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Geometry, Heegaard splittings and rank of the fundamental
group of hyperbolic 3–manifolds

JUAN SOUTO

In this survey we discuss how geometric methods can be used to study topological
properties of 3–manifolds such as their Heegaard genus or the rank of their fun-
damental group. On the other hand, we also discuss briefly some results relating
combinatorial descriptions and geometric properties of hyperbolic 3–manifolds.

57M50; 57M07

A closed, and say orientable, Riemannian 3–manifold .M; �/ is hyperbolic if the
metric � has constant sectional curvature ��D�1. Equivalently, there is a discrete and
torsion free group � of isometries of hyperbolic 3–space H3 such that the manifolds
.M; �/ and H3=� are isometric. It is well-known that the fundamental group �1.M /

of every closed 3–manifold which admits a hyperbolic metric is a non-elementary
Gromov hyperbolic group and hence that it is is infinite and does not contain free
abelian subgroups of rank 2. A 3–manifold M whose fundamental group does not
have subgroups isomorphic to Z2 is said to be atoroidal. Another well-known property
of those 3–manifolds which admit a hyperbolic metric is that they are irreducible, ie
every embedded sphere bounds a ball. Surprisingly, these conditions suffice to ensure
that a closed 3–manifold M admits a hyperbolic metric.

Hyperbolization Theorem (Perelman) A closed orientable 3–manifold M admits a
hyperbolic metric if and only if it is irreducible, atoroidal and has infinite fundamental
group.

Thurston proved the Hyperbolization Theorem in many cases, for instance if M has
positive first Betti-number (see Otal [36; 37]). The Hyperbolization Theorem is a
particular case of Thurston’s Geometrization conjecture recently proved by Perelman
[38; 39; 40] (see also Cao–Zhu [14]).

From our point of view, the Hyperbolization theorem is only one half of the coin, the
other half being Mostow’s rigidity theorem.

Mostow’s Rigidity Theorem Any two closed hyperbolic 3–manifolds which are
homotopy equivalent are isometric.
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The goal of this note is to describe how the existence and uniqueness of hyperbolic
metrics can be used to obtain results about quantities which have been classically
studied in 3–dimensional topology. More precisely, we are interested in the Heegaard
genus g.M / of a 3–manifold M and in the rank of its fundamental group. Recall that
a Heegaard splitting of a closed 3–manifold is a decomposition of the manifold into
two handlebodies with disjoint interior. The surface separating both handlebodies is
said to be the Heegaard surface and its genus is the genus of the Heegaard splitting.
Moise [31] proved that every topological 3–manifold admits a Heegaard splitting. The
Heegaard genus g.M / of M is the minimal genus of a Heegaard splitting of M . The
rank of the fundamental group of M is the minimal number of elements needed to
generate it.

Unfortunately, the Hyperbolization Theorem only guarantees that a hyperbolic metric
exists, but it does not provide any further information about this metric. This is why
most results we discuss below are about concrete families of 3–manifolds for which
there is enough geometric information available. But this is also why we discuss which
geometric information, such as the volume of the hyperbolic metric, can be read from
combinatorial information about for example Heegaard splittings.

The paper is organized as follows. In Section 1 and Section 2 we recall some well-known
facts about 3–manifolds, Heegaard splittings and hyperbolic geometry. In particular
we focus on the consequences of tameness and of Thurston’s covering theorem.

In Section 3 we describe different constructions of minimal surfaces in 3–manifolds,
in particular the relation between Heegaard splittings and minimal surfaces. The so
obtained minimal surfaces are used for example in Section 4 to give a proof of the fact
that the mapping torus of a sufficiently high power of a pseudo-Anosov mapping class
of a closed surface of genus g has Heegaard genus 2gC 1.

In Section 5 we introduce carrier graphs and discuss some of their most basic properties.
Carrier graphs are the way to translate questions about generating sets of the fundamental
group of hyperbolic 3–manifolds into a geometric framework. They are used in Section
6 to prove that the fundamental group of the mapping torus of a sufficiently high power
of a pseudo-Anosov mapping class of a closed surface of genus g has rank 2gC 1.

In Section 7 we determine the rank of the fundamental group and the Heegaard genus
of those 3–manifolds obtained by gluing two handlebodies by a sufficiently large power
of a generic pseudo-Anosov mapping class. When reading this last sentence, it may
have crossed through the mind of the reader that this must somehow be the same
situation as for the mapping torus. And in fact, it almost is. However, there is a crucial
difference. It follows from the full strength of the geometrization conjecture, not just
the Hyperbolization Theorem, that the manifolds in question are hyperbolic; however, a
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priori nothing is known about these hyperbolic metrics. Instead of using the existence of
the hyperbolic metric, in Namazi–Souto [34] we follow a different approach, described
below. We construct out of known hyperbolic manifolds a negatively curved metric
on the manifolds in question. In particular, we have full control of the metric and our
previous strategies can be applied. In principle, our metric and the actual hyperbolic
metric are unrelated.

So far, we have considered families of 3–manifolds for which we had a certain degree
of geometric control and we have theorems asserting that for most members of these
families something happens. In Section 8 we shift our focus to a different situation:
we describe a result due to Brock and the author relating the volume of a hyperbolic
3–manifold with a certain combinatorial distance of one of its Heegaard splittings.

Finally, in Section 9 we describe the geometry of those thick hyperbolic 3–manifolds
whose fundamental group has rank 2 or 3; in this setting we cannot even describe a
conjectural model but the results hint towards the existence of such a construction.

We conclude with a collection of questions and open problems in Section 10.

This note is intended to be a survey and hence most proofs are only sketched, and this
only in the simplest cases. However, we hope that these sketches make the underlying
principles apparent. It has to be said that this survey is certainly everything but all-
inclusive, and that the same holds for the bibliography. We refer mostly to papers
read by the author, and not even to all of them. Apart of the fact that many important
references are missing, the ones we give are not well distributed. For example Yair
Minsky and Dick Canary do not get the credit that they deserve since their work is in
the core of almost every result presented here. It also has to be said, that this survey is
probably superfluous for those readers who have certain familiarity with (1) the work
of Canary and Minsky, (2) the papers [16; 24; 33; 44] by Tobias Colding and Camillo
de Lellis, Marc Lackenby, Hossein Namazi and Hyam Rubinstein, and (3) have had a
couple of conversations, about math, with Ian Agol, Michel Boileau and Jean-Pierre
Otal. Having collaborators such as Jeff Brock also helps.

1 Some 3–dimensional topology

From now on we will only consider orientable 3–manifolds M which are irreducible,
meaning that every embedded sphere bounds a ball. We will also assume that our
manifolds do not contain surfaces homeomorphic to the real projective plane RP2 . This
is not much of a restriction because RP3 is the only orientable, irreducible 3–manifold
which contains a copy of RP2 .
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A surface S in M with non-positive Euler characteristic �.S/ � 0 is said to be
�1 –injective if the induced homomorphism �1.S/! �1.M / is injective. A surface
is incompressible if it is embedded and �1 –injective. An embedded surface which
fails to be incompressible is said to be compressible. The surface S is said to be
geometrically compressible if it contains an essential simple closed curve which bounds
a disk D in M with D \S D @D ; D is said to be a compressing disk. Obviously,
a geometrically compressible surface is compressible. On the other hand there are
geometrically incompressible surfaces which fail to be incompressible. However, the
Loop theorem asserts that any such surface must be one-sided. Summing up we have
the following proposition.

Proposition 1.1 A two-sided surface S in M is compressible if and only if it is
geometrically compressible.

If S is geometrically compressible and D is a compressing disk then we can obtain a
new surface S 0 as follows: we cut open S along @D and glue to the obtained boundary
curves two copies of D . We say that S 0 arises from S by suturing along D . A surface
is obtained from S by suturing along disks if it is obtained by repeating this process as
often as necessary.

Given two embedded surfaces S and S 0 in M , we say that S 0 arises from S by
collapsing along the normal bundle of S 0 if there is a regular neighborhood of S 0

diffeomorphic to the total space of the normal bundle � W N.S 0/! S 0 containing S

and such that the restriction of � to S is a covering of S 0 .

Definition Let S and S 0 be two embedded, possibly empty, surfaces in M . The
surface S 0 arises from S by surgery if it does by a combination of isotopies, suturing
along disks, discarding inessential spheres and collapsing along the normal bundle of
S 0 .

Observe that if the surface S bounds a handlebody in M then ∅ arises from S by
surgery. Similarly, the interior boundary of a compression body arises from the exterior
boundary by surgery. Recall that a compression body C is a compact orientable
and irreducible 3–manifold which has a boundary component called the exterior
boundary @eC such that the homomorphism �1.@eC / ! �1.C / is surjective; the
interior boundary is the union of all the remaining boundary components. The genus
of a compression body is the genus of its exterior boundary.

A Heegaard splitting of the compact 3–manifold M is a decomposition M D U [V

into two compression bodies with disjoint interior and separated by the corresponding
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exterior boundary, the so-called Heegaard surface @eU D @eV . Heegaard splittings
can be obtained for example from Morse functions on M . Moise [31] proved that
every topological 3–manifold admits a unique smooth structure; in particular, every
3–manifold has a Heegaard splitting. The Heegaard genus g.M / of M is the minimal
genus of a Heegaard splitting of M . It is a well-known fact that if M is closed then
2g.M /C 2 is equal to the minimal number of critical points of a Morse function on
M .

As Morse functions can be perturbed to introduce new critical points new Heegaard
splittings can be obtained from other Heegaard splittings by attaching new handles.
A Heegaard splitting which is obtained from another one by this process is said to
be obtained by stabilization. It is well-known that a Heegaard splitting M D U [V

arises by stabilization if and only if there are two essential properly embedded disks
DU � U and DV � V whose boundaries @DU D @DV intersect in a single point.
A Heegaard splitting is reducible if there are two essential properly embedded disks
DU � U and DV � V with @DU D @DV . Every reducible Heegaard splitting of an
irreducible 3–manifold is stabilized.

Let †�M be a (say) connected surface separating M into two components N1 and
N2 and f1 and f2 be Morse functions on N1 and N2 whose values and derivatives
of first and second order coincide along †. Then the function f W M ! R given
by f .x/ D fi.x/ if x 2 Ni is a Morse function. Similarly, if a 3–manifold M is
decomposed into codimension 0 submanifolds N1; : : : ;Nk with disjoint interior then
Heegaard splittings of N1; : : : ;Nk , fulfilling again some normalization, can be merged
to obtain a Heegaard splitting of M . See Schultens [53] for a precise description
of this process which is called amalgamation. As in the case of stabilization, there
is a criterium to determine if a Heegaard splitting arises by amalgamation. One has
namely that this is the case for the Heegaard splitting M D U [V if and only if there
are two essential properly embedded disks DU � U and DV � V whose boundaries
are disjoint. A Heegaard splitting M D U [V which is not reducible but such that
there are two essential properly embedded disks DU � U and DV � V with disjoint
boundary is said to be weakly reducible. A Heegaard splitting is strongly irreducible if
it is not reducible or weakly reducible. With this terminology, we can summarize the
above discussion as follows:

Every Heegaard splitting that is not strongly irreducible can be obtained
by amalgamation and stabilization from other splittings.

Before stating a more precise version of this claim we need a last definition.

Definition A generalized Heegaard splitting of M is a pair of disjoint embedded
possibly disconnected surfaces .†I ; †H / such that the following hold.
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(1) †I divides M into two possibly disconnected manifolds N1 and N2 .

(2) The surfaces †1D†H \N1 and †2D†H \N2 determine Heegaard splittings
of N1 and N2 which can be amalgamated to obtain a Heegaard splitting of M .

A generalized Heegaard splitting .†I ; †H / of M is strongly irreducible if †I is
incompressible and if the Heegaard surface †H of M n†I is strongly irreducible.

We have now the following crucial theorem,

Theorem 1.2 (Scharlemann–Thompson [49]) Every genus g Heegaard splitting
arises from first (1) amalgamating a strongly irreducible generalized Heegaard splitting
such that the involved surfaces have at most genus g and then (2) stabilizing the
obtained Heegaard splitting.

