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Intersections of conjugates of Magnus subgroups
of one-relator groups

DONALD J COLLINS

In the theory of one-relator groups, Magnus subgroups, which are free subgroups
obtained by omitting a generator that occurs in the given relator, play an essential
structural role. In a previous article, the author proved that if two distinct Magnus
subgroups M and N of a one-relator group, with free bases S and T are given,
then the intersection of M and N is either the free subgroup P generated by the
intersection of S and T or the free product of P with an infinite cyclic group.

The main result of this article is that if M and N are Magnus subgroups (not
necessarily distinct) of a one-relator group G and g and h are elements of G , then
either the intersection of gMg�1 and hN h�1 is cyclic (and possibly trivial), or
gh�1 is an element of NM in which case the intersection is a conjugate of the
intersection of M and N .

20F05

1 Introduction

A Magnus subgroup of a one-relator group G D hX W r D 1i, where r is cyclically
reduced, is a subgroup generated by a Magnus subset S of X , ie a subset S which
omits a generator explicitly occurring in the relator r . By the Freiheitssatz of Magnus
(see for example page 104 or page 198 of Lyndon and Schupp [5]), any such subgroup
is free with the given subset as basis.

The classical proof of many theorems on one-relator groups is by induction on the
length of the relator. In its modern form, the inductive step in the classical proof
expresses a one-relator group G as an HNN-extension of a one-relator base group G�

where the edge subgroups are Magnus subgroups of G� . Thus Magnus subgroups play
a central role in this approach to the theory of one-relator groups.

In a previous article [3], we determined the form of the intersection of two Magnus
subgroups. The precise statement is:

Published: 29 April 2008 DOI: 10.2140/gtm.2008.14.135



136 Donald J Collins

Theorem 1 Let GDhX W r D 1i, where r is cyclically reduced, be a one-relator group
and let M DF.S/;N DF.T / be Magnus subgroups of G . If M \N is distinct from
F.S \T /, then M \N is the free product of F.S \T / and an infinite cycle.

In the present article we examine the intersection of conjugates of two Magnus sub-
groups, and it suffices to deal with the case of an intersection of the form gMg�1\N ,
where M DF.S/;N DF.T /. A simple and obvious argument shows that if g 2NM ,
then gMg�1\N is just a conjugate of M \N by an element of N and in particular
is isomorphic to M \N . Our main conclusion deals with the alternative case.

Theorem 2 Let G D hX W r D 1i, where r is cyclically reduced, be a one-relator
group and let M D F.S/;N D F.T / be Magnus subgroups of G , allowing M DN .
For any g 2G , either gMg�1\N is cyclic (possibly trivial) or g 2NM .

A simple argument also enables one to describe the form of an intersection gM g0
�1
\N ,

where M;N are Magnus subgroups and g;g0 2 G , in terms of the intersections
gMg�1\N and g0M g0

�1
\N .

It is surprising that the questions addressed in Theorem 1 and Theorem 2 have not been
examined more extensively, given that some of the difficulty in studying one-relator
groups arises precisely from the situation where a pair of Magnus subgroups have
exceptional intersection, that is F.S/\F.T /¤ F.S \T /. However there are some
partial results that deal with special cases of Theorem 1 and Theorem 2. In particular
Bagherzadeh [1] has shown that if M DF.S/ is a Magnus subgroup and g …M , then
gMg�1\M is cyclic (possibly trivial) and in [2], Brodskiı̆ actually considered a more
general situation and showed that in a one-relator product hA�B j r D 1i of locally
indicable groups, the intersections A\B , gAg�1\A and gAg�1\B are all cyclic
(possibly trivial). In the context of one-relator groups, Brodskiı̆’s results imply that
if the Magnus subsets S and T are disjoint, then F.S/\F.T /, gF.S/g�1\F.S/

and gF.S/g�1 \F.T / are cyclic. Finally Newman [6] showed that in one-relator
groups with torsion, Magnus subgroups are malnormal, ie if M DF.S/, where S is a
Magnus subset and g …M , then gMg�1\M is trivial

In addition, in [3], we also showed that, by extending a version of Newman’s argument,
one can easily prove that if the one-relator group G has torsion, ie when the relator is
a proper power, then, for any two Magnus subgroups M D F.S/ and N D F.T / and
any g 2G , M \N is not exceptional and either gMg�1\N is trivial or g 2NM .
Moreover, Newman’s approach – using the so-called Spelling Lemma – also yields,
in the torsion case, an algorithm to determine the precise form of gMg�1 \N , in
particular to determine for a given g whether or not g 2NM . These strong results
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Intersections of conjugates of Magnus subgroups of one-relator groups 137

that follow from Newman’s work underline why one-relator groups with torsion are
easier to work with than one-relator groups in general.

Theorem 1 has been significantly extended and generalised by Howie in [4] where he
provides a detailed description of how the exceptional case can arise and generalises
Theorem 1 to the case of a one-relator product of locally indicable groups. In addition
his methods provide an algorithm to determine for a given one-relator group and two
Magnus subgroups M and N , whether or not M \N is exceptional and to determine
a generator for the additional infinite cycle in the exceptional case.

In contrast to the situation for the intersection of two Magnus subgroups, the algorithmic
problems arising from Theorem 2 remain open. The difficulty appears to be caused
by the case of two-generator one-relator groups. For both Theorem 1 and Theorem 2,
there is nothing to prove in this case, for if G D ha; b j r D 1i, then the Magnus
subgroups M D F.a/ and N D F.b/ are both cyclic. In the case of Theorem 1, the
algorithmic determination of F.a/\F.b/ is provided by a procedure based on the
Baumslag–Taylor algorithm for determining the centre. The methods of [4] then yield
a procedure for the general case. For the case of Theorem 2 when G D ha; b j r D 1i

one has to be able to determine, for a given g 2G , the intersections gF.a/g�1\F.a/

and gF.a/g�1\F.b/. In the latter case, one appears to need, as part of the procedure,
to be able to determine whether or not g 2 F.b/F.a/. For this additional question,
despite the fact that, in his solution to the word problem for one-relator groups, Magnus
proved that one can always decide if a given element lies in a given Magnus subgroup,
the usual inductive technique seems to run aground in the two-generator case when
neither generator has exponent sum zero in the relator.

Addendum 1 to [3] The reader of [3] should note that although, in the definition of
notation on page 273 of [3], it is made clear that the sets A�C and A�� may both be
empty and similarly for C �C and C �� , there is no specific discussion in Sections 5–6 of
[3] of what happens when these possibilities arise. However, as we point out below, in
practice the results in these sections and the similar results in Section 5 are employed
only in situations where all of A�C;A

�
�;C

�
C;C

�
� are nonempty. This point is clarified

in the introduction to Section 4. It is also worth pointing out that B� may be empty –
however since the role of B� throughout the argument is essentially passive, it is clear
that nothing is disturbed if B� is empty.

Addendum 2 to [3] In Lemma 6.1 on page 286 of [3], the notation L is used with two
distinct meanings, only one of which is explained in the text. The meaning explained is
the one that occurs right throughout the whole of [3], namely that L denotes the “lower”
edge group in the representation of our one-relator group G as an HNN-extension, for
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example as G D hG�; b j bLb�1DU i, where U is the upper edge group. The second
meaning, which is used throughout Section 6 of [3] and in Section 5, is to denote by
L.z/ the syllable length, as defined on page 283 of [3] of an element z of, for instance,
F.A�C;B

�;C �/.

2 Structure and simple cases in the proof of Theorem 2

The proof of Theorem 2 proceeds, as is usual, by induction on the length of the relator.
We make various initial reductions and then address three separate cases at the inductive
step. Of these, the first is straightforward and the third reduces easily to the second.
However, the second case is complicated and requires substantial analysis, making use
of some of the technical results from [3].

Initial Observations

(i) For small values of jr j, the result is elementary by inspection.

(ii) The general case will follow, via the normal form theorem for free products,
from the case when S [T D Supp.r/ and so we can always assume the latter.

(iii) When jSupp.r/j D 2, the conclusion is immediate, so that we can assume that
jSupp.r/j � 3.

(iv) If S �T then gF.S/g�1\F.T /� gF.T /g�1\F.T / which, by [1], is cyclic
unless g 2 F.T / so that we can always assume that S \T is a proper subset of
both S and T ;

(v) (assuming (iv)) If we write B D S \T and then choose A and C disjoint so
that S DA[B and T DB[C , then the general case reduces to the case when
A and C are singletons, say AD fag and C D fcg.

We therefore take all of these as given and embark upon the inductive case; our strategy
will always be to assume the conclusion false and then work our way to a contradiction.
In particular we shall assume that there exist g … F.B;C /F.A;B/; h; h0 2 F.A;B/

and k; k 0 2F.B;C / such that fh; h0g (and, necessarily, fk; k 0g) constitute a free basis
of the corresponding subgroup they generate. We shall refer to such a configuration as
a counterpair.

There are three cases:

(2.1) Case Assumption: Either a or c has exponent sum zero in r .

(2.2) Case Assumption: Neither a nor c has exponent sum zero in r but there exists
b 2 B such that �b.r/D 0.
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(2.3) Case Assumption: No generator has exponent sum zero in r .

Case 2.1 Without loss of generality we may assume that a has exponent sum zero in
r . We may further assume, by replacing r by a cyclic permutation if necessary, that
c˙1 is the initial letter of r .

In the standard manner we can express G as an HNN-extension of the form G D

hG�; a j aLa�1 D U i where L and U are Magnus subgroups of the base group
G� . To do this we define C � D fc�; : : : ; c�g and B� D fbi ; i 2 Z; b 2 Bg where, as
usual, bi and ci denote the conjugates aiba�i and aica�i with � and � respectively
the minimal and maximal subscripts that appear when we rewrite r as a word r� in
B�[C � . With this notation G�DhB�;C � j r�D 1i and the two edge groups are LD

F.B�;C ��/;U DF.B�;C �C/, where C �� Dfc�; : : : ; c��1g and C �CDfc�C1; : : : ; c�g.
We note that by requiring that r begins with c˙1 we have ensured that � � 0 � � .
(We do not exclude the possibility that � D 0 D � in which case C �C and C �� are
both empty but we will not usually make explicit reference to this since the argument
is either unchanged or even simplified.) Given any z 2 U we write  �z for the word
obtained by reducing subscripts by one and similarly for any w 2L, we write �!w when
we increase the subscripts by one.

We can transform any equality gh.A;B/g�1 D k.B;C / into one expressed in the
generators of G as HNN-extension. We write g D g0a"1g1 : : : a

"mgm in reduced
form, where "i D ˙1. Since k omits a, h has zero exponent sum in a and thus
both h and k lie in the base group G� – h 2 F.B�/ and k 2 F.B0; c0/ where
B0 D fb0 j b 2 Bg. Among all counterpairs, we choose one with mD lb.g/ minimal.
If lb.g/D0, then both equalities hold in the base group G� and hence we can only have
g 2 F.B0; c0/F.B

�/. But then clearly g 2 F.B;C /F.A;B/ and we have reached a
contradiction, as we wish.

Suppose, then that la.g/ > 0. Choosing "m D �1, just for definiteness, we obtain
gmhg�1

m D z 2 F.B�;C �C/ and gmh0g�1
m D z0 2 F.B�;C �C/. By the induction

hypothesis on jr j, we can only have gm 2 F.B�;C �C/F.B
�/D F.B�;C �C/. Then

ghg�1
D g0a"1g1 : : : a

"m�1gm�1
 �gm
 �
h �gm

�1g�1
m�1a�"m�1 : : :g�1

1 a�"1g�1
0 D k

and similarly for h0 and k 0 . Since
 �
h and

 �
h0 are conjugates of h and h0 , it follows

from the minimality of our choice of m that the only conclusion we can have is that
g0a"1g1 : : : a

"m�1gm�1
 �gm 2 F.B;C /F.A;B/ and from this in turn it follows that

g 2 F.B;C /F.A;B/, which is the required contradiction.

Case 2.2 To deal with this case we employ techniques similar to those of Section 5 of
[3] and follow pages 272–273 of [3] in our notation and terminology. Thus we express
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G D hX W r D 1i as an HNN-extension of the form G D hG�; b j bLb�1 D U i where
the following hold.

(1) G� D hX � j r�i where X � D fa� ; : : : ; a�; c�; : : : ; c�g [ fxi ; i 2 Zg;x ¤ a; c ,
fa� ; a�; c�; c�g are the respective minimal and maximal generators in r� asso-
ciated with a and c , and otherwise the subscript range is infinite.

(2) Furthermore LD F.A��;B
�;C ��/ and U D F.A�C;B

�;C �C/ where

A� D fa� ; : : : ; a�g; A�C D fa�C1; : : : ; a�g; A�� D fa� ; : : : ; a��1g;

C � D fc�; : : : ; c�g; C �C D fc�C1; : : : ; c�g; C �� D fc�; : : : ; c��1g;

and B� D fxi ;x 2 B0; i 2 Zg where B0 D B n fbg.

