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Young tableaux and the Steenrod algebra

G WALKER

R M W WOOD

The purpose of this paper is to forge a direct link between the hit problem for the
action of the Steenrod algebra A on the polynomial algebra P.n/D F2Œx1; : : : ;xn� ,
over the field F2 of two elements, and semistandard Young tableaux as they apply to
the modular representation theory of the general linear group GL.n; F2/ . The cohits
Qd .n/ D Pd .n/=Pd .n/ \AC.P.n// form a modular representation of GL.n; F2/

and the hit problem is to analyze this module. In certain generic degrees d we show
how the semistandard Young tableaux can be used to index a set of monomials which
span Qd .n/ . The hook formula, which calculates the number of semistandard Young
tableaux, then gives an upper bound for the dimension of Qd .n/ . In the particular
degree d where the Steinberg module appears for the first time in P.n/ the upper
bound is exact and Qd .n/ can then be identified with the Steinberg module.

55S10; 20C20

1 Introduction

Young tableaux form a combinatorial device for constructing representations of the
general linear group GL.n/ of n� n non-singular matrices and its subgroup †n of
permutation matrices, both in the classical case, over the field of complex numbers, and
in the modular case, where the characteristic of the field divides the order of the group
(see Fulton [7], James–Kerber [8], MacDonald [14], Sagan [19] and Stanley [21]). The
group GL.n; F2/, over the field F2 of two elements, acts naturally on the polynomial
algebra P.n/DF2Œx1; : : : ;xn� by matrix substitution and the homogeneous polynomials
Pd .n/ of degree d form a representation space. The modular representation theory of
subgroups of GL.n; F2/, acting in this way on P.n/, is important in understanding the
nature of the hit problem for the action of the mod 2 Steenrod algebra A on P.n/. The
problem is to find a minimal generating set for P.n/ as an A–module (see Boardman
[2], Janfada–Wood [9; 10], Kameko [12; 13], Peterson [18] and Wood [24; 26; 27;
28; 29]). The Steenrod squaring operators Sqk generate A as an algebra and act as
GL.n; F2/–module maps from Pd .n/ to PdCk.n/. A polynomial h is hit if it can
be written as a finite sum h D

P
k>0‚k.fk/ for elements ‚k of positive grading
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in A and suitable polynomials fk . Equivalently, h D
P

k>0 Sqk.gk/ for suitable
polynomials gk .

The hit problem can be viewed in terms of finding a vector space basis for the quotient
Q.n/ of P.n/ by the hit elements. This quotient is a GL.n; F2/–module. It is clear
that polynomials in Pd .n/ which represent non-trivial elements in an irreducible
composition factor of Pd .n/, occurring for the first time in degree d , cannot be hit,
otherwise there would be a Steenrod operation linking the composition factor with
an earlier occurrence. This goes some way to explain the interrelationship between
modular representation theory and the Steenrod algebra. From the point of view of
representation theory, the quotient Q.n/ is a repository for the irreducible modular
representations of GL.n; F2/ and from the point of view of the Steenrod algebra,
first occurrences of irreducible representations contribute to a generating set of the
A–module P.n/.

We shall explain a direct connection between Young tableaux and generators for the
A–module P.n/. In general, there are too many Young tableaux to solve the hit problem
precisely but in certain degrees the number of semistandard Young tableaux does give
the correct minimal number of generators. The following is a sample result from the
more general Theorem 3.15.

Theorem 1.1 In any minimal generating set for the A–module P.n/, there are 2.
n
2/

elements in degree d D 2n� n� 1. In this degree monomial generators in P.n/ may
be chosen in bijective correspondence with the semistandard Young tableaux associated
with the partition .n�1; n�2; : : : ; 1/ of the number

�
n
2

�
. Furthermore, these generators

provide representatives for an additive basis for the first occurrence in degree d of
the Steinberg representation of GL.n; F2/, viewed as the quotient of Pd .n/ by the hit
elements.

For instance, taking the case nD 3, there are eight semistandard Young tableaux as
exhibited below.

Example 1.2
1 1
2

1 1
3

1 2
2

1 2
3

2 2
3

2 3
3

1 3
2

1 3
3

The corresponding monomial generators in P4.3/, equivalently representative mono-
mials of a vector space basis for Q4.3/, are

x3
1x2; x3

1x3; x1x3
2 ; x1x2

2x3; x3
2x3; x2x3

3 ; x1x2x2
3 ; x1x3

3 :
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The fact that the first occurrence of the Steinberg representation is in degree 2n�n�1

is well known (Mitchell–Priddy [16], Minh–Tri [15] and Walker–Wood [23]). The
result of Theorem 1.1 may be paraphrased by saying that the Steinberg representation is
the only irreducible representation of GL.n; F2/ to contribute to a minimal generating
set for the A–module P.n/ in this degree.

