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Hyperbolic volume, Heegaard genus and ranks of groups

PETER B SHALEN

Some conjectures about Heegaard genera and ranks of fundamental groups of 3–
manifolds are formulated, and it is shown that they imply new statements about
hyperbolic volume.

57M05, 57M50

1 Preface

In my talk at the conference on Heegaard splittings at the Technion, I formulated some
topological conjectures and discussed how, by adapting some of my work with Marc
Culler and others on volumes of hyperbolic 3–manifolds, to use these conjectures—if
true—to the problem of relating hyperbolic volume to Heegaard genus.

One of the conjectures that I stated is a modernized version of the antique conjecture
that if M is a compact, orientable 3–manifold, the rank of �1.M / is equal to the
Heegaard genus of M . The first counterexamples to this old conjecture, in which M

is a Seifert fibered manifold, had been given by Boileau and Zieschang in [5]; more
general counterexamples, for graph manifolds, were given by Schultens and Weidmann
in [17]. Here is the modernized version:

Conjecture 1.1 If M is a compact, orientable, hyperbolic 3–manifold, the rank of
�1.M / is equal to the Heegaard genus of M .

The main results that I discussed in my talk give connections between Heegaard genus
and hyperbolic volume that are conditional on Conjecture 1.1 and another conjecture,
which is formulated below as Conjecture 4.3. Those results are incorporated into this
article as Corollaries 4.9, 5.3 and 6.8. They are immediate conequences of results,
Corollary 4.8 and Propositions 5.2 and 6.2, which involve ranks of groups instead of
Heegaard genus and are not conditional on Conjecture 1.1 (although they are conditional
on other topological conjectures).

This reorganization of the material may prove valuable if Conjecture 1.1 turns out to
be false. The immediate motivation for reorganizing the paper in this way was that
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336 Peter B Shalen

rumors were circulating to the effect that Conjecture 1.1 had been disproved. These
rumors seem to have died down.

In this article I will provide detailed proofs of all the new results, including those that I
announce in my talk. I will give less space here than in my talk to summaries of the
arguments in Agol–Culler–Shalen [2] and Culler–Shalen [9], on which the proofs are
based, as these summaries were not significantly different from the ones given in the
introductions to those papers.

All the new results are conditional in the sense that they include various topological
conjectures as hypotheses. Some of these conjectures are very new, and I hope that
they will motivate new research, whether or not they are true.

I thank Ian Agol for some valuable discussions about Conjecture 1.1. I also thank the
referee for pointing out some major errors in the first draft of the article.

2 Introduction

When one studies closed hyperbolic 3–manifolds, the volume is a key invariant, because
it is known that up to isometry there exist at most finitely many hyperbolic manifolds of a
given finite volume. The volume of a closed hyperbolic 3–manifold M is a topological
invariant of M —for example because Mostow rigidity says the hyperbolic structure of
M is itself determined by the topology—but the precise connection between volume
and more classical topological invariants is far from being well understood.

In this article I’ll be concerned with the connection between volume of a hyperbolic
3–manifold and the rank of its fundamental group. An upper bound on rank—or even
the Heegaard genus—of a closed hyperbolic 3–manifold does not give an upper bound
on the volume. For example, if M0 is a closed hyperbolic 3–manifold that fibres over
the circle, and g is the genus of the fiber, then for every positive integer n there is
an n–fold cyclic cover Mn of M which itself fibers over S1 with genus–g fiber. In
particular the Heegaard genus of each Mn is at most 2gC 1, but the volume of Mn is
nv0 , where v0 denotes the volume of M0 .

