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A Magnus theorem for some one-relator groups

OLEG BOGOPOLSKI
KONSTANTIN SVIRIDOV

We will say that a group G possesses the Magnus property if for any two elements
u,v € G with the same normal closure, u is conjugate to v or v~!. We prove that
some one-relator groups, including the fundamental groups of closed nonorientable
surfaces of genus g > 3 possess this property. The analogous result for orientable
surfaces of any finite genus was obtained by the first author [1].

20F34; 20E45

1 Introduction

In 1930 W Magnus published a very important (for combinatorial group theory and
logic) article where he proved the so-called Freiheitssatz and the following theorem.

Theorem 1.1 [6] Let F be a free group and r,s € F. If the normal closures of r

and s coincide, then r is conjugate to s or s 1.

In [2], O Bogopolski, E Kudryavtseva and H Zieschang proved the analogous result for
fundamental groups of closed orientable surfaces in case where r and s are represented
by simple closed curves. The suggested proof was geometrical and used coverings,
intersection number of curves and Brouwer’s fixed-point theorem. However, they were
not able to generalize it for arbitrary elements 7, s.

Later O Bogopolski, using algebraic methods in the spirit of Magnus, proved the desired
result without restrictions on r, s.

Theorem 1.2 [1] Let G be the fundamental group of a closed orientable surface and

r,s € G. If the normal closures of r and s coincide, then r is conjugate to s or s\

In [5], Howie proposed another, topological, proof of this theorem. Both proofs do not

work in the nonorientable case. The main result of the present article is the following
theorem.
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Main Theorem Let G ={a,b, y1,..., Ve |[a,bluv), where e =2, u, v are nontrivial
reduced words in letters y1, ..., Ye, and u, v have no common letters. Let r,s € G be

two elements with the same normal closures. Then r is conjugate to s or s~ 1.

It is known that the fundamental group of a closed nonorientable surface of genus k£ =3
has the presentation (xi, x5,...,Xg | [x1, xz]x§ S ~x,€). So, we have the following
corollary.

Corollary 1.3 Let G be the fundamental group of a closed nonorientable surface of
genus at least 4, and r,s € G . If the normal closures of r and s coincide, then r is

conjugate to s or s !,

Note that this corollary trivially holds for genus 1 and 2, but we do not know, whether
it holds for genus 3.

We will say that a group G possesses the Magnus property, if for any two elements r, s
of G with the same normal closures we have that r is conjugate to s or s~!. So, all
the above theorems imply that the fundamental group of any compact surface, except
of the nonorientable surface of genus 3, possesses the Magnus property.

It was shown in [1] that the Magnus property does not hold for many one-relator groups,
including generalized Baumslag—Solitar groups, all noncyclic one-relator groups with
torsion, and infinitely many one-relator torsion-free hyperbolic groups.

Now we discuss some logical aspects concerning this property. It was noticed in [1] that
if two groups Gy, G, are elementary equivalent and G possesses the Magnus property,
then G, possesses this property too. In particular, any group, which is elementary
equivalent to a free group or a free abelian group possesses the Magnus property. This
gives another way of proving of Theorem 1.2 and Corollary 1.3. However, there are
groups, which are not even existentially equivalent to a free group (hence, they are
not limit groups), but possess the Magnus property. The easiest example is the direct
product Fj x Fy, of nontrivial free groups of ranks 7, m, where n 4+ m = 3. The other
example is the following:

G = (a,b,xl,...,xn,yl,...,ym|[a,b][X,Y]Zk),

where k > 4, X, Y are words in the letters x1,...,x,, and Z is a word in the letters
V1s-..»Vm,suchthat [X,Y]# 1 and Z # 1 in the corresponding free groups. This
group possesses the Magnus property by our Main Theorem, but is not existentially
equivalent to a free group. Indeed, by [3], for any / > 1 the /—th power of a nontrivial
element of a free group can not be expressed as a product of less than (/ + 1)/2
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commutators. Thus, the following formula is valid in G, but is not valid in any free

group:
321,22,23, 24,2 (2 # 1 /\[21722][23,241216 =1).

Problems (1) Does every amalgamated product A xz B, where A, B are free groups
and Z is a maximal cyclic subgroup in both factors, possesses the Magnus property?

