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Preface

This book is devoted to the study of moduli spaces of Seiberg–Witten monopoles over
spinc Riemannian 4–manifolds with long necks and/or tubular ends. The original
purpose of this work was to provide analytical foundations for a certain construction of
Floer homology of rational homology 3–spheres; this is carried out in [23]. However,
along the way the project grew, and except for some of the transversality results, most
of the theory is developed more generally than is needed for that construction. Floer
homology itself is hardly touched upon in this book, and to compensate for that I
have included another application of the analytical machinery, namely a proof of a
“generalized blow-up formula” which is an important tool for computing Seiberg–Witten
invariants.

The book is divided into three parts. Part I is almost identical to my paper [22]. The
only significant change is the addition of Proposition 3.4.2 and Lemma 8.1.2. The other
two parts consist of previously unpublished material. Part II is an expository account of
gluing theory including orientations. The main novelties here may be the formulation
of the gluing theorem and the approach to orientations. In Part III the analytical results
are brought together to prove the generalized blow-up formula. A detailed description
of the contents of the book is provided by the introductions to each part.

At least on a formal level there are many analogies with the instanton theory, and at some
places, most notably in Chapters 2 and 6, I have borrowed ideas from Donaldson’s book
[14]. Furthermore, the approach to orientations uses a concept of Benevieri–Furi [8]
which I learnt about from Shuguang Wang [51].

About a year after the manuscript to this book was submitted, the book of Kronheimer–
Mrowka [31] appeared, which takes the subject much further, using an entirely new
approach involving certain blown-up configuration spaces. It is hoped that the present
text may complement their work by giving a thorough discussion of ordinary moduli
spaces (as opposed to the blown-up ones). Our setup is less general than that of [31]
in that “balanced” perturbations of the Chern–Simons–Dirac functional (using their
terminology) are ruled out when the underlying 3–manifold has Betti number b1 > 0.

vii



viii Preface

On the other hand, this book in some ways goes further in investigating compactness
in the presence of “nonexact” perturbations, introducing a second technique in addition
to the standard one based on the energy concept. As for the blow-up formula, this can
be proved using Floer homology as is done in [31], but the proof given here is a lot
more elementary.

Part of this work was carried out in 2001–2 during a stay at the Institut des Hautes
Études Scientifiques, and the author is grateful for the hospitality and excellent research
environment which he enjoyed there. This work was also partially supported by grants
from the National Science Foundation and the DFG (German Research Foundation) as
well as by the CRC 701 at the University of Bielefeld.
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Part I

Compactness

Let Z be a closed, oriented 4–manifold equipped with a spinc –structure. Suppose Z

is separated by a closed hypersurface Y , say

Z DZ1[Y Z2:

Then one may attempt to express the Seiberg–Witten invariant of Z in terms of relative
invariants of the two pieces Z1;Z2 . The standard approach, familiar from instanton
Floer theory (see Floer [19] and Donaldson [14]), is to construct a 1–parameter family
fgT g of Riemannian metrics on Z by stretching along Y so as to obtain a neck
Œ�T;T ��Y , and study the monopole moduli space M .T / over .Z;gT / for large T .
There are different aspects of this problem: compactness, transversality and gluing.
In this part of the book we will focus particularly on compactness, and also establish
transversality results sufficient for the construction of Floer homology groups of rational
homology 3–spheres.

Let the monopole equations over the neck Œ�T;T � � Y be perturbed by a closed
2–form � on Y , so that temporal gauge solutions to these equations correspond to
downward gradient flow lines of the correspondingly perturbed Chern–Simons–Dirac
functional #� over Y . Suppose all critical points of #� are nondegenerate. Because
each moduli space M .T / is compact, one might expect, by analogy with Morse theory,
that a sequence !n 2M .Tn/ where Tn!1 has a subsequence which converges, in a
suitable sense, to a pair of monopoles over the cylindrical-end manifolds associated to
Z1;Z2 together with a broken gradient line of #� over R�Y . Unfortunately, this kind
of compactness may fail when � is nonexact. (A simple class of counter-examples is
described after Theorem 1.4.1 below.) It is then natural to seek topological conditions
which ensure that compactness does hold. We will consider two approaches which
provide different sufficient conditions. In the first approach, which is essentially well

1
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known, one first establishes global bounds on a certain energy functional and then
derives local L2 bounds on the curvature forms. In the second approach, which appears
to be new, one begins by placing the connections in Coulomb gauge with respect to
a given reference connection and then obtains global bounds on the corresponding
connection forms in suitably weighted Sobolev norms, utilizing the apriori pointwise
bounds on the spinors.

The energy concept is particularly well explained by Kronheimer–Mrowka [31], who
discuss compactness (for blown-up moduli spaces) for exact and nonexact �. The
important case when Y is a circle times a surface of genus g was studied by Morgan–
Szabó–Taubes [40] (when g > 1) and Taubes [48] (when g D 1), in both cases with �
nonexact. Other sources are Nicolaescu [41] (with �D 0) and Marcolli–Wang [36]
(with � exact).

In the transversality theory of moduli spaces we mostly restrict ourselves, for the
time being, to the case when all ends of the 4–manifold in question are modelled on
rational homology spheres. The perturbations of the monopole equations on the ends
are minor modifications of the ones introduced in [21]. (It is not clear to us that these
perturbations immediately carry over to the case of more general ends, as has apparently
been assumed by some authors, although we expect that a modified version may be
shown to work with the aid of gluing theory.) In the language of finite dimensional
Morse theory our approach is somewhat analogous to perturbing the gradient vector
field away from the critical points. In contrast, [31] uses more general perturbations
of the Chern–Simons–Dirac functional but retains the gradient flow property of the
equations.

This part also contains expository chapters on configuration spaces and exponential
decay.
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CHAPTER 1

Compactness theorems

1.1 Vanishing results

Before describing our compactness results in more detail we will mention two applica-
tions to Seiberg–Witten invariants of closed 4–manifolds.

By a spinc manifold we shall mean an oriented smooth manifold with a spinc structure.
If Z is a spinc manifold then �Z will refer to the same smooth manifold equipped
with the opposite orientation and the corresponding spinc structure.

If Z is a closed, oriented 4–manifold then by an homology orientation of Z we mean
an orientation of the real vector space H 0.Z/�˚H 1.Z/˚HC.Z/� , where HC.Z/

is any maximal positive subspace for the intersection form on H 2.Z/. The dimension
of HC is denoted bC .

In [7] Bauer and Furuta introduced a refined Seiberg–Witten invariant for closed spinc

4–manifolds Z . This invariant eSW.Z/ lives in a certain equivariant stable cohomotopy
group. If Z is connected and bC.Z/>1, and given an homology orientation of Z , then
according to Bauer [5] there is a natural homomorphism from this stable cohomotopy
group to Z which maps eSW.Z/ to the ordinary Seiberg–Witten invariant SW.Z/

defined by the homology orientation. In [6] Bauer showed that, unlike the ordinary
Seiberg–Witten invariant, the refined invariant does not in general vanish for connected
sums where both summands have bC > 0. However, eSW.Z/D 0 provided there exists
a metric and perturbation 2–form on Z for which the Seiberg–Witten moduli space
MZ is empty (see Bauer [5, Remark 2.2] and Ishida–LeBrun [27, Proposition 6]).

3



4 1 Compactness theorems

Theorem 1.1.1 Let Z be a closed spinc 4–manifold and Y � Z a 3–dimensional
closed, orientable submanifold. Suppose

(i) Y admits a Riemannian metric with positive scalar curvature,
(ii) H 2.ZIQ/!H 2.Y IQ/ is nonzero.

Then there exist a metric and perturbation 2–form on Z for which MZ is empty, hence
eSW.Z/D 0.

This generalizes a result of Fintushel–Stern [17] and Morgan–Szabó–Taubes [40] which
concerns the special case when Y � S1 �S2 is the link of an embedded 2–sphere of
self-intersection 0. One can derive Theorem 1.1.1 from Nicolaescu’s proof [41] of their
result and the classification of closed orientable 3–manifolds admitting positive scalar
curvature metrics (see Lawson–Michelson [33, p 325]). However, we shall give a direct
(and much simpler) proof where the main idea is to perturb the monopole equations on
Z by a suitable 2–form such that the corresponding perturbed Chern–Simons–Dirac
functional on Y has no critical points. One then introduces a long neck Œ�T;T ��Y .
See Chapter 9 for details.

We now turn to another application, for which we need a little preparation. For any
compact spinc 4–manifold Z whose boundary is a disjoint union of rational homology
spheres set

d.Z/D
1

4
.c1.LZ /

2
� �.Z//C b1.Z/� bC.Z/:

Here LZ is the determinant line bundle of the spinc structure, and �.Z/ the signature
of Z . If Z is closed then the moduli space MZ has expected dimension d.Z/�b0.Z/.

In [23] we will assign to every spinc rational homology 3–sphere Y a rational number
h.Y /. (A preliminary version of this invariant was introduced in [21].) In Chapter 9
this invariant will be defined in the case when Y admits a metric with positive scalar
curvature. It satisfies h.�Y /D�h.Y /. In particular, h.S3/D 0.

Theorem 1.1.2 Let Z be a closed, connected spinc 4–manifold, and let W �Z be a
compact, connected, codimension 0 submanifold whose boundary is a disjoint union of
rational homology spheres Y1; : : : ;Yr , r � 1, each of which admits a metric of positive
scalar curvature. Suppose bC.W / > 0 and set W c DZ n int W . Let each Yj have the
orientation and spinc structure inherited from W . Then the following hold:

(i) If 2
P

j h.Yj /� �d.W / then there exist a metric and perturbation 2–form on
Z for which MZ is empty, hence eSW.Z/D 0.

(ii) If bC.Z/ > 1 and 2
P

j h.Yj / < d.W c/ then SW.Z/D 0.

Note that (ii) generalizes the classical theorem (see Salamon [44] and Nicolaescu [41])
which says that SW.Z/D 0 if Z is a connected sum where both sides have bC > 0.

Geometry & Topology Monographs, Volume 15 (2008)



1.2 The Chern–Simons–Dirac functional 5

1.2 The Chern–Simons–Dirac functional

Let Y be a closed, connected Riemannian spinc 3–manifold. We consider the Seiberg–
Witten monopole equations over R�Y , perturbed by adding a 2–form to the curvature
part of these equations. This 2–form should be the pullback of a closed form � on Y .
Recall from [30; 40] that in temporal gauge these perturbed monopole equations can be
described as the downward gradient flow equation for a perturbed Chern–Simons–Dirac
functional, which we will denote by #� , or just # when no confusion can arise.

For transversality reasons we will add a further small perturbation to the monopole
equations over R�Y , similar to that introduced in [21, Section 2]. This perturbation
depends on a parameter p (see Section 3.3). When p ¤ 0 the perturbed monopole
equations are no longer of gradient flow type. Therefore, p has to be kept small in
order for the perturbed equations to retain certain properties (see Section 4.2).

If S is a configuration over Y (ie a spin connection together with a section of the spin
bundle) and uW Y ! U.1/ then

#.u.S//�#.S/D 2�

Z
Y

z�^ Œu�; (1.1)

where Œu� 2H 1.Y / is the pullback by u of the fundamental class of U.1/, and

z�D �c1.LY /� Œ�� 2H 2.Y /: (1.2)

Here LY is the determinant line bundle of the spinc structure of Y .

Let RY be the space of (smooth) monopoles over Y (ie critical points of # ) modulo
all gauge transformations Y !U.1/, and zRY the space of monopoles over Y modulo
null-homotopic gauge transformations.

When no statement is made to the contrary, we will always make the following two
assumptions:

(O1) z� is a real multiple of some rational cohomology class.

(O2) All critical points of # are nondegenerate.

The second assumption implies that RY is a finite set. This rules out the case when
z� D 0 and b1.Y / > 0, because if z� D 0 then the subspace of reducible points in
RY is homeomorphic to a b1.Y /–dimensional torus. If z� ¤ 0 or b1.Y / D 0 then
the nondegeneracy condition can be achieved by perturbing � by an exact form (see
Proposition 8.1.1).

For any ˛; ˇ 2 zRY let M.˛; ˇ/ denote the moduli space of monopoles over R�Y

that are asymptotic to ˛ and ˇ at �1 and 1, respectively. Set LM DM=R, where

Geometry & Topology Monographs, Volume 15 (2008)



6 1 Compactness theorems

R acts by translation. By a broken gradient line from ˛ to ˇ we mean a sequence
.!1; : : : ; !k/ where k � 0 and !j 2

LM . j̨�1; j̨ / for some ˛0; : : : ; ˛k 2
zRY with

˛0D ˛ , ˛k D ˇ , and j̨�1¤ j̨ for each j . If ˛D ˇ then we allow the empty broken
gradient line (with k D 0).

1.3 Compactness

Let X be a spinc Riemannian 4–manifold with tubular ends xRC �Yj , j D 1; : : : ; r ,
where r � 0 and each Yj is a closed, connected Riemannian spinc 3–manifold. Setting
Y D

S
j Yj this means that we are given

� an orientation preserving isometric embedding �W xRC �Y !X such that

XWt DX n �..t;1/�Y / (1.3)

is compact for any t � 0,

� an isomorphism between the spinc structure on xRC �Y induced from Y and
the one inherited from X via the embedding �.

Here RC is the set of positive real numbers and xRCDRC[f0g. Usually we will just
regard xRC �Y as a (closed) submanifold of X .

Let �j be a closed 2–form on Yj and define z�j 2H 2.Yj / in terms of �j as in (1.2). We
write # instead of #�j when no confusion is likely to arise. We perturb the curvature
part of the monopole equations over X by adding a 2–form � whose restriction
to RC � Yj agrees with the pullback of �j . In addition we perturb the equations
over R� Yj and the corresponding end of X using a perturbation parameter pj . If
Ę D .˛1; : : : ; ˛r / with j̨ 2

zRYj let M.X I Ę/ denote the moduli space of monopoles
over X that are asymptotic to j̨ over RC �Yj .

Let �1; : : : ; �r be positive constants. We consider the following two equivalent condi-
tions on the spinc manifold X and z�j ; �j :

(A) There exists a class zz 2H 2.X IR/ such that zzjYj D �j z�j for j D 1; : : : ; r .

(A 0 ) For configurations S over XW0 the sum
P

j �j#.S jf0g�Yj / depends only on the
gauge equivalence class of S .

Note that if �j D 1 for all j then (A) holds precisely when there exists a class
z 2H 2.X IR/ such that zjYj D Œ�j � for j D 1; : : : ; r .

Geometry & Topology Monographs, Volume 15 (2008)



1.4 Compactness and neck-stretching 7

Theorem 1.3.1 If Condition (A) is satisfied and each pj has sufficiently small C 1

norm then the following holds. For n D 1; 2; : : : let !n 2M.X I Ęn/, where Ęn D
.˛n;1; : : : ; ˛n;r /. If

inf
n

rX
jD1

�j#.˛n;j / > �1 (1.4)

then there exists a subsequence of !n which chain-converges to an .r C 1/–tuple
.!; Ev1; : : : ; Evr / where ! is an element of some moduli space M.X I Ě/ and Evj is a
broken gradient line over R�Yj from ǰ to some j 2 zRYj . Moreover, if !n chain-
converges to .!; Ev1; : : : ; Evr / then for sufficiently large n there is a gauge transformation
unW X ! U.1/ which is translationary invariant over the ends and maps M.X I Ęn/ to
M.X I E /.

The Equation (1.4) imposes an “energy bound” over the ends of X , as we will show in
Section 7.2. The notion of chain-convergence is defined in Section 7.1. The limit, if it
exists, is unique up to gauge equivalence (see Proposition 7.1.2 below).

1.4 Compactness and neck-stretching

In this section cohomology groups will have real coefficients.

We consider again a spinc Riemannian 4–manifold X as in the previous section,
but we now assume that the ends of X are given by orientation preserving isometric
embeddings

�0j W
xRC �Y 0j !X ; j D 1; : : : ; r 0;

�˙j W
xRC � .˙Yj /!X ; j D 1; : : : ; r;

where r; r 0 � 0. Here each Y 0j ;Yj should be a closed, connected spinc Riemannian
3–manifold, and as before there should be the appropriate identifications of spinc

structures. For every T D .T1; : : : ;Tr / with Tj > 0 for each j , let X .T / denote the
manifold obtained from X by gluing, for j D 1; : : : ; r , the two ends �˙j .xRC �Yj /

to form a neck Œ�Tj ;Tj ��Yj . To be precise, let X fT g �X be the result of deleting
from X the sets �˙j .Œ2Tj ;1/�Yj /, j D 1; : : : ; r . Set

X .T /
DX fT g=�;

where we identify
�Cj .t;y/� �

�
j .2Tj � t;y/

Geometry & Topology Monographs, Volume 15 (2008)



8 1 Compactness theorems

for all .t;y/ 2 .0; 2Tj /� Yj and j D 1; : : : ; r . We regard Œ�Tj ;Tj �� Yj as a sub-
manifold of X .T / by means of the isometric embedding .t;y/ 7! �T �

C
j .t CTj ;y/,

where �T W X
fT g!X .T / . Also, we write RC � .˙Yj / instead of �˙j .RC �Yj /, and

similarly for RC �Y 0j , if this is not likely to cause any confusion.

Set X # DX .T / with Tj D 1 for all j . The process of constructing X # from X (as
smooth manifolds) can be described by the unoriented graph  which has one node for
every connected component of X and, for each j D 1; : : : ; r , one edge representing
the pair of embeddings �˙j .

A node in an oriented graph is called a source if it has no incoming edges. If e is any
node in  let Xe denote the corresponding component of X . Let Ze D .Xe/W1 be the
corresponding truncated manifold as in (1.3). Let  ne be the graph obtained from  by
deleting the node e and all edges of which e is a boundary point. Given an orientation
o of  let @�Ze denote the union of all boundary components of Ze corresponding
to incoming edges of .; o/. Let Fe be the kernel of H 1.Ze/!H 1.@�Ze/, and set

†.X; ; o/D dim H 1.X #/�
X

e

dim Fe:

It will follow from Lemma 5.3.1 below that †.X; ; o/�0 if each connected component
of  is simply connected.

We will now state a condition on .X;  / which is recursive with respect to the number
of nodes of  .

(C) If  has more than one node then it should admit an orientation o such that the
following two conditions hold:
� †.X; ; o/D 0.
� Condition (C) holds for .X nXe;  n e/ for all sources e of .; o/.

We are only interested in this condition when each component of  is simply connected.
If  is connected and has exactly two nodes e1; e2 then (C) holds if and only if
H 1.X #/!H 1.Zej / is surjective for at least one value of j , as is easily seen from
the Mayer–Vietoris sequence. See Section 5.3 and the proof of Proposition 5.4.2 for
more information about Condition (C).

Let the Chern–Simons–Dirac functionals on Yj ;Y
0

j be defined in terms of closed
2–forms �j ; �

0
j respectively. Let z�j and z�0j be the corresponding classes as in (1.2).

Let �1; : : : ; �r and �0
1
; : : : ; �0r 0 be positive constants. The following conditions on

X; z�j ; z�
0
j ; �j ; �

0
j will appear in Theorem 1.4.1 below.

(B1) There exists a class in H 2.X #/ whose restrictions to Yj and Y 0j are Œ�j � and
Œ�0j �, respectively, and all the constants �j ; �

0
j are equal to 1.

Geometry & Topology Monographs, Volume 15 (2008)



1.4 Compactness and neck-stretching 9

(B2) There exists a class in H 2.X #/ whose restrictions to Yj and Y 0j are �j z�j and
�0j z�
0
j , respectively. Moreover, the graph  is simply connected, and Condition (C)

holds for .X;  /.

Choose a 2–form � on X whose restriction to each end RC � .˙Yj / is the pullback
of �j , and whose restriction to RC �Y 0j is the pullback of �0j . Such a form � gives
rise, in a canonical way, to a form �.T / on X .T / . We use the forms �;�.T / to perturb
the curvature part of the monopole equations over X , X .T / , respectively. We use
the perturbation parameter p0j over R�Y 0j and the corresponding ends, and pj over
R�Yj and the corresponding ends and necks.

Moduli spaces over X will be denoted M.X I ĘC; Ę�; Ę
0/, where the j –th component

of Ę˙ specifies the limit over the end RC � .˙Yj / and the j –th component of Ę0

specifies the limit over RC �Y 0j . We set

Tmin WDmin.T1; : : : ;Tr /:

If we are given a sequence T .n/ of r –tuples, we write

Tmin.n/ WDmin.T1.n/; : : : ;Tr .n//:

Theorem 1.4.1 Suppose at least one of the conditions (B1), (B2) holds, and for
nD1; 2; : : : let !n2M.X .T .n//I Ę0n/, where Ę0nD .˛

0
n;1
; : : : ; ˛0n;r 0/ and Tmin.n/!1

as n!1. Suppose also that the perturbation parameters pj ; p
0
j are admissible for

each Ę0n , and that

inf
n

r 0X
jD1

�0j#.˛
0
n;j / > �1:

Then there exists a subsequence of !n which chain-converges to an .r C r 0C 1/–tuple
V D .!; Ev1; : : : ; Evr ; Ev

0
1
; : : : ; Ev0r 0/, where

� ! is an element of some moduli space M.X I Ę1; Ę2; Ě
0/,

� Evj is a broken gradient line over R�Yj from ˛1j to ˛2j ,

� Ev0j is a broken gradient line over R�Y 0j from ˇ0j to some  0j 2 zRY 0
j

.

Moreover, if !n chain-converges to V then for sufficiently large n there is a gauge
transformation unW X

.T .n//!U.1/ which is translationary invariant over the ends and
maps M.X .T .n//I Ę0n/ to M.X .T .n//I E 0/.

The notion of chain-convergence is defined in Section 7.1. Note that the chain-limit is
unique only up to gauge equivalence; see Proposition 7.1.2.

Geometry & Topology Monographs, Volume 15 (2008)



10 1 Compactness theorems

What it means for the perturbation parameters pj ; p
0
j to be “admissible” is defined in

Definition 7.1.3. As in Theorem 1.3.1, if (B2) holds and the perturbation parameters
have sufficiently small C 1 norm then they are admissible for any Ę0 ; see Proposition
5.4.2. If (B1) is satisfied but perhaps not (B2) then for any C1 <1 there is a C2 > 0

such that if the perturbation parameters have C 1 norm < C2 then they are admissible
for all Ę0 satisfying

Pr 0

jD1 �
0
j#.˛

0
j / > �C1 ; see the remarks after Proposition 4.3.1.

The conditions (B1), (B2) in the theorem correspond to the two approaches to com-
pactness referred to at the beginning of this introduction: If (B1) is satisfied then one
can take the “energy approach”, whereas if (B2) holds one can use the “Hodge theory
approach”

The conclusion of the theorem does not hold in general when neither (B1) nor (B2) are
satisfied. For in that case Theorem 1.1.1 would hold if instead of (ii) one merely assumed
that b1.Y / > 0. Since R4 contains an embedded S1 �S2 this would contradict the
fact that there are many spinc 4–manifolds with bC > 1 and nonzero Seiberg–Witten
invariant.

For the moment we will abuse language and say that (B2) holds if it holds for some
choice of constants �j ; �

0
j , and similarly for (B1). Then a simple example where

(B1) is satisfied but not (B2) is X DR�Y , where one glues the two ends to obtain
X .T / D .R=2T Z/�Y . There are also many examples where (B2) is satisfied but not
(B1). For instance, consider the case when X consists of two copies of R� Y , say
X DR�Y �f1; 2g with Y connected, and one glues RC�Y �f1g with R��Y �f2g.
In this case r D 1 and r 0 D 2, so we are given closed 2–forms �1; �

0
1
; �0

2
on Y .

Condition (B1) now requires that these three 2–forms represent the same cohomology
class, while (B2) holds as long as there are a1; a2 > 0 such that Œ�1�D a1Œ�

0
1
�D a2Œ�

0
2
�.
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CHAPTER 2

Configuration spaces

2.1 Configurations and gauge transformations

Let X be a Riemannian n–manifold with tubular ends xRC �Yj , j D 1; : : : ; r , where
n� 1, r � 0, and each Yj is a closed, connected Riemannian .n� 1/–manifold. This
means that we are given for each j an isometric embedding

�j W xRC �Yj !X I

moreover, the images of these embeddings are disjoint and their union have precompact
complement. Usually we will just regard xRC � Yj as a submanifold of X . Set
Y D

S
j Yj and, for t � 0,

XWt DX n .t;1/�Y:

Let S! X and Sj ! Yj be Hermitian complex vector bundles, and L! X and
Lj ! Yj principal U.1/–bundles. Suppose we are given, for each j , isomorphisms

��j S
�
! xRC �Sj ; ��j L

�
! xRC �Lj :

By a configuration in .L;S/ we shall mean a pair .A; ˆ/ where A is a connection in
L and ˆ a section of S . Maps uW X ! U.1/ are referred to as gauge transformations
and these act on configurations in the natural way:

u.A; ˆ/D .u.A/;uˆ/:

The main goal of this chapter is to prove a “local slice” theorem for certain orbit spaces
of configurations modulo gauge transformations.

11



12 2 Configuration spaces

We begin by setting up suitable function spaces. For p� 1 and any nonnegative integer
m let L

p
m.X / be the completion of the space of compactly supported smooth functions

on X with respect to the norm

kf km;p D kf kLp
m
D

 
mX

kD0

Z
X

jr
kf jp

!1=p

:

Here the covariant derivative is computed using some fixed connection in the tangent
bundle TX which is translationary invariant over each end. Define the Sobolev space
L

p
m.X IS/ of sections of S similarly.

We also need weighted Sobolev spaces. For any smooth function wW X ! R set
L

p;w
m .X /D e�wL

p
m.X / and

kf kLp;w
m
D kewf kLp

m
:

In practice we require that w have a specific form over the ends, namely

w ı �j .t;y/D �j t;

where the �j ’s are real numbers.

The following Sobolev embeddings (which hold in Rn , hence over X ) will be used
repeatedly:

L
p
mC1

�L
2p
m if p � n=2, m� 0,

L
p
2
� C 0

B
if p > n=2.

Here C 0
B

denotes the Banach space of bounded continuous functions, with the supre-
mum norm. Moreover, if pm > n then multiplication defines a continuous map
L

p
m �L

p

k
!L

p

k
for 0� k �m.

For the remainder of this chapter fix p > n=2.

Note that this implies L
p
1
�L2 over compact n–manifolds.

We will now define an affine space C of L
p
1;loc configurations in .L;S/. Let Ao be

a smooth connection in L. Choose a smooth section ˆo of S whose restriction to
RC � Yj is the pullback of a section  j of Sj . Suppose  j D 0 for j � r0 , and
 j 6� 0 for j > r0 , where r0 is a nonnegative integer.. Fix a weight function w as
above with �j � 0 small for all j , and �j > 0 for j � r0 . Set

C D f.AoC a; ˆoC�/ W a; � 2L
p;w
1
g:

We topologize C using the L
p;w
1

metric.
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2.2 The Banach algebra 13

We wish to define a Banach Lie group G of L
p
2;loc gauge transformations over X such

that G acts smoothly on C and such that if S;S 0 2 C and u.S/D S 0 for some L
p
2;loc

gauge transformations u then u 2 G . If u 2 G then we must certainly have

.�u�1du; .u� 1/ˆo/D u.Ao; ˆo/� .Ao; ˆo/ 2L
p;w
1

:

Now
kdukLp;w

1
� const � .ku�1dukLp;w

1
Cku�1duk2Lp;w

1
/; (2.1)

and vice versa, kdukLp;w

1
controls ku�1dukLp;w

1
, so we try

G D fu 2L
p
2;loc.X IU.1// W du; .u� 1/ˆo 2L

p;w
1
g:

By L
p
2;loc.X IU.1// we mean the set of elements of L

p
2;loc.X IC/ that map into U.1/.