On the other hand, an upper bound on the volume of a closed hyperbolic 3–manifold
definitely does give an upper bound on the Heegaard genus (and hence on the rank).
In fact, there is a universal constant � > 0, the Margulis constant, such that for
every closed hyperbolic 3–manifold M , the subset Mthin of M , defined to consist of
all points through which there pass homotopically non-trivial curves of length � �,
is a disjoint union of smooth solid tori. It’s not hard to show that the submanifold
Mthick DM�Mthin has a triangulation with at most C0v simplices, where v denotes
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the volume of M and C0 is another universal constant that can be computed from
�. This implies that there is a constant C such that every closed 3–manifold M has
Heegaard genus at most Cv , where v denotes the volume of M .

The problem is that the constant C that comes from this argument is astronomical, and
the estimates obtained in this way don’t get us anywhere near what we expect from
examples. The goal of this article will be to suggest a way of getting good explicit
upper bounds for the rank of �1.M /, where M is a hyperbolic 3–manifold, in terms
of the volume of M .

By contrast, if one is willing to settle for bounds on the homological complexity of a
manifold M instead of the rank of �1.M /, the results that appear in my papers with
Culler and others are in the realm of reality and are sometimes sharp. For example, [2,
Theorem 1.1] states among other things that if M is a closed, orientable hyperbolic
3–manifold with volume at most 1:22, then H1.M IZp/ has dimension at most 2 for
every prime p ¤ 2; 7. This result is sharp for p D 3 and for p D 5: the manifolds
referred to in the Weeks–Hodgson census [19] as m003(-3,1) and m007(3,1) have
respective volumes 0:94 : : : and 1:01 : : :, while their integer homology groups are
respectively isomorphic to Z5˚Z5 and Z3˚Z6 .

One would like to obtain bounds for Heegaard genus, or rank of fundamental group,
in terms of volume, similar to the bounds on homology that I have described. This
will require more knowledge on the topological side. In Section 4 I’ll formulate and
discuss a pair of topological conjectures, one about rank and one about Heegaard genus;
the former will be shown to imply a bound on the rank of the fundamental group in
terms of hyperbolic volume. In Section 5 I’ll show how to get a stronger bound by
combining the conjecture of Section 4 with a conjectured analogue for rank of Moriah
and Rubinstein’s result in [12] about the behavior of Heegaard genus under Dehn filling.
In Section 6 I’ll give another consequence of the conjecture of Section 4, partially
analogous to the results of [9] and [7].

3 A little background

The following result provides the simplest motivation (from the point of view of
studying volumes) for the conjectures on ranks of 3–manifold groups that I’ll state in
the next section.

Theorem 3.1 Suppose that M is a closed, orientable hyperbolic 3–manifold with
volume less than 1:015. Then �1.M / has a 2–generator subgroup of finite index.
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Proof Let M be any closed, orientable hyperbolic 3–manifold. Let us write M D

H3=� , where � � IsomC.H3/ is discrete, cocompact and torsion-free. If � Š �1.M /

has no 2–generator subgroup of finite index, it follows from Jaco and Shalen [10,
Theorem VI.4.1] that � is 2–free in the sense that all its 2–generator subgroups are
free.

When � is 2–free, the number log 3 is a strong Margulis number for M in the sense
of Anderson, Canary, Culler and Shalen [4, Section 8]. Indeed, the case k D 2 of [4,
Proposition 8.1] asserts that log 3 is a strong Margulis number for M as long as every
2–generator subgroup of � is free and topologically tame. But according to the main
results of Agol [1] and Calegari–Gabai [6], every finitely generated Kleinian group is
topologically tame.

Przeworski [13, Theorem 3] asserts that if the first Betti number ˇ1.M / is at least 3,
then the volume of M is at least 1:015. The hypothesis ˇ1.M / � 3 is used only in
order to quote [13, Theorem 1], which is included in [4, Corollary 10.6], and gives a
lower bound V .�/ on the volume of M in terms of the length � of a shortest geodesic
in M , under the assumption that ˇ1.M /� 3. Now, according to [4, Corollary 10.5],
the number V .�/ is a lower bound for the volume of M as long as log 3 is a strong
Margulis number for M . Hence the lower bound of 1:015 for the volume of M still
holds if one replaces the assumption ˇ1.M / � 3 by the assumption that log 3 is a
strong Margulis number for M ; by the discussion above, this holds in particular if
�1.M / has no finite-index subgroup of rank 2.

