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On the Heegaard splittings of amalgamated 3–manifolds

TAO LI

We give a combinatorial proof of a theorem first proved by Souto which says the
following. Let M1 and M2 be simple 3–manifolds with connected boundary of
genus g > 0 . If M1 and M2 are glued via a complicated map, then every minimal
Heegaard splitting of the resulting closed 3–manifold is an amalgamation. This proof
also provides an algorithm to find a bound on the complexity of the gluing map.

57N10; 57M50

1 Introduction

The study of Heegaard splitting has been dramatically changed since Casson and
Gordon introduced the notion of strongly irreducible Heegaard splitting [4]. Casson
and Gordon proved in [4] that if a Heegaard splitting is irreducible but weakly reducible,
then one can perform some compressions on both sides of the Heegaard surface and
obtain an incompressible surface.

Conversely, let F be a connected separating incompressible surface in a closed 3–
manifold M 0 and M1 and M2 the two manifolds obtained by cutting open M 0 along
F . Then one can construct a weakly reducible Heegaard splitting by amalgamating two
splittings of M1 and M2 along F , see Scharlemann [13] for more detailed discussion.

In [10] Lackenby showed that if M1 and M2 are simple and the gluing map is a
high power of a pseudo-Ansov homeomorphism of F (F is connected), then the
minimal genus Heegaard splitting of M 0 is obtained from splittings of M1 and M2

by amalgamation. This implies that the genus of M 0 is g.M1/Cg.M2/�g.F /.

As pointed out in [10], it is generally believed that the same is true if the gluing map is
of high distance in the curve complex, see Theorem 1.1. Note that a high power of a
pseudo-Ansov map has high distance in the curve complex. Souto [18] proved this first
using the same principles as in [10] by analyzing the geometry near the incompressible
surface. In this paper, we give a combinatorial proof of this result and this proof also
provides an algorithm to find the bound on the distance for the gluing map.
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Theorem 1.1 Let M1 and M2 be orientable simple 3–manifolds with connected
boundary and suppose @M1 Š @M2 Š F . Then there is a finite set of curves Ci �

@Mi and a number N such that, if a homeomorphism �W @M1 ! @M2 satisfies
dC.F /.�.C1/; C2/ > N , where dC.F / is the distance in the curve complex C.F / of
F , then

(1) every minimal genus Heegaard splitting of M1[� M2 is an amalgamation,

(2) the Heegaard genus satisfies g.M1[� M2/D g.M1/Cg.M2/�g.F /.

Moreover, there is an algorithm to find Ci and N .

In this paper, we will study 0–efficient triangulations for 3–manifolds with connected
boundary. A 0–efficient triangulation for a 3–manifold with connected boundary is a
triangulation with only one vertex (on the boundary), the only normal disk is vertex
linking, and there is no normal S2 . By an in-depth analysis of normal annuli in such
triangulations, we prove the following theorem which can be viewed as a generalization
of Hatcher’s theorem [6] and a theorem of Jaco and Sedgwick [9] to manifolds with
higher genus boundary.

Theorem 1.2 Let M be a simple 3–manifold with connected boundary and a 0–
efficient triangulation. Let Sk be the set of normal and almost normal surfaces satisfying
the following two conditions

(1) the boundary of each surface in Sk consists of essential curves in @M

(2) the Euler characteristic of each surface in Sk is at least �k .

Let Ck be the set of boundary curves of surfaces in Sk . Then Ck has bounded diameter
in the curve complex of @M . Moreover, there is an algorithm to find the diameter.

Since every incompressible and @–incompressible surface in M is isotopic to a normal
surface in any triangulation, an immediate corollary of Theorem 1.2 is that the set of
boundary curves of essential surfaces with bounded Euler characteristic has bounded
diameter in the curve complex of @M .

It seems that a version of Theorem 1.1 is true without the assumption that Mi is
atoroidal or @Mi is incompressible.

Conjecture 1.3 Let Mi (i D 1; 2) be an irreducible 3–manifold with connected
boundary @M1 Š @M2 Š F . Let Di be the set of essential curves in F that bound
disks in Mi . Then there is an essential curve Ci (i D 1; 2) in @Mi such that if the
distance between D2[ C2 and �.D1[ C1/ in the curve complex C.F / is sufficiently
large, then any minimal-genus Heegaard splitting of M1 [� M2 can be constructed
from an amalgamation.
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This conjecture can be viewed as a generalization of Theorem 1.1 and a theorem
of Scharlemann and Tomova [16]. Note that in the case that both M1 and M2 are
handlebodies, C1 and C2 can be chosen to be empty and the theorem of Scharlemann
and Tomova [16] can be formulated as: if the distance between D2 and �.D1/ (ie, the
Hempel distance) is large, then the genus of any other Heegaard splitting must be large
unless it is a stabilized copy of F .

The proof in this paper is different from the original proof presented in the Haifa
workshop in 2005, though both proofs use Jaco and Rubinstein’s theory on 0–efficient
triangulation [8]. This proof is a byproduct of an effort of finding an algorithmic proof
of the generalized Waldhausen conjecture [12] and it gives a much clearer algorithm
than the original proof.

I would like to thank Saul Schleimer and Dave Bachman for useful conversation about
their work [3] with Eric Sedgwick. I also thank the referee for many helpful comments
and corrections. The research was partially supported by an NSF grant.

Throughout this paper, we will denote the interior of X by int.X /, the closure (under
path metric) of X by X , and the number of components of X by jX j.

2 Strongly irreducible Heegaard surfaces

Let M1 and M2 be orientable simple 3–manifolds with connected boundary and
suppose @M1 Š @M2 Š F . Let �W @M1 ! @M2 be a homeomorphism and M 0 D

M1 [� M2 the closed manifold by gluing M1 and M2 via � . Thus there is an
embedded surface F in M 0 such that M 0�F is the disjoint union of M1 and M2 .
Since each Mi is irreducible and @Mi is incompressible in Mi , M 0 is irreducible and
F is incompressible in M 0 . We may regard Mi as a submanifold of M 0 .

From any Heegaard splittings of M1 and M2 , one can naturally construct a Heegaard
splitting of M 0 , called amalgamation. This operation was defined by Schultens [17].
We give a brief description below, see [13; 17] for details. Any Heegaard surface
Si of Mi (i D 1; 2) decomposes Mi into a handlebody and a compression body.
Each compression body can be obtained by attaching 1–handles to F � I , a product
neighborhood of F . One can extend the 1–handles of the compression body of M1

vertically through the product region F � I and attach these extended 1–handles to the
handlebody in the splitting of M2 . This operation produces a handlebody of genus
g.S1/Cg.S2/�g.F /. It is easy to check that its complement is also a handlebody and
we get a Heegaard splitting of M 0 . This Heegaard splitting is called an amalgamation
of S1 and S2 . Clearly, the resulting Heegaard splitting from amalgamation is weakly
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reducible, see [4; 13] for definitions and basic properties of weakly reducible and
strongly irreducible Heegaard splittings.

Given a weakly reducible but irreducible Heegaard surface S , Casson and Gordon [4]
showed that one can compress S on both sides along a maximal collection of disjoint
compressing disks and obtain an incompressible surface. Scharlemann and Thompson
generalized this construction and gave a construction of untelescoping of a weakly
reducible Heegaard splitting, see [13; 15] for details. The following lemma follows
trivially from the untelescoping construction. We say two surfaces intersect nontrivially
if they cannot be made disjoint by an isotopy.

Lemma 2.1 Let S be an irreducible Heegaard surface of M1[� M2 . Then either

(1) S is an amalgamation of two splittings of M1 and M2 , or

(2) there is a submanifold MF of M1[� M2 (MF may be M1[� M2 ) such that
F �MF and @MF , if non-empty, is incompressible, and there is a strongly
irreducible Heegaard surface S 0 of MF such that the genus of S 0 is at most
g.S/ and S 0 nontrivially intersects F , or

(3) there is an incompressible surface S 0 with genus less than g.S/ such that S 0

nontrivially intersects F .

3 Intersection with F

Suppose S is a minimal genus Heegaard surface of M 0 D M1 [� M2 . So the
genus g.S/ is at most g.M1/C g.M2/ � g.F /. To prove Theorem 1.1, ie, S is
an amalgamation, we need to rule out case (2) and case (3) in Lemma 2.1.

We first consider the case (3) in Lemma 2.1. The following lemma is easy to prove.

Lemma 3.1 Suppose there is an incompressible surface S 0 that nontrivially intersects
F . Then there is an incompressible and @–incompressible surface Si in Mi such that
dC.F /.�.@S1/; @S2/ < ��.S

0/.

Proof Since both S 0 and F are incompressible, we may assume that S 0\F consists
of essential curves. Let S 0i D S 0\Mi (i D 1; 2). Hence S 0i is incompressible in Mi

and dC.F /.�.@S
0
1
/; @S 0

2
/D 0.

If S 0
1

is @–compressible, then we perform a @–compression on S 0
1

and get a new
incompressible surface S 00

1
. Clearly dC.F /.@S

0
1
; @S 00

1
/�1. Note that S 0

1
and S 00

1
are not
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@–parallel in M1 , because otherwise S 0 can be isotoped to be disjoint from F , contra-
dicting our hypothesis. Thus, after fewer than ��.S 0

1
/ @–compressions, we obtain an in-

compressible and @–incompressible surface S1 in M1 . So dC.F /.@S
0
1
; @S1/<��.S

0
1
/.

Similarly, we can find an incompressible and @–incompressible surface S2 in M2 with
dC.F /.@S

0
2
; @S2/ < ��.S

0
2
/. Therefore, dC.F /.�.@S1/; @S2/ < ��.S

0
1
/ � �.S 0

2
/ D

��.S 0/.

Next we consider the case (2) in Lemma 2.1. Bachman, Schleimer and Sedgwick [3]
proved a version of Lemma 3.1 for strongly irreducible Heegaard surfaces, see Lemma
3.3 below and [3, Lemma 3.3].

We first give some definitions using the terminology in [3].