We allow the possibility that � D � or �D � , or both. If, for example, � D �, then
A�C and A�� are empty ; arguments which make reference to these must be interpreted
suitably for this case. Also B� may be empty but as noted already in reference to [3],
nothing in an argument will be disturbed if in fact B� is empty.

We employ a subsidiary induction on lb.g/. The inductive step when lb.g/ > 0 is
comparatively straightforward and we deal with it in Section 3. Then in Section 4 we
tackle the core of the argument, namely the case when lb.g/D 0.

Case 2.3 As described below, the standard method for dealing with the case when no
generator has exponent sum zero in r reduces this case to Case 2.2.

We have at least three generators a; b; c where A D fag; b 2 B;C D fcg; suppose
that r has exponent sum ˛ ¤ 0 in a and exponent sum ˇ ¤ 0 in b . Introduce new
generators x;y setting b D y˛ and aD xy�ˇ so that we have embedded G in the
amalgamated free product yG D hG �F.y/ j bD y˛i and then replaced a by x D ayˇ .
The resulting relator yr � r.xy�ˇ;y˛; : : : ; c/ has exponent sum zero in y and our
equalities become gyh.X;Y /g�1 D yk.Y;C / and gyh0.X;Y /g�1 D yk 0.Y;C / where
X D fxg;Y D fy;B0g;C D fcg and B D fb;B0g.

Now Case 2.2 applies and gives the conclusion that either gF.X;Y /g�1 \F.Y;C /

is cyclic or g 2 F.Y;C /F.X;Y /. Clearly F.A;B/ � F.X;Y / and F.B;C / �

F.Y;C /, so that gF.A;B/g�1 \ F.B;C / � gF.X;Y /g�1 \ F.Y;C /. By our
counterpair assumption, gF.X;Y /g�1 \ F.Y;C / cannot be cyclic and therefore
g 2 F.Y;C /F.X;Y /. But G \F.Y;C /F.X;Y /D F.B;C /F.A;B/ and our coun-
terpair assumption rules this out and we have the required contradiction.

This completes the logical structure of the proof of Theorem 2 but of course it remains
to deal with Case 2.2.
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3 Case 2.2: the inductive step when lb.g/ > 0

As noted above, Case 2.2 is dealt with by a subsidiary induction on lb.g/. In this
section we deal with the inductive step of this subsidiary induction and hence reduce
Case 2.2 to the initial step of the subsidiary induction when lb.g/D 0.

Our standpoint here is, therefore, that we have an overall inductive hypothesis which
asserts that the theorem holds for relators of shorter length and, arguing by contradiction,
we are assuming that there exist counterpairs ghg�1 D k and gh0g�1 D k 0 . For the
purposes of the subsidiary induction we know there is a counterpair where lb.g/ is
minimal but strictly positive.

Reduction In any such counterpair lb.h/D lb.k/D lb.h
0/D lb.k

0/D 0.

Proof Suppose not; without loss of generality, we may assume that lb.h/ > 0. Let
us write g D zgb"mgm where m D lb.g/ and lb.zg/ D m� 1. Still without loss of
generality we also assume that "m D�1. Then we can write

ghg�1
D zgb�1gmh0b�1h1 : : : b

�l hlg
�1
m bzg�1

D k:

Now two subcases arise depending on whether or not (the detailed expression for)
ghg�1 is or is not reduced. If the latter occurs, then either �1 D 1 and gmh0 D z 2 U

or �l D�1 and hlg
�1
m D z 2 U . It suffices to assume the first occurs. Substituting for

gm we obtain

zgb�1zh�1
0 hh0z�1bzg�1

D k; zgb�1zh�1
0 h0h0z�1bzg�1

D k 0

and hence

zg �z .b�1h�1
0 hh0b/ �z

�1
bzg�1

D k; zg �z .b�1h�1
0 h0h0b/ �z

�1
zg�1
D k 0:

By the minimality of lb.g/, we deduce that conjugates of h and h0 commute, which of
course is a contradiction, or that zg �z 2 F.B;C /F.A;B/. However, if the latter holds
then g D zgb�1gm D zgb�1zh�1

0
D zg �z b�1h�1

0
2 F.B;C /F.A;B/ and here too we

have the necessary contradiction.

To complete the proof of the Reduction we have to see what happens when our ex-
pression for ghg�1 is reduced. Then of course lb.k/ > 0, say k D k0b�1k1 : : : b

�nkn

(where nD 2mC l ) and hD g�1kg , with g�1kg not reduced. But now we can argue
exactly as we did when ghg�1 was not reduced.

To complete the inductive step in the subsidiary induction, it remains only to show for
the case at hand that we cannot have a counterpair when lb.h/ D lb.k/ D lb.h

0/ D
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lb.k
0/ D 0. We write g D zgb"mgm as above, and can take "m D �1. Then we ob-

tain zgb�1gmhg�1
m bzg�1 D k ; zgb�1gmh0g�1

m bzg�1 D k 0 and hence gmhg�1
m D z 2

U; gmh0g�1
m D z0 2 U: Now these equalities define elements of the intersection

gmF.A�;B�/g�1
m \F.A�C;B

�;C �C/, which involves Magnus subgroups of a group
with a shorter relator. (Note that we cannot have all of A�C;B

�;C �C empty since clearly
h; h0 ¤ 1.) Hence either h and h0 commute or gm 2 F.A�C;B

�;C �C/F.A
�;B�/,

say gm D z0h0 . The former is contradictory and so from the latter we obtain
z0h0hh�1

0
z�1

0
D z and z0h0h0h�1

0
z�1

0
D z0 whence h0hh�1

0
2 U; h0h0h�1

0
2 U . Let

us write x D h0hh�1
0

and x0 D h0h0h�1
0

. Then we have zgb�1z0xz�1
0

bzg�1Dk and
szgb�1z0x0z�1

0
bzg�1Dk 0 . This yields zg �z0

 �x �z0
�1zg�1Dk and zgb�1 �z0

 �
x0 �z0

�1bzg�1D

k 0: By the minimality of lb.g/, we deduce that conjugates of h and h0 commute (either
k and k 0 or  �x and

 �
x0 ) or zg �z0 2 F.B;C /F.A;B/. In the latter case

g D zgb�1gm D zgb�1z0h0 D zg
 �z0h0 2 F.B;C /F.A;B/

and we have the required contradiction when lb.g/ > 0.

4 Case 2.2: the case when lb.g/ D 0

Our standpoint is, again, that we have an overall inductive hypothesis which asserts
that the theorem holds for relators of shorter length and, arguing by contradiction, we
are assuming that there exist counterpairs ghg�1 D k and gh0g�1 D k 0 . This time,
however, we assume that there is a counterpair where lb.g/D 0, ie g 2G� .

Since lb.g/D 0, h and k have the same signature pattern in b and the same is true for
h0 and k 0 . Possibly lb.h/D 0 and h 2G� while if lb.h/ > 0 then we have a sequence
of Normal Form Equalities derived from the equality

ghg�1
� gh0b"1h1 : : : b

"mhmg�1
D k0b"1k1 : : : b

"mkm � k

in which h; k are expressed in reduced form in terms of the HNN extension G D

hG�; b j bLb�1 D U i. A similar observation applies to h0 .

By Lemma 5.1 of [3], h0; : : : hm 2 F.A�;B�/ and k0; : : : km 2 F.B�;C �/. The
Normal Form Equalities for the ghg�1 D k are then

gh0 D k0z0; z0h1 D k1z1; z1h2 D k2z2; : : : ; zm�1hm D kmg

where z0; : : : zm�1 lie in L or U according as "1; : : : ; "m are ˙1 and zi�1 represents
a “downshift” or “upshift” of subscripts according as "i D ˙1. When we have
such a sequence, gh0b"1h1 : : : b

"i hi D k0b"1k1 : : : b
"i kizi and the fact that g …

F.B;C /F.A;B/ means that zi … F.B;C /F.A;B/ and in particular is nontrivial.
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Moreover, when we use the Normal Form Equalities in standardised form, as described
on pages 275-276 of [3], the elements zi will always be nontrivial and of type .A� WC �/.
In fact if zi 2 U then zi must actually be of type .A�C W C

�
C/ in which case both A�C ,

and C �C are nonempty, and therefore both A�� and C �� are nonempty. A similar remark
applies if zi 2L. This means that our applications of the results of Sections 5–6 of [3]
and of Section 5 are applied under the hypotheses that there is no hidden “collapsing”
of the terms denoted by the notation.

We shall use these observations throughout this section without further reference. We
shall establish a series of claims which, cumulatively, will demonstrate that there are
no counterpairs satisfying lb.g/D 0.

Claim 4.1 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 , with lb.g/D 0,
such that minflb.h/; lb.h0/g D 0.

Proof Suppose not; clearly there is no loss of generality in assuming lb.h/D lb.k/D

0. Among all such counterpairs, we choose one with lb.h
0/ D lb.k

0/ minimal. If
lb.h

0/ D lb.k
0/ D 0, then h; h0 2 F.A�;B�/; k; k 0 2 F.B�;C �/ and we have an

immediate contradiction to the overall induction hypothesis.

So we can assume that lb.h
0/D lb.k

0/ > 0. We can write

gh0g�1
D gh00b"1h01 : : : b

"nh0ng�1
D k 00b"1k 01 : : : b

"nk 0n D k 0

and there is no loss of generality in assuming that "1 D 1. Adjusting the equality so
that it is standardised form, we obtain g D k 0

0
z0h0

0
�1 , where z0 2 U is nontrivial of

type .A� W C �/. Substituting for g and replacing the original h; k; h0 and k 0 by the
resulting conjugates, we can rewrite, adjusting our notation, the two equalities in the
form

z0hz�1
0 D k; z0h0z�1

0 � z0bh01b"2 : : : b"nh0nz�1
0 D bk 01b"2 : : : b"nk 0n � k 0:

Since z0¤1 and k …F.B�;C �C/, because z0hz�1
0
Dk cannot hold in F.A�;B�;C �C/,

the equality h D z�1
0

kz0 must define an exceptional element of the intersection
F.A�;B�/\F.A�C;B

�;C �/. By Proposition 5.1 of [3], the basic exceptional relation
is either of the form u D v0v2 , with z0 � v2 or u D zv�1v0zv with z0 � zv . The
former implies that z0 D v

�1
0

u 2 F.B;C /F.A;B/, which we can rule out since z0 is
nontrivial of type .A� WC �/, and so the latter must hold. So we now have a counterpair
of the form

zvhzv�1
D k; zvh0zv�1

D zvbh01b"2 : : : b"nh0nzv
�1
D bk 01b"2 : : : b"nk 0n D k 0:
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Subclaim h0 has uniform signature pattern.

Proof Suppose not; since the initial occurrence of b in h0 has exponent C1, in the
system of equalities yielded by the normal form theorem, we find, for some j (which
can be chosen minimal), zj�12U; wj 2L and ��zj�1h0j Dk 0jwj so that ��zj�1h0jw

�1
j Dk 0j

defines an element of F.A�;B�;C ��/\F.B�;C �/ which must be exceptional since
zj�1 ¤ 1. Hence we can write F.A�;B�;C ��/\F.B�;C �/D hpi �F.B�;C ��/D

hqi �F.B�;C ��/ where p 2 F.A�;B�;C ��/ and q 2 F.B�;C �/. Corollary 5.4 of
[3] implies that p D p1p0p�1

2
, with at least one of p1;p2 nontrivial – for otherwise

F.A�;B�/\F.B�;C �/ would be exceptional, and then, by Proposition 5.2 of [3], zv
would be trivial.

Now the hypotheses of Proposition 5.5 of [3] are satisfied and therefore each extremal
generator appears in just a single syllable of u�1zv�1v0zv . Furthermore p2p�1

0
p1q is

a cyclic rearrangement of u�1zv�1v0zv . This means that zv is intermediate (ie omits all
four extremal generators fa� ; a�; c�; c�g – see page 273 of [3]) and that p1 � p2 � zv .
It follows that  ��zj�1 � zv � wj and hence that

zvh00bh01 : : : bh0j D k 00bk 01 : : : bk 0j zv

zvb�1h0jC1b"jC1 : : : b"nh0n D b�1k 0jC1b"jC1 : : : b"nk 0n

yielding, of course,

zvhzv�1
D k

zvh00bh01 : : : bh0j zv
�1
D k 00bk 01 : : : bk 0j

zvb�1h0jC1b"jC1 : : : b"nh0nzv
�1
D b�1k 0jC1b"jC1 : : : b"nk 0n:

Since h0 is the product of h0
0
bh0

1
: : : bh0j and b�1h0

jC1
b"jC1 : : : b"nh0n and each has

b–length less than h0 , it follows that h commutes with both and therefore with h0 ,
which is a contradiction.