We will see that G has a natural smooth structure such that the above criteria are
satisfied.

(This approach to the definition of G was inspired by Donaldson [14].)

2.2 The Banach algebra

Let zx be a finite subset of X which contains at least one point from every connected
component of X where ˆo vanishes identically.

Definition 2.2.1 Set

E D ff 2L
p
2;loc.X IC/ W df; f ˆo 2L

p;w
1
g;

and let E have the norm

kf kE D kdf kLp;w

1
Ckf ˆokLp;w

1
C

X
x2zx

jf .x/j:

We will see in a moment that E is a Banach algebra (without unit if r0 < r ). The next
lemma shows that the topology on E is independent of the choice of ˆo and zx .

Lemma 2.2.1 Let Z �X be a compact, connected codimension 0 submanifold.

(i) If ˆojZ 6� 0 then there is a constant C such thatZ
Z

jf jp � C

Z
Z

jdf jpCjf ˆoj
p (2.2)

for all f 2L
p
1
.Z/.
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14 2 Configuration spaces

(ii) There are constants C1;C2 such that

jf .z2/�f .z1/j � C1kdf kL2p.Z/ � C2kdf kLp

1
.Z/

for all f 2L
p
2
.Z/ and z1; z2 2Z .

Proof Part (i) follows from the compactness of the embedding L
p
1
.Z/!Lp.Z/. The

first inequality in (ii) can either be deduced from the compactness of L
2p
1
.Z/!C 0.Z/,

or one can prove it directly, as a step towards proving the Rellich lemma, by considering
the integrals of df along a suitable family of paths from z1 to z2 .

Lemma 2.2.2 Let Y be a closed Riemannian manifold, and � > 0.

(i) If q � 1 and f W RC �Y !R is a C 1 function such that limt!1 f .t;y/D 0

for all y 2 Y then

kf kLq;� .RC�Y / � �
�1
k@1f kLq;� .RC�Y /:

(ii) If q > 1, T � 1, and f W Œ0;T ��Y !R is a C 1 function then

kf kLq.ŒT�1;T ��Y / � kf0kLq.Y /C .� r/�1=r
k@1f kLq;� .Œ0;T ��Y /;

where f0.y/D f .0;y/ and 1=qC 1=r D 1.

Here @1 is the partial derivative in the first variable, ie in the RC coordinate.

Proof Part (i) follows from:

kf kLq;� .RC�Y / D

�Z
RC�Y

ˇ̌̌̌Z 1
0

e� t@1f .sC t;y/ ds

ˇ̌̌̌q
dt dy

�1=q

�

Z 1
0

�Z
RC�Y

je� t@1f .sC t;y/jq dt dy

�1=q

ds

�

�Z 1
0

e��s ds

��Z
RC�Y

je�.sCt/@1f .sC t;y/jq dt dy

�1=q

� ��1
k@1f kLq;� .RC�Y /:

Part (ii) follows by a similar computation.

Parts (i)–(iv) of the following proposition are essentially due to Donaldson [14].

Proposition 2.2.1 (i) There is a constant C1 such that, for all f 2 E ,

kf k1 � C1kf kE :
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2.3 The infinitesimal action 15

(ii) For every f 2 E and j D 1; : : : ; r the restriction f jftg�Yj converges uniformly
to a constant function f .j/ as t !1, and f .j/ D 0 for j > r0 .

(iii) There is a constant C2 such that if f 2 E and f .j/ D 0 for all j then

kf kLp;w

2
� C2kf kE :

(iv) There is an exact sequence

0!L
p;w
2

�
! E e

!Cr0 ! 0;

where � is the inclusion and e.f /D .f .1/; : : : ; f .r0//.

(v) E is complete, and multiplication defines a continuous map E � E! E .

Proof First observe that for any f 2L
p
2;loc.X / and � > 0 there exists a g 2 C1.X /

such that kg � f kLp;w

2
< � . Therefore it suffices to prove (i)–(iii) when f 2 E is

smooth. Part (i) is then a consequence of Lemma 2.2.1 and Lemma 2.2.2 (ii), while
Part (ii) for r0 < j � r follows from Lemma 2.2.1.

We will now prove (ii) when 1� j � r0 . Let f 2E be smooth. Since
R

RC�Yj
jdf j<1

by the Hölder inequality, we haveZ 1
0

j@1f .t;y/j dt <1 for a.e. y 2 Yj :

For n 2N set fnD f jŒn�1;nC1��Yj , regarded as a function on B D Œn�1; nC1��Yj .
Then ffng converges a.e., so by Egoroff’s theorem ffng converges uniformly over
some subset T �B of positive measure. There is then a constant C > 0, depending
on T , such that for every g 2L

p
1
.B/ one hasZ

B

jgjp � C

�Z
B

jdgjpC

Z
T

jgjp
�
:

It follows that ffng converges in L
p
2

over B , hence uniformly over B , to some constant
function.

Part (iii) follows from Lemma 2.2.1 and Lemma 2.2.2 (i). Part (iv) is an immediate
consequence of (ii) and (iii). It is clear from (i) that E is complete. The multiplication
property follows easily from (i) and the fact that smooth functions are dense in E .

2.3 The infinitesimal action

If f W X ! iR and ˆ is a section of S we define a section of iƒ1˚S by

Iˆf WD .�df; f ˆ/

Geometry & Topology Monographs, Volume 15 (2008)



16 2 Configuration spaces

whenever the expression on the right makes sense. Here ƒk denotes the bundle of
k –forms (on X , in this case). If S D .A; ˆ/ is a configuration then we will sometimes
write IS instead of Iˆ . Set

I WD Iˆo
:

If ˆ is smooth then the formal adjoint of the operator Iˆ is

I�ˆ.a; �/D�d�aC ihiˆ; �iR;

where h � ; � iR is the real inner product on S . Note that

I�ˆIˆ D�Cjˆj
2

where � is the positive Laplacian on X .

Set LG WD ff 2 E W f maps into iRg:

From Proposition 2.2.1 (i) we see that the operators

IˆW LG!L
p;w
1

; I�ˆW L
p;w
1
!Lp;w

are well defined and bounded for every ˆ 2ˆoCL
p;w
1

.X IS/.

Lemma 2.3.1 For every ˆ 2 ˆoCL
p;w
1

.X IS/, the operators I�
ˆ
Iˆ and Iˆ have

the same kernel in LG .

Proof Choose a smooth function ˇW R!R such that ˇ.t/D 1 for t � 1, ˇ.t/D 0

for t � 2. For r > 0 define a compactly supported function

ˇr W X !R

by ˇr jXW0 D 1, and ˇr .t;y/D ˇ.t=r/ for .t;y/ 2RC �Yj .

Now suppose f 2LG and I�
ˆ
Iˆf D 0. Proposition 2.2.1 (i) and elliptic regularity

gives f 2L
p
2;loc , so we certainly have

Iˆf 2L
p
1;loc �L2

loc:

Clearly, kIˆf k2 � lim inf
r!1

kIˆ.ˇrf /k2:

Over RC �Yj we have

I�ˆIˆ D�@
2
1C�Yj Cjˆj

2;
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2.3 The infinitesimal action 17

where @1 D
@
@t

and �Yj is the positive Laplacian on Yj , so

kIˆ.ˇrf /k
2
2 D

Z
X

I�ˆIˆ.ˇrf / �ˇr
xf

D�

X
j

Z
RC�Yj

..@2
1ˇr /f C 2.@1ˇr /.@1f // �ˇr

xf

� C1kf k
2
1

Z 1
0

jr�2ˇ00.t=r/j dt

CC1kf k1kdf kp �

�Z 1
0

jr�1ˇ0.t=r/jq dt

�1=q

� C2kf k
2
E

�
r�1

Z 2

1

jˇ00.u/j duC r1�q

Z 2

1

jˇ0.u/jq du

�
! 0 as r !1;

where C1;C2 > 0 are constants and 1=pC 1=q D 1. Hence Iˆf D 0.

Lemma 2.3.2 I�IW Lq;w
2
.X /!Lq;w.X / is Fredholm of index �r0 , for 1< q <1.

Proof Because I�I is elliptic the operator in the Lemma is Fredholm if the operator

�@2
1C�Yj Cj j j

2
W L

q;�j
2
!Lq;�j ; (2.3)

acting on functions on R� Yj , is Fredholm for each j . The proof of [14, Proposi-
tion 3.21] (see also Lockhart–McOwen [34]) can be generalized to show that (2.3) is
Fredholm if �2

j is not an eigenvalue of �Yj Cj j j
2 . Since we are taking �j � 0 small,

and �j > 0 if  j D 0, this establishes the Fredholm property in the Lemma.

We will now compute the index. Set

ind˙ D indexfI�IW Lq;˙w
2

.X /!Lq;˙w.X /g:

Expressing functions on Yj in terms of eigenvectors of �Yj C j j j
2 as in Atiyah–

Patodi–Singer [3] or Donaldson [14] one finds that the kernel of I�I in L
q0;˙w

k0
is

the same for all q0 > 1 and integers k 0 � 0. Combining this with the fact that I�I is
formally self-adjoint we see that

indC D�ind�:
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18 2 Configuration spaces

Now choose smooth functions wj W R! R such that wj .t/D �j jt j for jt j � 1. The
addition formula for the index (see Corollary C.0.1) gives

ind� D indCC
X

j

indexfI� j I j WL
q;�wj
2

.R�Yj /!Lq;�wj .R�Yj /g

D indCC 2
X

j

dim ker.�Yj Cj j j
2/

D indCC 2r0:

Therefore, indC D�r0 as claimed.

Proposition 2.3.1 For any ˆ 2ˆoCL
p;w
1

.X IS/ the following hold:

(i) The operator
I�ˆIˆW LG!Lp;w (2.4)

is Fredholm of index 0, and it has the same kernel as IˆW LG!L
p;w
1

and the
same image as I�

ˆ
W L

p;w
1
!Lp;w .

(ii) Iˆ.LG/ is closed in L
p;w
1

and

L
p;w
1

.iƒ1
˚S/D Iˆ.LG/˚ ker.I�ˆ/: (2.5)

Proof It is easy to deduce Part (ii) from Part (i). We will now prove Part (i). Since

I�ˆIˆ � I
�I D jˆj2� jˆoj

2
W L

p;w
2
!Lp;w

is a compact operator, I�
ˆ
Iˆ and I�I have the same index as operators between these

Banach spaces. It then follows from Lemma 2.3.2 and Proposition 2.2.1 (iv) that the
operator (2.4) is Fredholm of index 0. The statement about the kernels is the same
as Lemma 2.3.1. To prove the statement about the images, we may as well assume
X is connected. If ˆ ¤ 0 then the operator (2.4) is surjective and there is nothing
left to prove. Now suppose ˆ D 0. Then all the weights �j are positive, and the
kernel of Iˆ in E consists of the constant functions. Hence the image of (2.4) has
codimension 1. But

R
X d�aD 0 for every 1–form a 2L

p;w
1

, so d�W L
p;w
1
!Lp;w

is not surjective.

In the course of the proof of (i) we obtained:

Proposition 2.3.2 If X is connected and r0 D r then

d�d.E/D
�

g 2Lp;w.X IC/ W

Z
X

g D 0

�
:
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2.3 The infinitesimal action 19

We conclude this section with a result that will be needed in the proofs of Proposition
5.2.1 and Lemma 5.4.2 below. Let 1< q <1 and for any L

q
1;loc function f W X !R

set
ıjf D

Z
f0g�Yj

@1f; j D 1; : : : ; r:

The integral is well defined because if n is any positive integer then there is a bounded
restriction map L

q
1
.Rn/!Lq.f0g �Rn�1/.

Choose a point x0 2X .

Proposition 2.3.3 If X is connected, 1< q <1, r � 1, and if �j > 0 is sufficiently
small for each j then the operator

ˇW L
q;�w
2

.X IR/!Lq;�w.X IR/˚Rr ;

f 7! .�f; .ı1f; : : : ; ır�1f; f .x0///

is an isomorphism.

Proof By the proof of Lemma 2.3.2, �W Lq;�w
2
!Lq;�w has index r , hence ind.ˇ/D

0. We will show ˇ is injective. First observe that
Pr

jD1 ıjf D 0 whenever �f D 0,
so if f̌ D 0 then ıjf D 0 for all j .

Suppose f̌ D 0. To simplify notation we will now assume Y is connected. Over
RC �Y we have �D�@2

1
C�Y . Let fh�g�D0;1;::: be a maximal orthonormal set of

eigenvectors of �Y , with corresponding eigenvalues �2
� , where 0D�0<�1��2�� � � .

Then
f .t;y/D aC bt Cg.t;y/;

where a; b 2R, and g has the form

g.t;y/D
X
��1

c�e
��� th�.y/

for some real constants c� . Elliptic estimates show that g decays exponentially, or
more precisely,

j.rjf /.t;y/j � dj e��1t

for .t;y/ 2RC �Y and j � 0, where dj > 0 is a constant. Now

@1f .t;y/D b�
X
��1

c���e
��� th�.y/:

Since �Y is formally self-adjoint we have
R

Y h� D 0 if �� ¤ 0, hence

b Vol.Y /D
Z
f�g�Y

@1f D 0:
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20 2 Configuration spaces

It follows that f is bounded and df decays exponentially over RC �Y , so

0D

Z
X

f�f D

Z
X

jdf j2;

hence f is constant. Since f .x0/D 0 we have f D 0.

2.4 Local slices

Fix a finite subset b�X .

Definition 2.4.1 Set

Gb D fu 2 1C E W u maps into U.1/ and ujb � 1g

LGb D ff 2 E W f maps into iR and f jb � 0g

and let Gb and LGb have the subspace topologies inherited from 1C E � E and E ,
respectively.

By 1C E we mean the set of functions on X of the form 1Cf where f 2 E . If b is
empty then we write G instead of Gb , and similarly for LG .

Proposition 2.4.1 (i) Gb is a smooth submanifold of 1CE and a Banach Lie group
with Lie algebra LGb .

(ii) The natural action Gb � C! C is smooth.

(iii) If S 2 C , u 2L
p
2;loc.X IU.1// and u.S/ 2 C then u 2 G .

Proof (i) If r0 < r then 1 62 E , but in any case,

f 7!

1X
kD1

1

k!
f k
D exp.f /� 1

defines a smooth map E! E , by Proposition 2.2.1 (v). Therefore, the exponential map
provides the local parametrization around 1 required for Gb to be a submanifold of
1C E . The verification of (ii) and (iii) is left to the reader.

Let Bb D C=Gb have the quotient topology. This topology is Hausdorff because
it is stronger than the topology defined by the L2p metric on Bb (see Donaldson–
Kronheimer [15]). The image in Bb of a configuration S 2 C will be denoted ŒS �, and
we say S is a representative of ŒS �.
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2.4 Local slices 21

Let C�b be the set of all elements of C which have trivial stabilizer in Gb . In other
words, C�b consists of those .A; ˆ/ 2 C such that b contains at least one point from
every component of X where ˆ vanishes almost everywhere. Let B�b be the image of
C�b ! Bb . It is clear that B�b is an open subset of Bb .

If b is empty then C� � C and B� � B are the subspaces of irreducible configurations.
As usual, a configuration that is not irreducible is called reducible.

We will now give B�b the structure of a smooth Banach manifold by specifying an atlas
of local parametrizations. Let S D .A; ˆ/ 2 C�b and set

V D I�ˆ.L
p;w
1

/; W D I�ˆIˆ.LGb/:

By Proposition 2.3.1 we have

dim.V =W /D jbj � `

where ` is the number of components of X where ˆ vanishes a.e. Choose a bounded
linear map �W V !W such that �jW D I , and set

I#
ˆ D �I

�
ˆ:

Then L
p;w
1

.iƒ1
˚S/D Iˆ.LGb/˚ ker.I#

ˆ/

by Proposition 2.3.1. Consider the smooth map

…W LGb � ker.I#
ˆ/! C; .f; s/ 7! exp.f /.S C s/:

The derivative of this map at .0; 0/ is

D….0; 0/.f; s/D Iˆf C s;

which is an isomorphism by the above remarks. The inverse function theorem then
says that … is a local diffeomorphism at .0; 0/.

Proposition 2.4.2 In the situation above there is an open neighbourhood U of 0 2

ker.I#
ˆ
/ such that the projection C! Bb restricts to a homeomorphism of SCU onto

an open subset of B�b .

Remark It is clear that the collection of such local parametrizations U ! B�b is a
smooth atlas for B�b .
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22 2 Configuration spaces

Proof It only remains to prove that S CU ! Bb is injective when U is sufficiently
small. So suppose .ak ; �k/, .bk ;  k/ are two sequences in ker.I#

ˆ
/ which both

converge to 0 as k!1, and such that

uk.AC ak ; ˆC�k/D .AC bk ; ˆC k/

for some uk 2Gb . We will show that kuk�1kE!0. Since … is a local diffeomorphism
at .0; 0/, this will imply that uk D 1 for k� 0.

Written out, the assumption on uk is that

u�1
k duk D ak � bk ;

.uk � 1/ˆD  k �uk�k :

By (2.1) we have kdukkL
p;w

1
! 0, which in turn gives kuk�kkL

p;w

1
! 0, hence

k.uk � 1/ˆkLp;w

1
! 0: (2.6)

Because uk is bounded and duk converges to 0 in L
p
1

over compact subsets, we can
find a subsequence fkj g such that ukj converges in L

p
2

over compact subsets to a
locally constant function u. Then ujbD 1 and uˆDˆ, hence uD 1. Set fj Dukj �1

and � D ˆ�ˆo 2 L
p;w
1

. Then kdfj ˝ �kLp;w ! 0. Furthermore, given � > 0 we
can find t > 0 such that Z

Œt;1/�Y

jew�jp <
�

4

and N such that Z
XWt

jewfj�j
p <

�

2

for j >N . Then
R
X je

wfj�j
p < � for j >N . Thus kfj�kLp;w ! 0, and similarly

kfjr�kLp;w ! 0. Altogether this shows that kfj�kLp;w

1
! 0. Combined with (2.6)

this yields
k.ukj � 1/ˆ0kL

p;w

1
! 0;

hence kukj � 1kE ! 0. But we can run the above argument starting with any subse-
quence of fukg, so kuk � 1kE ! 0.

2.5 Manifolds with boundary

Let Z be a compact, connected, oriented Riemannian n–manifold, perhaps with
boundary, and b � Z a finite subset. Let S ! Z be a Hermitian vector bundle
and L ! Z a principal U.1/–bundle. Fix p > n=2 and let C denote the space
of L

p
1

configurations .A; ˆ/ in .L;S/. Let Gb be the group of those L
p
2

gauge
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2.5 Manifolds with boundary 23

transformations Z! U.1/ that restrict to 1 on b, and C�b the set of all elements of C
that have trivial stabilizer in Gb . Then

B�b D C
�
b =Gb

is again a (Hausdorff) smooth Banach manifold. As for orbit spaces of connections
(see [15, p 192]) the main ingredient here is the solution to the Neumann problem over
Z , according to which the operator

TˆW L
p
2
.Z/!Lp.Z/˚ @L

p
1
.@Z/;

f 7! .�f Cjˆj2f; @�f /

is a Fredholm operator of index 0 (see Taylor [49, Section 5.7] and Hamilton [25,
pp 85–6]). Here � is the inward-pointing unit normal along @Z , and @Lp

1
.@Z/ is the

space of boundary values of L
p
1

functions on Z . Henceforth we work with imaginary-
valued functions, and on @Z we identify 3–forms with functions by means of the
Hodge �–operator. Then Tˆ D JˆIˆ , where

Jˆ.a; �/D .I�ˆ.a; �/; .�a/j@Z /:

Choose a bounded linear map

�W Lp.Z/˚ @L
p
1
.@Z/!W WD Tˆ.LGb/

which restricts to the identity on W , and set J #
ˆ
D �Jˆ . An application of Stokes’

theorem shows that
ker.Tˆ/� ker.Iˆ/ in L

p
2
.Z/,

hence Tˆ D J #
ˆIˆW LGb!W

is an isomorphism. In general, if V1

T1
!V2

T2
!V3 are linear maps between vector spaces

such that T2T1 is an isomorphism, then V2 D im.T1/˚ ker.T2/. Therefore, for any
.A; ˆ/ 2 C�b we have

L
p
1
.ZI iƒ1

˚S/D Iˆ.LGb/˚ ker.J #
ˆ/;

where both summands are closed subspaces. Thus we obtain the analogue of Proposition
2.4.2 with local slices of the form .A; ˆ/CU , where U is a small neighbourhood of
0 2 ker.J #

ˆ
/.
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CHAPTER 3

Moduli spaces

3.1 Spinc structures

It will be convenient to have a definition of spinc structure that does not refer to
Riemannian metrics. So let X be an oriented n–dimensional manifold and PGLC its
bundle of positive linear frames. Let fGLC.n/ denote the 2–fold universal covering
group of the identity component GLC.n/ of GL.n;R/, and denote by �1 the nontrivial
element of the kernel of fGLC.n/! GLC.n/. Set

GLc.n/D fGLC.n/ �
˙.1;1/

U.1/:

Then there is a short exact sequence

0! Z=2! GLc.n/! GLC.n/�U.1/! 1;

and Spinc.n/ is canonically isomorphic to the preimage of SO.n/ by the projection
GLc.n/! GLC.n/.

Definition 3.1.1 By a spinc structure s on X we mean a principal GLc.n/–bundle
PGLc ! X together with a GLc.n/ equivariant map PGLc ! PGLC which covers the
identity on X . If s0 is another spinc structure on X given by P 0GLc ! PGLC then s

and s0 are called isomorphic if there is a U.1/ equivariant map P 0GLc ! PGLc which
covers the identity on PGLC .

The natural U.1/–bundle associated to PGLc is denoted L, and the Chern class c1.L/
is called the canonical class of the spinc structure.

Now suppose X is equipped with a Riemannian metric, and let PSO be its bundle of
positive orthonormal frames, which is a principal SO.n/–bundle. Then the preimage

25



26 3 Moduli spaces

PSpinc of PSO by the projection PGLc!PGLC is a principal Spinc.n/–bundle over X ,
ie a spinc structure of X in the sense of Lawson–Michelsohn [33]. Conversely, PGLc

is isomorphic to PSpinc �Spincn GLc.n/. Thus there is a natural 1–1 correspondence
between (isomorphism classes of) spinc structures of the smooth oriented manifold X

as defined above, and spinc structures of the oriented Riemannian manifold X in the
sense of [33].

By a spin connection in PSpinc we shall mean a connection in PSpinc that maps to
the Levi-Civita connection in PSO . If A is a spin connection in PSpinc then yFA will
denote the iR component of the curvature of A with respect to the isomorphism of
Lie algebras

spin.n/˚ iR
�
! spinc.n/

defined by the double cover Spin.n/ � U.1/ ! Spinc.n/. In terms of the induced
connection LA in L one has

yFA D
1

2
F LA:

If A;A0 are spin connections in PSpinc then we regard A�A0 as an element of i�1
X

.

The results of Chapter 2 carry over to spaces of configurations .A; ˆ/ where A is a
spin connection in PSpinc and ˆ a section of some complex vector bundle S!X .

When the spinc structure on X is understood then we will say “spin connection over
X ” instead of “spin connection in PSpinc ”.

If n is even then the complex Clifford algebra C`.n/ has up to equivalence exactly one
irreducible complex representation. Let S denote the associated spin bundle over X .
Then the eigenspaces of the complex volume element !C in C`.n/ defines a splitting
SD SC˚S� (see [33]).

If n is odd then C`.n/ has up to equivalence two irreducible complex representations
�1; �2 . These restrict to equivalent representations of Spinc.n/, so one gets a well-
defined spin bundle S for any spinc structure on X [33]. If ˛ is the unique automor-
phism of C`.n/ whose restriction to Rn is multiplication by �1 then �1 � �2 ı ˛ .
Hence if A is any spin connection over X then the sign of the Dirac operator DA

depends on the choice of �j . To remove this ambiguity we decree that Clifford
multiplication of TX on S is to be defined using the representation �j satisfying
�j .!C/D 1.

In the case of a Riemannian product R �X there is a natural 1–1 correspondence
between (isomorphism classes of) spinc –structures on R�X and spinc –structures on
X , and we can identify

LR�X D �
�
2 .LX /;
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3.2 The Chern–Simons–Dirac functional 27

where �2W R�X !X is the projection.

If A is a spin connection over R�X then Ajftg�X will denote the spin connection B

over X satisfying LAjftg�X D
LB .

When n is odd then we can also identify

SCR�X
D ��2 .SX /: (3.1)

If e is a tangent vector on X then Clifford multiplication with e on SX corresponds
to multiplication with e0e on SCR�X

, where e0 is the positively oriented unit tangent
vector on R. Therefore, reversing the orientation of X changes the sign of the Dirac
operator on X .

From now on, to avoid confusion we will use @B to denote the Dirac operator over a
3–manifold with spin connection B , while the notation DA will be reserved for Dirac
operators over 4–manifolds.

By a configuration over a spinc 3–manifold Y we shall mean a pair .B; ‰/ where B

is a spin connection over Y and ‰ a section of the spin bundle SY . By a configuration
over a spinc 4–manifold X we mean a pair .A; ˆ/ where A is a spin connection over
X and ˆ a section of the positive spin bundle SC

X
.

3.2 The Chern–Simons–Dirac functional

Let Y be a closed Riemannian spinc 3–manifold and � a closed 2–form on Y of class
C 1 . Fix a smooth reference spin connection Bo over Y and for any configuration
.B; ‰/ over Y define the Chern–Simons–Dirac functional # D #� by

#.B; ‰/D�
1

2

Z
Y

. yFBC
yFBo
C 2i�/^ .B �Bo/�

1

2

Z
Y

h@B‰;‰i:

Here and elsewhere h�; �i denotes Euclidean inner products, while h�; �iC denotes
Hermitian inner products. Note that reversing the orientation of Y changes the sign
of # . Let C D CY denote the space of L2

1
configurations .B; ‰/. Then # defines a

smooth map CY !R which has an L2 gradient

r#.B;‰/ D
�
� . yFBC i�/�

1

2
�.‰;‰/;�@B‰

�
:

If faj g is a local orthonormal basis of imaginary-valued 1–forms on Y then

�.�;  /D

3X
jD1

haj�; iaj :
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28 3 Moduli spaces

Here and elsewhere the inner products are Euclidean unless otherwise specified. Since
r# is independent of Bo , # is independent of Bo up to additive constants. If uW Y !

U.1/ then

#.u.S//�#.S/D

Z
Y

. yFBC i�/^u�1 duD 2�

Z
Y

z�^ Œu�;

where Œu� 2H 1.Y / is the pullback by u of the fundamental class of U.1/, and z� is as
in (1.2).