4 A conjecture on rank and finite covering spaces, and a con-
sequence

Theorem 3.1 raises the following question (most immediately for the case k D 2):

Question 4.1 What restriction does the existence of a k –generator subgroup of finite
index in �1.M / place on M ?

There is a homological condition which is necessary for the existence of such a subgroup:
H1.M IZp/ must have rank � kC1 for every prime p . The necessity of this condition
follows from Shalen–Wagreich [18, Proposition 1.1]. This was the starting point for
the results relating volume to homology which I described in the introduction.

The following conjecture, which I first formulated in my talk at the Technion, would
provide a bound of the rank of �1.M / when �1.M / has a k –generator subgroup of
finite index.
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Conjecture 4.2 If M is a compact, orientable hyperbolic 3–manifold such that
rank�1.M / D r , then for any finite-sheeted covering space �M of M we have
rank�1. �M /� r � 1.

Equivalently, Conjecture 4.2 asserts that if �1.M / has a k –generator subgroup of
finite index then rank�1.M /� kC 1.

In my talk, I also formulated a parallel conjecture about Heegaard genus:

Conjecture 4.3 If M is a compact, orientable hyperbolic 3–manifold with Heegaard
genus g , then any finite-sheeted covering space �M of M has Heegaard genus at least
g� 1.

Of course, Conjectures 4.2 and 4.3 are equivalent modulo the “rank equals genus”
Conjecture 1.1.

4.4 It follows from Agol, Culler and Shalen [2, Corollary 7.3] (which is in turn a
refinement of Shalen and Wagreich [18, Proposition 1.1], a result which I mentioned
above) that if M is a closed, orientable hyperbolic 3–manifold such that H1.M IZp/

has rank r for a given prime p , then for any finite-sheeted covering space �M of M ,
the rank of H1. �M IZp/ is at least r � 1. We may regard Conjectures 4.2 and 4.3 as
analogues, for the rank of the fundamental group and the Heegaard genus, of this result
about the rank of the mod–p homology.

4.5 There appears to be a huge class of examples, for every g� 3, in which a compact,
orientable hyperbolic 3–manifold M with Heegaard genus g has a finite-sheeted
covering space �M of Heegaard genus exactly g � 1. Alan Reid gave the first such
example, for g D 3, in his paper [14], which was inspired by an earlier, weaker version
of Theorem 3.1 which appeared in Culler and Shalen [8].

During the conference, Hyam Rubinstein pointed out a systematic way of construct-
ing such examples. Suppose that M is a closed, orientable hyperbolic 3–manifold
containing a closed, non-orientable surface F , and that the complement in M of the
interior of a regular neighborhood N of F is a handlebody J of genus g� 1. Since
N is a twisted I –bundle over F , it’s easy to construct a 2–sheeted covering space
q W �M !M to which J lifts, and in which q�1.N / is a trivial I –bundle. It follows
that �M has a Heegaard splitting in which the handlebodies are isotopic to the two lifts
of J ; in particular this splitting has genus g� 1. On the other hand, if A is a vertical
arc in the twisted I –bundle N , and T is a regular neighborhood of A relative to N ,
then J [T and N�T are genus–g handlebodies, which define a genus–g Heegaard
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splitting of M . It appears that for g� 3 the “generic” situation is that both the genus–g

Heegaard splitting of M and the genus–.g�1/ Heegaard splitting of �M are minimal.

These examples help show why the lower bound g� 1 is natural in Conjecture 4.3. I
would guess that in many of these examples one can also show that rank�1.M /D g

and rank�1.M /D g�1, which would help show why the lower bound r �1 is natural
in Conjecture 4.2.