Definition 3.2 A properly embedded surface is essential if it is incompressible and
@–incompressible. A properly embedded, separating surface is strongly irreducible if
there are compressing disks for it on both sides, and each compressing disk on one side
meets each compressing disk on the other side. It is @–strongly irreducible if

(1) every compressing and @–compressing disk on one side meets every compressing
and @–compressing disk on the other side, and

(2) there is at least one compressing or @–compressing disk on each side.

Lemma 3.3 (Bachman–Schleimer–Sedgwick [3]) Let MF be a compact, irreducible,
orientable 3–manifold with @MF incompressible, if non-empty. Suppose MF D

V [S W , where S is a strongly irreducible Heegaard surface. Suppose further that
MF contains an incompressible, orientable, closed, non-boundary parallel surface F .
Then either

� S may be isotoped to be transverse to F , with every component of S �N.F /

incompressible in the respective submanifold of MF �N.F /, where N.F / is a
small neighborhood of F in MF ,

� S may be isotoped to be transverse to F , with every component of S �N.F /

incompressible in the respective submanifold of MF �N.F / except for exactly
one strongly irreducible component, or

� S may be isotoped to be almost transverse to F (ie, S is transverse to F except
for one saddle point), with every component of S �N.F / incompressible in the
respective submanifold of MF �N.F /.

Corollary 3.4 Let MF be a 3–manifold with incompressible boundary and let F be a
separating incompressible and non-boundary parallel surface in MF . Let M 0

1
and M 0

2
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be the 3–manifolds obtained by cutting MF open along F and �W @M 0
1
! @M 0

2
the

gluing map so that MF DM 0
1
[� M 0

2
. Suppose S is a strongly irreducible Heegaard

surface of MF . Then there are surfaces Si in M 0
i such that dC.F /.�.@S1/; @S2/ <

��.S/ and each Si is either essential or strongly irreducible and @–strongly irreducible
in M 0

i .

Proof Note that if S \M 0
i consists of @–parallel surfaces in M 0

i (i D 1; 2), then we
can perform an isotopy on S so that S \F D∅ after the isotopy, contradicting our
hypotheses. So at least one component of S \M 0

i is not @–parallel. Moreover, if a
component of S\M 0

i is a disk, since F is incompressible, the disk must be @–parallel
in M 0

i and we can perform an isotopy on S and remove a trivial-curve component
of S \F . Thus, after some isotopies on S , we may assume that no component of
S \M 0

i is a disk. This implies that every curve of S \F is essential in S and hence
every component of S �F or S \M 0

i is an essential subsurface of S .

By Lemma 3.3, we can find a component of S \M 0
i , denoted by S 0i (i D 1; 2), such

that (1) each S 0i is an essential subsurface of S and not @–parallel in M 0
i , (2) each S 0i

is either incompressible or strongly irreducible in M 0
i , and (3) dC.F /.�.@S

0
1
/; @S 0

2
/� 1.

If the third case in Lemma 3.3 occurs, then both S 0
1

and S 0
2

are incompressible. In the
other 2 cases, it follows from Lemma 3.3 that every curve in S \F must be essential
in F . To see this, suppose  � S \F is an innermost trivial curve in F , then the
disk bounded by  in F is a compressing disk for S . This means that both S \M 0

1

and S \M 0
2

have compressible components, a contradiction to Lemma 3.3. Therefore,
@S 0

1
and @S 0

2
are essential in F in any case.

Suppose S 0i is incompressible but @–compressible in M 0
i . As in the proof of Lemma

3.1, after fewer than ��.S 0i/ @–compressions, we obtain an essential surface Si with
dC.F /.@S

0
i ; @Si/ < ��.S

0
i/.

Suppose S 0i is strongly irreducible but not @–strongly irreducible in M 0
i . We say a

@–compressing disk D of S 0i is disk-busting if every compressing disk on the other
side of S 0i intersects @D .

We first consider the case that S 0i contains a @–compressing disk D that is not disk-
busting. So there is a compressing disk D0 on the other side of S 0i with D\D0 D∅.
Now we perform a @–compression along D and get a new surface, which we denote
by S 00i . Since D0\D D∅, after the isotopy, D0 remains a compressing disk of S 00i .
Note that since S 0i is strongly irreducible, by definition, there is a compressing disk of
S 0i on the same side as D , in fact, a simple cutting-and-pasting argument can show that
there is a compressing disk on the same side as D and disjoint from D . This means
that S 00i is still strongly irreducible.
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After a finite number of such @–compressions, we may assume every @–compressing
disk of S 00i is disk-busting. If S 00i is not @–strongly irreducible, then there must be
a pair of disjoint @–compressing disks D and D0 on different sides of S 00i . Since
D\D0D∅, we can perform @–compressions along D and D0 simultaneously. Since
both D and D0 are disk-busting, the resulting surface after @–compressions along D

and D0 is incompressible.

Therefore, after fewer than ��.S 0i/ @–compressions, we obtain a surface Si in M 0
i

(i D 1; 2) such that each Si is either essential or strongly irreducible and @–strongly
irreducible in M 0

i and dC.F /.@S
0
i ; @Si/ < ��.S

0
i/. Similar to the proof of Lemma 3.1,

we have dC.F /.�.@S1/; @S2/ < ��.S/.

The next corollary follows trivially from Lemma 2.1, Lemma 3.1 and Corollary 3.4.

Corollary 3.5 Let S be an irreducible Heegaard surface of M1 [� M2 . Suppose
S is not a amalgamation of two splittings of M1 and M2 . Then there is a properly
embedded surface with boundary Si in Mi such that dC.F /.�.@S1/; @S2/ < ��.S/

and each Si is either essential or strongly irreducible and @–strongly irreducible in Mi .

Remark 3.6 Let S1 and S2 be components of S \Mi as in Corollary 3.5. It follows
from the construction above and Definition 3.2 that the boundary of S1 and S2 consists
of essential curves. We fix a 0–efficient triangulation (described below) for each Mi . If
Si is essential, then Si is isotopic to a normal surface. If Si is @–strongly irreducible,
then by a theorem of Bachman [2], Si is isotopic to a normal or an almost normal
surface with boundary. The referee pointed out a controversy in a theorem in [2]. In our
proof, we will use Bachman’s theorem, but give a workaround in the appendix avoiding
the controversial part of Bachman’s argument. If Si is @–strongly irreducible, the
general case follows from the appendix is that, after isotopy or possible @–compressions,
(1) Si is normal or almost normal and @Si consists of normal curves in @Mi , and (2)
at most one component of @Si is a trivial curve and at least one component of @Si

is an essential curve. Note that a trivial normal curve in a one-vertex triangulation of
@Mi is vertex-linking, see Proposition 4.3 below. For simplicity, we will assume that
Si is almost normal and @Si consists of essential normal curves and the proof for the
general case is basically the same.

4 The 0–efficient triangulation

Let S be a minimal genus Heegaard surface. By Corollary 3.5, if a Heegaard
surface S is not obtained from amalgamation, then there is a surface Si properly

Geometry & Topology Monographs, Volume 12 (2007)



164 Tao Li

embedded in Mi such that Si is either essential or @–strongly irreducible in Mi and
dC.F /.�.@S1/; @S2/ <��.S/� 2.g.M1/Cg.M2/�g.F //�2. Fixing a 0–efficient
triangulation (described below) of Mi , as in Remark 3.6, we may assume Si is a
normal or an almost normal surface with respect to the triangulation and @Si consists
of essential normal curves in @Mi . Our goal is to prove that the boundary curves of such
(almost) normal surfaces have bounded diameter in the curve complex of F D @Mi ,
see Theorem 1.2.

The 0–efficient triangulation, introduced by Jaco and Rubinstein [8], is a very convie-
nient tool, see for example [12]. In this paper we are mainly interested in 0–efficient
triangulation for manifolds with connected and incompressible boundary. We first give
an overview of the definition and special properties of such a triangulation.

Since @Mi is connected and incompressible in Mi , by [8], Mi admits a special
triangulation with the following properties:

(1) the triangulation has only one vertex which lies in @Mi

(2) the only normal disk is the vertex-linking one,

(3) there is no normal S2 in Mi

We call such a triangulation a 0–efficient triangulation for Mi . It is also shown in [8]
that there is an algorithm to find such a triangulation.

Similar to 0–efficient triangulations for closed 3–manifolds, such triangulations have
some remarkable properties. The following lemma was proved by Jaco and Rubinstein
and the proof is basically the same as the closed case, also see [12, Lemma 5.1]. The
proof of the Lemma 4.1 uses a technique in [8] called barrier. A barrier is basically a
2–complex barrier for the normalization operations. We refer the reader to [12, section
5] for a brief explanation and [8, section 3.1] for more details. The proof of Lemma
4.1 is similar in spirit to that of [12, Lemma 5.1].

Lemma 4.1 Let Mi be a simple 3–manifold with connected boundary and T a 0–
efficient triangulation. Then every properly embedded normal annulus with respect to
T is @–parallel and incompressible.

Remark 4.2 Mi does not contain any normal Möbius band, since the boundary of
a neighborhood of a normal Möbius band is a normal annulus, which contradicts the
above lemma and the assumption that Mi is simple.

Proof Let A be a properly embedded normal annulus in Mi . Since Mi is simple, every
incompressible annulus is @–parallel. So it suffices to prove that A is incompressible.
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Suppose A is compressible, then @A must be trivial curves in @Mi since @Mi is
incompressible in Mi . Note that the induced triangulation of @Mi has only one vertex.
The only trivial normal curve in a one-vertex triangulation of @Mi is vertex-linking
(see part (a) of Proposition 4.3). Hence @A is a pair of parallel vertex-linking curves.
Let 1 and 2 be the two components of @A and Dj (j D 1; 2) the disk bounded by
j in @Mi . As 1 and 2 are parallel, we may suppose D1 �D2 .

