:

Let I.R/ be the space of finite disjoint unions of bounded intervals in the real line. Then
I.R/ is a partial abelian monoid with partial sum operation given by superimposition.
Let us denote I.V;M / D C.V; I.R/^M / for any partial abelian monoid with G–
action M . Observe that under the correspondence

aW c! I.R/ 7!
S
v2cfvg � a.v/� V �R

any map from a finite subset of V to I.R/ can be identified with a finite disjoint union
of bounded subsets of the form fvg � J � V � R, where J is a bounded interval.
We call such fvg � J a string over v . Thus I.V;M / can be regarded as the space
consisting of finite sets of pairwise disjoint labeled strings whose members over the
same point in V has the same label in M .
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The aim of this paper is to show that if V is sufficiently large then there is a G–
equivariant group completion map C.V;M / ! I.V;M / and also that the corre-
spondence X 7! �nI.V;X ^M /, n� 0, extends to an RO.G/–graded generalized
homology theory.

To state the precise results, let Top.G/ be the category of all pointed G–spaces and
all pointed maps with G acting on maps by conjugation. In [5] we have shown that
any G–equivariant continuous functor T W Top.G/! Top.G/ such that T .�/D � is
associated with pairings X ^T Y ! T .X ^Y /; TX ^Y ! T .X ^Y / natural in both
X and Y . Therefore, T preserves G –homotopies and there is a natural transformation
SW ^T .X /! T .SW ^X / for any orthogonal G –module W , where SW is the one
point compactification of W .

Suppose V is linearly and equivariantly isometric to the direct product of countably
many copies of the regular representation of G over the real number fields. Such a
G –module V is called a G –universe. Now the main results can be stated as follows.

Theorem 1.1 There is a diagram consisting of maps of Hopf G –spaces

C.V;M /
�
 � IC.V;M /

�
�! I.V;M /

satisfying the conditions below.

(1) � is a G –homotopy equivalence.

(2) � is an equivariant group completion, that is to say, it restricts to a group
completion map IC.V;M /H ! I.V;M /H for every subgroup H of G .

Theorem 1.2 The correspondence X ! I.V;X ^M / is a G –equivariant continuous
functor of Top.G/ into itself and we have the following:

(1) For any orthogonal G –module W the natural map

I.V;X ^M /!�W I.V; †W X ^M /

adjoint to SV ^I.V;X ^M /! I.V;SW ^X ^M / is a weak G –equivalence.

(2) There exists an RO.G/–graded homology theory hG
� .�/ such that

hG
n .X /D �nI.V;X ^M /G

holds for any X and n� 0.
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Interactions of strings and equivariant homology theories 335

These theorems enable us to construct equivariant generalizations of several popular
homology theories. For example, consider the simplest case M D S0 . Then C.V;X /

is the usual configuration space, and hence its group completion I.V;X / is weakly
G –equivalent to the equivariant infinite loop space �V†V X by [1, Theorem (1.18)].
Thus we obtain the G–equivariant stable homotopy theory in this case. On the other
hand, if we take arbitrary positive integers as labels then we obtain an RO.G/–graded
homology theory extending the ordinary homology eH n.X=G;Z/. (Compare Lewis,
May and McClure [2].) K–theory type examples also occur from our method, which
will be discussed in a future paper.

2 Partial abelian monoids with G –action

Definition 2.1 A pointed G–space M is called a partial abelian monoid with G–
action, or G –partial monoid for short, if for every n� 0 there are G –invariant subsets
Mn of M n and G –maps

Mn!M; .a1; : : : ; an/ 7! a1C � � �C an

satisfying the conditions below.

(1) M0!M is the inclusion of the basepoint 0 of M .

(2) M1!M is the identity of M .

(3) Let J1; � � � ; Jr be disjoint subsets of f1; : : : ; ng such that J1 [ � � � [ Jr D

f1; : : : ; ng, and let .a1; : : : ; an/ be an element of M n such that .aj /j2Jk
belongs

to Mnk
, where nk is the cardinality of Jk . Then .a1; : : : ; an/ 2Mn if and only

if
�P

j2J1
aj ; : : : ;

P
j2Jr

aj

�
2Mr , and we have

a1C � � �C an D
P

j2J1
aj C � � �C

P
j2Jr

aj

if either side of the equation makes sense.