In completing the proof of Claim 4.1, we can thus assume that h0 D bh0
1
b : : : bh0n

and k 0 D bk 0
1
b : : : bk 0n . However it should be noted that, unlike in the proof of the

Subclaim, we do not have any information about F.A�;B�;C ��/\F.B�;C �/ and so
we do not at present know that zv is intermediate.

We obtain the usual system of equalities
 �
zv h01 D k 01z1; : : : ;

 ��zn�1h0n D k 0nzv:

If all these equalities hold freely, then we obtain

h0i D k 0i ; i D 1; 2; : : : ; n and
 �
zv � z1;

 �z1 � z2; : : : ;
 ��zn�1 � zv
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which is clearly impossible. It follows, therefore that some equality does not hold
freely and we have to analyse the sequence

 �
zv h01 D k 01z1;

 �z1h02 D k 02z2; : : :
 ��zn�1h0n D k 0nzv:

To complete the argument for Case 4.1 we require two further results which are similar
in nature to Proposition 6.2 of [3]. These are stated and proved in Section 5 and will
also be used below.

Since one of the inequalities does not hold freely, it follows from Proposition 5.2 below
that zv must be intermediate and hence Proposition 5.5 below can be applied. If nD 1

we have
 �
zv h1 D k1zv:

This does not hold freely and so Proposition 5.5(c) applies, giving
 �
zv � zv

which is impossible. More generally, pick the least i such that  ��zi�1hi D kizi , does
not hold freely, with the appropriate interpretation for i D 1 or i D n. Then

 �
zv � z1;

 �z1 � z2; : : :  ��zi�2 � zi�1

and so L. ��zi�1/ D L.zv/. Again Proposition 5.5(c) applies giving  ��zi�1 � zv and we
have another impossible situation. This is the contradiction we require to conclude the
proof of Claim 4.1.

Unfortunately this is the point at which the argument becomes even more complicated.

Maintaining our notation ghg�1 D k;gh0g�1 D k 0 for counterpairs, we shall write
�b.h/; �b.h

0/ for the number of times that b changes sign in reduced expressions for
h; h0 . We essentially argue by induction on �b.h/C �b.h

0/.

Claim 4.2 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 satisfying
lb.g/D 0 and minflb.h/; lb.h0/g> 0 such that �b.h/C �b.h

0/D 0.

Proof Suppose not; then, without loss of generality, there exists a counterpair

ghg�1
D gh0bh1 : : : hm�1bhmg�1

D k0bk1 : : : km�1bkm D k

gh0g�1
D gh00bh01 : : : h

0
n�1bh0ng�1

D k 00bk 01 : : : k
0
n�1bk 0n D k:and

Among all such pairs we choose one such than mC nD lb.h/C lb.h
0/ is minimal.

To begin with we have no information at all about exceptional intersections within
G� . The first pair of Normal Form equalities are gh0 D k0z0 and gh0

0
D k 0

0
z0

0
.
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Certainly z0; z
0
0

are both nontrivial, for otherwise g 2 F.B;C /F.A;B/, and we can
eliminate g to obtain h�1

0
h0

0
D z�1

0
k�1

0
k 0

0
z0

0
. This equality may hold freely, for

instance when F.A�;B�/\F.A�C;B
�;C �/ is not exceptional, and then we can only

have h0
0
D h0; k

0
0
D k0 and z0

0
� z0 . In this event we can then eliminate  �z0 from

the second pair of Normal Form equalities and analyse the resulting equality. Either
we can continue to make such eliminations, successively identifying terms from the
first member of the counterpair with the corresponding terms of the second or we will
encounter an exceptional equality for F.A�;B�/\F.A�C;B

�;C �/ after elimination.
If the first possibility occurs minfm; ng times then we perform a “Nielsen operation”
on our counterpair and contradict the minimality of mC n (or obtain a counterpair
with minflb.h/; lb.h0/D 0g contradicting Claim 4.1). For instance if m< n, we obtain

gh�1h0g�1
D gh�1

m h0mbh0mC1 : : : bh0ng�1
D k�1

m k 0mbk 0mC1 : : : bk 0n D k�1k

(and gh�1
m h0mg�1 D k�1

m k 0m if nDm). A similar argument applies to the two Normal
Form systems when working from the last pair back towards the first pair, only this time
the elimination and identification process breaks down when we find an exceptional
equality for F.A�;B�;C ��/\F.B�;C �/.

If both elimination and identification processes break down, then we know that both
F.A�;B�/\F.A�C;B

�;C �/ and F.A�;B�;C ��/\F.B�;C �/ are exceptional. Sup-
pose that, starting from the front, the breakdown occurs with h�1

l
h0

l
D z�1

l
k�1

l
k 0

l
z0

l
.

Then Proposition 5.2 of [3] gives us a basic exceptional relator of the form u�1v�1
1
v0v2

with, since we are free at this point to make a choice, v1 � zl ; v2 � z0
l
. In addition,

h0i D hi ; k
0
i D ki ; z

0
i D zi ; 1� i � l � 1 and

gh0bh1 : : : hl�1bhl D k0bk1 : : : kl�1bklv1

gh0bh1 : : : hl�1bh0l D k0bk1 : : : kl�1bk 0lv2and

Conjugating both equalities by gh0bh1 : : : hl�1bhlv
�1
1
D k0bk1 : : : kl�1bkl yields

v1bhlC1b : : : hm�1bhmh0bh1 : : : hl�1bhlv
�1
1

D bklC1b : : : km�1bkmk0bk1 : : : kl�1bkl ;

v1h�1
l h0lbh0lC1b : : : bh0nh0bh1 : : : hl�1bhlv

�1
1

D k�1
l k 0lbk 0lC1b : : : bk 0nk0bk1 : : : kl�1bkl :

Relabelling, we have obtained a counterpair

v1hv�1
1 D v1bh1b : : : bhmv

�1
1 D bk1b : : : bkm D k;

v1h0v�1
1 D v1h00bh01b : : : bh0nv

�1
1 D k 00bk 01 : : : bk 0n D k 0:
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Moreover the exceptional equality for F.A�;B�/\F.A�C;B
�;C �/ has become the

initial Normal Form equality for v1h0v�1
1
D k 0 and hence we can rewrite the second

equality in our counterpair as

v2bh01b : : : bh0nh00v
�1
2 D bk 01 : : : bk 0nk 00:

We shall use the results of Section 5 and Proposition 6.2 of [3] to derive a contradiction.
We consider three cases according as v1 and v2 are or are not intermediate.

Case A Suppose neither v1 nor v2 is intermediate. Then, by Proposition 5.2, all the
equalities in the Normal Form system for v1bh1b : : : bhmv

�1
1
D bk1b : : : bkm must

hold freely. In detail, then, we have

 �v1 � z1;
 �z1 � z2; : : : ;

 ���zm�2 � zm�1;
 ���zm�1 � v1

and hence v1 is the m–fold downshift v1.
 �m/ of itself, which is contradictory.

Case B Suppose both v1 and v2 are intermediate (and thus both p1 and p2 are
intermediate).

Without loss of generality we can suppose that L.v1/DminfL.v1/;L.v2/g. We shall
apply Proposition 5.5 to the sequence of Normal Form Equalities derived from

v1bh1b : : : bhmv
�1
1 D bk1b : : : bkm:

If mD 1, there is only a single equality  �v1h1 D k1v1 . The inequality hypothesis of
Proposition 5.5 is valid, by our assumption that L.v1/ D minfL.v1/;L.v2/g. The
given equality cannot hold freely, since v1 is distinct from �v1 , and, for the same reason,
 �v1h1 D k1v1 must be v2u�1 D v0v1 . In particular, we have  �v1 � v2 and L.v2/ D

L.v1/ D minfL.v1/;L.v2/g. If we switch our attention to v2bh0
1
b : : : bh0nh0

0
v�1

2
D

bk 0
1
b : : : bk 0nk 0

0
, then the first Normal Form equality is  �v2h0

1
D k 0

1
z0

1
and again we

can apply Proposition 5.5. However this equality cannot be v2u�1 D v�1
0
v1 , since

we cannot have  �v2 � v2 , and it cannot be v1uD v0v2 , since this would give  �v2 � v1

which is inconsistent with  �v1 � v2 . The equality must therefore hold freely and
so z0

1
�
 �v2 . Now this argument iterates – for suppose we have obtained, via free

equalities, z0j as the j –fold downshift v2.
 �
j /. Then the next Normal Form equality

is v2.
 ��
jC1h0

jC1
D k 0

jC1
z0
jC1

. The possibility that this is v2u�1 D v0v2 is ruled out
by the fact that we cannot have v2.

 ��
jC1/ � v2 while the possibility of v1u D v0v2

is ruled out by the inconsistency of v2.
 ��
jC1/ � v1 with  �v1 � v2 . Hence the only

possibility is that z0
jC1
D v2.

 ��
jC1/ freely. Eventually, then we reach a final comparison

v2.
 �n / � v2 and we have a contradiction. (The iteration, of course, is unnecessary

when also nD 1.)
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Now we have to dispose of the case when m > 1. If we can show that the Normal
Form equalities must all hold freely, then we have the same contradiction as in the
previous case. The first equality is  �v1h1 D k1z1 ; we do have minfL. �v1/;L.z1/g �

L.v1/ D minfL.v1/;L.v2/g and hence Proposition 5.5 applies. If  �v1h1 D k1z1

does not hold freely, then it is an instance of either v1u D v0v2 or v2u�1 D v0v1 .
The former yields  �v1 � v1 , which is impossible, so we have to consider the latter
which gives  �z 1 � v1 . However in this case we have v1bh1 D bk1v1 and therefore
v1bh1b : : : bhmv

�1
1
D bk1b : : : bkm decomposes into the two equalities v1bh1v

�1
1
D

bk1 and v1bh2 : : : bhmv1v
�1
1
D bk2 : : : bkm . The minimality of mC n implies that

both bh1 and bh2 : : : bhm commute with h0 whence of course so does h. So we can
rule out the second possibility and conclude that �v1h1Dk1z1 holds freely. We can now
iterate this whole argument – at each stage we can rule out both versions of case (b) of
Proposition 5.5, the first because it implies that v1 coincides with a multiple downshift
of itself and the second because it implies that v1bh1b : : : bhmv

�1
1
D bk1b : : : bkm

decomposes. Hence all the Normal Form equalities hold freely and as a result we
deduce that v1 is the same as its m–fold downshift v1.

 �m/ and this is impossible. This
concludes the argument for Case B.

Case C Suppose that one of v1 and v2 is intermediate and the other is not.

If v1 is intermediate, we use the Normal Form equalities for v1bh1b : : : bhmv
�1
1
D

bk1b : : : bkm . We can apply Proposition 6.2 of [3] to the equality  �v1h1 D k1z1 , since
we have L. �v1/DL.v1/Dd.a� ; c�/; see the foot of page 295 of [3] where this notation
is explained. This equality either holds freely or is an instance of v1uD v0v2 . However
the latter is clearly impossible since it yields  �v1 � v1 and so the equality holds freely.
(When m D 1, this is the required contradiction.) In particular L.z1/ D L.v1/ and
therefore L. �z1/DL.v1/ so that Proposition 6.2 of [3] also applies to  �z1h2 D k1z2 .
This must also hold freely since otherwise  �z1 � v1 which is impossible since in
fact  �z1 � v1.

 �
2 /. Clearly this argument can be iterated and eventually we obtain the

contradictory conclusion that v1.
 �m/�v1 . When v2 is intermediate, the same argument

applies to the Normal Form equalities for v2bh0
1
b : : : bh0nh0

0
v�1

2
D bk 0

1
b : : : bk 0nk 0

0
.

This concludes the argument for Claim 4.2.

Claim 4.3 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 satisfying
lb.g/D 0 and minflb.h/; lb.h0/g> 0 such that �b.h/C �b.h

0/D 1.

Proof Suppose such counterpairs exist; then without loss of generality we can assume
that there is a counterpair ghg�1 D k;gh0g�1 D k 0 satisfying

(i) mCnD lb.h/C lb.h
0/ is minimal among all counterpairs satisfying lb.g/D 0,

minflb.h/; lb.h0/g> 0 and �b.h/C �b.h
0/D 1;
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(ii) �b.h/D 0; �b.h
0/D 1;

(iii) the initial occurrences of b in h and h0 have the same exponent (since we can
invert h if necessary) which, without loss of generality, we can take to be C1.