In the next section we explain how to associate monomials with tableaux and, more
generally, we translate some of the traditional language used in the combinatorial theory
of tableaux into the language of block technology, which is appropriate for handling the
action of the Steenrod algebra. In particular, we introduce a combinatorial procedure,
called splicing, which is used to replace a block by a formal sum of semistandard
blocks. This is analogous to the straightening process for bringing Young tableaux into
standard form in the context of group rings, see Fulton [7]. In Section 3 it is shown
how splicing can be realized by the action of the Steenrod algebra and Theorem 3.15 is
proved. In Section 4 we show how Theorem 1.1 follows by considering the special
case of the Steinberg representation, using the hook formula to count the number of
semistandard Young tableaux.

In general, the hook formula shows that for a fixed n� 2 and increasing d the number
of semistandard Young tableaux increases, whereas the dimension of Qd .n/ is known
to be bounded in d for a given n, see Carlisle–Wood [4]. It would be interesting to
find a more restrictive condition on semistandard Young tableaux which cuts down
the number of generators of Qd .n/, at least in the row-regular case, to a number
bounded in d which estimates more closely the dimension of the cohits. It would also
be interesting to investigate the dual hit problem and identify a basis for the kernel
of the down Steenrod action in terms of the combinatorics of Young tableaux and
the relationship with the ring of lines as described in Alghamdi–Crabb–Hubbuck [1]
and Crabb–Hubbuck [5]. At the end of Section 3 we give an example to show the
limitations of the main theorem. In the last section we explain briefly how Theorem
1.1 can be extended to other irreducible representations of GL.n; F2/ having a certain
affinity to the Steinberg representation.

2 Binary blocks and Young tableaux

There are two frequently used numerical functions in the context of the hit problem. One
is the ˛–function ˛.d/ of a positive integer d , which counts the number of digits 1 in
the binary expansion of d , and the other is the �–function �.d/, which is the smallest
number k for which d can be partitioned in exponential form d D

Pk
iD1.2

�i �1/. We
extend the definitions to cover ˛.0/D �.0/D 0. In general, the exponential partition
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of a number d , with a given value of �.d/, is not unique. For example �.17/D 3 and
17D 15C 1C 1D 7C 7C 3.

We are concerned with two types of partitions of numbers: the exponential partition of
d as in the definition of the �–function and the ordinary partition �D .�1; : : : ; �n/

of the number j�j D �1C � � �C�n , where �1 � �2 � : : :� �n � 0. The length of the
partition is the number of non-zero parts �i . In this article we reserve n for the number
of variables in Pd .n/ and restrict attention to partitions of length not greater than n. In
combinatorics it is customary to illustrate the partition � by a Ferrers diagram, which
is an array of boxes in echelon shape with �i boxes in the i th row. The positions of
the boxes are the nodes of the Ferrers diagram. A Young tableau is a Ferrers diagram
in which each box is filled with a positive integer. In particular, filling each box with
the digit 1 produces an array of the form

F D
1 ::: 1 ::: 1 ::: 1
1 ::: 1 ::: 1
:::

1 ::: 1

with �i contiguous digits 1 in the i th row. We shall call this a Ferrers block and
interpret it in terms of the exponential partition d D

Pk
iD1.2

�i � 1/, where now the
rows of F are the reverse binary expansions of the numbers 2�i � 1 as read from left
to right. More generally, a binary block is a .0; 1/–array associated with a monomial
f D x

d1

1
: : :x

dn
n , whose entries are the digits, in reversed binary expansion, of the

exponents di . Blocks were introduced in Carlisle–Wood [4] as a graphical device for
keeping track of the action of Steenrod squares on monomials and have been used in
several places to exhibit minimal sets of monomial generators (see Janfada–Wood [10]).
A formal sum of blocks corresponds to a polynomial over F2 (ordinary addition of
matrices is not used in this article). If we are working in P.n/ then the number of rows
in a block is n. In particular a Ferrers block may have zero rows at the bottom. On the
other hand the number c of columns in a block is not determined by the corresponding
monomial. We adopt the convention of regarding two row-vectors of nonnegative
integers as equivalent if they differ by trailing zeros and we omit trailing zeros when
convenient. In particular the empty vector is identified with a vector of zero entries.
The convention is extended to arrays except that an empty row in indicated by a leading
0. This is necessary to keep track of the positions of missing variables in a monomial
and maintain the number of rows at n. Under these conventions we have a bijective
correspondence between blocks with n rows and monomials in P.n/. The blocks
associated with the monomials in Example 1.2 are given in the following list.

Example 2.1
1 1
1
0

1 1
0
1

1
1 1
0

1
0 1
1

0
1 1
1

0
1
1 1

1
1
0 1

1
0
1 1
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In the context of the hit problem, a spike in P.n/ is a monomial of the form
x

d1

1
x

d2

2
� � �x

dn
n , where each di has the form 2�i � 1. The corresponding block is

a row permutation of the Ferrers block, with appropriate 0–rows inserted.