Among the examples we have the following:

(1) Let M be a G –invariant subset of a topological abelian group on which G acts
through group homomorphisms. Suppose M contains the unit 0. Then M is a
G –partial monoid with respect to the subsets

Mn D f.a1; : : : ; an/ 2M n
j a1C � � �C an 2M g:

More generally, any G –invariant subset of a G –partial monoid that contains 0

is again a G –partial monoid.
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(2) Any pointed G–space X is a G–partial monoid with respect to folding maps
Xn DX _ � � � _X !X . In fact, this is a special case of the previous example,
as X is a G –invariant subset of the infinite symmetric product SP1X .

(3) Let V be an infinite dimensional real inner product space on which G acts
through linear isometries. Then the Grassmannian Gr.V / of finite-dimensional
subspaces of V is a G–partial monoid with respect to the inner direct sum
operation Gr.V /n!Gr.V /, where Gr.V /n is defined to be the subset consisting
of those .W1; : : : ;Wn/ such that Wi ?Wj if i ¤ j .

Definition 2.2 For given G –partial monoids M and N , their smash product M ^N

is a G –partial monoid such that .M ^N /n is the subset consisting of those n–tuples
that can be summed up to an element of M ^N by using the distributivity relations:

c1 ^ d C � � �C ck ^ d D .c1C � � �C ck/^ d; .c1; : : : ; ck/ 2Mk

c ^ d1C � � �C c ^ dl D c ^ .d1C � � �C dl/; .d1; : : : ; dl/ 2Nl

Example 2.3 If X is a pointed G –space and M is a G –partial monoid, then X ^M

is a G –partial monoid such that

.X ^M /n DX ^Mn

holds for every n� 0.

For any orthogonal G–module V , the labeled configuration space C.V;M / is a
G –partial monoid with respect to the partial sum operations

C.V;M /n! C.V;M /; ..c1; a1/; : : : ; .cn; an// 7! .
S

ci ;
S

ai/ :

Here C.V;M /n consists of those n–tuples ..ci ; ai// 2 C.V;M /n such that for every
x 2

S
ci the sum

P
i2ƒ.x/ ai.x/ exists, where ƒ.x/D fi j x 2 cig, and

S
ai denotes

the map x 7!
P

i2ƒ.x/ ai.x/. Moreover, if V is a G–universe then C.V;M / is a
homotopy associative and homotopy commutative Hopf G–space. To see this, let us
consider the functor

P 7!A.P /D C.V;P ^M /

from finite pointed sets to pointed G–spaces. For each p 2 P , let ıp be the pointed
map P ! 1D f0; 1g such that ı�1

p .1/D fpg if p is not the basepoint of P , and let
ıp be the constant map if p is the basepoint. Then the G –map

ıW A.P /!Map0.P;A.1//; a 7! .p 7!A.ıp/.a//

has a G –homotopy inverse  W Map0.P;A.1//!A.P / defined as follows.
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Since V is a G–universe, there exist an embedding of P � f0g into V G and a G–
linear isometry V �V ! V . Hence we can construct a G –equivariant embedding of
.P �f0g/�V into V . For any f 2Map0.P;A.1// let us write f .p/D .c.p/; a.p//
and put  .f /D .yc; ya/ 2A.P /, where yc is the image ofS

p2P�f0g fpg � c.p/

under the G –equivariant embedding .P�f0g/�V !V and yaW yc!P^M is induced
by the composite maps

c.p/
a.p/
���!M D 1^M

�p^1
���! P ^M

where �p is a pointed map 1! P such that �p.1/D p .

Therefore, A is a G –equivariant � –space in the sense of Segal. Hence the following
proposition holds.

Proposition 2.4 C.V;M / is a homotopy associative and homotopy commutative
Hopf G –space with unit ∅ 2 C.V;M /G .