This theorem is in some way a more precise version of the following result of Casson
and Gordon [15].

Theorem 1.3 (Casson–Gordon) If an irreducible 3–manifold M admits a weakly
reducible Heegaard splitting then M contains an incompressible surface.

From our point of view, Theorem 1.2 asserts that most of the time it suffices to
study strongly irreducible splittings. However, the use of Theorem 1.2 can be quite
cumbersome because of the amount of notation needed: for the sake of simplicity we
will often just prove claims for strongly irreducible splittings and then claim that the
general case follows using Theorem 1.2.

As we just said, questions about Heegaard splittings can be often reduced to questions
about strongly irreducible splittings. And this is a lucky fact since, while Heegaard
splittings can be quite random, strongly irreducible splittings show an astonishing
degree of rigidity as shown for example by the following lemma.

Lemma 1.4 (Scharlemann [47, Lemma 2.2]) Suppose that an embedded surface S

determines a strongly irreducible Heegaard splitting M D U [V of a 3–manifold M

and that D is an embedded disk in M transverse to S and with @D � S then @D also
bounds a disk in either U or V .

From Lemma 1.4, Scharlemann [47] derived the following useful description of the
intersections of a strongly irreducible Heegaard surface with a ball.
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Theorem 1.5 (Scharlemann) Let M D U [V be a strongly irreducible Heegaard
splitting with Heegaard surface S . Let B be a ball with @B transversal to S and such
that the two surfaces @B\U and @B\V are incompressible in U and V respectively.
Then, S \B is a connected planar surface properly isotopic in B to one of U \ @B

and V \ @B .

In the same paper, Scharlemann also determined how a strongly irreducible Heegaard
splitting can intersect a solid torus.

Another instance in which the rigidity of strongly irreducible splittings becomes apparent
is the following lemma restricting which surfaces can arise from a strongly irreducible
surface by surgery.

Lemma 1.6 (Suoto [57]) Let S and S 0 be closed embedded surface in M . If S is
a strongly irreducible Heegaard surface and S 0 is obtained from S by surgery and has
no parallel components then one of the following holds.

(1) S 0 is isotopic to S .

(2) S 0 is non-separating and there is a surface yS obtained from S by surgery at a
single disk and such that yS is isotopic to the boundary of a regular neighborhood
of S 0 . In particular, S 0 is connected and M nS 0 is a compression body.

(3) S 0 is separating and S is, up to isotopy, disjoint of S 0 . Moreover, S 0 is
incompressible in the component U of M nS 0 containing S , S is a strongly
irreducible Heegaard surface in U and M nU is a collection of compression
bodies.

Lemma 1.6 is well-known to many experts. In spite of that we include a proof.

Proof Assume that S 0 is not isotopic to S . We claim that in the process of obtaining
S 0 from S , some surgery along disks must have been made. Otherwise S is, up to
isotopy, contained in regular neighborhood N .S 0/ of S 0 such that the restriction of
the projection N .S 0/! S 0 is a covering. Since S is connected, this implies that S 0

is one-sided and that S bounds a regular neighborhood of S 0 . However, no regular
neighborhood of an one-sided surface in an orientable 3–manifold is homeomorphic to
a compression body. This contradicts the assumption that S is a Heegaard splitting.

We have proved that there is a surface yS obtained from S by surgery along disks and
discarding inessential spheres which is, up to isotopy, contained in N .S 0/ and such that
the restriction of the projection N .S 0/! S 0 to yS is a covering. Since S determines a
strongly irreducible Heegaard splitting it follows directly from the definition that all
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surgeries needed to obtain yS from S occur to the same side. In particular, yS divides
M into two components U and V such that U is a compression body with exterior
boundary yS and such that yS is incompressible in V . Moreover, V is connected and
S determines a strongly irreducible Heegaard splitting of V .

Figure 1: The surface S has genus 3; the thick lines are the boundaries of
compressing disks; the surface yS obtained from S by surgery along these
disks is dotted.

Assume that every component of S 0 is two-sided. In particular, every component of
yS is isotopic to a component of S 0 . If for every component of S 0 there is a single
component of yS isotopic to it, then we are in case (3). Assume that this is not the case.
Then there are two components yS1 and yS2 which are isotopic to the same component
S 0

0
and which bound a trivial interval bundle W homeomorphic to S 0

0
� Œ0; 1� which

does not contain any further component of yS . In particular W is either contained in
U or in V . Since the exterior boundary of a compression body is connected we obtain
that W must be contained in V and since V is connected we have W D V . The
assumption that S 0 does not have parallel components implies that S 0 is connected. It
remains to prove that S 0 arises from S by surgery along a single disk. The surface
S determines a Heegaard splitting of V and hence it is isotopic to the boundary of a
regular neighborhood of yS[� where � is a graph in V whose endpoints are contained
in @V . If � is not a segment then it is easy to find two compressible simple curves on
S which intersect only once (see Figure 2).

Figure 2: Two disks intersecting once

By Lemma 1.4 each one of these curves bounds a disk in one of the components of
V nS contradicting the assumption that S is strongly irreducible. This proves that yS
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arises from S by surgery along a single disk. We are done if every component of yS is
two-sided.

The argument in the case that S 0 has at least a one-sided component is similar.

We conclude this section with some remarks about the curve complex C.S/ of a closed
surface S of genus g � 2 and its relation to Heegaard splittings. The curve complex is
the graph whose vertices are isotopy classes of essential simple closed curves in S . The
edges correspond to pairs of isotopy classes that can be represented by disjoint curves.
Declaring every edge to have unit length we obtain a connected metric graph on which
the mapping class group Map.S/ acts by isometries. If S is the a Heegaard surface
then we define the distance in the curve complex of the associated Heegaard splitting
M DU [V to be the minimal distance between curves bounding essential disks in U

and in V . Using this terminology, M D U [V is reducible if the distance is 0, it is
weakly reducible if the distance is 1 and it is strongly irreducible if the distance is at
least 2. The following result due to Hempel [19] asserts that a manifold admitting a
Heegaard splittings with at least distance 3 is irreducible and atoroidal.

Theorem 1.7 (Hempel) If a 3–manifold admits a Heegaard splitting with at least
distance 3 then it is irreducible and atoroidal.

For more on Heegaard splittings see Scharlemann [48] and for generalized Heegaard
splittings Saito–Scharlemann–Schultens [46].

2 Hyperbolic 3–manifolds and Kleinian groups

A hyperbolic structure on a compact 3–manifold M is the conjugacy class of a discrete
and faithful representation �W �1.M /! PSL2.C/, such that N� DH3=�.�1.M // is
homeomorphic to the interior of M by a homeomorphism inducing � . From this point
of view, Mostow’s rIgidity Theorem asserts that whenever M is closed then there is at
most one hyperbolic structure.

It is never to early to remark that most results concerning hyperbolic 3–manifolds are
still valid in the setting of manifolds of pinched negative curvature (see for instance
Canary [12] or Agol [3]). In fact, negatively curved metrics have a much greater
degree of flexibility than hyperbolic metrics and hence allow certain extremely useful
constructions. Further generalizations of hyperbolic metrics such as CAT(-1) metrics
are also ubiquitous; again because they are even more flexible than negatively curved
metrics. Recall that a geodesic metric space is CAT(-1) if, from the point of view of
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comparison geometry it is at least as curved as hyperbolic space (Bridson–Haefliger
[8]).

The hyperbolic structure N� is convex-cocompact if there is a convex �.�1.M //–
invariant subset K � H3 with K=�.�1.M // compact. Equivalently, the manifold
N� contains a compact convex submanifold C such that N� nC is homeomorphic to
@C �R.

If S is a boundary component of M , then the S –end of N� is the end corresponding
to S under this homeomorphism. The end corresponding to a component S of @M
is convex-cocompact if N� contains a convex-submanifold C such that N� nC is a
neighborhood of the S –end of N� homeomorphic to S �R. Before going further we
remind the reader of the following characterization of the convex-cocompact structures.

Lemma 2.1 A hyperbolic structure N� is convex-cocompact if and only if for some
choice, and hence for all, of pH3 2 H3 the map

�1.M /! H3; 
 7! .�.
 //.pH3/

is a quasi-isometric embedding. Here we endow �1.M / with the left-invariant word-
metric corresponding to some finite generating set.

Recall that a map �W X1!X2 between two metric spaces is an .L;A/–quasi-isometric
embedding if

1

L
dX1

.x;y/�A� dX2
.�.x/; �.y//�LdX1

.x;y/CA

for all x;y 2 X1 . An .L;A/–quasi-isometric embedding �W R! X is said to be a
quasi-geodesic.

Through out this note we are mostly interested in hyperbolic manifolds without cusps.
If there are cusps, ie if there are elements 
 2 �1.M / with �.
 / parabolic, then there
is an analogous of the convex-cocompact ends: the geometrically finite ends. Results
about hyperbolic 3–manifolds without cusps can be often extended, under suitable
conditions and with lots of work, to allow general hyperbolic 3–manifolds. We state
this golden rule here.

Every result mentioned without cusps has an analogous result in the
presence of cusps.

The geometry of convex-cocompact ends of N� is well-understood using Ahlfors–Bers
theory. Building on the work of Thurston, Canary [12] described a different sort of end.
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Definition An end E of N� is simply degenerate if there is a sequence of surfaces
.Si/�N� with the following properties.
� Every neighborhood of E contains all but finitely many of the surfaces Si .
� With respect to the induced path distance, the surface Si is CAT .�1/ for all i .
� If C1 �N� is a compact submanifold with N� nC1 homeomorphic to a trivial

interval bundle, then Si is homotopic to @C1 within N� nC1 .

The best understood example of manifolds with simply degenerate ends are obtained
as follows. A theorem of Thurston (see for example Otal [36]) asserts that whenever S

is a closed surface and f 2Map.S/ is a pseudo-Anosov mapping class on S , then the
mapping torus

(2.1) Mf D .S � Œ0; 1�/=..x; 1/' .f .x/; 0/

admits a hyperbolic metric. The fundamental group of the fiber �1.S/ induces an
infinite cyclic cover M 0

f
!Mf homeomorphic to S �R . The surface S �f0g lifts to

a surface, again denoted by S , in M 0
f

and there are many known ways to construct
CAT .�1/ surfaces in M 0

f
homotopic to S ; for instance one can use simplicial hy-

perbolic surfaces, minimal surfaces or pleated surfaces. For the sake of concreteness,
let X be such a surface and F be a generator of the deck transformation group of the
covering M 0

f
!Mf . Then the sequences .F i.X //i2N and .F�i.X //i2N fulfill the

conditions in the definition above proving that both ends of M 0
f

are singly degenerate.

Before going further recall that homotopic, �1 –injective simplicial hyperbolic surfaces
can be interpolated by simplicial hyperbolic surfaces. In particular, we obtain that
every point in M 0

f
is contained in a CAT .�1/ surface. The same holds for every

point in a sufficiently small neighborhood of a singly degenerated end. This is the key
observation leading to the proof of Thurston and Canary’s [13] covering theorem.

Covering Theorem Let M and N be infinite volume hyperbolic 3–manifolds with
finitely generated fundamental group and � W M!N be a Riemannian covering. Every
simply degenerate end E of M has a neighborhood homeomorphic to E D S � Œ0;1/

such that �.E/DR� Œ0;1/ where R is a closed surface and �jE W E! �.E/ is a
finite-to-one covering.

The Covering Theorem would be of limited use if there were a third, call it wild, kind
of ends. However, the positive solution of the tameness conjecture by Agol [3] and
Calegari–Gabai [11], together with an older but amazingly nice result of Canary [12],
implies that that every end of a hyperbolic 3–manifold without cusps is either convex-
cocompact or simply degenerate; there is an analogous statement in the presence of
cusps.
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Theorem 2.2 If M is a hyperbolic 3–manifold with finitely generated fundamental
group then M is homeomorphic to the interior of a compact 3–manifold. In partic-
ular, in the absence of cusps, every end of M is either convex-cocompact or simply
degenerate.