A more compact way of designating a .0; 1/–array F is to form the corresponding
array Y of nonnegative integers by the following rule. For each number j let L denote
the list of row positions occupied by a digit 1 in the j th column of F , counting from
the top row down. Then the i th element of L occupies position .i; j / in Y . If a
column of F has no digits 1 then the corresponding column of Y has zero entries,
keeping in mind the trailing zero convention for rows of the array. By construction, the
non-zero entries in a column of Y are strictly increasing.

Definition 2.2 An array is column strict if the non-zero entries of any column are
strictly increasing from top down. The process of assigning the column-strict array
Y to the block B is called the column-position correspondence and is denoted by
Y D cp.F /.

Given a column-strict array Y with no entry larger than n, then it is clear how to
constitute the block F with n rows so that cp.F /D Y . The column-position corre-
spondence is therefore bijective between blocks and column-strict arrays. It is easy to
see that the blocks of Example 2.1 and the arrays of Example 1.2 are related by the cp
correspondence and this in turn establishes the correspondence with the monomials in
Example 1.2.

We shall now translate some of the traditional language of Young tableaux (see Ful-
ton [7], Macdonald [14], Sagan [19] and Stanley [21]) into the language of block
technology (see Janfada–Wood [10]). The !–vector of a block F is the vector
!.F / D .!1; : : : ; !c/ of column sums of F . The ˛–vector of F is the vector
˛.F /D .˛1; : : : ; ˛n/ of row sums. In the case of the Ferrers block associated with the
partition � we have ˛.F /D � and !.F /D �0 , the conjugate of �. The degree d of a
block F , or associated array cp.F /, means the degree of the corresponding monomial,
and this is a function of the !–vector given by d D

P
j>0 !j 2j�1 . In terms of cp.F /,

the j th entry !j of the !–vector is the number of non-zero entries in the j th column
of cp.F /.

Of particular interest in this article are the monomials with descending !–vectors,
meaning that !j � !jC1 for j � 1, keeping in mind the trailing zeros convention
for vectors. All the blocks in Example 2.1 are of this type with !–vector .2; 1/. If
a block F has a descending !–vector then it is easy to see that the corresponding
column-position array Y D cp.F / is a column-strict Young tableau. In some parts of
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the literature column-strict is included in the definition of a Young tableau. One can
easily check that the i th entry of ˛.F / is the number of repetitions of i in Y .

It follows that a monomial with descending !–vector has a uniquely associated column-
strict Young tableau via the column-position correspondence. In combinatorics a
column-strict Young tableau is called semistandard if the rows are weakly increasing.
The Young tableaux in Example 1.2 are semistandard.

The following lemma, which is straightforward to prove, summarizes the situation so
far.

Lemma 2.3 Working in P.n/, the column-position correspondence sets up a bijection
between monomials with descending !–vectors and column-strict Young tableaux,
with entries taken from the set f1; : : : ; ng, based on Ferrers blocks with n rows. A
semistandard tableau cp.F / corresponds to a block F with the property that !.F Œi �/
is descending for each i in the range 1� i � n, where F Œi � denotes the block formed
by taking the first i rows of F .

In the light of this lemma it is appropriate to make the following definition.

Definition 2.4 A block F with n rows is semistandard if !.F Œi �/ is descending for
each subblock of F Œi � for 1� i � n.

The ultimate aim of this article is to find a generating set for the A–module P.n/
among semistandard blocks at least in certain degrees. We shall call a degree d row-
regular for n if it has an exponential partition d D

Pn
iD1.2

�i �1/, where the partition
�D .�1; : : : ; �n/ satisfies the condition �1 > � � �>�n � 0. In this case d has a unique
exponential partition of length n� 1 or n. For such a degree we have �.d/D n or
�.d/ D n � 1, but not all degrees with these �–values are row-regular for n. Up
to permutation of rows there is only one spike in Pd .n/ when d is row-regular, and
therefore just one associated Ferrers block and just one descending !–vector. All
monomials in Pd .n/ with this !–vector have corresponding column-strict Young
tableaux with the same underlying Ferrers diagram.

Later proofs will require induction on certain partial order relations on monomials and
corresponding blocks. These are constructed from total order relations on !–vectors.
We shall highlight two of these.

Definition 2.5 Let L D .a1; a2; : : : ; as/ and M D .b1; b2; : : : ; bs/ be two vectors
of non-negative integers. We write L >l M and read ‘greater than in left order’ if
a1 > b1 or ai D bi for 1 � i < t � s and at > bt . We also write L >r M and read
‘greater than in right order’ if as < bs or ai D bi for 1� t < i � s and at < bt .
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To compare !–vectors we allow trailing zeros to equalize length. As usual, in either
ordering we write L<M to mean M >L.

Both right and left orderings are total and induce partial orderings on blocks by ordering
their !–vectors. We shall also talk about the left and right ordering of blocks. The
reverse lexicographic order is chosen in the right order case to provide consistency
with the action of the Steenrod algebra, as we shall see later in Lemma 3.8.

The following statement is a simple numerical fact about unique descending !–vectors
that will be required later.