Note that Hopf G –space multiplication � of C.V;M / is given by the composite

C.V;M /2
 
�!
'

C.V;M _M /
r�
��! C.V;M /

where r� is induced by the folding map M _M !M .

Definition 2.5 A G –partial monoid M is homotopically invertible if there exist a map
of G –partial monoids � W M !M , called a homotopy inversion, and a G –homotopy
ht W M !M 2 (0� t � 1) satisfying the conditions below.

(1) For every t 2 Œ0; 1�, ht is a map of G –partial monoid.

(2) h0 D .1; �/, ie we have h0.a/D .a; �.a// for any a 2M .

(3) h1 factors through a map h0
1
W M !M2 and the composite M

h0
1
��!M2

†
�!M

is G –homotopic through maps of G –partial monoids to the constant map.

Proposition 2.6 If V is a G–universe and if M is homotopically invertible then
C.V;M / is a grouplike Hopf G –space.

Proof Let ��W C.V;M /! C.V;M / be the map induced by the homotopy inversion
of M . To see that C.V;M / is grouplike, it suffices to show that the composite

C.V;M /
.1;��/
����! C.V;M /2

�
�! C.V;M /
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is G–homotopic to the constant map with value ∅. Let us regard M �M as a G–
partial monoid such that .M �M /n DMn �Mn for n� 0. Then we have a diagram
of pointed G –spaces

C.V;M /
.1;�/�
����! C.V;M 2/

.p1�;p2�/
������! C.V;M /2

h0
1�

??y x?? '

x??ı
C.V;M2/ C.V;M2/  ���� C.V;M _M /

†�

??y ??yr�
C.V;M / C.V;M /

in which p1� and p2� are induced by the projections M 2!M onto the first and
the second factors, respectively, and unnamed arrows are induced by the inclusions of
G –partial monoids. Clearly, the right hand side squares are commutative, and the upper
left square commutes up to G –homotopy. Since ı has a G –homotopy inverse  and
since  restricts to a G–homotopy inverse to the map C.V;M _M /! C.V;M 2/

induced by the inclusion M _M !M 2 , all the arrows constituting the upper right
square are G –homotopy equivalences. Thus we have

�.1; ��/Dr� .p1�;p2�/.1; �/� '†�h
0
1� '∅:

3 The space of strings with labels

As usual, the symbols Œa; b�, Œa; b/, .a; b�, .a; b/ represent bounded intervals in the real
line, and b�a is called the length of the interval. The space of intervals I.R/ consists
of those unions P DJ1[� � �[Jr of finite number of pairwise disjoint bounded intervals.
It is topologized in such a way that such operations as isotopy moves, concatenation
of two disjoint intervals that have a connected union (eg Œa; c/[ Œc; b�D Œa; b�), and
deletion of a half-open interval when its length tends to 0 are all continuous. Let I.R/n
be the subset of I.R/n consisting of those n–tuples .P1; : : : ;Pn/ that are pairwise
disjoint. Then I.R/ is a partial abelian monoid with respect to these I.R/n and maps

I.R/n! I.R/; .P1; : : : ;Pn/ 7! P1[ � � � [Pn:

Details are given in Okuyama [3], where I.R/ is denoted by I1.S
0/.

Lemma 3.1 I.R/ is a homotopically invertible partial abelian monoid.
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Proof Given a bounded interval J , let �J denote the complement of the boundary of
�J in its closure. To be more explicit, we put

�Œa; b�D .�b;�a/; �.a; b/D Œ�b;�a�; � Œa; b/D Œ�b;�a/; �.a; b�D .�b;�a�:

Then the correspondence J 7! �J extends to an involution � of I.R/

J1[ � � � [Jr 7! �Jr [ � � � [ �J1:

Let ˛W R! .0; 1/ be an order preserving homeomorphism and let

˛t .s/D .1� t/sC t˛.s/

for t 2 Œ0; 1� and s 2 R. Since ˛t W R ! R is an embedding, it induces a map of
partial monoids I.˛t /W I.R/! I.R/ for every t , and hence we can define a homotopy
ht W I.R/! I.R/2 by

ht .P /D .I.˛t /.P /; �I.˛t /.P //:

