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A proof of Waldhausen’s uniqueness of splittings of S 3 (after
Rubinstein and Scharlemann)

YO’AV RIECK

In [7] J H Rubinstein and M Scharlemann, using Cerf Theory, developed tools for
comparing Heegaard splittings of irreducible, non-Haken manifolds. As a corollary
of their work they obtained a new proof of Waldhausen’s uniqueness of Heegaard
splittings of S3 . In this note we use Cerf Theory and develop the tools needed
for comparing Heegaard splittings of S3 . This allows us to use Rubinstein and
Scharlemann’s philosophy and obtain a simpler proof of Waldhausen’s Theorem. The
combinatorics we use are very similar to the game Hex and requires that Hex has a
winner. The paper includes a proof of that fact (Proposition 3.6).

57M99, 57M25

1 Introduction

In [10] F Waldhausen proved uniqueness of non-stabilized Heegaard splittings of S3 .

Theorem 1 (Waldhausen) Let †� S3 be a Heegaard surface of genus g > 0. Then
† is a stabilization of a Heegaard surface of genus g� 1.

In [7] J H Rubinstein and M Scharlemann, using Cerf Theory [2], developed tools for
comparing Heegaard splittings of irreducible, non-Haken manifolds. As a corollary of
their work they obtained a new proof of Theorem 1. In this note we use Cerf Theory
and develop the tools needed for comparing Heegaard splittings of S3 . This allows us
to use Rubinstein and Scharlemann’s philosophy and obtain a simpler proof of Theorem
1. We assume familiarity with the basic facts and standard terminology of 3–manifold
topology and in particular Heegaard splittings; see Scharlemann [8]. For another proof
of Waldhausen’s Theorem see Johnson [3].

We begin with an outline of the proof. As with many proofs of Theorem 1 we assume
the theorem is false and pick † to be a minimal genus counterexample; we induct on
g , the genus of †. A simple application of van Kampen’s theorem shows that if gD 1

then the meridians of the complementary solid tori intersect minimally once and hence
† is a stabilization of the genus zero splitting of S3 . The heart of the argument (in the
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following sections) is to show that if g > 1 then † weakly reduces. By A Casson and C
McA Gordon’s seminal work [1] either † reduces or S3 contains an essential surface.
As the latter is impossible, † must reduce. Cutting S3 open along the reducing sphere
we obtain 2 balls (say B1 and B2 , resp.) and a once punctured surface in each (say S1

and S2 , resp.). We attach 3–balls to B1 and B2 and cap off S1 and S2 with disks. It
is easy to see that we obtain two Heegaard splittings of S3 , each of positive genus less
than g . By our inductive hypothesis each of them is stabilized. Hence, † is stabilized
as well.

The remainder of this paper is devoted to showing that if † is a Heegaard splitting of
S3 of genus g > 1 then † weakly reduces.
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2 The Graphic

S3 is the unit sphere in R4 . As such, it inherits a height function given by the projection
onto the x–axis, denoted h1 . S3 has one maximum at .0; 0; 0; 1/, one minimum at
.0; 0; 0;�1/ and for any s 2 .�1; 1/ we have that h�1

1
.s/ is a 2–sphere which we

denote S2
s . This is a special case of a sweepout.

Given †, we have a sweepout of S3 corresponding to †; this concept was originally
introduced in Scharlemann–Rubinstein [7]. Although our description is a little different
from that given in [7] it is easy to see that the two are equivalent; for a more detailed
treatment similar to this paper, see Rieck [4; 5] and Rieck–Rubinstein [6]. Let S3 D

U [† V be the Heegaard splitting corresponding to †. Let h2 be a height function
on U , h2W U ! Œ�1; 0� so that @U D† is at level 0, a spine of U is at the level -1
and for each t 2 .�1; 0�, h�1

2
.t/ is a surface parallel to @U . Similarly take a height

function on V (also denoted h2 ) h2W V ! Œ0; 1�, so that @V D† is at level 0, a spine
of V is at the level 1 and for each t 2 Œ0; 1/, h�1