Proposition 2.6 If Pd .n/ admits a unique descending !–vector ! , then, for any
block B in Pd .n/ with !.B/ >l ! , the first number t for which !t .B/ > !t also
satisfies the conditions t > 1 and !t�1.B/ < !t .B/.

For example, P8.3/ has the unique !–vector .2; 1; 1/, with Ferrers block F , and the
left greater block B as shown below.

Example 2.7
F D

1 1 1
1
0

B D
1 1
1 1
0 1

We see that !1.B/D !1.F / and !2.B/ > !2.F /. Also !1.B/ < !2.B/.

A familiar process in the combinatorics of Young tableaux is straightening which is a
device for maneuvering a Young tableau into an equivalent sum of semistandard Young
tableaux in the context of group rings. We shall now explain an analogous process for
blocks which we shall later relate to the action of the Steenrod algebra on polynomials.
The idea is to maneuver a block in P.n/ into a formal sum of semistandard blocks. We
adopt the usual notation Fi;j for the .i; j /th entry of the block F .

Definition 2.8 Let F be a block with n rows and let k; t be integers with 1� k � n

and t � 0. Assume that, for a certain pair of non-intersecting sets S;T , each containing
k numbers between 1 and n, F has entries Fi;tC2 D 1 and Fi;tC1 D 0 for i 2 S and
Fi;tC2 D 0 and Fi;tC1 D 1 for i 2 T . Let G.S;T / be the matrix formed from F by
leaving all entries unchanged except in columns t C 1 and t C 2, where Gi;tC2 D 0

and Gi;tC1 D 1 for i 2 S and Gi;tC2 D 1 and Gi;tC1 D 0 for i 2 T . The process of
replacing F by the formal sum of the blocks G.S;T / for S fixed and all possible T

is called k –splicing of F at column position t C 2 and row positions S .

To put it briefly, splicing replaces the block F with the formal sum of all the blocks
G.S;T / formed from F by pulling a selection of k digits 1 in column t C 2 back
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one place into zero positions, and pushing a non-overlapping collection of k digits in
column t C 1 forward one place into zero positions. Only two adjacent columns of the
block are altered, so effectively splicing is a process carried out on a 2–column block
implanted as adjacent columns in a larger matrix. Of course, even when the first part of
the procedure is possible, it may not always be possible to carry out the second part, in
which case we define the result to be 0. It should be noted that the ˛ and !–vectors
of each G.S;T / are the same as those of F .

In the following example there is only one way of carrying out 2–splicing of the matrix
B and the result is the sum of blocks C .

Example 2.9

B D

0 1
1 0
0 1
1 0
1 0

C D

1 0
0 1
1 0
0 1
1 0

C

1 0
0 1
1 0
1 0
0 1

C

1 0
1 0
1 0
0 1
0 1

Here S D f1; 3g and there are three possible choices of T corresponding to picking
two rows from the list f2; 4; 5g.

We are now ready to establish the combinatorial part of our main theorem.

Theorem 2.10 By iterated splicing, any block with descending !–vector can be
replaced by a formal sum of semistandard blocks.

Proof Let F be a block with n rows and descending !–vector. We argue by induction
on rows, working from the bottom row upwards. We recall that for any block F the
subblock of the first i rows of F is denoted by F Œi �. As the inductive step, assume that,
for some number r , F has been replaced by a formal sum of blocks G such that the !–
vectors !.GŒi �/ of the subblocks are descending for all i satisfying 1� r C1� i � n.
The start of the induction is r D n� 1, since we are given that !.F / is descending. If
r > 0 and !.GŒr �/ fails to be descending, then we can find a column position t C 1

for t � 0 such that !tC1.GŒr �/ < !tC2.GŒr �/. Let S denote the set of row positions
i in GŒr � for which GŒr �i;tC1 D 0 and GŒr �i;tC2 D 1, and suppose S has k elements.
The effect of performing a k –splice of G at column position t C 2 and row positions
S is to produce a formal sum of matrices H DH.S;T / with the properties

(i) H Œi � has descending !–vector for r C 1� i � n,

(ii) !.H Œr �/ >l !.GŒr �/.

Assuming these two facts for the moment, we see by (i) that the process of splicing can
be continued at column positions where the subblocks at level r fail to be descending
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without disturbing the condition of descending !–vectors for levels below row r . By
(ii) this process must come to a stop since the !–vectors are bounded above in left
order. The process stops when all blocks H are such that !.H Œr �/ is descending and
this completes the inductive step.