Clearly, ht is a map of partial monoids and we have h0 D .1; �/ because I.˛0/

is the identity. On the other hand, h1 maps I.R/ into I.R/2 because I.˛/.P / is
contained in .0; 1/ and hence is disjoint from �I.˛/.P / � .�1; 0/. Finally, we can
define a homotopy †h1 '∅ by moving I.˛/.P / to negative direction and �I.˛/.P /
to positive direction, simultaneously, so that the strings J in I.˛/.P / meet with �J
at the origin and the resulting half-open intervals eventually vanish.

Let I.R/C be the subset of I.R/ consisting of those J1[ � � � [Jr such that every Ji

is a closed interval. Clearly, I.R/C is a partial submonoid of I.R/.

Definition 3.2 Given an orthogonal G –module V and a G –partial monoid M , let

I.V;M /D C.V; I.R/^M /; IC.V;M /D C.V; I.R/C ^M / :

For any G–partial monoid M , I.R/ ^M is a homotopically invertible G–partial
monoid with homotopy inversion � ^ 1. Thus we have the following proposition.

Proposition 3.3 If V is a G –universe then I.V;M / is grouplike for any M .

4 Proof of Theorem 1.1

To establish a relation between I.V;M / and C.V;M /, let us choose a linear embed-
ding eW R! V G and a G –linear isometry l W V �V ! V . Then we can define

�W IC.V;M /! C.V;M /
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to be the map which sends a finite set of labeled strings f.fvig�Ji ; ai/g to the set of
labeled particles f.l.vi ; e. yJi//; ai/g, where yJi is the middle point of the closed interval
Ji . Note that .vi ; e. yJi// are pairwise distinct, hence so are l.vi ; e. yJi//.

Proposition 4.1 �W IC.V;M /! C.V;M / is a G–homotopy equivalence of Hopf
G –spaces.

Proof Since � is natural with respect to M , it extends to a map of G–equivariant
� –spaces. This, of course, implies that � is a map of Hopf G –spaces.

To see that � is a G –homotopy equivalence, let 
 W C.V;M /!IC.V;M / be a pointed
G–map which sends a finite set of labeled particles f.vi ; ai/g to the set of labeled
strings f.fvig � Œ�1; 1�; ai/g. Then we have


�.f.fvig �Ji ; ai/g/D f.fl.vi ; e. yJi//g � Œ�1; 1�; ai/g

and we can define a G –homotopy 
�' 1 by

.
�/t .f.fvig �Ji ; ai/g/D

(
f.fl.vi ; e2t . yJi//g � I2t .Ji/; ai/g; 0� t � 1=2

f.fl2t�1.vi/g �Ji ; ai/g; 1=2� t � 1

where

(1) et W R! V G is a linear map s 7! .1� t/e.s/.

(2) If J D Œa; b� then It .J / D Œta � .1 � t/; tb C .1 � t/�. Thus fIt .J /g is a
continuous family of closed intervals such that I0.J /D Œ�1; 1� and I1.J /D J .

(3) fltg is a continuous family of G–linear isometries V ! V such that l0.v/D

l.v; 0/ and l1 is the identity of V . (Such a family certainly exists because the
space of G –linear isometries V ! V is contractible if V is a G –universe.)

On the other hand, we can define a G –homotopy �
 ' 1 by

.�
 /t .f.vi ; ai/g/D f.lt .vi/; ai/g:

Now let �W IC.V;M /! I.V;M / be the map induced by the inclusion I.R/C� I.R/.
To complete the proof of Theorem 1.1, we need to show that

(4–1) �H
W IC.V;M /H ! I.V;M /H

is a group completion for every subgroup H of G . Since V is an H –universe for any
subgroup H of G , we need only consider the case H DG . But then we have:

Lemma 4.2 IC.V;M /G! I.V;M /G is a group completion for a G –partial monoid
M if so is IC.R