(2) Does every limit group possesses the Magnus property?
(3) Does the group G = (a, b, ¢ | a®b?c?) possesses the Magnus property?

(4) Let A and B be torsion free groups which possess the Magnus property. Does
the group A4 * B possesses the Magnus property? (A positive answer in a partial case
can be found in the paper by Edjvet [4]. Note also, that the Magnus property is closed
under direct products.)

Some other problems related to the Magnus property are collected in [1].

The plan of this paper is the following. In Section 2 we deduce the Main Theorem
from Proposition 2.1 and prove auxiliary Lemma 2.2. In Section 3 we introduce
some technical notions like the left and the right bases of a subgroup, the width of an
element, a piece of an element, a special element, and prove auxiliary Lemma 3.2 and
Corollary 3.4. In Section 4 we present some quotients as amalgamated products and
prove the crucial Lemma 4.1. In Section 5 we prove Proposition 2.1.

Acknowledgements The first author was partially supported by INTAS grant N 03-
51-3663 and by the grant Complex integration projects of SB RAS N 1.9.

2 Some reduction

First we introduce notation. Let A be a group, g,/ € A. The normal closure of g in
A is denoted by {(g)) 4 or simply ((g)) if the group is clear from the context. Denote
[g.h] = g 'h~'gh. Let X be an alphabet, x € X and r be a word in the alphabet
X UX~!. By ry we denote the exponent sum of x in r.

We will deduce the Main Theorem from the following proposition.

Proposition 2.1 Let H = (x,b, V1, ..., ye | [x¥, bluv), where e =2, k #0, u, v are
nontrivial reduced words in y1, ..., Ye, and u, v have no common letters. Let r,s € H
be two elements with the same normal closures and let ¥, = 0. Then r is conjugate to

sors!.
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Proof of the Main Theorem Let r, s € G and the normal closures of ¥ and s coincide.
Suppose that rp = 0. In this case we will use another presentation of G':

G=(ab,y1.....ye|[b.alv'u™").
Then the Main Theorem follows immediately from Proposition 2.1.

Now suppose that r; £ 0. In this case we can embed naturally the group G into the

group
H=G x (x]),

a=x"b
where x is a new letter. Clearly, the normal closures of r and s in H coincide. To
finish the proof, we need the following claim.

Claim The elements r and s are conjugate in H if and only if they are conjugate in G .

Proof Suppose that ¥ = h~'sh, where h € H. Write h = g1z ...gnZngn41, Where
zie{x,x%, ..., xI"=1 ¢, € G and g»,..., g, are nontrivial (g; and g,4+; may
be trivial). We may assume that 7 is minimal possible. Suppose that #» = 1. From
the normal form we deduce that gl_lsgl € {(a). Then z; centralizes this element, that
contradicts to the minimality of n. Hence, n =0 and h € G. O

So, we will work now with the group H . This group has the following presentation:
(x,b, ¥1,..., Ve |[x"", bluv).

Let b = x"h. Using Tietze transformation we can rewrite this presentation as
(XD, y1,....ye |[x", bluv).

Writing r in the generators of this presentation, we have rx = rqrp — rprga = 0. Again,

by Proposition 2.1, r is conjugate to s*! in H and, hence in G. |

Let ¢y, ..., cp be the letters of the word u, and dy, ..., d, be the letters of the word
v. Consider the following automorphism of H:

XX

) b bu
v: ci > xKeixk i=1,...,p)
dj > x“ku=1xkd; x~*uxk (J=1....9).

Lemma 2.2 Let i be a nontrivial element of H . Then there exists a natural ng such
that for all n > ng the element " (h) is not conjugate to a power of b.
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Proof Suppose that there exists an m such that ¥ (/) is conjugate to a nonzero
power of b. Then for any / > 0 the element ™% (h) is conjugate to a nonzero power
of b ]_[g;z, x %y xtk  But any such power is not conjugate to a power of b since its
image in H/{{b, x)) is nontrivial. |

3 Left and right bases

Without loss of generality, we may assume that & > 0. Consider the homomorphism
H — 7, which sends x to 1 and any other generator of H to 0. Denote its kernel by N .
Denote g; =x 'gx’ and Y; ={bi, (»1)i. ..., (ye)i}. Using the Reidemeister—Schreier
method we can find the following presentation of N :

Nf:(LJEthWiZbH%(iEZ»-
i€Z

Denote by w; the word b;u;v;. Thus, w; = b; 4y in N. We will use the following
three presentations of N depending on a situation:

(a) N is the free product of the free groups G; = (Y; |) (i € Z) with amalgamation,
where G; and G;; are amalgamated over the cyclic subgroup generated by w; in G;
and by b; 1 in G;1k. Denote this cyclic subgroup by Z; .