Theorem 2.2 asserts that in order to prove that a manifold without cusps is convex-
cocompact it suffices to prove that it does not have any degenerate ends. On the other
hand, the Covering Theorem asserts that degenerate ends cannot cover infinite volume
3–manifolds in interesting ways. We obtain for example the following corollary.

Corollary 2.3 Let M be trivial interval bundle or a handlebody and let �W �1.M /!

PSL2 C be a hyperbolic structure on M such that N� D H3=�.�1.M // has no cusps.
If � � �1.M / is a finitely generated subgroup of infinite index then H3=�.�/ is
convex-cocompact.

Given a sequence of pointed hyperbolic 3–manifolds .Mi ;pi/ such that the injectivity
radius inj.Mi ;pi/ of Mi at pi is uniformly bounded from below, then it is well-known
that we may extract a geometrically convergent subsequence; say that it is convergent
itself. More precisely, this means that there is some pointed 3–manifold .M;p/ such
that for every large R and small � , there is some i0 such that for all i � i0 , there
are .1C �/–bi-Lipschitz, base points preserving, embeddings �R

i W .BR.p;M /;p/!

.Mi ;pi/ of the ball BR.M;p/ in M of radius R and center p . Taking R and � in a
suitable way, we obtain better and better embeddings of larger and larger balls and we
will refer in the sequence to these maps as the almost isometric embeddings provided
by geometric convergence. If Mi is a sequence of hyperbolic 3–manifolds and M is
isometric to the geometric limit of some subsequence of .Mi ;pi/ for some choice of
base points pi 2Mi then we say that M is a geometric limit of the sequence .Mi/.
We state here the following useful observation.

Lemma 2.4 If M is a geometric limit of a sequence .Mi/, K �M is a compact
subset such that the image Œ�1.K/� of �1.K/ in �1.M / is convex-cocompact, and
�i WK!Mi are the almost isometric maps provided by geometric convergence, then,
for all i large enough, the induced homomorphism

.�i/�W Œ�1.K/�! �1.Mi/

is injective and has convex-cocompact image.

Proof Let zC be a convex, Œ�1.K/�–invariant subset of H3 with zC=Œ�1.K/� compact
and let C be the image of zC in M . We find i0 such that for all i � i0 the almost
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isometric embeddings given by geometric convergence are defined on C and, moreover,
the lift zC ! H3 of the composition of (1) projecting from zC to C , and (2) mapping
C into Mi is a quasi-isometry. By Lemma 2.1, zC is quasi-isometric to Œ�1.K/�. The
claims follows now applying again Lemma 2.1.

It is well-known that a pseudo-Anosov mapping class f 2Map.S/ of a surface fixes
two projective classes of laminations �C; �� 2 PML.S/; �C is the attracting fix
point and �� the repelling. More precisely, for any essential simple closed curve 
 in
S we have

lim
n!1

f n.
 /D �C; lim
n!1

f �n.
 /D ��

where the limits are taken in PML.S/. If M 0
f

denotes again the infinite cyclic cover of
the mapping torus Mf then when jnj becomes large then the geodesic representatives
in M 0

f
of f n.
 / leave every compact set. This implies that the laminations �C and

�� are in fact the ending laminations of M 0
f

. In general, every singly degenerate
end has an associated ending lamination �E . More precisely, if N� is a hyperbolic
structure on M , S is a component of @M and E is the S –end of N� , then the ending
lamination �E is defined as the limit in the space of laminations on S of any sequence
of simple closed curves 
i , on S , whose geodesics representatives 
 �i tend to the end
E and are homotopic to 
i within E . Thurston’s ending lamination conjecture asserts
that every hyperbolic structure on a 3–manifold, say for simplicity without cusps, is
fully determined by its ending invariants: the conformal structures associated to the
convex-cocompact ends and the ending lamination associated to the singly degenerate
ends. The ending lamination conjecture has been recently proved by Minsky [30]
and Brock–Canary–Minsky [10]. However, from our point of view, the method of
proof is much more relevant than the statement itself: the authors prove that given a
manifold and ending invariants, satisfying some necessary conditions, then it is possible
to construct a metric on the manifold, the model, which is bi-Lipschitz equivalent to
any hyperbolic metric on the manifold with the given ending invariants.

3 Minimal surfaces and Heegaard splittings

In this section let M D .M; �/ be a closed Riemannian 3–manifold, not necessarily
hyperbolic. We will however assume that M is irreducible. Recall that a surface
F � M is a minimal surface if it is a critical point for the area functional. More
precisely, if H2

M
.F / is the area, or in other words the two dimensional Hausdorff

measure of the surface F in M , then F is minimal if for every smooth variation .Ft /t
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with F0 D F one has

(3.1)
d

dt
H2

M .St /jtD0 D 0:

The minimal surface F is said to be stable if again for every smooth variation the
second derivative of the area is positive:

(3.2)
d2

dt2
H2

M .St /jtD0 > 0:

From a more intrinsic point of view, it is well-known that a surface F in M is minimal
if and only if its mean curvature vanishes.

Schoen–Yau [52] and Sacks–Uhlenbeck [45] proved that every geometrically incom-
pressible surface S in M is homotopic to a stable minimal surface F . Later, Freedman–
Hass–Scott [18] proved that in fact F is embedded and hence that, by a result of
Waldhausen [60] S is isotopic to a connected component of the boundary of a regular
neighborhood of F . Summing up one has the following theorem.

Theorem 3.1 Let S be a geometrically incompressible surface in M . Then there
is a stable minimal surface F such that S is either isotopic to F or to the boundary
@N .F / of a regular neighborhood of F .

Theorem 3.1 concludes the discussion about existence of minimal surfaces as long as
one is only interested into those surfaces which are geometrically incompressible. We
turn now our attention to surfaces which are geometrically compressible.

Not every compressible surface in M needs to be isotopic to a minimal surface. In
fact, the following beautiful theorem of Lawson [25] asserts that for example every
minimal surface F in the round 3–sphere S3 is a Heegaard surface.

Theorem 3.2 Assume that M has positive Ricci-curvature Ric.M / > 0 and let F be
a closed embedded minimal surface. Then, M nF consists of one or two handlebodies.

However, there is a way to associate to every surface in M a (possibly empty) minimal
surface. The idea is to consider the set Is.S/ of all possible surfaces in M isotopic to
S and try to minimize area. If Si is a sequence in Is.S/ such that

lim
i
H2

M .Si/D inffH2
M .S 0/jS 0 2 Is.S/g

then one can try to extract a limit of the surfaces Si hoping that it will be a minimal
surface. However, it is unclear which topology should one consider. The usual approach
is to consider Si as a varifold. A varifold is a Radon measure on the Grassmannian
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G2.M / of two-dimensional planes in TM . For all i , the inclusion of the surface Si

lifts to an inclusion
Si!G2.M /

obtained by sending x 2 Si to the plane TxSi 2G2.M /. We obtain now a measure
on G2.M / by pushing forward the Hausdorff measure, ie the area, of Si . Observe
that the total measure of the obtained varifold coincides with the area H2

M
.Si/ of

Si . In particular, the sequence .Si/, having area uniformly bounded from above, has
a convergent subsequence, say the whole sequence, in the space of varifolds. Let
F D limi Si be its limit. The hope now is that F is a varifold induced by an embedded
minimal surface. Again in the language of varifolds, F is a so-called stationary varifold
and Allard’s [5] regularity theory asserts that it is induced by a countable collection of
minimal surfaces. In fact, using the approach that we just sketched, Meeks–Simon–Yau
proved the following theorem.

Theorem 3.3 (Meeks–Simon–Yau [28]) Let S an embedded surface in M and
assume that

inffH2.S 0/jS 0 2 Is.S/g> 0:

Then there is a minimizing sequence in Is.S/ converging to a varifold V , a properly
embedded minimal surface F in M with components F1; : : : ;Fk and a collection of
positive integers m1; : : : ;mk such that V D

P
miFi .

Theorem 3.3 applies also if S is a properly embedded surface in a manifold with
mean-convex, for instance minimal, boundary.

Theorem 3.2 implies that the minimal surface F provided by Theorem 3.3 is, in general,
not isotopic to the surface S we started with. Moreover, since the notion of convergence
is quite weak, it seems hopeless to try to relate the topology of both surfaces. However,
Meeks–Simon–Yau [28] show, during the proof of Theorem 3.3, that F arises from S

through surgery.

Remark Meeks–Simon–Yau say that the minimal surface F arises from S by 
 –
convergence but this is exactly what we call surgery.

Theorem 3.3, being beautiful as it is, can unfortunately not be used if S is a Heegaard
surface. Namely, if S is a Heegaard surface in M then there is a sequence of surfaces
.Si/ isotopic to S such that limi H2

M
.Si/ D 0. For the sake of comparison, every

simple closed curve in the round sphere S2 is isotopic to curves with arbitrarily short
length. The comparison with curves in the sphere is not as far-fetched as it may seem.
From this point of view, searching from minimal surfaces amounts to prove that the
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sphere has a closed geodesic for every Riemannian metric. That this is the case is an
old result due to Birkhoff.

Theorem 3.4 (Birkhoff) If � is a Riemannian metric on S2 , then there is a closed
non-constant geodesic in .S2; �/.

The idea of the proof of Birkhoff’s theorem is as follows. Fix � a Riemannian metric
on S2 and let

f W S1
� Œ0; 1�! S2; f .�; t/D ft .�/

be a smooth map with f0 and f1 constant and such that f represents a non-trivial
element in �2.S

2/. For any g homotopic to f let

E.g/Dmaxfl�.gt /jt 2 Œ0; 1�g

be the length of the longest of the curves gt . Observe that since g is not homotopically
trivial E.g/ is bounded from below by the injecvity radius of .S2; �/. Choose then a
sequence .gi/ for maps homotopic to f such that

lim
i

E.gi/D inffE.g/jg homotopic to f g:

One proves that there is a minimax sequence .t i/ with t i 2 Œ0; 1� such that E.gi/D

l�.g
i
t i / and such that the curves gi

t i converge, when parametrized by arc-length to a
non-constant geodesic in .S2; �/.

The strategy of the proof of Birkhoff’s theorem was used in the late 70s by Pitts
[41] who proved that every closed n–manifold with n � 6 contains an embedded
minimal submanifold of codimension 1 (see also Schoen–Simon [51] for n D 7).
We describe briefly his proof in the setting of 3–manifolds. The starting point is to
consider a Heegaard surface S in M . By definition, the surface S divides M into
two handlebodies. In particular, there is a map

(3.3) f W .S � Œ0; 1�;S � f0; 1g/! .M; f .S � f0; 1g//; f .x; t/D f t .x/

with positive relative degree, such that for t 2 .0; 1/ the map f t W S ! M is an
embedding isotopic to the original embedding S ,! M and such that f 0.S/ and
f 1.S/ are graphs. Such a map as in (3.3) is said to be a sweep-out of M . Given
a sweep-out f one considers E.f / to be the maximal area of the surfaces f t .S/.
Pitts proves that there is a minimizing sequences .fi/ of sweep-outs and an associated
minimax sequence t i with E.f i/DH2

M
.ft i .S// and such that the surfaces ft i .S/

converge as varifolds to an embedded minimal surface F ; perhaps with multiplicity.
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Theorem 3.5 (Pitts) Every closed Riemannian 3–manifold contains an embedded
minimal surface.

Pitts’ proof is, at least for non-experts like the author of this note, difficult to read.
However, there is an amazingly readable proof due to Colding–de Lellis [16]. In
fact, the main technical difficulties can be by-passed, and this is what these authors
do, by using Meeks–Simon–Yau’s Theorem 3.3. In fact, as it is the case with the
Meeks–Simon–Yau theorem, Theorem 3.5 remains true for compact 3–manifolds with
mean-convex boundary.

Theorem 3.5 settles the question of existence of minimal surfaces in 3–manifolds.
Unfortunately, it does not say anything about the relation between the Heegaard surface
S we started with and the obtained minimal surface F . In fact, Colding–de Lellis
announce in their paper that in a following paper they are going to prove that the genus
does not increase. The concept of convergence of varifolds is so weak that this could
well happen. However, in the early 80s, Pitts and Rubinstein affirmed something much
stronger: they claimed that F is not stable and arises from S by surgery. This was of
the greatest importance in the particular case that the Heegaard surface S is assumed
to be strongly irreducible.