The invariance of # under null-homotopic gauge transformations imply

I�‰r#.B;‰/ D 0: (3.2)

Let H.B;‰/W L
2
1
!L2 be the derivative of r# W C!L2 at .B; ‰/, ie

H.B;‰/.b;  /D .�db� �.‰; /;�b‰� @B /:

Note that H.B;‰/ is formally self-adjoint, and H.B;‰/I‰ D 0 if @B‰D 0. As in [21],
a critical point .B; ‰/ of # is called nondegenerate if the kernel of I�

‰
CH.B;‰/ in

L2
1

is zero, or equivalently, if I‰CH.B;‰/W L
2
1
!L2 is surjective. Note that if � is

smooth then any critical point of #� has a smooth representative.

Let G be the Hilbert Lie group of L2
2

maps Y ! U.1/, and G0 � G the subgroup of
null-homotopic maps. Set

B D C=G; zB D C=G0:

Then # descends to a continuous map zB ! R which we also denote by # . If
Condition (O1) holds (which we always assume when no statement to the contrary is
made) then there is a real number q such that

#.GS/D #.S/C qZ

for all configurations S . If (O1) does not hold then #.GS/ is a dense subset of R.

If S is any smooth configuration over a band .a; b/�Y , with a< b , let r#S be the
section of the bundle ��

2
.SY ˚ iƒ1

Y
/ over .a; b/�Y such that r#S jftg�Y Dr#St

.
Here �2W R�Y ! Y is the projection. Note that S 7! r#S extends to a smooth map
L2

1
!L2 .

Although we will normally work with L2
1

configurations over Y , the following lemma
is sometimes useful.

Lemma 3.2.1 # extends to a smooth function on the space of L2
1=2

configurations
over Y .
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3.2 The Chern–Simons–Dirac functional 29

Proof The solution to the Dirichlet problem provides bounded operators

EW L2
1=2.Y /!L2

1.RC �Y /

such that, for any f 2 L2
1=2
.Y /, the function Ef restricts to f on f0g � Y and

vanishes on .1;1/�Y , and Ef is smooth whenever f is smooth. (see [49, p 307]).
Similar extension maps can clearly be defined for configurations over Y . The lemma
now follows from the observation that if S is any smooth configuration over Œ0; 1��Y

then

#.S1/�#.S0/D

Z
Œ0;1��Y

�
r#S ;

@S

@t

�
;

and the right hand side extends to a smooth function on the space of L2
1

configurations
S over Œ0; 1��Y .

We will now relate the Chern–Simons–Dirac functional to the 4–dimensional monopole
equations, cf [30; 40]. Let X be a spinc Riemannian 4–manifold. Given a parameter
�2�2.X / there are the following Seiberg–Witten equations for a configuration .A; ˆ/
over X :

. yFAC i�/C DQ.ˆ/

DAˆ D 0;
(3.3)

where Q.ˆ/D
1

4

3X
jD1

h j̨ˆ;ˆi j̨

for any local orthonormal basis f j̨ g of imaginary-valued self-dual 2–forms on X . If
‰ is another section of SC

X
then one easily shows that

Q.ˆ/‰ D h‰;ˆiCˆ�
1

2
jˆj2‰:

Now let X DR�Y and for present and later use recall the standard bundle isomorphisms

�1
W ��2 .ƒ

0.Y /˚ƒ1.Y //!ƒ1.R�Y /; .f; a/ 7! f dt C a;

�CW ��2 .ƒ
1.Y //!ƒC.R�Y /; a 7!

1

2
.dt ^ aC�Y a/:

(3.4)

Here �Y is the Hodge �–operator on Y . Let � be the pullback of a 2–form � on Y .
Set # D #� . Let S D .A; ˆ/ be any smooth configuration over R�Y such that A is
in temporal gauge. Under the identification SCR�Y

D ��
2
.SY / we have

�C.�.ˆ;ˆ//D 2Q.ˆ/:
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30 3 Moduli spaces

Let r1# , r2# denote the 1–form and spinor parts of r# , respectively. Then

�C
�
@A

@t
Cr1#S

�
D . yFAC i��2 �/

C
�Q.ˆ/

@ˆ

@t
Cr2#S D�dt �DAˆ;

(3.5)

Thus, the downward gradient flow equation

@S

@t
Cr#S D 0

is equivalent to the Seiberg–Witten equations (3.3).

3.3 Perturbations

For transversality reasons we will, as in [21], add further small perturbations to the
Seiberg–Witten equation over R� Y . The precise shape of these perturbations will
depend on the situation considered. At this point we will merely describe a set of
properties of these perturbations which will suffice for the Fredholm, compactness and
gluing theory.

To any L2
1

configuration S over the band .�1=2; 1=2/�Y there will be associated an
element h.S/ 2RN , where N � 1 will depend on the situation considered. If S is an
L2

1
configuration over BC D .a� 1=2; bC 1=2/�Y where �1 < a < b <1 then

the corresponding function
hS W Œa; b�!RN

given by hS .t/D h.S j.t�1=2;tC1=2/�Y / will be smooth. These functions hS will have
the following properties. Let So be a smooth reference configuration over BC .

(P1) For 0 � k <1 the assignment s 7! hSoCs defines a smooth map L2
1
! C k

whose image is a bounded set.

(P2) If Sn! S weakly in L2
1

then khSn
� hSkC k ! 0 for every k � 0.

(P3) hS is gauge invariant, ie hS D hu.S/ for any smooth gauge transformation u.

We will also choose a compact codimension 0 submanifold „ � RN which does
not contain h.˛/ for any critical point ˛ , where ˛ is the translationary invariant
configuration over R�Y (in temporal gauge) determined by ˛ . Let zPD zPY denote
the space of all (smooth) 2–forms on RN � Y supported in „� Y . For any S as
above and any p 2 zP let hS;p 2�

2.Œa; b��Y / denote the pullback of p by the map
hS � Id. It is clear that hS;p.t;y/D 0 if hS .t/ 62„. Moreover,

khS;pkC k � kkpkC k (3.6)
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3.3 Perturbations 31

where the constant k is independent of S; p.

Now let �1 � a < b �1 and B D .a; b/� Y . If qW B! R is a smooth function
then by a .p; q/–monopole over B we shall mean a configuration S D .A; ˆ/ over
BC D .a� 1=2; bC 1=2/� Y (smooth, unless otherwise stated) which satisfies the
equations

. yFAC i��2 �C iqhS;p/
C
DQ.ˆ/

DAˆD 0;
(3.7)

over B, where � is as before. If A is in temporal gauge then these equations can also
be expressed as

@St

@t
D�r#St

CES .t/; (3.8)

where the perturbation term ES .t/ depends only on the restriction of S to .t�1=2; tC

1=2/�Y .

To reduce the number of constants later, we will always assume that q and its differential
dq are pointwise bounded (in norm) by 1 everywhere. Note that if q is constant then
the equations (3.7) are translationary invariant. A .p; q/–monopole with qhS;p D 0

is called a genuine monopole. In expressions like kFAk2 and kˆk1 the norms will
usually be taken over B.

For the transversality theory in Chapter 8 we will need to choose a suitable Banach
space PDPY of forms p as above (of some given regularity). It will be essential that

C.BC/�P!Lp.B; ƒ2/; .S; p/ 7! hS;p (3.9)

be a smooth map when a; b are finite (here p > 2 is the exponent used in defining the
configuration space C.BC/). Now, one cannot expect hS;p to be smooth in S unless
p is smooth in the RN direction (this point was overlooked in [21]). It seems natural
then to look for a suitable space P consisting of smooth forms p. Such a P will be
provided by Lemma 8.2.1. The topology on P will be stronger than the C1 topology,
ie stronger than the C k topology for every k . The smoothness of the map (3.9) is then
an easy consequence of property (P1) above and the next lemma.

Lemma 3.3.1 Let A be a topological space, U a Banach space, and K � Rn a
compact subset. Then the composition map

CB.A;R
n/�C k.Rn;U /K ! CB.A;U /

is of class C k�1 for any natural number k . Here CB.A; � / denotes the supremum-
normed space of bounded continuous maps from A into the indicated space, and
C k.Rn;U /K is the space of C k maps Rn! U with support in K .

Proof This is a formal exercise in the differential calculus.
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3.4 Moduli spaces

Consider the situation of Section 1.3. (We do not assume here that (A) holds.) We will
define the moduli space M.X I Ę/. In addition to the parameter � this will depend on
a choice of perturbation forms pj 2

zPYj and a smooth function qW X ! Œ0; 1� such
that kdqk1 � 1, q�1.0/DXW.3=2/ and qD 1 on Œ3;1/�Y .

Choose a smooth reference configuration SoD .Ao; ˆo/ over X which is translationary
invariant and in temporal gauge over the ends and such that Sojftg�Yj represents

j̨ 2
zRYj . Let p > 4 and choose w as in Section 2.1. Let b be a finite subset of X

and define C;Gb;Bb as in Sections 2.1 and 2.4. For clarity we will sometimes write
C.X I Ę/ etc. Set EpD .p1; : : : ; pr / and let

Mb.X I Ę/DMb.X I ĘI�I Ep/� Bb

be the subset of gauge equivalence classes of solutions S D .A; ˆ/ (which we simply
refer to as monopoles) to the equations�

yFAC i�C iq

rX
jD1

hS;pj

�C
�Q.ˆ/D 0

DAˆD 0:

(3.10)

It is clear that q
P

j hS;pj vanishes outside a compact set in X . If it vanishes everywhere
then S is called a genuine monopole. If b is empty then we write M DMb .

Note that different choices of So give canonically homeomorphic moduli spaces
Mb.X I Ę/ (and similarly for Bb.X I Ę/).

Unless otherwise stated the forms � and pj will be smooth. In that case every element
of Mb.X I ĘI�I Ep/ has a smooth representative, and in notation like ŒS � 2M we will
often implicitly assume that S is smooth.

We define the moduli spaces M.˛; ˇ/DM.˛; ˇI p/ of Section 1.2 similarly, except
that we here use the equations (3.7) with q� 1.

The following estimate will be crucial in compactness arguments later.

Proposition 3.4.1 For any element ŒA; ˆ� 2M.X I Ę/ one has that either

ˆD 0 or kˆk21 � �
1

2
inf

x2X
s.x/C 4k�k1C 40 max

j
kpjk1;

where s is the scalar curvature of X and the constant 0 is as in (3.6).

Geometry & Topology Monographs, Volume 15 (2008)
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Proof Let  j denote the spinor field of Aojftg�Yj . If jˆj has a global maximum then
the conclusion of the proposition holds by the proof of [30, Lemma 2]. Otherwise one
must have kˆk1 D maxj k jk1 because of the Sobolev embedding L

p
1
� C 0 on

compact 4–manifolds. But the argument in [30] applied to R�Y yields

 j D 0 or k jk
2
1 � �

1

2
inf

x2X
s.x/C 4k�k1

for each j , and the proposition follows.

The left hand side of (3.10) can be regarded as a section ‚.S/D z‚.S; �; Ep/ of the
bundle ƒC˚S� over X . It is clear that ‚ defines a smooth map

‚W C!Lp;w;

which we call the monopole map. Let D‚ denote the derivative of ‚. We claim that

I�ˆCD‚.S/W L
p;w
1
!Lp;w (3.11)

is a Fredholm operator for every S D .A; ˆ/ 2 C . Note that the pj –perturbations in
(3.10) only contributes a compact operator, so we can take pj D 0 for each j . We first
consider the case X DR�Y , with �D��

2
� as before. By means of the isomorphisms

(3.4), (3.1) and the isomorphism SC! S� , � 7! dt �� we can think of the operator
(3.11) as acting on sections of ��

2
.ƒ0

Y
˚ƒ1

Y
˚SY /. If A is in temporal gauge then a

simple computation yields

I�ˆCD‚.S/D
d

dt
CPSt

; (3.12)

where P.B;‰/ D

�
0 I�

‰

I‰ H.B;‰/

�
for any configuration .B; ‰/ over Y . Note that P.B;‰/ is elliptic and formally self-
adjoint, and if .B; ‰/ is a nondegenerate critical point of #� then ker P.B;‰/D ker I‰ .
Thus, the structure of the linearized equations over a cylinder is analogous to that of
the instanton equations studied in [14], and the results of [14] carry over to show that
(3.11) is a Fredholm operator.

The index of (3.11) is independent of S and is called the expected dimension of
M.X I Ę/. If S 2 C is a monopole and D‚.S/W L

p;w
1
!Lp;w is surjective then ŒS �

is called a regular point of Mb.X I Ę/. If in addition S 2 C�b then ŒS � has an open
neighbourhood in Mb.X I Ę/ which is a smooth submanifold of B�b of dimension

dim Mb.X I Ę/D index.I�ˆCD‚.S//Cjbj:
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The following regularity result to some extent makes up for the fact that we only work
with L

p
1;loc configurations.

Proposition 3.4.2 Let !0 be a regular, irreducible point of M.X I Ę/. Let Z �X be
a smooth compact codimension 0 submanifold and C.Z/C ` the space of configurations
over Z of class C ` , where ` is a natural number. Then there is an open neighbourhood
U of !0 and a smooth map f W U ! C.Z/C ` such that f .!/ is a representative of
!jZ for every ! 2 U .

Proof Let S0 be a smooth representative of !0 . For any natural number k let Vk

denote the space of all L
p

k;loc configurations S over X such that S � S0 2 L
p;w

k

and the local slice condition I�
S0
.S �S0/D 0 holds. Let Vk have the L

p;w

k
metric.

Because S0 is a regular monopole, Vk is smooth in a neighbourhood of S0 . By
elliptic regularity Vk consists of smooth configurations. The inclusion �k W Vk ! V1

induces the identity map between the tangent spaces at S0 , so by the inverse function
theorem �k is a local diffeomorphism at S0 . By the local slice theorem the projection
V1!M.X I Ę/ is a local diffeomorphism at S0 . Taking k > `C 4=p the proposition
now follows from the Sobolev embedding L

p

k
.Z/! C `.Z/.
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CHAPTER 4

Local compactness I

This chapter provides the local compactness results needed for the proof of Theorem
1.4.1 assuming (B1).

4.1 Compactness under curvature bounds

For the moment let B be an arbitrary compact, oriented Riemannian manifold with
boundary, and v the outward unit normal vector field along @B . Then

��.B/!��.B/˚��.@B/; � 7! ..d C d�/�; �.v/�/ (4.1)

is an elliptic boundary system in the sense of Hörmander [26] and Atiyha [2]. Here
�.v/ is contraction with v . By [26, Theorems 20.1.2, 20.1.8] we then have:

Proposition 4.1.1 For k � 1 the map (4.1) extends to a Fredholm operator

L2
k.B; ƒ

�
B/!L2

k�1.B; ƒ
�
B/˚L2

k�1=2.@B; ƒ
�
@B/

whose kernel consists of C1 forms.

Lemma 4.1.1 Let X be a spinc Riemannian 4–manifold and V1 � V2 � � � � precom-
pact open subsets of X such that X D

S
j Vj . For nD 1; 2; : : : let �n be a 2–form

on Vn , and Sn D .An; ˆn/ a smooth solution to the Seiberg–Witten equations (3.3)
over Vn with �D �n . Let q > 4. Then there exist a subsequence fnj g and for each
j a smooth uj W Vj ! U.1/ with the following significance. If k is any nonnegative
integer such that

sup
n�j

�
kˆnkLq.Vj /Ck

yF .An/kL2.Vj /
Ck�nkC k.Vj /

�
<1 (4.2)
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36 4 Local compactness I

for every positive integer j then for every p � 1 one has that uj .Snj / converges
weakly in L

p

kC1
and strongly in L

p

k
over compact subsets of X as j !1.

Before giving the proof, note that the curvature term in (4.2) cannot be omitted. For
if ! is any nonzero, closed, anti-self-dual 2–form over the 4–ball B then there is a
sequence An of U.1/ connections over B such that F.An/D i n! . If Sn D .An; 0/

then there are clearly no gauge transformations un such that un.Sn/ converges (in any
reasonable sense) over compact subsets of B .

Proof of Lemma 4.1.1 Let B �X be a compact 4–ball. After trivializing L over B

we can write AnjB DAoCan , where Ao is the spin connection over B corresponding
to the product connection in LjB . By the solution to the Neumann problem (see [49])
there is a smooth �nW B! iR such that bn D an� d� satisfies

d�bn D 0I �bnj@B D 0:

Using the fact that H 1.B/ D 0 one easily proves that the map (4.1) is injective on
�1.B/. Hence there is a constant C such that

kbkL2
1
.B/ � C.k.d C d�/bkL2.B/Ck�bj@BkL2

1=2
.@B//

for all b 2�1.B/. This gives

kbnkL2
1
.B/ � CkdbnkL2.B/ D Ck yF .An/kL2.B/:

Set vn D exp.�n/. It is now an exercise in bootstrapping, using the Seiberg–Witten
equations for Sn and interior elliptic estimates, to show that, for every k � 0 for which
(4.2) holds and for every p � 1, the sequence vn.Sn/D .AoC bn; vnˆn/ is bounded
in L

p

kC1
over compact subsets of int.B/.

To complete the proof, choose a countable collection of such balls such that the
corresponding balls of half the size cover X , and apply Lemma A.0.1.

4.2 Small perturbations

If S is any smooth configuration over a band .a; b/�Y with a< b , the energy of S

is by definition

energy.S/D
Z
Œa;b��Y

jr#S j
2:

If S is a genuine monopole then @t#.St /D�
R

Y jr#St
j2 , and so the energy equals

#.Sa/�#.Sb/. If S is a .p; q/–monopole then one no longer expects these identities
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4.2 Small perturbations 37

to hold, because the equation (3.8) is not of gradient flow type. The main object of this
section is to show that if kpkC 1 is sufficiently small then, under suitable assumptions,
the variation of #.St / still controls the energy locally (Proposition 4.2.1), and there is
a monotonicity result for #.St / (Proposition 4.2.2).

It may be worth mentioning that the somewhat technical Lemma 4.2.3 and Proposition
4.2.1 are not needed in the second approach to compactness which is the subject of
Chapter 5.

In this section qW R�Y !R may be any smooth function satisfying kqk1; kdqk1�1.
Constants will be independent of q. The perturbation forms p may be arbitrary elements
of zP.

Lemma 4.2.1 There is a constant C0>0 such that if �1<a<b<1 and SD .A; ˆ/

is any .p; q/–monopole over .a; b/�Y then there is a pointwise bound

j yF .A/j � 2jr#S jC j�jCC0jˆj
2
C 0kpk1:

Proof Note that both sides of the inequality are gauge invariant, and if A is in temporal
gauge then

F.A/D dt ^
@At

@t
CFY .At /;

where FY stands for the curvature of a connection over Y . Now use inequalities (3.8)
and (3.6).

Lemma 4.2.2 There exists a constant C1 > 0 such that for any � > 0 and any .p; q/–
monopole S over .0; �/�Y one hasZ

Œ0;���Y

jr#S j
2
� 2.#.S0/�#.S� //CC 2

1 �kpk
2
1:

Recall that by convention a .p; q/–monopole over .0; �/�Y is actually a configuration
over .�1=2; � C 1=2/�Y , so the lemma makes sense.

Proof We may assume S is in temporal gauge. Then

#.S� /�#.S0/D

Z �

0

@t#.St / dt

D

Z
Œ0;���Y

hr#S ;�r#S CES i dt

� kr#Sk2.kESk2�kr#Sk2/;
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38 4 Local compactness I

where the norms on the last line are taken over Œ0; � ��Y . If a; b;x are real numbers
satisfying x2� bx� a� 0 then

x2
� 2x2

� 2bxC b2
� 2aC b2:

Putting this together we obtain

kr#Sk
2
2 � 2.#.S0/�#.S� //CkESk

2
2;

and the lemma follows from the estimate (3.6).

Lemma 4.2.3 For all C > 0 there exists an � > 0 with the following significance.
Let � � 4, p 2 zP with kpk1�1=2 � � , and let S D .A; ˆ/ be a .p; q/–monopole over
.0; �/� Y satisfying kˆk1 � C . Then at least one of the following two statements
must hold:

(i) @t#.St /� 0 for 2� t � � � 2.

(ii) #.St2
/ < #.St1

/ for 0� t1 � 1, � � 1� t2 � � .

Proof Given C > 0, suppose that for n D 1; 2; : : : there exist �n � 4, pn 2
zP

with kpnk1�
1=2
n � 1=n, and a .pn; qn/–monopole Sn D .An; ˆn/ over .0; �n/� Y

satisfying kˆnk1 � C such that (i) is violated at some point t D tn and (ii) also does
not hold. By Lemma 4.2.2 the last assumption implies

kr#Sn
kL2.Œ1;�n�1��Y / � C1kpnk1�

1=2
n � C1=n:

For s 2R let TsW R�Y !R�Y be translation by s :

Ts.t;y/D .t C s;y/:

Given p > 2 then by Lemma 4.2.1 and Lemma 4.1.1 we can find unW .�1; 1/�Y !

U.1/ in L
p
2;loc such that a subsequence of un.T �tn

.Sn// converges weakly in L
p
1

over
.�1=2; 1=2/� Y to an L

p
1

solution S 0 to the equations (3.3) with � D ��
2
�. Then

r#S 0 D 0. After modifying the gauge transformations we can even arrange that S 0 is
smooth and in temporal gauge, in which case there is a critical point ˛ of # such that
S 0.t/� ˛ . After relabelling the subsequence above consecutively we then have

hSn
.tn/! hS 0.0/ 62„:

Since „ is closed, hSn
.tn/ 62„ for n sufficiently large. Therefore, @t jtn

#.Sn.t//D

�kr#Sn.tn/k
2 � 0, which is a contradiction.
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4.2 Small perturbations 39

Proposition 4.2.1 For any constant C >0 there exist C 0; ı >0 such that if SD .A; ˆ/

is any .p; q/–monopole over .�2;TC4/�Y where T �2, kpk1� ı , and kˆk1�C ,
then for 1� t � T � 1 one hasZ

Œt�1;tC1��Y

jr#S j
2
� 2

�
sup

0�r�1

#.S�r /� inf
0�r�4

#.STCr /

�
CC 0kpk21:

Proof Choose � > 0 such that the conclusion of Lemma 4.2.3 holds (with this constant
C ), and set ı D �=

p
6. We construct a sequence t0; : : : ; tm of real numbers, for some

m� 1, with the following properties:

(i) �1� t0 � 0 and T � tm � T C 4.

(ii) For i D 1; : : : ;m one has 1� ti � ti�1 � 5 and #.Sti
/� #.Sti�1

/.

The lemma will then follow from Lemma 4.2.2. The ti ’s will be constructed inductively,
and this will involve an auxiliary sequence t 0

0
; : : : ; t 0

mC1
. Set t�1 D t 0

0
D 0.

Now suppose ti�1; t
0
i have been constructed for 0 � i � j . If t 0j � T then we set

tj D t 0j and mD j , and the construction is finished. If t 0j < T then we define tj ; t
0
jC1

as follows:

If @t#.St / � 0 for all t 2 Œt 0j ; t
0
j C 2� set tj D t 0j and t 0

jC1
D t 0j C 2; otherwise set

tj D t 0j � 1 and t 0
jC1
D t 0j C 4.

Then (i) and (ii) are satisfied, by Lemma 4.2.3.

Proposition 4.2.2 For all C > 0 there exists a ı > 0 such that if S D .A; ˆ/ is any
.p; q/–monopole in temporal gauge over .�1; 1/�Y such that kpkC 1 � ı , kˆk1 �C

and kr#Sk2 � C then the following holds: Either @t j0#.St / < 0, or there is a critical
point ˛ such that St D ˛ for jt j � 1=2.

Proof First observe that if S is any C 1 configuration over R�Y then

#.St2
/�#.St1

/D

Z t2

t1

Z
Y

hr#St
; @tSt i dy dt;

hence #.St / is a C 1 function of t whose derivative can be expressed in terms of the
L2 gradient of # as usual.

Now suppose there is a C > 0 and for nD 1; 2; : : : a pn 2
zP and a .pn; qn/–monopole

SnD .An; ˆn/ over .�1; 1/�Y such that kpnkC 1 �1=n, kˆnk1�C , kr#Sn
k2�C

and @t j0#.Sn.t// � 0. Let p > 4 and 0 < � < 1=2. After passing to a subsequence
and relabelling consecutively we can find unW .�1; 1/�Y ! U.1/ in L

p
3;loc such that
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40 4 Local compactness I

zSnDun.Sn/ converges weakly in L
p
2

, and strongly in C 1 , over .�1=2��; 1=2C�/�Y

to a smooth solution S 0 of (3.3) with �D ��
2
�. We may arrange that S 0 is in temporal

gauge. Then

0� @t j0#. zSn.t//D

Z
Y

hr# zSn.0/
; @t j0

zSn.t/i ! @t j0#.S
0
t /:

But S 0 is a genuine monopole, so @t#.S
0
t /D�kr#S 0t

k2
2

. It follows that r#S 0.0/D 0,
hence r#S 0D0 in .�1=2��; 1=2C�/�Y by unique continuation as in [21, Appendix].
Since hSn

! hS 0 uniformly in Œ��; ��, and hS 0 � const 62„, the function hSn
maps

Œ��; �� into the complement of „ when n is sufficiently large. In that case, Sn restricts
to a genuine monopole on Œ��; ���Y , and the assumption @t j0#.Sn.t//� 0 implies
that r#Sn

D 0 on Œ��; ���Y . Since this holds for any � 2 .0; 1=2/, the proposition
follows.

We say a .p; q/–monopole S over RC �Y has finite energy if inft>0 #.St / > �1.
A monopole over a 4–manifold with tubular ends is said to have finite energy if it has
finite energy over each end.

Proposition 4.2.3 Let C; ı be given such that the conclusion of Proposition 4.2.2
holds. If SD .A; ˆ/ is any finite energy .p; q/–monopole over RC�Y with kpkC 1�ı ,
q� 1, kˆk1 � C and

sup
t�1

kr#SkL2..t�1;tC1/�Y / � C

then the following hold:

(i) There is a t > 0 such that S restricts to a genuine monopole on .t;1/�Y .

(ii) ŒSt � converges in BY to some critical point as t !1.

Proof Let p > 4. If ftng is any sequence with tn!1 as n!1 then by Lemma
4.1.1 and Lemma 4.2.1 there exist un 2L

p
3;loc.R�Y IU.1// such that a subsequence

of un.T �tn
S/ converges weakly in L

p
2

(hence strongly in C 1 ) over compact subsets of
R�Y to a smooth .p; q/–monopole S 0 in temporal gauge. Proposition 4.2.2 guarantees
that @t#.St / � 0 for t � 1, so the finite energy assumption implies that #.S 0t / is
constant. By Proposition 4.2.2 there is a critical point ˛ such that S 0t D˛ for all t . This
implies (i) by choice of the set „ (see Section 3.3). Part (ii) follows by a continuity
argument from the facts that BY contains only finitely many critical points, and the
topology on BY defined by the L2 –metric is weaker than the usual topology.

