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Unstable modules over the Steenrod algebra revisited

GEOFFREY M L POWELL

A new and natural description of the category of unstable modules over the Steenrod
algebra as a category of comodules over a bialgebra is given; the theory extends
and unifies the work of Carlsson, Kuhn, Lannes, Miller, Schwartz, Zarati and others.
Related categories of comodules are studied, which shed light upon the structure of
the category of unstable modules at odd primes. In particular, a category of bigraded
unstable modules is introduced; this is related to the study of modules over the motivic
Steenrod algebra.

55S10; 18E10

1 Introduction

The Steenrod algebra A over a prime field F of characteristic p is a fundamental
mathematical object; it is defined in algebraic topology to be the algebra of stable
cohomology operations for singular cohomology with coefficients in F. The algebra A
is graded and acts on the cohomology ring of a space; the underlying graded A–module
is unstable, a condition which is usually defined in terms of the Steenrod reduced power
operations and the Bockstein operator.

This paper shows that the well-known description of the dual of the Steenrod algebra,
which is due to Milnor, has an extension which leads to an entirely algebraic description
of the category U of unstable modules over the Steenrod algebra as a category of
comodules (defined with respect to a completed tensor product) over a bialgebra,
without imposing an external instability condition. The existence of such a description
is implied by the general theory of tensor abelian categories at the prime two; in the odd
prime case, the method requires the super-algebra setting, namely using Z=2–gradings
to introduce the necessary sign conventions for commutativity.

Theorem 1 The category of unstable modules over the Steenrod algebra at an odd
prime is equivalent to the category of right comodules (with respect to a completed
tensor product) over a Z=2–graded bialgebra �A� .
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At an odd prime, the theory introduces an auxiliary bialgebra B , which can be defined
as the bialgebra of endomorphisms of the additive group (in the super-algebra setting).
The category U.B/ of graded comodules over this coalgebra is equipped with an exact
forgetful functor U.B/! U to the category of unstable modules, which is induced
by a surjective morphism of bialgebras B � �A� . Moreover, U.B/ is equivalent to a
representation category which generalizes the description given by Kuhn of the category
of unstable modules over the field F2 . This part of the theory extends and unifies
existing approaches to the category of unstable modules.

The surjection B� �A� factorizes across a bialgebra SB ; the category Ubi:gr of comod-
ules over this bialgebra is a bigraded analogue of the category of unstable modules.
This category has not hitherto been studied. The structure of Ubi:gr is of interest since it
sheds light on and provides new approaches to the structure of the classical category of
unstable modules at odd primes and also in connection with unstable modules defined
over the motivic Steenrod algebra (at all primes). At an odd prime, these tensor abelian
categories are related by exact functors which are induced by corestriction

U.B/ ‰! Ubi:gr ‚
! U :

The functorial point of view on the category of unstable modules, developed by Kuhn
[6] from the work of Henn, Lannes and Schwartz [5] arises naturally in the theory
via the free commutative algebra functor; forgetting the algebra structure, this can be
considered as an object of the category F of functors from finite-dimensional F–vector
spaces to F–vector spaces. Key examples of objects of F are given by the exterior
power functors ƒa and the divided power functors �b .

The one-sided Morita equivalence theory of [6] gives rise to functors rBW F ! U.B/
and r 0W F ! U 0 , where U 0 � U denotes the full subcategory of unstable modules
concentrated in even degree. These give a very natural description of the projective
generators of the category Ubi:gr .

The results on the projective generators of Ubi:gr lead, at odd primes, to a new and
natural analysis of the free unstable modules F.n/. The following result provides an
odd-primary analogue of the well-known analysis of the structure of the free unstable
modules at the prime two, where O denotes the forgetful functor U 0! U .

Proposition 2 For p an odd prime and n a positive integer, F.n/ has a finite filtration
with associated gradedM

aC2bDn
a�0

Or 0.ƒa
˝�b/˚

M
aC2bDn

a�1

†Or 0.ƒa�1
˝�b/:
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There is a corresponding analysis of the injective cogenerators of U , which is presented
in Section 7.4. These results are applied in Section 8 to give new proofs of the
fundamental results on nil-localization in the odd characteristic case, using the results
on U.B/ provided by the representation-theoretic framework.

The final section of the paper indicates a modification of the theory at the prime two
which introduces an abelian category UM which is related to the study of unstable
modules over the motivic Steenrod algebra. This allows the comparison of the category
of unstable modules and a suitable category of bigraded unstable modules at the prime
two.

1.1 Related results

There are related results which occur in the literature; the results on unstable modules
at the prime two are implicit in the work of Kuhn [6]. The bialgebra which is used to
define the category of unstable modules occurs in Bisson–Joyal [1, Section 4], where it
is termed the extended Milnor–Hopf algebra. The addendum [1, page 260] indicates
the fact that the category of unstable modules corresponds to the category of comodules
over this bialgebra. A second reference for related material in a similar context is
Smirnov [12, page 116, Chapter 5]. This reference also provides a related statement
for the odd prime case.

1.2 Organization of the paper

The first part of the paper is devoted to the introduction of the categories of (generalized)
unstable modules which are of interest here. Section 2 provides a survey of the theory
of tensor abelian categories which motivates the constructions of the paper. Section 3
constructs the bialgebra B , by considering the endomorphisms of the additive group;
this is a generalization of Milnor’s approach to calculating the dual Steenrod algebra.
The other bialgebras used in the paper are constructed as quotients of B . Section 4
defines the categories of generalized unstable modules as categories of comodules;
the simple objects of these categories are considered briefly, together with associated
suspension functors.

The second part of the paper establishes the connection with the functorial point of view.
Section 5 reviews the category F of functors, the notion of an exponential functor and
then establishes the relation with the bialgebra B defined in the first part. Section 6
reviews and extends the results of Kuhn on representation categories, motivated by the
considerations of this paper.

The third part is devoted to an analysis of the projective and injective objects of the
category Ubi:gr at an odd prime. Section 7 considers the standard projective generators
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and the standard injective cogenerators of Ubi:gr ; the results are new and are applied
to obtain a new analysis of the structure of the projective and injective objects of the
category U of unstable modules. Section 8 uses the theory to provide a new proof of
the injectivity of H�.BV / in the odd prime case, more in the spirit of [6].

The fourth part of the paper corresponds to Section 9; this indicates how bigraded
unstable modules appear at the prime two. This theory is related to the study of modules
over the motivic Steenrod algebra. This material will be returned to in greater detail
elsewhere.

The appendix reviews certain results on comodules which are required in the paper.

Part I Basic structure

2 Tensor abelian categories

The category of unstable modules over the Steenrod algebra is a tensor abelian category
to which Tannakian theory can be applied. The relevant theory of tensor abelian
categories is reviewed in this section; for further details, the reader is referred to
Deligne–Milne [3].

2.1 General theory

A tensor category is a category C which is equipped with a symmetric monoidal
structure .C;˝; 1/, where 1 denotes the unit. For a field F, let VF denote the category
of F–vector spaces, equipped with the usual abelian tensor structure.

Definition 2.1.1

(1) An abelian tensor category is a tensor category .C;˝; 1/ for which the category
C is abelian and the functor ˝ is biadditive.

(2) For .C;˝; 1/ an abelian tensor category such that End.1/D F is a field, a fibre
functor is a faithful, exact, F–linear tensor functor C! VF .

An affine monoid scheme over F is a scheme of the form M WD Spec.B/, where B

is a bialgebra over F (not necessarily equipped with a conjugation), for which the
underlying F–algebra is commutative1. An affine group scheme is an affine monoid
scheme of the form G WD Spec.H /, where H is a Hopf algebra over F (a bialgebra
with conjugation).

1This usage of the term bialgebra conflicts with the terminology of [3].
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Notation 2.1.2 For M D Spec.B/ an affine monoid scheme over F, let RepF.M /

(the category of representations of M ) denote the category of right B –comodules.

Proposition 2.1.3 For M an affine monoid scheme, the category RepF.M / is a tensor
abelian category, equipped with a canonical fibre functor.

Example 2.1.4 Let F be a field.

(1) The category of comodules over the multiplicative group Gm Š Spec.FŒx˙1�/

is equivalent to the category of graded vector spaces.

(2) The category of comodules over G WD Spec.FŒt �=.t2� 1// is equivalent to the
category of Z=2–graded vector spaces.

(3) [3, Example 1.25] Let VZ=2
F denote the category of Z=2–graded vector spaces,

equipped with the symmetric monoidal tensor structure involving the Koszul
sign convention. Then VZ=2

F is a tensor abelian category but it is not of the form
RepF.M /, for any affine monoid scheme M .

All of the above examples are rigid tensor categories, which means that duality be-
haves well. In the first two cases, this follows from the fact that the categories are
representations of affine group schemes rather than just affine monoid schemes.

The following is the part of the theory of neutral Tannakian categories which is relevant
to this paper.

Theorem 2.1.5 (Deligne and Milne [3, Proposition 2.14]) Let .C;˝; 1/ be a F–linear
abelian tensor category such that End.1/D F and let !W C! V fd

F be a fibre functor to
the category of finite-dimensional vector spaces. There exists an affine monoid scheme
M D Spec.B/ over F such that .C;˝; 1/ is equivalent to the category RepF.M /

equipped with the canonical abelian tensor category structure and fibre functor.

Remark 2.1.6 The above theory can be generalized to the Z=2–graded situation
with the Koszul sign convention. In this context, the fibre functor is a tensor functor
!C W C! VZ=2

F :

This generalization is essential for the topological considerations, where the algebras
to be considered are naturally Z=2–graded and are commutative with respect to the
Koszul sign convention.

Example 2.1.7 Let F be the prime field of characteristic p and let U denote the
category of unstable modules over the F–Steenrod algebra.
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(1) For p D 2, the category U is an F2 –linear abelian tensor category, equipped
with a fibre functor to the category of F2 –vector spaces.