4.6 During the conference, Andrew Casson pointed out that Conjecture 4.2 is trivial
for a cyclic regular covering. This is because if any group G has a normal subgroup N

with G=N cyclic, the rank of G can obviously exceed the rank of N by at most 1.

4.7 The best known result in the direction of Conjecture 4.3 seems to be the result
of Rieck and Rubinstein [15], which gives a lower bound for the Heegaard genus of a
two-sheeted covering of M in terms of the Heegaard genus of M .

Theorem 3.1 now has the following immediate consequence:

Corollary 4.8 If Conjecture 4.2 is true, then for every closed, orientable hyperbolic
3–manifold with volume at most 1:015 we have rank�1.M /� 3. �

Since Conjectures 4.2 and 4.3 are equivalent modulo the “rank equals genus” Conjecture
1.1, we also get:

Corollary 4.9 If Conjectures 1.1 and 4.3 are true, then for every closed, orientable
hyperbolic 3–manifold with volume at most 1:015 we have rank�1.M /� 3. �

5 A conjecture on rank and Dehn filling, and a consequence

It is a consequence of the result proved by Moriah and Rubinstein in [12] that if N is
a hyperbolic 3–manifold of finite volume with exactly one cusp, and if g denotes the
Heegaard genus of the compact core �N of N , then infinitely many Dehn fillings of �N
yield closed manifolds of Heegaard genus exactly g . (This was re-proved by a purely
topological argument in Rieck and Sedgwick [16].)

In view of Moriah and Rubinstein’s result, the following conjecture would follow
immediately from the “rank equals genus” Conjecture 1.1.

Conjecture 5.1 Suppose that N is a hyperbolic 3–manifold of finite volume with
exactly one cusp, and set r D rank�1.N /. Let �N denote the compact core of N . Then
there is an infinite sequence .Mi/ of manifolds obtained by distinct Dehn fillings of �N
such that each rank�1.Mi/D r for each i .
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The main result of [2], Theorem 1.1, states that if M is a closed, orientable hyperbolic
3–manifold with volume at most 1:22, then H1.M IZp/ has dimension at most 2 for
every prime p ¤ 2; 7, and that H1.M IZ2/ and H1.M IZ7/ have dimension at most
3. The result had originally been proved in a weaker form, which states that if M has
volume at most 1:22, then H1.M IZp/ has dimension at most 3 for every prime p .
In this section I’ll show how to adapt the proof of this weaker theorem to prove an
analogous result about the rank of the fundamental group, modulo Conjectures 4.2 and
5.1. This is Proposition 5.2 below. I have not thought about whether one can prove a
Heegaard-genus analogue of the strong form of [2, Theorem 1.1] modulo Conjectures
4.2 and 5.1.

Proposition 5.2 If Conjectures 4.2 and 5.1 are true, then for every closed, orientable
hyperbolic 3–manifold M with volume at most 1:22, we have rank�1.M /� 3.

You’ll notice that the information given by Proposition 5.2 modulo Conjectures 4.2 and
5.1 is strictly stronger than the information given by Corollary 4.8 modulo Conjecture
4.2 alone. The proof of Proposition 5.2 uses a lot more mathematics than that of
Corollary 4.8. In particular, [2, Lemma 3.2], which is quoted in the proof below,
depends on a result from Agol, Dunfield, Storm and Thurston [3] which in turn relies
on Perelman’s estimates for the Ricci flow with surgeries.

Proof of Proposition 5.2 As in [2], we shall say that a hyperbolic manifold M is
exceptional if every shortest geodesic in M has tube radius at most .log 3/=2.

We first prove the proposition in the case where M is non-exceptional. In this case,
by definition, there is a shortest geodesic C in M with RD tuberad.C / > .log 3/=2.
We set N D drillC .M /. Let H denote the maximal cusp neighborhood in N . Since
R> .log 3/=2, [2, Lemma 3.2] implies that volH < � .