1;M /! I.R1;M / for all partial abelian monoids M .
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Proof Let F be a family of orbit types and let C.V;M /F be the subspace of C.V;M /

consisting of those .c; v/ 2C.V;M / such that c 2 VF , where VF D fv 2 V jGv 2 Fg.
If F1 and F2 are families such that F1 � F2 and F2�F1 consists of only one
conjugacy class .H / then we have a fibration sequence

C.V;M /GF1
! C.V;M /GF2

! C.V;M /G.H /:

Therefore, we see that IC.V;M /G! I.V;M /G is a group completion if and only if so
are IC.V;M /G

.H /
! I.V;M /G

.H /
, by arguing as in Section 6 of Caruso and Waner [1].

But we have

C.V;M /G.H / Š C.V H ;M H /NH
.H / ' C.R1;EW .H /^W .H /M H /:

It follows that IC.V;M /G! I.V;M /G is a group completion if so are

IC.R
1;EW .H /^W .H /M H /! I.R1;EW .H /^W .H /M H /:

In order to prove the lemma in the non equivariant case we need a CW–monoid
replacement for I.R1;M /. For any M let jS�M j be the realization of the total
singular complex of M regarded as a partial abelian monoid such that

jS�M jn D jS�Mnj � jS�M j
n .n� 0/:

Let D.M / be the classifying space of the permutative category Q.jS�M j/ whose
space of objects is p̀�0jS�M j

p and whose morphisms from .ai/ 2 jS�M j
p to

.bj / 2 jS�M j
q are given by a map of finite sets � W f1; : : : ;pg ! f1; : : : ; qg such that

bj D
P

i2��1.j/ ai hold. Then D.M / is a CW–monoid since it is homeomorphic to
the realization of the diagonal simplicial set Œn� 7! NnQ.SnM /. Moreover, there is
a natural weak equivalence of Hopf spaces ˆW D.M /! C.R1;M /. (For details,
see Shimakawa [7, Section 2.4].) Thus to prove Lemma 4.2 we need only show the
following

Proposition 4.3 The natural map D.I.R/C ^M /!D.I.R/^M / induced by the
inclusion I.R/C � I.R/ is a group completion.

The rest of this section is devoted to the proof of this proposition.

Given a map of topological monoids f W D!D0 let B.D;D0/ denote the realization
of the category B.D;D0/ whose space of objects is D0 and whose space of morphisms
is the product D �D0 , where .d; d 0/ 2D �D0 is regarded as a morphism from d 0 to
f .d/ � d 0 . Then there is a sequence of maps

D0 D B.0;D0/! B.D;D0/! B.D; 0/D BD
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induced by the maps 0!D and D0! 0 respectively. Observe that BD is the standard
classifying space of the monoid D and B.D;D/ is contractible when f is the identity.

In particular, let us take D D D.I.R/C ^M / and D0 D D.I.R/ ^M /, and let
i W D!D0 be the monoid map induced by the inclusion I.R/C! I.R/. Then there
is a commutative diagram

(4–2)

D ����! B.D;D/ ����! BD

i

??y ??yB.1;i/





D0 ����! B.D;D0/ ����! BD

in which the upper and the lower sequences are associated with the identity and the
inclusion i W D!D0 , respectively.

Lemma 4.4 The natural map D!�BD is a group completion.

This follows from the fact that D is a homotopy commutative monoid.

Lemma 4.5 The lower sequence in the diagram (4–2) is a homotopy fibration sequence
with contractible total space.

Proposition 4.3 is deduced from this, because D ! D0 is equivalent to the group
completion map D!�BD under the equivalence D0 '�BD .

Proof of Lemma 4.5 By Proposition 3.3, D0 D D.I.R/ ^M / is grouplike with
homotopy inverse induced by the homotopy inversion � ^ 1. Hence D acts on D0

through homotopy equivalences, and the diagram

D0 ����! B.D;D0/??y ??y
0 ����! B.D; 0/

is homotopy cartesian by Proposition 1.6 of Segal [4]. This implies that the lower
sequence in the diagram (4–2) is a homotopy fibration sequence.