Note that the disk A[D1 may not be normal, but A is a barrier for the normalization
operations that make A[D1 normal. So we can normalize A[D1 to a normal disk �.
Since the triangulation is 0–efficient, � is a vertex-linking disk. Since A is a barrier
for the normalizing operations, A must lie in the 3–ball bounded by � and a disk of
@Mi . However, there is no normal annulus in a small neighborhood of the vertex, a
contradiction.

Notation To simplify notation, in the remaining of the paper, we use M to denote
either M1 or M2 and F D @Mi . Unless specified, we use S to denote the surface Si

in Corollary 3.5. We fix a 0–efficient triangulation of M and assume S is a normal or
an almost normal surface in M with respect to the 0–efficient triangulation and @S
consists of essential normal curves in @M .

Now we consider all the properly embedded normal and almost normal surfaces in M

whose boundary consists of essential curves in @M . Similar to [5; 12], there is a finite
collection of branched surfaces each obtained by gluing normal disks and at most one
almost normal piece, such that each of these normal or almost normal surfaces is fully
carried by a branched surface in this collection. Moreover, similar to [1; 12], since
there is no normal S2 and the only normal disk in this triangulation is vertex-linking,
after taking sub-branched surfaces if necessary, we may assume no branched surface in
this collection carries a normal disk or normal S2 .

Let B be a branched surface in this collection that fully carries S . So @B is a train
track in @M . We call a train track a normal train track if every curve carried by the train
track is normal with respect to the induced triangulation of @M . By the construction,
@B is a normal train track.

Note that in the general case from the appendix, @S may contain a single trivial curve,
though at least one component of @S is essential. In this case, we may split B so that
a component of @B is an isolated trivial circle and each other component of @B fully
carries an essential curve (as required by part (c) of Proposition 4.3). For simplicity, as
mentioned in Remark 3.6, we assume @S is essential and @B fully carries @S .
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Proposition 4.3

(a) A normal simple closed curve in @M is trivial if and only if it is vertex-linking.

(b) At most one component of @M � @B is a monogon.

(c) The train track @B does not carry any trivial curve.

Proof Part (a) follows from the fact that the induced triangulation of @M has only
one vertex. To see this, let  be a normal trivial curve and D the disk bounded by 
in @M . Let e be any edge (or 1–simplex) in the induced triangulation of @M . If a
component ˛ of e\D is an arc in int.e/, then ˛ is properly embedded in D and cuts
D into two subdisks D1 and D2 . As there is only one vertex, at least one subdisk, say
D1 , does not contain the vertex. Hence the intersection of D1 and the 1–skeleton of
the triangulation consists of arcs properly embedded in D1 . These arcs cut D1 into
subdisks and an outermost subdisk is a bigon with one edge in @D and the other edge
in the 1–skeleton. This means that  D @D is not a normal curve, a contradiction.
Therefore, every component of e \D is an arc with one endpoint the vertex of the
triangulation and the other endpoint in @D . This implies that  D @D is vertex-linking.

The proof of part (b) is similar. Since every curve carried by @B is a normal curve, the
argument above implies that each monogon component of @M � @B must contain the
vertex of the triangulation. Part (b) follows from that assumption that there is only one
vertex in the triangulation.

Part (c) follows from the assumption that B fully carries S and @S consists of essential
curves. Let N.@B/ be a fibered neighborhood of the train track @B in @M . We may
assume @S lies in N.@B/ and is transverse to the interval fibers of N.@B/. Since @B
fully carries @S , after some isotopy and taking multiple copies of @S if necessary, we
may assume that the horizontal boundary of N.@B/ lies in @S . Since each component
of @S is essential, this means that no horizontal boundary component of N.@B/ is
a trivial circle. In other words, no component of @M � @B (or @M � int.N.@B/) is
a disk with smooth boundary. If @B carries a trivial circle  , then a trivial index
argument implies that the disk bounded by  contains either a disk component of
@M � @B with smooth boundary or at least two monogons. The first case is impossible
by the argument above and the second case is ruled out by part (b). So @B does not
carry any trivial curve.

Each surface carried by B is corresponding to a nonnegative integer solution to the
system of branch equations, see [1; 5; 12] for more detailed discussion. To simplify
notation, we will not distinguish between a surface carried by B and its corresponding
integer solution to the system of branch equations.
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By the normal surface theory, there is a finite set of fundamental solutions of the
system of branch equations such that any surface carried by B is a linear combination
of the fundamental solutions with nonnegative integer coefficients. We denote the
fundamental solutions by F1; : : : ;Fs;C1; : : : ;Ct ;A1; : : :An , where each Aj is a
normal annulus carried by B , each Cj is a closed surface carried by B and the
Fj ’s are the other fundamental solutions. So the surface S can be written as S DP

sj Fj C
P

tj Cj C
P

nj Aj where each sj , tj or nj is a nonnegative integer.

Proposition 4.4
P

sj � 2��.S/.

Proof Since S is a normal or an almost normal surface, we may assume that at most
one fundamental solution contains an almost normal piece and its coefficient in the
linear combination above is either 0 or 1.

Note that M does not contain any normal projective plane, since the boundary of a
twisted I –bundle over a normal P2 is a normal S2 and M does not contain any
normal S2 . Moreover B does not carry any normal disk by our assumption. These
imply that B does not carry any normal surface with positive Euler characteristic.

We first consider the case that S is a normal surface. First, we have �.S/D
P

sj�.Fj /

C
P

tj�.Cj / C
P

nj�.Aj /. Since S is normal, each fundamental solution with
positive coefficient in the linear combination above is a normal surface. Since B does
not carry a normal surface with positive Euler characteristic, we have

�.S/D
X

sj�.Fj /C
X

tj�.Cj /�
X

sj�.Fj /� �
X

sj :

So in the case that S is a normal surface, we have
P

sj � ��.S/. If S is almost
normal, we may suppose some Ck (or Fk ) is almost normal and the coefficient of Ck

(or Fk ) is 1. Note that since �.Ck/ (or �.Fk/) is at most 2, we have �.S/� 2�
P

sj

and
P

sj � 2��.S/.

Since there are only finitely many such branched surfaces B , to prove Theorem 1.2, it
suffices to show that the set of boundary curves of surfaces carried by B with bounded
Euler characteristic has bounded diameter in the curve complex of F . Since each Cj

is a closed surface, @S D
P

sj@Fj C
P

nj@Aj . As
P

sj is bounded by Proposition
4.4, there are only finitely many possibilities for curves

P
sj@Fj . Thus the key part of

the proof is to study normal annuli carried by B .

5 Normal annuli

We use the same notation. Let B be a branched surface in M that fully carries S

as above and A1; : : : ;An the fundamental solutions that correspond to normal annuli
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carried by B . Since B does not carry any normal surface of positive Euler characteristic,
each component of the normal sum

P
niAi must have Euler characteristic 0 and hence

is either a normal torus or a normal annulus carried by B . Note that there is no normal
Klein bottle in the 0–efficient triangulation, see Lemma 5.1 and Corollary 5.2 in [12].

Let N.B/ be a fibered neighborhood of B and � W N.B/! B the map collapsing
each I –fiber to a point, see [5; 12] for more details. We may view A1; : : :An as
embedded annuli in N.B/. Then �.

P
niAi/ is a sub-branched surface of B fully

carrying
P

niAi . Since each Aj is @–parallel, there is an annulus �j � @M such that
@�j D @Aj and Aj is isotopic to �j relative to @Aj . Throughout this paper, we will
use Tj to denote the solid torus bounded by Aj [�j .

Next we study the intersection of two normal annuli carried by B . Let A1 and A2 be
two annuli carried by B and suppose A1\A2 ¤∅. As above, let �1 and �2 be the
annuli in @M bounded by @A1 and @A2 respectively.

If A1\A2 contains a closed curve  , then since every normal annulus is incompressible
by Lemma 4.1,  is either trivial in both A1 and A2 or essential in both A1 and
A2 . Let � be the union of closed curves in A1 \ A2 that are trivial in both A1

and A2 . Let Pi be the component of Ai � � that contains @Ai (i D 1; 2). Clearly
P1\P2D .A1\A2/�� . Now we perform standard cutting and pasting along � and
denote by A0i the resulting component that contains Pi (i D 1; 2). If A0

1
DA0

2
, then

�.A0
1
/ < 0, which means that the cutting and pasting above also produces an embedded

normal surface with positive Euler characteristic, a contradiction to the assumptions of
the branched surface B . Thus A0

1
¤A0

2
, each A0i is an embedded normal annulus, and

A0
1
\A0

2
does not contain any trivial closed curves. Note that the cutting and pasting

above may produce a normal torus. Therefore, after some cutting and pasting above,
we may assume the intersection of two normal annuli does not contain trivial curves.

Definition 5.1 Suppose @A1\@A2¤∅. This means that �1\@A2¤∅. We consider
an arc ˛ of �1\ @A2 with endpoints in different components of @�1 . Since @A1 and
@A2 are carried by B , @A1[ @A2 naturally forms a train track. We say ˛ is of type
I in �1 if @�1 [ ˛ form a train track of a Reeb annulus, as shown in Figure 5.1(a).
Otherwise, the train track @A1 [ ˛ is as shown in Figure 5.1(b) and we say ˛ is of
type II in �1 . We say A1 is of type I relative to A2 if a component of �1\ @A2 is
of type I , otherwise we say A1 is of type II relative to A2 .

Note that if there are two type I arcs of �1\ @A2 with opposite switching directions
along @�1 , then the train track �.@A1 [ @A2/ carries a trivial circle. By part (c) of
Proposition 4.3, @B does not carry any trivial circle. So all the type I arcs of �1\@A2

must have coherent switching directions as shown in Figure 5.1(a), ie, the train track
formed by @A1 and these type I arcs carries a Reeb lamination of an annulus.
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˛ ˛

type I type II

(a) (b)

Figure 5.1

Proposition 5.2 Let � be an annulus in @M and suppose @� consists of normal
curves with respect to a one-vertex triangulation of @M . Let ˛ be a properly embedded
essential arc in � . Suppose @� [ ˛ forms a Reeb train track as shown in Figure
5.1(a) which carries a normal Reeb lamination. Then � contains the vertex of the
triangulation.