(2) For p> 2, the category U is an Fp –linear abelian tensor category, equipped with
a fibre functor to the category VZ=2

F of Z=2–graded Fp –vector spaces, equipped
with the tensor structure with the Koszul sign convention.

The theory of Tannakian categories is developed in terms of finite-dimensional repre-
sentations. For this reason, Tannakian theory does not apply directly in considering
unstable modules, but requires modification using completed tensor products in the
comodule structures. Modulo this addendum, Tannakian theory implies that the category
of unstable modules (for p D 2 and for p odd) has a description as a category of
comodules.

3 Endomorphisms of the additive group

This section constructs the bialgebra B , which is the fundamental mathematical object
of this paper, as the endomorphism bialgebra of the additive group in the category
of Z=2–graded algebras. Throughout the section, F denotes a prime field of odd
characteristic.

The F–algebra structures considered in this paper are graded commutative, with respect
to the Koszul sign convention. The foundations are developed in the super-algebra
context, namely using Z=2–gradings, to avoid imposing an a priori Z–grading. The
fact that the foundations of algebraic geometry can be generalized to the super-algebra
context is well known (see Deligne [2, Section 0.3]).

3.1 Super algebras

Let VZ=2
F denote the category of Z=2–vector spaces, equipped with the symmetric

monoidal structure provided by the graded tensor product with the Koszul sign con-
vention [3, Example 1.25]. Let AlgZ=2

F denote the category of unital commutative
monoids in VZ=2

F ; this is the category of unital Z=2–graded F–algebras which are
graded commutative, with respect to the Koszul sign convention. The tensor product of
VZ=2

F induces the coproduct in the category AlgZ=2
F ; in particular, the tensor product of

two objects of AlgZ=2
F is in AlgZ=2

F .

The category BialgZ=2
F of Z=2–graded bialgebras is the category of comonoid objects

in AlgZ=2
F . Namely an object B 2BialgZ=2

F is a Z=2–graded algebra B 2AlgZ=2
F which
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is equipped with a morphism2 B ! B ˝B in AlgZ=2
F , which is coassociative and

counital with respect to the counit morphism B! F in AlgZ=2
F .

3.2 The bialgebra B

Notation 3.2.1 Let H denote the free Z=2–graded algebra on the Z=2–graded vector
space hx;yi, where y has degree 1 and x has degree 0.

The algebra H has the structure of a Z=2–graded Hopf algebra, with underlying
algebra ƒ.y/˝ FŒx�, which is primitively-generated. The Hopf algebra H represents
the additive group in the context of Z=2–graded algebras.

Remark 3.2.2 The algebra H has a Hausdorff filtration .InH / given by powers of
the augmentation ideal, hence it is possible to form half-completed tensor products
H y̋V WD lim .H=InH /˝V , for any vector space V .

The half-completed tensor product is sufficient to be able to define a general notion of
completed comodule structure over a bialgebra B , where the structure morphism is
given by a morphism  W H !H y̋B .

In the applications, all objects will have a Z–grading and all completed tensor products
can be understood in the usual graded context. For this reason, the details concerning
the usage of the half-completed tensor product are left to be supplied by the interested
reader.

All comodule structures in this section are understood to be defined with respect to a
half completed tensor product.

Definition 3.2.3 For B 2 BialgZ=2
F a Z=2–graded bialgebra, a multiplicative right

B –comodule algebra structure on H is a morphism of super-algebras  W H !H y̋B

which induces a comodule structure on H .

Proposition 3.2.4

(1) There exists a Z=2–graded bialgebra B with underlying F–algebra the free
super-algebra

B Šƒ.w; �i ji � 0/˝ FŒu; �j jj � 0�

2Here, as elsewhere, the graded tensor product is denoted simply ˝ .
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and with coproduct

u 7! u˝uCw˝ �0

w 7! u˝wCw˝ �0

�i 7!

iX
sD0

�
ps

i�s˝ �sC �i ˝u

�j 7!

jX
sD0

�
ps

j�s˝ �sC �j ˝w:

(2) The underlying super–algebra H admits a B–comodule structure  W H!H y̋B
such that
(a)  is a morphism of super-algebras, determined by

y 7! y˝uC
X
i�0

xpi

˝ �i and x 7! y˝wC
X
j�0

xpj

˝ �j I

(b) the coproduct H !H ˝H is a morphism of B–comodules, where H ˝H

is given the tensor product B–comodule structure.

Proof (Indications) The construction of the bialgebra, its coproduct and the comodule
structure is a straightforward generalization of Milnor’s method [7] for calculating the
dual of the Steenrod algebra.

Remark 3.2.5

(1) The bialgebra B can be interpreted as the endomorphism bialgebra of the additive
algebraic group; this implies that it satisfies a universal property, the formulation
of which is left to the reader.

(2) The case of the prime field of characteristic two is similar, but more elementary,
since the algebras considered are commutative in the ungraded sense and the
respective Hopf algebra H is the polynomial algebra on a single generator. The
universal bialgebra B2 is F2Œ�j jj � 0�, equipped with the coproduct

��j D

jX
sD0

�2s

j�s˝ �s:

This is the extended Milnor–Hopf algebra of Bisson–Joyal [1, Section 4].

(3) It is well-known that the Steenrod algebra, for p D 2, can be regarded as
automorphisms of the additive formal group and it is folklore that this can
be extended, for p odd, by considering the super-algebra setting. The above
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generalizes this point of view, by considering the full endomorphism ring in the
Z=2–graded setting.

3.3 Bialgebras derived from the universal bialgebra B

There are quotient bialgebras of B which are of importance in considering the category
of unstable modules over the Steenrod algebra. The ideals hwi and hw; �0�u2i are
Hopf ideals in B , which allows the following definition.
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Definition 3.3.1

(1) Let SB denote the quotient B=.w/ in BialgZ=2
F .

(2) Let �A� denote the quotient a B=.w; �0�u2/ in BialgZ=2
F .3

(3) Let B00 2 BialgZ=2
F denote the sub-bialgebra of �A� which is generated by the

elements �j together with u.

Remark 3.3.2

(1) The bialgebras B; SB; �A� 2 BialgZ=2
F do not have Z=2–graded Hopf algebra

structures. For example, FŒ�0� is a sub-bialgebra of SB which does not have the
structure of a Hopf algebra, since �0 is grouplike and not invertible.

(2) The dual of the Steenrod algebra, A� , is obtained as the quotient of the bialgebra�A� by the Hopf ideal generated by u� 1.4

(3) The bialgebra �A� is related to the bigraded algebra J�� which was constructed
by Miller from the Brown–Gitler modules (cf Schwartz [10, Theorem 2.4.8]).

Lemma 3.3.3 There is a commutative diagram of Z=2–graded bialgebras:

B // SB //

��

�A�
��

FŒ�0;u�
�0 7!u2

// FŒu�

where the bialgebras FŒ�0;u�; FŒu� are generated by group-like elements. Moreover, the
vertical morphisms of the diagram are split surjections of bialgebras.

3.4 Introducing Z–gradings

The category of non-negatively graded F–vector spaces is equivalent to the category of
right comodules over FŒu�. The following results show that there are natural gradings
on the bialgebras under consideration, which induce the Z=2–gradings.

Lemma 3.4.1 For B one of the bialgebras B; SB;B00; �A�;
(1) B admits a morphism of bialgebras B! FŒu�, which factors across �A�! FŒu�;

3The notation reflects the relation with the dual of the Steenrod algebra.
4It is the desire for compatibility with the usual notation for the dual of the Steenrod algebra which

imposes the cumbersome notation for �A� .

Geometry & Topology Monographs, Volume 11 (2007)



Unstable modules over the Steenrod algebra revisited 255

(2) B is naturally bigraded with respect to the corestricted left and right FŒu�–
comodule structures;

(3) B is of finite type with respect to the grading induced by the left comodule
structure.

Proof The morphism B! FŒu� is provided by Lemma 3.3.3; the remainder of the
Lemma is straightforward.

Definition 3.4.2 Let B be a bialgebra as above, equipped with the bigrading induced
by the FŒu�–comodule structures; the total degree of a bihomogeneous element of
bidegree .m; n/ is the integer m� n.

The following result implies that all the Z=2–gradings which are considered are the
reduction of a natural Z–grading on the algebra B . There are similar results for the
other bialgebras.

Proposition 3.4.3 The Z=2–grading of B is the mod 2 reduction of the Z–grading of
B given by the total degree.

Remark 3.4.4 The usual grading of the dual Steenrod algebra A� can be recovered
from the total degree, using the total degree defined on �A� together with the observation
that the total degree of u is zero.

4 Categories of comodules related to unstable modules

This section defines the categories of comodules which are of interest in this paper, in
relation to the category of unstable modules over the Steenrod algebra.

Throughout this section, let F be the prime field of characteristic p , where p > 2; the
underlying category of vector spaces is taken to be the category of Z=2–graded vector
spaces, equipped with the Koszul–sign tensor structure.

The results presented in this section have analogues for the case p D 2.

4.1 Categories of graded comodules

Definition 4.1.1 Let B 2 BialgZ=2
F be a bialgebra which is equipped with a morphism

of bialgebras B! FŒu� and hence has a left and right grading. Suppose that B is of
finite type with respect to the left grading.
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Let Comodgr
B

be the category of graded, B–comodules, in the following sense. An
object of Comodgr

B
is a non-negatively graded vector space M , with grading defined

by the comodule structure M ! M ˝ FŒu�, together with the comodule structure
morphism M !M y̋B which satisfies the condition that the diagram

M //

��

M y̋B

��
M ˝ FŒu� // M y̋ FŒu�

commutes. In particular, the morphism M !M y̋B is a morphism of graded vector
spaces, where the grading on the right is induced by the right grading of B .

