
Geometry & Topology Monographs 14 (2008) 63–73 63

A Magnus theorem for some one-relator groups

OLEG BOGOPOLSKI

KONSTANTIN SVIRIDOV

We will say that a group G possesses the Magnus property if for any two elements
u; v 2 G with the same normal closure, u is conjugate to v or v�1 . We prove that
some one-relator groups, including the fundamental groups of closed nonorientable
surfaces of genus g > 3 possess this property. The analogous result for orientable
surfaces of any finite genus was obtained by the first author [1].

20F34; 20E45

1 Introduction

In 1930 W Magnus published a very important (for combinatorial group theory and
logic) article where he proved the so-called Freiheitssatz and the following theorem.

Theorem 1.1 [6] Let F be a free group and r; s 2 F . If the normal closures of r

and s coincide, then r is conjugate to s or s�1 .

In [2], O Bogopolski, E Kudryavtseva and H Zieschang proved the analogous result for
fundamental groups of closed orientable surfaces in case where r and s are represented
by simple closed curves. The suggested proof was geometrical and used coverings,
intersection number of curves and Brouwer’s fixed-point theorem. However, they were
not able to generalize it for arbitrary elements r; s .

Later O Bogopolski, using algebraic methods in the spirit of Magnus, proved the desired
result without restrictions on r; s .

Theorem 1.2 [1] Let G be the fundamental group of a closed orientable surface and
r; s 2G . If the normal closures of r and s coincide, then r is conjugate to s or s�1 .

In [5], Howie proposed another, topological, proof of this theorem. Both proofs do not
work in the nonorientable case. The main result of the present article is the following
theorem.
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64 Oleg Bogopolski and Konstantin Sviridov

Main Theorem Let GDha; b;y1; : : : ;ye j Œa; b�uvi, where e > 2, u; v are nontrivial
reduced words in letters y1; : : : ;ye , and u; v have no common letters. Let r; s 2G be
two elements with the same normal closures. Then r is conjugate to s or s�1 .

It is known that the fundamental group of a closed nonorientable surface of genus k > 3

has the presentation hx1;x2; : : : ;xk j Œx1;x2�x
2
3
� : : : �x2

k
i: So, we have the following

corollary.

Corollary 1.3 Let G be the fundamental group of a closed nonorientable surface of
genus at least 4, and r; s 2 G . If the normal closures of r and s coincide, then r is
conjugate to s or s�1 .

Note that this corollary trivially holds for genus 1 and 2, but we do not know, whether
it holds for genus 3.

We will say that a group G possesses the Magnus property, if for any two elements r; s

of G with the same normal closures we have that r is conjugate to s or s�1 . So, all
the above theorems imply that the fundamental group of any compact surface, except
of the nonorientable surface of genus 3, possesses the Magnus property.

It was shown in [1] that the Magnus property does not hold for many one-relator groups,
including generalized Baumslag–Solitar groups, all noncyclic one-relator groups with
torsion, and infinitely many one-relator torsion-free hyperbolic groups.

Now we discuss some logical aspects concerning this property. It was noticed in Œ1� that
if two groups G1;G2 are elementary equivalent and G1 possesses the Magnus property,
then G2 possesses this property too. In particular, any group, which is elementary
equivalent to a free group or a free abelian group possesses the Magnus property. This
gives another way of proving of Theorem 1.2 and Corollary 1.3. However, there are
groups, which are not even existentially equivalent to a free group (hence, they are
not limit groups), but possess the Magnus property. The easiest example is the direct
product Fn�Fm of nontrivial free groups of ranks n;m, where nCm > 3. The other
example is the following:

G D ha; b;x1; : : : ;xn;y1; : : : ;ym j Œa; b�ŒX;Y �Z
k
i;

where k > 4, X;Y are words in the letters x1; : : : ;xn , and Z is a word in the letters
y1; : : : ;ym , such that ŒX;Y �¤ 1 and Z ¤ 1 in the corresponding free groups. This
group possesses the Magnus property by our Main Theorem, but is not existentially
equivalent to a free group. Indeed, by [3], for any l > 1 the l –th power of a nontrivial
element of a free group can not be expressed as a product of less than .l C 1/=2
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commutators. Thus, the following formula is valid in G , but is not valid in any free
group:

9 z1; z2; z3; z4; z .z ¤ 1^ Œz1; z2�Œz3; z4�z
k
D 1/:

Problems (1) Does every amalgamated product A�Z B , where A;B are free groups
and Z is a maximal cyclic subgroup in both factors, possesses the Magnus property?

(2) Does every limit group possesses the Magnus property?