The following corollary of Lemma 3.2.1 shows that elements of the moduli spaces
defined in Section 3.4 have finite energy.
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4.3 Neck-stretching I 41

Lemma 4.2.4 Let S be a configuration over xRC�Y and ˛ a critical point of # such
that S �˛ 2L

p
1

for some p � 2. Then

#.St /! #.˛/ as t !1.

4.3 Neck-stretching I

This section contains the crucial step in the proof of Theorem 1.4.1 assuming (B1),
namely what should be thought of as a global energy bound.

Lemma 4.3.1 Let X be as in Section 1.3 and set Z D XW1 . We identify Y D @Z .
Let �1; �2 2�

2.Z/, where d�1 D 0. Set �D �1jY and �D �1C�2 . Let Ao be
a spin connection over Z , and let the Chern–Simons–Dirac functional #� over Y be
defined in terms of the reference connection Bo DAojY . Then for all configurations
S D .A; ˆ/ over Z which satisfy the monopole equations (3.3) one hasˇ̌̌̌
2#�.S jY /C

Z
Z

�
jrAˆj

2
Cj yFAC i�1j

2
� ˇ̌̌̌

� C Vol.Z/
�
1Ckˆk21CkFAo

k1Ck�1k1Ck�2k1Cksk1
�2
;

for some universal constant C , where s is the scalar curvature of Z .

The upper bound given here is not optimal but suffices for our purposes.

Proof Set F 0
A
D yFA C i�1 and define F 0

Ao
similarly. Set B D AjY . Without the

assumption d�1 D 0 we haveZ
Z

jF 0Aj
2
D

Z
Z

.2j.F 0A/
C
j
2
CF 0A ^F 0A/

D

Z
Z

�
2jQ.ˆ/� i�C

2
j
2
CF 0Ao

^F 0Ao
� 2id�1 ^ .A�Ao/

�
C

Z
Y

. yFBC
yFBo
C 2i�/^ .B �Bo/:

Without loss of generality we may assume A is in temporal gauge over the collar
�.Œ0; 1��Y /. By the Weitzenböck formula we have

0DD2
AˆDr

�
ArAˆC yF

C

A
C

s
4
:
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42 4 Local compactness I

This givesZ
Z

jrAˆj
2
D

Z
Z

hr
�
ArAˆ;ˆiC

Z
Y

h@tˆ;ˆi

D

Z
Z

�
�

1

2
jˆj4�

s
4
jˆj2Chi�Cˆ;ˆi

�
C

Z
Y

h@Bˆ;ˆi:

Consider now the situation of Section 1.4. If (B1) holds then we can find a closed
2–form �1 on X whose restriction to RC � .˙Yj / is the pullback of �j , and whose
restriction to RC �Y 0j is the pullback of �0j . From Lemma 4.3.1 we deduce:

Proposition 4.3.1 For every constant C1 <1 there exists a constant C2 <1 with
the following significance. Suppose we are given

� �;C0 <1 and an r –tuple T such that � � Tj for each j ,

� real numbers �˙j , 1� j � r and � 0j , 1� j � r 0 satisfying 0� Tj � �
˙
j � � and

0� � 0j � � .

Let Z be the result of deleting from X .T / all the necks .���j ; �
C
j /�Yj , 1� j � r and

all the ends .� 0j ;1/�Y 0j , 1� j � r 0 . Then for any configuration S D .A; ˆ/ represent-
ing an element of a moduli space M.X .T /I Ę0I�I Ep; Ep0/ where

Pr 0

jD1 #.˛
0
j / > �C0

and pj ; p
0
j ; � all have L1 norm < C1 one has thatZ

Z

.jrAˆj
2
Cj yFAC i�1j

2/C 2

rX
jD1

�
#.S jf���

j
g�Yj /�#.S jf�C

j
g�Yj

/
�

C 2

r 0X
jD1

�
#.S jf� 0

j
g�Y 0

j
/�#.˛0j /

�
< C2.1C �/C 2C0:

Thus, if each pj , p0j has sufficiently small L1 norm then Lemma 4.2.4 and Propo-
sition 4.2.1 provides local energy bounds over necks and ends for such monopoles.
(To apply Proposition 4.2.1 one can take �˙j to be the point t in a suitable interval
where ˙#.S jftg�Yj / attains its maximum, and similarly for � 0j .) Moreover, if these
perturbation forms have sufficiently small C 1 norms then we can apply Proposition
4.2.2 over necks and ends. (How small the C 1 norms have to be depends on C0 .)
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CHAPTER 5

Local compactness II

This chapter, which is logically independent from Chapter 4, provides the local com-
pactness results needed for the proof of Theorem 1.4.1 assuming (B2).

While the main result of this chapter, Proposition 5.4.1, is essentially concerned with
local convergence of monopoles, the arguments will, in contrast to those of Chapter 4,
be of a global nature. In particular, function spaces over manifolds with tubular ends
will play a central role.

5.1 Hodge theory for the operator �d�CdC

In this section we will study the kernel (in certain function spaces) of the elliptic
operator

DD�d�C dCW �1.X /!�0.X /˚�C.X /; (5.1)

where X is an oriented Riemannian 4–manifold with tubular ends. The notation
ker.D/ will refer to the kernel of D in the space �1.X / of all smooth 1–forms, where
X will be understood from the context. The results of this section complement those
of [14].

We begin with the case of a half-infinite cylinder X DRC�Y , where Y is any closed,
oriented, connected Riemannian 3–manifold. Under the isomorphisms (3.4) there is the
identification DD @

@t
CP over RC �Y , where P is the self-adjoint elliptic operator

P D

�
0 �d�

�d �d

�

43



44 5 Local compactness II

acting on sections of ƒ0.Y /˚ƒ1.Y / (cf (3.12)). Since P2 is the Hodge Laplacian,

ker.P /DH 0.Y /˚H 1.Y /:

Let fh�g be a maximal orthonormal set of eigenvectors of P , say Ph� D ��h� .

Given a smooth 1–form a over RC � Y we can express it as aD
P
� f�h� , where

f� W RC!R. If DaD 0 then f�.t/D c�e
��� t for some constant c� . If in addition

a 2Lp for some p � 1 then f� 2Lp for all � , hence f� � 0 when �� � 0. Elliptic
inequalities for D then show that a decays exponentially, or more precisely,

j.rj a/.t;y/j � ǰ e�ıt

for .t;y/ 2 RC � Y and j � 0, where ǰ is a constant and ı the smallest positive
eigenvalue of P .

Now let � > 0 be a small constant and a 2 ker.D/\Lp;�� . Arguing as above we find
that

aD bC c dt C�� ; (5.2)

where b is an exponentially decaying form, c a constant, � W RC � Y ! Y , and
 2�1.Y / harmonic.

We now turn to the case when X is an oriented, connected Riemannian 4–manifold
with tubular end xRC�Y (so X nRC�Y is compact). Let Y1; : : : ;Yr be the connected
components of Y and set

Y 0 D

s[
jD1

Yj ; Y 00 D Y nY 0;

where 0 � s � r . Let � > 0 be a small constant and �W X ! R a smooth function
such that

� D

(
�� t on RC �Y 0

� t on RC �Y 00;

where t is the RC coordinate. Our main goal in this section is to describe ker.D/\
Lp;� .

We claim that all elements a 2 ker.D/\Lp;� are closed. To see this, note first that the
decomposition (5.2) shows that a is pointwise bounded, and da decays exponentially
over the ends. Applying the proof of [15, Proposition 1.1.19] to XWT DX n .T;1/�Y
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5.1 Hodge theory for the operator �d�C dC 45

we get Z
XWT

.jdCaj2� jd�aj2/D

Z
XWT

da^ daD

Z
XWT

d.a^ da/

D

Z
@XWT

a^ da! 0 as T !1.

Since dCaD 0, we conclude that daD 0.

Fix � � 0 and for any a 2�1.X / and j D 1; : : : ; r set

Rj aD

Z
f�g�Yj

�a: (5.3)

Recall that d� D �� d� on 1–forms, so if d�aD 0 then Rj a is independent of � .
Therefore, if a 2 ker.D/\Lp;� then Rj aD 0 for j > s , hence

sX
jD1

Rj aD

Z
@XW�

�aD

Z
XW�

d�aD 0:

Set „D f.z1; : : : ; zs/ 2Rs
W

X
j

zj D 0g:

Proposition 5.1.1 In the situation above the map

˛W ker.D/\Lp;�
! ker.H 1.X /!H 1.Y 00//˚„;

a 7! .Œa�; .R1a; : : : ;Rsa//

is an isomorphism.

Proof We first prove ˛ is injective. Suppose ˛.a/ D 0. Then a D df for some
function f on X . From the decomposition (5.2) we see that a decays exponentially
over the ends. Hence f is bounded, in which case

0D

Z
X

f d�aD

Z
X

jaj2:

This shows ˛ is injective.

Next we prove ˛ is surjective. Suppose b 2 �1.X /, db D 0, ŒbjY 00 � D 0, and
.z1; : : : ; zs/ 2„. Let  2�1.Y / be the harmonic form representing ŒbjY � 2H 1.Y /.
Then

bjRC�Y D �
� C df;
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46 5 Local compactness II

for some f W RC�Y !R. Choose a smooth function �W X !R which vanishes in a
neighbourhood of XW0 and satisfies � � 1 on Œ�;1/�Y . Set zj D 0 for j > s and
let z be the function on Y with zjYj � Vol.Yj /

�1zj . Define

zb D bC d.�.tz�f //:

Then over Œ�;1/�Y we have zb D �� C z dt , so d�zb D 0 in this region, andZ
X

d�zb D�

Z
@XW�

�zb D�

Z
Y

z D 0:

Let x�W X !R be a smooth function which agrees with j�j outside a compact set. By
Proposition 2.3.2 we can find a smooth �W X !R such that d� 2L

p;x�
1

and

d�.zbC d�/D 0:

Set aD zbC d� . Then .d C d�/aD 0 and ˛.a/D .Œb�; .z1; : : : ; zs//.

The following proposition is essentially [14, Proposition 3.14] and is included here
only for completeness.

Proposition 5.1.2 If b1.Y /D 0 and s D 0 then the operator

DW Lp;�
1
!Lp;� (5.4)

has index �b0.X /C b1.X /� bC.X /.

Proof By Proposition 5.1.1 the dimension of the kernel of (5.4) is b1.X /. From
Proposition 2.3.1 (ii) with SD 0 we see that the image of (5.4) is the sum of d�L

p;�
1

and dCL
p;�
1

. The codimensions of these spaces in Lp;� are b0.X / and bC.X /,
respectively.

5.2 The case of a single moduli space

Consider the situation of Section 1.3. Initially we do not assume Condition (A).

Proposition 5.2.1 Fix 1 < q <1. Let � > 0 be a small constant and �W X ! R
a smooth function such that �.t;y/ D �� t for all .t;y/ 2 RC � Y . Let Ao be a
spin connection over X which is translationary invariant over the ends of X . For
nD 1; 2; : : : let SnD .AoCan; ˆn/ be a smooth configuration over X which satisfies
the monopole equations (3.10) with �D �n , EpD Epn . Suppose an 2L

q;�
1

for every n,
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and supn kˆnk1 <1. Then there exist smooth unW X ! U.1/ such that if k is any
nonnegative integer with

sup
j ;n

�
k�nkC k Ckpn;jkC k

�
<1 (5.5)

then the sequence un.Sn/ is bounded in L
p0

kC1
over compact subsets of X for every

p0 � 1.

Before giving the proof we record the following two elementary lemmas:

Lemma 5.2.1 Let E;F;G be Banach spaces, and E
S
! F and E

T
! G bounded

linear maps. Set
S CT W E! F ˚G; x 7! .Sx;T x/:

Suppose S has finite-dimensional kernel and closed range and that S CT is injective.
Then S CT has closed range, hence there is a constant C > 0 such that

kxk � C.kSxkCkT xk/

for all x 2E .

Proof Exercise.

Lemma 5.2.2 Let X be a smooth, connected manifold and x0 2 X . Denote by
Map0.X;U.1// the set of smooth maps uW X ! U.1/ such that u.x0/D 1, and let V

denote the set of all closed 1–forms � on X such that Œ�� 2H 1.X IZ/. Then

Map0.X;U.1//! V; u 7!
1

2� i
u�1du

is an isomorphism of Abelian groups.

Proof If � 2 V define

u.x/D exp
�

2� i

Z x

x0

�

�
;

where
R x

x0
� denotes the integral of � along any path from x0 to x . Then we have

.1=.2� i//u�1duD � . The details are left to the reader.

Proof of Proposition 5.2.1 We may assume X is connected and that (5.5) holds
at least for k D 0. Choose closed 3–forms !1; : : : ; !b1.X / which are supported in
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48 5 Local compactness II

the interior of XW0 and represent a basis for H 3
c .X /. For any a 2�1.X / define the

coordinates of Ja 2Rb1.X / by

.Ja/k D

Z
X

a^!k :

Then J induces an isomorphism H 1.X /!Rb1.X / , by Poincaré duality. By Lemma
5.2.2 we can find smooth vnW X ! U.1/ such that J.an � v

�1
n dvn/ is bounded as

n!1. We can arrange that vn.t;y/ is independent of t � 0 for every y 2 Y . Then
there are �n 2L

q;�
2
.X I iR/ such that bn D an� v

�1
n dvn� d�n satisfies

d�bn D 0I Rj bn D 0; j D 1; : : : ; r � 1

where Rj is as in (5.3). If r � 1 this follows from Proposition 2.3.3, while if r D 0

(ie if X is closed) it follows from Proposition 2.3.2. (By Stokes’ theorem we have
Rr bn D 0 as well, but we don’t need this.) Note that �n must be smooth, by elliptic
regularity for the Laplacian d�d . Set un D exp.�n/vn . Then un.AoCan/DAoCbn .
By Proposition 5.1.1 and Lemma 5.2.1 there is a C1 > 0 such that

kbkLq;�

1
� C1

�
k.d�C dC/bkLq;� C

r�1X
jD1

jRj bjC kJbk

�
for all b 2L

q;�
1

. From inequality (3.6) and the curvature part of the Seiberg–Witten
equations we find that supn kd

Cbnk1 <1, hence

kbnkLq;�

1
� C1.kd

CbnkLq;� CkJbnk/� C2

for some constant C2 . We can now complete the proof by bootstrapping over compact
subsets of X , using alternately the Dirac and curvature parts of the Seiberg–Witten
equation.

Combining Proposition 5.2.1 (with k � 1) and Proposition 3.4.1 we obtain, for fixed
closed 2–forms �j on Yj :

Corollary 5.2.1 If (A) holds then for every constant C0 <1 there exists a constant
C1 < 1 with the following significance. Suppose k�kC 1 ; kpjkC 1 � C0 for each
j . Then for any Ę D .˛1; : : : ; ˛r / with j̨ 2

zRYj , and any ŒS � 2M.X I ĘI�I Ep/ and
t1; : : : ; tr 2 Œ0;C0� one has ˇ̌̌̌ rX

jD1

�j#.S jftj g�Yj /

ˇ̌̌̌
� C1:
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Note that if
P

j �j#. j̨ /� �C0 then this gives

rX
jD1

�j

�
#.S jftj g�Yj /�#. j̨ /

�
� C0CC1: (5.6)

5.3 Condition (C)

Consider the situation in Section 1.4 and suppose  is simply connected and equipped
with an orientation o. Throughout this section (and the next) (co)homology groups
will have real coefficients, unless otherwise indicated.

We associate to .; o/ a “height function”, namely the unique integer valued function h

on the set of nodes of  whose minimum value is 0 and which satisfies h.e0/Dh.e/C1

whenever there is an oriented edge from e to e0 .

Let Zk and ZŒk denote the union of all subspaces Ze � X # where e has height k

and � k , respectively. Set

@�Zk
D

[
h.e/Dk

@�Ze:

For each node e of  choose a subspace Ge �H1.Ze/ such that

H1.Ze/DGe˚ im .H1.@
�Ze/!H1.Ze// :

Then the natural map Fe!G�e is an isomorphism, where G�e is the dual of the vector
space Ge .

Lemma 5.3.1 The natural map H 1.X #/!
L

e G�e is injective. Therefore, this map
is an isomorphism if and only if †.X; ; o/D 0.

Proof Let N be the maximum value of h and suppose z 2H 1.X #/ lies in the kernel
of the map in the lemma. It is easy to show, by induction on k D 0; : : : ;N , that
H 1.X #/!H 1.Zk/ maps z to zero for each k . We now invoke the Mayer–Vietoris
sequence for the pair of subspaces .Zk�1;ZŒk/ of X # :

H 0.Zk�1/˚H 0.ZŒk/
a
!H 0.@�Zk/!H 1.ZŒk�1/

b
!H 1.Zk�1/˚H 1.ZŒk/:

Using the fact that  is simply connected it is not hard to see that a is surjective,
hence b is injective. Arguing by induction on k DN;N � 1; : : : ; 0 we then find that
H 1.X #/!H 1.ZŒk/ maps z to zero for each k .
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50 5 Local compactness II

We will now formulate a condition on .X;  / which is stronger than (C) and perhaps
simpler to verify. A connected, oriented graph is called a tree if it has a unique node
(the root node) with no incoming edge, and any other node has a unique incoming edge.

Proposition 5.3.1 Suppose there is an orientation o of  such that .; o/ is a tree and

H 1.ZŒk/!H 1.Zk/

is surjective for all k . Then Condition (C) holds.

Proof It suffices to verify that †.X; ; o/D 0. Set

F Œk D ker.H 1.ZŒk/!H 1.@�Zk//;

Fk
D ker.H 1.Zk/!H 1.@�Zk//:

The Mayer–Vietoris sequence for .Zk ;ZŒkC1/ yields an exact sequence

0! F Œk ! Fk
˚H 1.ZŒkC1/!H 1.@�ZŒkC1/:

If H 1.ZŒk/!H 1.Zk/ is surjective then so is F Œk! Fk , hence ker.F Œk! Fk/!

F ŒkC1 is an isomorphism, in which case

dim F Œk D dim F ŒkC1C dim Fk .

Therefore †.X; ; o/D dim H 1.X #/�
P

k dim Fk

D dim H 1.X #/� dim F Œ0 D 0:

5.4 Neck-stretching II

Consider again the situation in Section 1.4. The following set-up will be used in the
next two lemmas. We assume that  is simply connected and that o is an orientation
of  with †.X; ; o/D 0. Let 1< p <1.

An end of X that corresponds to an edge of  is either incoming or outgoing depending
on the orientation o. (These are the ends RC � .˙Yj /, but the sign here is unrelated
to o.) All other ends (ie RC �Y 0j , 1� j � r 0 ) are called neutral.

Choose subspaces Ge of H1.Ze/�H1.Xe/ as in the previous section, and set ge D

dim Ge . For each component Xe of X let fqekg be a collection of closed 3–forms on
Xe supported in the interior of Z0e D .Xe/W0 which represents a basis for the image of
Ge in H 3

c .Xe/ under the Poincaré duality isomorphism. For any a 2�1.Z0e/ define
Jea 2Rge by

.Jea/k D

Z
Xe

a^ qek :
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For each e let RC � Yem , m D 1; : : : ; he be the outgoing ends of Xe . For any
a 2�1.Z0e/ define Rea 2Rhe by

.Rea/m D

Z
f0g�Yem

�a:

Set ne D geC he and
LeaD .Jea;Rea/ 2Rne :

For any a 2�1.X .T // let La 2 V D
L

e Rne be the element with components Lea.

For any tubular end RC �P of X let t W RC �P !RC be the projection. Choose a
small � > 0 and for each e a smooth function �eW Xe!R such that

�e D

(
� t on incoming ends,

�� t on outgoing and neutral ends.

Let X fT g � X be as in Section 1.4 and let � D �T W X
.T /!R be a smooth function

such that �T ��e is constant on Xe\X fT g for each e . (Such a function exists because
 is simply connected.) This determines �T up to an additive constant.

Fix a point xe 2Xe and define a norm k � kT on V by

kvkT D
X

e

exp.�T .xe//kvek;

where k � k is the Euclidean norm on Rne and fveg the components of v .

Let D denote the operator �d�C dC on X .T / .

Lemma 5.4.1 There is a constant C such that for every r –tuple T with Tmin suffi-
ciently large and every L

p;�
1

1–form a on X .T / we have

kakLp;�

1
� C.kDakLp;� CkLakT /:

Note that adding a constant to � rescales all norms in the above inequality by the same
factor.

Proof Let � be a function on X which is equal to 2Tj on the ends RC � .˙Yj / for
each j . Choose smooth functions f1; f2W R!R such that .f1.t//

2C.f2.1�t//2D 1

for all t , and fk.t/D 1 for t � 1=3, k D 1; 2. For each e define ˇeW Xe!R by

ˇe D

8̂<̂
:
f1.t=�/ on outgoing ends,

f2.t=�/ on incoming ends,

1 elsewhere.
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52 5 Local compactness II

Let x̌e denote the smooth function on X .T / which agrees with ˇe on Xe \X fT g and
is zero elsewhere.

In the following, C;C1;C2; : : : will be constants that are independent of T . Assume
Tmin � 1.

Note that jrˇej � C1T �1
min everywhere, and similarly for x̌e . Therefore

kˇeakLp;�e
1
� C2kakLp;�e

1

for 1–forms a on Xe .

Let De denote the operator �d�C dC on Xe . By Proposition 5.1.1 the Fredholm
operator

De˚LeW L
p;�e

1
!Lp;�j ˚Rne

is injective, hence it has a bounded left inverse Pe ,

Pe.De˚Le/D Id:

If a is a 1–form on X .T / and v 2 V set

x̌
e.a; v/D . x̌ea; ve/:

Here we regard x̌ea as a 1–form on Xe . Define

P D
X

e

ˇePe
x̌

eW L
p;�
˚V !L

p;�
1
:

If we use the norm k � kT on V then kPk � C3 . Now

P .D˚L/aD
X

e

ˇePe. x̌eDa;Lea/

D

X
e

ˇePe.De
x̌

eaC Œ x̌e;D�a;Le
x̌

ea/

D

X
e

.ˇe
x̌

eaCˇePe.Œ x̌e;D�a; 0//

D aCEa;

where kEakLp;�

1
� C4T �1

minkakLp;� :

Therefore, kP .D˚L/� Ik � C4T �1
min ;

so if Tmin > C4 then z D P .D˚L/ will be invertible, with

kz�1
k � .1�kz� Ik/�1:
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In that case we can define a left inverse of D˚L by

QD .P .D˚L//�1P:

If Tmin � 2C4 say, then kQk � 2C3 , whence for any a 2L
p;�
1

we have

kakLp;�

1
D kQ.Da;La/kLp;�

1
� C.kDakLp;� CkLakT /:

Lemma 5.4.2 Let e be a node of  and for nD 1; 2; : : : let T .n/ be an r –tuple and
an an L

p;�n

1
1–form on X .T .n// , where �n D �T .n/ . Suppose

(i) †.X; ; o/D 0,

(ii) Tmin.n/!1 as n!1,

(iii) there is a constant C 0 <1 such that

�n.xe0/� �n.xe/CC 0

for all nodes e0 of  and all n,

(iv) supn kd
Cank1 <1.

Then there are smooth unW X
.T .n//! U.1/ such that the sequence bn D an�u�1

n dun

is bounded in L
p
1

over compact subsets of Xe , and bn 2 L
p;�n

1
and d�bn D 0 for

every n.

Note that (iii) implies that e must be a source of .; o/.

Proof Without loss of generality we may assume that �n.xe/D 1 for all n, in which
case

sup
n
k1kLp;�n <1:

By Lemma 5.2.2 and Lemma 5.3.1 we can find smooth vnW X
.T .n//! U.1/ such that

sup
n
kJe0.an� v

�1
n dvn/k<1

for every node e0 , where k�k is the Euclidean norm. (Compare the proof of Proposition
5.2.1.) Moreover, we can take vn translationary invariant over each end of X .T .n// .
Proposition 2.3.3 then provides smooth �n 2L

p;�n

2
.X I iR/ such that

bn D an� v
�1
n dvn� d�n 2L

p;�n

1

satisfies d�bn D 0;

Z
f0g�Y 0

j

�bn D 0
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54 5 Local compactness II

for j D 1; : : : ; r 0� 1. Stokes’ theorem shows that the integral vanishes for j D r 0 as
well, and since  is simply connected we obtain, for j D 1; : : : ; r ,Z

ftg�Yj

�bn D 0 for jt j � Tj .n/.

In particular, Re0bn D 0 for all nodes e0 of  .

Set un D vn exp.�n/, so that bn D an�u�1
n dun . By Lemma 5.4.1 we have

kbnkLp;�n
1
� C

�
kdCbnkLp;�n C

X
e0

exp.�n.xe0//kJe0.bn/k

�
� C

�
kdCankLp;�n C exp.1CC 0/

X
e0

kJe0.an� v
�1
n dvn/k

�
;

which is bounded as n!1.

Proposition 5.4.1 Suppose  is simply connected and that Condition (C) holds for
.X;  /. For nD 1; 2; : : : let ŒSn� 2M.X .T .n//I Ę0nI�nI EpnI Ep

0
n/, where Tmin.n/!1.

Then there exist smooth maps wnW X !U.1/ such that if k is any positive integer with

sup
j ;j 0;n

.k�nkC k Ckpj ;nkC k Ckp0j 0;nkC k / <1

then the sequence wn.Sn/ is bounded in L
p0

kC1
over compact subsets of X for every

p0 � 1.

Proof Consider the set-up in the beginning of this section where now p > 4 is the
exponent used in defining configuration spaces, and o is an orientation of  for which
(C) is fulfilled. By passing to a subsequence we can arrange that �n.xe/� �n.xe0/

converges to a point `.e; e0/ 2 Œ�1;1� for each pair of nodes e; e0 of  . Define an
equivalence relation � on the set N of nodes of  by declaring that e � e0 if and only
if `.e; e0/ is finite. Then we have a linear ordering on N=� such that Œe�� Œe0� if and
only if `.e; e0/ > �1. Here Œe� denotes the equivalence class of e .

Choose e such that Œe� is the maximum with respect to this linear ordering. Let
Sn D .AoCan; ˆn/. Then all the hypotheses of Lemma 5.4.2 are satisfied. If un is as
in that lemma then, as in the proof of Proposition 5.2.1, un.Sn/D .AoC bn;unˆn/

will be bounded in L
p0

kC1
over compact subsets of Xe for every p0 � 1.

For any r –tuple T let W .T / be the result of gluing ends of X nXe according to the
graph  n e and (the relevant part of) the vector T . To simplify notation let us assume
that the outgoing ends of Xe are RC � .�Yj /, j D 1; : : : ; r1 . Then RC � Yj is an
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end of W T .n/ for j D 1; : : : ; r1 . Let b0n be the 1–form on W T .n/ which away from
the ends RC�Yj , 1� j � r1 agrees with bn , and on each of these ends is defined by
cutting off bn :

b0n.t;y/D

(
f1.t � 2Tj .n/C 1/ � bn.t;y/; 0� t � 2Tj .n/;

0; t � 2Tj .n/:

Here f1 is as in the proof of Lemma 5.4.1. Then supn kd
Cb0nk1 <1. After choosing

an orientation of  ne for which (C) holds we can apply Lemma 5.4.2 to each component
of  n e , with b0n in place of an . Repeating this process proves the proposition.