Proposition 4.1.2 Let B be a bialgebra which is equipped with a morphism of bialge-
bras B! FŒu�. Suppose that B is of finite type with respect to the grading induced by
the associated left FŒu�–comodule structure, then the category Comodgr

B
is an abelian

tensor category.

The bialgebras B; SB;B00; �A� satisfy the hypotheses of Definition 4.1.1, by Lemma
3.4.1; hence the above definition can be applied.

Definition 4.1.3 Define the following tensor abelian categories:

U.B/ WD Comodgr
B Ubi:gr

WD Comodgr
SB

U 00 WD Comodgr
B00 U WD Comodgr

zA�

U 0 WD Comodgr

FŒ�j jj�0�

The notation U does not conflict with the usual usage, by the following result.

Theorem 4.1.4 The category Comodgr

zA�
is equivalent to the category of unstable

modules over the mod–p Steenrod algebra A.

Proof The category of unstable modules over the Steenrod algebra is usually defined as
the category of graded modules over the Steenrod algebra, A, subject to an instability
condition in terms of the operation of elements derived from the dual basis to the
basis of monomials in the elements �j ; �i . It is elementary to show that this condition
is equivalent to a condition on the adjoint coaction involving the terms � t

1
. It is

a straightforward exercise to show that this implies that a graded module over the
Steenrod algebra is unstable if and only if the adjoint coaction extends to a graded right�A�–comodule structure.
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The objects of Ubi:gr are naturally bigraded (which justifies the notation), by the
following result, in which V??F denotes the category of Z�Z–graded vector spaces.

Proposition 4.1.5 The morphism SB ! FŒ�0;u� induces an exact functor of tensor
abelian categories Ubi:gr! V??F :

Notation 4.1.6 The bidegrees will be written as .a; b/, where a denotes the u–degree
and b denotes the �0 –degree.

Proposition 4.1.7 There is a diagram of exact functors between abelian categories:

U 0 //
_�

yO
��

U 00_�

��
U.B/

‰
// Ubi:gr

‚
// U

in which the horizontal morphisms indicate forgetful functors. The embeddings U 0 ,!
Ubi:gr and U 00 ,! U are fully faithful and admit retractions Ubi:gr! U 0 and U ! U 00
respectively.

Proof The exact functors are induced by the corestriction functors which are associ-
ated to the canonical morphisms of the respective bialgebras (cf Lemma 3.3.3). The
retractions are given by the respective right adjoint functors.

Remark 4.1.8
(1) The category U 00 is related to the full sub-category U 0 of U which identifies

with the objects which are concentrated in even degree, which has been used
in the work of Lannes and Zarati on the category U . In particular, there is an
adjunction, OW U 0�U W zO; where O denotes the forgetful functor and zO its right
adjoint. The category U 00 splits as a product of two copies of U 0 , corresponding
respectively to elements in even (resp. odd) degrees.

(2) The category U.B/ allows for the action of the element w of negative total
degree.

(3) The category Ubi:gr sheds light on the structure of U ; it is also of interest in
studying unstable modules over the motivic Steenrod algebra, since motivic
cohomology is naturally bigraded by the topological degree and the twist (or
weight).

Example 4.1.9 The object H WDƒ.y/˝ FŒx� has the structure of an object in U.B/
and hence of an object in Ubi:gr , by corestriction. Thus, for each non-negative integer
m, H˝m defines an object of U.B/ and therefore of Ubi:gr , by corestriction.
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4.2 Simple comodules

The simple objects of the abelian categories U , Ubi:gr , U 0 , U 00 are understood via the
following result.

Proposition 4.2.1 A simple object M in one of the abelian categories U , Ubi:gr , U 0 ,
U 00 has underlying vector spaces of total dimension one, with comodule structure which
corresponds to the grading.

Example 4.2.2 The bigraded vector space F.a; b/ of total dimension one, concentrated
in bidegree .a; b/ where a; b are non-negative integers has the natural structure of an
object of Ubi:gr .

Remark 4.2.3 The bigraded vector space F.a; b/ does not in general have the structure
of an object of U.B/. The simple objects of the category U.B/ are constructed from
the simple objects of the category Comodgr

C , where C denotes the quotient bialgebra of
B with underlying algebra FŒ�0;u�˝ƒ.�0; w/ 2 BialgZ=2

F .

4.3 Suspension functors

The simple objects of the categories Ubi:gr;U ;U 0;U 00 define suspension functors by
forming the tensor product.

Definition 4.3.1 Let a; b; n be non-negative integers.

(1) The suspension functor †.a;b/ of bidegree .a; b/ is the functor defined by the
tensor product F.a; b/˝�W Ubi:gr! Ubi:gr .

(2) The suspension functor †nW U ! U is the functor defined by the tensor product
F.n/˝�W U ! U .

The forgetful functor ‚W Ubi:gr! U sends F.a; b/ to the vector space F.aC 2b/ of
total dimension one, concentrated in degree aC 2b . The following lemma is clear.

Lemma 4.3.2 Let a; b be non-negative integers, then there is a commutative diagram

Ubi:gr †
.a;b/

//

‚
��

Ubi:gr

‚
��

U
†aC2b

// U :
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Part II The functorial viewpoint

5 Functors and bialgebras

The bialgebra B is the endomorphism bialgebra of the free graded-commutative algebra
on the Z=2–graded vector space hx;yi; forgetting the algebra structure, the free graded-
commutative algebra can be considered as a functor from F–vector spaces to F–vector
spaces. The relation between the category of unstable modules and the category of
functors between F–vector spaces follows from the comparison between the bialgebra
of endomorphisms of the additive group and the bialgebra of endomorphisms of the
free graded-commutative algebra functor, which is presented in Theorem 5.4.2.

5.1 Functors

The category F of functors from finite-dimensional F–vector spaces to F–vector spaces
is an abelian tensor category with enough projectives and enough injectives, given
respectively by Yoneda’s lemma and its dual. An object of F (a functor) is finite if
it has a finite composition series and is polynomial if it is polynomial in the sense of
Eilenberg–MacLane (see Kuhn [6]); these two conditions are equivalent for functors
which take finite-dimensional values. A functor is analytic if it is the colimit of its
finite subobjects; the full subcategory of analytic functors is denoted F! .

The divided power functors, �n , defined by V 7! .V ˝n/Sn , the symmetric power
functors, Sn , and the exterior power functors, ƒn , are finite functors which are of
fundamental importance to the theory. The embedding theorem of [6] is interpreted as
follows.

Theorem 5.1.1 (Kuhn [6]) For F a finite functor in F , there exists a finite set of
non-negative integers fnig and a surjection

L
i �

ni � F .

An important observation which is used in the proof is the following:

Lemma 5.1.2 Suppose that �a � F1 , �b � F2 are surjections in F , then there
exists a surjection �N � F1˝F2 in F , for some non-negative integer N .

An extensive array of calculations of Ext groups in the category F have been performed
(see Franjou–Friedlander–Scorichenko–Suslin [4], for example). For the purposes of
this paper, the following elementary calculation is important.

Lemma 5.1.3 For a; b non-negative integers,
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(1) HomF .�
b; ƒa/D

(
F b D

Pa
iD1 pni ; ni < niC1

0 otherwise;

(2) for p > 2, HomF .ƒ
a; �b/D

(
F aD b; a 2 f0; 1g

0 otherwise.

This result, together with the calculation of HomF .�
�; ��/ (see [6]), is used in con-

junction with the exponential property of the functors ��; ƒ� .

5.2 Generalities on exponential functors

A functor E 2 F is exponential if there exists a binatural isomorphism E.V ˚W /Š

E.V /˝E.W /, for V;W 2 V fd
F . A graded functor is exponential if it satisfies this

property with respect to the graded tensor product5.

Example 5.2.1 The injective functor IV , for V 2V fd
F , defined by IV WW 7!FHom.W ;V /

is an exponential functor.

Remark 5.2.2

(1) The tensor product of two (ungraded) exponential functors is an exponential
functor; in the graded case, one obtains a bigraded exponential functor.

(2) The structure of an exponential functor E induces a canonical product �W E˝
E!E and coproduct �W E!E˝E .

Example 5.2.3 For F a prime field of odd characteristic, the graded functor ƒ� is a
graded exponential functor; the associated product and coproduct are graded commuta-
tive, since Koszul signs intervene. More generally, for the topological application of this
paper, it is necessary to consider the bigraded exponential functor which corresponds
to ��˝ƒ� ; the associated product and coproduct are graded commutative in the usual
sense.

Exponentiality facilitates calculations of HomF : for E an exponential functor and
F;G functors in F , where E;F;G take finite-dimensional values, there is a natural
isomorphism of vector spaces

HomF .E;F ˝G/Š HomF .E;F /˝HomF .E;G/:

In the graded case, the right hand side has to be treated as a graded tensor product.

5For the remainder of this section, ‘exponential functor’ is used to indicate either the graded or the
ungraded version - the context should make the meaning clear.
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5.3 Endomorphisms of exponential functors

A graded exponential functor is of finite type if each component is a finite functor. The
endomorphism ring EndF .E/ of a graded exponential functor is a bigraded vector
space, which has additional structure.

Lemma 5.3.1 Let E be a graded exponential functor of finite type and let EndF .E/�

denote the bigraded dual. Then the following statements hold.

(1) EndF .E/� has the structure of a bialgebra.

(2) There is a natural coaction  W E!E y̋EndF .E/� which satisfies the following
properties:
(a)  is multiplicative.
(b) the diagonal �W E ! E ˝ E is a morphism of EndF .E/�–comodules,

where E˝E is given the tensor product comodule structure.

This result extends to the graded commutative setting.