By Lemma 1.6, the assumption that the Heegaard surface S is strongly irreducible
implies that every surface S 0 which arises from S by surgery is either isotopic to S

or of one of the following two kinds:

(A) Either S 0 is obtained from S by suturing along disks which are all at the same
side, or

(B) S is isotopic to the surface obtained from the boundary of a regular neighborhood
of S 0 by attaching a vertical handle.

In particular, if in the setting of Pitts’ theorem we assume that S is strongly irreducible
we obtain that this alternative holds for the minimal surface F . In fact, more can
be said. If we are in case (A) then F bounds a handlebody H in M such that the
surface S is isotopic to a strongly irreducible Heegaard surface in the manifold with
boundary M nH . The boundary of M nH is minimal an incompressible. In particular,
F D @M nH is isotopic to some stable minimal surface F 0 in M nH parallel to @M .
Observe that F ¤ F 0 because one of them is stable and the other isn’t. The stable
minimal surface F 0 bounds in M some submanifold M1 isotopic in M to M nH ,
in particular the original Heegaard surface S induces a Heegaard splitting of M1 . The
boundary of M1 is minimal and hence mean-convex. In particular, the method of proof
of Theorem 3.5 applies and yields an unstable minimal surface F1 in M1 obtained

Geometry & Topology Monographs, Volume 12 (2007)



368 Juan Souto

Figure 3: Proof of Theorem 3.6: The thick line is the original surface; the
short dotted line is the first minimax surface; the dashed line is the least area
surface obtained from the first minimax surface; the long dotted line is the
second minimax surface.

from S by surgery. Again we are either in case (B) above, or F1 is isotopic to S

within M1 and hence within M , or we can repeat this process.

If this process goes for ever, we obtain a sequences of disjoint embedded minimal
surfaces in M with genus less than that of S . This means that the metric in M is
not bumpy. However, if M is not bumpy, then we can use a result of White [62] and
perturb it slightly so that it becomes bumpy. It follows from the above that for any
such perturbation the process ends and we obtain a minimal surface which is either as
in (B) or actually isotopic to the Heegaard surface S . Taking a sequence of smaller
and smaller perturbations and passing to a limit we obtain a minimal surface F in M ,
with respect to the original metric, which is either isotopic to S or such that we are in
case (B) above. In other words we have the following theorem.

Theorem 3.6 (Pitts-Rubinstein) If S is a strongly irreducible Heegaard surface in
a closed 3–manifold then there is a minimal surface F such that S is either isotopic
to F or to the surface obtained from the boundary of a regular neighborhood of F by
attaching a vertical 1–handle.

Unfortunately, Pitts and Rubinstein never wrote the proof of Theorem 3.6 above and it
seems unlikely that they are ever going to do so. The most precise version known to the
author is a sketch of the proof due to Rubinstein [44]. This lack of written proof has
made doubtful if one could use Theorem 3.6 safely or not. However, all that is left is to
prove that the minimal surface provided in the proof of Pitts’ Theorem 3.5 is unstable
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and obtained from S by surgery. The author of this note has written a proof [57] and
is working on a longer text, perhaps a book, explaining it and some applications of the
Pitts–Rubinstein theorem.

Before concluding this section we should remember that one can combine Theorem
1.2 and Theorem 3.6 as follows: Given a Heegaard surface we first destabilize as far as
possible, then we obtain using Theorem 1.2 a generalized Heegaard surface .†I ; †H /.
The surface †I is incompressible and hence can be made minimal by Theorem 3.1;
now the surface †H can be made minimal using Theorem 3.6.

4 Using geometric means to determine the Heegaard genus

In this section we will show how minimal surfaces can be used to compute the Heegaard
genus of some manifolds. Most, if not all, of the results we discuss here can be proved
using purely topological arguments but, in the opinion of the author, the geometric
proofs are beautiful.

We start considering the mapping torus M� of a pseudo-Anosov mapping class � 2
Map.†g/ on a closed surface of genus g ; compare with (2.1). It is well-known that
M� admits a weakly reducible Heegaard splitting of genus 2gC 1. In particular we
have the following bound for the Heegaard genus

g.M�/� 2gC 1:

There are manifolds which admit different descriptions as a mapping torus. In particular,
we cannot expect that equality always holds. However, equality is to be expected if
monodromy map � is complicated enough.

Theorem 4.1 Let †g be a closed surface of genus g and � 2 Map.†g/ a pseudo-
Anosov mapping class. Then there is n� >0 such that for all n�n� one has g.M�n/D

2gC 1. Moreover, for every such n there is, up to isotopy a unique Heegaard splitting
of M�n of genus 2gC 1.

We sketch now the proof of Theorem 4.1. More precisely, we will prove that, for large
n, there is no strongly irreducible Heegaard splitting of M�n of genus at most 2gC 1.
The general case follows, after some work, using Theorem 1.2.

Seeking a contradiction, assume that M�n admits a strongly irreducible splitting with
at most genus 2gC 1. Then, endowing M�n with its hyperbolic metric, we obtain
from Theorem 3.6 that M�n contains a minimal surface F of at most genus 2gC 1

and such that every component of M�n nF is a handlebody. In particular, F intersects
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every copy of the fiber †g since the later is incompressible and a handlebody does not
contain any incompressible surfaces. For all n the manifold M�n covers the manifold
M� . In particular, we have first the following lower bound for the injectivity radius

inj.M�n/� inj.M�/

and secondly that increasing n we can find two copies of the fiber which are at arbitrary
large distances. On the other hand, the bounded diameter lemma for minimal surfaces
below shows that the diameter of a minimal surface in a hyperbolic 3–manifold is
bounded from above only in terms of its genus and of the injectivity radius of the
manifold. This shows that if n is large the minimal surface F cannot exist.

Bounded diameter lemma for minimal surfaces (first version) Let F be a con-
nected minimal surface in a hyperbolic 3–manifold M with at least injectivity radius � .
Then we have

diam.F /�
4j�.F /j

�
C 2�

where diam.F / is the diameter of F in M .

Proof The motonicity formula (Colding–Minicozzi [17]) asserts that for every point
x 2F we have H2

M
.F\Bx.M; �//���2 where Bx.M; �/ is the ball in M centered

at x and with radius � . If F has diameter D in M we can find at least D
2�
� 1 points

which are at distance at least � from each other. On the other hand, the curvature of F is
bounded from above by �1 and hence the total area is bounded by H2

M
.F /�2�j�.F /j.

In particular we obtain that �
D

2�
� 1

�
��2
� 2�j�.F /j:

This concludes the proof.

We stated this as a first version because in some sense the role of the injectivity radius
of M is disappointing. However, it is not difficult to construct hyperbolic 3–manifolds
containing minimal surfaces of say genus 2 with arbitrarily large diameter. In order to
by-pass this difficulty we define, following Thurston, for some � positive the length of
a curve 
 relative to the �–thin part M<� of M to be the length of the intersection
of 
 with the set of points in M with injectivity radius at least � . Then, the distance
drel M<� .x;y/ of two points x;y 2M relative to the the � -thin part is the infimum
of the lengths relative to the � -thin part of paths joining x and y . Using this pseudo-
distance we obtain with essentially the same proof the following final version of the
bounded diameter lemma.
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Bounded diameter lemma for minimal surfaces Let F be a connected minimal
surface in a hyperbolic 3–manifold M and let � > 0 be the Margulis constant. Then
we have

diamrel M<�.F /�
8j�.F /j

�

where diamrel M<�.F / is the diameter of F in M with respect to drel M<� .

The bounded diameter lemma, together with the argument used in the proof of Theorem
4.1 shows now that whenever M� is the mapping torus of a pseudo-Anosov mapping
class on the surface †g and such that M� contains two fibers which are at least at
distance 8.2gC4/

�
with respect to drel M<� then M� does not have strongly irreducible

Heegaard splittings of genus less than 2gC 1. Moreover, one gets as above that M�

has genus 2gC 1 and, up to isotopy, a single Heegaard splitting of minimal genus.
In particular, in order to generalize Theorem 4.1, it suffices to give conditions on the
monodromy � ensuring that the mapping torus M� contains fibers at large distance. It
follows for example from the work of Minsky [29] that this is the case if the translation
length of � in the curve complex C.†g/ is large enough. In particular we have the
following theorem.

Theorem 4.2 For every g there is Dg > 0 such that the following holds: If �
is a pseudo-Anosov mapping class on †g with at least translation length Dg in
the curve complex C.†g/ of †g , then the mapping torus M� has Heegaard genus
g.M�/D 2gC1 and there is, up to isotopy, a unique minimal genus Heegaard splitting.

Observe that whenever � is pseudo-Anosov, the translation lengths of �n in C.†g/

tends to 1 when n becomes large. In other word, Theorem 4.1 follows from Theorem
4.2.

An other result in the same spirit is due to Lackenby [24], who proved that whenever
M1 and M2 are compact, irreducible, atoroidal 3–manifolds with incompressible and
acylindrical homeomorphic connected boundaries @M1 D @M2 of at least genus 2

and � 2Map.@M1/ is a pseudo-Anosov mapping class then the manifold M1[�n M2

obtained by gluing M1 and M2 via �n has Heegaard genus g.M1/Cg.M2/�g.@M1/.
In this setting the key point is again that if n is large then the manifold M1[�n M2

contains two surfaces isopic to the gluing surface and which are at large distance. And
again there is a generalization involving the curve complex.

Theorem 4.3 (Souto [59]) Let M1 and M2 be compact, irreducible, atoroidal 3–
manifolds with incompressible and acylindrical homeomorphic connected boundaries
@M1 D @M2 of genus at least two and fix an essential simple closed curve ˛ in
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@M1 . Then there is a constant D such that every minimal genus Heegaard splitting of
M1[� M2 is constructed amalgamating splittings of M1 and M2 and hence

g.M1[� M2/D g.M1/Cg.M2/�g.@M1/

for every diffeomorphism �W @M1! @M1 with dC.@M1/.�.˛/; ˛/�D .

Lackenby’s argument in fact uses minimal surfaces and it was reading his paper when
the author of this note became interested in the relation between minimal surfaces and
Heegaard splittings. Lackenby’s paper is also beautifully written.

A different result, the oldest of the ones presented in this section, and also proved
using minimal surfaces, involves the Heegaard genus of those hyperbolic 3–manifolds
obtained by Dehn-filling a finite volume manifold with cusps. Recall that every com-
plete, non-compact, orientable complete hyperbolic manifold M with finite volume
is homeomorphic to the interior of a compact manifold xM with torus boundary. For
simplicity we will assume that @ xM has only one component; we say that M has a
single cusp. Identifying @ xM with the boundary of a solid torus D2�S1 via some map
� and gluing both xM and D2�S1 via this identification we obtain a closed 3–manifold
M� which is said to arise from M by Dehn-filling. In fact, the homeomorphism type
of M� depends only on the homotopy class in @ xM of the meridian of the attached
solid torus. In other words, for every essential simple closed curve 
 in @M there
is a unique 3–manifold M
 obtained by Dehn-filling along 
 . Thurston’s beautiful
Dehn filling theorem asserts that for all but finitely many 
 the manifold M
 admits a
hyperbolic metric. An extension due to Hodgson–Kerckhoff [20] of this result asserts
that the number of exceptions is in fact bounded independently of the manifold M .

By construction, there is a natural embedding M ,!M
 and it is easy to see that
every Heegaard surface of M is, via this embedding, also a Heegaard surface of M


for every Dehn-filling of M . This proves that

g.M
 /� g.M /

for all M
 . It is not difficult to construct examples which show that there are finite
volume hyperbolic manifolds admitting infinitely many Dehn-fillings for which equality
does not hold. However, in some sense, equality holds for most Dehn-fillings of M .
More precisely, identifying the set S.@ xM / of homotopy class of essential simple curves
in @ xM with the set of vertices of the Farey graph one obtains a distance on S.@ xM /.
Using this distance one has the following theorem.