Proof We may deform @� [˛ into a train track � . Note that our hypothesis says that
the Reeb lamination carried by � is normal with respect to the one-vertex triangulation
of @M .

Suppose that � does not contain the vertex. Let e be an edge intersecting � . Let ˇ
be a component of e \ � . Since � does not contain the vertex, there are only two
possibilities: (1) @ˇ lies in the same circle of @� and (2) the endpoints of ˇ lie in
different circles of @� . If @ˇ lies in the same component of @� , then similar to the
proof of Proposition 4.3, this component of @� must have trivial intersection with the
edge e and hence cannot be a normal curve. Similarly, if the endpoints of ˇ lie in
different circles of @� , then every non-compact leaf of the Reeb lamination has trivial
intersection with the edge e and hence the Reeb lamination carried by � cannot be
normal. Thus � must contain the vertex.

An isotopy is called a normal isotopy if it is invariant on each simplex of the triangulation.
Next we will perform some normal isotopies on @Ai . If  is normally isotopic to @Ai ,
then Ai is normally isotopic to a normal annulus A0i with @A0i D  . Moreover, for
any surface X carried by B , we may assume AiCX is normally isotopic to A0iCX .
Next we will perform some normal isotopies and these normal isotopies do not change
the surface under normal sum.
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Definition 5.3 Let X be a point of @A1\@A2 . A small neighborhood of X is cut into
4 corners by @A1[@A2 . A corner is called a cusp if it becomes a cusp after deforming
@A1[@A2 into a train track. We call a disk D in @M a bigon if (1) @D consists of two
arcs, one from @A1 and the other from @A2 , and (2) the two corners of D at @A1\@A2

are both cusps. We say D is an innermost bigon if int.D/\ .@A1 [ @A2/ D ∅. A
bigon is said to be trivial if it does not contain the vertex of the triangulation.

Eliminate a trivial bigon Let D be an innermost trivial bigon and b1 � @A1 and
b2 � @A2 the two edges of @D D b1 [ b2 . Since D does not contain the vertex and
both @A1 and @A2 are normal curves, the intersection of D and the 1–skeleton of the
triangulation consists of arcs with one endpoint in b1 and the other endpoint in b2 . This
means that b1 and b2 are normally isotopic. Hence we can perform a normal isotopy
on Ai near @Ai , changing @A1 to .@A1�b1/[b2 and @A2 to .@A2�b2/[b1 . After
the normal isotopy and a small perturbation, @A1\ @A2 has fewer intersection points.
We may successively eliminate all the trivial bigons using such normal isotopies.

For a given finite set of annuli carried by B , after some normal isotopies as above, we
may assume that for any pair Ai and Aj , @Ai [ @Aj does not form any trivial bigon.

Definition 5.4 Let ˛ be an arc component of A1\A2 that is trivial (ie @–parallel) in
both A1 and A2 . Then ˛ together with a subarc ˇi of @Ai (i D 1; 2) bounds a subdisk
Di of Ai . If D1\D2 D ˛ then ˇ1[ˇ2 bounds a disk � in @M and D1[D2[�

is a 2–sphere bounding a 3–ball. We call such a 3–ball a football region. Note that
since the endpoints of ˇi are also the endpoints of ˛ and since A1 and A2 are carried
by the same branched surface B , after deforming ˇ1 [ ˇ2 into train track, ˇ1 [ ˇ2

cannot form a monogon. Since the train track @B does not carry any trivial circle, �
must be a bigon. Moreover, since we have assumed that there is no trivial bigon, the
bigon � must contain the vertex of the triangulation. A football region is said to be
innermost if it does not contains any other football region. A football region bounded
by D1[D2[� said to be trivial if D1\A2DD2\A1D ˛ . Clearly a trivial football
region must be innermost.

Eliminate a trivial football region Suppose the football region bounded by D1 [

D2[� as above is trivial. Let ˛D @D1\@D2 . Since D1\A2DD2\A1D˛ , we can
perform a canonical cutting and pasting along ˛ and obtain annuli .A1�D1/[D2 and
.A2�D2/[D1 . Clearly .A1�D1/[D2 and .A2�D2/[D1 are embedded annuli
carried by B and are isotopic to A1 and A2 respectively. After a slight perturbation,
the resulting annuli have fewer intersection curves. Thus, after a finite number of such
operations, we may assume there is no trivial football region.
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Definition 5.5 We say A1[A2 is bigon-efficient if A1\A2 contains no trivial closed
curve, @A1[ @A2 does not form any trivial bigon in @M , and A1[A2 does not form
any trivial football region.

As above, we can perform some canonical cutting and pasting along A1 \A2 and
get a pair of new annuli A0

1
and A0

2
such that A0

1
[A0

2
is bigon-efficient. By our

construction, A0
1

and A0
2

are also carried by B and A1CA2 DA0
1
CA0

2
.

Next we will assume that A1 [A2 is bigon-efficient and consider the intersection
pattern of A1\A2 .

Lemma 5.6 Let ˇ0 be an arc in A1 \A2 and suppose ˇ0 is @–parallel in A1 . Let
�0 be the subdisk of A1 bounded by ˇ0 and a subarc of @A1 . Let ˇ1; : : : ; ˇk be the
components of int.�0/\A2 . Suppose each ˇi (i � 1) is outermost in A1 . Then at
least one ˇi (i � 1) is @–parallel in A2 .

Proof Suppose each ˇi (i � 1) is an essential arc in A2 . Let ıi be the subdisk of �0

bounded by ˇi (i � 1) and a subarc of @A1 . Since ˇi (i � 1) is essential in A2 and
outermost in A1 , each ıi is a @–compressing disk for A2 . This implies that @ıi \@M
is a type I arc in �2 . By Proposition 5.2, �2 contains the vertex of the triangulation.

Since A2 is @–parallel in M , A2[�2 bounds a solid torus T2 . Let M 0 be the closure
of M �T2 . So M 0 ŠM and we may view A2 as an annulus in @M 0 .

We use D to denote the closure of �0 �[
k
iD1

ıi . Thus we may view D as a disk
properly embedded in M 0 . Since @M 0 is incompressible in M 0 , @D bounds a disk
D0 in @M 0 . We view A2 as a subannulus of @M 0 . So D0\A2 ¤∅.

Note that @A2 cuts D0 into disks and at least two such disks are outermost in D0 (an
outermost disk is a disk whose boundary consists of a subarc of @D0 and a subarc of
@A2 ). Let � be such an outermost disk. If ��A2 � @M

0 , then since each ˇi (i � 1)
is essential in A2 , ˇ0 must be an arc in @�. Since there are at least two outermost disks,
we may choose � to be outside A2 . In other words, ��@M 0�int.A2/D@M�int.�2/.
Since �2 contains the vertex of the triangulation, this means that � does not contain
the vertex. If we deform @A1[ @A2 into a train track, then � becomes either a bigon
or a monogon or a smooth disk. As in the proof of Proposition 4.3, a monogon or a
smooth disk must contain the vertex. Since � does not contain the vertex, � must be
a trivial bigon, which contradicts our assumption that A1[A2 is bigon-efficient.

Lemma 5.7 Let A1 and A2 be as above and suppose A1 [A2 is bigon-efficient.
Then A1 and A2 do not form any football region.
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Proof Suppose there is a football region X bounded by D1[D2[�, where Di �Ai

is a disk bounded by a component ˛ of A1\A2 and a subarc of @Ai and �� @M .
We use ˇi (ˇi � @Ai ) to denote @Di � int.˛/ (i D 1; 2). Note that � must contain
the vertex of the triangulation, because otherwise � is a trivial bigon contradicting that
A1 [A2 is bigon-efficient. Without loss of generality, we may assume X does not
contain any other football region.

If D1 \A2 D D2 \A1 D ˛ , then the 3–ball bounded by D1 [D2 [� is a trivial
football region, contradicting the assumption that A1[A2 is bigon-efficient. So we
may assume int.D1/\A2 ¤∅.

Since int.D1/\A2¤∅, we can always find a component ˇ0 of D1\A2 such that ˇ0

is not outermost in A1 but every component of int.D1/\A2 inside the disk bounded
by ˇ0 and a subarc of @A1 is outermost in A1 . By Lemma 5.6, there is at least one arc
˛0� int.D1/\A2 that is outermost in D1 and @–parallel in A2 . Since ˛0 is outermost,
˛0 and a subarc of ˇ1 , say ˇ0

1
, bound a subdisk d1 of D1 and d1\A2 D ˛

0 . Since
˛0 is @–parallel in A2 , ˛0 and a subarc of @A2 , say ˇ0

2
, bound a subdisk d2 of A2 .

Moreover, since d1 \A2 D ˛
0 , ˇ0

1
[ˇ0

2
bounds an embedded bigon �0 in @M and

d1[ d2[�
0 bounds a football region, which we denote by X 0 .

If int.d2/\D1 D∅, then either X 0 �X or int.X /\ int.X 0/D∅. Since the football
region X is assumed to be innermost, X 0 does not lie in X . Moreover, since @A1[@A2

does not form any trivial bigon, both football regions X and X 0 must contain the vertex
of the triangulation. This means that int.X /\ int.X 0/¤∅. Thus int.d2/\D1 ¤∅.

Let ˛00 � d2 \D1 be an outermost intersection arc in d2 . We use e2 to denote the
subdisk of d2 bounded by ˛00 and ˇ0

2
(e2 \D1 D ˛00 ). As ˛00 � D1 , the arc ˛00

and a subarc of ˇ1 bound a subdisk of D1 which we denoted by e1 . As before,
e1 , e2 and a bigon in @M bound another football region, which we denote by X 00 .
Since e1 �D1 and e2\D1 D ˛

00 , if e2 lies in the football region X , then X 00 �X

contradicting the assumption the X is innermost. Similarly, if e2 is outside X , then
since e2 \D1 D ˛

00 , X 00 must be outside X and X 00 \ int.X /D∅. As before, this
is also impossible because by our assumptions every football region must contain the
vertex of the triangulation, which implies X 00\ int.X /¤∅.