It remains to justify (i) and (ii). To obtain a typical block H from G we move k digits
1 of GŒr � from column t C 2 back to column t C 1 and, say, a digits 1 from column
t C 1 forward to column t C 2. Since !tC1.GŒr �/ < !tC2.GŒr �/ we must have a< k .
The other k�a digits are moved from column tC1 to column tC2 below level r in G .
Then !tC1.H Œr �/D!tC1.GŒr �/Ck�a. It follows that !tC1.H Œr �/�!tC1.GŒr �/ > 0

which proves (ii). Furthermore, let i be a number between r C 1 and n and suppose b

digits 1, in rows r C 1 to i , move from column t C 1 to column t C 2. Then

!tC1.H Œi �/D !tC1.GŒi �/C k � a� b; !tC2.H Œi �/D !tC2.GŒi �/� kC aC b:

Hence

!tC1.H Œi �/�!tC2.H Œi �/D !tC1.GŒi �/�!tC2.GŒi �/C 2.k � a� b/:

By assumption we have

aC b � k and !tC1.GŒi �/� !tC2.GŒi �/:

Hence !tC1.H Œi �/� !tC2.H Œi �/ and since no other columns besides t C 1 and t C 2

have been disturbed, (i) follows.

3 The hit problem for the Steenrod algebra

In this section we explain the action of the Steenrod algebra on polynomials and
show how the combinatorial process of k –splicing can be realized by this action up
to certain error terms. In favourable situations the error terms are hit, and this leads
to our main theorem for generators in row-regular degrees. Background material on
the hit problem can be found in Wood [24; 26; 27; 28; 29], Janfada–Wood [9; 10],
Alghamdi–Crabb–Hubbuck [1] and Crabb–Hubbuck [5].

The Steenrod algebra A is a graded algebra generated by the Steenrod squares Sqk in
grading k , over the field F2 , subject to the Adem relations (see Steenrod–Epstein [22])
and Sq0

D 1.

Proposition 3.1 The Steenrod squares Sqk ; k � 0, act on polynomials by linear
transformations Sqk

W Pd ! PdCk , determined by the conditions,

Sq1.xi/D x2
i ; Sqk.xi/D 0 for k > 1;
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and the Cartan formulae for polynomials f;g

Sqk.fg/D

kX
iD0

Sqi.f /Sqk�i.g/:

The action of a general element of A is by addition of compositions of the Steenrod
squares. The polynomial algebra P.n/ is a graded left A–module, where the grading
is given by degree of polynomials. In principle a Steenrod square can be evaluated on a
monomial by iterated use of the Cartan formulae. A more compact way of stating these
formulae is in terms of the total squaring operation, which is the formal sum SQD

1C Sq1
C Sq2

C � � � . Then SQ is multiplicative, that is, SQ.fg/D SQ.f /SQ.g/

for polynomials f;g and the Cartan formulae arise by comparing terms of degree k .

Definition 3.2 Two homogeneous polynomials f;g of the same degree are equivalent
modulo hits if they satisfy the relation

f D gC
X
i>0

Sqi.hi/;

over F2 , which we refer to as a hit equation. In particular, if g D 0 then f is hit. We
write f Š g if f �g is hit.

The hit problem is to find a minimal generating set for the A–module P.n/. Equivalently
we want a vector space basis for the quotient Qd .n/ of Pd .n/ by the hits in each
degree d , frequently referred to as the cohits. Such a basis may be represented by a
list of monomials of degree d , as in Example 1.2, where Q4.3/ has dimension 8.

The action of the Steenrod squares as described in Proposition 3.1, when applied to
polynomials in an arbitrary number of variables, faithfully represents the Steenrod
algebra in the sense that all relations in A can be detected by the action. Some
elementary consequences for a homogeneous polynomial f are easy to prove by
induction on degree.

Proposition 3.3 If k > deg.f / then Sqk.f /D 0, and if k D deg.f / then Sqk.f /D

f 2 . If r is not divisible by 2k then Sqr .f 2k

/D 0 while Sqs2k

.f 2k

/D .Sqs.f //2
k

.

The second statement expresses the fractal nature of the Steenrod action. We shall
frequently invoke it when considering the action of a Steenrod square on a monomial
b in terms of its columnwise action on the associated block B .

There are some important facts about the Steenrod algebra which are not immediately
obvious from its action on polynomials. The Steenrod algebra A is multiplicatively
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generated by the Steenrod squares Sq2k

for k � 0. It admits a coproduct which makes
A into a Hopf algebra (see Steenrod–Epstein [22]) with a conjugation operator �. This
is a grade-preserving anti-automorphism of order 2. As in Proposition 3.1 there are
rules for working out conjugates of Steenrod squares on polynomials (see Walker–Wood
[23]).

Proposition 3.4 The action of the conjugate Steenrod squares on polynomials
�.Sqk/W Pd ! PdCk are determined by

�.Sqk/.xi/D x2k

i if k D 2a
� 1; a� 0; and zero otherwise;

and the Cartan formula �.SQ/.fg/ D �.SQ/.f /�.SQ/.g/ for the total conjugate
square �.SQ/D 1C�.Sq1/C�.Sq2/C � � � .

There is one fact about the action of Sqk and its conjugate �.Sqk/ on a product of
distinct variables that we shall need at a later stage in relation to the splicing process.
Let fy1; : : : ;ymg be a subset of the variables fx1; : : : ;xng.

