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An algebraic introduction to the Steenrod algebra

LARRY SMITH

The purpose of these notes is to provide an introduction to the Steenrod algebra
in an algebraic manner avoiding any use of cohomology operations. The Steenrod
algebra is presented as a subalgebra of the algebra of endomorphisms of a functor.
The functor in question assigns to a vector space over a Galois field the algebra of
polynomial functions on that vector space: the subalgebra of the endomorphisms of
this functor that turns out to be the Steenrod algebra if the ground field is the prime
field, is generated by the homogeneous components of a variant of the Frobenius
map.

55S10; 13A50

Beginning with the paper of Adams–Wilkerson [1] the Steenrod algebra has played a
significant role in the development of the invariant theory of finite groups over finite
fields (see Smith [20; 22], Neusel–Smith [18] and Neusel [17] and their reference lists).
The literature on the Steenrod algebra, in particular its construction, is largely of an
algebraic topological nature, making it difficult for non algebraic topologists to gain
insights into how and why it is of significance for invariant theory. This presents a
challenge for those versent in the Steenrod to explain it to the nonexperts in a concise,
motivated, and nontechnical1 algebraic manner. More than a decade ago as a visiting
professor at Yale I was confronted with this problem when teaching a course on invariant
theory to an audience consisting primarily of algbraicists, group theorists, and number
theorists. My strategy to define the Steenrod algebra for this audience was to regard
the total Steenrod operation as a perturbation of the Frobenius map, and to define the
Steenrod algebra as the subalgebra generated by the homogeneous components of this
perturbation in the endomorphism algebra of a carefully chosen functor.

The purpose of these notes is to expand somewhat on that approach and provide a
more complete introduction to the Steenrod algebra in this manner, ie, presented as
a subalgebra of the algebra of endomorphisms of a functor. The functor in question
assigns to a vector space over a Galois field the algebra of polynomial functions on
that vector space: the subalgebra of the endomorphisms of this functor that turns out
to be the Steenrod algebra if the ground field is the prime field, is generated by the
homogeneous components of a variant of the Frobenius map.

1No Eilenberg–MacLane spaces, no [1 products, etc.
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328 Larry Smith

The material presented here is not new: in fact most of the ideas go back to the middle
of the last century, and are to be found in papers of H Cartan [6], [7], J-P Serre [19],
R Thom [28] and Wu Wen-tsün [34], with one final key ingredient being supplied by
S Bullet and I Macdonald [5] (see also T P Bisson [3]). My contribution, if there is
one, is to reorganize the presentation of this material so that no algebraic topology is
used, nor is it necessary to assume that the ground field is the prime field. This way of
presenting things appeared 2 spread through [20, Chapters 10 and 11]. In summary
form it also appeared in [21]. For these notes this material is collected in somewhat
altered form, stripped of its applications to algebraic topology, and expanded to include
the Hopf algebra structure of the Steenrod algebra due to J W Milnor [13] for the prime
field. For a discussion of the group of units of the Steenrod algebra regarded as a Hopf
algebra from this point of view see Smith [24].

These notes provide a minimal introduction to the use of the Steenrod algebra in
modular invariant theory. The reader is encouraged to consult the vast literature on the
Steenrod algebra. For orientation in this morass the reader can do no better than to
refer to the excellent survey article [31] and Summer School course notes [32; 33] by
R M W Wood.

In what follows we adhere to the notations and terminology of [20] and [18]. In
particular, if F is a field and V D Fn is an n–dimensional vector space over F, then
FŒV � denotes the graded algebra of polynomial functions on V . This may be regarded
as the symmetric algebra on the dual vector space V � of V , where the elements of
V � , the linear forms have degree 1. Note carefully we ignore the usual topological sign
conventions, since graded commutation rules play no role here. (For a discussion of
gradings see eg [18, Appendix A Section 1].) The correspondence V  FŒV � defines
a contravariant functor from vector spaces over F to graded connected algebras. This
functor is at the center of what follows.

1 The Steenrod algebra

We fix once and for all a Galois field Fq of characteristic p containing qDp� elements.
Denote by Fq ŒV �ŒŒ��� the power series ring over Fq ŒV � in an additional variable � , and
set deg.�/D 1� q . Define an Fq –algebra homomorphism of degree zero

P.�/W Fq ŒV � �! Fq ŒV �ŒŒ���;

by requiring

P.�/.`/D `C `q� 2 Fq ŒV �ŒŒ���; 8 linear forms ` 2 V �:

2The emphasis of [20, Chapter 10] is on certain topological applications.
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For an arbitrary polynomial f 2 Fq ŒV �, we have after separating out homogeneous
components, 3

(1) P.�/.f /D

8̂̂<̂
:̂
1P

iD0

P i.f /�i q ¤ 2

1P
iD0

Sqi.f /�i q D 2

This defines P i , resp. Sqi , as Fq –linear maps

P i ;Sqi
W Fq ŒV � �! Fq ŒV �:

These maps are functorial in V . The operations P i , respectively Sqi , are called
Steenrod reduced power operations, respectively Steenrod squaring operations, or
collectively, Steenrod operations. In order to avoid a separate notation for the case
q D 2, with the indulgence of topologists, 4 we set Sqi

D P i for all i 2 N0 .