Corollary 5.8 Let ˛ be an arc component of A1\A2 and suppose ˛ is @–parallel in
A1 . Then the following are true.

(1) ˛ must be outermost in A1 .

(2) ˛ must be an essential arc in A2 .
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Proof We first prove that if ˛ is outermost in A1 then ˛ must be an essential arc in
A2 . Suppose otherwise that ˛ is @–parallel in A2 . Since ˛ is outermost in A1 , the
two subdisks of A1 and A2 cut off by ˛ form an embedded disk and bound a football
region, which contradicts Lemma 5.7.

Since ˛ is @–parallel in A1 , ˛ and a subarc of @A1 bound a subdisk D of A1 . Suppose
˛ is not outermost. Then we can choose ˛ so that every component of int.D/\A2

is outermost in A1 . Let ˛1; : : : ; ˛k be the components of int.D/\A2 . Since each
˛i is outermost, by the argument above, every ˛i is an essential arc in A2 . This is an
immediate contradiction to Lemma 5.6.

Part (2) follows from part (1) and the argument above.

Lemma 5.9 Suppose A1[A2 is bigon-efficient. If A1\A2 contains an arc that is
@–parallel in A1 then

(1) every arc of A1\A2 is @–parallel and outermost in A1 but essential in A2 ,

(2) A1\T2 consists of @–compressing disks of A2 ,

(3) every arc of @A1\�2 is of type I in �2 and every arc of @A2\�1 is of type
II in �1 , see Figure 5.1

Proof We first claim that A1 \A2 contains no closed curve. Suppose otherwise
A1\A2 contains a closed curve. Since A1 and A2 are incompressible by Lemma 4.1,
every closed curve in A1\A2 is either essential in both A1 and A2 or trivial in both
A1 and A2 . Since A1[A2 is bigon-efficient, a closed curve in A1\A2 is essential
in both annuli. This implies that every arc component of A1\A2 is @–parallel in both
A1 and A2 , a contradiction to Corollary 5.8.

Suppose A1\A2 contains an arc which is essential in A1 and let 1; : : : ; k be all
the components of A1\A2 that are essential in A1 . Then 1; : : : ; k cut A1 into a
collection of rectangles R1; : : : ;Rk and we can suppose Ri is the rectangle between
i and iC1 (setting kC1 D 1 ). In other words, i and iC1 are two opposite edges
of Ri and the other two edges of Ri are subarcs of @A1 .

Since A1 \A2 contains an arc trivial in A1 , at least one Ri contains other arcs of
A1\A2 . Let ˛1; : : : ; ˛m be the components of int.Ri/\A2 . By our construction of
Ri , each j̨ is @–parallel in A1 . By Corollary 5.8, each j̨ is @–parallel and outermost
in A1 . Hence each j̨ and a subarc of @A1 bound a disk �j in Ri and these �j ’s
are pairwise disjoint. Moreover, each �j is a @–compressing disk of A2 , in particular
�j � T2 . This implies that @A2 and the arcs @�j \�2 naturally deform into a Reeb
train track. By Proposition 5.2, �2 contains the vertex of the triangulation.
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Let P and M 0 be the closures of Ri �
Sm

jD1�j and M �T2 respectively. So P is a
disk properly embedded in M 0 . Let P 0 be the disk bounded by @P in @M 0 . We may
consider A2 as an annulus in @M 0 and P 0\A2 ¤∅. Similar to the proof of Lemma
5.6, @A2 cuts P 0 into a collection of disks and there are at least two outermost such
disks. If an outermost disk � lies in @M 0� int.A2/D @M � int.�2/, as in the proof of
Lemma 5.6, � must contain the vertex, which contradicts the previous conclusion that
the vertex lies in �2 . This means that every outermost disk in P 0 � @A2 lies in A2 .
Since each j̨ (j D 1; : : : ;m) is essential in A2 , this implies that there are exactly
two outermost disks and both i and iC1 must be @–parallel arcs in A2 .

Let ˇi and ˇiC1 be subarcs of @A2 such that @i D @ˇi , @iC1D @ˇiC1 , and i [ˇi

and iC1[ˇiC1 bound subdisks ıi and ıiC1 of A2 respectively. By Corollary 5.8, ˇi

and ˇiC1 must both be outermost in A2 and ıi and ıiC1 are disjoint @–compressing
disks for A1 . This implies that ˇi and ˇiC1 are of type I in �1 .

Note that Ri[ıi[ıiC1 is a disk properly embedded in M . Moreover, @A1[ˇi[ˇiC1

naturally deforms into a Reeb train track and @.Ri [ ıi [ ıiC1/ deforms into a bigon
in the Reeb train track. Let Q0 be the disk bounded by @.Ri [ ıi [ ıiC1/ in @M , see
the shaded region in Figure 5.2(a) for a picture of Q0 . Clearly Q0 � �1 . As above,
we say a disk in Q0 � int.�2/ is outermost if its boundary consists of an arc from
@A1 and an arc from @A2 . As in the proof of Lemma 5.6, any outermost disk must
contain the vertex of the triangulation. Since �2 contains the vertex, Q0 � int.�2/

contains no outermost disk. This implies that Q0 \�2 consists of rectangles which
naturally deform into bigons in the Reeb annulus �2 , see Figure 5.2(a) for a picture.
As shown in Figure 5.2(a), at least one component of Q0� int.�2/ is a monogon (after
deforming into a train track). Since a monogon contains the vertex of the triangulation,
this implies that the vertex of the triangulation lies outside �2 , a contradiction. This
proves part (1).

Part (2) is an immediate corollary of part (1).

Part (1) also implies that every arc of �2\@A1 is of type I in �2 and @A2[.�2\@A1/

forms a standard Reeb train track. Now we consider @A2\�1 .

As above, since �2 contains the vertex, �1��2 has no outermost disk (an outermost
disk is a component with a boundary edge in @A1 and a boundary edge in @A2 ). This
implies that every arc in @A2\�1 is an essential arc in �1 . Since @A2[ .�2\ @A1/

form a standard Reeb train track, as shown in Figure 5.2(b), every arc of @A2 \ �1

must be of type II in �1 .

Lemma 5.10 Suppose A1 \A2 is bigon-efficient and A1 \A2 ¤ ∅. Then no arc
component of A1\A2 is essential in both A1 and A2 .
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(a) (b)

�1 �1

�2 �2

�2
Q0

monogon

Figure 5.2

Proof Suppose there is an arc component of A1\A2 that is essential in both A1 and
A2 . As in the proof of Lemma 5.9, A1 \A2 contains no closed curve. If there is a
component of A1\A2 that is trivial in A1 then by Lemma 5.9 every component of
A1\A2 is trivial in A1 . Thus every arc of A1\A2 must be essential in both A1 and
A2 .

So A1\A2 cuts both A1 and A2 into a collections of rectangles. Let R be a component
of A1 \ T2 . Two opposite boundary edges of the rectangle R are essential arcs in
A2 and the other two edges of @R, denoted by 1 and 2 , are properly embedded
in �2 . Since R is a disk properly embedded in the solid torus T2 , both 1 and 2

must be @–parallel in �2 . Moreover, since each arc in A1\A2 is essential in both A1

and A2 , @1 and @2 lie in different components of @�2 . Thus 1 and 2 and two
subarcs of @A2 (from different components of @A2 ) bound two disjoint disks d1 and
d2 in @M respectively. After naturally deforming @A1 [ @A2 into a train track, d1

and d2 become bigons or monogons. Since @A1\ @A2 is bigon-efficient, every bigon
contains the vertex of the triangulation. Since every monogon also must contain the
vertex, this contradicts that d1 and d2 are disjoint and there is only one vertex in the
triangulation.

Corollary 5.11 Suppose A1\A2 is bigon-efficient. Suppose A1 is of type I relative
to A2 . Then every arc of �1\ @A2 is of type I in �1 and every arc of �2\ @A1 is of
type II in �2 .

Proof By Lemma 5.10, no arc component of A1 \A2 is essential in both A1 and
A2 . Now the corollary follows from Lemma 5.9.

Next we study the intersection patterns of 3 normal annuli carried by B .

Lemma 5.12 Let A1 , A2 and A3 be pairwise bigon-efficient normal annuli carried
by B . Suppose A1 is of type I relative to A2 and @A1\ @A3 ¤∅. Then,
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(1) A1 must be of type I relative to A3 and

(2) @A2\ @A3 D∅.

Proof Since @A1\@A3¤∅, by Lemmas 5.10 and 5.9, either A1 is of type I relative
to A3 or A3 is of type I relative to A1 . Suppose part (1) is not true and A3 is of
type I relative to A1 . So by Lemma 5.9 and Proposition 5.2, �3 contains the vertex
of the triangulation. Moreover, since A1 is of type I relative to A2 , both �1 and �3

contain the vertex.

Let R be the component of �1\�3 that contains the vertex of the triangulation. By
Lemma 5.9, @A1 \ �3 consists of type I arcs in �3 , so R is a quadrilateral that
naturally deforms into a bigon. Two opposite edges of @R, denoted by r1 and r2 , are
components of �1\@A3 . By Lemma 5.9, r1 and r2 are type II arcs in �1 , see Figure
5.3(a) for a picture of R. Let r3 and r4 be the other two edges of R. Hence, r3[ r4

are two components of @A1\�3 and r3 and r4 are of type I in �3 .

Since A1 is of type I relative to A2 , every component of @A2 \�1 is of type I in
�1 and @A1[ .@A2\�1/ forms a standard Reeb train track.

Case 1 .@A2\�1/
T
.r1[ r2/D∅

If a component of @A2 \ �1 lies outside R, as shown in Figure 5.3(a), it creates
a monogon region outside R. Since any monogon region contains the vertex, this
contradicts that R contains the vertex. Thus @A2\�1 �R.

Next we view R as a quadrilateral in �3 . Hence r3 and r4 are type I arcs in �3 .
Each component of @A2\R is an arc with one endpoint in r3 and the other endpoint
in r4 . Moreover, as shown in Figure 5.3(b), after deforming into a train track, @A2\R

cuts R into a monogon region X , a 3–prong triangle Y , and a collection of bigons.