5.4 Fundamental examples

The graded exponential functor S� and the bigraded exponential functor S� ˝ƒ�

respectively6 provide the examples of importance to the theory of unstable modules.

Example 5.4.1

(1) The graded exponential functor S� is of finite type and there is a natural coaction

S�! S� y̋EndF .S�/
�
:

(2) Let F be a prime field of odd characteristic. The bigraded exponential functor
ƒ�˝�� is of finite type and there is a natural coaction

S�˝ƒ�! .S�˝ƒ�/ y̋EndF .S�˝ƒ�/
�
:

Theorem 5.4.2 For F a prime field of odd characteristic, there is a natural morphism
B! EndF .S�˝ƒ�/� of Z=2–bialgebras, which is an isomorphism.

Proof The morphism exists by the universal property of B which is implicit in the
definition. It is straightforward to verify that it is an isomorphism.

Remark 5.4.3 For F a prime field of odd characteristic, HomF .ƒ
m; �n/ is trivial

unless either mDnD0 or mDnD1. The vector space HomF .ƒ
1; �1/ has dimension

one and the generator w of B is dual to a generator of this vector space.

6The notation E� is used here to avoid confusion with vector space duality.
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6 Representation categories

This section recalls and extends the results of Kuhn [6] on representation categories
which are relevant to the study of the category of unstable modules. The main result,
Theorem 6.3.1, identifies the category U.B/ as a representation category. The functors
r 0 , rB introduced in this section are used in the analysis of the projective and injective
objects of Ubi:gr in Section 7.

6.1 Generalities

Throughout this section, the following hypothesis is supposed to hold on the pair of
categories C;S .

Hypothesis 6.1.1 The category C is abelian and contains all small inductive limits,
which are exact. The category S ,! C is a full small subcategory of C with objects
fSig indexed over a set I .

Kuhn [6] defines the representation category defined by the category S , Rep.Sop/, as
the multi-object version of the category of representations (left modules) of the ring
End.S/op , for S an object of C . The standard example of an object of Rep.Sop/ is
given by the I–indexed object rS.X /i WD HomC.Si ;X / for X an object of C .

There is an adjunction of categories:

lSW Rep.Sop/� C WrS ;

in which the functor rS is defined as above.

The one-sided Morita equivalence result of Kuhn is basic to the theory:

Theorem 6.1.2 (Kuhn [6, Theorem 2.1]) The following statements are equivalent.

(1) S generates C .

(2) lS is exact and rS is fully faithful.

(3) C has enough injectives and, for all injectives I;J in C , rS.I/; rS.J / are
injective and the functor rS induces an isomorphism

HomC.I;J /Š HomRep.Sop/.rS.I/; rS.J //:

Moreover, if these conditions are satisfied, the adjunction counit lSrS! 1C is a natural
equivalence.
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A set of projective generators of the category Rep.Sop/ is given by frS.S/jS 2
Object.S/g, by Yoneda’s lemma. In the case that C is a k –linear category over a field
k , and under a locally finite-type hypothesis, there is a dual description of a set of
injective cogenerators.

Notation 6.1.3 For S; C as above, where C is a k –linear category over a field k , let
�W C! Rep.Sop/ denote the functor

X 7! HomC.X;�/
�

where � denotes vector space duality and the right hand side is regarded as a contravari-
ant functor on S .

Proposition 6.1.4 For C a k –linear category over a field k such that the vector space
Hom.S;T / is of finite dimension, for each pair of objects .S;T / of S , the category
Rep.Sop/ has set of injective cogenerators f�.S/jS 2 Object.S/g.

Proof The proof is straightforward, using vector space duality to reduce to the Yoneda
lemma.

6.2 Restriction and extension for representation categories

There are restriction and extension functors for representation categories, which are
associated to two small subcategories of an abelian category. This is relevant to the
study of the category of unstable modules over the Steenrod algebra when passing from
the category of objects concentrated in even degree to the full category of unstable
modules (see Corollary 6.3.4 below).

Let S; C satisfy Hypothesis 6.1.1 and suppose moreover that there are inclusions of
full subcategories S � T � C , where T has a set of objects indexed over a set J .

There are abelian representation categories Rep.Sop/;Rep.T op/ and canonical adjunc-
tions

lS W Rep.Sop/� C WrS lT W Rep.T op/� C WrT ;
where the functor rS is induced by HomC.S;�/ and similarly for rT .

Proposition 6.2.1 The inclusion functor S ,! T induces an exact restriction functor
ResW Rep.T op/! Rep.Sop/: Moreover, there is an adjunction

KW Rep.Sop/� Rep.T op/ WRes

where the functor Res is defined by restriction and the functor K is induced by Kan
extension. The functor Res is exact and the functor K is right exact.
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The Kan functor induces a commutative diagram

Rep.Sop/
lS //

K
��

C

Rep.T op/
lT

// C:

Proof The functor Res is the evident restriction functor; the functor K is defined by
the Kan extension of the functor which associates to rS.S/ the object rT .S/.

The commutativity of the given diagram follows from the fact that both functors
Rep.Sop/! C are left adjoint to the functor rS W C! Rep.Sop/.

Lemma 6.2.2 Under the hypotheses of Proposition 6.2.1, there is a natural transfor-
mation lSRes! lT of functors from Rep.T op/ to C .

Proof The adjunction unit 1!rT lT induces a natural transformation Res!ResrT lT ,
by composition with Res, and the functor ResrT lT is naturally equivalent to rS lT . The
required natural transformation is given by adjunction.

Proposition 6.2.3 Under the hypotheses of Proposition 6.2.1, suppose that the objects
of S generate C then the following properties hold.

(1) The functors lS W Rep.Sop/! C , lT W Rep.T op/! C are exact.

(2) The natural transformation lSRes! lT is a natural equivalence.

(3) The functors K;Res induce an equivalence of categories

Rep.Sop/=ker.lS/Š Rep.T op/=ker.lT /:

Proof The first statement follows from Theorem 6.1.2, since the hypothesis on S
implies that the objects of T generate C .

For the second statement, consider the natural transformation lSRes! lT . The functors
lSRes and lT are exact and send coproducts to coproducts, under the hypotheses of
the Proposition. Hence, by forming projective resolutions, it is sufficient to show
that the natural transformation is an equivalence on a set of projective generators of
Rep.T op/. The Yoneda lemma implies that the objects rT .T /, for T objects of T ,
form such a set of projective generators. Hence, it is sufficient to show that the natural
transformation lSResrT ! lT rT induced by composition with rT , is an equivalence.
Under the hypotheses of the Proposition, both functors above are naturally equivalent
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to the identity of C , by Theorem 6.1.2; the verification that the above morphism is a
natural equivalence is an adjunction argument, which is left to the reader.

The final statement is a corollary of the identification, provided by Kuhn, of C with the
respective localized representation categories.

Example 6.2.4 The hypotheses of the Proposition are necessary: for example, let C
be the category F and let S , T be the full subcategories with sets of objects f�1g and
f�njn� 0g respectively. The category Rep.Sop/ is equivalent to the category of vector
spaces and it is straightforward to see that the natural transformation lSRes! lT is
not a natural equivalence.

6.3 Representation categories related to unstable modules

Kuhn showed that the category of unstable modules over the F2 –Steenrod algebra is
equivalent to the representation category associated to the set of objects f��g in the
category of functors F defined with respect to F2 –vector spaces. This result extends
to give a description of U 0 in the case of odd characteristic, which is equivalent to the
representation category Rep.Sop/ for the full subcategory S of F with set of objects
f��g.

This does not extend to a description of the category U ; however, the following holds:

Theorem 6.3.1 U.B/ is equivalent to the representation category Rep.T op/ for the
full subcategory T of F with set of objects f��1 ˝ƒ�2g.

Proof This is an immediate consequence of Theorem 5.4.2.

Corollary 6.3.2 For n a non-negative integer, the object rB.IFn/ of U.B/ is injective.

The theorem provides adjunctions

lBW U.B/� F WrB l 0W U 0� F Wr 0:

In terms of the general framework introduced in the previous sections, the category C
corresponds to the full subcategory F! of analytic functors in F (see Henn–Lannes–
Schwartz [5] and Kuhn [6]).

Notation 6.3.3 For a full subcategory S ,! C with set of objects S, write Rep.fSgop/

for the associated representation category Rep.Sop/.
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Corollary 6.3.4 There is a diagram of functors, which is commutative up to natural
equivalence:

U.B/Š Rep.f��˝ƒ�gop/
lB //

Res
��

F

U 0 Š Rep.f��gop/

K

OO

l 0
// F ;

in which lB; l
0 are the exact left adjoints of the adjunction between F and the respective

representation categories. Moreover, the adjoint functors .K;Res/ induce an equivalence
of categories

Rep.f��˝ƒ�gop/=ker.lB/Š Rep.f��gop/=ker.l 0/Š F! :

Proof The result follows from Proposition 6.2.3.

Part III Further properties

7 Projective and injective objects

The definition of Ubi:gr as a category of comodules allows the construction of injective
cogenerators and projective generators in terms of cotensor products. For non-negative
integers a; b , the category Ubi:gr contains projective objects F.a; b/, analogues of
the Massey–Peterson free unstable modules F.n/ 2 U , and injective objects J.a; b/,
analogues of the Brown–Gitler modules J.n/2U . The structure of the objects F.a; b/

in the category Ubi:gr sheds light on the structure of the objects F.n/ in the category of
unstable modules. (The reader is referred to Schwartz [10] for the traditional approach
to the projective and injective objects in U ).

Throughout this section, let F be the prime field of characteristic p , where p is an odd
prime. The results of Appendix A, together with the material on graded comodules
introduced in Section 4, will be used in this section without further comment.

7.1 The comodules F.a; b/ and J.a; b/

Recall that V?F denotes the category of Z–graded vector spaces and V??F denotes the
category of Z�Z–graded vector spaces.