Lemma 3.5 For k �m,

Sqk.y1 � � �ym/D y1 � � �ym

X
fi1;��� ;ikg

yi1
� � �yik

;

where the summation is taken over k –element subsets of fy1; : : : ;ymg. If k >m then
the result is zero.

�.Sqk/.y1 � � �ym/D Sqk.y1 � � �ym/Cf;

where every monomial in the polynomial f has an exponent � 4.

Proof By Proposition 3.4 we have

�.SQ/.y1 � � �ym/D

mY
iD1

�.SQ/.yi/D

mY
iD1

.yi Cy2
i Cy4

i C � � � /:

Hence

�.SQ/.y1 � � �ym/D

mY
iD1

.yi Cy2
i /Cf D SQ.y1 � � �ym/Cf;

where all monomials in f have an exponent � 4. The result then follows by comparing
terms of degree mC k .

The following result has been significant in proving many results on the hit problem
and is known as the �–trick (Crossley [6] and Wood [24; 26; 27; 28; 29]).
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Proposition 3.6 For homogeneous polynomials u; v

uSqk.v/� v�.Sqk/.u/D
X
i>0

Sqi.v�.Sqk�i/.u//:

Thus uSqk.v/Š v�.Sqk/.u/ and the statement extends by composition and addition
of Steenrod operations to show that u‚.v/Š v�.‚/.u/ for any element ‚ in A. The
�–trick is the analogue of integration by parts in calculus, when the Steenrod squares
are interpreted as differential operators (see Wood [25]). An immediate application
of the �–trick is the following well known observation, used to prove the Peterson
conjecture [24; 26; 27; 28; 29].

Proposition 3.7 Let u and v be homogeneous polynomials such that deg.u/ <
�.deg.v//. Then uv2 is hit.

The proof follows by writing v2DSqd .v/, where d is the degree of v , applying the �–
trick, and then the fact that the excess of �.Sqd / is �.d/. The condition deg.u/<�.d/
and the definition of excess (see Steenrod–Epstein [22]) implies �.Sqd /.u/D 0.

We shall find it convenient to switch back and forth between blocks and monomials
where appropriate. To avoid repetition we adopt the temporary convention of using
upper case letters for blocks and their lower case versions for corresponding monomials.
A vertical partition of a block B D FG corresponds to the monomial b D fg2t

if
F has t columns. If t D 0 then F is empty (corresponding to the monomial 1). If
H D

P
Hk is a formal sum of blocks then FH is the formal sum

P
FHk . From

the Cartan formula of Proposition 3.1 and the fractal nature of the action of Steenrod
squares, as explained in Proposition 3.3, we can study the action of Sqm columnwise
on blocks. For example, corresponding to B D FG we have

Sqm.b/D
X

Sqp.f /.Sqq.g//2
t

;

where the summation is over all p; q � 0 with pC 2tq Dm. Splitting a block into its
columns as B D B1B2 : : :Bt leads to the formula

Sqm.b/D
X

Sqp1.b1/.Sqp2.b2//
2 : : : .Sqpt .bt //

2t

;

where the summation is taken over all solutions in non-negative integers pi of the
equation p1C2p2C� � �C2tpt Dm. In the light of Lemma 3.5, describing the action
of a Steenrod square on a product of distinct variables, it is easy to see that the typical
action of a Steenrod square on a block moves digits 1 from one column to the next
column on the right in the same row, with the knock-on effect of binary addition if
digits superimpose. In particular we deduce the following fact about the order relations
introduced in Section 1.
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Lemma 3.8 Let Sqk.F / D F1 C � � � C Fs , for k � 1, be a formal sum of distinct
blocks. Then Fi < F in both the left and right orderings for 1� i � s .

We shall now interpret Lemma 3.5 in block language and use the �–trick to show how
k –splicing in the second column of a 2–column block can be realized by the action of
the Steenrod algebra modulo certain error terms.

Let C be a 2–column block. Let R be the set of row positions where there is a digit
1 in C . Partition R into three subsets U;V;W as follows. For i 2 U we require
Ci;1 D Ci;2 D 1, and for i 2 V we require Ci;1 D 0 and Ci;2 D 1, and for i 2W we
require Ci;1 D 1 and Ci;2 D 0. Now select a subset S of k elements of V and let B

be the 2–column block with zero entries except for Bi;1 D 1 for i 2 S . Let A be the
block formed from C by deleting the digits in positions Ci;2 for i 2 S . The following
diagrams illustrate an example where

U D f1g; V D f2; 3; 4g; W D f5; 6; 7g; S D f2; 3g; k D 2:

Example 3.9

C D

1 1
0 1
0 1
0 1
1 0
1 0
1 0

AD

1 1
0 0
0 0
0 1
1 0
1 0
1 0

B D

0 0
1 0
1 0
0 0
0 0
0 0
0 0

Then c D aSqk.b/ Š b�.Sqk/.a/ by the �–trick. Now monomials with exponents
� 4 correspond to blocks which are right lower than any 2–column block. Hence by
Lemma 3.5 the effect of �.Sqk/ on A is the same as Sqk on A modulo right lower
blocks. Furthermore, any effect arising from Sqk via the Cartan formula on the second
column of A also produces right lower blocks, as does the action of Sqk on the first
column on any row in the set U by the knock-on effect of binary addition. On the other
hand, the effect of Sqk concentrated on the rows of the set W is to produce exactly
the result of the k –splicing process on A. Consequently b�.Sqk/.a/ produces the
effect of k –splicing C modulo the error terms as described. This is summarized in the
following statement.