Suppose then that we have

gh0bh1 : : : hm�1bhmg�1
D k0bk1 : : : bkm

gh00bh01b : : : bh0j b�1 : : : b�1h0ng�1
D k 00bk 01 : : : bk 0j b�1 : : : b�1k 0n;and

satisfying (i)–(iii). We note that, since we have a change of sign from positive to
negative in h0 , F.A�;B�;C ��/\F.B�;C �/ is exceptional.

We have three equalities gh0 D k0z0 , gh0
0
D k 0

0
z0

0
and h0ng�1 D z0n

�1
k 0n (where z0n

is a shorthand for
����!
w0n�1 ) which yield equalities

z00
�1

k 00
�1

k0z0 D h00
�1

h0(4–1)

z0n
�1

k 0nk0z0 D h0nh0(4–2)

z0n
�1

k 0nk 00z00 D h0nh00(4–3)

upon elimination of g . Each of these either holds freely or is an exceptional equal-
ity for F.A�;B�/ \ F.A�C;B

�;C �/. If all three of these equalities hold freely –
and it is easy to see that if two hold freely then so will the third – then we have
h0 D h0

0
D h0n

�1 , k0 D k 0
0
D k 0n

�1 , and z0 D z0
0
D z0n . Conjugating both equalities by

gh0bD k0z0bD k0b �z0 then yields a counterpair z0
yhz�1

0
D yk; z0

yh0z�1
0
D yk 0 . If nD 2,

then minflb.yh/; lb.yh0/g D 0 contradicting Claim 4.1 while if n> 2 and j D n�1, then
Claim 4.2 is contradicted. Finally if n>2 and j <n�1, then z0

yhz�1
0
D yk; z0

yh0z�1
0
D yk 0

satisfies the same hypotheses as the original counterpair in contradiction to condi-
tion (i). It follows therefore that we can assume that two of the three equalities
obtained by elimination are exceptional for F.A�;B�/\F.A�C;B

�;C �/ and there-
fore of the form u˙1 D .v�1

1
v0v2/

˙1 . Since the equality  ��zj�1h0j D k 0jwj taken
from the Normal Form equalities for ghg�1 D k 0 defines an exceptional equality for
F.A�;B�;C ��/\F.B�;C �/, we know that Proposition 5.5 of [3] applies.

Suppose then, that (4–2) and (4–3) are exceptional. We shall consider other cases below
after we have completed the analysis for this case. Before getting into our main argument
we need, firstly, to show that in the exceptional equality uD v�1

1
v0v2 , we have v1¤ v2 .

Since (4–2) and (4–3) are exceptional, we obtain fz0; z
0
ng D fv1; v2g D fz

0
0
; z0ng and

hence, that z0 D z0
0

. Suppose, by way of contradiction, that v1 D v2 so that the
exceptional equality is uD v�1

1
v0v1 . Then of course z0D z0

0
D z0nD v1 . On the other
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hand, if we conjugate our original counterpair by ghD k0z0 D k0v1 , then we obtain a
new counterpair

v1
yhv�1

1 D v1bh1 : : : hm�1bhmh0v
�1
1 D bk1 : : : bkmk0 D

yk

v1
yh0v�1

1 D v1h�1
0 h00b : : : bh0j b�1 : : : b�1h0nh0v

�1
1 D k�1

0 k 00b : : : bk 0j b�1 : : : b�1k 0nk0

D yk 0:

However it follows from Claim 4.1 applied to the pair

v1uv�1
1 D v0; v1bh1 : : : hm�1bhmh0v

�1
1 D bk1 : : : bkmk0

that u commutes with yh and similarly that u commutes with yh0 in F.A�;B�/. Since
this means that yh and yh0 commute we have the contradiction needed to ensure that
v1 ¤ v2 .

We still have fz0; z
0
ng D fv1; v2g D fz

0
0
; z0ng and z0 D z0

0
. By exercising a choice for

our notation we can assume that z0 D z0
0
D v1 so that we can deduce from (4–2) and

(4–3) that k 0nk0 D v
�1
0
D k 0nk 0

0
and h0nh0 D u�1 D h0nh0

0
. This implies that h0 D h0

0

and k0 D k 0
0

and so, conjugating our original counterpair by gh0 D k0z0 D k0v1 as
before we obtain

v1
yhv�1

1 D v1bh1 : : : hm�1bhmh0v
�1
1 D bk1 : : : bkmk0 D

yk

v1
yh0v�1

1 D v1h�1
0 h00bh01b : : : bh0j b�1 : : : b�1h0nh0v

�1
1and

D k�1
0 k 00bk 01 : : : bk 0j b�1 : : : b�1k 0nk0 D

yk 0:

Again we have to break the analysis down into three separate cases, depending on the
properties of v1 and v2 .

Case A Suppose that neither v1 nor v2 is intermediate. Then we can apply Proposition
5.2 to v1bh1 : : : bhmh0v

�1
1
D bk1 : : : bkmk0 to obtain the contradiction v1.

 �m/� v1 .

Case B Suppose that both v1 and v2 are intermediate. Then both p1 and p2 are inter-
mediate and p1Dv1;p2Dv2 . This means that the equality involving the change of sign
decomposes at the change of sign and it follows then from Claim 4.2 that bh1 : : : bhmh0

commutes with the two constituent factors of bh0
1
b : : : bh0j b�1 : : : h0

n�1
b�1h0nh0 and

hence with bh0
1
b : : : bh0j b�1 : : : h0

n�1
b�1h0nh0 itself, which rules out this case.

Case C Suppose that one of v1 or v2 is intermediate and the other is not. If v1 is
intermediate, then we can apply Proposition 6.2 of [3] to the uniform signature equality
as we did in Case C of Claim 4.2. The problem case is when v2 is intermediate and v1

is not.
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We have  �v1h1 D k1z1 and  �v1h0
1
D k1z0

1
(where temporarily we assume that j �

2). If the resulting equality is exceptional for F.A�;B�/ \ F.A�C;B
�;C �/, then

fz1; z
0
1
g D fv1; v2g and so v1bh1 D bk1v1 whence v1bh1v

�1
1
D bk1 or v1bh1 D

bk1v2 D bk1v
�1
0
v1u whence v1bh1u�1v�1

1
D bk1v

�1
0

. In either case we can de-
compose v1bh1 : : : bhmh0v

�1
1
D bk1 : : : bkmk0 . Since each of the two factors of

bh1 : : : bhmh0 contains fewer than m occurrences of b we can use the minimality of
mCn in (i) to deduce that each factor of bh1 : : : bhmh0 , and hence bh1 : : : bhmh0 itself,
will commute with bh0

1
b : : : bh0j b�1 : : : h0

n�1
b�1h0nh0 , again giving us a contradiction.

We can iterate this argument, either until we exhaust the uniform signature pattern
equality (when m � j ) or until we have obtained h1 D h0

1
; : : : hj�1 D h0

j�1
; k1 D

k 0
1
; : : : kj�1 D k 0

j�1
and z1 D z0

1
; : : : zj�1 D z0

j�1
(when j <m). The former means

that we can apply a Nielsen move to reduce mCn – and so can be ruled out – while the
latter means that the change of sign equality in the second term is  ��zj�1h0j D k 0jw

0
j and

we can perform an elimination with  ��zj�1hj D kj zj , and we have this step immediately
if j D 1. This yields z�1

j k�1
j k 0jw

0
j D h�1

j h0j

We claim that w0j is intermediate. Since f ��zj�1; w
0
j gD fp1;p2g, and either p1 or p2 is

intermediate, we have to rule out the possibility that ��zj�1 is intermediate. So suppose it
is intermediate and, without loss of generality, suppose that  ��zj�1D p1 . Then of course
p2 is not intermediate. Then L.zj�1/D d.a�; c�/ and we can apply Proposition 6.2
of [3] to  ��zj�2hj�1 D kj�1zj�1 . The possible outcomes are that the equality holds
freely or that it is an instance of either p1p0 D qp2 or p2p�1

0
D q�1p1 . The latter

equality would give p1 � zj�1 �
�!p1 , which is impossible, and the former equality

would give p2�
�!p1 , contradicting the fact that p2 is not intermediate. Thus we are left

with the outcome that hj�1 D kj�1 D 1 and  ��zj�2 � zj�1 � p1.
�!
2 /. Then, however,

L.zj�2/ D d.a�; c�/ and we can clearly iterate. We finish up with v1 � p1.
�!
j /,

contradicting the fact that v1 is not intermediate, and so w0j is intermediate.

Given that w0j is intermediate, the equality z�1
j k�1

j k 0jw
0
j Dh�1

j h0j either holds freely or
is exceptional for F.A�;B�/\F.A�C;B

�;C �/ with fzj ; w
0
j g D fv1; v2g. If the latter

holds, then we can again decompose the uniform signature term of our counterpair,
leading to a contradiction, so we can conclude that the equality holds freely and
hj D h0j ; kj D k 0j and w0j � zj . Our counterpair can then be broken down into the
three equalities

v1bh1 : : : bhj D bk1 : : : bkizj ; zj bhjC1 : : : bhmh0v
�1
1 D bkjC1 : : : bkmk0v

�1
1

zib
�1h0jC1 : : : b

�1h0nh0v
�1
1 D b�1k 0jC1 : : : b

�1k 0nk0:and
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If we “splice” the second and third equalities together, after inverting the former, then
we obtain

v1h�1
0 h0n

�1
bh0n�1

�1
: : : h0jC1

�1
bbhjC1 : : : bhmh0v

�1
1

D k�1
0 k 0n

�1
bk 0n�1

�1
: : : k 0jC1

�1
bbkjC1 : : : bkmk0:

If we combine this with

v1bh1 : : : bhmh0v
�1
1 D bk1 : : : bkmk0;

then we have two equalities each with uniform signature pattern. So we can apply
Claim 4.1 to obtain the commuting relation

h�1
0 h0n

�1
bh0n�1

�1
: : : h0jC1

�1
bbhjC1 : : : bhmh0bh1 : : : bhj bhjC1 : : : bhmh0

Dbhmh0bh1 : : : bhj bhjC1 : : : bhmh0h�1
0 h0n

�1
bh0n�1

�1
: : : h0jC1

�1
bbhjC1 : : : bhmh0:

We can cancel bhjC1 : : : bhmh0 to yield

h�1
0 h0n

�1
bh0n�1

�1
: : : h0jC1

�1
bbhjC1 : : : bhmh0bh1 : : : bhj

D bhmh0bh1 : : : bhj bhjC1 : : : bhmh0h�1
0 h0n

�1
bh0n�1

�1
: : : h0jC1

�1
b:

The above equalities hold in F.A;B/ which is, however, as a subgroup of

G D hG�; b j bF.A��;B
�;C ��/b

�1
D F.A�C;B

�;C �C/i;

expressed as the HNN-extension hA�;B�; b j bF.A��;B
�/b�1 D F.A�C;B

�/i in this
context. Both expressions in the equalities are reduced and hence by the Normal Form
Theorem applied to the last pair of occurrences of b in the second of the two equalities,
we deduce that hj 2 F.A��;B

�/. However that fact that the change of sign term of
our counterpair is given in reduced form means that hj D h0j … F.A��;B

�/. This
contradiction completes our analysis of the case when the equalities (4–2) and (4–3)
are exceptional.

This leaves us with the remaining two possibilities for whichever pair of (4–1), (4–2),
(4–3) are exceptional. If (4–3) and (4–1) are exceptional so that z0 D z0n , we can apply
the above analysis to ghg�1 D k and gh0

�1
g�1 D k 0

�1 , with z0n in the role of z0
0

, to
deduce the desired contradiction immediately.

On the other hand, if (4–1) and (4–2) hold then we cannot deduce our conclusion by
the same kind of appeal to symmetry since what we know this time from the analogue
of the initial steps of our analysis above is that z0

0
D z0n and this does not provide a

connection between the two terms of our counterpair but rather a connection between
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the two ends of the term that contains a sign change. The result is that when we carry
out further stages of the analysis, what we obtain, after choosing our notation so that
z0 D v1 and z0

0
D z0n D v2 , is the pair of equalities

v1bh1 : : : bhmh0v
�1
1 D bk1 : : : bkmk0

v2bh01b : : : bh0j b�1 : : : h0n�1b�1v�1
2 D bk 01 : : : bk 0j b�1 : : : k 0n�1b�1and

(which strictly speaking do not form a counterpair since v1 ¤ v2 ).

We can, however, dispose of the Cases A and B for v1 and v2 , ie neither is or both
are intermediate exactly as we did in the previous case. So again the difficult case
is when just one is intermediate, and in fact the case when v2 is intermediate is the
problem (since if v1 is intermediate we can “attack” the Normal Form sequence for
v1bh1 : : : bhmh0v

�1
1
D bk1 : : : bkmk0 with Proposition 6.2 of [3] as we did in the

case when (4–2) and (4–3) were exceptional).