It remains to prove that B.D;D0/ is contractible. In [7], we proved this in the case
where the partial monoid X^˙M is strictly invertible and is generated by the elements
of X ^M and their inverses. But the argument given there still applies to the current
case, once we make the following change in the notation.
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Replace X ^M and X ^˙M by IC.R/^M and I.R/^M , respectively, and for
any S D .Pj ^ aj / 2 S0.I.R/^M /p put

SC D .P
C
j ^ aj /; S� D .P

�
j ^ aj /; S D .�Pj ^ aj /;

where PCj and P�j are the unions of closed intervals and of open or half-open intervals
contained in Pj , respectively. Note that we have Pj D PCj

S
P�j and PCj 2 IC.R/.

Also, for any S such that S D S� the path ŒS �! Œ0p � in B.D;D0/ should be defined
to be the composite

ŒS �! ŒSC �S �! ŒI.˛/�.S/C � I.˛/�.S/�
r
�! Œ0p �

where ˛ is a homeomorphism RŠ .0; 1/, I.˛/�.Pj ^ aj /D .I.˛/.Pj /^ aj /, and r
is induced by the homotopy

�I.˛/.Pj /
C ^ aj C I.˛/.Pj /^ aj D .�I.˛/.Pj /

C
S

I.˛/.Pj //^ aj '∅^ aj D 0:

(Compare the proof of Lemma 3.1.)

5 Proof of Theorem 1.2

By a simplicial pointed G –space we shall mean a simplicial object in the category of
pointed G–spaces and basepoint preserving G–maps. If X� is a simplicial pointed
G –space then the basepoints of Xn form the simplicial set �. Let

kX�k
0
D kX�k=k�k:

Then the natural map kX�k ! kX�k0 is a G–homotopy equivalence, and the maps
�n �Xn!kX�k induce �n

C ^Xn!kX�k
0:

Let T be a G –equivariant continuous functor Top.G/! Top.G/. Then any simplicial
pointed G –space X� is associated with a G –map kT .X�/k0! T .kX�k

0/ induced by
the maps

�n
�T .Xn/!�n

C ^T .Xn/! T .�n
C ^Xn/! T .kX�k

0/ :

The next proposition plays a key role in the proof of Theorem 1.2.

Proposition 5.1 Let T W Top.G/! Top.G/ be a G–equivariant continuous functor.
Suppose T satisfies the conditions below.

(C1) T .�/D �.

(C2) For any simplicial pointed G –space X� the natural map kT .X�/k0! T .kX�k
0/

is a G –homotopy equivalence.
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(C3) For any X and Y the map T .X_Y /!T .X /�T .Y / induced by the projections
X _Y !X and X _Y ! Y is a G –homotopy equivalence.

(C4) For any subgroup H the natural map T .G=HC ^X /!Map0.G=HC;T .X //,
whose adjoint G=HC ^ T .G=HC ^ X / ! T .X / is induced by the pairing
G=HC^G=HC^X !X which sends .s; s;x/ to x and .s; t;x/ (s¤ t ) to the
basepoint of X , is a G –homotopy equivalence.

Suppose further that T .X /H is grouplike for any X and any subgroup H of G . Then
the following hold.

(1) For any orthogonal G–module W the natural map T .X / ! �W T .†W X /

adjoint to SW ^T .X /! T .SW ^X / is a weak G –homotopy equivalence.

(2) The correspondence X 7!
˚
�nT .X /G

	
is extendible to an RO.G/–graded

equivariant homology theory defined on the category of pointed G –spaces.

Proof For any pointed G–space X let E.X / D �T .†X /. If T satisfies (C1),
(C2) and (C3) then by the equivariant version of [6, Theorem 2.12] the natural map
T .X /!E.X / is a G –equivariant group completion and the sequence

E.A/!E.X /!E.X [CA/

associated with a pair of pointed G–spaces .X;A/ is a G–fibration sequence up to
weak G–equivalence. But T .X /! E.X / D �T .†X / is a weak G–equivalence
because T .X /H is grouplike for any subgroup H . Hence

T .A/! T .X /! T .X [CA/

is a G–fibration sequence up to weak G–equivalence. Moreover, T preserves G–
homotopies because it is a G–equivariant continuous functor. Therefore, the corre-
spondence X 7!