The sums appearing in (1) are actually finite. In fact P.�/.f / is a polynomial in �
of degree deg.f / with leading coefficient f q . This means the Steenrod operations
acting on Fq ŒV � satisfy the unstability condition

P i.f /D

(
f q i D deg.f /

0 i > deg.f /
8f 2 Fq ŒV �:

Note that these conditions express both a triviality condition, viz., P i.f /D 0 for all
i > deg.f /, and, a nontriviality condition, viz., Pdeg.f /.f /D f q . It is the interplay
of these two requirements that seems to endow the unstability condition with the power
to yield unexpected consequences.

Next, observe that the multiplicativity of the operator P.�/ leads to the formulae:

Pk.f 0f 00/D
X

iCjDk

P i.f 0/Pj .f 00/; 8f 0; f 00 2 Fq ŒV �:

These are called the Cartan formulae for the Steenrod operations. (NB in field theory,
a family of operators satisfying these formulae is called a higher order derivation. See,
eg Jacobsen [12, Chapter 4, Section 9].)

3 Let me emphasize here, that we will have no reason to consider nonhomogeneous polynomials,
and implicitly, we are always assuming, unless the contrary is stated, that all algebras are graded, and if
nonnegatively graded, also connected. The algebra FŒV �ŒŒ��� is graded, but no longer connected.

4This is not the usual topological convention, which would be to set P i D Sq2i . This is only relevant
for this algebraic approach when it is necessary to bring in a Bockstein operation.
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As a simple example of how one can compute with these operations consider the
quadratic form

QD x2
CxyCy2

2 F2Œx;y�:

Let us compute how the Steenrod operations Sqi act on Q by using linearity, the
Cartan formula, and unstability.

Sq1.Q/D Sq1.x2/CSq1.xy/CSq1.y2/

D 2xSq1.x/CSq1.x/ �yCx �Sq1.y/C 2ySq1.y/

D 0Cx2yCxy2
C 0D x2yCxy2

Sq2.Q/DQ2
D x4

Cx2y2
Cy4

Sqi.Q/D 0 for i > 2:

Since the Steenrod operations are natural with respect to linear transformations between
vector spaces they induce endomorphisms of the functor

Fq Œ��W VectFq
�! AlgFq

from Fq –vector spaces to commutative graded Fq –algebras.

They therefore commute with the action of GL.V / on Fq ŒV �. If G ,! GL.n; Fq/ is a
faithful representation of a finite group G then the Steenrod operations restrict to the
ring of invariants Fq ŒV �

G , ie map invariant forms to invariant forms. Hence they can be
used to produce new invariants from old ones. This is a new feature of invariant theory
over finite fields as opposed to arbitrary fields (but do see in this connection Glenn
[10]). Here is an example to illustrate this. It is based on a result, and the methods of
[23].

Example 1 Let Fq be the Galois field with q elements of odd characteristic p , and
consider the action of the group SL.2; Fq/ on the space of binary quadratic forms over
Fq by change of variables. A typical such form is Q.x;y/D ax2C 2bxyC cy2 .

TQ D

�
a b

b c

�
The space of such forms can be identified with the vector space Matsym

2;2
.Fq/ of 2� 2

symmetric matrices over Fq . Under this identification the form Q corresponds to
the matrix TQ above, and the action of SL.2; Fq/ is given by TQ 7! STQStr , where
S 2 SL.2; Fq/, with Str the transpose of S. The element �I 2 SL.2; Fq/ acts trivially.
By dividing out the subgroup it generates, we receive a faithful representation of
PSL.2; Fq/D SL.2; Fq/

ı
f˙Ig on the space of binary quadratic forms. This group has

order q.q2� 1/=2.
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The action of PSL.2; Fq/ on Matsym
2;2
.Fq/ preserves the nonsingular quadratic form

defined by detW Matsym
2;2
.Fq/ �! Fq and since there is only one such nonsingular

quadratic form in 3 variables over Fq , at least up to isomorphism, (cf Dickson [9,
pages 169–173]), we receive an unambiguous faithful representation � W PSL.2; Fq/ ,!

O.3; Fq/. Denote by �
x y

y z

�
2Matsym

2;2
.Fq/

�

a generic linear form on the dual space of the 2� 2 symmetric matrices over Fq . Per
definition the quadratic form

detD xz�y2
2 Fq ŒMatsym

2;2
.Fq/�D Fq Œx;y; z�

is O.3; Fq/–invariant. If we apply the first Steenrod operation to this form we receive
the new invariant form of degree qC 1, viz.,

P1.det/D xqzCxzq
� 2yqC1

2 Fq Œx;y; z�
O.3;Fq/:

The full ring of invariants of the orthogonal group O.3; Fq/ is known (see eg Cohen
[8] or [23]). To wit

Fq Œx;y; z�
O.3;Fq/ Š Fq Œdet;P1.det/;Edet�:

Here Edet is the Euler class (see eg Smith–Strong [26] or Neusel–Smith [18, Chapter
4]) associated to the configuration of linear forms defining the set of external lines
to the projective variety Xdet in the projective plane PFq.2/ over Fq defined by the
vanishing of the determinant 5 (see Hirschfeld [11, Section 8.2] and [23]). The form
Edet has degree q.q� 1/. The three forms det;P1.det/;EQ 2 Fq Œx;y; z�

O.3;Fq/ are a
system of parameters [23]. Since the product of their degrees is jO.3; Fq/j it follows
from [20, Proposition 5.5.5] that Fq Œx;y; z�

O.3;Fq/ must be a polynomial algebra as
stated.