Now assume that rank�1.M / � 4. Set r D rank�1.�N /. It is obvious that r �

rank�1.M /, so in particular r � 4. Conjecture 5.1 implies that there is an infi-
nite sequence .Mi/ of manifolds obtained by distinct Dehn fillings of �N such that
rank�1.Mi/ D r for each i . Since r � 4, Conjecture 4.2 implies that for each i ,
every finite-index subgroup of �1.Mi/ has rank at least 3. Since �1.Mi/ has no
2–generator subgroup of finite index, it follows from Jaco and Shalen [10, Theorem
VI.4.1] that �1.Mi/ is 2–free in the sense that all its 2–generator subgroups are free.
[2, Lemma 4.3] then implies that volH� � , a contradiction. This completes the proof
in the non-exceptional case.

We now turn to the case where M is exceptional. If M is isometric to the manifold
vol 3 discussed by Jones and Reid [11], then M can be obtained by Dehn filling
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from a once-punctured torus bundle over S1 , and hence rank�1.M / � 3. If M is
not isometric to vol 3, then according to [2, Proposition 7.1], the group �1.M / has a
finite-index subgroup of rank at most 2. But if rank�1.M /� 4, Conjecture 4.2 implies
that every finite-index subgroup of �1.M / has rank at least 3. Hence rank�1.M /� 3

in this case as well.

I pointed out in Section 4 that Conjectures 4.2 and 4.3 are equivalent modulo the “rank
equals genus” Conjecture 1.1. I pointed out at the beginning of the present section that
Conjecture 5.1 would follow immediately from Conjecture 1.1. Hence the following
corollary follows from Proposition 5.2.

Corollary 5.3 If Conjectures 1.1 and 4.3 are true, then for every closed, orientable
hyperbolic 3–manifold M with volume at most 1:22, the Heegaard genus of M is at
most 3.

6 A hybrid consequence of the conjecture on covering spaces

In [7], Culler and I prove:

Theorem 6.1 If M is a closed, orientable hyperbolic 3–manifold with volume at
most 3:08, then H1.M IZ2/ has rank at most 7.

The weaker version that the rank is at most 10 is somewhat easier to prove, and is
established in [9].

In this section I’ll show how to adapt the proof of this weaker result to get the following
result. The information given by this result modulo Conjecture 4.2 is not exactly an
analogue of the result of [9] involving the rank of the fundamental group, but rather
a hybrid result involving both the rank of the fundamental group and the rank of the
mod–2 first homology.

Proposition 6.2 If Conjecture 4.2 is true, then for every closed, orientable hyperbolic
3–manifold M with volume at most 3:08, either rank�1.M/�10, or dim H1.M IZ2/�

4.

The proof of Proposition 6.2 will depend on refining a number of the results proved in
[9]. For the rest of this section I shall use the notation and definitions of [9], including
the definition of a book of I –bundles. As in [9], I shall write x�.X /D��.X /, where
X is any space homeomorphic to a finite polyhedron and �.X / denotes its Euler
characteristic.
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Lemma 6.3 Let X be a compact, connected 3–manifold, and let P ¤ X be a
submanifold of X . Suppose that P is an I –bundle over a compact, orientable surface
with non-empty boundary, that the frontier F of P in X is the vertical boundary of
P , and that F is properly embedded in X . Let Y be a component of X�P , and
assume that every component of X�.P [Y / is a solid torus. (The last condition holds
vacuously if X�P is connected.) Then

rank�1.X /� rank�1.Y /C rank�1.P /:

Proof Let S denote the base of the I –bundle P . Let mC 1 denote the number of
components of F . If mD 0 then F is connected, and the assertion of the lemma is
immediate from the Seifert-van Kampen theorem. Hence we may assume that m� 1.

Set r D rank�1.Y / and sD rank�1.P /D rank�1.S/. We have s �m, with equality
if and only if S is planar.