˚
�nT .X /G

	
determines a Z–graded equivariant homology theory.

Let �G be the full subcategory of Top.G/ consisting of finite pointed G–sets. To
prove the assertions we need only show that the correspondence S 7! T .S ^X / from
�G to Top.G/ is a special �G –space in the sense of [5]. But this follows from the
conditions (C3) and (C4).

Now let T .X /D I.V;X ^M /. We shall show that T satisfies the conditions (C1),
(C2), (C3) and (C4). This of course proves Theorem 1.2.

It is obvious that (C1) holds. (C2) is proved by the argument similar to the one used in
the proof of [6, Theorem 3.2]. To prove (C3) let us define

T .X /�T .Y /! T .X _Y /
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to be the composite

I.V;X ^M /� I.V;Y ^M /
.i�;j�/
����! I.V; .X _Y /^M /2

�
�! I.V; .X _Y /^M /

where i� and j� are induced by the inclusions of X and Y into X _Y , respectively,
and � is the multiplication of the Hopf G–space I.V; .X _Y /^M /. By using the
fact that the space of G–linear isometries of V is contractible one can show that the
map above gives a G–homotopy inverse to T .X _ Y / ! T .X / � T .Y /. Finally,
to prove (C4) let us choose a G–embedding G=H ! V and a G–linear isometry
l W V � V ! V . Then we can construct a G–homotopy inverse to the natural map
T .G=HC ^X /!Map0.G=HC;T .X // by the following procedure:

(1) For given f W G=HC! T .X / let us write

f .gH /D .c.gH /;P .gH /^ a.gH //

where c.gH /� V , P .gH /W c.gH /! I.R/ and a.gH /W c.gH /!X ^M .

(2) Let zc be the image of the union
S
fgH g � c.gH / under the embedding

�W G=H �V � V �V
l
�! V:

(3) Define zaW zc! I.R/^G=HC ^X ^M by

za.�.gH; �//D P .gH /^gH ^ a.gH /.�/; � 2 c.gH /:

(4) Define �W Map.G=H;T .X //! T .G=HC ^X / by �.f /D .zc; za/.

That � gives a G –homotopy inverse to T .G=HC^X /!Map.G=H;T .X // follows,
again, from the contractibility of the space of G –linear isometries of V .

References
[1] J Caruso, S Waner, An approximation theorem for equivariant loop spaces in the

compact Lie case, Pacific J. Math. 117 (1985) 27–49 MR777436

[2] G Lewis, J P May, J McClure, Ordinary RO.G/–graded cohomology, Bull. Amer.
Math. Soc. .N.S./ 4 (1981) 208–212 MR598689

[3] S Okuyama, The space of intervals in a Euclidean space, Algebr. Geom. Topol. 5
(2005) 1555–1572 MR2186109

[4] G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312
MR0353298

[5] K Shimakawa, Infinite loop G –spaces associated to monoidal G –graded categories,
Publ. Res. Inst. Math. Sci. 25 (1989) 239–262 MR1003787

Geometry & Topology Monographs, Volume 10 (2007)



346 Shingo Okuyama and Kazuhisa Shimakawa

[6] K Shimakawa, Configuration spaces with partially summable labels and homology
theories, Math. J. Okayama Univ. 43 (2001) 43–72 MR1913872

[7] K Shimakawa, Labeled configuration spaces and group completions, Forum Math. to
appear (2006)

Takuma National College of Technology
Kagawa 769-1192, Japan

Takuma National College of Technology
Kagawa 769-1192, Japan

okuyama@dc.takuma-ct.ac.jp, kazu@math.okayama-u.ac.jp

Received: 13 September 2004 Revised: 13 May 2006

Geometry & Topology Monographs, Volume 10 (2007)