The trick is to attack the Normal Form equalities for

v2bh01b : : : bh0j b�1 : : : h0n�1b�1v�1
2 D bk 01 : : : bk 0j b�1 : : : k 0n�1b�1

from both ends simultaneously. (This is the analogue of attacking the two Normal Form
equalities from one end.) The first and last terms are  �v2h0

1
D k 0

1
z0

1
and h0

n�1
 �v2
�1 D

z0
n�1
�1

k 0
n�1

(adapting our notation suitably and temporarily assuming that 1 < j <

n� 1). We can eliminate  �v2 and the result is z0
n�1
�1

k 0
n�1

k 0
0
z0

0
D h0

n�1
h0

1
. If this is

exceptional then we can decompose

v2bh01b : : : bh0j b�1 : : : h0n�1b�1v�1
2 D bk 01 : : : bk 0j b�1 : : : k 0n�1b�1

and, in the usual manner, obtain a contradiction. So the equality must hold freely
and we obtain h0

n�1
D h0

0
�1 . This argument will iterate and hence, taking inverses if

necessary to ensure that j � n� j we eventually reach a point where we can rewrite
our equality as

v2bh01b : : : bh0j b�1h0l�1
�1
: : : h01

�1
b�1v�1

2 D bk 01 : : : bk 0j b�1k 0l�1
�1
: : : k 01

�1
b�1

where l � j . Since v2 is intermediate we can apply Proposition 6.2 of [3] to the string
of equalities  �v2h0

1
D k 0

1
z0

1
;
 �
z01h0

2
D k 0

2
z0

2
; : : : ;

 ���
z0j�2h0

j�1
D k 0

j�1
z0
j�1

and deduce that
v2.
 �
j /�

 ���
z0j�1 . Moreover, since l � j we also obtain the equality v2.

 �
l /�

 ��
z0l�1 .

Still assuming that 1 < j < n� 1, we deduce that f
 ���
z0j�1;

 ��
z0l�1g D fp1;p2g, but this

is also true when j D 1 with  �v2 in place
 ���
z0j�1 , or j D n� 1 with  �v2 in place

 ��
z0l�1 .

However, since v2 is intermediate, it follows that v2 is a proper subword of whichever
of p1;p2 is not intermediate. Therefore, for instance if uD v�1

13
p�1

0
v�1

12
qv�1

11
v0v2 ,
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then p1 � v12 and p2 � v
�1
11
v0v2u�1v�1

13
and this is impossible. This completes the

proof of Claim 4.3.

Claim 4.4 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 satisfying
lb.g/ D 0 and minflb.h/; lb.h0/g > 0, such that �b.h/ D 1 D �b.h

0/ and h and
h0 have the same exponent on the respective initial occurrences of b .

Proof Suppose not; then, without loss of generality, we have a counterpair of the form

gh0bh1 : : : bhib
�1hiC1 : : : b

�1hmg�1
D k0bk1 : : : bkib

�1kiC1 : : : b
�1km

gh0bh01 : : : bh0j b�1h0jC1 : : : b
�1h0ng�1

D k 00bk 01 : : : bk 0j b�1k 0jC1 : : : b
�1k 0n:and

and we can assume that we have chosen this counterpair with mC n minimal among
all possible candidates.

We observe firstly that the changes of sign from positive to negative show that the
intersection F.A�;B�;C ��/\F.B�;C �/ is exceptional. By taking inverses if neces-
sary, we can then assume that  ��zi�1hiw

�1
i D

 ���
z0j�1h0jw

0
j
�1
D ..p1p0p�1

2
/˙1 and, in

particular, that zi�1 D z0
j�1

; wi D w
0
j and hi D h0j D p˙1

0
; ki D k 0j D q˙1 .

By eliminating g variously from the equalities gh0 D k0z0 , gh0
0
D k 0

0
z0

0
, hmg�1 D

z�1
m km , h0ng�1 D z0n

�1
k 0n , we obtain the following six equalities:

(1) z0
0
�1

k 0
0
�1

k0z0 D h0
0
�1

h0

(2) z�1
m kmk0z0 D hmh0

(3) z0n
�1

k 0nk0z0 D h0nh0

(4) z�1
m kmk 0

0
z0

0
D hmh0

0

(5) z0n
�1

kmk 0
0
z0

0
D hmh0

0

(6) z0n
�1

k 0nk�1
m zm D h0nh�1

m

In general each of these will either hold freely or be an exceptional equality for
F.A�;B�/\ F.A�C;B

�;C �/. We need to know exactly what the possibilities are.
This is most easily done as a separate lemma within the current argument.

Lemma Let hi ; i D 1; 2; 3; 4 be nontrivial elements of F.A�;B�/, ki ; i D 1; 2; 3; 4

nontrivial elements of F.B�;C �/ and zi ; i D 1; 2; 3; 4 nontrivial elements of U such
that the six equalities z�1

i k�1
i kj zj ; 1� i; j ;� 4; i ¤ j hold. Then

(i) either there exists i such that all the equalities involving zi hold freely in which
case all six equalities hold freely and hence coincide;
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(ii) or there exists a partition of f1; 2; 3; 4g into subsets fi; j g and fi 0; j 0g such that
z�1

i k�1
i kj zj Dh�1

i hj z and z�1
i0 k�1

i0 k 0j z0j Dh�1
i0 h0j hold freely and the remaining

equalities are all exceptional equalities for F.A�;B�/\F.A�C;B
�;C �/ and

therefore coincide up to possible inversion.

Proof It is convenient to visualise the equalities as the edges of a tetrahedron whose
vertices are the elements zi ; i D 1; 2; 3; 4. It is easy to see that if the equalities on two
edges of a face are free, the so is the equality on the third edge. It follows that if there
exists i such that all three edges incident to the vertex zi represent free equalities, then
all six equalities hold freely and therefore (i) holds.

Suppose then that every vertex zi is incident to at most one edge that is free, ie
represents a free equality. We need to show that then (ii) holds. For this we need the
following observation.

Sublemma If two of the equalities involving the element zi are exceptional, then the
equality obtained by eliminating zi from these holds freely.

Proof Suppose, without loss of generality, that the equalities z�1
1

k�1
1

k2z2 D h�1
1

h2

and z�1
1

k�1
1

k3z3 D h�1
1

h3 are both exceptional. Then both are an instance of the
equality v�1

1
v0v2 D u (or its inverse) and we have, say, z1 D v1; z2 D z3 D v2

and k�1
1

k2 D v0 D k�1
1

k3 so that k2 D k3 and similarly h2 D h3 . Then clearly
z�1

2
k�1

2
k3z3 D h�1

2
h3 holds freely.

Suppose then that, say, the edges z1z2 and z1z3 are exceptional, ie represent exceptional
equalities. By the Sublemma, the third edge z2z3 of the face z1z2z3 is free. Since
at most one edge incident to z1 can be free, it follows that z1z4 is exceptional and
similarly z3z4 is exceptional. By the Sublemma, z2z4 is free and we have the partition
consisting of f1; 3g and f.2; 4g as required. Finally we note that if a face has two
edges that are exceptional, then using the free inequality on the third edge transforms
the exceptional equality on one edge into the exceptional equality on the other.

We return to the argument of Claim 4.4. If all the equalities obtained by substituting
for g hold freely, then by conjugating by gh0 D kz0 , we can obtain a conjugate
counterpair but at the same time reduce both m and n by 2. This will contradict the
minimality of our choice of counterpair, although care must be taken in “degenerate”
cases when one of our conditions minflb.h/; lb.h0/g> 0 or �b.h/D 1D �b.h

0/ fails
to hold for the new counterpair. However these “degenerate” cases can all be dealt with
by appealing to our earlier results Claims 4.1–4.3. Therefore we only have to deal with
the case when we have four exceptional and two free equalities. We encounter the same
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three cases as in Claim 4.3, depending on the nature of v1 and v2 in the exceptional
equality uD v�1

1
v0v2 for F.A�;B�/\F.A�C;B

�;C �/.

Case A Suppose neither v1 nor v2 is intermediate.

In this situation, it follows from Proposition 5.2 that all of the Normal Form equalities
other than the first, last and “change of sign” term of each sequence will hold freely
and thus our counterpair takes the form

gh0bihib
�.m�i/hmg�1

D k0bikib
�.m�i/km

gh00bj h0j b�.n�j/h0ng�1
D k 00bj k 0j b�.n�j/k 0n:and

In particular we have gh0bihi D k0bikipı and gh0
0
bj h0j D k 0

0
bj k 0j pı , where ıD 1 if

hi D h0j D p0 and ıD 2 if hi D h0j D p�1
0

. From this we obtain gh0bi�j h0
0
�1

g�1D

k0bi�j k 0
0
�1 . We claim that in fact i D j . If not, then h0bi�j h0

0
�1 and k0bi�j k 0

0
�1

have nonzero b–length and no sign changes. However it follows from Claim 4.3
that gh0bi�j h0

0
�1

g�1 D k0bi�j k 0
0
�1 does not form a counterpair with either of the

terms of our original counterpair. In particular this means that the nontrivial element
h0bi�j h0

0
�1 commutes with both h and h0 . However these commuting relations

hold in the free group F.A;B/ and hence h and h0 commute which of course is
a contradiction. It follows, therefore that i D j . A similar argument derived from
pıb
�.m�i/hmDb�.m�i/km and pıb

�.n�j/h0mDb�.n�j/k 0m shows that m�iDn�j

and hence, since i D j , we obtain mD n.

However since i D j and therefore zi�1 D z0
i�1

, the Normal Form equalities

gh0 D k0z0;
 �z1 D z2; : : : ;

 ��zi�2 D zi�1 and gh00 D k 00z00;
 �
z01 D z02; : : :

 ��
z0i�2 D z0i�1

yield zi�2D z0
i�2
; : : : ; z0D z0

0
. Similarly wi Dw

0
i yields wiC1Dw

0
iC1

; : : : ; wm�1D

w0
m�1

. Therefore z�1
m D

���!wm�1 D
���!
w0m�1 D z0m

�1 so that zm D z0m . This means that
both the equalities z0

0
�1

k 0
0
�1

k0z0 D h0
0
�1

h0 and z0m
�1

k 0mkmzm D h0m
�1

hm derived
by elimination of g from the first and last terms of the two Normal Form equalities must
hold freely – for otherwise we would have v1Dv2 which, by the single syllable criterion
of Proposition 5.5 of [3] would mean that v1 D v2 would be intermediate. It follows
therefore that h0 D h0

0
; k0 D k 0

0
; hm D h0m; k0 D k 0m and hence that h D h0; k D k 0

which is obviously a contradiction. This concludes Case A.

Case B Suppose both v1 and v2 are intermediate.

Our conventions on the choice of notation described after Proposition 5.5 of [3] imply
that v1 D p1 , v2 D p2 . Since we know that precisely four of the inequalities obtained
by eliminating g are exceptional, it follows that all of the four “auxiliary terms”
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z0; z
0
0
; zm; z

0
n are either v1 or v2 . Suppose, for instance that z0 � v1 . Then we obtain

a conjugate counterpair of the form

z0bh1 : : : bhib
�1 : : : b�1hmh0z�1

0 D bk1 : : : bkib
�1 : : : b�1kmk0

z0h�1
0 h00bh01 : : : bh0j b�1 : : : b�1h0nh0z�1

0 D k�1
0 k 00bk 01 : : : bk 0j b�1 : : : b�1k 0nk0:and

The “change of sign” equalities are, as in Case A,  ��zi�1hiw
�1
i D

 ���
z0j�1h0jw

0
j
�1
D

.p1p0p�1
2
/˙1 and it follows that f ��zi�1; wig D f

 ���
z0j�1; w

0
j g D fp1;p2g D fv1; v2g.

Possibly by inverting one or both of the elements of this counterpair, we can assume
that wi Dw

0
j Dp1D v1 . Then each of the displayed equalities in the above counterpair

decomposes into a product of equalities with uniform signature patterns and the desired
contradiction will follow from Claim 4.2.

Case C Suppose that one of v1 and v2 is intermediate and the other is not.

As in Case B, we know that from the analysis of the equalities obtained by elim-
inating g from the first and last terms of the Normal Form inequalities, that each
of z0; z

0
0
; zm; z

0
n is either v1 or v2 . Again the “change of sign” inequalities yield

f
 ��zi�1; wig D f

 ���
z0j�1; w

0
j g D fp1;p2g. We note that one of fp1;p2g is intermediate and

the other is not.

Let us assume that  ��zi�1�
 ���
z0j�1�p1 is intermediate. We shall see that there is no loss

of generality in so doing. We examine the two sequences of Normal Form equalities as
far as the change of sign equalities. Since  ��zi�1 � p1 , and the latter is intermediate, it
follows that L.zi�1/DL.p1/D d.a�; c�/ and hence, by Proposition 6.2 of [3], the
equality  ��zi�2hi�1D ki�1zi�1 either holds freely or is an instance of p2p�1

0
D q�1p1 .

The latter is impossible since then zi�1 � p1 �
 ��zi�1 . Thus the equality holds freely

and zi�2 � p1.
�!
2 /. This argument can clearly now be iterated to obtain z0 � p1.