The pre-Euler class edet of the set of external projective lines to Xdet is an O.3; Fq/

det–relative invariant, so is SO.3; Fq/–invariant. It has degree
�
q
2

�
, and together with

the forms det and P1.det/ it forms a system of parameters for Fq Œx;y; z�
SO.3;Fq/ , so

again we may apply [20, Proposition 5.5.5] and conclude that Fq Œx;y; z�
SO.3;Fq/ is a

polynomial algebra, viz., Fq Œx;y; z�
SO.3;Fq/ D Fq Œdet;P1.det/; edet�.

5 The projective plane of Fq is defined by PFq.2/D
�
F3

q n f0g
�F� where F� acts via scalar multipli-

cation on the vectors of F3
q . In this discussion we are identifying F3

q with Matsym
2;2
.Fq/ , so this is the same

as the set of lines through the origin in Matsym
2;2

. The pre-Euler class edet may be taken to be the product
of a set of linear forms

˚
`L
	

, indexed by the
�q
2

�
external lines fLg to Xdet , and satisfying ker.`L/D L.

The Euler class Edet is its square.
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Finally, PSL.2; Fq/ is the commutator subgroup of, and has index 2 in, the special
orthogonal group SO.3; Fq/, so by a Proposition in Smith [25] the ring of invariants
of PSL.2; Fq/ acting on the space of binary quadratic forms is a hypersurface. It has
generators det;P1.det/; edet and a certain form ! which satisfies a monic quadratic
equation over the subalgebra generated by the first three. A choice for ! is the pre-Euler
class of the configuration of external projective lines to the variety Xdet � PF.3/.

The Steenrod operations can be collected together to form an algebra, in fact a Hopf
algebra (see Section 4), over the Galois field Fq .

Definition The Steenrod algebra P�.Fq/ is the Fq –subalgebra of the endomorphism
algebra of the functor Fq Œ��, generated by P0 D 1;P1;P2; : : : .

Notation In most situations, such as here, the ground field Fq is fixed at the outset,
and we therefore abbreviate P�.Fq/ to P� .

The next sections develop the basic algebraic structure of the Steenrod algebra.

2 The Adem–Wu relations

The Steenrod algebra is by no means freely generated by the Steenrod reduced powers.
For example, when p D 2 it is easy to check that Sq1Sq1

D 0 by verifying this is
the case for monomials zE D z

e1

1
; : : : ; z

en
n . To do so one needs the formula, valid for

any linear form, Sq1.zk/D kzkC1 , which follows by induction immediately from the
Cartan formula.6

Traditionally, relations between the Steenrod operations are expressed as commutation
rules for P iPj , respectively SqiSqj . These commutation relations are called Adem–
Wu relations. In the case of the prime field Fp they were originally conjectured by Wu
based on his study of the mod p cohomology of Grassmann manifolds [34] and proved
by J Adem in [2], H Cartan in [6], and for p D 2 by J P Serre in [19]. These relations
are usually written as follows:

P iPj
D

Œi=q�X
kD0

.�1/.i�qk/
�

�
.q� 1/.j � k/� 1

i � qk

�
P iCj�kPk

8i; j � 0; i < qj:

Note for any Galois field Fq the coefficients are still elements in the prime subfield Fp

of Fq .

6In fact every element in the Steenrod algebra is nilpotent, but the index of nilpotence is known only in
a few cases, see eg Monks [15; 16], Walker–Wood [29; 30] and Wood [31] for a resumé of what is known.
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The proof of these relations is greatly simplified by the Bullett–Macdonald identity,
which provides us with a well-wrapped description of the relations among the Steenrod
operations, Bullett–Macdonald [5]. To describe this identity, as in [5], extend P.�/ to
a ring homomorphism P.�/W FŒV �Œ���! FŒV �Œ��Œ�� by setting P.�//.�/D �. Next, set
uD .1� t/q�1 D 1C tC� � �C tq�1 and s D tu. Then the Bullett–Macdonald identity
is

P.s/ ıP.1/D P.u/ ıP.tq/:

Since P.�/ is additive and multiplicative, it is enough to check this equation for the
basis elements of V � , which is indeed a short calculation. Rumor says Macdonald,
like most of us, could not remember the coefficients that appear in the Adem relations,
so devised this identity so that he could derive them on the spot when J F Adams came
to talk with him.

Remark For pD 2, T P Bisson has pointed out (see Bisson–Joyal [4]) that the Bullett–
Macdonald identity may be viewed as a commutation rule, viz., P.�/P.�/DP.�/P.�/.
For a general Galois Fq , one needs to demand GL.2; Fq/–invariance of P.�/, where
� 2 SpanFq

f�; �g.