Theorem 4.4 (Moriah–Rubinstein [32]) Let M be a complete, oriented finite volume
hyperbolic manifold with a cusp. Then there is a bounded set K in S.@ xM / with
g.M
 /D g.M / for every 
 …K .
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Before concluding this section observe that the Farey graph is not locally compact and
hence bounded sets may be infinite. Observe also that a purely topological proof of
Theorem 4.4 is due to Rieck–Sedgwick [42].

5 Generators of the fundamental group and carrier graphs

Let M be a closed hyperbolic, or more generally, negatively curved 3–manifold. In
this section we relate generating sets, or more precisely Nielsen equivalence classes of
generating sets, of �1.M / to some graphs in M with nice geometric properties.

Recall that two (ordered) generating sets S D .g1; : : : ;gr / and S 0D .g0
1
; : : : ;g0r / of a

group are Nielsen equivalent if they belong to the same class of the equivalence relation
generated by the following three moves:

Inversion of gi

�
g0i D g�1

i

g0
k
D gk k ¤ i:

Permutation of gi and gj with i ¤ j

8<:
g0i D gj

g0j D gi

g0
k
D gk k ¤ i; j:

Twist of gi by gj with i ¤ j

�
g0i D gigj

g0
k
D gk k ¤ i:

To every Nielsen equivalence class of generators of �1.M / one can associate an
equivalence class of carrier graphs.

Definition A continuous map f W X !M of a connected graph X into a hyperbolic
3–manifold M is a carrier graph if the induced homomorphism f�W �1.X /! �1.M /

is surjective. Two carrier graphs f W X !M and gW Y !M are equivalent if there is
a homotopy equivalence hW X ! Y such that f and g ı h are free homotopic.

Given a generating set SD .g1; : : : ;gr / of �1.M / let FS be the free non-abelian group
generated by the set S , �S W FS ! �1.M / the homomorphism given by mapping the
free basis S�FS to the generating set S��1.M / and XS a graph with �1.XS/DFS .
The surjective homomorphism �S W FS ! �1.M / determines a free homotopy class
of maps fS W XS !M , ie a carrier graph, and any two carrier graphs obtained in this
way are equivalent. The so determined equivalence class is said to be the equivalence
class of carrier graphs associated to S .

Lemma 5.1 Let S and S 0 be finite generating sets of �1.M / with the same cardinality.
Then the following are equivalent.
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(1) S and S 0 are Nielsen equivalent.

(2) There is a free basis xS of FS0 with S D �S0. xS/.
(3) There is an isomorphism  W FS ! FS0 with �S D �S0 ı .

(4) S and S 0 have the same associated equivalence classes of carrier graphs.

We will only consider carrier graphs f W X !M with rank.�1.X //D rank.�1.M //.
Equivalently we only consider generating sets with minimal cardinality.

If f W X !M is a carrier then let X .0/ be the set of vertices of X and X .1/ that of
edges. The length of a carrier graph f W X !M is defined as the sum of the lengths
of the images of the edges

lf WX!M .X /D
X

e2X .1/

lM .f .e//:

A minimal length carrier graph is a carrier graph f W X !M with

lf WX!M .X /� lf 0WX 0!M .X 0/

for every other equivalent carrier graph f 0 WX 0!M . The existence of minimal length
carrier graphs follows from the Arzela–Ascoli theorem if M is closed and in fact one
has the following lemma.

Lemma 5.2 White [63, Section 2] If M is a closed hyperbolic 3–manifold, then
there is a minimal length carrier graph f W X !M . Moreover, every such minimal
length carrier graph is trivalent, hence it has 3.rank.M /� 1/ edges, the image in M

of its edges are geodesic segments, the angle between any two adjacent edges is 2�
3

and every simple closed path in X represents a non-trivial element in �1.M /.

It is not difficult to see that if M�n is the mapping torus of a high power of a pseudo-
Anosov mapping class then every minimal length carrier graph, with minimal cardinality,
has huge total length; in particular it contains some large edge. However, the following
simple lemma asserts that there is a universal upper bound for the length of the shortest
edge in a carrier graph in closed hyperbolic 3–manifold.

Lemma 5.3 There is some positive L such that every minimal length carrier graph in
a closed hyperbolic 3–manifold has an edge shorter than L.

Proof Let M DH3=� be a hyperbolic 3–manifold and assume that there is a minimal
carrier graph f W X!M consist of only extremely long edges. Denote by zf W zX!H3

the lift of f to a map between the universal covers. The image under zf of every
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monotonous bi-infinite path in zX consists of extremely long geodesic segments joined
at corners with angle 2�

3
. In particular, every such path is a quasi-geodesic and zf is a

quasi-geodesic embedding, implying that the homomorphism f�W �1.X /! �1.M / is
injective. Hence �1.M / is free contradicting the assumption that M is closed.

Lemma 5.3 for itself is of little use; the point is that it has some grown up relatives
which, in some sense made precise below, allow to decompose carrier graphs into short
pieces. For instance, White [63] proved that again there is some positive constant L

such that every carrier graph in a closed hyperbolic 3–manifold admits a circuit shorter
than L. In particular he obtained the following beautiful result.

Theorem 5.4 White [63] For every integer r there is a positive constant L with
inj.M /�L for every closed hyperbolic 3–manifold whose fundamental group has at
most rank r .

Unfortunately, White’s observation is the end if one takes the most naive point of view:
there are examples showing that every subgraph with non-abelian fundamental group
can be made as long as one wishes or fears. However, the idea is still to obtain a
exhaustion of every carrier graph by subgraphs which in some sense are short. The
solution is to consider the length of a carrier graph relative to the convex-hull of a
subgraph.

However, before making this more precise we need some more notation. If f W X!M

is a carrier graph and Y �X is a subgraph then let Y .0/ be again the set of vertices
and Y .1/ that of edges; let also �X W

zX ! X be the universal covering of X and
zf W zX ! H3 a fixed lift of f to a map between the universal coverings of X and

M . If Y � X is a connected subgraph of X then every connected component of
��1

X
.Y / can be identified with the universal cover of Y . Given such a component

zY of ��1
X
.Y / let G. zY / � �1.X / be the group of all covering transformations of

�X W
zX !X preserving zY ; G. zY / is isomorphic to �1.Y /. Denote by � zY the image

of G. zY / under the homomorphism f�W �1.X /! �1.M /.

If Y is a connected subgraph of a carrier graph f W X !M and zY is a component of
��1

X
.Y / we define the thick convex-hull T CH. zY / as follows.

Definition The thick convex-hull T CH. zY / of a component zY of ��1
X
.Y / is the

smallest closed convex subset of H3 containing zf . zY / and with

dH3.x; 
x/� 1

for all non-trivial 
 2 � zY and x … T CH. zY /.
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The thick convex-hull is unique because intersection of convex subsets is convex and
uniqueness implies that T CH. zY / is invariant under � zY and in particular it contains the
convex-hull of the limit set of � zY . However, there are several reasons for introducing
the thick convex-hull T CH. zY / instead of working directly with the convex-hull of
the limit set of � zY . For example we want to avoid treating differently the case that Y

is a tree.

We are now ready to formally define the length of a carrier graph f W X !M relative
to a subgraph Y with X .0/ � Y . If e 2X .1/ nY .1/ is an edge which is not contained
in Y and ze is a lift of e to the universal cover zX of X then the vertices of ze are
contained in two different components zY1 and zY2 of ��1

X
.Y /. We define the length of

ze relative to ��1
X
.Y / to be the length of the part of zf .ze/ which is disjoint of the union

T CH. zY1/[T CH. zY2/

of the thick convex-hulls of zY1 and zY2 . If ze0 is a second lift of e to zX then both ze
and ze0 have the same length relative to ��1

X
.Y /. In particular, the relative length with

respect to Y

lf WX!M;rel.Y /.e/

of the edge e is well-defined.

If Z �X is a second subgraph with Y �Z then we define the length of Z relative to
Y to be the sum of the relative lengths of all the edges contained in Z but not in Y :

lf WX!M;rel.Y /.Z/D
X

e2Z .1/nY .1/

lf WX!M;rel.Y /.e/:

Observe that lf WX!M;rel.X .0//.X /D lf WX!M .X /.

The most important observation is the following proposition.

Proposition 5.5 There is L such that whenever M is a closed hyperbolic 3–manifold
and f W X !M is a minimal length carrier graph then there is a chain of subgraphs

X .0/
D Y0 � Y1 � � � � � Yk DX

with lf WX!M;rel.Yi�1/.Yi/�L for all i D 1; : : : ; k .

The idea behind Proposition 5.5 is that in the proof of Lemma 5.3 one can replace the
vertices of zX by convex subsets. See Souto [56] for details.
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6 The rank of the fundamental group of simple complicated
mapping tori

Recall that the rank of a finitely generated group G is the minimal number of elements
needed to generate G . While in general the rank of even a hyperbolic group is not
computable (Rips [43]), the situation changes if one is interested in those groups arising
as the fundamental group of a closed 3–manifold.

Theorem 6.1 Kapovich–Weidmann [21] There exists an algorithm which, given a
finite presentation of the fundamental group of a hyperbolic 3–manifold, finds the rank
of G .

However, it is not possible to give a priori bounds on the complexity of the algorithm
provided by the Kapovich–Weidmann theorem and hence it seems difficult to use it
directly to obtain precise results in concrete situations.

Here, we show how to derive from the results in the previous section the following
theorem analogous to Theorem 4.1.

Theorem 6.2 (Souto [55]) Let †g be the closed surface of genus g � 2, � 2
Map.†g/ a pseudo-Anosov mapping class and M�n the mapping torus of �n . There
is n� such that for all n� n�

rank.�1.M�n//D 2gC 1:

Moreover for any such n any generating set of �1.M�n/ with minimal cardinality is
Nielsen equivalent to an standard generating set.

Observe that by construction we have �1.M�/D �1.†g/�Z and hence, considering
2g generators of �1.†g/ and adding a further element corresponding to the HNN-
extension we obtain generating sets of �1.M�/ with 2gC 1 elements. These are the
so-called standard generating sets.

Before going further, we would like to remark that recently an extension of Theorem
6.2 has been obtained by Ian Biringer.

Theorem 6.3 (Biringer) For every g and � there are at most finitely many hyperbolic
3–manifolds M with inj.M / � � , fibering over the circle with fiber †g and with
rank.M /¤ 2gC 1.
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Proof Sketch proof of Theorem 6.2 Given some � pseudo-Anosov, let Mn DM�n

be the mapping torus of �n . Let also fnW Xn ! Mn be a minimal length carrier
graph for each n. Moreover, let Yn �Xn be a sequence of subgraphs of Xn with the
following properties.

� There is some constant C with lfnWXn!Mn
.Yn/� C for all n.

� If Y 0n �Xn is a sequence of subgraphs of Xn properly containing Yn for all n

then limn lfnWXn!Mn
.Y 0n/D1.

We claim that for all sufficiently large n the graph Yn has a connected component yYn

such that the image of �1. yYn/ in �1.Mn/ generates the fundamental group of the fiber.
In particular we have

2g � rank.�1. yYn// < rank.�1.Mn//� 2gC 1:

The claim of Theorem 6.2 follows.

Seeking a contradiction assume that the subgraphs yYn don’t exist for some subsequence
.ni/ and let xYni

be a sequence of connected components in Yni
. Since the graph Yni

has at most length C we may assume, up to forgetting finitely many, that for all i the
graph xYni

lifts to the infinite cyclic cover M 0 of Mni
. Moreover, the space of graphs

in M 0 with bounded length is, up to the natural Z action, compact. In particular, we
may assume, up to taking a further subsequence and perhaps shifting our lift by a
deck-transformation, that the images of �1. xYni

/ and �1. xYnj / coincide for all i and j .