(3) Does the group G D ha; b; c j a2b2c2i possesses the Magnus property?

(4) Let A and B be torsion free groups which possess the Magnus property. Does
the group A�B possesses the Magnus property? (A positive answer in a partial case
can be found in the paper by Edjvet [4]. Note also, that the Magnus property is closed
under direct products.)

Some other problems related to the Magnus property are collected in [1].

The plan of this paper is the following. In Section 2 we deduce the Main Theorem
from Proposition 2.1 and prove auxiliary Lemma 2.2. In Section 3 we introduce
some technical notions like the left and the right bases of a subgroup, the width of an
element, a piece of an element, a special element, and prove auxiliary Lemma 3.2 and
Corollary 3.4. In Section 4 we present some quotients as amalgamated products and
prove the crucial Lemma 4.1. In Section 5 we prove Proposition 2.1.

Acknowledgements The first author was partially supported by INTAS grant N 03-
51-3663 and by the grant Complex integration projects of SB RAS N 1.9.

2 Some reduction

First we introduce notation. Let A be a group, g; h 2A. The normal closure of g in
A is denoted by hhgiiA or simply hhgii if the group is clear from the context. Denote
Œg; h�D g�1h�1gh. Let X be an alphabet, x 2 X and r be a word in the alphabet
X [X�1 . By rx we denote the exponent sum of x in r .

We will deduce the Main Theorem from the following proposition.

Proposition 2.1 Let H D hx; b;y1; : : : ;ye j Œx
k ; b�uvi, where e > 2, k ¤ 0, u; v are

nontrivial reduced words in y1; : : : ;ye , and u; v have no common letters. Let r; s 2H

be two elements with the same normal closures and let rx D 0. Then r is conjugate to
s or s�1 .
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Proof of the Main Theorem Let r; s 2G and the normal closures of r and s coincide.
Suppose that rb D 0. In this case we will use another presentation of G :

G D ha; b;y1; : : : ;ye j Œb; a�v
�1u�1

i:

Then the Main Theorem follows immediately from Proposition 2.1.

Now suppose that rb ¤ 0. In this case we can embed naturally the group G into the
group

H DG �
aDxrb

hx j i;

where x is a new letter. Clearly, the normal closures of r and s in H coincide. To
finish the proof, we need the following claim.

Claim The elements r and s are conjugate in H if and only if they are conjugate in G .

Proof Suppose that r D h�1sh, where h 2H . Write hD g1z1 : : :gnzngnC1 , where
zi 2 fx;x

2; : : : ;xjrb j�1g, gi 2 G and g2; : : : ;gn are nontrivial (g1 and gnC1 may
be trivial). We may assume that n is minimal possible. Suppose that n > 1. From
the normal form we deduce that g�1

1
sg1 2 hai. Then z1 centralizes this element, that

contradicts to the minimality of n. Hence, nD 0 and h 2G .

So, we will work now with the group H . This group has the following presentation:

hx; b;y1; : : : ;ye j Œx
rb ; b�uvi:

Let xb D xrab . Using Tietze transformation we can rewrite this presentation as

hx; xb;y1; : : : ;ye j Œx
rb ; xb�uvi:

Writing r in the generators of this presentation, we have rx D rarb � rbra D 0. Again,
by Proposition 2.1, r is conjugate to s˙1 in H and, hence in G .

Let c1; : : : ; cp be the letters of the word u, and d1; : : : ; dq be the letters of the word
v . Consider the following automorphism of H :

 W

8̂̂<̂
:̂

x 7! x

b 7! bu

ci 7! x�kcix
k .i D 1; : : : ;p/

dj 7! x�ku�1xkdj x�kuxk .j D 1; : : : ; q/:

Lemma 2.2 Let h be a nontrivial element of H . Then there exists a natural n0 such
that for all n> n0 the element  n.h/ is not conjugate to a power of b .
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Proof Suppose that there exists an m such that  m.h/ is conjugate to a nonzero
power of b . Then for any l > 0 the element  mCl.h/ is conjugate to a nonzero power
of b

Ql�1
iD0 x�ikuxik . But any such power is not conjugate to a power of b since its

image in H=hhb;xii is nontrivial.

3 Left and right bases

Without loss of generality, we may assume that k > 0. Consider the homomorphism
H!Z, which sends x to 1 and any other generator of H to 0. Denote its kernel by N .
Denote giDx�igxi and YiDfbi ; .y1/i ; : : : ; .ye/ig. Using the Reidemeister–Schreier
method we can find the following presentation of N :

N D
D [

i2Z

Yi j biuivi D biCk .i 2 Z/
E
:

Denote by wi the word biuivi . Thus, wi D biCk in N . We will use the following
three presentations of N depending on a situation:

(a) N is the free product of the free groups Gi D hYi j i .i 2 Z/ with amalgamation,
where Gi and GiCk are amalgamated over the cyclic subgroup generated by wi in Gi

and by biCk in GiCk . Denote this cyclic subgroup by ZiCk .