Now we consider the disk R0 D �3�R. We first consider the possibility that there
is an arc ˛ of @A2 \R0 with both endpoints in r3 [ r4 . Note that @A2 \R is as
shown in Figure 5.3(b), so this configuration fixes the switching direction of @˛ in
the train track. There are two cases to consider: (1) both endpoints of ˛ lie in r3 (or
r4 ) and (2) one endpoint of ˛ lies in r3 and the other lies in r4 . As shown in Figure
5.3(c) and (d), in either case, ˛ produces a monogon in R0 , which means the vertex of
the triangulation lies in R0 and contradicts the assumption that R contains the vertex.
Thus, every component of @A2\R0 has one endpoint in r3[ r4 and the other endpoint
in @�3\ @R

0 .

After deforming into a train track, R0 becomes a bigon. Since R0 does not contain
the vertex, @A2 cuts R0 into a collection of disks, each of which becomes a bigon
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r3
r3

r3

r4
r4

r4

r4 r4

˛
˛

X Ymonogon

monogon

monogon

Figure 5.3

after deformed into a train track. Because of the switching direction of the train track
at @A2 \ .r3 [ r4/, as shown in Figure 5.3(e), the arcs with an endpoint in r4 must
have the same configuration. Otherwise, these arcs would create a monogon in R0 .
Furthermore, since every arc of @A2\�3 is essential in �3 by Lemma 5.9, the arcs
with an endpoint in r3 must also have the same configuration as shown in Figure 5.3(e).
In other words, Figure 5.3(e) is the only possible configuration for @A2\R0 .

As shown in Figure 6.1(a) and (b), given a component ˛ of @A3 and any arc ˇ
intersecting ˛ , there are essentially two different switching directions at ˛\ˇ along
˛ . By examining the switching directions of the train track at @A2\@A3 in @R0 along
@A3 as shown in Figure 5.3(e), we can see that each component of @A2\�3 must be
of type II in �3 . Moreover, as shown in Figure 5.3(e), the argument above implies
that the switching directions (of the train track) at the intersection points of @A2 with
any component of @A3 are all the same. However, by part (3) of Lemma 5.9, the
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conclusion that @A2\�3 contains a type II arc in �3 implies that @A3\�2 consists
of type I arcs in �2 . This means that there are two arcs of @A2\�3 , similar to the
r1 and r2 in Figure 5.3(a), whose endpoints on a component of @�3 have opposite
switching direction. This contradicts the previous conclusion (as depicted in Figure
5.3(e)) that all the switching directions at such points are the same.

Case 2 .@A2\�1/
T
.r1[ r2/¤∅

We will perform some normal isotopies so that .@A2\�1/
T
.r1[ r2/D∅ after the

isotopies.

Let ˛i � @Ai (i D 1; 2; 3) be 3 arcs intersecting each other and forming a triangle �
as shown in Figure 5.4. Suppose � naturally deforms into a bigon and � does not
contain the vertex of the triangulation. Then, as shown in Figure 5.4, the isotopy on
˛3 , fixing ˛1 and ˛2 , is a normal isotopy. Next we will fix @A1[ @A3 and perform
some isotopies as in Figure 5.4 so that .@A2\�1/

T
.r1[ r2/D∅ after the isotopies.

Each isotopy pushes an intersection point of @A2\ @A3 out of �1 .

deform into train track normal isotopy

�

Figure 5.4

Let ˛ be a component of @A2 \�1 and suppose ˛\ .r1 [ r2/¤ ∅. Let ˛1 and ˛2

be the closure of the components of ˛� .r1 [ r2/ that contain @˛ . So ˛i (i D 1; 2)
has one endpoint in @A1 and the other endpoint in r1 [ r2 . Thus ˛1 and ˛2 are
the edges of two triangles �1 and �2 respectively formed by @A1 , @A2 and @A3 .
Since the two endpoints of ˛ lie in different components of @�1 , �1 and �2 are
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not nested. Without loss of generality, we may assume each �i is innermost, ie,
int.�i/\.@A1[@A2[@A3/D∅ for both i D 1; 2. After deforming @A1[@A2[@A3

into a train track, each �i becomes either a bigon or a monogon. Since each monogon
contains the vertex of the triangulation, at least one �i is a bigon that does not
contain the vertex. Hence a normal isotopy on @A2 , as shown in Figure 5.4 pushes an
intersection point of @A2 \ .r1 [ r2/ out of �1 . So after finitely many such normal
isotopies, .@A2\�1/

T
.r1[r2/D∅ and we can apply Case 1 to obtain a contradiction.

Therefore, A1 is of type I relative to both A2 and A3 and part (1) of the lemma
holds. If @A2\ @A3 ¤∅, then by Lemma 5.9 and Lemma 5.10, either A2 is of type
I relative to A3 , or A3 of type I relative to A2 . Both possibilities contradict part (1),
since A1 is of type I relative to both A2 and A3 .

6 Boundary curves

Suppose A1\A2 is bigon-efficient. If A1\A2 contains a closed curve, by Lemma
5.9, all the components of A1\A2 must be closed essential curves. After performing
canonical cutting and pasting along these curves, we get a pair of disjoint annuli A0

1
,

A0
2

and a possible collection of tori T . Clearly, A1CA2DA0
1
CA0

2
CT . In particular,

weight.A0
1
CA0

2
/� weight.A1CA2/.

Let A1; : : : ;An be a fixed set of normal annuli carried by B . We consider mi parallel
copies of Ai (i D 1; : : : ; n). Then we can perform the isotopy and cutting and pasting
above on each pair of the

Pn
iD1 mi annuli, so that each pair of resulting set of annuli

are bigon-efficient and have no closed intersection curve. So there is a set of normal
annuli A such that for any set of nonnegative integers mi , there is a collection of
annuli A0

1
; : : : ;A0

k
in A such that

(1)
Pn

iD1 miAi =T C
Pk

iD1 m0iA
0
i , where T is a collection of normal tori.

(2) A0
1
; : : : ;A0

k
are pairwise bigon-efficient

(3) A0i \A0j contains no closed curve for any i ¤ j .

We claim that one can choose A to be a finite set of annuli. Let @A be the set of
boundary curves of all possible normal annuli resulting from the normal isotopies and
canonical cutting and pasting as above (among all possible mi ’s). Since the operations
that make Ak \Aj bigon-efficient, when restricted to @M , are simply cutting and
pasting on bigons in @M , @A is a finite set of normal curves. Now suppose there is
an infinite set of normal annuli, denoted by D , in A with the same pair of boundary
curves. Then by the normal surface theory, there must be two annuli in D , say A0i and
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A0j such that A0j D T 0CA0i where T 0 is a collection of normal tori. This means that
A0j is redundant as we can use T 0CA0i instead. Therefore, we may choose A to be
a finite set and there is an algorithm to find all the annuli in A using normal surface
theory.

We are mainly interested in the boundary curves. In the conclusion (1) above, clearlyPn
iD1 mi@Ai =

Pk
iD1 m0i@A

0
i in @M .

Since each A0i is also a normal annulus, A0i is @–parallel in @M . We use � 0i to denote
the subannulus of @M isotopic to A0i and with @� 0i D @A

0
i .

Let S be the union of a fixed set of pairwise disjoint compact surfaces carried by B .
Since @S is carried by the train track @B and @B does not carry any trivial circle, every
component of @S is an essential normal curve. Next we consider @SC

P
mi@A

0
i . Our

goal is to prove the following lemma.

Lemma 6.1 Let S and A0i be as above. Then the diameter of the set f@SC
P

mi@A
0
ig

(for all nonnegative integers mi ) in the curve complex C.F / is bounded.

Suppose A0
1

and A0
2

are of type I relative to A0i and A0j respectively. If @A0
1
\@A0

2
¤∅,

then by Lemma 5.9 and Lemma 5.10, one of A0
1

and A0
2

is of type II relative the
other, contradicting Lemma 5.12. Thus @A0

1
\@A0

2
D∅. Since both � 0

1
and � 0

2
contain

the vertex of the triangulation by Proposition 5.2 and since A0
1
\A0

2
contains no closed

curve, � 0
1

and � 0
2

must be nested and @A0
1

must be normally isotopic to @A0
2

. Thus
we have m1@A

0
1
Cm2@A

0
2
D .m1Cm2/@A

0
1

.

We say A0i is of type I if A0i is of type I relative to one of A0
1
; : : : ;A0

k
. The argument

above implies that the boundary of all the type I annuli are normally parallel. Moreover,
by Lemma 5.9 and Lemma 5.12, those annuli among A0

1
; : : : ;A0

k
that are not of type

I are pairwise disjoint.

Next we will only focus on the boundary curves of A0
1
; : : : ;A0

k
. If no A0i is of type I ,

then Lemma 5.9 and Lemma 5.10 imply that these A0i ’s are mutually disjoint. Suppose
A0

1
a type I annulus. Since the boundary of other type I annuli are normally parallel

to @A0
1

, without loss of generality, we may assume A0
1

is the only type I annulus in
A0

1
; : : : ;A0

k
. By Lemma 5.9 and Lemma 5.12, this implies A0

2
: : : ;A0

k
are pairwise

disjoint. Let i be a component of @Ai and ki the number of intersection points of i

with @S .

Lemma 6.2 The distance between j (j ¤ 1) and @S C
Pk

iD2 mi@A
0
i is at most

2C 2 log2 kj .
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Proof By our earlier assumptions, A0
2
; : : : ;A0

k
are mutually disjoint. So

Pk
iD2 mi@A

0
i

is a union of disjoint curves and we may regard j (j ¤ 1) as a component ofPk
iD2 mi@A

0
i . Since the number of intersection points of j with @S is kj , the

intersection number of j and @SC
Pk

iD2 mi@A
0
i is at most kj . Now it is clear that

Lemma 6.2 follows from [7, Lemma 2.1], which says that the distance between any
two curves with intersection number k is at most 2C 2 log2 k .