Let F.n/ 2 V?F denote the graded vector space of total dimension one concentrated in
degree n and let F.a; b/2V??F denote the bigraded vector space of total dimension one
concentrated in bidegree .a; b/. There is an exact functor V??F ! V?F which commutes
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with colimits and which is therefore determined by F.a; b/ 7! F.aC 2b/, for all pairs
of integers .a; b/.

There is a commutative diagram of exact functors:

U.B/ ‰ //


.B/ ##FFFFFFFF Ubi:gr ‚ //


.SB/
��

U



��

U 00oo


 0

��
V??F

// V?F V?F ;

in which the arrows labelled by variants of 
 are the gradings induced by corestriction
functors.

Proposition 7.1.1 The functors 
 W U ! V?F , 
 0W U 0 ! V?F , 
 .SB/W Ubi:gr ! V??F ,

 .B/W U.B/! V??F admit both left and right adjoints.

Proof The results (cf Appendix A.2) on the existence of right and left adjoints to the
corestriction functor extend to these categories Comodgr of graded right comodules.

The following Corollary is immediate.

Corollary 7.1.2 The categories U , U 0 , Ubi:gr , U.B/ have enough projective objects
and enough injective objects.

The Brown–Gitler modules and the Massey–Peterson modules have the following
definition from the comodule viewpoint. (cf the material of Appendix A.2 on cotensor
products and duality).

Definition 7.1.3 For n a non-negative integer, define the following objects of U ,
considered as the category of right �A�–comodules:

(1) J.n/ WD F.n/�FŒu�
�A� ;

(2) F.n/ the right �A�–comodule associated by duality to the left �A�–comodule�A��FŒu�F.n/.

There is the analogous definition in the bigraded situation:

Definition 7.1.4 For a; b non-negative integers, define the following objects of Ubi:gr ,
the category of right SB–comodules:

(1) J.a; b/ WD F.a; b/�FŒu;�0�
SB ;
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(2) F.a; b/, the right comodule associated to the left SB–comodule SB�FŒu;�0�F.a; b/

by duality.

The definitions of the objects F.a; b/, J.a; b/ in terms of adjoints to the corestriction
functor implies the following characterization, which is analogous to the characterization
of the unstable modules F.n/;J.n/.

Proposition 7.1.5 For a; b non-negative integers, the object F.a; b/ is projective
in Ubi:gr , J.a; b/ is injective in Ubi:gr and, for M an object of Ubi:gr , there are
isomorphisms

(1) HomUbi:gr.F.a; b/;M /ŠM.a;b/ ;

(2) HomUbi:gr.M;J.a; b//ŠM �
.a;b/

,

where M.a;b/ denotes the homogeneous component of M in bidegree .a; b/.

It is straightforward to verify the following connectivity result:

Lemma 7.1.6 For a; b non-negative integers,

(1) F.a; b/.s;t/ D

�
0 s < a or t < b

F .s; t/D .a; b/:

(2) J.a; b/.s;t/ D

�
0 s > a or t > b

F .s; t/D .a; b/:

The lemma implies that the objects F.a; b/ and J.a; b/ both have fundamental classes
in bidegree .a; b/, which are unique up to non-zero scalar multiple.

Lemma 7.1.7 For a; b non-negative integers,

(1) the object ‚J.a;b/ of U is a sub-module of the Brown–Gitler module J.aC2b/;

(2) the object ‚F.a; b/ of U is a quotient of the free unstable module F.aC2b/.

Proof Straightforward.

This implies the following:

Lemma 7.1.8 For a; b non-negative integers, there are isomorphisms:

(1) EndU .‚J.a; b//Š F;

(2) EndU .‚F.a; b//Š F.
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7.2 Properties of the projective objects of Ubi:gr

The projective F.a; b/ is defined as the left comodule SB�FŒu;�0�F.a; b/ and hence its
underlying vector space depends only upon the right FŒu; �0�–comodule structure of
SB . The following result reduces the study of these projective generators, via tensor
products, to the cases where either a or b is zero.

Proposition 7.2.1 For a; b non-negative integers, there is an isomorphism of objects
F.a; b/Š F.a; 0/˝F.0; b/ in Ubi:gr .

Recall that FŒ�j jj � 0� has a natural bialgebra structure and that there exists a morphism
of bialgebras FŒ�j jj � 0�! FŒ�0�, which induces a right FŒ�0�–comodule structure
upon FŒ�j jj � 0�. The Z=2–graded algebra FŒu�˝ƒ.�i ji � 0/ has the structure of a
right FŒu�–comodule with respect to the multiplicative structure morphism which is
induced by u 7! u˝u; �i 7! �i ˝u:

Proposition 7.2.1 is a formal consequence of the following observation, using the
properties of cotensor products over a tensor product of coalgebras.

Lemma 7.2.2 As a right FŒu; �0�–comodule, SB is isomorphic to the exterior tensor
product of the right FŒ�0�–comodule FŒ�j jj � 0� and of the right FŒu�–comodule
FŒu�˝ƒ.�i/.

Proof Immediate.

Recall that there is a commutative diagram of functors

F
rB //

‰rB **UUUUUUUUUUUUUUUUUUUUUU Rep.f��˝ƒ�gop/Š U.B/

‰
��

Ubi:gr

F

yOr 0
44iiiiiiiiiiiiiiiiiiiiii

r 0
// Rep.f��gop/Š U 0;

yO

OO

in which ‰ and yO denote the exact corestriction functors.

Proposition 7.2.3 For a; b non-negative integers, there are natural isomorphisms in
Ubi:gr

(1) F.0; b/Š yOr 0.�b/
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(2) F.a; 0/Š‰rB.ƒ
a/.

Proof (Indications) It is straightforward to show that there is a surjection F.0; b/!
yOr 0.�b/, using the defining property of F.0; b/. This can be seen to be an isomorphism

by comparing Poincaré series. The second statement admits a similar proof; namely,
there is a surjection F.a; 0/!‰rB.ƒ

a/ and the result follows by comparing Poincaré
series.

Remark 7.2.4

(1) It is not true in general that there is a surjection F.0; b/!‰r.�b/; the obstruc-
tion is the isomorphism ƒ1! �1 .

(2) The structure of the objects F.0; b/ is analogous to the structure of the projective
generators F.b/ in the category of unstable modules at the prime two (see [10,
Proposition 1.6.3 and Proposition 1.7.3]).

Lemma 7.2.5 For a positive integer a, there is a non-trivial surjection F.a; 0/!

†.1;0/F.a� 1; 0/, which is unique up to non-trivial scalar multiple.

Proof Straightforward.

The description of the objects F.a; 0/ given in Proposition 7.2.3 leads to the direct
proof of the following Proposition.

Proposition 7.2.6 For a positive integer a, there exists a finite filtration

0D g�1F.a; 0/� g0F.a; 0/� : : :gaF.a; 0/D F.a; 0/;

such that the filtration quotients are identified, for 0� j � a, by:

gj F.a; 0/=gj�1F.a; 0/Š†.j ;0/ yOr 0.ƒa�j /:

In particular, there is a monomorphism yOr 0.ƒa/ ,! F.a; 0/; which fits into a short
exact sequence in Ubi:gr :

0! yOr 0.ƒa/! F.a; 0/!†.1;0/F.a� 1; 0/! 0:

Proof (Indications) The filtration can be deduced by using the exponential property
of the graded functor ƒ� in F and the fact that ƒn is a simple object for each integer
n. For the final statement, it is straightforward to identify the kernel of the morphism
F.a; 0/!†.1;0/F.a� 1; 0/.
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Notation 7.2.7 For a non-negative integer a, define ˆF.a; 0/ to be F.a; 0/ for
a 2 f0; 1g and, for a> 1, via the short exact sequence in Ubi:gr :

0!ˆF.a; 0/! F.a; 0/!†.2;0/F.a� 2; 0/! 0:

(The convention is adopted that ˆ is associated to the double suspension †.2;0/ and
to the single suspension †.0;1//.

Lemma 7.2.8 For a> 1 an integer, there is a short exact sequence in Ubi:gr :

0! yOr 0.ƒa/!ˆF.a; 0/!†.1;0/ yOr 0.ƒa�1/! 0:

Proof The result follows from the final statement of Proposition 7.2.6.

7.3 Properties of the projective objects in U

The results of the previous section allow the description of the projective genera-
tors of U in terms of the forgetful functor ‚W Ubi:gr! U and the projective objects
F.a; 0/;F.0; b/2Ubi:gr . Proposition 7.3.3 expresses F.n/ in terms of an equalizer dia-
gram; the result is essentially a formal consequence of the definition of the corestriction
functor Ubi:gr! U .

This analysis is used to provide a filtration of the objects F.n/, which is given in
Theorem 7.3.8; the associated graded has an explicit description which can be regarded
as being a natural extension of the analysis of the structure of the objects F.n/ at the
prime two.

Lemma 7.3.1 For n a non-negative integer and a; b non-negative integers such that
n D aC 2b , there is a non-trivial morphism �a;bW F.n/! ‚F.a; b/; unique up to
non-zero scalar multiple, which is surjective.

Proof The existence of the surjection is given by Lemma 7.1.7; the fact that it is unique
up to non-zero scalar multiple follows from the fact that ‚F.a; b/ is of dimension one
in degree aC 2b , which implies that HomU .F.n/;‚F.a; b//Š F.

Recall that there are surjections in Ubi:gr , for integers a� 2 and b � 0:

F.a; 0/!†.2;0/F.a� 2; 0/

F.0; bC 1/!†.0;1/F.0; b/:

These induce surjections

la;bW‚F.a; b/!†2‚F.a� 2; b/

ra�2;bC1W‚F.a� 2; bC 1/!†2‚F.a� 2; b/
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in the category U .