Corollary 5.4.1 If (B2) holds then for every constant C0 <1 there exists a constant
C1 <1 such that for any element ŒS � of a moduli space M.X .T /I Ę0I�I EpI Ep0/ where
Tmin > C1 and �; pj ; p

0
j all have C 1 –norm < C0 one hasˇ̌̌̌ rX

jD1

�j

�
#.S jf�Tj g�Yj /�#.S jfTj g�Yj /

�
C

r 0X
jD1

�0j#.S jf0g�Y 0
j
/

ˇ̌̌̌
< C1:

The next proposition, which is essentially a corollary of Proposition 5.4.1, exploits the
fact that Condition (C) is preserved under certain natural extensions of .X;  /.

Proposition 5.4.2 Suppose  is simply connected and (C) holds for .X;  /. Then for
every constant C0 <1 there is a constant C1 <1 such that if S D .A; ˆ/ represents
an element of a moduli space M.X .T /I Ę0I�I EpI Ep0/ where Tmin > C1 and �; pj ; p

0
j all

have L1 norm < C0 then

kr#SkL2..t�1;tC1/�Yj /
< C1 for jt j � Tj � 1;

kr#SkL2..t�1;tC1/�Y 0
j
/ < C1 for t � 1:

Proof Given an edge v of  corresponding to a pair of ends RC � .˙Yj / of X , we
can form a new pair .X.j/; .j// where X.j/DX

`
.R�Yj /, and .j/ is obtained from

 by splitting v into two edges with a common endpoint representing the component
R�Yj of X.j/ .

Similarly, if e is a node of  and RC�Y 0j an end of Xe then we can form a new pair
.X .j/;  .j// where X .j/DX

`
.R�Y 0j /, and  .j/ is obtained from  by adding one

node e0j representing the component RC�Y 0j of X .j/ and one edge joining e and e0j .

One easily shows, by induction on the number of nodes of  , that if (C) holds for
.X;  / then (C) also holds for each of the new pairs .X.j/; .j// and .X .j/;  .j//.
Given this observation, the proposition is a simple consequence of Proposition 5.4.1.
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CHAPTER 6

Exponential decay

In this chapter we will prove exponential decay results for genuine monopoles over
half-cylinders RC �Y and long bands Œ�T;T ��Y . The overall scheme of proof will
be the same as that for instantons in [14], and Section 6.1 and Section 6.3 follow [14]
quite closely. On the other hand, the proof of the main result of Section 6.2, Proposition
6.2.1, is special to monopoles.

Throughout this chapter Y will be a closed, connected Riemannian spinc 3–manifold,
and � 2 �2.Y / closed. We will study exponential decay towards a nondegenerate
critical point ˛ of # D #� . We make no nondegeneracy assumptions on any other
(gauge equivalence classes of) critical points, and we do not assume that (O1) holds,
except implicitly in Proposition 6.4.1. All monopoles will be genuine (ie pD 0).

Earlier treatments of exponential decay can be found in Nicolaescu [41] (in the case
�D 0) and Kronheimer–Mrowka [31] (in the context of “blown-up” configurations).

6.1 A differential inequality

We begin by presenting an argument from [14] in a more abstract setting, so that it
applies equally well to the Chern–Simons and the Chern–Simons–Dirac functionals.

Let E be a real Banach space with norm k � k and E0 a real Hilbert space with inner
product h�; �i. Let E!E0 be an injective, bounded operator with dense image. We
will identify E as a vector space with its image in E0 . Set jxj D hx;xi1=2 for x 2E0 .

Let U �E be an open set containing 0 and

f W U !R; gW U !E0

57



58 6 Exponential decay

smooth maps satisfying f .0/D 0, g.0/D 0 and

Df .x/y D hg.x/;yi

for all x 2 U , y 2 E . Here Df .x/W E ! R is the derivative of f at x . Suppose
H DDg.0/W E!E0 is an isomorphism (of topological vector spaces). Note that H

can be thought of as a symmetric operator in E0 . Suppose E contains a countable set
fej g of eigenvectors for H which forms an orthonormal basis for E0 . Suppose �; �
are real numbers satisfying 0� � < � and such that H has no positive eigenvalue less
than � .

Lemma 6.1.1 In the above situation there is a constant C > 0 such that for every
x 2 U with kxk � C�1 one has

2�f .x/� jg.x/j2CC jg.x/j3;

2�f .x/� jg.x/j2:

Proof It clearly suffices to establish the first inequality for some C . By Taylor’s
formula (Dieudonné [10, 8.14.3]) there is a C1 > 0 such that for all x 2 U with
kxk � C�1

1
one has

jf .x/�
1

2
hHx;xij � C1kxk

3;

jg.x/�Hxj � C1kxk
2:

Let Hej D �j ej , and set xj D hx; ej iej . Then

�hHx;xi D �
X

j

�j jxj j
2
�

X
j

�2
j jxj j

2
D jHxj2:

By assumption, there is a C2 > 0 such that

kxk � C2jHxj

for all x 2E . Putting the above inequalities together we get, for r D kxk � C�1
1

,

jHxj � jg.x/jCC1r2

� jg.x/jC rC1C2jHxj:

If r < .C1C2/
�1 this gives

jHxj � .1� rC1C2/
�1
jg.x/j;
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6.1 A differential inequality 59

hence

2�f .x/� �hHx;xiC 2�C1r3

� jHxj2C 2� rC1C 2
2 jHxj2

�
1C 2� rC1C 2

2

.1� rC1C2/2
jg.x/j2

� .1CC3r/jg.x/j2

� jg.x/j2CC4jg.x/j
3

for some constants C3;C4 .

We will now apply this to the Chern–Simons–Dirac functional. Let ˛ D .B0; ‰0/ be
a nondegenerate critical point of # . Set K˛ D ker.I�˛ / � �.iƒ1 ˚ S/ and zH˛ D

H˛jK˛ W K˛ ! K˛ . Note that any eigenvalue of zH˛ is also an eigenvalue of the
self-adjoint elliptic operator �

0 I�˛
I˛ H˛

�
over Y acting on sections of iƒ0˚ iƒ1˚S . Let �˙ be positive real numbers such
that zH˛ has no eigenvalue in the interval Œ���; �C�.

In the following lemma, Sobolev norms of sections of the spinor bundle SY over Y

will be taken with respect to B0 and some fixed connection in the tangent bundle T Y .
This means that the same constant � will work if ˛ is replaced with some monopole
gauge equivalent to ˛ .

Lemma 6.1.2 In the above situation there exists an � > 0 such that if S is any smooth
monopole over the band .�1; 1/�Y satisfying kS0�˛kL2

1
.Y / � � then

˙2�˙.#.S0/�#.˛//� �@t j0#.St /:

Proof Choose a smooth uW .�1; 1/�Y ! U.1/ such that u.S/ is in temporal gauge.
Then

@t#.St /D @t#.ut .St //D�kr#.ut .St //k
2
2 D�kr#.St /k

2
2:

If � > 0 is sufficiently small then by the local slice theorem we can find a smooth
vW Y ! U.1/ which is L2

2
close to 1 and such that I�˛ .v.S0/ � ˛/ D 0. We now

apply Lemma 6.1.1 with E the kernel of I�˛ in L2
1

, E0 the kernel of I�˛ in L2 and
f .x/D˙.#.˛C x/� #.˛//. The assumption that ˛ be nondegenerate means that
H D zH˛W E!E0 is an isomorphism, so the lemma follows.
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6.2 Estimates over Œ0; T ��Y

Let ˛ be a nondegenerate critical point of # and ˛D .B; ‰/ the monopole over R�Y

that ˛ defines. Throughout this section, the same convention for Sobolev norms of
sections of SY will apply as in Lemma 6.1.2. For Sobolev norms of sections of the
spinor bundles over (open subsets of) R�Y we will use the connection B .

Throughout this section S D .A; ˆ/ will be a monopole over a band BD Œ0;T ��Y

where T � 1. Set s D .a; �/D S �˛ and

ı D kskL2
2
.B/;

�2
D kr#Sk

2
L2.B/ D #.S0/�#.ST /:

(6.1)

The main result of this section is Proposition 6.2.1, which asserts in particular that
if ı is sufficiently small then S is gauge equivalent to a configuration zS which is in
Coulomb gauge with respect to ˛ and satisfies k zS �˛kL2

1
.B/ � const � � .

We will assume ı � 1. Let a0 denote the contraction of a with the vector field @1D
@
@t

.
Quantities referred to as constants or denoted “const” may depend on Y; �; Œ˛�;T but
not on S . Note that

� � const � .ksk1;2Cksk21;2/� const; (6.2)

the last inequality because ı � 1.

For real numbers t set
it W Y !R�Y; y 7! .t;y/:

If ! is any differential form over B set !t D i�t ! , 0� t � T . Similar notation will
be used for connections and spinors over B.

Lemma 6.2.1 There is a constant C0 > 0 such that

k@1�k2 � C0.�Cka
0
k3/:

Proof We have
@1� D @1ˆDr

A
1 ˆ� a0ˆ;

where rA
1

is the covariant derivative with respect to A in the direction of the vector
field @1D

@
@t

. Now jrA
1
ˆj depends only on the gauge equivalence class of SD .A; ˆ/,

and if A is in temporal gauge (ie if a0 D 0) then .rA
1
ˆ/t D @At

ˆt . The lemma now
follows because ı � 1.
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Lemma 6.2.2 There is a constant C1 > 0 such that if ı is sufficiently small then the
following hold:

(i) k�k1;2 � C1.kI�˛sk2Cka
0k1;2C �/.

(ii) There is a smooth Lf W B! iR such that Ls D . La; L�/D exp. Lf /.S/�˛ satisfies

kLstk1;2 � C1kr#St
k2; 0� t � T:

(iii) kdak2 � C1� .

In (i) and (iii) all norms are taken over B.

Proof The proof will use an elliptic inequality over Y , the local slice theorem for Y ,
and the gradient flow description of the Seiberg–Witten equations over R�Y .

(i) Since ˛ is nondegenerate we have

kzk1;2 � const � k.I�˛ CH˛/zk2

for L2
1

sections z of .iƒ˚S/Y . Recall that

r#˛Cz DH˛zC z˝ z

where z˝ z represents a pointwise quadratic function of z . Furthermore, kz˝ zk2 �

const � kzk2
1;2

. If kzk1;2 is sufficiently small then we can rearrange to get

kzk1;2 � const � .kI�˛zk2Ckr#˛Czk2/: (6.3)

By the Sobolev embedding theorem we have

kstkL2
1
.Y / � const � kskL2

2
.B/; t 2 Œ0;T �;

for some constant independent of t , so we can apply inequality (6.3) with zD st when
ı is sufficiently small. Because

.I�˛s� @1a0/t D I�˛st

we then obtainZ T

0

kstk
2

L2
1
.Y /

dt � const � .kI�˛sk2
L2.B/Ck@1a0k2

L2.B/C �
2/:

This together with Lemma 6.2.1 establishes (i).

(ii) Choose a base-point y0 2 Y . By the local slice theorem there is a constant C

such that if ı is sufficiently small then for each t 2 Œ0;T � there is a unique smooth
Lft W Y ! iR such that
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� k Lftk2;2 � Cı ,

� Lft .y0/D 0 if ˛ is reducible,

� Lst D exp. Lft /.St /�˛ satisfies I�˛ Lst D 0.

It is not hard to see that the function Lf W B! iR given by Lf .t;y/D Lft .y/ is smooth.
Moreover, kLstk1;2 � const � kstk1;2 . Part (ii) then follows by taking z D Lst in (6.3).

(iii) Choose a smooth uW B! U.1/ such that u.S/ is in temporal gauge, and set
.a; �/D u.S/�˛ . Then

daD daD dt ^ @1aC dY aD�dt ^r1#St
C dY Lat ;

where r1# is the first component of r# . This yields the desired estimate on da.

Lemma 6.2.3 Let fv1; : : : ; vb1.Y /g be a family of closed 2–forms on Y which repre-
sents a basis for H 2.Y IR/. Then there is a constant C such that

kbkL2
1
.B/ � C

�
k.d�C d/bkL2.B/Ck.�b/j@BkL2

1=2
.@B/C

X
j

ˇ̌̌̌ Z
B

dt ^��vj ^ b

ˇ̌̌̌�
(6.4)

for all L2
1

1–forms b on B, where � W B! Y is the projection.

Proof Let K denote the kernel of the operator

�1
B!�0

B˚�
2
B˚�

0
@B; b 7! .d�b; db;�bj@B/:

Then we have an isomorphism

�W K
�
!H 1.Y IR/; b 7! Œb0�:

For on the one hand, an application of Stokes’ theorem shows that � is injective. On
the other hand, any c 2H 1.Y IR/ can be represented by an harmonic 1–form ! , and
��! lies in K , hence � is surjective.

It follows that every element of K is of the form ��.!/. Now apply Proposition 4.1.1
and Lemma 5.2.1.

Lemma 6.2.4 There is a smooth map yf W B! iR, unique up to an additive constant,
such that yaD a� d yf satisfies

d�yaD 0; .�ya/j@B D 0:
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Given any such yf , if we set ys D .ya; y�/D exp. yf /.S/�˛ then

kyakL2
1
.B/ � C2�; kyskL2

2
.B/ � C2ı

for some constant C2 > 0.

Proof The first sentence of the lemma is just the solution to the Neumann problem. If
we fix x0 2 B then there is a unique yf as in the lemma such that yf .x0/D 0, and we
have k yf k3;2 � const � kak2;2 . Writing

y� D exp. yf /ˆ�‰ D .exp. yf /� 1/ˆC�

and recalling that, for functions on B, multiplication is a continuous map L2
3
�L2

k
!L2

k

for 0� k � 3, we get

ky�k2;2 � Ck exp. yf /� 1k3;2kˆk2;2Ck�k2;2

� C 0k yf k3;2 exp.C 00k yf k3;2/Ck�k2;2
� C 000ksk2;2

for some constants C; : : : ;C 000 , since we assume ı � 1. There is clearly a similar L2
2

bound on ya, so this establishes the L2
2

bound on ys .

We now turn to the L2
1

bound on ya. Let La be as in Lemma 6.2.2. Since ya� La is exact
we have ˇ̌̌̌Z

Y

v^ yat

ˇ̌̌̌
D

ˇ̌̌̌Z
Y

v^ Lat

ˇ̌̌̌
� const � kvk2kLatk2

for any closed v 2 �2
Y

. Now take b D ya in Lemma 6.2.3 and use Lemma 6.2.2,
remembering that dyaD da.

Definition 6.2.1 For any smooth hW Y ! iR define h;P .h/W B! iR by h.t;y/D

h.y/ and
P .h/D�hC ihi‰; exp.h/ˆi;

where �D d�d is the Laplacian over R�Y . Let Pt .h/ be the restriction of P .h/ to
ftg �Y .

Note that I�˛ .exp.h/.S/�˛/D�d�aCP .h/.

Lemma 6.2.5 If ˛ is irreducible then the following hold:

(i) There is a C3 > 0 such that if ı is sufficiently small then there exists a unique
smooth hW Y ! iR satisfying khk3;2 � C3ı and P0.h/D 0.
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(ii) If hW Y ! iR is any smooth function satisfying P0.h/D 0 then

kP .h/kL2.B/ � const � .�Cka0kL3.B//:

Proof (i) We will apply Proposition B.0.2 (ie the inverse function theorem) to the
smooth map

P0W L
2
3!L2

1; h 7!�Y hC ihi‰0; exp.h/ˆ0i:

The first two derivatives of this map are

DP0.h/k D�Y kC kh‰0; exp.h/ˆ0i;

D2P0.h/.k; `/D ik`hi‰0; exp.h/ˆ0i:

The assumption ı � 1 gives

kD2P0.h/k � const � .1Ckrhk3/:

Set LDDP0.0/. Then

.L��Y � j‰0j
2/k D kh‰0; �0i;

hence kL��Y � j‰0j
2
k � const � ı:

Thus if ı is sufficiently small then L is invertible and

kL�1
k � k.�Y Cj‰0j

2/�1
kC 1:

Furthermore, we have P0.0/D ihi‰0; �0i, so

kP0.0/k1;2 � const � ı:

By Proposition B.0.2 (i) there exists a constant C > 0 such that if ı is sufficiently small
then there is a unique h 2 L2

3
such that khk3;2 � C and P0.h/D 0 (which implies

that h is smooth). Proposition B.0.2 (ii) then yields

khk3;2 � const � kP0.0/k1;2 � const � ı:

(ii) Setting QD P .h/ we have, for 0� t � T ,Z
Y

jQ.t;y/j2 dy D

Z
Y

ˇ̌̌̌Z t

0

@1Q.s;y/ ds

ˇ̌̌̌2
dy � const �

Z
B
j@1Qj2:

Now, @1QD ihi‰; exp.h/@1ˆi, hence

k@1Qk2 � const � k@1ˆk2 � const � .�Cka0k3/

by Lemma 6.2.1.
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Proposition 6.2.1 There is a constant C4 such that if ı is sufficiently small then there
exists a smooth zf W B! iR such that zs D .za; z�/D exp. zf /.S/�˛ satisfies

I�˛zs D 0; .�za/j@B D 0; kzskL2
1
.B/ � C4�; kzskL2

2
.B/ � C4ı;

where ı; � are as in (6.1).

This is analogous to Uhlenbeck’s theorem [50, Theorem 1.3] (with p D 2), except that
we assume a bound on ı rather than on � .

Proof To simplify notation we will write I D I˛ in this proof.

Case 1: ˛ reducible In that case the operator I� is given by I�.b;  /D�d�b . Let
zf be the yf provided by Lemma 6.2.4. Then apply Lemma 6.2.2 (ii), taking the S of

that lemma to be the present exp. zf /.S/.

Case 2: ˛ irreducible Let yf ; yS etc be as in Lemma 6.2.4. Choose hW Y ! iR such
that the conclusions of Lemma 6.2.5 (i) holds with the S of that lemma taken to be the
present yS . Set KS D . KA; K̂ /D exp.h/. yS/ and Ks D . Ka; K�/D KS � ˛ . By Lemma 6.2.5
and Lemma 6.2.2 (ii) we have

kI� Ksk2 � const � �; kKsk2;2 � const � ı; k K�k1;2 � const � �:

Since �d� KaD I� Ks� ihi‰; K�i we also get

kd� Kak2 � const � �:

Applying Lemma 6.2.3 as in the proof of Lemma 6.2.4 we see that

kKak1;2 � const � �:

It now only remains to make a small perturbation to KS so as to fulfil the Coulomb
gauge condition. To this end we invoke the local slice theorem for B. This says that
there is a C > 0 such that if ı is sufficiently small then there exists a unique smooth
f W B! iR such that setting zs D .za; z�/D exp.f /. KS/�˛ one has

kf k3;2 � Cı; I�zs D 0; �zaj@B D 0:

We will now estimate first kf k2;2 , then kzsk1;2 in terms of � . First note that �Kaj@B D

�yaj@B D 0, and

zaD Ka� df; z� D exp.f / K̂ �‰
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by definition. Write the imaginary part of exp.f / as f Cf 3u. Then f satisfies the
equations .@tf /j@B D 0 and

0D�d�zaC ihi‰; z�iR

D�f � d� KaC ihi‰; exp.f /. K�C‰/iR

D�f Cj‰j2f � d� KaC ihi‰; exp.f / K�Cf 3u‰iR:

By the Sobolev embedding theorem we have

kf k1 � const � kf k3;2 � const � ı;

and we assume ı � 1, so kuk1 � const. Therefore,

kf k2;2 � const � k�f Cj‰j2f k2

� �C const � kf 3
k2

� �C const � kf k32;2;

cf Section 2.5 for the first inequality. If ı is sufficiently small then we can rearrange to
get kf k2;2 � const �� . Consequently, kzak1;2 � const �� . To estimate kz�k1;2 we write

z� D g‰C exp.f / K�;

where g D exp.f /� 1. Then jdgj D jdf j and jgj � const � jf j. Now

kz�k2 � const � kf k2Ck K�k2 � const � �;

kr z�k2 � const � .kgk1;2Ckdf ˝ K�k2Ckr K�k2/

� const � .�Ckdf k4k K�k4/

� const � .�Ckf k2;2k K�k1;2/

� const � .�C �2/

� const � �

by (6.2). Therefore, kz�k1;2 � const � � . Thus, the proposition holds with

zf D yf C hCf:

Proposition 6.2.2 Let k be a positive integer and V b int.B/ an open subset. Then
there are constants �k ;Ck;V , where �k is independent of V , such that if

I�˛s D 0; kskL2
1
.B/ � �k

then kskL2
k
.V / � Ck;V kskL2

1
.B/:
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Proof The argument in [15, pp 62-3] carries over, if one replaces the operator d�C dC

with I�˛ CD‚˛ , where D‚˛ is the linearization of the monopole map at ˛ . Note
that I�˛ CD‚˛ is injective over S1�Y because ˛ is nondegenerate, so if  W B!R
is a smooth function supported in int.B/ then

k skk;2 � C 0kk.I
�
˛ CD‚˛/. s/kk�1;2

for some constant C 0
k

.

6.3 Decay of monopoles

The two theorems in this section are analogues of Propositions 4.3 and 4.4 in [14],
respectively.

Let ˇ be a nondegenerate monopole over Y , and U �BY an L2 –closed subset which
contains no monopoles except perhaps Œˇ�. Choose �˙ > 0 such that zHˇ has no
eigenvalue in the interval Œ���; �C�, and set �Dmin.��; �C/. Define

Bt D Œt � 1; t C 1��Y:

Theorem 6.3.1 For any C > 0 there are constants �;C0;C1; : : : such that the follow-
ing holds. Let S D .A; ˆ/ be any monopole in temporal gauge over .�2;1/�Y such
that ŒSt � 2 U for some t � 0. Set

x� D kr#SkL2..�2;1/�Y /; �.t/D kr#SkL2.Bt /
:

If kˆk1 � C and x� � � then there is a smooth monopole ˛ over Y , gauge equivalent
to ˇ , such that if B is the connection part of ˛ then for every t � 1 and nonnegative
integer k one has

sup
y2Y

jr
k
B.S �˛/j.t;y/ � Ck

p
�.0/e��

Ct : (6.5)

Proof It follows from the local slice theorem that zBY !BY is a (topological) principal
H 1.Y IZ/–bundle. Choose a small open neighbourhood V of Œˇ� 2 BY which is the
image of a convex set in CY . We define a continuous function xf W V !R by

xf .x/D #.�.x//�#.�.Œˇ�//

where � W V ! zBY is any continuous cross-section. It is clear xf is independent of � .

Given C > 0, let S D .A; ˆ/ be any monopole over .�2;1/�Y such that kˆk1�C

and ŒSt � 2U for some t � 0. If ı > 0, and k is any nonnegative integer, then provided
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x� is sufficiently small, our local compactness results (Lemma 4.2.1 and Lemma 4.1.1)
imply that for every t � 0 we can find a smooth uW B0! U.1/ such that

ku.S jBt
/�ˇkC k.B0/

< ı:

In particular, if x� is sufficiently small then

f W xRC!R; t 7! xf .ŒSt �/

is a well-defined smooth function. Since f .t/�#.St / is locally constant, and f .t/!0

as t !1, we have

f .t/D #.St /�L;

where LD limt!1 #.St /. If x� is sufficiently small then Lemma 6.1.2 gives 2�Cf �

�f 0 , hence

0� f .t/� e�2�Ctf .0/; t � 0:

This yields

�.t/2 D f .t � 1/�f .t C 1/� const � e�2�Ctf .0/; t � 1:

If x� is sufficiently small then by Propositions 6.2.1 and 6.2.2 we have

f .t/� const � �.t/; sup
y2Y

jr
k
A.r#S /j.t;y/ � C 0k�.t/ (6.6)

for every t � 0 and nonnegative integer k , where C 0
k

is some constant. Here we are
using the simple fact that if E;E0 are Banach spaces, W �E an open neighbourhood of
0, and hW W !E0 a differentiable map with h.0/D0 then kh.x/k� .kDh.0/kC1/kxk

in some neighbourhood of 0. For instance, to deduce the second inequality in (6.6) we
can apply this to the map

hW L2
kCjC1!L2

j ; s D .a; �/ 7! rk
B0Ca.r#ˇCs/

where j � 3, say, and B0 is the connection part of ˇ .

Putting the inequalities above together we get

sup
y2Y

jr
k
A.r#S /j.t;y/ � C 00k

p
�.0/e��

Ct ; t � 1

for some constants C 00
k

. If S is in temporal gauge we deduce, by taking k D 0, that
St converges uniformly to some continuous configuration ˛ . One can now prove by
induction on k that ˛ is of class C k and that (6.5) holds.
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Theorem 6.3.2 For any C > 0 there are constants �;C0;C1; : : : such that the follow-
ing holds for every T > 1. Let S D .A; ˆ/ be any smooth monopole in temporal gauge
over the band Œ�T � 2;T C 2��Y , and suppose ŒSt � 2 U for some t 2 Œ�T;T �. Set

x� D kr#SkL2..�T�2;TC2/�Y /; �.t/D kr#SkL2.Bt /
:

If kˆk1�C and x�� � then there is a smooth monopole ˛ over Y , gauge equivalent to
ˇ , such that if B is the connection part of ˛ then for jt j � T �1 and every nonnegative
integer k one has

sup
y2Y

jr
k
B.S �˛/j.t;y/ � Ck.�.�T /C �.T //1=2e��.T�jt j/:

Proof Given C > 0, let S D .A; ˆ/ be any monopole over Œ�T �2;T C2��Y such
that kˆk1 � C and ŒSt � 2 U for some t 2 Œ�T;T �. If x� is sufficiently small then we
can define the function f .t/ for jt j � T as in the proof of Theorem 6.3.1, and (6.6)
will hold with f .t/ replaced by jf .t/j, for jt j � T . Again, f .t/ D #.St /�L for
some constant L. Lemma 6.1.2 now gives

e�2��.T�t/f .T /� f .t/� e�2�C.TCt/f .�T /; jt j � T;

which implies

jf .t/j � .jf .�T /jC jf .T /j/e�2�.T�jt j/; jt j � T;

�.t/2 � const � .�.�T /C �.T //e�2�.T�jt j/; jt j � T � 1:

By Proposition 6.2.1 and Proposition 6.2.2 there is a critical point ˛ gauge equivalent
to ˇ such that

kr
k
B.S0�˛/kL1.Y / � C 000k �.0/

for some constants C 000
k

. It is now easy to complete the proof by induction on k .

6.4 Global convergence

The main result of this section is Proposition 6.4.1, which relates local and global
convergence of monopoles over a half-cylinder. First some lemmas.

Lemma 6.4.1 Let Z be a compact Riemannian n–manifold (perhaps with boundary),
m a nonnegative integer, and q � n=2. Then there is a real polynomial Pm;q.x/ of
degree mC 1 satisfying Pm;q.0/D 0, such that for any smooth uW Z! U.1/ one has

kdukm;q � Pm;q.ku
�1dukm;q/:
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Proof Argue by induction on m and use the Sobolev embedding Lr
k
.Z/�L2r

k�1
.Z/

for k � 1, r � n=2.