(b) N DN1�� � ��Nk , where Nl D� � ��Gl�k�Zl
Gl�ZlCk

GlCk�: : : , .lD1; : : : ; k/.
Note that each Nl is  –invariant.

(c) N is the free group with the free basis
S

i2Z.Yi n fbig/[ fb1; b2; : : : ; bkg. This
can be proved with the help of Tietze transformations.

For each i 6 j denote Gi;j D hGi ;GiC1; : : : ;Gj i. The group Gi;j has two special
free bases

fbi ; biC1; : : : ; bminfiCk�1;jgg[

[
i6l6j

.Yl n fblg/

and
[

i6l6j

.Yl n fblg/[ fbj ; bj�1; : : : ; bmaxfj�kC1;igg

which will be called the left and the right basis of Gi;j respectively. The idea behind
the left basis is the following: if i C k 6 l 6 j , then we can replace each letter bl

by the word bl�kul�kvl�k . Thus we can eliminate bl . The idea behind the right
basis is analogous: if i 6 l 6 j � k , then we can replace each letter bl by the word
blCkv

�1
l

u�1
l

. In that case we can also eliminate bl .
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Let g be a nontrivial element of N . Consider all the subgroups Gi;j such that g 2Gi;j

and j �i is minimal. There can be several such subgroups (for example if gD bkbkC1 ,
then g 2Gk;kC1 and g 2G0;1 ). Among these subgroups we choose a subgroup with
minimal i . Set ˛.g/D i , and !.g/D j . The number jjgjj D !.g/�˛.g/C 1 will
be called the width of the element g .

Denote by gR (respectively gL ) the cyclic reduction of g written as a word in the
right (in the left) basis of G˛.g/;!.g/ .

Definition 3.1 Let g D z1z2 : : : zl be the normal form with respect to the decomposi-
tion N DN1 � � � � �Nk , that is each zi belongs to some factor of this decomposition
and zi ; ziC1 do not belong to the same factor. We will call any such zi a piece of g

and sometimes use l.g/ for l .

We will call g a special element of N if

(1) g has minimal length l among all its conjugates in N (this means, that z1 and zl

lie in different factors of this decomposition if l > 1),

(2) if l D 1, then g has minimal width among all its conjugates in N ,

(3) no one zi is conjugate in H to a power of b .

Note, that if g is a special element and l.g/ > 1, then g written in the right basis
of G˛.g/;!.g/ , is cyclically reduced. Moreover, g has minimal width among all its
conjugates in N .

The aim of this section is to prove Corollary 3.4. This will be done with the help of the
following lemma.

Lemma 3.2 Let g be a special element of N . Then the word gR contains a letter
from Y˛.g/ n fb˛.g/g and the word gL contains a letter from Y!.g/ n fb!.g/g).

Proof We will prove the lemma for gR .

Case 1 Suppose that jjgjj> kC 1.

Then the right basis of G˛.g/;!.g/ does not contain the letter b˛.g/ . Suppose that gR

does not contain a letter from Y˛.g/nfb˛.g/g. Then gR 2G˛.g/C1;!.g/ , a contradiction
with the minimality of the width of g among its conjugates in N .

Case 2 Suppose that jjgjj< kC 1.

Then G˛.g/;!.g/ D G˛.g/ � � � � �G!.g/ 6 N
˛.g/
� � � � �N

!.g/
, where xi denotes the

residue of i modulo k . Note that in this case the right basis of G˛.g/;!.g/ coincides
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with Y˛.g/[ � � �[Y!.g/ . If l.g/ > 1, then as it was mentioned g is cyclically reduced
in this basis, and hence g D gR . Then by condition (3), every piece of gR which lies
in G˛.g/ contains a letter from Y˛.g/ n fb˛.g/g. If l.g/D 1, then ˛.g/D !.g/ and
again by (3) the word gR contains a letter from Y˛.g/ n fb˛.g/g.

Let B be a group, A 6 B , C C B . We will write A ,! B=C only in the case when
A\C D 1, meaning the natural embedding. The following theorem is a reformulation
of the Magnus Freiheitssatz.

Theorem 3.3 [6] Let F be a free group with a basis X , and g be a cyclically reduced
word in F with respect to X , containing a letter x 2X . Then the subgroup generated
by X n fxg is naturally embedded into the group F=hhgii.