2
.t/ is a surface parallel to @V . Pasting

the two functions together and obtain a function h2W S
3! Œ�1; 1�. For t 2 .�1; 1/ we

denote h�1
2

.t/ by †t . By transversality we may assume that the spines of U and V are
disjoint from .0; 0; 0; 1/ and .0; 0; 0;�1/. For every point .s; t/2 .�1; 1/�.�1; 1/ we
have the two surfaces S2

s and †t . Cerf Theory says that we can perturb h1 and h2 so
that the intersection of S2

s and †t is transverse for almost all .s; t/ 2 Œ�1; 1�� Œ�1; 1�,
and the set for which the intersection is not transverse forms a finite graph (called the
Graphic) with the following properties.
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Figure 1: Obtaining the board

(1) For .s; t/ on an edge of the graphic, S2
s \†t contains exactly one non-degenerate

critical point (either center or a saddle).

(2) At a valence 4 vertex the corresponding surfaces have exactly two non-degenerate
critical points. A valence 4 vertex can be seen as a point where two arcs of the
graphic cross each other, each corresponding to a single non-degenerate critical
point.

(3) There is one other type of vertex (called a Birth-Death vertex) that has valence
2. Birth-death vertices do not play a role in our study and we will not describe
them here.

The closure of a component of Œ�1; 1�� Œ�1; 1� cut open along the Graphic is called a
region. Given a region, the intersection of the surfaces that correspond to a point in the
region does not depend in the choice of point in any essential way.

3 The labels I , E and a friendly game of Hex

We label the regions. A region is labeled E (standing for “essential”) whenever the
intersection of surfaces corresponding to a point in the region contains a curve that is
essential in †t ; otherwise, the label I (standing for “inessential”) is used. By definition
each region has exactly one label.

In order to enjoy a game of Hex we modify the Graphic as follow: if a valence 4 vertex
is adjacent to two E–regions and two I –regions and the labels alternate when going
cyclically around it, we split the Graphic and introduce a short edge separating the I

regions; see Figure 1 where the northern and southern regions are I –regions and the
western and eastern regions are E–regions. The graph obtained is called the Board.
Note that there is a natural correspondence between regions of the Graphic and those
of the Board; using this correspondence the regions of the Board inherit labels from
the Graphic.

The reason for creating the Board is the following.
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Proposition/Definition 3.1 By the border we mean the union of the edges of the
Board that separate E–regions from I –regions. In .�1; 1/� .�1; 1/ the border forms
an embedded 1–manifold.

Proof Away from the vertices the proposition clearly holds. Let v be a valence 4
vertex. If all regions around v have the same label v isn’t on the border. If one region
has one label and three have the other label, the border is locally an interval (with a
corner). If two regions adjacent to v are labeled E and two are labeled I , then by
construction of the Board the labels do not alternate. Hence the Border cuts across
such a vertex smoothly. At a valence 3 vertex v either all three regions have the same
label (and v is not on the Border) or two regions with one label meet a third region
with the other label (and the border is locally an interval).

Remark 3.2 In the original game of Hex every vertex has valence 3. Hence the border
there forms a 1–manifold as well.

We now pick two volunteers to play Hex. The goal of the first volunteer, Ivan, is finding
a chain of regions (say R1; : : : ; Rn; n� 1) labeled I that connects the left edge of the
Board (points with s D�1) with its right (s D 1). Similarly, the goal of the second
volunteer, Esmeralda, is finding a chain of regions labeled E that connects the bottom
edge of the board (t D�1) with its top (t D 1). In both cases, the region Ri�1 shares
an edge with Ri (i D 2; : : : ; n).

The next proposition is quite special to S3 .

Proposition 3.3 Ivan can’t win.

Proof Suppose Ivan wins and let R1; : : : ; Rn (for some n) be a chain of regions,
starting at the left (s D �1) and ending at the right (s D 1) (note that it is possible
that R1 meets the left edge in a single point only, and similarly for Rn and the right
edge). Consider the corresponding regions in the Graphic (still denoted Ri ). The
cost: since some edges of the Board are crushed, it is now possible that Ri�1 shares
only a valence 4 vertex with Ri . Given s 2 Œ�1; 1� we color h�1

1
.Œ�1; s�/ yellow and

h�1
1

.Œs; 1�/ green.