On the other hand, by assumption �1. xYni
/ does not generate �1.M

0/ D �1.†g/.
Moreover, since every proper finite index subgroup of �1.M

0/ has rank larger than
2g , we have that the image of �1. xYni

/ in �1.M
0/ has infinite index and hence is

a free group. This implies that the homomorphism �1. xYni
/! �1.M

0/ is injective
for otherwise we would be able to find carrier graphs for Mn with rank less than
rank.�1.Xn// (compare with the remark following Lemma 5.1). Thurston’s Covering
Theorem (compare with Corollary 2.3) implies now that in fact the image of �1. xYni

/

is convex-cocompact. In particular, the quotient under �1. xYni
/ of its thick-convex-hull

has bounded diameter. Then, minimality of the graph fni
W Xni

!Mni
implies that

there is some D such that for every edge e of Xni
one has

(6.1) lfni
WXni

!Mni
.e/�DC lfni

WXni
!Mni

;rel. xYi /
.e/:

Equation (6.1) applies by assumption to all components xYi of Yi . In particular we
obtain some D0 depending on D and the maximal number of components, ie of D

and g , such that

(6.2) lfni
WXni

!Mni
.e/�D0C lfni

WXni
!Mni

;rel.Yi /.e/:
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Equation (6.2) contradicts Proposition 5.5. This concludes the (sketch of the) proof of
Theorem 6.2.

7 Another nice family of manifolds

Until now, we have mostly considered 3–manifolds arising as a mapping torus. Mapping
tori are particularly nice 3–manifolds whose construction is also particularly simple
to describe. But this is not the real reason why we were until now mainly concerned
with them. The underlying geometric facts needed in the proofs of Theorem 4.1 and
Theorem 6.2 are the following:

� Thurston’s theorem asserting that the mapping torus M� of a pseudo-Anosov
mapping class � admits a hyperbolic metric and

� the fact that every geometric limit of the sequence .M�n/n is isometric to the
infinite cyclic cover corresponding to the fiber.

In some cases, for instance in the proof of Theorem 4.1, one does not need the full
understanding of the possible geometric limits. But still, without understanding enough
of the geometry it is not possible, using our methods, to obtain topological facts. In this
section we discuss results obtained by Hossein Namazi and the author [34] concerning
a different family of 3–manifolds.

Let MC and M� be 3-dimensional handlebodies of genus g> 1 with homeomorphic
boundary @MC D @M� . Given a mapping class f 2Map.@MC/ we consider the
closed, oriented 3–manifold

Nf DMC
[f M�

obtained by identifying the boundaries of MC and M� via f . By construction, the
manifold Nf has a standard Heegaard splitting of genus g . Also, generating sets of
the free groups �1.M

˙/ generate �1.Nf / and hence rank.�1.Nf //� g . We will be
interested in those manifolds Nf n where the gluing map is a high power of a sufficiently
complicated mapping class hoping that if this is the case, then

g.Nf n/D rank.�1.Nf n//D g:

However, we must be a little bit careful with what we mean under “complicated mapping
class”. The problem is that it does not suffice to assume that f is pseudo-Anosov
because there are homeomorphisms F of MC which induce pseudo-Anosov mapping
classes f on @MC and for any such map we have Nf DNf n for all n. For example,
Nf n could be the 3–sphere for all n. In particular, we have to rule out that f extends
to either MC or M� . In order to give a precise sufficient condition recall that every
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pseudo-Anosov map has an stable lamination �C and an unstable lamination �� . If f
extends to a homeomorphism of MC then it maps meridians, ie essential simple closed
curves on @MC which are homotopically trivial in MC , to meridians; in particular, �C

is a limit in the space PML of measured laminations on @MC of meridians of MC .
With this in mind, we say that a pseudo-Anosov mapping class f on @MC D @M� is
generic if the following two conditions hold:

� the stable lamination is not a limit of meridians in @MC and

� the unstable lamination is not a limit of meridians in @M� .

The term generic is justified because Kerckhoff [22] proved that the closure in PML of
the set of meridians of MC and M� have zero measure with respect to the canonical
measure class of PML. Moreover, it is not difficult to construct examples of generic
pseudo-Anosov maps by hand.

In this section we consider manifolds Nf n DMC[f n M� obtained by gluing MC

and M� by a high power of a generic pseudo-Anosov mapping class.

We should point out that the above construction is due to Feng Luo by using an idea
of Kobayashi: the manifolds Nf n are also interesting because the standard Heegaard
splittings can have arbitrarily large distance in the curve complex. In particular, by
Theorem 1.7, the manifold Nf n is irreducible and atoroidal for all sufficiently large
n. Hence, it should be hyperbolic. In fact, according to Perelman’s Hyperbolization
Theorem the manifold Nf n is hyperbolic provided that its fundamental group is not
finite. To check that this is the case ought to be easy... one thinks. It is not. The
following is the simplest ”topological” proof known to the author that Nf n is not
simply connected for large n.

Lemma 7.1 For all sufficiently large n the manifold Nf n is not simply connected.

Proof By the proof of the Poincaré conjecture, also by Perelman, it suffices to prove
that Nf n is not the sphere S3 . However, by Waldhausen’s classification of the Heegaard
splittings of the sphere, there is only one for each g . And this one is reducible and
hence has distance 0 in the curve-complex. The standard Heegaard splitting of Nf n

has, for large n, large distance and therefore Nf n ¤ S3 .

Using the classification of the Heegaard splittings of the lens spaces one can also check
that for large n the manifold Nf n is not a lens space. Probably something similar can
be made to rule out every other spherical manifold. So, using all these classification
theorems for Heegaard splittings and the geometrization conjecture one finally obtains
that the fundamental group of Nf n is infinite.
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The discussion that we just concluded shows how difficult is to prove anything us-
ing topological methods for the manifolds Nf n . Even considering the proof of the
geometrization conjucture to be topological.

In Namazi–Souto [34] we don’t show that Nf n is hyperbolic but we construct, by
gluing known hyperbolic metrics on MC and M� , explicit negatively curve metrics
on Nf n for large n.

Theorem 7.2 For arbitrary � > 0 there is n� such that the manifold Nf n admits a
Riemannian metric �n with all sectional curvatures pinched by �1� � and �1C � for
all n � n� . Moreover, the injectivity radius of the metric �n is bounded from below
independently of n and � .

The idea behind the proof of Theorem 7.2 can be summarized as follows: By the work
of Kleineidam and the author [23] there are two hyperbolic manifolds homeomorphic
to MC and M� which have respectively ending laminations �C and �� . The ends
of these two hyperbolic 3–manifolds are asymptotically isometric. In particular, it is
possible to construct Nf n , for large n, by gluing compact pieces of both manifolds by
maps very close to being an isometry. On the gluing region, a convex-combinations of
both hyperbolic metrics yields a negatively curved metric.

Figure 4: Proof of Theorem 7.2: The two open manifolds MC and M�

being glued along the gluing region to obtain the manifold Nf n .

Apart from providing a negatively curved metric, the key point to all further results,
is that the metrics �n are explicits. In particular, as one sees from the sketch of the
construction above, one has automatically a complete understanding of the possible
geometric limits of the sequence .Nf n ; �n/. We obtain for example the following
theorem.
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Theorem 7.3 Every geometric limit of the sequence .Nf n/n is hyperbolic and is
either homeomorphic to a handlebody of genus g or to a trivial interval bundle over a
closed surface of genus g .

Theorem 7.2 shows that �1.Nf n/ is infinite and word hyperbolic for all large n. In
particular, it has solvable word problem and many other highly desirable algorithmic
properties. However, this does not say much about the specific group �1.Nf n/; it just
says as much as the geometrization conjecture does. For instance, it does not explain
to which extent the homomorphism �1.M

C/! �1.Nf n/ is injective.

Theorem 7.4 If � � �1.M
C/ is a finitely generated subgroup of infinite index, then

there is some n� such that for all n� n� the map �!�1.Nf n/ given by the inclusion
MC ,!Nf n is injective.

The proof of Theorem 7.4 is based on the fact that MC can be canonically identified
with one of the possible geometric limits of the sequence .Nf n ; �n/ and that, by Corol-
lary 2.3, every infinite degree covering of this geometric limit is convex-cocompact;
compare with Lemma 2.4.

Another consequence of Theorem 7.2 and Theorem 7.3 is that, again for large n, the
fundamental group of the manifold Nf n has rank g . The proof of this fact is almost
word-by-word the same as the proof of Theorem 6.2.

Theorem 7.5 There is nf with rank.�1.Nf n//D g for all n� nf . Moreover, every
minimal generating set of �1.Nf n/ is Nielsen equivalent to a standard generating set
for all sufficiently large n. In particular �1.Nf n/ has at most 2 Nielsen equivalence
classes of minimal generating sets.

In [34] we also use similar arguments as in the proof of Theorem 6.2 and Theorem 7.5
to prove for example that for sufficiently large n, every set of at most 2g� 2 elements
in �1.Nf n/ which generate a proper subgroup does in fact generate a free subgroup.
This bound is sharp. Finally, we use the same arguments as outlined in the proof of
Theorem 4.1 to prove that Nf n has, again for large n, Heegaard genus g and that
the standard Heegaard splitting is, up to isotopy, the unique minimal genus Heegaard
splitting.

Theorem 7.6 There is nf such that for all n� nf the following holds: every minimal
genus Heegaard splitting of Nf n is isotopic to the standard one.
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Observe that the bound on the Heegaard genus follows also from Theorem 7.5. Theorem
7.6 is also due to Scharlemann–Tomova [50] but their methods are completely different.

As mentioned above, Theorem 7.2 and Theorem 7.3 are the key to all the subsequent
topological results. While Theorem 7.2 is a consequence of the positive answer
to Thurston’s geometrization conjecture, the author would like to remark that even
assuming the mere existence of negatively curved metric, or even hyperbolic, on Nf n

it is not obvious how to derive any of the topological applications outlined above.
Recall for example that it was not obvious how to prove, even using the geometrization
conjecture, that Nf n is for large n not finitely covered by S3 . It is the control on the
geometry of the manifolds Nf n provided by Theorem 7.3 that opens the door to all the
subsequent results.

8 Bounding the volume in terms of combinatorial data

Until now we have mainly studied quite particular classes of manifolds; in this section
our point of view changes. Here we discuss results due to Brock [9], and Brock and
the author, showing that it is possible to give linear upper and lower bounds for the
volume of a hyperbolic 3–manifold in terms of combinatorial distances.

Given a closed surface S let P.S/ be its pants-complex, ie the graph whose vertices are
isotopy classes of pants decomposition and where two pants decompositions P and P 0

are at distance one if they differ by an elementary move. Here, two pants decompositions
P D f
1; : : : ; 
3g�3g and P 0D f
 0

1
; : : : ; 
 0

3g�3
g differ by an elementary move if there

is some j such that

� 
i D 

0
i for all i ¤ j and

� such that 
j and 
 0j are different curves with the minimal possible intersection
number in S n f
1; : : : ; 
j�1; 
jC1; : : : ; 
3g�3g.

In more mundane terms, in order to change P by an elementary move, one keeps all
components of P but one fixed and this component is changed in the simplest possible
way.

The pants complex P.S/ is known to be connected. In particular, declaring every edge
to have unit length one obtains an interior distance invariant under the natural action
of the mapping class group on the pants complex. From our point of view, the pants
complex is important because of the following result due to Brock [9] relating volumes
of mapping tori to distances in the pants complex.
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Theorem 8.1 (Brock [9]) For every g there is a constant Lg > 0 with

L�1
g lP.†g/.f /� vol.Mf /�LglP.†g/.f /

for every pseudo-Anosov mapping class f of the surface †g of genus g . Here Mf is
the mapping torus of f and

lP.†g/.f /D inffdP.†g/.P; f .P //jP 2 P.†g/g

is the translation length of f in the pants complex of †g .

It is a beautiful observation due to Brock [9] that the pants complex is quasi-isometric
to the Teichmüller metric when endowed with the Weil-Petersson metric. In particular,
Theorem 8.1 is stated in [9] in terms of translation distances in the Teichmüller space.