�!
i /

and h1D : : :D hi�1D 1D k1 : : :D ki�1 . Applying this whole argument to the second
term of our counterpair yields z0

0
� p1.

�!
j / and h0

1
D : : :D h0

j�1
D 1D k 0

1
: : :D k0�1 .

We consider the equality z�1
0

k�1
0

k 0
0
z0

0
D h�1

0
h0

0
obtained by the elimination of g .

If this is not free then fz0; z
0
0
g D fv1; v2g. Since z0 � p1.

�!
i / and z0

0
� p1.

�!
j /,

we have L.z0/DL.p1/DL.z0
0
/. However it follows from the relationship between

u�1v�1
1
v0v2 and p�1

0
p�1

1
qp2 determined by the single syllable criterion of Proposition

5.5 of [3] that L.p1/ < L.v1/ or L.p1/ < L.v2/ according as v1 or v2 is not
intermediate. Therefore z�1

0
k�1

0
k 0

0
z0

0
D h�1

0
h0

0
can only hold freely so that z0 D z0

0
,

giving i D j , and also h0 D h0
0
; k0 D k 0

0
.
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Our equalities therefore simplify to

gh0bip0b�1hiC1 : : : b
�1hmg�1

D k0biqb�1kiC1 : : : b
�1km

gh0bip0b�1h0iC1 : : : b
�1h0ng�1

D k0biqb�1k 0iC1 : : : b
�1k 0n:and

and we have just three distinct Normal Form equalities that involve g , namely gh0 D

k0z0; hmg�1 D z�1
m km and h0ng�1 D z0n

�1
k 0n . These give rise to three derived equali-

ties by elimination of g , namely

(2) z�1
m kmk0z0 D hmh0

(4) z0n
�1

k 0nk0z0 D h0nh0

(6) z0n
�1

k 0nk�1
m zm D h0nh�1

m ,

using our earlier numbering.

If we conjugate by gh0bi D k0bip1 ,and use the fact that  ��zi�1hi D kiwi is just
p1p0 D qp2 , we obtain a conjugate counterpair

p2b�1hiC1 : : : b
�1hmh0bip0p�1

2 D b�1kiC1 : : : b
�1kmk0biq

p2b�1h0iC1 : : : b
�1h0nh0bip0p�1

2 D b�1k 0iC1 : : : b
�1k 0nk0biq:and

Now if either hmh0 D 1 D kmk0 or h0nh0 D 1 D k 0nk0 , then we will contradict the
minimality of our initial choice of counterpair. The fact that the initial exponent is
now �1 rather than C1 is not an issue since our choice of C1 was without loss of
generality and made only for notational simplicity. However a caveat concerning the
need to apply Claims 4.1–4.3 to dispose of “degenerate” cases does apply here as well.
This means neither (2) nor (4) can hold freely and therefore (6) will hold freely yielding
zm D z0n and hm D h0m; km D k 0n .

We can now simplify our original counterpair a little further to give

gh0bip0b�1hiC1 : : : b
�1hmg�1

D k0biqb�1kiC1 : : : b
�1km

gh0bip0b�1h0iC1 : : : h
0
n�1b�1hmg�1

D k0biqb�1k 0iC1 : : : k
0
n�1b�1km:and

and since we know that zm D z0n we can attack the terms of our counterpair from the
back via the Normal Form equalities. Specifically we obtain hm�1

 ��
z�1

m D z�1
m�1

km�1

and h0
m�1

 ��
z�1

m D z0
m�1

�1
k 0

m�1
, and hence h0

n�1
h�1

m�1
D z0

n�1
�1

k 0
n�1

k�1
m�1

zm�1 .

Suppose this is exceptional for F.A�;B�/\F.A�C;B
�;C �/. Then fz0

n�1
; zm�1g D

fv1; v2g D fz0; zmg. We write fv1; v2g D fv ; vıg where v is intermediate and vı
is not. Now it follows from the relationship between u�1v�1

1
v0v2 and p�1

0
p�1

1
qp2

defined by Proposition 5.5 of [3] that L.v /CL.vı/DL.v1/CL.v2/DL.p1/CL.p2/
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and also that L.p1/ < L.vı/ and L.v / < L.p2/. Since z0 D p1.
�!
i / we have

L.z0/D L.p1/ < L.vı/ and therefore z0 D v ; zm D vı . Also L.z0/D L.v / and
so L.p1/DL.v / whence L.p2/DL.vı/.

Now we also have fz0
n�1

; zm�1gDfv1; v2gDfv ; vıg. So suppose that zm�1Dv and
is therefore intermediate. If we rewrite hm�1

 ��
z�1

m D z�1
m�1

km�1 as zm�1hm�1
 ��
z�1

m D

km�1 , then either the latter is exceptional for F.A�;B�;C ��/\F.B�;C �/ or hm�1D

1D km�1 and zm�1 D
 ��
z�1

m . However if the latter holds, then L.zm�1/D L.v / <

L.p2/DL.vı/DL.zm/ which contradicts zm�1D
 ��
z�1

m . So only the former can hold,
but then since L.zm�1/D L.v / < L.p2/ we must have zm�1 D p1;

 �zm D p2 and
hm�1 D p0; km�1 D q . However we also have zm�1 D v D z0 which contradicts
z0 D p1.

�!
i /. The only possibility left is that h0

n�1
D hm�1; k

0
n�1
D km�1 and

z0
n�1
D zm�1 . We obtain the same conclusion if z0

n�1
D v .

As usual, the argument can be iterated and, if mD n, we get all the way to h0
iC1
D

hiC1; k
0
iC1
D kiC1 and z0

iC1
D ziC1 giving hD h0 which is clearly contradictory. The

problem remaining is when m¤ n and we can assume that m< n. Then

gh0bip0b�1h0iC1 : : : b
�1hmg�1

D k0biqb�1k 0iC1 : : : b
�1km

becomes

gh0bip0b�1h0iC1 : : : b
�1h0n�mCib

�1hiC1 : : : b
�1hm�1b�1hmg�1

D k0biqb�1k 0iC1 : : : b
�1k 0n�mCib

�1kiC1 : : : b
�1km�1b�1km:

If we now conjugate both terms of the counterpair by gh0bip0 D k0biqp2 we obtain

p2
yhp�1

2 D p2b�1hiC1 : : : b
�1hmh0bip0p�1

2 D b�1kiC1 : : : b
�1kmk0biq D yk

p2
yh0p�1

2 D p2b�1h0iC1 : : : b
�1h0n�mCi

yhp�1
2 D b�1k 0iC1 : : : : : : b

�1h0n�mCi
ykand

p2b�1h0iC1 : : : b
�1h0n�mCip

�1
2 D b�1k 0iC1 : : : : : : b

�1k 0n�mCi :and hence

The desired contradiction now follows in the usual way from Claim 4.2.

Claim 4.5 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 satisfying
lb.g/D 0 and minflb.h/; lb.h0/g> 0 such that �b.h/D 1D �b.h

0/.

Proof If a counterpair exists, then it fails to satisfy the hypotheses of Claim 4.4. It
must therefore have, without loss of generality, the form

gh0bh1: : : bhib
�1: : : b�1hm�1b�1hmg�1

Dk0bk1: : : bkib
�1: : : b�1km�1b�1km

gh00b�1h01 : : : b
�1h0j b : : : bh0n�1bh0ng�1

Dk 00b�1k 01 : : : b
�1k 0j b : : : bk 0n�1bk 0n:and
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The resulting Normal Form equalities from the first member of the counterpair show
that the intersection F.A�;B�;C ��/\F.B�;C �/ is exceptional and gh0bh1 : : : bhiD

k0bk1 : : : bkiwi , with f ��zi�1; wig D fp1;p2g. If we substitute for g , then we obtain a
counterpair

wi
yhw�1

i D wib
�1hiC1 : : : hm�1b�1hmh0bh1 : : : bhiw

�1
i

D b�1kiC1 : : : km�1b�1kmk0bk1 : : : bki D
yk;

wi
yh0w�1

i D wih
�1
i b�1 : : : b�1h�1

0 h00b�1h01b�1 : : : b�1h0j b : : : bh0nh0bh1 : : : bhiw
�1
i

D k�1
i b�1 : : : b�1k�1

0 k 00b�1k 01b�1 : : : b�1k 0j b : : : bk 0nk0bk1 : : : bki D
yk 0

since we have just conjugated the original counterpair.

We cannot exclude the possibility that wi
yhw�1

i is not in reduced form and it is possible
that �b.yh/D 0, and even that lb.h/D 0. However wi

yh0w�1
i is in reduced form and

so we have �b.yh/ � 1; �b.yh
0/D 1 and we reduce to one of Claim 4.1, Claim 4.2 or

Claim 4.4 as appropriate.

Finally we are ready to verify the our overall conclusion that there are no counterpairs,
having verified this assertion for three initial cases.

Claim 4.6 There do not exist counterpairs ghg�1 D k;gh0g�1 D k 0 satisfying
lb.g/D 0 and minflb.h/; lb.h0/g> 0.

Proof In Claims 4.2, 4.3 and 4.4, we have verified that there are no counterpairs
satisfying lb.g/D 0 and minflb.h/; lb.h0/g> 0 under any of the additional hypotheses
�b.h/C �b.h

0/ D 0, �b.h/C �b.h
0/ D 1, and �b.h/C �b.h

0/ D 2 with �b.h/ D

�b.h
0/D 1. This leaves us with the following cases.

Case 4.6.1 �b.h/C �b.h
0/� 2 and both are even.

Case 4.6.2 �b.h/C �b.h
0/� 3 and one is odd and the other is even.

Case 4.6.3 �b.h/C �b.h
0/� 4 and both are odd.

We assume that we have a counterpair with �b.h/C �b.h
0/� 2 and minimal where,

without loss of generality, we can assume that �b.h/� �b.h
0/. We need to split this

into two subcases.

Case 4.6.1a Let �b.h/D 0 so that �b.h
0/� 2. Then we can write

ghg�1
D gh0bh1 : : : bhm D k0bk1 : : : bkm D k

gh0g�1
D gh00bh01 : : : bh0j b�1h0jC1 : : : b

�1h0lbh0lC1 : : : bh0ng�1and

D k 00bk 01 : : : bk 0j b�1k 0jC1 : : : b
�1k 0lbk 0lC1 : : : bk 0n D k 0
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where the sign changes displayed in h0and k 0 are the initial two.

Suppose j �m; when we analyse the two systems of Normal Form inequalities, one
of two possibilities occurs. The first is that we can iteratively obtain equalities h0

0
D

h0 , k 0
0
D k0 , z0

0
D z0 , h0

1
D h1; k

0
1
D k1; z

0
1
D z1; : : : ; h

0
j�1
D hj�1 , k 0

j�1
D kj�1 ,

z0
j�1
D zj�1 because the successive equalities derived by elimination hold freely.

In this case we conjugate by gh0bh1 : : : bhj�1b D k0bk1 : : : bkj�1b ��zj�1 to obtain
a new counterpair of the form  ��zj�1

yh ��zj�1
�1 D yk ,  ��zj�1

yh0 ��zj�1
�1 D yk 0 where yh D

hj bhjC1: : : bhmh0bh1: : : bhj , yh0D h0j b�1h0
jC1

: : : b�1h0
l
b : : : bh0nh0bh1: : : bhj , and

similarly for yk and yk 0 . In both cases no new sign changes are introduced and h0 has
been stripped of its initial sign change. Thus �b.yh/D�b.h/D0 and �b.yh

0/D�b.h
0/�1

and we contradict minimality using Claim 4.2 if �b.h
0/D 2.