Lemma 6.4.2 Let Z be a compact, connected Riemannian n–manifold (perhaps with
boundary), z 2Z , m a positive integer, and q � 1. Then there is a C > 0 such that for
any smooth f W Z!C one has

(i) kf �favkm;q � Ckdf km�1;q ,

(ii) kf km;q � C.kdf km�1;qCjf .z/j/,

where fav D Vol.Z/�1
R

Z f is the average of f .

Proof Exercise.

Lemma 6.4.3 Let Z be a compact Riemannian n–manifold (perhaps with boundary),
m a positive integer, and q a real number such that mq > n. Let ˆ be a smooth section
of some Hermitian vector bundle E!Z , ˆ 6� 0. Then there exists a C > 0 with the
following significance. Let �1 be a smooth section of E satisfying k�1kq � C�1 and
wW Z!C a smooth map. Define another section �2 by

w.ˆC�1/DˆC�2:

Then kw� 1km;q � C.kdwkm�1;qCk�2��1kq/:

Proof The equation
.w� 1/ˆD �2��1� .w� 1/�1

gives

kw� 1km;q � const � .kdwkm�1;qCk.w� 1/ˆkq/

� const � .kdwkm�1;qCk�2��1kqCkw� 1km;qk�1kq/:

Here the first inequality is analogous to Lemma 6.4.2 (ii). If k�1kq is sufficiently small
then we can rearrange to get the desired estimate on kw� 1km;q .

Now let ˛ be a nondegenerate critical point of # . Note that if S D .A; ˆ/ is any finite
energy monopole in temporal gauge over RC �Y such that kˆk1 <1 and

lim inf
t!1

Z
Œt;tC1��Y

jS �˛jr D 0

for some r > 1 then by the results of Chapter 4 we have ŒSt �! Œ˛� in BY , hence
S �˛ decays exponentially by Theorem 6.3.1. In this situation we will simply say that
S is asymptotic to ˛ .
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(Here we used the fact that for any p > 2 and 1< r � 2p , say, the Lr metric on the
L

p
1

configuration space B.Œ0; 1��Y / is well defined.)

Lemma 6.4.4 If SD .A; ˆ/ is any smooth monopole over RC�Y such that kˆk1<
1 and S � ˛ 2 L

p
1

for some p > 2 then there exists a null-homotopic smooth
uW RC �Y ! U.1/ such that u.S/ is in temporal gauge and asymptotic to ˛ .

Proof By Theorem 6.3.1 there exists a smooth uW RC �Y ! U.1/ such that u.S/

is in temporal gauge and asymptotic to ˛ . Lemma 6.4.1, Lemma 6.4.2 (i), and the
assumption S �˛ 2L

p
1

then gives

ku�uavkL1.Œt;tC1��Y /! 0 as t !1;

hence u is null-homotopic.

It follows that all elements of the moduli spaces defined in Section 3.4 have smooth
representatives that are in temporal gauge over the ends.

Proposition 6.4.1 Let ı > 0 and suppose # W zBY ! R has no critical value in the
half-open interval .#.˛/; #.˛/C ı� (this implies Condition (O1)). For nD 1; 2; : : : let
Sn D .An; ˆn/ be a smooth monopole over xRC �Y such that

Sn�˛ 2L
p
1
; sup

n
kˆnk1 <1; #.Sn.0//� #.˛/C ı;

for some p > 2. Let vnW
xRC � Y ! U.1/ be a smooth map such that the sequence

vn.Sn/ converges in C1 over compact subsets of xRC � Y to a configuration S in
temporal gauge. Then the following hold:

(i) S is asymptotic to a critical point ˛0 gauge equivalent to ˛ .

(ii) If ˛ D ˛0 then vn is null-homotopic for all sufficiently large n, and there exist
smooth unW

xRC �Y ! U.1/ with the following significance: For every t � 0

one has un D 1 on Œ0; t � � Y for all sufficiently large n. Moreover, for any
� < �C , q � 1 and nonnegative integer m one has

kunvn.Sn/�SkLq;�
m
! 0 as n!1:

Here �C is as in Section 6.1.

Proof It clearly suffices to prove the proposition when q � 2 and mq > 4, which we
assume from now on.
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By Lemma 4.2.4 we haveZ
RC�Y

jr#Sn
j
2
D #.Sn.0//�#.˛/� ı (6.7)

for each n, hence
R

RC�Y jr#S j
2 � ı . Part (i) of the proposition is now a consequence

of Theorem 6.3.1 and the following:

Claim 6.4.1 ŒS.t/� converges in BY to Œ˛� as t !1.

Proof of claim For r > 0 let Br � BY denote the open r –ball around Œ˛� in the
L2 metric, and let xBr be the corresponding closed ball. Choose r > 0 such that xB2r

contains no monopole other than Œ˛�. Assuming the claim does not hold then by Lemma
4.1.1 one can find a sequence t 0j such that t 0j !1 as j !1 and ŒS.t 0j /� 62 xB2r for
each j . Because of the convergence of vn.Sn/ it follows by a continuity argument
that there are sequences nj ; tj with tj ; nj !1 as j !1, such that

ŒSnj .tj /� 2
xB2r nBr

for all j . For s 2R let TsW R�Y !R�Y be translation by s :

Ts.t;y/D .t C s;y/:

Again by Lemma 4.1.1 there are smooth !j W
xRC�Y !U.1/ such that a subsequence

of .Ttj /
�.!j .Snj // converges in C1 over compact subsets of R�Y to some finite

energy monopole S 0 whose spinor field is pointwise bounded. Moreover, it is clear
that # ı!j .0/�# 2R must be bounded as j !1, so by passing to a subsequence
and replacing !j by !j!

�1
j0

for some fixed j0 we may arrange that # ı!j .0/D #

for all n. Then `D limt!�1 #.S
0.t// must be a critical value of # . Since

ŒS 0.0/� 2 xB2r nBr ;

S 0.0/ is not a critical point, whence @t j0#.S
0.t// < 0. Therefore,

#.˛/C ı � ` > #.S 0.0// > #.˛/;

contradicting our assumptions. This proves the claim.

We will now prove Part (ii). For � � 0 let

B�� D Œ0; � ��Y; BC� D Œ�;1/�Y; O� D Œ�; � C 1��Y:

By Lemma 6.4.4 there is, for every n, a null-homotopic, smooth zvnW
xRC �Y ! U.1/

such that S 00n D zvn.Sn/ is in temporal gauge and asymptotic to ˛ .

Note that lim
t!1

lim sup
n!1

#.Sn.t//D #.˛/:
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For otherwise we could find an � > 0 and for every natural number j a pair tj ; nj � j

such that

#.Snj .tj //� #.˛/C �;

and we could then argue as in the proof of Claim 6.4.1 to produce a critical value of #
in the interval .˛; ˛C ı�. Since jr#Sn

j D jr#S 00n
j it follows from (6.7) and Theorem

6.3.1 that there exists a t1 � 0 such that if � � t1 then

lim sup
n!1

kS 00n �˛kLq;�
m .B

C
� /
� const � e.���

C/�

where the constant is independent of � . Then we also have

lim sup
n!1

kS 00n �Sk
L

q;�
m .B

C
� /
� const � e.���

C/� :

Set S 0n D vn.Sn/ and wn D zvnv
�1
n . Then we get

lim sup
n!1

kS 00n �S 0nkLq
m.O� / � const � e��

C� ;

which gives lim sup
n!1

kdwnkLq
m.O� / � const � e��

C�

by Lemma 6.4.1. In particular, wn is null-homotopic for all sufficiently large n.

Fix y0 2 Y and set x� D .�;y0/. Choose a sequence �n such that �n!1 as n!1

and
kS 0n�SkLq;�

m .B�
�nC1

/! 0;

kS 00n �Sk
L

q;�
m .B

C
�n /
! 0

(6.8)

as n!1. If ˛ is reducible then by multiplying each zvn by a constant and redefining
wn;S

00
n accordingly we may arrange that wn.x�n

/D 1 for all n. (If ˛ is irreducible
we keep zvn as before.) Then (6.8) still holds. Applying Lemma 6.4.1 together with
Lemma 6.4.2 (ii) (if ˛ is reducible) or Lemma 6.4.3 (if ˛ is irreducible) we see that

e��nkwn� 1kLq

mC1
.O�n /

! 0

as n!1.

Let ˇW R!R be a smooth function such that ˇ.t/D 0 for t � 1=3 and ˇ.t/D 1 for
t � 2=3. Set ˇ� .t/D ˇ.t � �/. Given any function wW O� !C n .�1; 0� define

Uw;� D exp.ˇ� logw/
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where log.exp.z// D z for complex numbers z with j Im.z/j < � . Let m0 be any
integer such that m0q > 4. If kw� 1km0;q is sufficiently small then

kUw;� � 1km0;q � const � kw� 1km0;q;

kw�1dwkm0�1;q � const � kw� 1km0;q:
(6.9)

To see this recall that for functions on R4 , multiplication defines a continuous map
L

q
m0 � L

q

k
! L

q

k
for 0 � k � m0 . Therefore, if V is the set of all functions in

L
q
m0.O� ;C/ that map into some fixed small open ball about 1 2 C then w 7! Uw;�

defines a C1 map V !L
q
m0 . This yields the first inequality in (6.9), and the proof of

the second inequality is similar.

Combining (6.8) and (6.9) we conclude that Part (ii) of the proposition holds with

un D

8̂<̂
:

1 in B��n
;

Uwn;�n
in O�n

;

wn in BC
�nC1

:

This completes the proof of Proposition 6.4.1.
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CHAPTER 7

Global compactness

In this chapter we will prove Theorems 1.3.1 and 1.4.1. Given the results of Chapters 4
and 5, what remains to be understood is convergence over ends and necks. We will use
the following terminology:

c-convergence = C1 convergence over compact subsets.

7.1 Chain-convergence

We first define the notion of chain-convergence. For simplicity we only consider two
model cases: first the case of one end and no necks, then the case of one neck and no
ends. It should be clear how to extend the notion to the case of multiple ends and/or
necks.

Definition 7.1.1 Let X be a spinc Riemannian 4–manifold with one tubular end
RC � Y , where Y is connected. Let ˛1; ˛2; : : : and ˇ0; : : : ; ˇk be elements of
zRY , where k � 0 and #. ǰ�1/ > #. ǰ / for j D 1; : : : ; k . Let ! 2M.X Iˇ0/ and
Ev D .v1; : : : ; vk/, where vj 2 LM . ǰ�1; ǰ /. We say a sequence ŒSn� 2 M.X I˛n/

chain-converges to .!; Ev/ if there exist, for each n,

� a smooth map unW X ! U.1/,
� for j D 1; : : : ; k a smooth map un;j W R�Y ! U.1/,
� a sequence 0D tn;0 < tn;1 < � � �< tn;k ,

such that

(i) un.Sn/ c-converges over X to a representative of ! (in the sense of Section
2.4),

75



76 7 Global compactness

(ii) tn;j � tn;j�1!1 as n!1,

(iii) un;j .T �tn;j
Sn/ c-converges over R�Y to a representative of vj ,

(iv) lim supn!1

�
#.Sn.tn;j�1C �//�#.Sn.tn;j � �//

�
! 0 as � !1,

(v) lim supn!1

�
#.Sn.tn;k C �//�#.˛n/

�
! 0 as � !1,

where (ii), (iii) and (iv) should hold for j D 1; : : : ; k .

Conditions (iv), (v) mean, in familiar language, that “no energy is lost in the limit”. As
before, Ts denotes translation by s , ie Ts.t;y/D .t C s;y/.

We now turn to the case of one neck and no ends.

Definition 7.1.2 In the situation of Section 1.4, suppose r D 1 and r 0 D 0. Let
ˇ0; : : : ; ˇk 2

zRY , where k � 0 and #. ǰ�1/ > #. ǰ /, j D 1; : : : ; k . Let ! 2
M.X Iˇ0; ˇk/ and Ev D .v1; : : : ; vk/, where vj 2 LM . ǰ�1; ǰ /. Let T .n/!1 as
n!1. We say a sequence ŒSn� 2M.X .T .n/// chain-converges to .!; Ev/ if there
exist, for every n,

� a smooth map unW X
.T .n//! U.1/,

� for j D 1; : : : ; k a smooth map un;j W R�Y ! U.1/,

� a sequence �T .n/D tn;0 < tn;1 < � � �< tn;kC1 D T .n/,

such that (i)–(iv) of Definition 7.1.1 hold for the values of j for which they are defined
(in other words, (ii) and (iv) should hold for 1� j � kC 1 and (iii) for 1� j � k ).

In the notation of Section 1.2, if J � R is an interval with nonempty interior then
a smooth configuration S over J � Y is called normal (with respect to # ) if either
@t#.St / < 0 for every t 2 J , or S is gauge equivalent to the translationary invariant
configuration ˛ determined by some critical point ˛ of # . Proposition 4.2.2 guarantees
the normality of certain .p; q/–monopoles when p is sufficiently small. In particular,
genuine monopoles are always normal.

Consider now the situation of Section 1.4 (without assuming (B1) or (B2)), and let the
2–form � on X be fixed.

Definition 7.1.3 A set of perturbation parameters Ep; Ep0 is admissible for a vector Ę0

of critical points if for some t0 � 1 the following holds. Let M be the disjoint union
of all moduli spaces M.X .T /I Ę0I EpI Ep0/ with Tmin � t0 . Then we require, for all j ; k ,
that the following hold:
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7.1 Chain-convergence 77

(i) If zS is any configuration over Œ�1; 1��Yj which is a C1 limit of configurations
of the form S jŒt�1;tC1��Yj with S 2M and jt j � Tj � 1, then zS is normal.

(ii) If zS is any configuration over Œ�1; 1��Y 0
k

which is a C1 limit of configurations
of the form S jŒt�1;tC1��Y 0

k
with S 2M and t � 1, then zS is normal.

In particular, the zero perturbation parameters are always admissible.

The next two propositions describe some properties of chain-convergence.

Proposition 7.1.1 In the notation of Theorem 1.3.1, suppose !n chain-converges to
.!; Ev1; : : : ; Evr /, where Ęn D Ě for all n, each Evj is empty and Ep is admissible for Ě.
Then !n! ! in M.X I Ě/ with its usual topology.

Proof This follows from Proposition 6.4.1.

In other words, if a sequence !n in a moduli space M chain-converges to an element
! 2M , then !n! ! in M provided the perturbations are admissible.

Proposition 7.1.2 In the notation of Section 1.4, suppose !n 2M.X .T .n//I Ę0n/ chain-
converges to V D .!; Ev1; : : : ; Evr ; Ev

0
1
; : : : ; Ev0r 0/, where Tmin.n/!1. Suppose also that

the perturbation parameters Ep; Ep0 are admissible for each Ę0n . Then the following hold:

(i) For sufficiently large n there is a smooth map unW X
.T .n//! U.1/ such that

vn;j D unjf0g�Y 0
j

satisfies vn;j .˛
0
n;j /D 

0
j , j D 1; : : : ; r 0 .

(ii) The chain limit is unique up to gauge equivalence, ie if V , V 0 are two chain
limits of !n then there exists a smooth uW X #! U.1/ which is translationary
invariant over the ends of X # , and such that u.V /D V 0 .

In (i), recall that moduli spaces are labelled by critical points modulo null-homotopic
gauge transformations. Note that we can arrange that the maps un are translationary
invariant over the ends. This allows us to identify the moduli spaces M.X I Ę0n/ and
M.X I E 0/, so that we obtain a sequence un.!n/, n� 0 in a fixed moduli space.

In (ii) we define u.V / as follows. Let wj W R�Yj ! U.1/ and w0j W R�Y 0j ! U.1/
be the translationary invariant maps which agree with u on f0g � Yj and RC � Y 0j ,
respectively. Let wW X ! U.1/ be the map which is translationary invariant over each
end and agrees with u on XW1 . Then u.V / is the result of applying the appropriate
maps w;wj ; w

0
j to the various components of u.V /.
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Proof of proposition (i) For simplicity we only discuss the case of one end and no
necks, ie the situation of Definition 7.1.1. The proof in the general case is similar.

Using Condition (v) of Definition 7.1.1 and a simple compactness argument it is
easy to see that ˛n is gauge equivalent to ˇk for all sufficiently large n. Moreover,
Conditions (iv) and (v) of Definition 7.1.1 ensure that there exist �; n0 > 0 such that
if n > n0 then !n restricts to a genuine monopole on .tn;k C �;1/ � Y and on
.tn;j�1C �; tn;j � �/�Y for j D 1; : : : ; k . It then follows from Proposition 6.4.1 that
vnD un;k jf0g�Y satisfies vn.˛n/D ˇk for n� 0. (Recall again that ˛n; ˇk 2

zRY are
critical points modulo null-homotopic gauge transformations, so vn.˛n/ depends only
on the homotopy class of vn .) Similarly, it follows from Theorems 6.3.1 and 6.3.2
that un;j�1jf0g�Y is homotopic to un;j jf0g�Y for j D 1; : : : ; r and n� 0, where
un;0 D un . Therefore, vn extends over XW0 .

(ii) This is a simple exercise.

7.2 Proof of Theorem 1.3.1

By Propositions 3.4.1,5.4.2 and 4.2.2, if each pj has sufficiently small C 1 norm then
Ep will be admissible for all Ę . Choose Ep so that this is the case. Set

C0 D� inf
n

X
j

�j#.˛n;j / <1:

Let Sn be a smooth representative for !n . The energy assumption on the asymptotic
limits of Sn is unaffected if we replace Sn by un.Sn/ for some smooth unW X !U.1/
which is translationary invariant on .tn;1/� Y for some tn > 0. After passing to
a subsequence we can therefore, by Proposition 5.2.1, assume that Sn c-converges
over X to some monopole S 0 which is in temporal gauge over the ends. Because Ep is
admissible we have that

@t#.Snjftg�Yj /� 0

for all j ; n and t � 0. From the energy bound (5.6) we then see that S 0 must have finite
energy. Let j denote the asymptotic limit of S 0 over the end RC �Yj as guaranteed
by Proposition 4.2.3. Then

lim sup
n

#.˛n;j /� #.j /

for each j . Hence there is a constant C2 <1 such that for hD 1; : : : ; r and all n

one has
C2C�h#.˛n;h/�

X
j

�j#.˛n;j /� �C0:
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Consequently, sup
n;j

j#.˛n;j /j<1:

For the remainder of this proof we fix j and focus on one end RC�Yj . For simplicity
we drop j from notation and write Y; ˛n instead of Yj ; ˛n;j etc.

After passing to a subsequence we may arrange that #.˛n/ has the same value L for
all n (here we use Condition (O1)). If #. /DL then we set k D 0 and the proof is
complete. Now suppose #. / >L. Then there is an n0 such that @t#.Sn.t// < 0 for
all n� n0 , t � 0. Set

ı D
1

2
minfjx�yj W x;y are distinct critical values of # W zBY !Rg:

The minimum exists by (O1). For sufficiently large n we define tn;1� 0 implicitly by

#.Sn.tn;1//D #. /� ı:

It is clear that tn;1!1 as n!1. Moreover, Definition 7.1.1 (iv) must hold for
j D 1. For otherwise we can find � > 0 and sequences �` , n` with �`; n`!1 as
`!1, such that

#.Sn`.�`//�#.Sn`.tn`;1� �`// > � (7.1)

for every `. As in the proof of Claim 6.4.1 there are smooth zu`W R � Y ! U.1/
satisfying # ı zu`.0/D # such that a subsequence of

zu`.T �tn`;1
Sn`/

c-converges over R � Y to a finite energy monopole zS in temporal gauge. The
asymptotic limit z of zS at �1 must satisfy

� � #. /�#.z / < ı;

where the first inequality follows from (7.1). This contradicts the choice of ı . Therefore,
Definition 7.1.1 (iv) holds for j D 1 as claimed.

After passing to a subsequence we can find un;1W R�Y !U.1/ such that un;1.T �tn;1
Sn/

c-converges over R�Y to some finite energy monopole S 0
1

in temporal gauge. Let
ˇ˙

1
denote the limit of S 0

1
at ˙1. A simple compactness argument shows that  and

ˇ�
1

are gauge equivalent, so we can arrange that  D ˇ�
1

by modifying the un;1 by a
fixed gauge transformation R�Y ! U.1/. As in the proof of Proposition 7.1.2 (i) we
see that un;1 must be null-homotopic for all sufficiently large n. Hence #.ˇC

1
/�L.

If #.ˇC
1
/ D L then we set k D 1 and the proof is finished. If on the other hand

#.ˇC
1
/ >L then we continue the above process. The process ends when, after passing

successively to subsequences and choosing un;j ; tn;j ; ˇ
˙
j for j D 1; : : : ; k (where
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ˇC
j�1
D ˇ�j , and un;j is null-homotopic for n� 0) we have #.ˇC

k
/DL. This must

occur after finitely many steps; in fact k � .2ı/�1.#. /�L/.

7.3 Proof of Theorem 1.4.1

For simplicity we first consider the case when there is exactly one neck (ie r D 1),
and we write Y D Y1 etc. We will make repeated use of the local compactness results
proved earlier.

Let Sn be a smooth representative of !n . After passing to a subsequence we can find
smooth maps

unW X
.T .n//

n .f0g �Y /! U.1/

such that zSn D un.Sn/ c-converges over X to some finite energy monopole S 0 which
is in temporal gauge over the ends. Introduce the temporary notation Sn.t/DSnjftg�Y ,
and similarly for zSn and un . For 0� � < T .n/ set

‚�;n D #.Sn.�T .n/C �//�#.Sn.T .n/� �//:

Let u˙n D un.˙T .n// and

I˙n D 2�

Z
Y

z�j ^ Œu
˙
n �;

cf Equation (1.1). Since ‚0;n is bounded as n ! 1, it follows that ICn � I�n is
bounded as n!1. By Condition (O1) there is a q > 0 such that qI˙n is integral for
all n. Hence we can arrange, by passing to a subsequence, that ICn � I�n is constant.
In particular,

ICn � IC
1
D I�n � I�1 :

Choose a smooth map wW X ! U.1/ which is translationary invariant over the ends,
and homotopic to u�1

1
over XW0 . After replacing un by wun for every n we then

obtain ICn D I�n . Set In D I˙n . We now have

‚�;n D #. zSn.�T .n///�#. zSn.T .n///:

Let ˇ0 and ˇ0 denote the asymptotic limits of S 0 over the ends �C.RC � Y / and
��.RC �Y /, respectively. Set

LD lim
�!1

lim
n!1

‚�;n D #.ˇ0/�#.ˇ
0/:

Since ‚�;n � 0 for � � 0 we have L� 0.

Suppose LD 0. Then a simple compactness argument shows that there is a smooth
vW Y !U.1/ such that v.ˇ0/D ˇ

0 . Moreover, there is an n0 such that v u�n � uCn for
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n� n0 , where � means “homotopic”. Therefore, we can find a smooth zW X ! U.1/
which is translationary invariant over the ends and homotopic to u�1

n0
over XW0 , such

that after replacing un by zun for every n we have that ˇ0D ˇ
0 and uCn � u�n . In that

case we can in fact assume that un is a smooth map X .T .n//! U.1/. The remainder
of the proof when LD 0 (dealing with convergence over the ends) is now a repetition
of the proof of Theorem 1.3.1.

We now turn to the case L > 0. For large n we must then have @tSn.t/ < 0 for
jt j � T .n/. Let ı be as in the proof of Theorem 1.3.1. We define tn;1 2 .�T .n/;T .n//

implicitly for large n by

#.ˇ0/D #.Sn.tn;1//C InC ı:

Then jtn;1˙T .n/j !1 as n!1. As in the proof of Theorem 1.3.1 one sees that

lim sup
n!1

�
#.Sn.�T .n/C �//�#.Sn.tn;1� �//

�
! 0

as �!1, and after passing to a subsequence we can find smooth un;1W R�Y !U.1/
such that un;1.T �tn;1

Sn/ c-converges over R� Y to a finite energy monopole S 0
1

in
temporal gauge whose asymptotic limit at �1 is ˇ0 . Let ˇ1 denote the asymptotic
limit of S 0

1
at 1. We now repeat the above process. The process ends when, after

passing successively to subsequences and choosing un;j ; tn;j ; ǰ for j D 1; : : : ; k one
has that

lim sup
n!1

�
#.Sn.tn;k C �//�#.Sn.T .n/� �//

�
! 0

as � !1. As in the case L D 0 one sees that ˇk ; ˇ
0 must be gauge equivalent,

and after modifying un;un;j one can arrange that ˇk D ˇ
0 . This establishes chain-

convergence over the neck. As in the case LD 0 we can in fact assume that un is a
smooth map X .T .n//!U.1/, and the rest of the proof when L> 0 is again a repetition
of the proof of Theorem 1.3.1.

In the case of multiple necks one applies the above argument successively to each
neck. In this case, too, after passing to a subsequence one ends up with smooth maps
unW X

.T .n//! U.1/ such that un.Sn/ c-converges over X . One can then deal with
convergence over the ends as before.
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CHAPTER 8

Transversality

We will address two kinds of transversality problems: nondegeneracy of critical points of
the Chern–Simons–Dirac functional and regularity of moduli spaces over 4–manifolds.

In this chapter we do not assume Condition (O1).

Recall that a subset of a topological space Z is called residual if it contains a countable
intersection of dense open subsets of Z .

8.1 Nondegeneracy of critical points

Lemma 8.1.1 Let Y be a closed, connected, Riemannian spinc 3–manifold and �
any closed (smooth) 2–form on Y . Let G� be the set of all � 2�1.Y / such that all
irreducible critical points of #�Cd� are nondegenerate. Then G� ��1.Y / is residual,
hence dense (with respect to the C1 topology).

Proof The proof is a slight modification of the argument in [21]. For 2 � k � 1

and ı > 0 let Wk;ı be the space of all 1–forms � on Y of class C k which satisfy
kd�kC 1 < ı . Let Wk;ı have the C k topology. For 1 � k < 1 we define a G–
equivariant smooth map

‡k W C� �L2
1.Y I iR/�Wk;ı!L2.Y I iƒ1

˚S/;

.B; ‰; �; �/ 7! I‰�Cr#�Cd�.B; ‰/;

where G acts trivially on forms and by multiplication on spinors. If ‡k.B; ‰; �; �/D 0

then
kI‰�k22 D�

Z
Y

hr#�Cd�.B; ‰/; I‰�i D 0
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84 8 Transversality

by (3.2), which implies � D 0 since ‰ ¤ 0. The derivative of ‡k at a point x D

.B; ‰; 0; �/ is

D‡k.x/.b;  ; f; v/DH.B;‰/.b;  /C I‰f C .i�dv; 0/: (8.1)

Let .B; ‰/ be any irreducible critical point of #� . We show that P DD‡k.B; ‰; 0; 0/

is surjective. Note that altering .B; ‰/ by an L2
2

gauge transformation u has the
effect of replacing P by uPu�1 . We may therefore assume that .B; ‰/ is smooth.
Since P1 D I‰ CH.B;‰/ has surjective symbol, the image of the induced operator
L2

1
!L2 is closed and has finite codimension. The same must then hold for im.P /.