Corollary 3.4 Let g be a special element of N and j 0; j be integer numbers such
that j 0 6 ˛.g/ and !.g/ 6 j . Then G˛.g/C1;j ,! Gj 0;j=hhgii and Gj 0;!.g/�1 ,!

Gj 0;j=hhgii.

Proof We will prove only the first embedding. Recall that gR is the cyclic reduction
of g written as a word in the right basis of G˛.g/;!.g/ . The element gR remains
cyclically reduced, if we rewrite it in the right basis of Gj 0;j . Moreover, Lemma 3.2
implies, that gR written in the right basis of Gj 0;j contains a letter from Y˛.g/nfb˛.g/g.
On the other hand, any element of G˛.g/C1;j written in this basis does not contain this
letter. By Theorem 3.3, G˛.g/C1;j ,!Gj 0;j=hhgii.

4 The structure of some quotients of Gn;m

Let r be any special element of N . We denote ri D x�irxi for i 2 Z. Clearly
ri is a special element. Moreover, ˛.riC1/ D ˛.ri/C 1, !.riC1/ D !.ri/C 1. In
particular, all ri have the same width. Let j 6 i . Our aim is to present the group
G˛.rj /;!.ri /=hhrj ; rjC1; : : : ; riii as an amalgamated product. This will be done with the
help of Lemma 4.1.

Recall that wi denotes the word biuivi (see the notation of Section 3).

First we introduce a technical notion: the left and the right sets of words with respect
to ri . The left set, denoted L.ri/, is fw!.ri /�k ; : : : ; w˛.ri /�1g. The right set, denoted
R.ri/, is fb!.ri /; : : : ; b˛.ri /�1Ckg. We will assume that the subscripts of the elements
of these sets are increasing when reading from the left to the right, so these sets are
empty if !.ri/�˛.ri/ > k�1. Clearly, L.ri/�G�1;˛.ri /�1 and R.ri/�G!.ri /;C1 .
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Lemma 4.1 Let r be a special element of N . Let n;m and i; j be integer numbers
such that j 6 i and m 6 ˛.rj /, and !.ri/ 6 n. Denote s D ˛.ri/ and t D !.ri/� 1.
If s > t , we set Gs;t D 1. Then the following formula holds:

(1) Gm;n=hhrj ; : : : ; riii Š Gm;t=hhrj ; : : : ; ri�1ii �
Gs;t

wlDblCk .l2Li;m;n/

Gs;n=hhriii;

where Li;m;n D fl j wl 2L.ri/; m 6 l 6 n� kg. Moreover, we have

(2) GsC1;n ,!Gm;n=hhrj ; : : : ; riii:

Proof Note that (1) implies (2). Indeed, by Corollary 3.4 we have the embedding
GsC1;n ,!Gs;n=hhriii. We have the embedding Gs;n=hhriii ,!Gm;n=hhrj ; : : : ; riii by
(1). Composing these two embeddings, we get the embedding (2).

Now we will prove (1) using induction by i � j . For i � j D 0 the formula (1) has the
form

Gm;n=hhriii Š Gm;t �
Gs;t

wlDblCk .l2Li;m;n/

Gs;n=hhriii:

Let M be the subgroup of Gm;n generated by Gs;t and the set fblCk j l 2 Li;m;ng.
Clearly, M is a subgroup of Gm;t and Gs;n . It is sufficient to prove that M embeds
into Gs;n=hhriii. Consider two cases.

Case 1 Suppose that k > jjri jj.

By definition, the group M lies in the subgroup generated by the set Y˛.ri / [ � � � [

Y!.ri /�1 [ fb˛.ri /; : : : ; bminf˛.ri /�1Ck;ngg. In that case this set is a part of the left
basis of Gs;n . Consider the cyclically reduced word in this basis, corresponding to
ri . Lemma 3.2 implies that it contains a letter from Y!.ri / n fb!.ri /g. Hence, by
Theorem 3.3, M embeds into Gs;n=hhriii.

Case 2 Suppose that k < jjri jj.

In that case M DGs;t and the desired embedding follows from Corollary 3.4.

Thus, the base of induction holds. Suppose that the formula (1) holds for j ; i and
prove it for j ; i C 1. Thus, we need to prove that

(3) Gm;n=hhrj ; : : : ; riC1ii Š Gm;tC1=hhrj ; : : : ; riii �
GsC1;tC1

wlDblCk .l2LiC1;m;n/

GsC1;n=hhriC1ii:

Let M be the subgroup of Gm;n generated by GsC1;tC1 and the set fwl j l 2LiC1;m;ng.
Equivalently, M is generated by GsC1;tC1 and the set fblCk j l 2 LiC1;m;ng. It
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is sufficient to prove that M embeds naturally into the factors of (3), that is into
Gm;tC1=hhrj ; : : : ; riii and GsC1;n=hhriC1ii.