To derive the Adem–Wu relations we provide details for the residue computation7

sketched in [5]. First of all, direct calculation gives:

P.s/P.1/D
X
a; k

saPaPk

P.u/P.tq/D
X

a; b; j

uaCb�j tqjPaCb�jPj ;

which the Bullett–Macdonald identity says are equal. Recall from complex analysis
that

1

2�{

I


zmdz D

(
1 mD�1

0 otherwise;

7The following discussion is based on conversations with E H Brown Jr. The author is also grateful to
J Hartmann for correcting some errors in his version of the computation. I do hope for once the indices are
close to being correct.
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where  is a small circle around 0 2 C. Therefore we obtainX
k

PaPk
D

1

2�{

I


P.s/P.1/
saC1

ds

D
1

2�{

I


P.u/P.tq/

saC1
ds

D
1

2�{

X
a; b; j

I


uaCb�j tqj

saC1
dsPaCb�jPj :

The formula s D t.1� t/q�1 gives ds D .1� t/q�2.1� qt/dt , so substituting gives

uaCb�j tqj

saC1
ds D

.1� t/.q�1/.aCb�j/tqj .1� t/q�2.1� qt/�
t.1� t/q�1

�aC1
dt

D .1� t/.b�j�1/.q�1/C.q�2/tqj�a�1.1� qt/dt

D .1� t/..b�j/.q�1/�1/tqj�a�1.1� qt/dt

D

"X
k

.�1/k
�
.b� j /.q� 1/� 1

k

�
tk

#
tqj�a�1.1� qt/dt

D

X
k

.�1/k
�
.b� j /.q� 1/� 1

k

�h
tkCqj�a�1

� qtkCqj�a
i

dt:

Therefore

PaPb
D

X
j

"
1

2�{

I


uaCb�j tqj

saC1
ds

#
PaCb�jPj

D

X
j

1

2�{

I X
k

.�1/k
�
.b�j /.q�1/�1

k

�h
tkCqj�a�1

�qtkCqj�a
i

dtPaCb�jPj :

Only the terms where

kC qj � a� 1D�1 .k D a� qj /

kC qj � aD�1 .k D a� qj � 1/;

contribute anything to the sum, so

PaPb
D

X
j

�
.�1/.a�qj/

�

�
.b� j /.q� 1/� 1

a� qj

�

C .�1/a�qj�1q

�
.b� j /.q� 1/� 1

a� qj � 1

��
PaCb�jPj ;
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and since�
.b� j /.q� 1/� 1

a� qj

�
� q

�
.b� j /.q� 1/� 1

a� qj � 1

�
�

�
.b� j /.q� 1/� 1

a� qj

�
mod p;

we conclude

PaPb
D

X
j

.�1/.a�qj/
�

�
.b� j /.q� 1/� 1

a� qj

�
PaCb�jPj ;

which are the Adem–Wu relations.

Thus there is a surjective map from the free associative algebra B� with 1 generated
by the Steenrod operations modulo the ideal generated by the Adem–Wu relations,

PaPb
�

X
j

.�1/.a�qj/
�

�
.b� j /.q� 1/� 1

a� qj

�
PaCb�jPj a; b 2 N and a< qb;

onto the Steenrod algebra. In fact, this map, B� �! P� is an isomorphism, so the
Adem–Wu relations are a complete set of defining relations for the Steenrod algebra.
The proof of this, and some of its consequences, is the subject of the next section.

3 The basis of admissible monomials

In this section we show that the relations between Steenrod operations that are univer-
sally valid all follow from the Adem–Wu relations. To do so we extend some theorems
of of H Cartan [6], J-P Serre [19] and Wu Wen-tsün [34] from the case of the prime
field to arbitrary Galois fields. Their proofs have been rearranged so that no direct use
is made of algebraic topology.

An index sequence is a sequence I D .i1; i2; : : : ; ik ; : : :/ of nonnegative integers,
almost all of which are zero. If I is an index sequence we denote by PI 2 P� the
monomial P i1 �P i2 � � �P ik � � � in the Steenrod operations P i , with the convention that
trailing 1s are ignored. The degree of the element PI is .q�1/.i1Ci2C� � �CikC� � � /.
These iterations of Steenrod operations are called basic monomials. An index sequence
I is called admissible if is � qisC1 for sD 1; : : : . We call k the length of I if ik ¤ 0

but is D 0 for s > k . Write `.I/ for the length of I . It is often convenient to treat an
index sequence as a finite sequence of nonnegative integers by truncating it to `.I/
entries.

A basic monomial is defined to be admissible if the corresponding index sequence
is admissible. The strategy of H Cartan and J-P Serre to prove that the Adem–Wu
relations are a complete set of defining relations for the Steenrod algebra of the prime
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field is to prove that the admissible monomials are an Fp basis for P� . We follow the
same strategy for an arbitrary Galois field.

Recall that B� denotes the free, graded, associative algebra generated by the symbols
Pk modulo the ideal spanned by the Adem–Wu relations in those symbols. We have a
surjective map B� �! P� , and so with his notation our goal is to prove:

Theorem 3.1 The admissible monomials span B� as an Fq –vector space. The images
of the admissible monomials in the Steenrod algebra are linearly independent.