Lemma 7.3.2 For integers a� 2; b � 1 satisfying aC2bD n, the following diagram
commutes up to non-zero scalar multiple

F.n/

�a;b

��

�a�2;bC1 // ‚F.a� 2; bC 1/

ra�2;bC1

��
‚F.a; b/

la;b

// †2‚F.a� 2; b/:

Proof This result follows immediately from Lemma 7.1.6.

Proposition 7.3.3 For n a non-negative integer, the object F.n/ identifies with the
equalizer of the diagram

L
aC2bDn‚F.a; b/

la;b //
ra;b

//
L

cC2dDn‚F.c; d/:

In particular, the morphismM
aC2bDn

�a;bW F.n/!
M

aC2bDn

‚F.a; b/

is a monomorphism.

The Proposition is a formal consequence of the definition of the functor Ubi:gr! U ; it
can be proved explicitly using the identification provided by Lemma 7.3.4 below. Recall
that the bialgebra SB has the structure of a right FŒu�–comodule via the corestriction
associated to the morphism of Hopf algebras FŒu; �0�! FŒu� given by �0 7! u2 .

Lemma 7.3.4 For n a non-negative integer,

(1) the surjection SB! �A� induces a surjection SB�FŒu�F.n/� �A��FŒu�F.n/; which
is a morphism of left �A�–comodules, where SB�FŒu�F.n/ is given the corestricted
structure;

(2) the left SB–comodule SB�FŒu�F.n/ is isomorphic to
L

aC2bDn
SB�FŒu;�0�F.a; b/.

Proof The surjectivity of the morphism in (1) follows from the right exactness of
��FŒu�F.n/, which reflects a coflatness property. The proof of the isomorphism of (2)
is straightforward.
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Proposition 7.3.3 gives rise to a filtration of the object F.n/ in the category U as
follows. The choice of the filtration is motivated by the consideration of the structure
of the object F.2/ in the category U , for which there is a short exact sequence:

0!‚ˆF.2; 0/! F.2/!‚F.0; 1/! 0:

Notation 7.3.5 For j � �1 an integer, let fj F.n/ denote the subobject of F.n/ 2 U
defined by the kernel of the morphism

F.n/!
M

aC2bDn
b�jC1

‚F.a; b/:

This defines an increasing filtration of F.n/, with f�1F.n/ zero and fj F.n/D F.n/

for 2j � n.

The filtration quotients can be identified explicitly as follows. In the Lemma below, the
morphism la;b is taken to be zero if the integer a is in f0; 1g.

Lemma 7.3.6 For a; b � 0 integers, the kernel of the morphism la;bW ‚F.a; b/!

†2‚F.a� 2; b/ identifies with the object ‚fˆF.a; 0/˝F.0; b/g:

Proof The lemma follows immediately from the definition of the objects ˆF.a; 0/.

Lemma 7.3.7 For a; b non-negative integers such that aC 2b D n, the morphism
�a;b induces a monomorphism

fbF.n/=fb�1F.n/ ,!‚fˆF.a; 0/˝F.0; b/g:

Proof This is an immediate consequence of the definition of the filtration and of
Lemma 7.3.6.

Theorem 7.3.8 For n a positive integer, the object F.n/ 2 U has a finite increasing
filtration ffbF.n/g such that the filtration quotients are of the form

fbF.n/=fb�1F.n/Š‚fˆF.a; 0/˝F.0; b/g;

where a; b are non-negative integers such that aC 2b D n.

Proof (Indications) The theorem is proved by showing that the monomorphisms
defined in Lemma 7.3.7 are isomorphisms. This can be proved by analysing the
monomial basis of F.n/ in conjunction with Proposition 7.3.3; indeed, it is sufficient
to use a comparison of Poincaré series.
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A related analysis of the structure of F.n/ is given in Schwartz [11], from a different
viewpoint. The advantage of the approach given above is that it leads immediately to
the following description of the filtration quotients in a finite filtration of F.n/.

Corollary 7.3.9 For n a positive integer, F.n/ has a finite filtration with associated
graded M

aC2bDn
a�0

Or 0.ƒa
˝�b/˚

M
aC2bDn

a�1

†Or 0.ƒa�1
˝�b/:

Proof The Corollary follows from an analysis of the unstable modules ‚.ˆF.a; 0/˝

F.0; b//, by Theorem 7.3.8. Lemma 7.2.8 implies that there is a short exact sequence

0! yOr 0.ƒa/˝F.0; b/!ˆF.a; 0/˝F.0; b/!†.1;0/ yOr 0.ƒa�1/˝F.0; b/! 0

and F.0; b/ identifies with yOr 0.�b/, by Proposition 7.2.3. Moreover, exponentiality
implies that there is an identification of yOr 0.ƒa/˝ yOr 0.�b/ with yOr 0.ƒa˝�b/ and
likewise for the term involving a� 1. The result follows by applying the functor ‚,
using the identification OD‚ yO .

7.4 The injective cogenerators of Ubi:gr and U

In this section, the injective cogenerators J.a; b/ are analysed. It is shown that the
classical results concerning the structure of the Brown–Gitler modules over an odd
prime p arise from the category Ubi:gr . In particular, a description of the injective
cogenerators is given in terms of the functor ‰�W F ! Ubi:gr .

Proposition 7.4.1 For a; b non-negative integers, there are canonical isomorphisms
in Ubi:gr :

(1) J.a; 0/Š F.a; 0/

(2) J.a; b/Š J.a; 0/˝J.0; b/.

Proof The result is a formal consequence of the observation that, as a left FŒu; �0�–
comodule, the bialgebra SB is the exterior tensor product of the algebra FŒu�, considered
as a left FŒu�–comodule, and the algebra FŒ�j jj � 0�˝ƒ.�i ji � 0/, which has the
structure of a left FŒ�0�–comodule.

The Proposition implies that the problem of understanding the structure of the objects
J.a; b/ can be reduced to understanding the objects J.0; b/ in Ubi:gr , up to suspension.
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Lemma 7.4.2 For b a non-negative integer, there is a canonical monomorphism
†.0;1/J.0; b/ ,! J.0; b C 1/ in the category Ubi:gr , unique up to non-zero scalar
multiplication.

Proof Straightforward.

Recall that the functor �W F ! Rep.f�� ˝ ƒ�gop/ Š U.B/ is defined by F 7!

HomF .F;�/
� . There is the composite functor

‰�W F ! Ubi:gr;

where ‰ is the forgetful functor U.B/! Ubi:gr . The bigraded exponential property of
the functors ��˝ƒ� implies the following variant of a standard result.

Proposition 7.4.3 For F;G objects of F , there is a natural isomorphism in Ubi:gr :

‰�.F ˝G/Š‰�.F /˝‰�.G/;

where the tensor product on the right hand side denotes the bigraded tensor product.

The following result gives an elegant description of the objects J.0; n/.

Proposition 7.4.4 For n a non-negative integer, there is an isomorphism J.0; n/Š

‰�.�n/ in Ubi:gr . In particular, in bidegree .a; b/, there is an isomorphism of vector
spaces

J.0; n/a;b Š HomF .�
n; ƒa

˝�b/�:

Proof (Indications) The result follows from the identification of the category U.B/
as the representation category Rep.f�� ˝ƒ�gop/, the definition of the functor ‰ ,
together with the observation that the morphism ƒ1! �1 does not intervene in the
calculation of HomF .�

n; ƒ�˝��/.

Corollary 7.4.5 There is a surjection J.0; 1/
�.0;1/
�! F.1; 0/, which is unique up to

non-zero scalar multiple.

Proof Proposition 7.4.1 implies that F.1; 0/Š J.1; 0/, hence it is sufficient to show
that the object J.0; 1/ has dimension one in bidegree .1; 0/, using the representing
property of J.1; 0/; this follows from Proposition 7.4.4.

Remark 7.4.6 The analogous description does not hold for J.a; 0/, in general; for
HomF .ƒ

a; �� ˝ ƒ�/ has total dimension two, for a positive integer a, since the
diagonal morphism ƒa!ƒ1˝ƒa�1 induces a morphism ƒa! �1˝ƒa�1 , using
the isomorphism ƒ1 Š �1 .
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This result gives the following information on the structure of the objects of the form
‰�.F / in the category Ubi:gr .

Corollary 7.4.7 For F 2 F a finite functor, there exists an exact sequence in Ubi:grM
j

J.0; cj /!
M

i

J.0; bi/�‰�.F /! 0

for finite sets of non-negative integers fbig, fcj g.

Proof Theorem 5.1.1 implies that there exist finite sets of integers fbig, fcj g and
an exact sequence

L
j �

cj !
L

i �
bi ! F ! 0. The result follows since � is right

exact.

Notation 7.4.8 Let �0W F ! Rep.f��gop/ denote the functor � associated to f��g,
as in Notation 6.1.3.

Recall that there is a natural embedding U 0 ,!Ubi:gr which is denoted by yO . There is a
natural embedding yO�0.�n/ ,! J.0; n/ in Ubi:gr , which corresponds to the beginning
of a filtration with associated graded described explicitly by the following result.

Proposition 7.4.9 For a non-negative integer n, the object J.0; n/ has a finite filtration
with associated graded M

†.d;0/ yO�0.�n�d /;

where d ranges over the set of integers 0� d � n which can be expressed as a sum of
at most n pairwise distinct powers of p .

Proof The result is deduced by using the exponential property of �� to obtain a direct
sum decomposition at the level of vector spaces, which is the associated graded to a
filtration in Ubi:gr .

There are analogues of the Mahowald exact sequences in the category Ubi:gr (cf [10,
Proposition 2.3.4]). To state the result, define the following morphisms which are
induced by the Verschiebung �np V

!�n . (Recall that the Verschiebung is the morphism
which is dual to the Frobenius p th power morphism).