The group M can be considered as a subgroup of GsC1;n , and GsC1;n naturally embeds
into Gm;n=hhrj ; : : : ; riii by (2). Hence M naturally embeds into Gm;n=hhrj ; : : : ; riii.
Thus M naturally embeds into Gm;tC1=hhrj ; : : : ; riii, since M 6 Gm;tC1 6 Gm;n .

The embedding of M into GsC1;n=hhriC1ii can be proved by the same argument as in
the case of the base of induction.

The following lemma can be proved similarly.

Lemma 4.2 Let r be a special element of N . Let n;m and i; j be integer numbers
such that j 6 i and m 6 ˛.rj /, and !.ri/6 n. Denote s D ˛.rj /C 1 and t D !.ri/.
If s > t , we set Gs;t D 1. Then the following formula holds:

Gm;n=hhrj ; : : : ; riii Š Gm;t=hhrj ii �
Gs;t

wlDblCk .l2Lj ;m;n/

Gs;n=hhrjC1; : : : ; riii;

where Li;m;n D fl j wl 2L.ri/; m 6 l 6 n� kg.

5 Proof of Proposition 2.1

Let r and s be two elements of H with the same normal closure and rx D 0. Recall
that N denotes the kernel of the homomorphism H ! Z, sending x to 1 and each
other generator of H to 0. Denote ri D x�irxi , si D x�isxi , i 2Z. Then ri ; si 2N .
Moreover, the sets RD f: : : ; r�1; r0; r1; : : : g and S D f: : : ; s�1; s0; s1; : : : g have the
same normal closure in N . We will prove that some ri is conjugate to s˙1

0
in N . This

will imply, that r is conjugate to s˙1 in H .

We may assume, that r and s are special elements. Indeed, let r D z1z2 : : : zl and
s D c1c2 : : : cl 0 be normal forms with respect to the decomposition N1 � � � � �Nk .
Conjugating, we may assume that the condition (1) of Definition 3.1 is satisfied.
Applying a power of an automorphism  from Lemma 2.2, we may assume that the
condition (3) is satisfied. Finally, if l D 1 or l 0D 1, we may conjugate r or s to ensure
the condition (2).

It follows that ri and si are special elements and ˛.riC1/ D ˛.ri/C 1, !.riC1/ D

!.ri/C 1. In particular, all ri have the same width. The same is valid for si .
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Since s0 can be deduced from R in N , there exist integer numbers j ; i such that
j 6 i and s0 is trivial in G˛;!=hhrj ; rjC1; : : : ; riii, where ˛ D ˛.rj /, ! D !.ri/. We
assume that i � j is minimal possible. By Lemma 4.1 we have

G˛;!=hhrj ; : : : ; riii Š G˛;!�1=hhrj ; : : : ; ri�1ii �
A

G˛.ri /;!=hhriii;

for some subgroup A.

It follows that s0 …G˛;!�1 , otherwise s were trivial in G˛;!�1=hhrj ; : : : ; ri�1ii, that
contradicts to the minimality of i � j . Hence, s0 written as a word in the left basis of
G˛;! must contain a letter from Y! .

Now we will prove that ˛.s0/ D ˛ and !.s0/ D ! . If s0 contains a letter from
Y! n fb!g, then clearly, !.s0/> ! .

Suppose that s0 contains the letter b! , but does not contain any letter from Y! n fb!g.
Then b! belongs to the left basis of G˛;! , what can happens only if ! �˛C 1 6 k .
But in this case s0 contains a piece, which is a power of b! – a contradiction.

Thus, we have proved that !.s0/ > ! . Analogously, ˛.s0/ 6 ˛ . Hence, ˛.s0/ D ˛

and !.s0/D ! . In particular, jjs0jj D !�˛C 1 > jjrj jj. By symmetry, jjrj jj> jjs0jj.
Hence jjrj jj D jjs0jj and ˛ D ˛.rj /, ! D !.rj /. It follows that s0 can be deduced
from rj in G˛;! and the subscript j is determined from the equation ˛.s0/D ˛.rj /.
Similarly, rj can be deduced in G˛;! from s0 . By Theorem 1.1, s0 is conjugate to
r˙1
j in G˛;! . Hence s is conjugate to r˙1 in H .
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