The second possibility is that our sequence of free equalities breaks down and we obtain
an exceptional equality for F.A�;B�/\F.A�C;B

�;C �/ of the form

z�1
f k�1

f k 0f z0f D h�1
f h0f ;

for some f � j �1. In particular fzf ; z0f g D fv1; v2g. Here we use gh0bh1 : : : bhf D

k0bk1 : : : bkf zf to obtain a conjugate counterpair

zf yhz�1
f D

yk; zf yh
0z�1
f D

yk 0:

Again we simply permute h to obtain yh whereas

zf yh
0z�1
f D zf h�1

f h0f bh0fC1 : : : bh0j b�1 : : : b�1h0lb : : : bh0nhf z�1
f

D k�1
f k 0f bk 0fC1 : : : bk 0j b�1 : : : b�1k 0lb : : : bk 0nkf D yk

0:

From this last equality we deduce the two equalities

zf h�1
f h0f bh0fC1 : : : bh0j b�1 : : : b�1h0l D k�1

f k 0f bk 0fC1z0
�1
l : : : bk 0j b�1 : : : b�1k 0l

z0lbh0lC1 : : : bh0nh0bh1 : : : bhj z�1
f D bk 0lC1 : : : bk 0nk0bk1 : : : bkj :and

However fzf ; z0f g D fv1; v2g D fzl ; z
0
l
g and uD v�1

1
v0v2 and this means that z0

l
D zf ,

z0
l
D v0zf v

�1
2

or z0
l
D v�1

0
zf u. Recalling that v1 D v0v2u�1 and hence v2 D v

�1
0
v1u,

we can transform zf yh
0z�1
f
D yk 0 into an equality zf zh

0z�1
f

zf Mh
0z�1
f
D Mk 0 where �b.zh

0/D

�b.h
0/� 1 and �b. Mh

0/D 0. By minimality, using Claim 4.1 if �b.h
0/D 2, it follows

that h commutes with both zh0 and Mh0 and hence with yh, which is the contradiction we
require to conclude the argument when j �m.

If j > m we have essentially the same possibilities as before, save that when we
have free equalities we might need to rotate h several times before we reach either
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the situation when we get free equalities involving h0
j�1

; kj�1 and z0
j�1

or we obtain
an exceptional equality before h0

j�1
; kj�1 and z0

j�1
are involved. (An alternative

view is to say that we make a minimal choice of n D lb.h
0/ and then, if we obtain

m free equalities, we replace our original pairs .h; k/ and .h0; k 0/ by .h; k/ and
.h�1h0; k�1k 0/.)

Case 4.6.1b Let �b.h/ � 2 so that �b.h/C �b.h
0/ � 4. If we assume, without loss

of generality that i � j , then the argument given above can be repeated more or less
verbatim. If i > j , any conjugation used will preserve �b.h/ while if i D j and
the free equalities are valid as far as i � 1D j � 1, the conjugation used will reduce
�b.h/C �b.h

0/ by 2.

Case 4.6.2 Let �b.h/C �b.h
0/� 3 where one is odd and the other is even.

Without loss of generality, we may suppose that �b.h/ is even and �b.h
0/ is odd, not

excluding the possibility that �b.h/D 0, in which case �b.h
0/� 3. Also, by inverting

ghg�1 D k , if necessary, we can assume that the two terms of our counterpair have
the same initial exponent for b

We proceed much as in Case 4.6.1. However, there we attacked the terms of our counter-
pair by obtaining a sequence of equalities z�1

0
k�1

0
k 0

0
z0

0
D; z�1

1
k�1

1
k 0

1
z0

1
D h�1

1
h0

1
; : : :

until we found one that did not hold freely. This time we have three sequences of
such equalities because of the fact that �b.h

0/ is odd – the initial three equalities are
z�1

0
k�1

0
k 0

0
z0

0
D h�1

0
h0

0
; z�1

0
k�1

0
k�1

m zmD h�1
0

h�1
m ; z0n

�1
k 0nk 0

0
z0

0
D h0nh0

0
. If we can run

these free inequalities until we reach a sign change in h or h0 (if �b.h/ =0, then only
h0 is a possibility as discussed in the previous case), then conjugation will replace our
original counterpair by a counterpair with fewer total sign changes. The conjugation
will cycle positive occurrences of b from the front of h to the back of h and will
actually cancel occurrences of b that occur in h0 . The other alternative is that we reach a
point at which some equality is exceptional for F.A�;B�/\F.A�C;B

�;C �/, in which
case there will be a conjugate counterpair of the form zf yhz�1

f
D yk or zf yh

0z�1
f
D yk 0

such that one or other (or possibly both) will decompose into two counterpairs, each
of which contains fewer sign changes than our original. The resulting commutativity
derived from our assumption of minimality then yield the required contradiction.

Case 4.6.3 Let �b.h/C �b.h
0/ � 4 where both are odd. Initially let us assume that

h and h0 have positive exponent on the respective initial occurrences of b . Then we
are in a situation similar to that considered in Claim 4.4 where we attack both terms
of our counterpair from the front and back. As we noted proving claim 4.4 there are
potentially six apparently distinct sequences of equalities obtained by elimination from
the Normal Form equalities. Broadly our argument is the same as that for Case 4.6.2.
Either we can generate free inequalities right up to the point at which we reach a sign
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change, in which case conjugation will provide us with a new counterpair with fewer
total sign changes or at some point, we produce an equality that is exceptional for
F.A�;B�/\F.A�C;B

�;C �/. But again there will be a conjugate counterpair, one of
whose terms will contain enough sign changes to allow us to decompose it into two
factors, each containing fewer sign changes than the original term and we have the
same commutativity conclusion.

It remains only to note that the argument of Claim 4.5 in fact carries over verbatim to
the present situation and allows us to drop out provisional hypothesis concerning the
exponents of the respective initial occurrences of b .

We end this section by observing that the sequence of Claims 4.1–4.6 completes the
proof of our main result, save that we have to verify the Propositions stated in the next
section and which were used above.

5 Technical results

As noted in Section 4 just prior to the application of the results we are about to prove,
the material in this section parallels Proposition 6.2 of [3] and we shall employ the
methods, terminology and notation described there. Also, as noted at the start of
Section 4, we can assume that all of A�C;A

�
�;C

�
C;C

�
� are nonempty. As in Section 6

of [3], our initial standpoint is that we are given the exceptional intersection

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/

with u D v�1
1
v0v2 , where v1; v2 are not both trivial, and in turn F.A�;B�;C ��/\

F.A�C;B
�;C �/ is also exceptional with basic exceptional equality s D t where s is

the a� –core of u and t � u�1
1
vu�1

2
, where u� u1su2 . We also write t � t1xt t2 where

xt is the c� –core of t .

We shall deal with two specific additional case assumptions, in each instance proving
a result similar to Proposition 6.2 of [3] (which is itself proved under its own set of
assumptions additional to the basic standpoint of Section 6 of [3]).

Case Assumption A In v�1
1
v0v2 , neither v1 nor v2 is intermediate. Since both v1

and v2 lie in F.A�C;B
�;C �C/, this amounts to saying that both involve at least one of

the two extremal generators a�; c� .

Our first step is to prove an analogue of Lemma 6.1 of [3].
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Lemma 5.1 Let

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/

with uD v � v�1
1
v0v2 where Case Assumption A holds. Then:

(a) A cyclically reduced word of the form h�1w�1kz , where w 2 L and z 2 U

are both nontrivial of type .A� W C �/ and h 2 F.A�;B�/, k 2 F.B�;C �/ with
h; k nontrivial, cannot (cyclically) contain two disjoint Gurevich subwords.

(b) A cyclically reduced word of the form k�1w�1hz , where w 2 L and z 2 U

are both nontrivial of type .C � WA�/ and h 2 F.A�;B�/, k 2 F.B�;C �/ with
h; k nontrivial, cannot (cyclically) contain two disjoint Gurevich subwords.

(c) A cyclically reduced word of the form h�1w�1h0z , where w 2 L and z 2 U

are both nontrivial of type .C � W C �/ and also h; h0 2 F.A�;B�/ are nontrivial,
cannot (cyclically) contain two disjoint Gurevich subwords.

(d) A cyclically reduced word of the form k�1w�1k 0z , where w 2 L and z 2 U

are both nontrivial of type .A� WA�/ and also k; k 0 2 F.B�;C �/ are nontrivial
cannot (cyclically) contain two disjoint Gurevich subwords.

Proof It suffices to prove (a) and (c) since (b) is just a dual rewording of (a) and (d)
is a dual rewording of (c).

(a) Suppose we have two disjoint Gurevich subwords of h�1w�1kz ; then there are
two disjoint extremal Gurevich subwords. Now neither extremal Gurevich subword
can be a subword of any of h�1w�1; w�1k; kz; zh�1 , for each of these omits an
essential generator. Moreover, neither extremal Gurevich subword can contain any of
h�1w�1; w�1k; kz; zh�1 , for then its companion extremal Gurevich subword would
be a subword of one of h�1w�1; w�1k; kz; zh�1 . It follows, therefore that an extremal
Gurevich subword must take one of the four forms

h�1
1 w�1k1; w

�1
1 kz1; k2zh�1

2 ; z2h�1w�1
2 ;

where w1; w2 denote proper, nontrivial, initial and terminal segments of w and
similarly for h; k and z , and that a pair must be either fh�1

1
w�1k1; k2zh�1

2
g or

fw�1
1

kz1; z2h�1w�1
2
g.

Suppose that a word of form h�1
1
w�1k1 is an extremal Gurevich subword. Then a˙1

� ,
which must be obtained from u˙1 can appear either in h�1

1
or in w�1 and similarly

c˙1
� from v˙1

0
can appear either in w�1 or k1 . Wherever they appear, the occurrences

of a˙1
� and c˙1

� will properly enclose between them, a string of syllables of h�1
1
w�1k1

that are distinct from those containing a˙1
� and c˙1

� and which constitute an occurrence
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of either v˙1
1

or v˙1
2

. This means that one of these must occur within w�1 which
contradicts the fact that neither v˙1

1
nor v˙1

2
is intermediate. This rules out the first

possibility for a pair.

The second possibility for a pair includes a word of form w�1
1

kz1 as an extremal
Gurevich subword. For this word, a˙1

� can appear only in w�1
1

and c˙1
� in w�1

1
or k .

An analysis similar to the previous possibility forces either v˙1
1

or v˙1
2

to lie within
w�1

1
which is impossible.

(c) In a manner parallel to the argument for (a), we see that no member of a
pair of disjoint extremal Gurevich subwords can be contained in or contain any of
h�1w�1; w�1h0; h0z; zh�1 . Furthermore we cannot have a pair of extremal Gurevich
subwords of the form h�1

1
w�1h0

1
; h0

2
zh�1

2
and so the only possible form for a pair

is w�1
1

h0z1; z1h�1w�1
2

. Observing that c˙1
� can appear only in w�1 while a˙1

� can
appear in h�1; h0 or w�1 we see that we are forced to try to position v˙1

1
or v˙1

2

within w�1 , which is impossible.

The following is the first of our two results that parallels Proposition 6.2. of [3]

Proposition 5.2 Let

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/;

where uD v in G� , v is v�1
1
v0v2 and Case Assumption A holds. Furthermore, let the

equality whDkz , where w2L and z2U are both nontrivial of type .A� WC �/ and h2

F.A�;B�/, k 2 F.B�;C �/, define an element of F.A�;B�;C ��/\F.A�C;B
�;C �/.

Then the element defined by whD kz is non-exceptional and the equality holds freely
in F.A�C;B

�;C ��/ – in particular, hD k D 1 and w � z is intermediate.

Proof Suppose, by way of contradiction, that the element defined is exceptional so
that use of the basic exceptional relation is required.

Case 5.2.1 Suppose that h and k are nontrivial so that h�1w�1kz is cyclically
reduced as written. If we apply Lemma 5.1(a), then it remains only to show that the cycli-
cally reduced form h�1w�1kz cannot be a cyclic rearrangement of .u�1v�1

1
v0v2/

˙1 .
As before we look to see where the extremal generators are situated. In particular we
observe that u˙1 either coincides with h�1 or is a syllable of w�1 . Similarly v˙1

0

either coincides with k or is a syllable of w�1 . No matter which possibility occurs,
we finish up, as previously, trying to position v˙1

1
or v˙1

2
within w�1 .

Case 5.2.2 Suppose that hD1 and k is nontrivial. Now w and z may have a common
terminal segment which will be cancelled in obtaining the cyclically reduced form of
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kzw�1 ; notice however that no occurrences of extremal generators – and a� must
appear in w and a� in z – will be cancelled. Then we can write w � w1w2 and
z � z1z2 where w2 � z2 is the maximal common terminal segment of w and z , with
w1; z1 nontrivial. Then the resulting cyclically reduced word will be either of the form
kz0h0�1w0�1 or kz0k 0�1w0�1 , depending on the exact nature of w2 and z2 in relation
to w and z , with h0 , respectively k 0 , nontrivial. Then we can apply either Lemma
5.1 (a) or (d) to deduce that the only possibility for this word is that it is a cycle of
.u�1v�1

1
v0v2/

˙1 . The argument for Case 5.2.1 disposes of the possibility that we have
kz0h0�1w0�1 .

To finish this case we verify that kz0k 0�1w0�1 cannot be a cycle of .u�1v�1
1
v0v2/

˙1 .
This time u˙1 must be a syllable of w0�1 while v˙1

0
can be k; k 0�1 or a syllable of

w0�1 ; but of course we then have to position v˙1
1

or v˙1
2

within w0�1 .

Case 5.2.3 Suppose that h is nontrivial and k D 1 . This is clearly dual to Case 5.2.2,
by considering w�1zh�1 and the consequent cyclically reduced form.