Proposition 3.10 Let C be a 2–column block and let C 0 be the sum of 2–column
blocks arising from a k –splicing process of C at column 2. Then C Š C 0 modulo
blocks which are right lower than any 2–column block.

Now we need to investigate what happens when a block is implanted as adjacent
columns in a larger block.
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Lemma 3.11 Let BDFC G be a vertical splitting of a block and suppose C ŠC 0CR,
where C 0 is a sum of blocks of the same size as C , and R is a sum of blocks each of
which is right lower than C . Let B0 D FC 0G . Then B ŠB0CF 0H CFK , where F 0

is a sum of blocks of the same size as F , each of which is left lower than F , and K is
a sum of blocks each of which is right lower than C G . In particular B is equivalent to
B0 modulo blocks which are either left or right lower than B .

Proof Substituting R for C in B immediately produces blocks which may overlap
with G but certainly have the form FK , as stated in the proposition. We may therefore
assume that R D 0. In terms of corresponding monomials we have b D fc2t

g2s

,
where t is the number of columns in F and s� t the number of columns in C . Then
C Š C 0 and there is a hit equation c D c0C

P
k>0 Sqkhk . By the fractal property in

Proposition 3.3, we have the hit equation c2t

D .c0/2
t

C
P

k>0 Sq2t k.h2t

k
/. Applying

the �–trick in Proposition 3.6 to uD fg2s

and v D h2t

k
for each k in turn and then

adding, we see that b � b0 Š ‚.u/v for some positively graded element ‚ in the
Steenrod algebra. Then by the Cartan formula, ‚ must have a positive action either on
f or g2s

which means that, in the language of blocks, by Lemma 3.8, either F or G

is moved to a sum of lower blocks in either order. The result follows.

An immediate corollary of Lemma 3.11 and Proposition 3.10 is the following result.

Proposition 3.12 Let B D FC G be a partitioned block, where C has two columns
in positions t C 1; t C 2. Let C 0 be the sum of the 2–column blocks arising out of a
k –splicing process at column tC2 and let B0 D FC 0G . Then B ŠB0 modulo blocks
of the form F 0H , where F 0 is left lower than F , and blocks FK , where K is right
lower than C G . In particular B Š B0 modulo blocks which are either left or right
lower than B .

Of course, if for some choice of k , the first stage of k –splicing is not possible, then
the above statement is void. On the other hand, if k can be chosen in such a way that
k –splicing produces the zero result, then Proposition 3.12 says that B is reducible
modulo hits to blocks which are either left or right lower than B in the specified way.
This leads to the following result.

Proposition 3.13 Let B in Pk.n/ be a block whose !–vector is not descending, so
that !tC1.B/ < !tC2.B/ for some value of t . We can write B DFC G , where F has
t columns and C is a 2–column block with !1.C / < !2.C /. Then B is hit modulo
blocks of the form F 0H , where F 0 is left lower than F , and blocks FK , where K is
right lower than C G . In particular B is hit modulo blocks which are either left or right
lower than B .
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Proof The condition !1.C / < !2.C / ensures k –splicing of C in the second column
is possible and the largest such k produces the zero result.

We shall now exploit the above results in a situation where we can control the error
terms. Parts of the next proposition, originating in Singer’s work [20], are known
in more generality (see Carlisle–Wood [4] and Mothebe [17]) but for the sake of
completeness we include proofs of these particular cases.

Proposition 3.14 Assume that Pd .n/ admits a unique descending !–vector ! . Let
B be a block in Pd .n/.

(i) If !.B/ <l ! then B is hit.

(ii) If !.B/ <r ! then B is hit.

(iii) There is a generating set of blocks B for Qd .n/ with !.B/D ! .

Proof We start with the proof of (i). Let B be a block in Pd .n/ with !.B/ <l ! .
There is a first column position t < n from the left where !t .B/ < !t . Consider the
vertical splitting B D FC G where F has t � 1 columns (empty if t D 1), C has one
column in position t , and G (non-empty) has the rest of the columns of B . Then
�.deg.G// > deg.C /, otherwise we can create a block B0 D FC G0 , where G0 is a
spike with fewer rows than C . Then !.B0/ is descending and !.B0/ <l ! , contrary to
the assumption that ! is the unique descending !–vector. It follows from Proposition
3.7 that C G is hit. Then by the arguments used in previous propositions we see that
B ŠF 0H , where F 0 is a sum of blocks of the same size as F and lower than F in the
left order. For a typical such block B00 we have !s.B

00/ < !s for some s < t . Iteration
of the process must come to a stop at or before t D 1 when the result is zero. Hence B

is hit.