Let us denote the components of X�P by Z0; : : : ;Zn , where n � 0, Z0 D Y ,
and Zj is a solid torus for each j with 0 < j � n. Let A0; : : : ;Am denote the
components of F , which we index in such a way that Aj � Zj for 0 � j � n. For
each i 2 f0; : : : ;mg, the annulus Ai is contained in a unique component Zq.i/ of
X�P ; thus q W f0; : : : ;mg! f0; : : : ; ng is a well-defined surjection, and our indexing
of the Ai implies that q.i/D i for i D 0; : : : ; n. (In particular n�m.)

For i D 0; : : : ;m, fix a point ai 2 Ai , and fix a loop ˛i in Ai , based at ai , which
represents a generator of �1.Ai ; ai/. Let ˇ0 denote the constant path at a0 , and for
each i with 0 < i � m let ˇi denote a path in P from a0 to ai , which projects to
an embedded arc Bi in S . We may suppose the ˇi to be chosen so that the arcs Bi

meet only at the point a0 . For i D 0; : : : ;m let ci denote the element of �1.P; a0/

represented by the loop ˇi � ˛i � ˇi . Then �1.P; a0/ has a minimal generating set
fx0; : : : ;xs�1g such that xi D ci for i D 0; : : : ;m� 1.

For each i with n < i � m, we fix a path i in Zq.i/ from aq.i/ to ai , and define
an element ti 2 �1.X; a0/ by ti D Œˇq.i/ � i �ˇi �, where brackets denote the based
homotopy class of a loop in X . We fix a generating set fy1; : : : ;yr g for �1.Y; a0/.
For j D 1; : : : ; n we fix a loop �j in Zj based at aj which represents a generator
for the cyclic group �1.Zj ; aj /, and we set zj D Œ ǰ � �j � ǰ � 2 �1.X; a0/. Then
�1.X; a0/ is generated by the set

fyxi W 0� i < sg[ fyyk W 1� k � rg[ fzj W 1� j � ng[ fti W n< i �mg;

where yxi and yyk denote the images of xi and yk under the inclusion homomorphisms
from �1.P; a0/ and �1.Y; a0/ to �1.X; a0/.
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For i D 0; : : : ;m, let yci denote the image of ci under the inclusion homomorphism
�1.P; a0/! �1.X; a0/. Since ˛0 is a loop in A0 � Y , and ˇ0 is the constant path,
yc0 is a word in the yyk . Likewise, for 0 < i � n, since ˛i is a loop in Ai � Zi , the
element yci D Œˇi �˛i �ˇi � is a power of zi . Furthermore, if n< i �m, and if we set
j D q.i/, then yci D t�1

i ui ti , where ui D Œ ǰ � i �˛i � i � ǰ �. Since i �˛i � i is
a loop in Zj based at ai , it follows that ui is a word in the yyk if q.i/D 0, and is a
power of zj if q.i/ > 0.

In particular, the elements yc0; : : : ; ycm all lie in the subgroup of �1.X; a0/ generated
by the yyi , the zj and the ti . Since we have yxi D yci for i D 0; : : : ;m� 1, we deduce
that �1.X; a0/ is generated by the set

fyxi Wm� i < sg[ fyyk W 1� k � rg[ fzj W 1� j � ng[ fti W n< i �mg:

Hence
rank�1.X /� .s�m/C r C nC .m� n/D r C s;

which is the conclusion of the lemma.

The following lemma is a refined version of [9, Lemma 2.21].

Lemma 6.4 If W is a connected normal book of I –bundles, the rank of �1.jWj/ is
at most 2x�.jWj/C 1.

Proof Set W D jWj. If W is an I –bundle over a closed surface, we have

rank�1.W /D x�.W /C 2I

by normality we have x�.W / > 0, so the conclusion holds in this case. Hence we may
assume that every page of W meets at least one binding.