The proof of the following lemma is an easy innermost disk argument and is left to the
reader.

Lemma/Definition 3.4 (regarding I –regions) If .s; t/ is in an I –region then the
entire surface †t (except perhaps for parts contained in a disk) is either yellow or green
(resp.); we say that †t is essentially yellow (green resp.).
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We replace the labels I by labels I.G/ and I.Y / as follows: I –regions with essentially
green surfaces are labeled I.G/ and I –regions with essentially yellow surfaces are
labeled I.Y /. Of course no surface is essentially green and essentially yellow simulta-
neously; this, together with Lemma/Definition 3.4, establishes that every I –region gets
exactly one label. In addition, it is easy to see that I –regions with s very close to -1
are labeled I.G/ and I –regions with s very close to 1 are labeled I.Y /. Considering
the chain of I -regions R1; : : : ; Rn , we see that R1 is labeled I.G/ and Rn is labeled
I.Y /. Let i be the first index with Ri labeled I.Y /. Thus Ri�1 is labeled I.G/ and
Ri is labeled I.Y /. If Ri�1 and Ri share an edge then passing from one to the other
we cross a single critical point, either a center or a saddle. In either case, no essential
curve is introduced or removed (recall we are crossing from one I –region to another)
and therefore labels cannot change. Thus we may assume that we cross a valence 4
vertex (say v ), corresponding to 2 singular points (say s1 and s2 ). By construction of
the Board v was obtained from pinching an edge of the Board and the remaining two
regions adjacent to v are E–regions (recall Figure 1); since crossing a center doesn’t
change an I –region to an E–region we see that both s1 and s2 are saddles.

Moving out of Ri�1 by crossing s1 , we arrive at a region labeled E ; thus crossing the
saddle has the effect of changing a single inessential curve into two parallel essential
curves bounding an annulus. Since the surface was essentially green prior to crossing
s1 , the annulus between the parallel curves is essentially yellow (ie the annulus is yellow
except perhaps for regions contained in a disk). Crossing s2 into Ri the label becomes
I ; hence the 2 parallel curves are pinched together to become a single inessential curve.
If the pinching is done inside the essentially yellow annulus (thus turning it into a disk)
the surface becomes essentially green; hence the boundary of the annulus is pinched
outside the essentially yellow annulus. We obtain an essentially yellow once-punctured
torus T or pair of pants P . Since Ri is an I -region the boundary of T (resp. P ) is
inessential; hence gD 1 (resp. gD 0), contradicting our assumptions. This establishes
Proposition 3.3.

Remark 3.5 (About the game Hex) In the following proposition we prove that Hex
has a winner. The only properties of the game we are using are: (1) the Border is an
embedded 1–manifold and (2) the four corners of the Board are adjacent to exactly one
region each. It is easy to see that these conditions hold for the traditional game Hex
(recall Remark 3.2), hence the proof of Proposition 3.6 shows the well-known fact that
in that game too there is a winner.

Proposition 3.6 Hex has a winner.
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Proof (We work on the Board.) First observe that there is exactly one region adjacent
to each corner of Œ�1; 1�� Œ�1; 1� (these regions correspond to disjoint surfaces S2

s

and †t ).

By Proposition/Definition 3.1 the Border forms an embedded 1–manifold in .�1; 1/�

.�1; 1/ and therefore has four types of components (we note that distinct components
of the Border may share a point on the boundary):

(1) simple closed curves,

(2) arcs connecting an edge to itself,

(3) arcs connecting an edge to an adjacent edge and

(4) arcs connecting an edge to an opposite edge.

We note that curves of type (1) do not play a role in the proof. Suppose there is a arc of
type (4), say connecting the top edge to the bottom edge. Then on one side of that arc
the regions are all labeled E and therefore Esmeralda wins. Similarly, if there is an
arc connecting left edge to the right edge Ivan wins. We may therefore assume there
are no arcs of type (4). In that case, by induction on the arcs of type (2) and (3), we
can easily prove that some region R is adjacent to all four edges. If R is labeled I

then Ivan wins and if it is labeled E then Esmeralda wins.