In the setting of Theorem 8.1, getting upper bounds for the volume is not difficult.
The idea is that if .P1;P2; : : : ;Pd / is a path in the pants complex with Pd D f .P1/

then one obtains an ideal triangulation of the mapping torus Mf with some controlled
number of simplices. In particular, the translation length bounds the simplicial volume
of Mf , and hence bounds the volume itself. Agol [2, Cor 2.4] obtained sharp upper
bounds for the volume of Mf in terms of lP.†g/.f / from which it follows for example
that

vol.Mf /� 2Voct lP.†g/.f /

where Voct is the volume of a regular ideal octahedron.

Proof The bulk of the proof of Theorem 8.1 is to show that the volume can be bounded
from below in terms of the translation distance in the pants-complex. In [9], this lower
bound is derived using deep difficult results due to Masur–Minsky [26; 27] about the
geometry of the curve-complex and exploiting the relation between the curve-complex
and the geometry of hyperbolic manifolds discovered by Minsky. However, a simpler
proof of the lower bound was found by Brock and the author.

The first observation is that the volume of Mf is roughly the same as the volume of its
thick part. The idea of the proof is to decompose the thick part of Mf in a collection
of disjoint pieces, called pockets, and then use geometric limit arguments to estimate
the volume of each single pocket.

Consider for the time being only mapping tori Mf with injectivity radius at least � .
This assumption has the following consequence:

(*) If pi is a sequence of points in different mapping tori Mfi
with inj.Mfi

/� �

for all i then, up to passing to a subsequence, the sequence of pointed manifolds
.Mfi

;pi/ converges geometrically to a pointed hyperbolic manifold .M1;p1/
homeomorphic to †g �R and with at least injectivity radius � .

Geometry & Topology Monographs, Volume 12 (2007)



The rank of the fundamental group of hyperbolic 3–manifolds 385

In some way (*) gives full geometric control. For instance, it is known that every point
p in a mapping torus Mf is contained in a surface Sp homotopic to the fiber of Mf

and with curvature � �1. Thurston’s bounded diameter lemma asserts that

diam.Sp/�
4g� 4

�2

and hence it follows directly from (*) that there is a constant c1 depending of � and g

such that if Mf has at least injectivity radius � then for all p 2Mf the surface Sp

is in fact homotopic to an embedded surface S 0p by a homotopy whose tracks have
at most length c1 (see footnote1). For every p we choose a minimal length pants
decomposition Pp in the surface Sp .

Choose D to be a sufficiently large constant, depending on g and � . Given a mapping
torus Mf with injectivity radius inj.Mf /� � let fp1; : : : ;pkg be a maximal collection
of points in Mf which are at at least distance D from each other. Observe that for every
i there is j ¤ i such that pi and pj are at at most distance 2D . For each i D 1; : : : ; k

we consider the negatively curved surface Spi
passing trough pi and the associated

embedded surface S 0pi
. Then, since D is large and the diameter of the surfaces Spi

is
bounded we have that the surfaces Spi

and Spj are disjoint for all i ¤ j ; the same
also holds for the associated embedded surfaces S 0pi

and S 0pj by the bound on the
length of the tracks of the homotopies. In particular, the surfaces S 0pi

and S 0pj are
disjoint, embedded and homotopic to the fiber. We obtain from Waldhausen’s cobordism
theorem that they bound in Mf a product region homeomorphic to †g � Œ0; 1�. In
particular, the set fp1; : : : ;pkg is cyclically ordered, say as Œp1; : : : ;pk �.

Figure 5: Proof of Theorem 8.1 in the thick case: The dotted lines are
simplicial hyperbolic surfaces and the thick lines are close-by embedded
surfaces dividing the manifold Mf into roughly uniform pieces.

In other words, under the assumption that inj.Mf / � � and that diam.Mg/ � 10D ,
we have that a decomposition of the mapping torus Mf into cyclically ordered product

1In order to see that the constant c1 exists we can proceed as follows: given a surface S in a 3–manifold
consider the infimum of all possible lengths of tracks of homotopies between S and an embedded surface;
this infimum may be 1 if such a homotopy does not exist. Then it is easy to see that this function is semi
continuous in the geometric topology and hence bounded on compact sets; (*) is a compactness statement.
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regions ŒU1; : : : ;Uk � with

@U1 D S 0p1
[S 0p2

; � � � ; @Uk�1 D S 0pk�1
[S 0pk

; @Uk D S 0pk
[S 0p1

and such that for all i D 1; : : : ; k if p; q 2 @Ui are in different components then

D� 2
4g� 4

�2
� dMf

.p; q/� 2DC 2
4g� 4

�2
:

These bounds, together with (*) implies that there are constants V and L depending
only on g and � such that for every one of the product regions Ui we have

vol.Ui/� V; dP.†g/.Ppi
;PpiC1

/�L:

From the first inequality we obtain that there are at most 1
V

vol.Mf / product regions.
From the second we deduce that

dP.†g/.Pp1
; f .Pp1

//�
L

V
vol.Mf /:

This concludes the proof of Theorem 8.1 under the additional assumption that the
mapping torus in question has injectivity radius inj.Mf /� � .

In general the idea is to decompose the thick part of Mf into product regions. The key
point is the following well-known result due to Otal [35].

Theorem 8.2 (Otal’s unknotting theorem) For every g there is a constant �g such
that for every f W †g!†g pseudo-Anosov the following holds: There is a collection of
disjoint surfaces S1; : : : ;Sk parallel to †g �f0g with the property that every primitive
geodesic in Mf shorter than �g is contained in [Si .

In the sequel denote by � the collection of primitive geodesics in Mf that are shorter
than �g . By Thurston’s Hyperbolization Theorem the manifold M �

f
DMf n� admits

a complete finite volume hyperbolic metric. Moreover, it follows from the deformation
theory of cone-manifolds due to Hodgson–Kerckhoff [20] that up to assuming that �g

is smaller than some other universal constant the ratio between the volumes of Mf and
M �
f

is close to 1, and

(**) every geodesic in M �
f

has at least length �g

2
.

Theorem 3.1 and Otal’s theorem imply that M �
f

can be cut open long minimal surfaces
into disjoint product regions Vi D Fi � .0; 1/ where Fi is a subsurface of †g ; the
Vi ’s are the so-called pockets. The volume of M �

f
is the sum of the volumes of the
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Figure 6: Proof of Theorem 8.1: The first picture represents the manifold Mf

where the black dots are short geodesics and the lines are the surfaces provided
by Otal’s unknotting theorem. In the second picture one has the manifold
M �
f

and the straight lines are obtained from Otal’s surfaces by (1) isotoping
as much as possible into the cusps, (2) removing parallel components, and (3)
pulling tight. In the third image one sees the associated pocket decomposition.

regions Vi . Moreover, choosing for each i minimal length pants decompositions P�i
and PCi of the boundary of Vi it is not difficult to see that

lP.†g/ �

X
Vi

dP.Fi /.P
�
i ;P

C
i /:

In particular, it suffices to prove that the volume of each one of the product regions Vi

bounds the distance dP.Fi /.P
�
i ;P

C
i / from above. However, since in the setting we

have (**) we are again in the situation that Vi is thick: the same arguments used above
yield the desired result in this case.

This concludes the sketch of the proof of Theorem 8.1.

The following is an analogous of Otal’s theorem in the setting of Heegaard splittings.

Theorem 8.3 (Souto) For every g there is a constant �g such that for every strongly
irreducible genus g Heegaard surface S in a closed hyperbolic 3–manifold M the
following holds: There is a collection of disjoint surfaces S1; : : : ;Sk parallel to S with
the property that every primitive geodesic shorter than �g in M is contained in [Si .

Proof The idea of the proof of Theorem 8.3 is the following. By Pitts–Rubinstein’s
Theorem 3.6, we can associate to the surface S a minimal surface F . For the sake
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of simplicity assume that F is isotopic to S and contained in the thick part of M .
Cutting M along S we obtain two handlebodies; let U be the metric completion of
one of these handlebodies and zU its universal cover. Then, by a theorem of Alexander–
Berg–Bishop [4], zU is a CAT.�1/-space and hence, from a synthetic point of view, it
behaves very much like hyperbolic space. In particular, one can use word-by-word the
proof in (Souto [58]) that short curves in hyperbolic handlebodies are parallel to the
boundary and obtain that short curves in the handlebody U are parallel to the boundary
@U D F ' S .

Theorem 8.3 opens the door to analogous results to Theorem 8.1 for Heegaard splittings.
In some sense, the main difficulty is to decide what has to replace the translation length
lP.f /.

Definition The handlebody set H.H / of a handlebody H is the subset of the pants
complex P.@H / of its boundary consisting of those pants decompositions P with the
following property: There is a collection D of properly embedded disks in H with
boundary in P and such that H nD is homeomorphic to a collection of solid tori.

Given a Heegaard splitting M DU [V of a 3–manifold we can now define its distance
in the pants complex of the Heegaard surface S as follows:

ıP.U;V /DminfdP.S/.PU ;PV /jPU 2H.U /;PV 2H.PV /g:

Theorem 8.3 and similar geometric limit arguments as the ones used in the proof of
Theorem 8.1 yield the following theorem.

Theorem 8.4 (Brock-Souto) For every g there is a constant Lg > 0 with

L�1
g ıP.U;V /� vol.M /�LgıP.U;V /

for every genus g strongly irreducible Heegaard spitting M D U [V of a hyperbolic
3–manifold M .

9 Hyperbolic manifolds with given rank

In the last section we studied the relation between the geometry of hyperbolic 3–
manifolds and the combinatorics of Heegaard splittings. In this section we sketch some
results about what can be said about the geometry of a hyperbolic 3–manifold with
given rank of the fundamental group. We will be mainly interested in the following two
conjectures which assert that (A) the radius of the largest embedded ball in a closed
hyperbolic 3–manifold and (B) its Heegaard genus are bounded from above in terms of
the rank of the fundamental group.
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Conjecture (A) (McMullen) For all k there is some R with

inj.M;x/�R

for all x in a closed hyperbolic 3–manifold M with rank.�1.M //D k .

Observe that maxx2M inj.M;x/ is the radius of the largest embedded ball in M .
McMullen’s conjecture admits a suitable generalization to the setting of infinite volume
hyperbolic 3–manifolds. In fact, it was in this setting in which McMullen’s conjecture
was first formulated because of its implications to holomorphic dynamics. However, it
follows from the work of Gero Kleineidam and the author of this note that the general
case can be reduced to the closed case. Before going further we should recall the
injectivity radius itself, ie the minimum of the injectivity radius over all points of the
manifold, is bounded from above in terms of the rank by White’s Theorem 5.4.

Conjecture (B) (Waldhausen) For every k there is g such that every closed 3–
manifold with rank.�1.M //D k has Heegaard genus g.M /� g .

Waldhausen asked in fact if for every 3–manifold rank.�1.M //D g.M /. However,
the stronger form of the Conjecture B was answered in the negative by Boileau–
Zieschang [7] who presented an example of a Seifert-fibered 3–manifold M with
g.M /D 3 and rank.�1.M //D 2. Examples of 3–manifolds with g.M /D 4k and
rank.�1.M //D 3k were constructed by Schultens-Weidmann [54]. Recently Abert–
Nikolov [1] have announced that there are also hyperbolic 3–manifolds with larger
Heegaard genus than rank.

Conjecture A and Conjecture B are related by a result of Bachmann–Cooper–White
[6] who proved the following theorem.

Theorem 9.1 (Bachmann–Cooper–White) Suppose that M is a closed, orientable,
connected Riemannian 3–manifold with all sectional curvatures less than or equal to
�1 and with Heegaard genus g.M /. Then

g.M /�
cosh.r/C 1

2

where r Dmaxx2M injx.M /.

The first positive result towards Conjecture A and Conjecture B is due to Agol, who
proved the next theorem.
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Theorem 9.2 (Agol) For every � > 0 there is V > 0 such that every hyperbolic 3–
manifold with injectivity radius inj.M /> � , volume vol.M />V and rank.�1.M //D

2 has Heegaard genus g.M /D 2. In particular, the injectivity radius at every point is
bounded from above by arccosh.3/� 1.