Let p denote the number of pages of W . We shall recursively construct a finite
sequence of connected sub-books W1; : : : ;Wp of W , where Wi has exactly i pages.
To begin the recursion, we choose an arbitrary page P1 of W and define W1 to consist
of P1 and the bindings that meet it. Now assume that Wi has been constructed for
a given i < p . Since W has p pages, Wi is a proper sub-book of W . Since W is
connected, jWi j must meet some page PiC1 not contained in jWi j. We define WiC1

to consist of the pages and bindings of Wi , the page PiC1 , and all bindings of W that
meet PiC1 .

We set Wi D jWi j for i D 1; : : : ;p , and we let W0 denote some (arbitrarily chosen)
binding of W1 . We shall show that for i D 0; : : : ;p the rank of �1.Wi/ is at most
2x�.Wi/C 1. For i D 0 this is obvious, and for i D p it is the conclusion of the
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lemma. It therefore suffices to show that if 0< k � p and �1.Wk�1/ has rank at most
2x�.Wk�1/C 1, then �1.Wk/ has rank at most 2x�.Wk/C 1.

The hypotheses of Lemma 6.3 hold if we set X D Wk , P D Pk , and Y D Wk�1 .
Hence we have

rank�1.Wk/ � rank�1.Wk�1/C rank�1.Pk/

� .2x�.Wk�1/C 1/C rank�1.Pk/:

Now since Pk is an I –bundle over a compact, connected surface with non-empty
boundary, we have rank�1.Pk/D 1C x�.Pk/. But by the definition of a normal book
of I –bundles we have x�.Pk/� 1, and hence

rank�1.Pk/� 2x�.Pk/:

It follows that

rank�1.Wk/� .2x�.Wk�1/C 1/C 2x�.Pk/D 2x�.Wk/C 1;

as required.

Our next result is a analogue, in the context of the present section, of [9, Theorem
9.13].

Lemma 6.5 Assume that Conjecture 4.2 is true. Let M be a closed simple 3–manifold
with rank�1.M / � 11. Suppose that dim H1.M IZ2/ � 5, and that �1.M / has a
subgroup isomorphic to a genus–2 surface group. Then there is a connected, normal
book of I –bundles W with W D jWj �M such that @W is incompressible in M

and x�.W /D 2.

Proof We shall adapt the proof of [9, Theorem 9.13]. The latter result has the same
conclusion as the present lemma, but in place of the hypothesis rank�1.M / � 11,
that dim H1.M IZ2/ � 5, and that Conjecture 4.2 is true, it has the hypothesis that
dim H1.M IZ2/ has rank at least 11. This hypothesis is used twice in the proof of [9,
Theorem 9.13]: once in the first sentence to allow the application of [9, Corollary 9.11],
and again in the fifth sentence of the fifth and final paragraph of the proof. The appli-
cation of [9, Corollary 9.11] requires only the lower bound of 5 for dim H1.M IZ2/.
Hence, under the hypotheses of the present lemma, the first four paragraphs of the proof
of [9, Theorem 9.13], and the first sentence of the fifth paragraph, go through without
change, and show that either (a) there is a connected, normal book of I –bundles W
with W D jWj �M such that @W is incompressible in M and x�.W /D 2 (this is the
case mD 0 in the notation of the proof in [9]) or (b) there exist a finite-sheeted covering
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space �M of M and a connected normal book of I –bundles W with W D jWj � �M
such that the inclusion homomorphism �1.W /! �1. �M / is surjective and x�.W /� 4.
(Alternative (b) corresponds to the case m > 0 in the notation of the proof in [9],
and we take �M DNm�1 in the notation of that proof. Since Nm�1 is closed, it is a
finite-sheeted covering space of M according to [9, Section 9.3].)

Now by Lemma 6.4 we have rank�1.jWj/ � 2x�.jWj/C 1 � 9. The surjectivity of
�1.W /! �1. �M / therefore implies that rank�1. �M /� 9. On the other hand, since by
hypothesis we have rank�1.M /� 11, Conjecture 4.2 implies that rank�1. �M /� 10.
This is a contradiction, and the proof is complete.