Definition 7.4.10 For n a positive integer,

(1) let VnW J.0; np/! J.0; n/ denote the surjective morphism which is induced
under the functor ‰�W F ! Ubi:gr by the Verschiebung �np V

!�n ;
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(2) let V 0nW J.0; npC1/! F.1; 0/˝J.0; n/Š†.1;0/J.0; n/ denote the composite
morphism

J.0; npC 1/! J.0; 1/˝J.0; n/
�.0;1/˝1
�! F.1; 0/˝J.0; n/

where the first morphism is induced under ‰� by the composite

�npC1 �
! �1

˝�np 1˝V
! �1

˝�n;

in which � denotes the coproduct.

Proposition 7.4.11 For n a positive integer, there are short exact sequences in Ubi:gr :

(1) 0!†.0;1/J.0; np� 1/! J.0; np/
Vn
! J.0; n/! 0I

(2) 0!†.0;1/J.0; np/! J.0; npC 1/
V 0n
!†.1;0/J.0; n/! 0:

If m is a positive integer such that m 6�0; 1 mod p , then the canonical monomorphism

†.0;1/J.0;m� 1/Š J.0;m/

is an isomorphism.

Proof (Indications) The result can be proved by a calculation in terms of the
description of J.0;�/ as ‰�.��/.

Remark 7.4.12 The consideration of the bigraded situation naturally gives rise to the
suspension which appears in the second Mahowald exact sequence (see [10, Proposition
2.3.4]), which corresponds to the presence of the Bockstein operation.

Proposition 7.4.13 For n a positive integer, there are canonical isomorphisms

(1) J.2n/Š‚J.0; n/

(2) J.2nC 1/Š‚J.1; n/,

where ‚W Ubi:gr! U denotes the canonical forgetful functor.

Proof (Indications) There are many ways of approaching the proof of this result.
For example, use the canonical (up to non-zero scalar multiple) monomorphisms
‚W J.a; b/ ,! J.aC 2b/. It is straightforward to use the Mahowald exact sequences
to compare Poincaré series in the relevant cases of the Proposition.

Geometry & Topology Monographs, Volume 11 (2007)



278 Geoffrey M L Powell

8 New proofs of fundamental results

The analysis of the categories U.B/, Ubi:gr in relation to the category U given in this
paper yields direct proofs of the foundational results of the theory of nil-localization of
the category of unstable modules in odd characteristic, generalizing the approach of
Kuhn available over the field F2 .

8.1 Injectivity of H �.BFn/ in U

This section is devoted to giving a self-contained proof of the injectivity of the object
H�.BFn/ Š z‚rB.IFn/ of U Theorem 6.1.2 applied to the representation category
Rep.f��˝ƒ�gop/. The proof relies on the analysis of the injective cogenerators of
the categories U ;Ubi:gr in Section 7.

Proposition 8.1.1 Let a be a non-negative integer, then the object z‚�.�a/ is injective
in U .

Proof The injective cogenerators of U are considered in Section 7.4; in particular,
combining Proposition 7.4.4 and Proposition 7.4.13 implies that the object z‚�.�ai /

identifies with an injective object in U .

Lemma 8.1.2 Let n be a non-negative integer, then there exists a monomorphism in
U.B/

rB.IFn/ŠH˝n ,!
Y
i�0

�.�ai /;

where the sequence of integers ai can be taken to have limit 1 as i goes to 1.

Proof The structure theory of U 0ŠRep.f��gop/ implies that there exists a morphism
˛W rB.IFn/ŠH˝n!

Q
i�0 �.�

ai / in U.B/ such that the restriction Res.˛/ in U 0 is
a monomorphism.

Theorem 5.1.1 implies that ˛ is injective, as follows; suppose that .a; b/ is a pair
of non-negative integers, then Lemma 5.1.2 implies readily that there is a surjection
�W �T !ƒa˝�b , for an integer T . The morphism ˛ is injective in bidegree .0;T /,
by hypothesis; the surjection � implies that the morphism ˛ is injective in bidegree
.a; b/.

Theorem 8.1.3 For a non-negative integer n, the object H�.BFn/ is injective in U .
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Proof There is a monomorphism rB.IFn/ Š H˝n ,!
Q

i�0 �.�
ai / in U.B/, by

the previous Lemma. The injectivity of rB.IFn/ in U.B/ (Corollary 6.3.2) yields a
retraction.

Applying the functor z‚W U.B/! U yields a split monomorphism in U . The functor
z‚ commutes with products and the objects z‚�.�ai / are injective in U , by Proposition
8.1.1, hence the result follows.

8.2 Nilclosure for unstable modules

This section makes explicit the structure of a nil-closed unstable module, when the
field p has odd characteristic. Theorem 8.1.3 implies that there is an exact functor
l W U ! F and an adjunction

l W U � F Wr;
where the functor l W U ! F is defined to be the functor which sends the object M of
U to the functor Fn 7! HomU .M;H�.BFn//0 , where 0 denotes the profinite dual.

Notation 8.2.1 Let z‚W U.B/ ! U denote the exact corestriction functor, which
identifies with the composite U.B/! Ubi:gr! U .

The definition of the categories as comodule categories implies the following result.

Lemma 8.2.2 The functor z‚W U.B/! U admits a left adjoint �W U ! U.B/.

The object H�.BFn/ of U identifies with the object z‚rBIFn , hence the following
result follows, using the identification of the functor lB which is provided by the theory
of Section 6.

Corollary 8.2.3 The adjunction l W U � F Wr is the composite of the adjunctions
�W U � U.B/ W z‚ and lBW U.B/� F WrB .

Remark 8.2.4 The theory of [5] includes the identification of the kernel of the functor
l as the full subcategory of nilpotent unstable modules, which is omitted above.

Using the terminology of localization of abelian categories as in [5], Corollary 8.2.3
implies the following result.

Corollary 8.2.5 An object of U is nil-closed if and only it is isomorphic to an object
of the form z‚rB.F /, for F an object of F .

Example 8.2.6 The object ‚F.a; 0/ is a nil-closed object in U , whereas ‚F.0; b/

is not nil-closed, for b � 1. It follows that the object ‚F.a; b/ is not nil-closed in U ,
for b � 1. There is a canonical monomorphism ‚F.a; b/ ,! z‚rB.ƒ

a˝�b/, which
represents the nil-closure, where z‚W U.B/! U is the corestriction functor.
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Part IV Motivic vistas at the prime 2

9 Bigraded and ordinary unstable modules at the prime two

The construction of a category of bigraded unstable modules Ubi:gr at the prime two
proceeds as in the odd characteristic case by considering the endomorphisms of the
primitively-generated Hopf algebra FŒy�=y2 ˝ FŒx�, where F is taken to denote F2

throughout this section.

There is no direct analogue of the exact functor ‚ to the category of unstable modules;
the categories are related through a category UM , which is a perturbation of the category
of unstable modules; the category UM can be related to modules over the motivic
Steenrod algebra (Voevodsky [14; 13]). In particular, motivic cohomology is a bigraded
cohomology theory, hence the presence of the bigrading is essential.

This section outlines the construction of UM and its relation to U ; some of the results
are implicit in the work of Yagita [15; 16].

9.1 The category UM

The underlying category used in this section is the category of modules over the
polynomial algebra FŒ� �. In the study of motivic cohomology, this corresponds to the
fact that the coefficient ring is not concentrated in a single degree.

The category UM is constructed by considering endomorphisms of the algebra HM
which is defined as follows.

Notation 9.1.1 Let HM denote the commutative FŒ� �–algebra FŒ� �Œx;y�=y2 D �x .

The algebra HM is to be considered as a perturbation of the algebra FŒy� and the
generators y;x are given independent gradings; this imposes the requirement that the
generator � has non-zero grading. In order to encode the non-trivial action on the
underlying ring FŒ� �, one is obliged to work with comodules over an affine category
scheme. The latter is the algebraic object which represents a small category; it is related
to the more familiar notion of a Hopf algebroid (cf Ravenel [9, Appendix]) in the same
way that a bialgebra is related to a Hopf algebra.

Remark 9.1.2 An affine category scheme in the category of F–algebras is given
by a pair of commutative F–algebras .A; �/ together with structure morphisms of
F–algebras �L; �RW A � � , �W � ! A, �W � ! � ˝A � which satisfy a suitable
subset of the axioms for a Hopf algebroid.
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In the current situation, the algebra A corresponds to FŒ� � and the comodules considered
are FŒ� �–modules.

Remark 9.1.3 The comodules considered in this section need not have underlying
module which is finitely-generated over the algebra FŒ� �. For this reason, the comodule
structures considered are defined with respect to the completed tensor product, which
will correspond to the underlying grading in applications. The necessary details are
left to be supplied by the reader.

Proposition 9.1.4 There exists an affine category scheme .FŒ� �;D/ in the category of
commutative F–algebras, where

DŠ FŒ�; t;u; �i ; �j ji; j � 0�=.u2
D t�0; �

2
j D t��jC1//

and the structure morphisms are given by �LW � 7! � , �RW � 7! t� , � sends t;u; �0 to
1 and all other generators to zero. The coproduct �W D!D˝FŒ��D is determined by

u 7! u˝u t 7! t ˝ t

�k 7!
X

iCjDk

�2i

j ˝ �i �k 7!

X
iCjDk

�2i

j ˝ �i C �k ˝u:

Moreover, the FŒ� �–algebra HM has the structure of a right .FŒ� �;D/–comodule, with
structure morphism  W HM!HM y̋ FŒ��D which is the morphism of algebras deter-
mined by

� 7! � t y 7! y˝uC
X
j�0

x2j

˝ �j x 7!
X
j�0

x2j

˝ �j :

Proof The proof is analogous to that of Proposition 3.2.4. This requires the verification
that the only relations imposed by the relation y2 D �x are the relations u2 D t�0
(which corresponds to the imposed grading upon t ) and the relations �2

j D t��jC1 .