Proof We begin by showing that the admissible monomials span B� .

For a sequence I D .i1; i2; : : : ; ik/, the moment of I , denoted by m.I/, is defined
by m.I/ D

Pk
sD1 s � is . We first show that an inadmissible monomial is a sum of

monomials of smaller moment. Granted this it follows by induction over the moment
that the admissible monomials span B� .

Suppose that PI is an inadmissible monomial. Then there is a smallest s such that
is < qisC1 , ie,

PI
DQ0P isP isC1Q00;

where Q0 , Q00 are basic monomials, and Q0 is admissible. It is therefore possible to
apply an Adem–Wu relation to PI to obtain

PI
D

X
j

ajQ0P isCisC1�jPjQ00;

for certain coefficients aj 2 Fp . The terms on the right hand side all have smaller
moment than PI and so, by induction on s , we may express PI as a sum of admissible
monomials. (NB The admissible monomials are reduced in the sense that no Adem–Wu
relation can be applied to them.)

We next show that the admissible monomials are linearly independent as elements of
the Steenrod algebra P� . This we do by adapting an argument of J-P Serre [19] and H
Cartan [6] which makes use of a formula of Wu Wen-tsün.

Let enDx1x2 � � �xn 2Fq Œx1; : : : ;xn� be the nth elementary symmetric function. Then,

P.�/.en/D P.�/.
nY

iD1

xi/D

nY
iD1

P.�/.xi/

D

nY
iD1

.xi Cx
q
i �/D

nY
iD1

xi �

nY
iD1

.1Cx
q�1
i �/
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D en.x1; : : : ;xn/ �

 
nX

iD1

ei.x
q�1
1

; : : : ;xq�1
n /�i

!
;

where ei.x1; : : : ;xn/ denotes the i th elementary symmetric polynomial in x1; : : : ;xn .
So we have obtained a formula of Wu Wen-tsün:

P i.en/D en � ei.x
q�1
1

; : : : ;xq�1
n /

We claim that the monomials

fPI
jPI admissible and deg.PI /� 2ng

are linearly independent in Fq Œx1; : : : ;xn�. To see this note that in case `.I/� n, each
entry in I is at most n (so the following formula makes sense), and

PI .en/D en �

sY
jD1

eij .x
q�1
1

; : : : ;xq�1
n /C � � �

where I D .i1; : : : ; is/, PI D P i1 � � �P is and the remaining terms are lower in the
lexicographic ordering on monomials. So en �

Qs
jD1 eij .x

q�1
1

; : : : ;x
q�1
n / is the largest

monomial in PI .en/ in the lexicographic order. Thus

fPI .en/ j PI admissible and deg.PI /� 2ng;

have distinct largest monomials, so are linearly independent.

By letting n �!1 we obtain the assertion, completing the proof.

Thus the Steenrod algebra may be regarded (this is one traditional definition) as the
graded free associative algebra with 1 generated by the Sqi respectively P i modulo
the ideal generated by the Adem–Wu relations. This means we have proven:

Theorem 3.2 The Steenrod algebra P� is the free associative Fq –algebra generated
by the reduced power operations P0;P1;P2; : : : modulo the Adem–Wu relations.

Corollary 3.3 The admissible monomials are an Fq –basis for the Steenrod algebra
P� .

Since the coefficients of the Adem–Wu relations lie in the prime field Fp , the operations
Ppi

for i � 0 are indecomposables in P� . In particular, over the Galois field Fq , the
Steenrod algebra P� is not generated by the operations Pqi

for i � 0: one needs
all Ppi

for i � 0. This will become even clearer after we have developed the Hopf
algebra structure of P� in the next section.
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Example 2 Consider the polynomial algebra F2ŒQ;T � over the field with 2 elements,
where the indeterminate Q has degree 2 and T has degree 3. If the Steenrod algebra
were to act unstably on this algebra then the unstability condition would determine
Sqi.Q/ and Sqj .T / apart from i D 1 and j D 1 and 2. If we specify these as follows

Sq1.Q/D T; Sq1.T /D 0; Sq2.T /DQT;

and demand that the Cartan formula hold, then using these formulae we can compute
Sqk on any monomial, and hence by linearity, on any polynomial in Q and T . For
example

Sq1.QT /D Sq1.Q/ �T CQ �Sq1.T /D T 2
C 0D T 2;

and so on. Note that since Sq1
� Sq1

D 0 is an Adem–Wu relation, Sq1.T / D 0 is
forced from Sq1.Q/D T . To verify the unstability conditions, suppose that

SqaSqb
D

Œa
2
�X

cD0

�
b� 1� c

a� 2c

�
SqaCb�cSqc ; 0< a< 2b;

is an Adem–Wu relation. We need to show that0@SqaSqb
�

Œa
2
�X

cD0

�
b� 1� c

a� 2c

�
SqaCb�cSqc

1A�QiT j
�
D 0

for all i; j 2 N0 . By a simple argument using the Cartan formulae, see eg [27,
Lemma 4.1], it is enough to verify that these hold for the generators Q and T and
this is routine. It is a bit more elegant to identify Q with x2 C xy C y2 and T

with x2yCxy2 2 F2Œx;y�. The action of the Steenrod operations on Q and T then
coincides with the restriction of the action from F2Œx;y�. This way, it is then clear that
F2ŒQ;T � is an unstable algebra over the Steenrod algebra, because,