(b) N = Ny*---x N}, where Nl:"'*Gl—k*ZlGl*Z[+kGl+k*~~" (I=1,...,k).
Note that each N; is Y —invariant.

(c) N is the free group with the free basis | ;<7 (Yi \ {bi}) U {b1.bs, ..., bx}. This
can be proved with the help of Tietze transformations.

For each i < j denote G; j = (G;, Gi+1,...,Gj). The group G;,; has two special
free bases

i bigts . buingik—1,30Y [ 7\ {1

i<I<j

and U (le\{bl})u {bj7bj—1v---vbmax{j—k+l,i}}

i<I<j

which will be called the left and the right basis of G;,; respectively. The idea behind
the left basis is the following: if i +k </ < j, then we can replace each letter b,
by the word b;_ju;_jv;_;. Thus we can eliminate b;. The idea behind the right
basis is analogous: if i </ < j —k, then we can replace each letter b; by the word
btk Ul_l ”l_l . In that case we can also eliminate b; .
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Let g be a nontrivial element of N . Consider all the subgroups G;, ; such that g € G; ;
and j —i is minimal. There can be several such subgroups (for example if g = bygby 41,
then g € Gy k41 and g € Go,1). Among these subgroups we choose a subgroup with
minimal 7. Set «(g) =1, and w(g) = j. The number ||g|| = w(g) —a(g) + 1 will
be called the width of the element g.

Denote by gg (respectively gy ) the cyclic reduction of g written as a word in the

right (in the left) basis of Gy (g),0(g)-

Definition 3.1 Let g =z;z;...z; be the normal form with respect to the decomposi-
tion N = Ny *---* Ng, that is each z; belongs to some factor of this decomposition
and z;, z;;1 do not belong to the same factor. We will call any such z; a piece of g
and sometimes use /(g) for /.

We will call g a special element of N if

(1) g has minimal length / among all its conjugates in N (this means, that z; and z;
lie in different factors of this decomposition if / > 1),

(2) if [ =1, then g has minimal width among all its conjugates in N,
(3) no one z; is conjugate in H to a power of b.
Note, that if g is a special element and /(g) > 1, then g written in the right basis

of Gg(g),0(g)- 18 cyclically reduced. Moreover, g has minimal width among all its
conjugates in N .

The aim of this section is to prove Corollary 3.4. This will be done with the help of the

following lemma.

Lemma 3.2 Let g be a special element of N. Then the word gg contains a letter
from Yy (g) \ 1ba(g)} and the word g, contains a letter from Yy, (g) \ 1Dy () })-

Proof We will prove the lemma for gg.

Case 1 Suppose that ||g|| =k + 1.

Then the right basis of Gy (g),0(g) does not contain the letter by (4). Suppose that gg
does not contain a letter from Yy (4) \{bq(g)}- Then gg € Gy (g)+1,0(¢)» @ contradiction
with the minimality of the width of g among its conjugates in V.

Case 2 Suppose that ||g|| <k + 1.

Then Gy(g),0(g) = Ga(e) **** * Gu(g) < N@ H ook N@, where i denotes the
residue of i modulo k. Note that in this case the right basis of Gy (g),w(g) coincides
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with Yy (g)U-+-UY4(g). If [(g) > 1, then as it was mentioned g is cyclically reduced
in this basis, and hence g = gg. Then by condition (3), every piece of gg which lies
in Gg(g) contains a letter from Yy (o) \ {by(g)}- If /(g) =1, then a(g) = w(g) and
again by (3) the word gg contains a letter from Yy (o) \ {ba(g)}- |

Let B be a group, A < B, C < B. We will write A < B/C only in the case when
ANC =1, meaning the natural embedding. The following theorem is a reformulation
of the Magnus Freiheitssatz.