Case 5.2.4 Suppose that hD k D 1. This time we simply examine w�1z but have to
allow for both common initial segments and common terminal segments, observing
that both will have to be intermediate words. The resulting cyclically reduced form
will fall into one of the previous categories we have considered.

For the next three results we replace Case Assumption A by the following.

Case Assumption B In v�1
1
v0v2 , both v1 and v2 are nontrivial and intermediate.

Lemma 5.3 Let

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/

with uDv�1
1
v0v2 where Case Assumption B holds. Then F.A�;B�;C ��/\F.B�;C �/

is exceptional. Moreover if the basic exceptional equality is p1p0p�1
2
D q , then, under

the conventions described prior to Proposition 5.5 of [3], p1 D v1;p0 D u;p2 D v2

and q D v0 .

Proof This is immediate from the definitions involved.

We use the syllable length function L applicable to words of F.A�C;B
�;C �/ or

F.A�;B�;C ��/, defined as the number of syllables of z . The terms “syllable” and
“syllable length” are defined at the end of Section 5 of [3] but unfortunately the notation
L for this was not specifically defined there – the reader should refer to Addendum 2.
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Lemma 5.4 Let

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/

with uD v�1
1
v0v2 where Case Assumption B holds. Then :

(a) Let h�1w�1kz be a cyclically reduced word, where w 2L and z 2 U are both
nontrivial of type .A� W C �/ and h 2 F.A�;B�/, k 2 F.B�;C �/ with h; k

nontrivial. Suppose that minfL.w/;L.z/g �minfL.v1/;L.v2/g. If h�1w�1kz

contains a pair of disjoint extremal Gurevich subwords then such a pair must be
of the form h�1

1
w�1k1 and k2zh�1

2
where h1; k1 are proper initial segments

of h and k , h2; k2 are proper terminal segments of h and k and the following
hold:

(i) h�1
1
w�1k1 is of the form either (1) u1.a� ; a�/

�1v�1
1
v01.c�; c�/ with w D

v1 or (2) u2.a� ; a�/v
�1
2
v�1

02
.c�; c�/ with w D v2 ;

(ii) k2zh�1
2

is of the form either (3) v02.c�; c�/v2u1.a� ; a�/
�1 with v2 D z or

(4) v01.c�; c�/
�1v1u1.a� ; a�/ with v1 D z .

In the above u1 , v01 , u2 , v02 are appropriate initial or terminal segments of u

and v0 .

(b) Let h�1w�1h0z be a cyclically reduced word, where w 2 L and z 2 U are
both nontrivial of type .C � W C �/ and h 2 F.A�;B�/, k 2 F.B�;C �/ with
h; h0 nontrivial. Suppose that minfL.w/;L.z/g � minfL.v1/;L.v2/g. Then
h�1w�1h0z cannot (cyclically) contain two disjoint Gurevich subwords.

(c) Let k 0�1w�1kz be a cyclically reduced word, where w 2 L and z 2 U are
both nontrivial of type .A� WA�/ and k; k 0 2 F.B�;C �/ with h; h0 nontrivial.
Suppose that minfL.w/;L.z/g �minfL.v1/;L.v2/g. Then k 0�1w�1z cannot
(cyclically) contain two disjoint Gurevich subwords.

Proof We omit the proof of (c) since the statement is the dual of (b).

(a) A pair of extremal Gurevich subwords must be either fh�1
1
w�1k1; k2zh�1

2
g or

fw�1
1

kz1; z2h�1w�1
2
g, as in Lemma 5.1. Since a� and a� occur together in u, when

we inspect our candidate pair fh�1
1
w�1k1; k2zh�1

2
g we see that u cannot be matched

against a syllable of w or z and hence we must have both a� and a� together in h�1
1

and h�1
2

respectively. Similar remarks apply to c� and c� and it follows that for pairs
fh�1

1
w�1k1; k2zh�1

2
g, the possibilities are those listed above.
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An analysis of the possibilities for pairs fw�1
1

kz1; z2h�1w�1
2
g yields the following:

w�1
1 kz1 � u1.a�/

�1v�1
1 v0v2u2.a�/

�1 with v0 D kI

w�1
1 kz1 � u2.a�/v

�1
2 v�1

0 v1u1.a�/ with v�1
0 D kI

z2h�1w�1
2 � v02.c�/v2u�1v�1

1 v01.c�/ with u�1
D h�1

I

z2h�1w�1
2 � v01.c�/

�1v1uv�1
2 v02.c�/

�1 with uD h�1;

where we extend our convention about denoting initial and terminal subscripts of words
in this case to u and v0 by writing u1;u2 and v01; v02 respectively. However in each
case we observe v˙1

1
and v˙1

2
as proper subwords of either w or z contradicting

minfL.w/;L.z/g �minfL.v1/;L.v2/g.

(b) In a manner parallel to the argument for Lemma 5.1 (c),it follows the only possible
form for a pair is w�1

1
h0z1; z1h�1w�1

2
. The options are:

w�1
1 h0z1 � v02.c�/v2u�1v�1

1 v01.c�/ with u�1
D h0I

w�1
1 h0z1 � v01.c�/

�1v1uv�1
2 v02.c�/

�1/ with uD h0I

z2h�1w�1
2 � v02.c�/v2u�1v�1

1 v01.c�/
�1/ with u�1

D h�1
I

z2h�1w�1
2 � v01.c�/

�1v1uv�1
2 v02.c�/

�1/ with uD h:

However, in each case the length inequality is contradicted.

Proposition 5.5 Let

F.A�;B�/\F.A�C;B
�;C �/D hui �F.A�C;B

�/D hvi �F.A�C;B
�/

with uD v�1
1
v0v2 where Case Assumption B holds. Furthermore let the equality whD

kz , where w 2L and z 2U are both nontrivial of type .A� WC �/ and h 2F.A�;B�/,
k 2 F.B�;C �/ , define an element of F.A�;B�;C ��/\F.A�C;B

�;C �/.

If minfL.w/;L.z/g �minfL.v1/;L.v2/g, then one of the following holds:

(a) The element defined by wh D kz is non-exceptional and the equality holds
freely – in particular, hD k D 1 and w � z is intermediate.

(b) v1; v2 are distinct and nontrivial and h�1w�1kz is a cycle of .u�1v�1
1
v0v2/

˙1 .
In particular w� v1; z� v2; h�u; k� v0 , in other words whD kz is precisely
v1uD v0v2 , or, similarly, whD kz is precisely v2u�1 D v�1

0
v1 ;

(c) v1D v2� zv is nontrivial and h�1w�1kz is a cycle of .u�lzv�1vl
0
zv/˙1 for some

nonzero integer l . In particular, w � zv � z and hD ul ; k D vl
0

.
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Proof If some extremal generator does not appear in whD kz , then the equality must
hold freely in the Magnus subgroup omitting this generator and (a) follows. So we can
assume that all four do appear.

(i) Suppose, firstly, that h; k ¤ 1 so that h�1w�1kz is cyclically reduced and (a)
cannot hold. Then either h�1w�1kz is a cycle of .u�1v�1

1
v0v2/

˙1 or h�1w�1kz

contains a pair of disjoint extremal Gurevich subwords.

Let the former occur. Since u and v0 contain, respectively, a� as well as a� and
c� as well as c� , w and z have to be subwords of v1; v2 or their inverses, one
to each. Since L.w/ C L.z/ D L.v1/ C L.v2/, we then obtain either (b), or (c)
with l D 1. Suppose, on the other hand, that h�1w�1kz contains a pair of disjoint
extremal Gurevich subwords. By Lemma 5.4(a), one of w � v1; w � v2; z � v1; z �

v2 must hold. Suppose, for instance, w � v1 ; then h D w�1kz must define an
exceptional element of F.A�;B�/\F.A�C;B

�;C �/. By Proposition 5.1 of [3] applied
to F.A�;B�/\F.A�C;B

�;C �/ either (b) or (c) holds. Similar arguments apply in
the remaining cases, using, in addition, the fact that F.A�;B�;C ��/\F.B�;C �/ is
exceptional.

(ii) Suppose that h D 1 and k ¤ 1; as noted, the equality cannot hold freely and
we shall show that it cannot in fact occur. We find ourselves in a position similar to
that of Proposition 5.2 where the cyclically reduced form of kzw�1 is obtained by
cancelling a common terminal segment of w and z . As previously, this common initial
segment must be intermediate and so the occurrences of a� and a� , which necessarily
appear in w and z , respectively will not be cancelled. Then, depending on the exact
nature of common terminal segment cancelled, the resulting cyclically reduced word
will be either of the form kz0h0�1w0�1 with w0 , z0 also both of type .A� W C �/, or
kz0k 0�1w0�1 , with w0 , z0 both of type .A� WA�/, and h0 , respectively k 0 , nontrivial.

Suppose that we get kz0h0�1w0�1 ; since k; h0 ¤ 1 this is cyclically reduced. By
repeating the argument for Case (i), we deduce that w0� v1 and z0� v2 or vice-versa.
However we also know that L.w0/<L.w/;L.z0/<L.z/, since the final syllables of w
and z must have been completely cancelled and so the length inequality is contradicted
and this situation cannot occur.

If we have kz0k 0�1w0�1 , then this too is cyclically reduced. It cannot be a cycle of
.u�1v�1

1
v0v2/

˙1 since occurrences of a� and a� are separated by k and k 0 . We
again have L.w0/ < L.w/;L.z0/ < L.z/ since we “raided” the final syllables of w
and z to obtain k 0 and thus minfL.w0/;L.z0/g � minfL.v1/;L.v2/g. By Lemma
5.4(c), kz0k 0�1w0�1 cannot contain two disjoint Gurevich subwords. This completes
the elimination of all possibilities.
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The remaining cases (iii), when h¤ 1 and k D 1 and (iv) hD k D 1 are disposed of
similarly.

6 Final remarks

One can derive a slightly more general conclusion from Theorem 2. We begin with a
simple Lemma.

Lemma 6.1 Let G D hX W r D 1i, where r is cyclically reduced, be a one-relator
group. Further let M D F.S/;N D F.T / be Magnus subgroups of G and g;g0 be
elements of G and suppose that gMg0�1\N is nonempty. Then:

(a) For any element k 2 gMg0�1\N ,

.gMg�1
\N /k D gMg0�1

\N D k.g0Mg0�1
\N /:

(b) jgMg0�1\N j D 1 if and only if gMg�1\N D 1D g0Mg0�1\N /.

(c) g 2 NM if and only if g0 2 NM in which case gMg0�1 \ N D .k.M \

N /k�1/k� where g D kh;g0 D k 0h0 and k� D kk 0�1 .

Proof (a) We have an equality ghg0�1 D k , where k is our given element of
N and h 2M . Then gMg0�1 \N D kg0h�1Mg0�1 \N D kg0Mg0�1 \ kN D

k.g0Mg0�1\N /. Similarly we obtain .gMg�1\N /k D gMg0�1\N .

(b) This is immediate from (a).

(c) Let gDkh2NM , where k 2N; h2M . Then gMg0�1\N DkhMg0�1\kN D

k.Mg0�1\N /. This means that Mg0�1\N is nonempty and so we have an equality
h0g0�1 D k 0 giving g0 D k 0h0 2NM .

From this we can now derive the following corollary to Theorem 2.

Corollary Let G D hX W r D 1i, where r is cyclically reduced, be a one-relator group
and M D F.S/;N D F.T / be Magnus subgroups of G . For any g;g0 2 G , one of
the following holds:

(i) gMg0�1\N is empty.

(ii) gMg0�1\N is nonempty, g;g0 2NM and gMg0�1\N is a both a left coset
of a conjugate of M \N and a right coset of a (different) conjugate of M \N .

(iii) gM g0
�1
\N is nonempty, g;g0 …NM and gMg0�1 \N is a right coset of

the cyclic group gMg�1\N and a left coset of the cyclic group g0Mg0�1\N .
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Proof This is immediate from Lemma 6.1 and Theorem 2.

Although the Corollary is formally a slightly more general statement than Theorem 2,
the greater generality seems to be of no particular value in making arguments. One
might have hoped that in the analysis of an equality of the form

gh0bh1 : : : bhmg�1
D k0bh1 : : : bkm

such as that occurring in Claim 4.2 – where g; hi ; ki 2G� so that the Normal Form
equalities gh0z�1

0
D k0;

 �z0h1z�1
1
D k1; : : : ;

 ��zn�1hng�1 D kn are all of the form
described in the Corollary relative to the Magnus subgroups M D F.A�;B�/ and
N DF.B�;C �/ of G� – would permit a direct inductive argument taking the statement
of the Corollary as the inductive hypothesis. However, this does not seem to be possible,
probably because the Corollary is obtained so easily and so the level of additional
generality is thus very slight.
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