(1) with some topological background we recognize this as just H�.BSO.3/I F2/ ,
or,

(2) with some invariant theoretic background we recognize this as the Dickson
algebra D.2/D F2Œx;y�

GL.2;F2/ .
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4 The Hopf algebra structure of the Steenrod algebra

Our goal in this section is to complete the traditional picture of the Steenrod algebra
by proving that P�.Fq/ is a Hopf algebra 8 and extending Milnor’s Hopf algebra [13]
structure theorems from the prime field Fp to an arbitrary Galois field. It should be
emphasized that this requires no new ideas, only a careful reorganization of Milnor’s
proofs, so as to avoid reference to algebraic topology and cohomology operations, and,
where appropriate carefully replacing p by q .

Proposition 4.1 Let p be a prime integer, q D p� a power of p , and Fq the Galois
field with q elements. Then the Steenrod algebra of Fq is a cocommutative Hopf
algebra over Fq with respect to the coproduct

rW P� �! P�˝P�;

defined by the formulae

r.Pk/D
X

iCjDk

P i
˝Pj ; k D 1; 2; : : : :

Proof Consider the functor V  Fq ŒV �˝ Fq ŒV � that assigns to a finite dimensional
vector space V over Fq the commutative graded algebra Fq ŒV �˝Fq ŒV � over Fq . There
is a natural map of algebras

P�˝P� �! End.V  Fq ŒV �˝ Fq ŒV �/;

given by the tensor product of endomorphisms. Since there is an isomorphism

Fq ŒV �˝ Fq ŒV �Š Fq ŒV ˚V �;

that is natural in V , the functor End.V  Fq ŒV �˝ Fq ŒV �/ is a subfunctor of the
functor End.V  Fq ŒV �/ that assigns to a finite dimensional vector space V over Fq

the polynomial algebra Fq ŒV �. Hence restriction defines a map of algebras

P� �! End.V  Fq ŒV �˝ Fq ŒV �/;

8One quick way to do this is to write down as comultiplication map

r.Pk/D
X

iCjDk

P i
˝Pj ; k D 1; 2; : : : ;

and verify that it is compatible with the Bullett–Macdonald identity, and hence also with the Adem–Wu
relations.
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and we obtain a diagram of algebra homomorphisms

P� End.V  Fq ŒV �˝ Fq ŒV �/�
//

P�˝P�

P�

66

l l l l l l l l l l l l
P�˝P�

End.V  Fq ŒV �˝ Fq ŒV �/

�

��

What we need to show is that Im.�/� Im.�/, for since � is monic r D ��1� would
define the desired coproduct. Since the reduced power operations Pk for k D 1; 2; : : : ;

generate P� it is enough to check that �.Pk/ 2 Im.�/ for k D 1; 2; : : : ;. But this is
immediate from the Cartan formula. Since r is a map of algebras the Hopf condition
is satisfied, so P� is a Hopf algebra.

If J is an admissible index sequence then

e.J /D

1X
sD1

.js � qjsC1/;

is called the excess of J . For example, the sequences

Mk D .q
k�1; : : : ; q; 1/; k D 1; 2; : : : ;

are all the admissible sequences of excess zero. Note that

deg.PMk /D

kX
jD1

qk�j .q� 1/D qk
� 1; for k D 1; 2; : : : :

Recall by Corollary 3.3 that the admissible monomials are an Fq –vector space basis
for P� .

Let P�.Fq/ denote the Hopf algebra dual to the Steenrod algebra P�.Fq/. We define
�k 2 P�.Fq/ to be dual to the monomial PMk D Pqk�1

� � �Pq �P1 with respect to the
basis of admissible monomials for P� . This means that we have:

hPJ
j �ki D

(
1 J DMk

0 otherwise;

where we have written hP j �i for the value of an element P 2 P�.Fq/ on an element
� 2 P�.Fq/. Note that deg.�k/D qk � 1 for k D 1; : : :.

If I D .i1; i2; : : : ; ik ; : : : / is an index sequence we call ` the length of I , denoted
by `.I/, if ik D 0 for k > `, but i` ¤ 0. We associate to an index sequence I D
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.i1; i2; : : : ; ik ; : : : / the element �I D �
i1

1
� �

i2

2
� � � �

i`

`
2 P�.Fq/, where `D `.I/. Note

that

deg.�I /D

`.I /X
sD1

is.q
s
� 1/:

To an index sequence I D .i1; i2; : : : ; ik ; : : : / we also associate an admissible sequence
J.I/D .j1; j2; : : : ; jk ; : : : / defined by

(2) j1 D

1X
sD1

isqs�1; j2 D

1X
sD2

isqs�2; : : : ; jk D

1X
sDk

isqs�k ; : : : :

It is easy to verify that as I runs over all index sequences that J.I/ runs over all
admissible sequences. Finally, note that deg.PJ .I //D deg.�I / for any index sequence
I .