Suppose .b;  / 2 L2 is orthogonal to im.P /, ie db D 0 and P�
1
.b;  / D 0. The

second equation implies that b and  are smooth, by elliptic regularity. Writing out the
equations we find as in [21] that on the complement of ‰�1.0/ we have �bD idr for
some smooth function r W Y n‰�1.0/!R. We now invoke a result of Bär [4] which
says that, because B is smooth and ‰ 6� 0, the equation @B‰ D 0 implies that the
zero-set of ‰ is contained in a countable union of smooth 1–dimensional submanifolds
of Y . In particular, any smooth loop in Y can be deformed slightly so that it misses
‰�1.0/. Hence b is exact. From Bär’s theorem (or unique continuation for @B , which
holds when B is of class C 1 ; see Kazdan [28]) we also deduce that the complement
of ‰�1.0/ is dense and connected. Therefore, f has a smooth extension to all of Y ,
and as in [21] this gives .b;  /D 0. Hence P is surjective.

Consider now the vector bundle

E D .C� �
G

L2.Y I iƒ1
˚S//�L2

1.Y I iR/! B� �L2
1.Y I iR/:

For 1� k <1 the map ‡k defines a smooth section �k;ı of the bundle

E �Wk;ı! B� �L2
1.Y I iR/�Wk;ı:

By the local slice theorem, a zero of ‡k is a regular point of ‡k if and only if the
corresponding zero of �k;ı is regular. Since surjectivity is an open property for bounded
operators between Banach spaces, a simple compactness argument shows that the zero-
set of �2;ı is regular when ı > 0 is sufficiently small. Fix such a ı . Observe that the
question of whether the operator (8.1) is surjective for a given x is independent of k .
Therefore, the zero-set Mk;ı of �k;ı is regular for 2 � k <1. In the remainder of
the proof assume k � 2.

For any � > 0 let B� be the set of elements ŒB; ‰� 2 B satisfyingZ
Y

j‰j � �:
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8.1 Nondegeneracy of critical points 85

Define Mk;ı;� � Mk;ı similarly. For any given � , the formula for ‡k defines a
Fredholm section of E which we denote by �� . Let Gk;ı;� be the set of those
� 2Wk;ı such that �� has only regular zeros in B� � f0g. For k <1 let

� W Mk;ı!Wk;ı

be the projection, and †�Mk;ı the closed subset consisting of all singular points of
� . A compactness argument shows that � restricts to a closed map on Mk;ı;� , hence

Gk;ı;� DWk;ı n�.Mk;ı;� \†/

is open in Wk;ı . On the other hand, applying the Sard–Smale theorem as in [15,
Section 4.3] we see that Gk;ı;� is residual (hence dense) in Wk;ı . Because W1;ı is
dense in Wk;ı , we deduce that G1;ı;� is open and dense in W1;ı . But then\

n2N

G1;ı;1=n

is residual in W1;ı , and this is the set of all � 2W1;ı such that �� has only regular
zeros.

An irreducible critical point of #�Cd� is nondegenerate if and only if the corresponding
zero of �� is regular. Thus we have proved that among all smooth 1–forms � with
kd�kC 1 < ı , those � for which all irreducible critical points of #�Cd� are nondegener-
ate make up a residual subset in the C1 topology. The same must hold if � is replaced
with �Cd� for any � 2�1.Y /, so we conclude that G� is locally residual in �1.Y /,
ie any point in G� has a neighbourhood V such that G�\V is residual in V . Hence
G� is residual in �1.Y /. (This last implication holds if �1.Y / is replaced with any
second countable, regular space.)

Lemma 8.1.2 Let Y be a closed, connected, Riemannian spinc 3–manifold with
b1.Y /D 0, and let B be a spin connection over Y . Let K � Y be a compact subset
with nonempty interior and W the set of all smooth 1–forms on Y which are supported
in K . Let G0 be the set of all � 2W such that ker @B�i� D 0. Then G0 is open and
dense in W with respect to the C1 topology.

Proof For k � 2 let Wk denote the closure of W in the space of all 1–forms of class
C k on Y (with the C k –topology). Consider the smooth map

‡k W
�
L2

1.Y IS/nf0g
�
�Wk �R!L2.Y IS/;

.�; �; t/ 7! @B�i�.�/C t i�:

We first show that 0 is a regular value of ‡k . Let ‡k.�; �; t/ D 0. Because @B�i�

is self-adjoint, we must have t D 0 and @B�i�.�/D 0. Let P denote the derivative

Geometry & Topology Monographs, Volume 15 (2008)



86 8 Transversality

of ‡k at .�; �; 0/ and Pj the partial derivative with the respect to the j –th variable,
j D 1; 2; 3. Suppose  2L2 is orthogonal to the image of P . Since  ? im.P1/, we
have @B�i�. /D 0. By elliptic regularity, both � and  are of class C 2 . By unique
continuation (see Kazdan [28]) there is a point y in the interior of K where � does
not vanish. Because  ? im.P2/ we can express  D r i� in a neighbourhood of y

for some real function r . Then

0D @B�i�. /D dr � i�;

hence r is equal to a constant C in some neighbourhood U of y . But then  �C i�

lies in the kernel of @B�i� and vanishes in U , so by unique continuation,  DC i� in
Y . But  ? im.P3/, so C D 0. This shows that 0 is a regular value of ‡k as claimed.

For every � 2W the map ‡k;� WD‡k.�; �; �/ is Fredholm of index 1. Let N� denote
the kernel of @B�i� in L2

1
, and let G0

k
be the set of those � 2Wk for which N� D 0.

By the Sard–Smale theorem there is a residual set of � ’s in Wk for which ‡�1
k;�
.0/

(which we can identify with N�nf0g) is a smooth submanifold of real dimension 1.
Since @B�i� is complex linear, this is only possible when N�D 0. Thus, G0

k
is residual

in Wk . Since G0
k

is obviously open in Wk , the lemma follows.

Proposition 8.1.1 Let Y be a closed, connected, Riemannian spinc 3–manifold and
� any closed 2–form on Y such that either b1.Y /D 0 or z�¤ 0. Let G be the set of all
� 2�1.Y / such that all critical points of #�Cd� are nondegenerate. Then G is open
and dense in �1.Y / with respect to the C1 topology.

Proof A compactness argument shows that G is open. If b1.Y / > 0 then #�Cd� has
no reducible critical points and the proposition follows from Lemma 8.1.1.

Now suppose b1.Y / D 0. Then we may assume � D 0. For any � 2 �1.Y / the
functional #d� has up to gauge equivalence a unique reducible critical point, represented
by .B � i�; 0/ for any spin connection B over Y with LB flat. This critical point is
nondegenerate precisely when

ker @B�i� D 0;

which by Lemma 8.1.2 holds for an open, dense subset of � ’s in �1.Y /. Now apply
Lemma 8.1.1.

Marcolli [35] proved a weaker result in the case b1.Y / > 0, allowing � to vary freely
among the closed 2–forms.
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8.2 Regularity of moduli spaces 87

8.2 Regularity of moduli spaces

The following lemma will provide us with suitable Banach spaces of perturbation
forms.

Lemma 8.2.1 Let X be a smooth n–manifold, K � X a compact, codimension 0

submanifold, and E!X a vector bundle. Then there exists a separable Banach space
W consisting of smooth sections of E supported in K , such that the following hold:

(i) The natural map W ! �.EjK / is continuous with respect to the C1 topology
on �.EjK /.

(ii) For every point x 2 int.K/ and every v 2 Ex there exists a section s 2 �.E/

with s.x/D v and a smooth embedding gW Rn! X with g.0/D x such that
for arbitrarily small � > 0 there are elements of W of the form f s where
f W X ! Œ0; 1� is a smooth function which vanishes outside g.Rn/ and satisfies

f .g.z//D

(
0; jzj � 2�;

1; jzj � �:

Proof Fix connections in E and TX , and a Euclidean metric on E . For any sequence
aD .a0; a1; : : : / of positive real numbers and any s 2 �.E/ set

kska D

1X
kD0

akkr
ksk1

and Wa D fs 2 �.E/ W supp.s/�K; kska <1g:

Then W D Wa , equipped with the norm k � ka , clearly satisfies (i) for any a. We
claim that one can choose a such that (ii) also holds. To see this, first observe that
there is a finite dimensional subspace V � �.E/ such that

V !Ex; s 7! s.x/

is surjective for every x 2K . Fix a smooth function bW R! Œ0; 1� satisfying

b.t/D

(
1; t � 1;

0; t � 4:

We use functions f that in local coordinates have the form

fr .z/D b.r jzj2/;

where r � 0. Note that for each k there is a bound kfrkC k � const � rk where the
constant is independent of r � 1. It is now easy to see that a suitable sequence a can
be found.
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In the next two propositions, X; Ę; � will be as in Section 1.3. Let K � X be any
nonempty compact codimension 0 submanifold. Let W be a Banach space of smooth
self-dual 2–forms on X supported in K , as provided by Lemma 8.2.1. The following
proposition will be used in the proof of Theorem 1.1.2.

Proposition 8.2.1 In the above situation, let G be set of all � 2 W such that all
irreducible points of the moduli space M.X I ĘI�C �I 0/ are regular (here pj D 0 for
each j ). Then G �W is residual, hence dense.

There is another version of this proposition where W is replaced with the Fréchet
space of all smooth self-dual 2–forms on X supported in K , at least if one assumes
that (O1) holds for each pair Yj ; �j and that (A) holds for X; z�j ; �j . The reason for
the extra assumptions is that the proof then seems to require global compactness results
(cf the proof of Lemma 8.1.1).

Proof We may assume X is connected. Let z‚ be as in Section 3.4. Then

.S; �/ 7! z‚.S; �C �; 0/

defines a smooth map

f W C� �W !Lp;w.X I iƒC˚S�/;

where C�DC�.X I Ę/. We will show that 0 is a regular value of f . Suppose f .S; �/D
0 and write S D .A; ˆ/. We must show that the derivative P DDf .S; �/ is surjective.
Because of the gauge equivariance of f we may assume that S is smooth. Let P1

denote the derivative of f . � ; �/ at S . Since the image of P1 in Lp;w is closed and
has finite codimension, the same holds for the image of P . Let p0 be the exponent
conjugate to p and suppose .z;  / 2Lp0;�w.X I iƒC˚S�/ is L2 orthogonal to the
image of P , ie Z

X

hP .a; �; �0/; .z;  /i D 0

for all .a; �/2L
p;w
1

and �0 2W . Taking �0D 0 we see that P�
1
.z;  /D 0. Since P�

1

has injective symbol, z;  must be smooth. On the other hand, taking a; � D 0 and
varying �0 we find that zjK D 0 by choice of W . By assumption, ˆ is not identically
zero. Since DAˆD 0, the unique continuation theorem in [28] applied to D2

A
says

that ˆ cannot vanish in any nonempty open set. Hence ˆ must be nonzero at some
point x in the interior of K . Varying a alone near x one sees that  vanishes in some
neighbourhood of x . But P1P�

1
has the same symbol as D2

A
˚ dC.dC/� , so another

application of the same unique continuation theorem shows that .z;  /D 0. Hence P

is surjective.
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Consider now the vector bundle

E D C� �G Lp;w.X I iƒC˚S�/

over B� . The map f defines a smooth section � of the bundle

E �W ! B� �W:

Because of the local slice theorem and the gauge equivariance of f , the fact that 0 is
a regular value of f means precisely that � is transverse to the zero-section. Since
�. � ; �/ is a Fredholm section of E for any � , the proposition follows by another
application of the Sard-Smale theorem.

We will now establish transversality results for moduli spaces of the form M.X; Ę/

or M.˛; ˇ/ involving perturbations of the kind discussed in Section 3.3. For the time
being we limit ourselves to the case where the 3–manifolds Y;Yj are all rational
homology spheres. We will use functions hS that are a small modification of those
in [21]. To define these, let Y be a closed Riemannian spinc 3–manifold satisfying
b1.Y /D 0, and # the Chern–Simons–Dirac functional on Y defined by some closed
2–form �. Choose a smooth, nonnegative function �W R!R which is supported in
the interval .�1=4; 1=4/ and satisfies

R
�D 1. If S is any L2

1
configuration over a

band .a� 1=4; bC 1=4/ where a� b define the smooth function z#S W Œa; b�!R by

z#S .T /D

Z
R
�.T � t/#.St / dt;

where we interpret the right hand side as an integral over R�Y . A simple exercise,
using the Sobolev embedding theorem, shows that if Sn ! S weakly in L2

1
over

.a� 1=4; bC 1=4/�Y then z#Sn
! z#S in C1 over Œa; b�.

Choose a smooth function cW R!R with the following properties:

� c0 > 0,

� c and all its derivatives are bounded,

� c.t/D t for all critical values t of # ,

where c0 is the derivative of c . The last condition is added only for convenience.

For any L2
1

configuration S over .a� 1=2; bC 1=2/�Y with a� b define

hS .t/D

Z
R
�.t1/c.z#S .t � t1// dt1:

It is easy to verify that hS satisfies the properties (P1)–(P3).
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It remains to choose „ and P. Choose one compact subinterval (with nonempty
interior) of each bounded connected component of R n crit.#/, where crit.#/ is the
set of critical values of # . Let „ be the union of these compact subintervals. Let
PDPY be a Banach space of 2–forms on R�Y supported in „�Y as provided by
Lemma 8.2.1.

We now return to the situation described in the paragraph preceding Proposition 8.2.1.
Let W 0 �W be the open subset consisting of those elements � that satisfy k�kC 1 < 1.
Let …ı denote the set of all Ep D .p1; : : : ; pr / where pj 2 PYj and kpjkC 1 < ı for
each j .

Proposition 8.2.2 Suppose each Yj is a rational homology sphere and K�XW0 . Then
there exists a ı>0 such that the following holds. Let G be the set of all .�; Ep/2W 0�…ı
such that every irreducible point of the moduli space M.X I ĘI�C �I Ep/ is regular.
Then G �W 0 �…ı is residual, hence dense.

It seems necessary here to let Ep vary as well, since if any of the pj is nonzero then the
linearization of the monopole map is no longer a differential operator, and it is not clear
whether one can appeal to unique continuation as in the proof of Proposition 8.2.1.

Proof To simplify notation assume r D 1 and set Y D Y1 , ˛ D ˛1 etc. (The proof
in the general case is similar.) Note that (A) is trivially satisfied, since each Yj is
a rational homology sphere. Therefore, by Propositions 4.2.2 and 5.4.2, if ı > 0 is
sufficiently small then for any .�; p/ 2W 0�…ı and ŒS � 2M.X I˛I�C �I p/ one has
that either

(i) ŒSt �D ˛ for t � 0, or

(ii) @t#.St / < 0 for t � 0.

As in the proof of Proposition 8.2.1 it suffices to prove that 0 is a regular value of the
smooth map

zf W C� �W 0 �…ı!Lp;w;

.S; �; p/ 7! z‚.S; �C �; p/:

The smoothness of the perturbation term g.S; p/D qhS;p follows from the smoothness
of the map (3.9), for by (P1) there exist a t0 and a neighbourhood U � C of S such
that hS 0.t/ 62„ for all t > t0 and S 0 2 U .

Now suppose zf .S; �; p/ D 0 and .z;  / 2 Lp0;�w is orthogonal to the image of
D zf .S; �; p/. We will show that z is orthogonal to the image of T D Dg.S; p/, or
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equivalently, that .z;  / is orthogonal to the image of Df .S; �/, where f D zf �g as
before. The latter implies .z;  /D 0 by the proof of Proposition 8.2.1.

Let hS W Œ1=2;1/! R be defined in terms of the restriction of S to RC � Y . If
hS .J /�Rn„ for some compact interval J then by (P1) one has that hS 0.J /�Rn„
for all S 0 in some neighbourhood of S in C . Therefore, all elements of im.T / vanish
on h�1

S
.R n„/�Y .

We now digress to recall that if u is any locally integrable function on Rn then the
complement of the Lebesgue set of u has measure zero, and if v is any continuous
function on Rn then any Lebesgue point of u is also a Lebesgue point of uv . The
notion of Lebesgue set also makes sense for sections � of a vector bundle of finite rank
over a finite dimensional smooth manifold M . In that case a point x 2M is called a
Lebesgue point of � if it is a Lebesgue point in the usual sense for some (hence any)
choice of local coordinates and local trivialization of the bundle around x .

Returning to our main discussion, there are now two cases: If (i) above holds then
hS .t/ D #.˛/ 62 „ for t � 1=2, whence T D 0 and we are done (recall the overall
assumption q�1.0/DXW.3=2/ made in Section 3.4). Otherwise (ii) must hold. In that
case we have @tc.z#.t// < 0 for t � 1=4 and @thS .t/ < 0 for t � 1=2. Since z is
orthogonal to qhS;p0 for all p0 2PY we conclude that z.t;y/D 0 for every Lebesgue
point .t;y/ of z with t > 3=2 and hS .t/ 2 int.„/. Since h�1

S
.@„/\ .3=2;1/ is a

finite set, z must vanish almost everywhere in Œh�1
S
.„/\ .3=2;1/��Y . Combining

this with our earlier result we deduce that z is orthogonal to im.T /.

In the next proposition (which is similar to [21, Proposition 5]) let …ı be as above
with r D 1, and set Y D Y1 .

Proposition 8.2.3 In the situation of Section 1.2, suppose Y is a rational homology
sphere and ˛; ˇ 2RY D

zRY . Then there exists a ı > 0 such that the following holds.
Let G be the set of all p 2…ı such that every point in M.˛; ˇI p/ is regular. Then
G �…ı is residual, hence dense.

Proof If ˛ D ˇ then an application of Proposition 4.2.2 shows that if kpkC 1 is
sufficiently small then M.˛; ˇI p/ consists of a single point represented by ˛ , which
is regular because ˛ is nondegenerate.

If ˛ ¤ ˇ and kpkC 1 is sufficiently small then for any ŒS � 2 M.˛; ˇI p/ one has
@t#.St / < 0 for all t . Moreover, the moduli space contains no reducibles, since ˛; ˇ
cannot both be reducible. The proof now runs along the same lines as that of Proposition
8.2.2. Note that the choice of „ is now essential: it ensures that im.hS /D .#.˛/; #.ˇ//

contains interior points of „.
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CHAPTER 9

Proofs of Theorems 1.1.1 and 1.1.2

In these proofs we will only use genuine monopoles.

Proof of Theorem 1.1.1 We may assume Y is connected. Let � be a closed nonexact
2–form on Y which is the restriction of a closed form on Z . Let Y have a metric
of positive scalar curvature. If s ¤ 0 is a small real number then #s� will have no
irreducible critical points, by the apriori estimate on the spinor fields and the positive
scalar curvature assumption. If in addition sŒ����c1.LY /¤ 0 then #s� will have no
reducible critical points either.

Choose a spinc Riemannian 4–manifold X as in Section 1.4, with r D 1, r 0D 0, such
that there exists a diffeomorphism X #!Z which maps f0g�Y1 isometrically onto
Y . Let �1 be the pullback of s�. Then (B1) is satisfied (but perhaps not (B2)), so it
follows from Theorem 1.4.1 that M.X .T // is empty for T � 0.

We will now define an invariant h for closed spinc 3–manifolds Y that satisfy b1.Y /D

0 and admit metrics with positive scalar curvature. Let g be such a metric on Y . Recall
that for the unperturbed Chern–Simons–Dirac functional # the space RY of critical
points modulo gauge equivalence consists of a single point � , which is reducible.
Let .B; 0/ be a representative for � . Let Y1; : : : ;Yr be the connected components
of Y and choose a spinc Riemannian 4–manifold X with tubular ends RC � Yj ,
j D 1; : : : ; r (in the sense of Section 1.3) and a smooth spin connection A over X

such that the restriction of LA to RC �Y is equal to the pullback of LB . (The notation
here is explained in Section 3.1.) Define

h.Y;g/D indC.DA/�
1

8
.c1.LX /

2
� �.X //

D
1

2
.dim M.X I �/� d.X /C b0.X //;
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94 9 Proofs of Theorems 1.1.1 and 1.1.2

where DAW L
2
1
! L2 , “dim” is the expected dimension, and d.X / is the quantity

defined in Section 1.1. Since indC.DA/D .1=8/.c1.LX /
2��.X // when X is closed,

it follows easily from the addition formula for the index (see Corollary C.0.1) that
h.Y;g/ is independent of X and that

h.�Y;g/D�h.Y;g/:

Clearly, h.Y;g/D
X

j

h.Yj ;gj /;

where gj is the restriction of g to Yj . To show that h.Y;g/ is independent of g we
may therefore assume Y is connected. Suppose g0 is another positive scalar curvature
metric on Y and consider the spinc Riemannian manifold X DR�Y where the metric
agrees with 1�g on .�1;�1��Y and with 1�g0 on Œ1;1/�Y . As we will prove
later (see Lemma 14.2.2 below) the moduli space M.X I �; �/ must have negative odd
dimension. Thus,

h.Y;g0/C h.�Y;g/D
1

2
.dim M.X I �; �/C 1/� 0:

This shows h.Y /D h.Y;g/ is independent of g .

Proof of Theorem 1.1.2 Let each Yj have a positive scalar curvature metric. Choose
a spinc Riemannian 4–manifold X as in Section 1.4, with r 0D 0 and with the same r ,
such that there exists a diffeomorphism f W X #!Z which maps f0g�Yj isometrically
onto Yj . Then (B1) is satisfied (but perhaps not (B2)). Let X0 be the component of
X such that W D f ..X0/W1/. For each j set �j D 0 and let j̨ 2RYj be the unique
(reducible) critical point. Choose a reference connection Ao as in Section 3.4 and set
A0 D AojX0

. Since each j̨ has representatives of the form .B; 0/ where LB is flat
it follows that yF .Ao/ is compactly supported. In the following, � will denote the
(compactly supported) perturbation 2–form on X and �0 its restriction to X0 .

Let HC be the space of self-dual closed L2 2–forms on X0 . Then dim HC D
bC.X0/ > 0, so HC contains a nonzero element z . By unique continuation for
harmonic forms we can find a smooth 2–form �0 on X0 , supported in any given small
ball, such that yFC.A0/C i�C

0
is not L2 orthogonal to z . (Here yFC is the self-dual

part of yF .) Then

yFC.A0/C i�C
0
62 im.dCW Lp;w

1
!Lp;w/;

where w is the weight function used in the definition of the configuration space. Hence
M.X0I Ę/ contains no reducible monopoles. After perturbing �0 in a small ball we
can arrange that M.X0I Ę/ is transversally cut out as well, by Proposition 8.2.1.
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To prove (i), recall that

dim M.X0I Ę/D d.W /� 1C 2
X

j

h.Yj /; (9.1)

so the inequality in (i) simply says that

dim M.X0I Ę/ < 0;

hence M.X0I Ę/ is empty. Since there are no other moduli spaces over X0 , it follows
from Theorem 1.4.1 that M.X .T // is empty when Tmin� 0.

We will now prove (ii). If M.X .T // has odd or negative dimension then there is nothing
to prove, so suppose this dimension is 2m� 0. Since M.X0I Ę/ contains no reducibles
we deduce from Theorem 1.4.1 that M.X .T // is also free of reducibles when Tmin is
sufficiently large. Let B�X0 be a compact 4–ball and B�.B/ the Banach manifold of
irreducible L

p
1

configurations over B modulo L
p
2

gauge transformations. Here p > 4

should be an even integer to ensure the existence of smooth partitions of unity. Let
L! B�.B/ be the natural complex line bundle associated to some base-point in B,
and s a generic section of the m–fold direct sum mL. For Tmin� 0 let

S .T / �M.X .T //; S0 �M.X0I Ę/

be the subsets consisting of those elements ! that satisfy s.!jB/D 0. By assumption,
S0 is a submanifold of codimension 2m. For any T for which S .T / is transversely
cut out the Seiberg–Witten invariant of Z is equal to the number of points in S .T /

counted with sign. Now, the inequality in (ii) is equivalent to

d.W /C 2
X

j

h.Yj / < d.Z/D 2mC 1;

which by (9.1) gives

dim S0 D dim M.X0I Ę/� 2m< 0:

Therefore, S0 is empty. By Theorem 1.4.1, S .T / is empty too when Tmin� 0, hence
SW.Z/D 0.

Geometry & Topology Monographs, Volume 15 (2008)





Part II

Gluing theory

There are many different hypotheses under which one can consider the gluing problem.
Here we will not aim at the utmost generality, but rather give an expository account
of gluing in what might be called the favourable cases. More precisely, we will glue
precompact families of regular monopoles over 4–manifolds with tubular ends, under
similar general assumptions as in Part I. Although obstructed gluing is not discussed
explicitly, we will show in Part III how the parametrized version of our gluing theorem
can be used to handle one kind of gluing obstructions.

One source of difficulty when formulating a gluing theorem is that gluing maps are in
general not canonical, but rather depend on various choices hidden in their construction.
We have therefore chosen to express our gluing theorem as a statement about an
ungluing map, which is explicitly defined in terms of data that appear naturally in
applications.

If X is a 4–manifold with tubular ends and X .T / the glued manifold as in Section 1.4,
then the first component of the ungluing map involves restricting monopoles over X .T /

to some fixed compact subset K � X (which may also be regarded as a subset of
X .T / when each Tj is large). In the case of gluing along a reducible critical point, the
ungluing map has an additional component which reads off the U.1/ gluing parameter
by measuring the holonomy along a path running once through the corresponding neck
in X .T / .

Ungluing maps of a different kind were studied already in Donaldson [11] and Freed–
Uhlenbeck [20] but later authors have mostly formulated gluing theorems in terms of
gluing maps, usually without characterizing these maps uniquely.

The proof of the gluing theorem is divided into two parts: surjectivity and injectivity of
the ungluing map. In the first part the (quantitative) inverse function theorem is used to
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construct a smooth local right inverse y� of an “extended monopole map” �„. In the
second part the inverse function theorem is applied a second time to show, essentially,
that the image of y� is not too small. There are many similarities with the proof of the
gluing theorem in [15], but also some differences. For instance, we do not use the
method of continuity, and we handle gluing parameters differently.

It may be worth mentioning that the proof does not depend on unique continuation
for monopoles (only for harmonic spinors), as we do not know whether solutions to
our perturbed monopole equations satisfy any such property. (Unique continuation for
genuine monopoles was used in Proposition 4.2.2 in the discussion of perturbations,
but this has little to do with gluing theory.) Therefore, in the injectivity part of the
proof, we argue by contradiction, restricting monopoles to ever larger subsets zK �X .
This is also reflected in the statement of the theorem, which would have been somewhat
simpler if unique continuation were available.

In Chapter 12 we give a detailed account of orientations of moduli spaces, using
Benevieri–Furi’s concept of orientations of Fredholm operators of index 0 [8]. This
seems simpler to us than the standard approach using determinant line bundles (see
[11; 15; 45; 14]). Our main result here, Theorem 12.4.1, says that ungluing maps are
orientation preserving. The length of this chapter is much due to the fact that we allow
gluing along reducible critical points and that we work with (multi)framed moduli
spaces (as a means of handling reducibles over the 4–manifolds).