Proof Agol’s theorem is unfortunately not available in print. However, the idea of
the proof is not so difficult to explain. Assume that .Mi/ is a sequence of hyperbolic
3–manifolds with inj.Mi/ � � , rank.�1.Mi// D 2 and vol.Mi/ ! 1. A special
case of Proposition 5.5 implies that there is for all i a minimal length carrier graph
fi W Xi ! Mi with length lfi WXi!Mi

.Xi/ bounded from above by some universal
constant. Passing to a subsequence we may assume that the manifold Mi converge
geometrically to a hyperbolic manifold M1 , the graphs Xi to a graph X1 and the
maps fi to a map f1W X1!M1 .

We claim that M1 is homeomorphic to a handlebody of genus 2. In fact, in order
to see that this is the case, it suffices to observe that it has infinite volume that that
its fundamental group is generated by 2 elements. In other words, it suffices to prove
that f1W X1!M1 is a carrier graph. In order to do so, we consider the covering
of M 0

1 ! M1 determined by the image of �1.X1/. The proof of the tameness
conjecture by Agol [3] and Calegari–Gabai [11] implies that M 0

1 is homeomorphic
to a handlebody. Moreover, M 0

1 is not convex-cocompact because otherwise the
homomorphism .fi/�W �1.Xi/! �1.Mi/ would be injective, and hence �1.Mi/ free,
for large i . Since M 0

1 is not convex-cocompact, Thurston and Canary’s Covering
Theorem [13] implies that the covering M 0

1 ! M1 is finite-to-one; in fact this
covering is trivial because M 0

1 is a handlebody of genus 2 and a surface of genus 2

does not cover any other surface. This proves that M1 itself is a handlebody.

Choose now C �M1 a compact core, ie a compact submanifold of M1 such that
M1 nC is homeomorphic to a product. Pushing back the core C to the approximating
manifolds Mi we obtain in each Mi a handlebody Ci . In order to conclude the
proof of Theorem 9.2 it suffices to show that its complement is a handlebody as well.
Furthermore, it suffices to show that @Ci is compressible in Mi n Ci . However, if
this is not the case it is possible to deduce from the Covering Theorem that there is a
non-trivial homotopy from @Ci to itself supported in Mi nCi . In particular, Mi nCi is
homeomorphic to a twisted interval bundle and hence there is a non-trivial homology
class supported in the complement of Ci . This contradicts the assumption that �1.Xi/,
and hence �1.Ci/, surjects onto �1.Mi/. Hence @Ci is, for large i , compressible
in Mi nCi and the latter is a handlebody. This concludes the sketch of the proof of
Theorem 9.2.
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As we saw during the sketch of the proof the case of rank.�1.M // D 2 is quite
particular because of two reasons.

� If M is a thick hyperbolic 3–manifold with rank.�1.M //D 2 then there is a
carrier graph whose length is uniformly bounded from above.

� If M is a thick non-compact complete hyperbolic 3–manifold whose fundamental
group is generated by two elements then M is a handlebody.

This two facts were heavily used in the proof of Theorem 9.2. If the rank of �1.M / is
higher than two, then both statements fail, However, using a similar strategy as in the
proof of Theorem 9.2, together with the facts about carrier graphs explained in Section 5
it is possible to prove the following claim: Given a sequence .Mi/ of closed hyperbolic
3–manifolds with inj.Mi/ > � and rank.�1.M //D 3 there is a compact, atoroidal and
irreducible 3–manifold N and a subsequence .Mij / such that for all j the manifold
Mij contains a compact submanifold homeomorphic to N whose complement is a
union of handlebodies. In particular, one obtains the following structure theorem of
those manifolds whose fundamental group has rank 3.

Theorem 9.3 (Souto [56]) For all positive � there is a finite collection N1; : : : ;Nk

of compact, atoroidal and irreducible 3–manifolds such that every closed hyperbolic 3–
manifold M with inj.M / > � and rank.�1.M //D 3 contains a compact submanifold
N homeomorphic Ni for some i such that M nN is a union of handlebodies.

From Theorem 9.3 the next theorem follows.

Theorem 9.4 For every � > 0 there is some g such that every closed hyperbolic 3–
manifold M with inj.M / > � and rank.�1.M //D 3 has Heegaard genus g.M /� g .

Proof Given � positive let N1; : : : ;Nk be the finite collection of manifolds provided
by Theorem 9.3 and let

g Dmaxfg.N1/; : : : ;g.Nk/g:

If M is a closed hyperbolic 3–manifold with inj.M /� � and rank.�1.M //D 3 then,
the Theorem 9.3, the manifold M contains a submanifold N homeomorphic to some Ni

such that M nN is a collection of handlebodies. In particular, every Heegaard splitting
of N extends to a Heegaard splitting of M ; hence g.M /� g.N /D g.Ni/� g .

The next theorem follows from Theorem 9.1.
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Theorem 9.5 For all � positive there is R such that for every closed hyperbolic
3-manifold M with inj.M /� � and rank.�1.M //D 3 and for every x 2M one has
inj.M;x/�R.

In some sense the claim of the Theorem 9.3 may seem redundant once one has Theorem
9.4. However one gets from the proof of Theorem 9.3 some additional information
about the geometry of the manifolds. For example, one can use this additional structure
together with Pitts–Rubinstein’s Theorem 3.6 to prove the next theorem.

Theorem 9.6 For all � and g there is a number k such that every � -thick hyperbolic
3–manifold M with rank.�1.M //D 3 admits at most k isotopy classes of Heegaard
surfaces of genus g .

Theorem 9.7 For all � there is d such that every closed �–thick hyperbolic 3-
manifold M which admits a genus 4 Heegaard spitting with at least distance d in the
curve complex has rank.�1.M //D 4.

10 Open questions

In this section we outline some open questions and problems.

Problem 1 Construct models for hyperbolic 3–manifolds in terms of combinatorial
data given by a Heegaard splitting.

A satisfactory answer of Problem 1 would be given by a machine which, when fed with
the combinatorial data of a Heegaard splitting of genus g of a 3–manifold M , yields a
metric � on M such that whenever M admits a hyperbolic metric �0 , then .M; �/

and .M; �0/ are Lg -bi-Lipschitz where Lg depends only on g . If such a machine
exists, then the obtained metric � captures all the coarse information about M .

Partial results have been obtained towards an answer of Problem 1. Let .M; �0/ be
a hyperbolic manifold and M D U [V a Heegaard splitting of genus g . Then it is
possible to construct out of combinatorial data determined by the Heegaard splitting
M D U [ V a metric � on M such that .M; �/ and .M; �0/ are Lg;inj.M;�0/ -bi-
Lipschitz. In other words, the constant in question depends on the genus of the splitting
and the injectivitiy radius of the hyperbolic metric. On the other hand, it is also possible
to give lower bounds on the injectivity radius of the hyperbolic metric in terms of
combinatorial data of the Heegaard splitting of M . If 
 is a simple closed curve on
the Heegaard surface such that .U; 
 / and .V; 
 / has incompressible and acylindrical
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pared boundary, then it is also possible to determine if the homotopy class of 
 is
non-trivial and short in .M; �0/. All these results, due to Jeff Brock, Yair Minsky,
Hossein Namazi and the author, are steps towards a positive answer to Problem 1.

Answering Problem 1 also opens the door to obtain partial proofs of the geometrization
conjecture. The idea being that if under the assumption of the existence of a hyperbolic
metric one is able to construct metrics close to the hyperbolic metric, then one can
perhaps be smarter and use the machine developed to answer Problem 1 to construct
hyperbolic, or at least negatively curved, metrics. In some sense, this is the idea behind
the results presented in Section 7; compare with Theorem 7.2. The construction used in
the proof of Section 7 is a special case of a more general construction due to Hossein
Namazi [33]. Recently, Jeff Brock, Yair Minsky, Hossein Namazi and the author have
proved that for every g there is a constant Dg such that every closed 3–manifold which
admits a genus g Heegaard splitting with at least distance Dg in the curve complex
admits also a negatively curved metric.

Problem 2 Show that for every g there are at most finitely many counter-examples
to the geometrization conjecture which admits a genus g Heegaard splitting.

After the proof of the geometrization conjecture by Perelman, Problem 2 may seem
redundant. However, a satisfactory answer to Problem 2 would consist of presenting a
combinatorial, Ricci-flow-free, construction of the hyperbolic metric in question. In
fact, after answering Problem 2 one could try to prove that for example there are no
counter-examples to the geometrization conjecture which admit a genus 10 Heegaard
splitting. Apart from the difficulty of checking if a manifold is hyperbolic or not there
is the conceptual problem that unless the constants involved in the answers of Problem
1 and Problem 2 are computable then there can be no a priori bounds on the number of
possible exceptions to the geometrization conjecture. So far, all similar constants are
obtained using geometric limits and compactness and hence they are not computable.

Problem 3 Obtain explicit constants.

We turn now to questions related to the rank of the fundamental group. If †g is a
closed surface of genus g then it is well-known that rank.�1.†g// D 2g . In [64],
Zieschang proved that in fact �1.†g/ has a single Nielsen equivalence class of minimal
generating sets. Zieschang’s proof is quite combinatorial and difficult to read.

Problem 4 Give a geometric proof of Zieschang’s result.
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A geometric proof of Zieschang’s result would also shed some light on the fact that there
are 2–dimensional hyperbolic orbifolds whose fundamental groups admit two different
Nielsen equivalence classes of minimal generating sets. Compare with Weidmann [61].

In general, if G is a finitely generated group then every generating set .g1; : : : ;gr /

with r elements can be stabilized to a generating set .g1; : : : ;gr ; eG/ with r C 1

elements by adding the identity to it. It is easy to see that any two generating sets with
r elements are Nielsen-equivalent after r stabilizations. Clearly, if two generating
sets with the same cardinality are not Nielsen equivalent, then one needs at least a
stabilization so that they can be connected by a sequence of Nielsen moves. The author
suspects that the two standard generating sets of the manifolds considered in Section
7 are not Nielsen equivalent, and in fact that one need g stabilizations to make them
Nielsen equivalent; here g is the genus of the involved handlebodies.

Problem 5 If Nf n is one of the manifolds considered in Section 7 and n is very
large, determine how many stabilizations does one need so that the standard Nielsen
equivalence classes of generating sets coincide.

Remark As remarked by Richard Weidmann, Problem 5 can be easily solved if the
genus is equal to 2. His argument is very special to this situation.

The relation between Heegaard splittings and geometry is much better understood than
the relation between rank of the fundamental group and geometry. In some sense, one
can take any result relating geometry of hyperbolic manifolds and Heegaard splittings
and try to prove the analogous statement for the rank of the fundamental group. For
example the following question.

Problem 6 Prove that for every g there is some Dg such that whenever � 2Map.†g/

is a pseudo-Anosov mapping class with at least translation length Dg in the curve
complex, then the fundamental group of the mapping torus M� has rank 2gC 1 and a
single Nielsen equivalence class of generating sets.

More ambitiously, one could remark that by Mostow’s rIgidity Theorem a hyperbolic 3–
manifold is determined by its fundamental group. In particular, the following questions
make sense.

Problem 7 Given a presentation of the fundamental group of a 3–manifold estimate
the volume.

Problem 8 Construct models out of the algebraic data provided by a presentation.
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Most probably, satisfactory answers to these questions would imply answers to Conjec-
ture A and Conjecture B from Section 9.

Another question related to the relation between Heegaard genus and rank of the
fundamental group is the following. As mentioned above, Abert and Nikolov [1] have
announced that there are hyperbolic 3–manifolds with larger Heegaard genus than rank.
However their proof is not constructive. Essentially they show that there is no equality
for all but finitely many elements in a certain sequence of hyperbolic 3–manifolds. It
would be interesting to have concrete examples.

Problem 9 Construct concrete examples of hyperbolic 3–manifolds with larger rank
than Heegaard genus.

A possible other interesting line of research would be to use minimal surfaces to
obtain geometric proofs about Heegaard splittings of non-hyperbolic 3–manifolds. For
example, using that the 3–sphere admits a collapse, it is possible to obtain a proof of
Waldhausen’s classification of the Heegaard splittings of the sphere. This strategy can
be probably applied to other Seifert manifolds.

Problem 10 Give a geometric proof of the classification of Heegaard splittings of
Seifert manifolds.
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