The crucial observation used by Milnor to prove the structure theorem of P�.Fq/ is
that the pairing of the admissible monomial basis for P�.Fq/ against the monomials
in the �k is upper triangular. To formulate this precisely we order the index sequences
lexicographically from the right so for example .1; 2; 0; : : : /� .0; 0; 1; : : : / .

Lemma 4.2 (J W Milnor) With the preceding notations we have that the inner product
matrix hPJ .I / j �K i is upper triangular with 1s on the diagonal, ie,

hPJ .I /
j �K
i D

(
1 I DK

0 I <K:

Proof Let the length of K be ` and define K0 D .k1; k2; : : : ; k`�1/, so

�K
D �K 0

� �` 2 P�.Fq/:

If r denotes the coproduct in P�.Fq/, then we have the formula

(3) hPJ .I /
j �K
i D hPJ .I /

j �K 0
� �`i D hr.PJ .I // j �K 0

˝ �`i

If J.I/D .j1; j2; : : : ; jk ; : : : / then one easily checks that

r.PJ .I //D
X

J 0CJ 00DJ .I /

PJ 0
˝PJ 00 :

Substituting this into (3) gives

(4) hPJ .I /
j �K
i D

X
J 0CJ 00DJ .I /

hPJ 0
j �K 0
i � hPJ 00

j �`i:
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By the definition of �` we have

hPJ 00
j �`i D

(
1 J 00 DM`

0 otherwise:

If J 00 DM` then unravelling the definitions shows that J 0 D J.I 0/, for a suitable I 0 ,
so if K and I have the same length `, we have shown

hPJ .I /
j �K
i D hPJ .I 0/

j �K 0
i;

and hence it follows from induction over the degree that

hPJ .I /
j �K
i D

(
1 I DK

0 I <K:

If, on the other hand, `.I/ < ` then all the terms

hPJ 00
j �`i

in the sum (4) are zero and hence that hPJ .I / j �K i D 0 as required.

Theorem 4.3 Let p be a prime integer, q D p� a power of p , and Fq the Galois field
with q elements. Let P�.Fq/ denote the dual Hopf algebra to the Steenrod algebra of
the Galois field Fq . Then, as an algebra

P� Š Fq Œ�1; : : : ; �k ; : : : �;

where deg.�k/D qk � 1 for k 2 N. The coproduct is given by the formula

r�.�k/D
X

iCjDk

�
qj

i ˝ �j ; k D 1; 2; : : : :

Proof By Milnor’s Lemma (Lemma 4.2) the monomials
˚
�I
	

where I ranges over
all index sequences are linearly independent in P�.Fq/. Hence Fq Œ�1; : : : ; �k ; : : : ��

P�.Fq/. The algebras P�.Fq/ and Fq Œ�1; : : : ; �k ; : : : � have the same Poincaré series,
since deg.PJ .I //D deg.�I / for all index sequences I , and the admissible monomials
PJ .I / are an Fq –vector space basis for P�.Fq/. So Fq Œ�1; : : : ; �k ; : : : �DP�.Fq/, and
it remains to verify the formula for the coproduct.

To this end we use the test algebra Fq Œu�, the polynomial algebra on one generator, as
in [13]. Note that for admissible sequences we have

(5) PJ .u/D

(
uqk

J DMk

0 otherwise:
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Define the map
��W Fq Œu� �! Fq Œu�˝P�;

by the formula
��.ui/D

X
PJ .I /.ui/˝ �I ;

where the sum is over all index sequences I . Note that in any given degree the sum is
finite and that �� is a map of algebras. Moreover

.��˝ 1/��.u/D .1˝r�/�
�.u/;

ie the following diagram

(6)

Fq Œu�˝P� Fq Œu�oo
��

Fq Œu�˝P�.Fq/˝P�.Fq/

Fq Œu�˝P�

OO

��˝1

Fq Œu�˝P�.Fq/˝P�.Fq/ Fq Œu�˝P�oo 1˝r�
Fq Œu�˝P�

Fq Œu�

OO

��

is commutative.

From (5) it follows that
��.u/D

X
uqk

˝ �k ;

which when raised to the qr th power gives

��.ur /D
X

uqkCr

˝ �
qr

k
;

and leads to the formula

.��˝ 1/
�
��.u/

�
D
�
��˝ 1

��X
k

uqk

˝ �k

�
D

X
r

X
k

uqkCr

˝ �qk

r ˝ �k :

Whereas, the other way around the diagram (6) yields�
1˝r�

�
.��.u//D

X
j

uqj

˝r�.�k/;

and equating these two expressions leads to the asserted formula for the coproduct.

As remarked at the end of the previous section the operations Ppi

for i > 0 are
indecomposables in P� , so P� is not generated by the operations Pqi

for i � 0; we
need all the Ppi

for i > 0. This can be readily seen on hand from the dual Hopf algebra,
where, since Fq has characteristic p , the elements �pi

1
for i � 0 are all primitive, [14].