Remark 9.1.5 The above result should be compared with the calculation of the dual
of the algebraic motivic Steenrod algebra [14] over the coefficient ring FŒ�; ��, when �
is set to zero. The modification above is that the ‘grouplike’ elements t;u; �0 are not
taken to be 1.

Proposition 9.1.6 There is a unique affine category scheme structure upon

.FŒ� �; FŒ�; t;u; �0�=u
2
D t�0/
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such that the surjective morphism of F–algebras D! FŒ�; t;u; �0�=u
2 D t�0 , defined

by sending the generators �iC1; �i to zero for i � 1, induces a morphism of affine
category schemes

.FŒ� �;D/! .FŒ� �; FŒ�; t;u; �0�=u
2
D t�0/:

Proof Straightforward.

Remark 9.1.7 The category of right comodules over the affine category scheme
.FŒ��;FŒ�; t;u; �0�=u

2D t�0/ can be identified with a category of bigraded FŒ� �–modules,
where the generator � has non-zero bidegree.

In the motivic setting, the usual convention is to bigrade so that u–degree 1 corre-
sponds to bidegree .1; 1/, �0 –degree 1 corresponds to bidegree .2; 1/ and t –degree 1

corresponds to bidegree .0; 1/.

The definition of the category of graded comodules given in Section 4.1 generalizes to
the current context.

Definition 9.1.8 Let UM denote the category of graded right .FŒ� �;D/–comodules.

Proposition 9.1.9 The category UM is a tensor abelian category.

9.2 Relating UM to unstable modules

There are standard base change constructions for affine category schemes; namely, if
.A; �/ is an affine category scheme in the category of commutative F–algebras and
f W A!B is a morphism of commutative F–algebras, then base change yields an affine
category scheme .B;B˝A�˝A B/. The functor on the category of right A–modules,
M 7!M ˝A B extends to a functor from the category of right .A; �/–comodules
to the category of right .B;B˝A �˝A B/–comodules, which is exact if the functor
M 7!M ˝A B is exact.

The base change constructions apply to the two choices of augmentation �1; �0W FŒ� ��F

given respectively by � 7! 1; � 7! 0. To avoid confusion, the induced bialgebras will
be written respectively ��

1
D and ��

0
D (noting that an F–affine category scheme of the

form .F; �/ is a bialgebra).

Lemma 9.2.1 The bialgebra ��
1
D is isomorphic to the bialgebra �A� .
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Proof The underlying F–algebra of ��
1
D is generated by the elements ft;u; �i ; �ig

subject to the induced relations. It is straightforward to verify that the assignment
� 7! 1 implies the identity t D 1. The result follows readily.

Definition 9.2.2 Let Ubi:gr;t denote the category of graded comodules over ��
0
D .

Remark 9.2.3 The category Ubi:gr;t is not the precise analogue of the category Ubi:gr ,
since the grouplike element t is present in the bialgebra ��

0
D and there is the relation

u2 D t�0 .

Proposition 9.2.4 The base change functors induce a diagram of functors between
tensor abelian categories

UM
��

1

��

��
0 // Ubi:gr;t

U

in which ��
1

is exact and ��
0

is right exact.

Proof The functors are induced by base change, using Lemma 9.2.1 to identify the
category of comodules over ��

1
D with U . The exactness properties correspond to the

exactness properties of the respective functors �˝FŒ�� F.

Proposition 9.2.5 There is an adjunction

��1 W UM � U W�:

Moreover, the underlying FŒ� �–module of �M , for M an unstable module, is � –torsion
free.

Proof (Indications) The existence of the right adjoint to ��
1

is formal, using the
existence of a set of projective generators for the category UM . The � –torsion statement
is a consequence of the surjectivity of the morphism between projective generators
which represents multiplication by � .

Remark 9.2.6 The existence of � and its fundamental properties is implicit in the
work of Yagita [15] on the motivic cohomology of classifying spaces of finite groups.
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Part V Appendix

Appendix A Comodules

Throughout this section, the base ring is taken to be a field, F; all algebras are taken to
be unital and associative and all coalgebras counital and coassociative. In particular, a
bialgebra will have underlying algebra which is unital and augmented.

A.1 Duality for comodules and modules

The following results summarize the elementary properties of duality in the non-graded
case. The category of left modules over an algebra A is written AMod and the category
of right comodules over a coalgebra C is written ComodC ; the evident left/right mirror
image categories are denoted in the obvious way.

Proposition A.1.1 (Milnor–Moore [8, Section 3]) Let F be a field and let A be an
algebra, C a coalgebra and B a bialgebra over F, for which the underlying F–vector
spaces are of finite dimension. The following statements hold:

(1) the dual A� has a natural coalgebra structure;

(2) the dual C � has a natural algebra structure;

(3) the canonical morphisms A!A�� and C !C �� are isomorphisms of algebras
and coalgebras respectively;

(4) the dual space B� has the structure of a bialgebra and the canonical morphism
B! B�� is an isomorphism of bialgebras;

(5) the bialgebra B has the structure of a Hopf algebra if and only if the dual B�

has the structure of a Hopf algebra;

(6) there are equivalences of categories: AMod�ComodA� and ModA�A� Comod .

The following result is a straightforward application of vector space duality.

Proposition A.1.2 Let A be a finite dimensional F–algebra and let C be a finite
dimensional F–coalgebra. The following statements hold:

(1) for M a left (respectively right) A–module, the dual vector space M � has a
natural left (resp. right) A�–comodule structure;

(2) for N a left (respectively right) C –comodule, the dual vector space N � has a
natural left (resp. right) C �–module structure.
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The dual M � of a left module M over an F–algebra A has the structure of a right
A–module; under a finiteness hypothesis, there is an analogue for coalgebras.

Proposition A.1.3 Let C be an F–coalgebra of finite dimension and let N be a left
C –comodule, then the dual vector space N � has the structure of a right C –comodule.

Proof The right C –comodule structure is adjoint to the left C �–module structure
which is given by the dual C �˝N �!N � to the comodule structure morphism.

A.2 Corestriction and cotensor products

The following standard result corresponds to the fact that the category of modules over
a ring is abelian.

Proposition A.2.1 The category of right (respectively left) comodules over a F–
coalgebra is an abelian category.

The cotensor product of two comodules over a coalgebra is formally dual to the
definition of the tensor product of two modules over an algebra.

Definition A.2.2 Let C be a F–coalgebra and let M be a right C –comodule and let
N be a left C –comodule; the cotensor product M �C N is the kernel of the morphism
 M ˝ 1� 1˝ N W M ˝N !M ˝C ˝N , where  M ;  N denote the respective
structure morphisms of M;N .

Lemma A.2.3 For M 2ComodC a right C –comodule, there is a natural isomorphism
of F–vector spaces M ŠM �C C .

Proof This fundamental result is a consequence of the counital axiom for the coalgebra
C .

The following result is standard.

Proposition A.2.4 Let C be an F–coalgebra and let N be a left C –comodule, then
the cotensor product ��C N W ComodC ! VF is a left exact functor.

Example A.2.5 Let C denote the underlying coalgebra of the F–Hopf algebra FŒu;u�1�

and let F.n/ denote the left C –comodule F with structure morphism F! C ˝ F,
1 7! xn ˝ 1, for some integer n. The functor ��C F.n/ is an exact functor from
the category of right C –comodules to the category of vector spaces. This functor
corresponds to the projection of a graded vector space onto the component of degree n.
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The following result has an obvious generalization to the graded finite-type case, when
a suitable connectivity hypothesis is imposed on the graded modules (cf [8, Proposition
3.2], where all graded modules are taken to be connective in a suitable sense).

Lemma A.2.6 Let C be an F–coalgebra of finite dimension, let M be a right C –
comodule and let N be a left C –comodule, such that M;N are of finite dimension.
There is an isomorphism of vector spaces .M �C N /� ŠM �˝C� N � .

Definition A.2.7 For f W D ! C a morphism of F–coalgebras, the corestriction
functor f�W ComodD ! ComodC is the functor which sends M 2 ComodD to the
right C –comodule M 2 ComodC , with structure morphism the composite

M !M ˝D
1˝f
�!M ˝C:

The corestriction functor f�W DComod! C Comod is defined analogously.

Proposition A.2.8 Let f WD!C be a morphism of F–coalgebras, then the corestric-
tion functor f�W ComodD!ComodC admits a right adjoint f !W ComodC !ComodD

given by N 2 ComodC 7!N �C D , where the D–comodule structure on N �C D is
induced by the coproduct D!D˝D .

Proof The adjunction morphisms are induced by the following constructions. For
M a right D–comodule, there is a canonical morphism M ! .f�M /�C D which is
induced by the structure morphism M !M ˝D . For N a right C –comodule, the
counit of the adjunction is the morphism N �C D!N �C C Š C which is induced
by f , where the isomorphism is provided by Lemma A.2.3.

The corestriction functor admits a left adjoint when the coalgebras satisfy suitable
finite-type hypotheses. The ungraded version of the result is the following:

Proposition A.2.9 Let f WD! C be a morphism of F–coalgebras, where D;C are
of finite dimension. The corestriction functor f�W ComodD ! ComodC admits a left
adjoint f �W ComodC ! ComodD given by N 7!D�˝C� N , where N is regarded
as a left C �–module and the right D–comodule structure is adjoint to the extended left
D�–module structure.

Remark A.2.10 Suppose that the right C –comodule N is of finite dimension, where
f W D! C satisfies the hypotheses of the Proposition, then there is an isomorphism of
right D–comodules .D�C N �/� ŠD�˝C� N . This result generalizes to the context
of graded comodules if the graded objects N;C;D are all of finite type and the dual
algebras D�;C � are connective (trivial in sufficiently negative dimensions).
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