Theorem 3.3 [6] Let F be a free group with a basis X , and g be a cyclically reduced
word in F with respect to X , containing a letter x € X . Then the subgroup generated
by X \ {x} is naturally embedded into the group F/{(g)).

Corollary 3.4 Let g be a special element of N and j', j be integer numbers such
that j' < a(g) and w(g) < j. Then Gy(gy+1,j = Gjr,j/{(g) and G} y(g)—1 —
Gjr.j/{g)-

Proof We will prove only the first embedding. Recall that g is the cyclic reduction
of g written as a word in the right basis of Gy(g),0(g)- The element gg remains
cyclically reduced, if we rewrite it in the right basis of G j. Moreover, Lemma 3.2
implies, that g g written in the right basis of G- ; contains a letter from Yy (4) \{bg(g)}-
On the other hand, any element of Gy (g)+1,; Written in this basis does not contain this
letter. By Theorem 3.3, Gy (g)+1,; = Gjr,;/{g)- |

4 The structure of some quotients of G, ,,

Let r be any special element of N. We denote r; = x'rx’ for i € Z. Clearly
r; is a special element. Moreover, «(rj+1) = a(r;) + 1, w(riy1) = o) + 1. In
particular, all »; have the same width. Let j < i. Our aim is to present the group
Go(r;),w(ri)/ (rjsTj+1, -, 7i)) as an amalgamated product. This will be done with the
help of Lemma 4.1.

Recall that w; denotes the word b;u;v; (see the notation of Section 3).

First we introduce a technical notion: the left and the right sets of words with respect
to r;. The left set, denoted L(r;), iS {We(r;)—k» - - - » Wa(r;)—15- Lhe right set, denoted
R(ri), 18 {by(r;)s - - -+ ba(ri)—1+k § - We will assume that the subscripts of the elements
of these sets are increasing when reading from the left to the right, so these sets are
empty if w(r;)—a(r;) >k—1. Clearly, L(r;) C G_oo q(r;)—1 and R(77) C Gy(r;),+00-
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Lemma 4.1 Letr be a special elementof N . Let n,m and i, j be integer numbers
such that j <i and m < a(rj), and w(r;) <n. Denote s = a(r;) and t = w(r;) —1.
If s > t, we set Gy = 1. Then the following formula holds:

(1) Gmn/(tj, - 1i) = Gy /(rjs. .. Fim1) * G/ (1),

s.t
wy =bl+k (IELi,m,n)

where Limn =1{l | w; € L(r;), m <] <n—k}. Moreover, we have

(2) Gs+1,n;)Gm,n/«rj»---»ri»-

Proof Note that (1) implies (2). Indeed, by Corollary 3.4 we have the embedding
Gs+1.0 = Gsn/((ri)). We have the embedding G, /(i) = Gmn/{rj,....1i)) by
(1). Composing these two embeddings, we get the embedding (2).

Now we will prove (1) using induction by i — j. For i — j = 0 the formula (1) has the
form

Gman/{ri)) = Gmy G* Gsn/{(ri))-

st

w;=b4k (€Li m.n)
Let M be the subgroup of G, , generated by G, and the set {b;4x |/ € Limn}-
Clearly, M is a subgroup of G, and Gy . It is sufficient to prove that M embeds
into Gy, /((ri)). Consider two cases.

Case 1 Suppose that k = ||r;]].

By definition, the group M lies in the subgroup generated by the set Y,y U---U
Yoir—1 Y Da(ri)s - - - » Pminga(rj)—14k,n}§ - In that case this set is a part of the left
basis of Gy . Consider the cyclically reduced word in this basis, corresponding to
ri. Lemma 3.2 implies that it contains a letter from Y,,,) \ {by(,)}. Hence, by
Theorem 3.3, M embeds into Gy, /{(r)).

Case 2 Suppose that k < ||r;]|.
In that case M = G and the desired embedding follows from Corollary 3.4.