The following corollary also indicates that passing from the prime field Fp to a general
Galois field Fq is not just a simple substitution of q for p .
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Corollary 4.4 Let p be a prime integer, q D p� a power of ps and Fq the Galois
field with q elements. The indecomposable module Q.P�/ of the Steenrod algebra of
Fq has a basis consisting of the elements Ppi

for i 2N0 , and the primitive elements
P .P�/ has a basis consisting of the elements Pk for k 2N, where, for k 2N, Pk is
dual to �k with respect to the monomial basis for P� .

5 The Milnor basis and embedding one Steenrod algebra in
another

If I D .i1; i2; : : : ; ik ; : : : / is an index sequence we denote by P.I/ 2 P�.Fq/ the
element in the Steenrod algebra that is dual to the corresponding monomial �I in
P�.Fq/ with respect to the monomial basis for P�.Fq/. This is not the same as the
monomial PI D P i1 �P i2 � � �P ik � � � , these two elements do not even have the same
degrees. As I ranges over all index sequences the collection P.I/ ranges over an
Fq –basis for P�.Fq/ called the Milnor basis.

To give some examples of elements written in the Milnor basis introduce the index
sequence �k which has a 1 in the k th position and otherwise 0s. Then Pk is P.k ��1/,
and, as noted at the end of Section 4, the Milnor primitive elements P�k DP.�k/, for
k > 0 , form a basis for the subspace of all primitive elements. In terms of the reduced
power operations these elements can also be defined by the inductive formulae

P�k D

(
P1 k D 1

ŒPqk�1

;P�k � k > 0;

where ŒP 0;P 00� denotes the commutator P 0 �P 00�P 00 �P 0 of P 0 and P 00 . In Milnor’s
paper one can also find a formula for the product P.I/ �P.J / of two elements in the
Milnor basis. The basis transformation matrix from the admissible to the Milnor basis
and its inverse is quite complicated, so we will say nothing more about it.

To each index sequence I we can make correspond both an admissible sequence over Fp

and one over Fq via the equations (2) from the previous section. This correspondence
gives us a map � W P�.Fq/ �! P�.Fp/˝Fp

Fq .

Theorem 5.1 Let p be a prime integer, q D p� a power of p , and Fq the Galois field
with q elements. The map

� W P�.Fq/ �! P�.Fp/˝Fp
Fq;

embeds the Steenrod algebra P�.Fq/ of Fq as a Hopf subalgebra in the Steenrod
algebra of Fp extended from Fp up to Fq .
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Proof It is much easier to verify that the dual map

��W P�.Fp/˝Fp
Fq �! P�.Fq/;

which is defined by the requirement that it be a map of algebras, and take the values

��.�k.p/˝ 1/D

(
�m.q/ k Dm� .so pk � 1D qm� 1/

0 otherwise;

on algebra generators, is a map of Hopf algebras. This is a routine computation.

The Steenrod algebra over the prime field Fp has a well known interpretation as
the mod p cohomology of the Eilenberg–MacLane spectrum. By flat base change
P�.Fp/˝Fp

Fq may be regarded as the Fq –cohomology of the same. By including the
Eilenberg–MacLane spectrum K.Fp/ for the prime field into the Eilenberg–MacLane
spectrum K.Fq/ we may view the elements of P�.Fp/ ˝Fp

Fq as defining stable
cohomology operations in Fq –cohomology. By Theorem 5.1 this also allows us
to interpret elements of P�.Fq/ as stable cohomology operations acting on the Fq –
cohomology of a topological space. Which elements appear in this way is described in
cohomological terms in [24].

6 Closing comments

Algebraic topologists will of course immediately say ”but that isn’t the Steenrod algebra,
it is only the algebra of reduced power operations; there is no Bockstein operator unless
q D 2.” This is correct, the full Steenrod algebra, with the Bockstein, has not yet
played a significant role in invariant theory, so it has not been treated here. But, if one
wishes to have a definition of the full Steenrod algebra in the same style as the one
presented here, all one needs to do for q ¤ 2 is to replace the functor V  FŒV � with
the functor V  H.V /, where H.V / is defined to be H.V /D FŒV �˝EŒV �, with
EŒV � the exterior algebra on the dual vector space V � of V . Since V � occurs twice
as a subspace of H.V /, once as V �˝ F� FŒV �˝ F and once as F˝V � �EŒV �, we
need a way to distinguish these two copies. One way to do this is to write z for a linear
form z 2 V � when it is to be regarded as a polynomial function, and dz for the same
linear form when it is to be regarded as an alternating linear form. This amounts to
identifying H.V / with the algebra of polynomial differential forms on V .

Next introduce the Bockstein operator ˇW H.V / �! H.V / by requiring it to be
the unique derivation with the property that for an alternating linear form dz one
has ˇ.dz/ D z , where z is the corresponding polynomial linear form, and for any
polynomial linear form z one has ˇ.z/D0. The operators Pk for k 2N0 together with
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ˇ generate a subalgebra of the algebra of endomorphisms of the functor V  H.V /,
and this subalgebra is the full Steenrod algebra of the Galois field Fq .

Finally, there is a universal algebra approach to both the Dyer–Lashof algebra and the
Steenrod algebra in [4]. The interested reader should consult this paper which contains
many informative facts.
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