The following result follows from Lemma 6.5 above in exactly the same way that [9,
Corollary 9.14] follows from [9, Theorem 9.13].

Lemma 6.6 Assume that Conjecture 4.2 is true. Let M be a closed simple 3–manifold
with rank�1.M /� 11. Suppose that �1.M / has a subgroup isomorphic to a genus–2

surface group, and that dim H1.M IZ2/ � 5. Then M contains either a connected
incompressible surface of genus 2 or a separating, connected incompressible surface of
genus 3. �

The following result is an analogue of [9, Proposition 10.5] in the context of the present
section.

Lemma 6.7 Assume that Conjecture 4.2 is true. Suppose that M is a closed orientable
hyperbolic 3–manifold with rank�1.M /� 11. Suppose that �1.M / has a subgroup
isomorphic to a genus–2 surface group, and that dim H1.M IZ2/� 5. Then vol M �

3:66.

Proof It follows from Lemma 6.6 that either

(i) M contains either a separating incompressible surface of genus 2 or 3, or

(ii) M contains a non-separating incompressible surface of genus 2.

Suppose that (i) holds but that vol M < 3:66. Let X1 and X2 denote the closures of
the components of M �S . According to [9, Theorem 10.4] (a result deduced from the
main result of Agol, Dunfield, Storm and Thurston [3]), each Xi has the form jWi j

for some book of I –bundles Wi . For i D 1; 2 we have

x�.Xi/D
1
2
x�.S/� 2:
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By Lemma 6.4, applied to W DWi , it follows that

rank�1.Xi/� 2x�.Xi/C 1� 5

for i D 1; 2. Hence by the Seifert-van Kampen theorem,

rank�1.M /� rank�1.X1/C rank�1.X2/� 10;

a contradiction to the hypothesis.

Now suppose that (ii) holds but that vol M < 3:66. Let X denote the connected
manifold obtained by splitting M along S . According to [9, Theorem 10.4] we have
X D jWj for some book of I –bundles W . We have

x�.X /D 1
2
x�.@X /D x�.S/D 2:

By Lemma 6.4 it follows that

rank�1.X /� 2x�.X /C 1� 5:

Hence
rank�1.M /� rank�1.X /C 1� 6;

and again we have a contradiction.

Proof of Proposition 6.2 Assume that the conclusion is false, i.e. that rank�1.M /�

11 and that dim H1.M IZ2/� 5. If �1.M / has a subgroup isomorphic to a genus–2

surface group, then it follows from Lemma 6.7 that vol M �3:66>3:08, a contradiction
to the hypothesis.

There remains the possibility that �1.M / has no subgroup isomorphic to a genus–
2 surface group. Now since H1.M IZ2/ has rank at least 5, it follows from [18,
Proposition 1.1] that every subgroup of rank at most 3 in �1.M / has infinite index.
But it follows from Anderson, Canary, Culler and Shalen [4, Proposition 7.3, Remark
7.5] that if M is an orientable hyperbolic 3–manifold without cusps such that �1.M /

contains no genus–2 surface subgroup and such that every subgroup of rank at most 3

in �1.M / has infinite index, then �1.M / is 3–free, in the sense that each subgroup
of rank at most 3 is free. And according to [9, Corollary 10.3], if a closed, orientable
hyperbolic 3–manifold has 3–free fundamental group, then its volume exceeds 3:08.
Again the hypothesis is contradicted.

Since Conjectures 4.2 and 4.3 are equivalent modulo the “rank equals genus” Conjecture
1.1, Proposition 6.2 has the following immediate consequence.
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Corollary 6.8 If Conjectures 1.1 and 4.3 are true, then for every closed, orientable
hyperbolic 3–manifold M with volume at most 3:08, either M has Heegaard genus at
most 10, or dim H1.M IZ2/� 4.
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