Note that Lemma 6.2 implies Lemma 6.1 in the case that no A0i is of type I .

Lemma 6.3 If there is some @A0j (j ¤1) disjoint from @A0
1

, then the distance between

j and @SC
Pk

iD1 mi@A
0
i is at most 2C 2 log2 kj .

Proof The proof is identical to that of Lemma 6.2. Since A0
2
; : : : ;A0

k
are mutually

disjoint, j can be viewed as a component of
Pk

iD1 mi@A
0
i . So the intersection number

of j and @SC
Pk

iD1 mi@A
0
i is at most kj and Lemma 6.3 follows from Lemma 2.1

of [7].

So to prove Lemma 6.1, we may assume @A0i \ @A
0
1
¤∅ for each i ¤ 1. As A0

1
is of

type I , every component of @A0i \�
0
1

is a type I arc in � 0
1

.

Let ˛1 and ˛2 be the two components of @A0
1

. We fix a direction for the circle ˛1 and
assign the same direction to ˛2 . Let ˇ be an arc carried by @B and intersecting ˛i

(i D 1 or 2) in one point. We say ˇ and the point ˇ\˛i are of positive (resp. negative)
type if ˛i [ˇ deforms into a train track as in Figure 6.1(a) (resp. Figure 6.1(b)). Note
that a curve carried by the train track Figure 6.1(a) or (b) is a spiral around ˛i . We
call a spiral carried by the train track in Figure 6.1(a) (resp. Figure 6.1(b)) a positive
(resp. negative) spiral.

Let S be any compact surface carried by B and suppose A0
1
\ S contains an arc

component  . Then there are two cases (1)  is @–parallel in A0
1

and (2)  is an
essential arc in A0

1
. Since both S and A0

1
are carried by the same branched surface,

as in [6], in either case, one endpoint of  is of positive type and the other endpoint is
of negative type. Let Pi (i D 1; 2) be the number of points in @S \˛i of positive type
and Ni the number of points in @S \˛i of negative type. The argument above implies
that P1CP2 DN1CN2 .

Let N.˛i/ (i D 1; 2) be a small annular neighborhood of ˛i in @M . We consider
@S Cm˛i restricted to N.˛i/. As depicted in Figure 6.1(c), if Pi ¤ Ni and m �

minfNi ;Pig, then @S Cm˛i restricted to N.˛i/ consists of jPi �Ni j spirals and
2 minfNi ;Pig @–parallel arcs in N.˛i/. As shown in Figure 6.1(d), if Ni D Pi and
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(a) (b)

(c) (d)

ˇ ˇ

cut and paste

˛i ˛i

Figure 6.1

m>minfNi ;Pig, at least one component of @SCm˛i is parallel to ˛i and hence we
may view the distance dC.F /.@S Cm˛i ; ˛i/� 1. Without loss of generality, we may
assume P1 > N1 . Since P1CP2 D N1CN2 , P2 < N2 . So if m � maxfN1;P2g,
@S Cm@A0

1
has r D P1 �N1 D N2 �P2 positive spirals in N.˛1/ and r negative

spirals in N.˛2/.

Now we assume m � maxfN1;P2g and consider @S Cm@A0
1

restricted to N.� 0
1
/,

which is a small neighborhood of � 0
1

in @M . The positive and negative spirals in N.˛1/

and N.˛2/ are connected by some arcs of @S \� 0
1

. First suppose two positive spirals
are connected by an arc in @S \� 0

1
. Then this arc and the two spirals in N.˛1/ form a

monogon whose “tail” spirals along ˛1 . Moreover, since the number of negative spirals
equals the number of positive spirals, there must be an arc of @S \ � 0

1
connecting

two negative spirals in N.˛2/ and hence forming another monogon, as shown in
Figure 6.2(a). Since each monogon must contain the vertex of the triangulation, this
is a contradiction. Thus every positive spiral in N.˛1/ is connected to a negative
spiral in N.˛2/ by an arc in @S \ � 0

1
. The standard picture of these arcs are type
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I arcs whose two ends spiraling around @A0
1

. Therefore, as shown in Figure 6.2(b),
.@S Cm@A0

1
/C @A0

1
is isotopic to @S Cm@A0

1
.

(a) (b)

Figure 6.2

Now we assume the surface S in the argument above is the resulting surface of
SC

Pn
iD2 miA

0
i and let � D

Pn
iD2 mi . Clearly, there is a number K depending on

S \A0
1

and A0i \A0
1

, such that K� �maxfP1;N1;P2;N2g. Thus by the discussion
above, if P1 ¤ N1 and m1 �K� , the set of curves f@S Cm1@A

0
1
g are all isotopic.

Moreover, by Lemma 6.2, the set of curves f@S C
Pn

iD2 mi@A
0
ig for all mi (i D

2; : : : ; n) has bounded diameter. As S D SC
Pn

iD2 miA
0
i , by the argument above, if

N1 D P1 Lemma 6.1 holds, and if P1 ¤ N1 , Lemma 6.1 holds under the condition
that m1 �K� .

Next we consider the case that m1 <K� . By our assumptions, A0
1

is the only type
I annulus and @A0i \ �

0
1

consists of type I arcs in � 0
1

. So, as in Figure 6.2(b),Pn
iD1 mi@A

0
i is isotopic to

Pn
iD2 mi@A

0
i . Thus

Pn
iD1 mi@A

0
i consists of 2� closed

curves.

Let ! be the maximal weight of @A0i among all i . So if m1 <K� , the total weight
of

Pn
iD1 mi@A

0
i is less than K�!C �! D .KC 1/�! . Since

Pn
iD1 mi@A

0
i consists

of 2� closed curves, there is a component  of
Pn

iD1 mi@A
0
i with weight less than

.KC 1/!=2. Up to normal isotopy, there are only finitely many curves with weight
under .KC1/!=2. So there is a number K0 such that j@S \ j �K0 . As in the proof
of Lemma 6.2, by a theorem of Hempel [7], the distance between @SC

Pn
iD1 mi@A

0
i

and  is less than 2C 2 log2 K0 . As  is isotopic to a component of @A0i for some i ,
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in the case that m1 <K� , the distance between @SC
Pn

iD1 mi@A
0
i and some @A0i is

bounded by a number that depends only on K , @S and the @A0i ’s.

Therefore, combining the two cases above, Lemma 6.1 holds. Moreover, it follows from
the proof that the diameter of the set f@SC

Pn
iD1 mi@A

0
ig can be found algorithmically.

Now Theorem 1.2 follows from Lemma 6.1 and the discussions in Section 4.

Theorem 1.2 Let M be a simple 3–manifold with connected boundary and a 0–
efficient triangulation. Let Sk be the set of normal and almost normal surfaces satisfying
the following two conditions

(1) the boundary of each surface in Sk consists of essential curves in @M

(2) the Euler characteristic of each surface in Sk is at least �k .

Let Ck be the set of boundary curves of surfaces in Sk . Then Ck has bounded diameter
in the curve complex of @M . Moreover, there is an algorithm to find the diameter.

Proof Let S be a normal or an almost normal surface with ��.S/� k . So we have
S D S CC C

P
miAi , where C is a closed surface and Ai is a normal annulus in

the fundamental solution. Moreover, by Proposition 4.4, there are only finitely many
possible surfaces for S .

If we fix a S , then Lemma 6.1 says that f@S D @SC
P

mi@Aig has bounded diameter.
Since there are only finitely many choices for S , Ck has bounded diameter. It follows
from the proof that there is an algorithm to find this diameter.

Proof of Theorem 1.1 Theorem 1.1 follows immediately from Theorem 1.2 and
the discussions in Section 2 and Section 3. By Corollary 3.5, there is surface Si

(i D 1; 2) properly embedded in Mi , such that Si is either essential or @–strongly
irreducible in Mi and the distance dC.F /.�.@S1/;S2/ is at most 2g� 2, where g D

g.M1/C g.M2/� g.F /. By [5] and a theorem in [2] (see the Appendix below for
a workaround for [2]), Si is isotopic to a normal or an almost normal surface for
any 0–efficient triangulation of Mi , see Remark 3.6. Now we choose a 0–efficient
triangulation for Mi and Theorem 1.1 follows from Theorem 1.2.

Appendix

The purpose of this appendix is to address an issue in the proof of [2, Corollary 8.9].
While Bachman insists the proof is correct, there is a concern on the thin-position
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argument for manifolds with boundary in the proof of [2, Lemma 8.5]. The following
is a workaround suggested by the referee.

Note that an essential surface is isotopic to a normal surface with respect to any
triangulation, so the issue here is on @–strongly irreducible surfaces. Suppose S1 is a
strongly irreducible and @–strongly irreducible surface properly embedded in M1 as
in Lemma 3.3 and Corollary 3.5. It follows from the sweepout argument in [3] that S1

is compressible on both sides (see Definition 3.2), and @S1 consists of essential curves
in @M1 (see the proof of Corollary 3.4). Next we show that S1 does not admit nested
@–compressions.

Suppose S1 admits nested @–compressions, then we can find a disk D such that
@DD ˛[ˇ , ˛� @M1 , ˇ�S1 , and int.D/\S1¤∅ consists of non-nested arcs. Let
ˇ1; : : : ; ˇk be the arcs of int.D/\S1 and ıi (i D 1; : : : ; k ) the subdisk of D bounded
by ˇi and a subarc of ˛ . By our assumption, ıi\ıj D∅ if i ¤ j . We may assume that
each ıi is a @–compressing disk on the same side of S1 . Moreover, we may choose D

so that k > 0 and k is minimal among all such disks D . Let QDD�
Sk

iD1 int.ıi/.
Since S1 is compressible on both sides, there is a compressing disk D0 on the opposite
side of ıi or equivalently on the same side as Q. We may assume D0\Q contains
no closed curve. Since S1 is @–strongly irreducible, D0 \ ˇi ¤ ∅ for each i . Let
 be an arc of D0 \Q that is outermost in D0 and � the subdisk of D0 cut off by
 with �\QD  . The arc  cuts Q into two disks Q1 and Q2 . Thus either (1)
Qi [� (i D 1 or 2) is a compressing disk disjoint from some ıi , a contradiction to
the @–strong irreducibility, or (2) the union of Qi [� (i D 1 or 2) and some ıj ’s
form a new disk similar to D , which contradicts the assumption that k is minimal.
Thus S1 does not admit nested @–compressions.