To prove (ii) we may as well start with a block B for which !.B/<r ! and !.B/>l ! .
Let t be the first number such that !tC2.B/ > !tC2 . Then by Proposition 2.6 we can
write B D FC G where F (possibly empty) has t columns and C has two columns
with !1.C / < !2.C / as in Proposition 3.13. According to this proposition B is
equivalent to a sum of blocks of the form F 0H , where F 0 is left lower than F , and
blocks FK , where K is right lower than C G . But then !.F 0H / is left lower than !
and therefore F 0H is hit by part (i). Hence B is equivalent to a sum of blocks right
lower than B . In particular their !–vectors are right lower than ! and the process
can therefore be iterated. The procedure must come to a stop since we cannot have an
infinite chain of right lower blocks. The process ends when the result is zero, and this
proves that B is hit.

The proof of (iii) follows the same line of argument as the proof of (ii), except that the
process stops when the !–vectors of the blocks reach ! .
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We now state and prove the main result.

Theorem 3.15 Suppose that Pd .n/ admits a unique descending !–vector. Then the
cohits Qd .n/ are spanned by the semistandard blocks.

Proof By part (iii) of Proposition 3.14 we can start with a spanning set for Qd .n/

consisting of blocks B having the unique descending !–vector. By Proposition 3.12
and Proposition 3.14 we can replace B by the result of any k –splicing modulo hits.
The proof is then complete by Theorem 2.10.

The limitation of the above approach in the non-regular case, where there is more than
one descending !–vector, is illustrated by the example P7.4/. Here there are two
descending !–vectors .1; 1; 1/ < .3; 2/, the least and greatest in either of the order
relations. The other possible !–vectors are .3; 0; 1/ and .1; 3/ which lie between these
extremes.

Example 3.16 Consider the following block C with !.C /D .1; 3/.

C D
1
0 1
0 1
0 1

E D
0 0 1
1
1
1

F D
0 1
0 1
0 1
1

G D
0 1
0 1
1
0 1

H D
0 1
1
0 1
0 1

Now 3–splicing of C in the second column has zero effect but the Steenrod realization
has error term E with !.E/D .3; 0; 1/. Hence C ŠE . Similarly, 1–splicing E in
the third column produces the equivalence E Š F CGCH . So iterated splicing has
produced the relation

C CF CGCH Š 0;

involving blocks with !–vector .1; 3/. However, it can be shown that C is not
equivalent to a combination of blocks with !–vectors .1; 1; 1/ or .3; 2/.

This example contrasts with the case nD 3, where a basis for the cohits can be taken
with descending !–vectors. The complete solution of the hit problem in the case
nD 4 has been given by Kameko [11] in a format which analyzes the hit problem one
!–vector at a time. The vector space Q!.n/ is formed by taking the quotient of the
subspace of Pd .n/ generated by monomials with !–vector � ! by the hits and the
subspace generated by monomials with !–vector <! in left order. Much of the above
work can be applied to Q!.n/ when ! is the least descending !–vector in degree d

(which is the same in either order).
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4 The Steinberg representation

The degree d D 2n � n � 1 is row-regular for n and d D
Pn

iD1.2
n�i � 1/ is the

unique exponential partition of d into n parts, with unique descending !–vector
.n � 1; n � 2; : : : ; 1; 0/ and Ferrers block F . The corresponding partition is also
�D .n�1; n�2; : : : ; 1; 0/. The number of semistandard Young tableaux, and therefore
semistandard blocks, is given in Fulton [7, page 55] by the hook formula

d�.m/D
Y

.i;j/2�

mC j � i

h.i; j /
;

for the Ferrers diagram of �, filled with numbers from the set f1; : : : ;mg, where
h.i; j / denotes the hook length of the node in the Ferrers diagram at position .i; j /,
that is, the number of nodes to the right and below the given position in the Ferrers
diagram including the position itself.

In our application, m D n and h.i; j / D 2.n � i � j / C 1 giving d�.n/ D 2.
n
2/ ,

the dimension of the Steinberg representation of GL.n; F2/ (see Mitchell–Priddy
[16]). Theorem 3.15 shows that the dimension of the vector space of cohits Qd .n/ is
bounded by 2.

n
2/ . The remarks in Section 1 about the first occurrence of an irreducible

representation then finally establish Theorem 1.1.

For m < n, the Weyl module for GL.n; F2/ corresponding to the partition � D

.m� 1;m� 2; : : : ; 1; 0; : : : ; 0/ is irreducible, and has dimension d�.n/. By Carlisle–
Kuhn [3, Theorem 1.1], the first occurrence as a composition factor is in degree
d D 2mC1 � 1�m. The work above can then be applied to Q!.n/, when ! is the
least descending !–vector in degree d , to show that dim.Q!.n//D d�.n/.
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