By Proposition 3.3 and Proposition 3.6 Esmeralda wins. Esmeralda’s victory is given
by a path of regions in the Board, say R1; : : : ; Rn; n� 1, all labeled E and connecting
the bottom of the board to its top. We consider the corresponding regions in the Graphic,
still denoted R1; : : : ; Rn . Observe that by construction of the Board, Ri�1 still shares
an edge with Ri (i D 2; : : : ; n). (As in Proposition 3.3 R1 (Rn resp.) may have only
one point on the bottom edge (top edge resp.).)

4 The weak reduction

We complete the proof by finding a weak reduction; this is a standard argument in Cerf
Theory, originally due to Rubinstein and Scharlemann [7]. Denote the handlebodies
obtained by cutting M along †t by Ut and Vt . First we show the following Lemma.

Lemma 4.1 (regarding E–regions) Let S2
s and †t be surfaces corresponding to a

region labeled E . Then some curve of S2
s \†t bounds a meridian disk in Ut or Vt .
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Proof Let C � S2
s \†t denote the collection of curves of S2

s \†t that are essential
in †t . Since the label is E , C¤∅. Consider C as an embedded 1-manifold in S2

s and
let c � C be an innermost curve and D � S2

s the innermost disk it bounds. Then in its
interior D intersects †t in a (possibly empty) collection of curves that are inessential
in †t ; a standard disk swap argument gets a disk disjoint from †t with boundary c .

Since R1 contains points with t arbitrarily close to -1 (where †t collapses to a spine
of Ut ) it is easy to see that curves of S2

s \†t bound meridians of Ut ; likewise curves
of S2

s \†t in Rn bound meridians of Vt . By Lemma 4.1 every region Ri has curves
of S2

s \†t that bound meridians of Ut or Vt . Let i be the lowest index so that Ri has
a curve of S2

s \†t bounds a meridian of Vt . We arrive at the following dichotomy.

(1) (i D 1) Surfaces corresponding to Ri contain a curve of S2
s \†t that bounds a

meridian in Ut and a curve that bounds a meridian in Vt .

(2) (i > 1) Surfaces corresponding to Ri�1 contain a curve of S2
s \†t that bounds

a meridian in Ut and surfaces corresponding to Ri contain a curve of S2
s \†t

that bounds a meridian in Vt .

In Case (1) we directly see a weak reduction or reduction (if both meridian disks bound
the same curve).

In Case (2), we note that crossing from Ri�1 to Ri corresponds to crossing one critical
point, either a saddle or a center. In either case the set of essential curves in S2

s \†t

corresponding to Ri�1 can be isotoped to be disjoint from those corresponding to Ri ;
hence † reduces or weakly reduces.

Since reduction implies a weak reduction, we find a weak reduction in every case above.
This completes the proof of Theorem 1.

Remark 4.2 If g D 1 it is clearly impossible to find a weak reduction. Reading
through the proof, we find exactly one place where the assumption g > 1 was used:
in the proof that Ivan can’t win (Proposition 3.3). We conclude that if we run the
Cerf-theoretic argument in that case, it is actually Ivan who wins and Esmeralda who
loses.

As a concluding remark we mention that it is quite possible that Waldhausen never
intended to study Heegaard splittings of S3 , but rather prove the Poincaré Conjecture.
If we replace S3 with a homotopy 3–sphere the argument above fails miserably, since
the “weak reduction” we will obtain consists of immersed disks (small problem, in
light of Papakyriakopoulos’s work) that might intersect each other (and hence will not
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give a weak reduction at all, even if each disk is embedded). Even if these problems
are miraculously overcome, the best we can hope for is a “reduction” of the Heegaard
surface via an immersed sphere that intersects the Heegaard surface in a single (probably
not simple) closed curve. This is equivalent to the following condition: the intersection
of the kernels of the two maps induced on the fundamental group of † by its inclusion
into Ut and Vt is non-trivial. This is apparently not the right way to go: it was proven
by J R Stallings in his paper “How not to prove the Poincaré conjecture” [9].
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