We call the two sides of S1 plus and minus sides. By the definition of strongly
irreducible surfaces (Definition 3.2), S1 is compressible on both sides. If we perform a
maximal compression on the plus side of S1 and discard the closed surface components,
then we get a surface SC

1
. Since S1 is @–strongly irreducible, SC

1
is incompressible

and @–incompressible on the minus side. This basically follows from [4], see part (1)
of [14, Lemma 5.5] for a proof for surfaces with boundary. Note that the proof of part
(1) of [14, Lemma 5.5] does not mention @–compressing disks because the surface
in [14] is strongly irreducible but may not be @–strongly irreducible. However, with
the assumption of @–strong irreducibility, the same proof of [14] shows SC

1
is also

@–incompressible on the minus side. Thus either SC
1

consists of @–parallel surfaces,
or after some @–compressions on the plus side, SC

1
becomes an essential surface S 0

1

in M1 with d.@SC
1
; @S 0

1
/���.SC

1
/. As the argument for essential surfaces does not

use Bachman’s theorem [2], we may assume SC
1

is @–parallel. Since S1 has no nested
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@–compressions, the @–parallel components of SC
1

are not nested. We can also apply
the same argument on the minus side of S1 . Therefore we may assume that S1 is a
boundary-Heegaard surface as in [2].

Next we explain the controversial part of [2] which is pointed out by the referee. The
proof of the main theorem in [2] is basically a thin-position argument in which the
1–skeleton of the triangulation is in thin position with respect a sweepout fStg of a
boundary-Heegaard surface. A problem arises when a thick level surface admits a high
disk D0 and a low disk D with D\D0 D∅. If both D and D0 lie in the interior of
M1 then a simple isotopy as in [2, Figure 4] can reduce the width. The controversial
part in [2] is the case that D0 lies in the interior of M1 and D has a boundary arc in
@M1 . Note that one can assume that D is a @–compressing disk, since otherwise there
is a low disk totally in @M1 disjoint from D0 and the usual isotopy can reduce the
width. However, if D is a @–compressing disk, the usual width-reduction operation
as above would be a @–compression along D , which is not an isotopy on the level
surface any more. Below is a workaround for this situation.

We first glue a product F�I (FD@M1 ) to M1 and obtain a manifold M 0
1

(M 0
1
ŠM1 ).

We can extend S1 to a surface S 0
1

properly embedded in M 0
1

by adding vertical annuli
in F � I along @S1 . We fix a 0–efficient triangulation of M1 and suppose F � I is
not triangulated.

We consider a special sweepout or foliation fStg as in [2] with the restriction that
for each regular leaf St , St \ .F � I/ is obtained by pushing pairwise disjoint @–
compressing disks of S1 (on the same side) into F � I , and St \M1 is obtained by
@–compressions on one side. Note that if a @–compression on S1 yields a @–parallel
disk component, we also push the disk component into F � I .

We now apply the thin-position argument on fSt \M1g and assume the 1–skeleton is
in thin position. Suppose a thick level St admits a pair of disjoint high and low disks
in the 2–skeleton. Let D be the low disk as explained above and suppose @D D ˛[ˇ
with ˛ � St and ˇ � @M1 . We may assume D is a @–compressing disk for St \M1 .
Since S1 is @–strongly irreducible, the high disk lies in the interior of M1 . Thus we
can perform an isotopy on the triangulation as in [2, Figure 4] by pushing the high
disk down and the low disk up, which leads to a contradiction to the thin-position
assumption. Note that the isotopy of pushing the low disk D into F � I can be
viewed as a @–compression on St in M1 . Moreover, by the assumptions on S1 , after
a @–compression on one side, there is no @–compressing disk in M1 on the other side,
hence all the @–compressions are on the same side.

Therefore the arguments in [2; 19] imply that one can isotope S 0
1

into a surface †0 so
that (1) †0\ .F � I/ is obtained by pushing pairwise disjoint @–compressing disks of
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S1 (on the same side) into F � I , and †D†0\M1 is obtained by @–compressions
on one side, note that we also push the possible trivial disk components into F �I , and
(2) † is normal or almost normal with respect to the triangulation of M1 . Furthermore,
after one more @–compression in a tetrahedron, we may assume the special type of
almost normal pieces in Figure 9 of [2] does not appear. This implies that @† is normal
in @M1 .

Now we study the property of † and †0\ .F �I/. First, since all the @–compressions
occur on the same side of S1 , the trivial-circle components of @† (if any) are not nested.
Since @† is normal and by part (a) of Proposition 4.3, this implies that @† contains at
most one trivial-curve component. Note that @†¤∅ since F is incompressible and
S1 is a subsurface of a Heegaard surface.

If @† contains at least one essential curve, then as before, the distance d.@†; @S1/ <

��.S1/, viewed in the curve complex C.F /. Now we can prove the main theorem by
applying the arguments in Sections 4, 5 and 6 on †, see Remark 3.6 and the remark
before Proposition 4.3.

Therefore we may suppose @† is a single trivial vertex-linking curve in @M1 . Let ı
be the disk bounded by @† in @M1 and P D†0\ .F � I/. So P [†D†0 and by
the construction of †, ı[P is @–parallel in F � I , in other words, P D†0� int.†/
can be constructed by adding a vertical tube to a (once-punctured) @–parallel surface
in F � I .

Let F� D @M1� int.ı/. There is a natural projection from the arc-and-curve complex
AC.F�/ to the curve complex C.@M1/D C.F / denoted by � W AC.F�/! C.F / as
follows. We view F� D F � int.ı/. For any closed essential curve  in F� ,  is also
an essential curve in F , we set �.Œ �/ D Œ �. For any essential arc ˛ in F� , let Ǫ
be the closed curve obtained by connecting @˛ by an arc properly embedded in the
disk ı . We define �.Œ˛�/D Œ Ǫ �. Note that if two arcs ˛\ˇ D∅ in F� , then Ǫ \ Ǒ

is either empty or a single point. This means that if d.˛; ˇ/ D 1 in AC.F�/ then
d.�.˛/; �.ˇ//D d. Ǫ ; Ǒ/� 2 in C.F /.

Note that the disk ı is a compressing disk for S 0
1
D†0 . We denote the two sides of S 0

1

using plus and minus and suppose ı is on the plus side. Since S 0
1

is compressible on
both sides, there is another compressing disk D on the minus side and @ı\@D¤∅ in
S 0

1
. Since † is obtained by @–compressions on the plus side, † is @–incompressible

on the minus side and D \ @M1 ¤ ∅. Moreover, @M1 cuts D into a collection of
subdisks and all the bigon disks lie in F � I (since † is @–incompressible on the
minus side in M1 ). Let D1 be such a bigon subdisk of D and suppose @D1 D ˛[ˇ ,
where ˛ � @M1 and ˇ � P . Let D0 be the subdisk of D adjacent to D1 with
D0\D1 D ˛ and D0 �M1 . Since P can be obtained by adding a vertical tube to a
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punctured @–parallel surface in F � I , Ǫ and @S 0
1

project to disjoint curves in F , ie,
d.�.˛/; @S 0

1
/� 1.

Note that † cuts M1 into two submanifolds and we denote the one on the minus side
by N . Clearly D0 is a compressing disk for N . For any compressing disk � of N ,
since † is incompressible on the minus side, @�\ @ı ¤∅, ie, @ı is disk-busting in
N . For any compressing disk � of N , we suppose j@�\ @ıj is minimal among all
disks in the isotopy class of �. We fix an arc component � of @�\ @M1 for each
�. Let D be the disk complex of @N (ie, curves of @N bounding compressing disks
in N ). Define a projection �AW D! AC.F�/ as �A.Œ@��/ D Œ��. The following
theorem in [11] was also independently proved by Masur and Schleimer.

Theorem ([11]) Let N be as above, D the disk complex, and F� a compact essential
subsurface of @N . Suppose @F� is disk-busting in @N . Then either

(1) N is an I –bundle of which F� is a horizontal boundary component, or

(2) the image �A.D/ of the disk complex has diameter at most 10 in AC.F�/ and
� ı�A.D/ has diameter at most 20 in C.F /.

Note that part (a) of the theorem cannot happen in our case because otherwise one
could isotope F to be disjoint from the Heegaard surface. Thus for any compressing
disk � of N , d. O�; Ǫ /� 20 in C.F /, where ˛ is the arc D1\D0 above. Moreover,
since d. Ǫ ; @S1/� 1, we have d. O�; @S1/� 21 for any compressing disk � of N .

Let � be the set of almost normal surfaces in M1 such that for each surface X in � ,
@X is a vertex linking circle in @M1 and �.X /� �.S1/. As in Section 4 and Section
5, there is a finite collection of branched surfaces such that each surface in � is fully
carried by a branched surface in the collection, and for each branched surface B , @B
a single trivial circle in @M1 . For any surface X in � , @X bounds a disk ı in @M1 .
Let N be the closure of the component of M1�X that contains F� D @M1� ı . If
X is fully carried by B , then N can be constructed by connecting some components
of M1� int.N.B// using I –bundles. Although there may be infinitely many surfaces
in � , since there are only finitely many branched surfaces and �.X / is bounded, there
are only finitely many possible topological types for N and we can list them all. For
each possible N , we randomly find a compressing disk � for N and fix an arc �
of @�\F� . So we can construct finitely many closed curves O� . By the discussion
above, if the gluing map �W @M1 ! @M2 is so complex that d. O�; @S1/ > 21 for
each possible N , then it is impossible to have a surface S1 with all the requirements.
This implies that the original Heegaard surface cannot be strongly irreducible and the
theorem follows.
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