Thus, the base of induction holds. Suppose that the formula (1) holds for j,i and
prove it for j,i + 1. Thus, we need to prove that

3 Gman/(rjse 1rig1) = G /(1) .o 1i)) G~+T,+1 Gsi1,n/{rig1))-

wy=b; 4k I€Li+1,m.n)

Let M be the subgroup of Gy, ,, generatedby Gy ;41 andtheset {w; |/ € L1 mn}.
Equivalently, M is generated by G141 and the set {b;1x |/ € Liy1mny. It
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is sufficient to prove that M embeds naturally into the factors of (3), that is into
Gme+1/(rjs- - ri)) and Gs1.0/(rit1))-

The group M can be considered as a subgroup of G541 ,,and G4 , naturally embeds
into Gy,n/{(rj,....1i)) by (2). Hence M naturally embeds into Gy, /{(rj, ..., 1i))-
Thus M naturally embeds into G, 1/ (rj,... 7)), since M < Gpr41 < G-

The embedding of M into Gg1,,/{(ri+1)) can be proved by the same argument as in
the case of the base of induction. |

The following lemma can be proved similarly.

Lemma 4.2 Letr be a special elementof N . Let n,m and i, j be integer numbers
such that j <i and m < a(rj), and w(r;) <n. Denote s = o(rj) + 1 and t = w(r;).
If s > t, we set Gg; = 1. Then the following formula holds:

Gmn/ (1o} = Gma /(i) 0 Gon/{rjrs-oomil),

st
wy=b;4+x €L} m.n)

where Limpy =14 | wy € L(r;), m <l <n—k}.

S Proof of Proposition 2.1

Let » and s be two elements of H with the same normal closure and r, = 0. Recall
that N denotes the kernel of the homomorphism H — Z, sending x to 1 and each
other generator of H to 0. Denote r; = x“irxt, s =x"lsx!, i €Z. Then ri,s; € N.
Moreover, the sets R ={...,r—1,7r9,71,...yand S ={..., 51,809, 51,...} have the
same normal closure in N . We will prove that some r; is conjugate to sg“ in N. This
will imply, that r is conjugate to s*! in H.

We may assume, that » and s are special elements. Indeed, let r = z;z,...z; and
s = cica...cp be normal forms with respect to the decomposition Ny * --- % Nj.
Conjugating, we may assume that the condition (1) of Definition 3.1 is satisfied.
Applying a power of an automorphism ¥ from Lemma 2.2, we may assume that the
condition (3) is satisfied. Finally, if / =1 or I’ =1, we may conjugate r or s to ensure
the condition (2).

It follows that r; and s; are special elements and «(r;+1) = (1) + 1, w(riy1) =
w(ri) 4+ 1. In particular, all r; have the same width. The same is valid for s;.
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Since sy can be deduced from R in N, there exist integer numbers j,i such that
J <i and sq is trivial in G o /{(rj,7j41,....7i), where @ = a(rj), o = w(r;). We
assume that 7 — j is minimal possible. By Lemma 4.1 we have

Ga,w/«l”j,. .. vri» = Ga,w—l/«”j» .- -ari—l»jGa(ri),w/«ri»’

for some subgroup A.

It follows that so € Gy, —1, otherwise s were trivial in Gy ,—1/((7j,...,7i—1)), that
contradicts to the minimality of i — j. Hence, so written as a word in the left basis of
Gy, must contain a letter from Y, .

Now we will prove that a(sg) = @ and w(sg) = w. If s¢ contains a letter from
Yo \ {bo}, then clearly, w(sg) = w.

Suppose that sy contains the letter b,,, but does not contain any letter from Yy, \ {bs}.
Then b, belongs to the left basis of Gg 4, What can happens only if o —a +1 < k.
But in this case so contains a piece, which is a power of by, — a contradiction.

Thus, we have proved that w(sg) = w. Analogously, a(sg) < «. Hence, a(sg) = «
and w(sp) = w. In particular, ||so|| =@ —a +1 = |[rj|[. By symmetry, ||rj|| = ||sol].
Hence ||rj|| = |[so|| and o = a(rj), @ = w(rj). It follows that so can be deduced
from r; in Gg,, and the subscript j is determined from the equation a(sg) = a(7;).
Similarly, r; can be deduced in Gg,, from so. By Theorem 1.1, s¢ is conjugate to
rjil in Gy, . Hence s is conjugate to r¥in H. O
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