There is now a large literature on gluing theory for instantons and monopoles. The
theory was introduced by Taubes [46; 47], who used it to obtain existence results for self-
dual connections over closed 4–manifolds. It was further developed in seminal work of
Donaldson [11]; see also Freed–Uhlenbeck [20]. General gluing theorems for instantons
over connected sums were proved by Donaldson [12] and Donaldson–Kronheimer [15].
In the setting of instanton Floer theory there is a highly readable account in [14];
see also Floer [19] and Fukaya [24]. Gluing with degenerate asymptotic limits was
studied by Morgan–Mrowka [39]; part of their work was adapted to the context of
monopoles by Safari [43]. Nicolaescu [41] established gluing theorems for monopoles
in certain situations, including one involving gluing obstructions. Marcolli–Wang [36]
discuss gluing theory in connection with monopole Floer homology. For monopoles
over closed 3–manifolds split along certain tori, see Chen [9]. Product formulae for
Seiberg–Witten invariants of 4–manifolds split along a circle times a surface of genus
g were established by Morgan–Szabó–Taubes [40] (for g > 1) and by Taubes [48]
(for g D 1). Gluing theory is a key ingredient in a large programme of Feehan–
Leness [16] for proving Witten’s conjecture relating Donaldson and Seiberg–Witten
invariants. Gluing theory in the context of blown-up moduli spaces was developed by
Kronheimer–Mrowka [31].
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CHAPTER 10

The gluing theorem

10.1 Statement of theorem

Consider the situation of Section 1.4, but without assuming any of the conditions (B1),
(B2), (C). We now assume that every component of X contains an end RC � Yj or
RC � .�Yj / (ie an end that is being glued). Fix nondegenerate monopoles j̨ over Yj

and ˛0j over Y 0j . (These should be smooth configurations rather than gauge equivalence
classes of such.) Suppose j̨ is reducible for 1� j � r0 and irreducible for r0< j � r ,
where 0� r0 � r . We consider monopoles over X and X .T / that are asymptotic to
˛0j over RC �Y 0j and (in the case of X ) asymptotic to j̨ over RC � .˙Yj /. These
monopoles build moduli spaces

Mb DMb.X I Ę; Ę; Ę
0/; M .T /

b DMb.X
.T /
I Ę
0/:

Here b�X is a finite subset to be specified in a moment, and the subscript indicates
that we only divide out by those gauge transformations that restrict to the identity on b;
see Section 3.4. The ungluing map f will be a diffeomorphism between certain open
subsets of M .T /

b and Mb when

Tmin WDmin.T1; : : : ;Tr /

is large.

When gluing along the critical point j̨ , the stabilizer of j̨ in GYj appears as a “gluing
parameter”. This stabilizer is a copy of U.1/ if j̨ is reducible and trivial otherwise.
When j̨ is reducible we will read off the gluing parameter by means of the holonomy
of the connection part of the glued monopole along a path j in X .T / which runs once
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through the neck Œ�Tj ;Tj ��Yj . To make this precise, for 1� j � r0 fix yj 2 Yj and
smooth paths

˙j W Œ�1;1/!X

such that ˙j .t/D �
˙
j .t;yj / for t � 0 and ˙j .Œ�1; 0�/ � XW0 . Let b denote the

collection of all the start-points o˙j WD 
˙

j .�1/. (We do not assume that these are
distinct.) Note in passing that we then have

M �
b DMb:

Define the smooth path

j W Ij D Œ�Tj � 1;Tj C 1�!X .T /

by j .t/D

(
�T 

C
j .Tj C t/; �Tj � 1� t < Tj ;

�T 
�

j .Tj � t/; �Tj < t � Tj C 1;

where �T W X
fT g!X .T / is as in Section 1.4.

Choose a reference configuration So D .Ao; ˆo/ over X with limits j̨ , ˛0j over
RC � .˙Yj /, R�Y 0j , resp. Let S 0o D .A

0
o; ˆ
0
o/ denote the reference configuration

over X .T / obtained from So in the obvious way when gluing the ends. Precisely
speaking, S 0o is the unique smooth configuration over X .T / which agrees with So over
int.XWT / (which can also be regarded as a subset of X ).

If P ! X .T / temporarily denotes the principal Spinc.4/–bundle defining the spinc

structure, then the holonomy of a spinc connection A in P along j is a Spinc.4/–
equivariant map

holj .A/W Po
C

j

! Po�
j
:

Because A and A0o map to the same connection in the tangent bundle of X .T / , there is
a unique element Holj .A/ in U.1/ (identified with the kernel of Spinc.4/! SO.4/)
such that

holj .A/D Holj .A/ � holj .A
0
o/: (10.1)

Explicitly Holj .A/D exp
�
�

Z
Ij

 �j .A�A0o/

�
;

where as usual A�A0o is regarded as an imaginary valued 1–form on X .T / . For gauge
transformations uW X .T /! U.1/ we have

Holj .u.A//D u.o�j / �Holj .A/ �u.oCj /
�1: (10.2)
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10.1 Statement of theorem 101

In particular, there is a natural smooth map

HolW M .T /
b ! U.1/r0 ; ŒA; ˆ� 7! .Hol1.A/; : : : ;Holr0

.A//

which is equivariant with respect to the appropriate action of

T WDMap.b;U.1//� U.1/b;

where b D jbj.

Consider for the moment an arbitrary compact codimension 0 submanifold K � X

containing b. Let D.T / be the subgroup of H 1.X .T /IZ/ consisting of those classes
whose restriction to each Y 0j is zero. Let DK be the cokernel of the restriction map
D.T /!H 1.KIZ/. Here Tmin should be so large that K may be regarded as a subset
of X .T / , and DK is then obviously independent of T . In the following we use the
L

p
1

configuration spaces etc introduced in Section 2.5. Let MGb.K/ be the kernel of the
(surjective) group homomorphism

G.K/! T �DK ; u 7! .ujb; Œu�/;

where Œu� denotes the image in DK of the homotopy class of u regarded as an element
of H 1.KIZ/. Set

MBb.K/D C.K/= MGb.K/; MB�b .K/D C
�
b .K/=

MGb.K/:

On both these spaces there is a natural action of T �DK . Note that DK acts freely and
properly discontinuously on the (Hausdorff) Banach manifold MB�b .K/ with quotient
B�b .K/.

It is convenient here to agree once and for all that the Sobolev exponent p > 4 is to be
an even integer. This ensures that our configuration spaces admit smooth partitions of
unity, which are needed in Sections 11.1 and 10.4 (but not in the proof of Theorem
10.1.1).

Fix a T –invariant open subset G �Mb whose closure xG is compact and contains only
regular points. (Of course, G is the preimage of an open set G0 in M , but G0 may
not be a smooth manifold due to reducibles and we therefore prefer to work with G .)

Definition 10.1.1 By a kv-pair we mean a pair .K;V / where

� K�X is a compact codimension 0 submanifold which contains b and intersects
every component of X ,

� V � MBb.K/ is a T –invariant open subset containing RK . xG/, where RK denotes
restriction to K .
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We define a partial ordering � on the set of all kv-pairs, by decreeing that

.K0;V 0/� .K;V /

if and only if K �K0 and RK .V
0/� V .

Now fix a kv-pair .K;V / which satisfies the following two additional assumptions:
firstly, that V � MB�b .K/; secondly, that if Xe is any component of X which contains a
point from b then Xe \K is connected. The second condition ensures that the image
of RK W Mb DM �

b !
MBb.K/ lies in MB�b .K/.

Suppose we are given a T –equivariant smooth map

qW V !Mb (10.3)

such that q.!jK /D ! for all ! 2 xG . (If T acts freely on xG then such a map always
exists when K is sufficiently large; see Section 10.4. In concrete applications there is
often a natural choice of q ; see Sections 11.1–11.2.)

Let X # and the forms z�j ; z�
0
j be as in Section 1.4, and choose �j ; �

0
j > 0.

Theorem 10.1.1 Suppose there is class in H 2.X #/ whose restrictions to Yj and Y 0j
are �j z�j and �0j z�

0
j , respectively, and suppose the perturbation parameters Ep; Ep0 are

admissible for Ę0 . Then there exists a kv-pair . zK; zV /� .K;V / such that if .K0;V 0/
is any kv-pair � . zK; zV / then the following holds when Tmin is sufficiently large. Set

H .T /
WD
˚
! 2M .T /

b W !jK 0 2 V 0
	
;

qW H .T /
!Mb; ! 7! q.!jK /:

Then q�1G consists only of regular monopoles (hence is a smooth manifold), and the
T –equivariant map f WD q�Hol restricts to a diffeomorphism

q�1G!G �U.1/r0 :

Remarks (1) When Tmin is large then K0 �X can also be regarded as a subset of
X .T / , in which case the expression !jK 0 in the definition of H .T / makes sense.

(2) Except for the equivariance of f, the theorem remains true if one leaves out all
assumptions on T –invariance resp. –equivariance on G and q , and on V in Definition
10.1.1, above. However, it is hard to imagine any application that would not require
equivariance of f.

(3) The theorem remains true if one replaces MBb.K/ and MB�b .K/ by Bb.K/ and
B�b .K/ above. However, working with MB gives more flexibility in the construction of
maps q ; see Section 11.2.
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(4) Concerning admissibility of perturbation parameters, see the remarks after Theorem
1.4.1. Note that the assumption on �j z�j and �0j z�

0
j in the theorem above is weaker than

either of the conditions (B1) and (B2) in Section 1.4. However, in practice the gluing
theorem is only useful in conjunction with a compactness theorem, so one may still
have to assume (B1) or (B2).

The proof of Theorem 13.3.1 has two parts. The first part consists in showing that f
has a smooth local right inverse around every point in xG �U.1/r0 (Proposition 10.2.1
below). In the second part we will prove that f is injective on q�1 xG . (Proposition
10.3.1 below).

10.2 Surjectivity

The next two sections are devoted to the proof of Theorem 10.1.1. Both parts of the
proof make use of the same set-up, which we now introduce.

We first choose weight functions for our Sobolev spaces over X and X .T / . Let
�j ; �

0
j � 0 be small constants and wW X ! R a smooth function which is equal to

�j t on RC � .˙Yj / and equal to � 0j t on RC �Y 0j . As usual, we require �j > 0 if j̨

is reducible (ie for j D 1; : : : ; r0 ), and similarly for � 0j . For j D 1; : : : ; r choose a
smooth function wj W R! R such that wj .t/ D ��j jt j for jt j � 1. We will always
assume Tmin � 4, in which case we can define a weight function �W X .T /!R by

� D w on X .T /
n
S

j Œ�Tj ;Tj ��Yj ;

�.t;y/D �j Tj Cwj .t/ for .t;y/ 2 Œ�Tj ;Tj ��Yj :

Let C denote the L
p;w
1

configuration space over X defined by the reference config-
uration So , and let C0 denote the L

p;�
1

configuration space over X .T / defined by
S 0o . Let Gb;G0b be the corresponding groups of gauge transformations and Bb;B0b the
corresponding orbit spaces.

Now fix .!0; z/ 2 xG �U.1/r0 . Our immediate goal is to construct a smooth local
right inverse of f around this point, but the following set-up will also be used in the
injectivity part of the proof.

Choose a smooth representative S0 2 C for !0 which is in temporal gauge over the
ends of X . (This assumption is made in order to ensure exponential decay of S0 .) Set
d D dim Mb and let � W C! Bb be the projection. By the local slice theorem we can
find a smooth map

SW Rd
! C
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such that S.0/DS0 and such that $ WD� ıS is a diffeomorphism onto an open subset
of Mb .

We will require one more property of S, involving holonomy. If a 2 L
p;w
1

.X I iR/
then we define Hol˙j .AoC a/ 2 U.1/ by

Hol˙j .AoC a/D exp
�
�

Z
Œ�1;1/

.˙j /
�a

�
:

The integral exists because, by the Sobolev embedding L
p
1
� C 0

B
in R4 for p > 4, we

have
kewak1 � CkewakLp

1
D CkakLp;w

1
(10.4)

for some constant C . It is clear that Hol˙j is a smooth function on C . Because any
smooth map Rd ! U.1/ factors through expW Ri ! U.1/, we can arrange, after
perhaps modifying S by a smooth family of gauge transformations that are all equal to
1 outside the ends RC �Yj and constant on Œ1;1/�Yj , that

HolCj .S.v// � .Hol�j .S.v///
�1
D zj (10.5)

for j D 1; : : : ; r0 and every v 2 Rd . Here Hol˙j .S.v// denotes the holonomy, as
defined above, of the connection part of the configuration S.v/, and the zj are the
coordinates of z .

Lemma 10.2.1 Let E;F;G be Banach spaces, S W E! F a bounded operator and
T W E!G a surjective bounded operator such that

S CT W E! F ˚G; x 7! .Sx;T x/

is Fredholm. Then T has a bounded right inverse.

Proof Because SCT is Fredholm there is a bounded operator AW F ˚G!E such
that .SCT /A� I is compact. Set A.x;y/DA1xCA2y for .x;y/ 2 F ˚G . Then

TA2� I W G!G

is compact, hence TA2 is Fredholm of index 0. Using the surjectivity of T and the
fact that any closed subspace of finite dimension or codimension in a Banach space
is complemented, it is easy to see that there is a bounded operator KW G!E (with
finite-dimensional image) such that T .A2CK/ is an isomorphism.

Let ‚W C!Lp;w

be the Seiberg–Witten map over X . By assumption, every point in xG is regular, so in
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particular !0 is regular, which means that D‚.S0/W L
p;w
1
!Lp;w is surjective. Let

ˆ be the spinor part of S0 and define Iˆ as in Section 2.3. Then

I�ˆCD‚.S0/W L
p;w
1
!Lp;w

is Fredholm, so by Lemma 10.2.1 D‚.S0/ has a bounded right inverse Q. (This can
also be deduced from Proposition 2.3.1 (ii).)

Let rW R!R be a smooth function such that r.t/D 1 for t � 0 and r.t/D 0 for t � 1.
For � � 1 set r� .t/D r.t � �/ and let Sv;� be the configuration over X which agrees
with S.v/ away from the ends RC � .˙Yj / and satisfies

Sv;� D .1� r� /˛j C r�S.v/

over RC � .˙Yj /. Here ˛j denotes, as before, the translationary invariant monopole
over R�Yj determined by j̨ . For each v we have

kSv;� �S.v/kLp;w

1
! 0 as � !1:

Therefore, when � is sufficiently large, the operator

D‚.S0;� / ıQW Lp;w
!Lp;w

will be invertible, and we set

Q� DQ.D‚.S0;� / ıQ/�1
W Lp;w

!L
p;w
1

;

which is then a right inverse of D‚.S0;� /. It is clear that the operator norm kQ��Qk!

0 as � !1.

For the remainder of the proof of Theorem 10.1.1, the term “constant” will always
refer to a quantity that is independent of �;T , unless otherwise indicated. The symbols
C1;C2; : : : and c1; c2; : : : will each denote at most one constant, while other symbols
may denote different constants in different contexts.

Consider the configuration space

Cj D ˛j CL
p;�wj
1

over R�Yj and the Seiberg–Witten map

‚j W Cj !Lp;�wj :

As explained in Section 3.4 there is an identification

I�˛ CD‚j .˛j /D
d

dt
CP˛:
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By the results of [14] the operator on the right hand side defines a Fredholm operator
L

p;wj
1
!Lp;wj , and this must be surjective because of the choice of weight function

wj . In particular,
D‚j .˛j /W L

p;wj
1
!Lp;wj (10.6)

is surjective, hence has a bounded right inverse Pj by Lemma 10.2.1. (Here one cannot
appeal to Proposition 2.3.1 (ii).)

Let ‚0W C0!Lp;� be the Seiberg–Witten map over X .T / . When Tmin > � C 1 then
by splicing Sv;� in the natural way one obtains a smooth configuration Sv;�;T over
X .T / . There is a constant C0� 0 such that if

Tmin > � CC0 (10.7)

then we can splice the right inverses Q� and P1; : : : ;Pr to obtain a right inverse Q�;T

of
D‚0.S0;�;T /W L

p;�
1
!Lp;�

which satisfies

kQ�;T k � C

�
kQ�kC

X
j

kPjk

�
for some constant C ; see Appendix C. Since kQ�k is bounded in � (ie as a function
of � ), we see that kQ�;T k is bounded in �;T .

The inequality (10.7) will be assumed from now on.

We now introduce certain 1–forms that will be added to the configurations Sv;�;T in
order to make small changes to the holonomies Holj . For any c D .c1; : : : ; cr0

/ 2Rr0

define the 1–form �c;� over X .T / by

�c;� D

(
0 outside

Sr0

jD1
Œ�Tj ;Tj ��Yj ;

icj r0
�C1�Tj

dt on Œ�Tj ;Tj ��Yj ; j D 1; : : : ; r0,

where r0s.t/D
d
dt

rs.t/. Set

E DRd
�Rr0 �Lp;�.X .T /

I iƒC˚S�/:

For 0<� < 1 let B� �E be the open �–ball about 0. Define a smooth map �W E! C0
by

�.v; c; �/D Sv;�;T C �c;� CQ�;T �; (10.8)

where �c;� is added to the connection part of Sv;�;T .

When deciding where to add the perturbation 1–form �c;� one has to balance two
concerns. One the one hand, because the weight function � increases exponentially as
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one approaches the middle of the necks Œ�Tj ;Tj ��Yj , j D 1; : : : ; r0 , it is desirable
to add �c;� as close to the boundaries of these necks as possible. On the other hand, in
order for Lemma 10.2.4 below to work, the spinor field of Sv;�;T needs to be “small”
in the perturbation region. We have chosen to add �c;� at the negative end of the cutoff
region, where the spinor field is zero.

Although we will sometimes use the notation �.x/, we shall think of � as a function
of three variables v; c; � , and Dj� will denote the derivative of � with respect to the
j –th variable. Similarly for other functions on (subsets of) E that we will define later.
Set

� Dmax.�1; : : : ; �r /:

Notice that if r0 D 0, ie if we are not gluing along any reducible critical point, then we
may take � D 0.

Lemma 10.2.2 There exists a constant C1 > 0 such that for x 2E the following hold:

(i) kD1�.x/k; kD
2�.x/k< C1 if kxk< 1.

(ii) kD2�.x/k< C1e�� .

(iii) kD3�.x/k< C1 .

Proof To prove (ii), note that if r0 > 0 and c D .c1; : : : ; cr0
/ then@�.v; c; �/@cj


L

p;�

1

D const � e�j � :

The other two statements are left to the reader.

Let C0
1

be the set of all S 2 C0 such that ŒS jK �2 V , q.S jK /2$.R
d / and Holj .S/¤

�zj for j D 1; : : : ; r0 . Then C0
1

is an open subset of C0 , and there are unique smooth
functions

�j W C01! .��; �/

such that Holj .S/D zj exp.i�j .S//. Set �D .�1; : : : ; �r0
/ and define�„D .$�1

ı q ıRK ; �;‚
0/W C01!E:

A crucial point in the proof of Theorem 10.1.1 will be the construction of a smooth local
right inverse of �„, defined in a neighbourhood of 0. The map � is a first approximation
to such a local right inverse. The construction of a genuine local right inverse will
involve an application of the quantitative inverse function theorem (see Lemma 10.2.7
below).
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108 10 The gluing theorem

From now on we will take � so large that K �XW� and

HolCj .S0;� / � .Hol�j .S0;� //
�1
¤�zj

for j D 1; : : : ; r0 . Note that the left hand side of this equation is equal to Holj .S0;�;T /

whenever Tj > � C 1. There is then a constant � > 0 such that �.B�/� C01 , in which
case we have a composite map

„D �„ ı �W B�!E:

Choose �>0 so that none of the operators zH
j̨

(j D1; : : : ; r ) and zH˛0
j

(j D1; : : : ; r 0 )
has any eigenvalue of absolute value � �. (The notation zH˛ was introduced in Section
6.1.) Recall that we assume the �j are small and nonnegative, so in particular we may
assume 6� < �.

Lemma 10.2.3 There is a constant C2 <1 such that

k„.0/k � C2e.���/� :

Proof The first two components of „.0/D �„.S0;�;T / are in fact zero: the first one
because S0;�;T D S0 over K , the second one because the dt –component of

S0;� �S0 D .1� r� /.˛j �S0/

vanishes on Œ1;1/� .˙Yj / since S0 and ˛j are both in temporal gauge there.

The third component of „.0/ is ‚0.S0;�;T /. It suffices to consider � so large that the
p–perturbations do not contribute to ‚0.S0;�;T /, which then vanishes outside the two
bands of length 1 in Œ�Tj ;Tj �� Yj centred at t D ˙.Tj � � � 1=2/, j D 1; : : : ; r .
Our exponential decay results say that for every k � 0 there is a constant C 0

k
such that

for every .t;y/ 2RC � .˙Yj / we have

jr
k.S0�˛j /j.t;y/ � C 0ke��t :

Consequently,

k‚0.S0;�;T /k1 � const � .e��� C e�2�� /� const � e��� :

This yields

k„.0/k D k‚0.S0;�;T /kLp;� � const � e.���/� :
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Lemma 10.2.4 There is a constant C3 < 1 such that for sufficiently large � the
following hold:

(i) kD„.0/k � C3 .

(ii) D„.0/ is invertible and kD„.0/�1k � C3 .

Proof By construction, the derivative of „ at 0 has the form

D„.0/D

0@ I 0 ˇ1

ı2 I ˇ2

ı3 0 I

1A ;
where the k –th column is the k –th partial derivative and I the identity map.

The middle top entry in the above matrix is zero because �c;� vanishes on K . The
middle bottom entry is zero because S0;�;T D ˛j on the support of �c;� and the spinor
field of ˛j is zero (for j D 1; : : : ; r0 ). Adding �c;� to S0;�;T therefore has the effect
of altering the latter by a gauge transformation over Œ�Tj C � C 1;�Tj C � C 2��Yj ,
j D 1; : : : ; r0 .

We claim that ˇk is bounded in �;T for k D 1; 2. For k D 1 this is obvious from the
boundedness of Q�;T . For k D 2 note that the derivative of �j W C01! .��; �/ at any
S 2 C0

1
is

D�j .S/.a; �/D i

Z
Ij

 �j a (10.9)

where a is an imaginary valued 1–form and � a positive spinor. Because of the
weights used in the Sobolev norms, D�.S/ is (independent of S and) bounded in �;T
(see (10.4)). This together with the bound on Q�;T gives the desired bound on ˇ2 .

Note that, for k D 2; 3, kıkk is independent of T when � � 0, and routine cal-
culations show that kıkk ! 0 as � ! 1. (In the case of ı2 this depends on the
normalization (10.5) of the holonomy of S.v/.)

Write D„.0/D x�y , where

x D

0@ I 0 ˇ1

0 I ˇ2

0 0 I

1A ; x�1
D

0@ I 0 �ˇ1

0 I �ˇ2

0 0 I

1A :
When � is so large that kyk kx�1k < 1 then of course kyx�1k � kyk kx�1k < 1,
hence x�y D .I �yx�1/x is invertible. Moreover,

.x�y/�1
�x�1

D x�1Œ.I �yx�1/�1
� I �D x�1

1X
kD1

.yx�1/k ;
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110 10 The gluing theorem

which gives

k.x�y/�1
�x�1

k �
kx�1k2 kyk

1�kx�1k kyk
! 0 as � !1:

We now record some basic facts that will be used in the proof of Lemma 10.2.6 below.

Lemma 10.2.5 If E1;E2;E3 are Banach spaces, Uj �Ej an open set for j D 1; 2,
and f W U1!U2 , gW U2!E3 smooth maps then the second derivate of the composite
map g ıf W U1!E3 is given by

D2.g ıf /.x/.y; z/DD2g.f .x//.Df .x/y;Df .x/z/

CDg.f .x//.D2f .x/.y; z//

for x 2 U1 and y; z 2E1 .

Proof Elementary.

It is also worth noting that embedding and multiplication theorems for L
q

k
Sobolev

spaces on R4 (k � 0, 1 � q <1) carry over to X .T / , and that the embedding and
multiplication constants are bounded functions of T .

Furthermore, a differential operator of degree d over X .T / which is translationary
invariant over necks and ends induces a bounded operator L

q

kCd
!L

q

k
whose operator

norm is a bounded function of T .

Lemma 10.2.6 There is a constant C4 > 0 such that kD2„.x/k � C4 whenever
kxk � C�1

4
and � � C4 .

Proof We will say a quantity depending on x; � is s-bounded if the lemma holds with
this quantity in place of D2„.

Let „1; „2; „3 be the components of „.

The assumption K �XW� ensures that „1.v; c; �/ is independent of c . It then follows
from Lemma 10.2.5 and the bound on Q�;T that D2„1 is s-bounded.

When v; c; � are small we have

„2.v; c; �/D �.Sv;�;T C �c;� CQ�;T �/D cC �.Sv;�;T CQ�;T �/:

Since D� is constant, as noted above, we have D2�D 0. From the bounds on D� and
Q�;T we then deduce that D2„2 is s-bounded.
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To estimate „3 , we fix h� 0 and consider only � � h. It is easy to see that

„3.x/jXWh

is s-bounded. By restricting to small x and choosing h large we may arrange that the
p–perturbations do not contribute to

„3;j WD„3jŒ�TjCh;Tj�h��Yj

for j D 1; : : : ; r . We need to show that each D2„3;j is s-bounded, but to simplify
notation we will instead prove the same for D2„3 under the assumption that the p

perturbations are zero.

First observe that for any configuration .A; ˆ/ over X .T / and any closed, imaginary
valued 1–form a we have

‚0.AC a; ˆ/D‚0.A; ˆ/C .0; a �ˆ/:

Moreover,

ka �ˆkLp;� D Cka � e�ˆkp � Ckak2p ke
�ˆk2p � C 0kak2p kˆkLp;�

1

for some constants C;C 0 <1. Taking .A; ˆ/ D Sv;�;T CQ�;T � and a D �c;� we
see that DkD2„3.x/ is s-bounded for k D 1; 2; 3.

Next note that the derivative of the Seiberg–Witten map ‚0W C0 ! Lp;� at a point
S 0oC s1 has the form

D‚0.S 0oC s1/s2 DLs2CB.s1; s2/

where B is a pointwise bilinear operator, and L a first order operator which is inde-
pendent of s1 and translationary invariant over necks and ends. This yields

kD‚0.S 0oC s/k � const � .1Cksk2p/: (10.10)

Moreover, D2‚0.S/D B for all S , hence there is a constant C 00 <1 such that

kD2‚0.S/k � C 00

for all T .

Combining the above results on ‚0 with Lemma 10.2.5 we see that Dj Dk„3 is s-
bounded also when j ; k ¤ 2.

Lemma 10.2.7 There exist c5 > 0 and C6 <1 such that if 0 < �0 < c5� < c2
5

then
for sufficiently large � the following hold:

(i) „W B�!E is injective.

Geometry & Topology Monographs, Volume 15 (2008)



112 10 The gluing theorem

(ii) There is a (unique) smooth map „�1W B�0 ! B� such that „ ı„�1 D I .

(iii) kD.„�1/.x/k � C6 for all x 2 B�0 .

(iv) kD2.„�1/.x/k � C6 for all x 2 B�0 .

(v) k„�1.0/k � C6e.���/� .

Proof For sufficiently large � we have

�0Ck„.0/k< c5�

by Lemma 10.2.3. Statements (i)–(iv) now follow from the inverse function theorem,
Proposition B.0.2, applied to the function x 7! „.x/ �„.0/, together with Lem-
mas 10.2.4 and 10.2.6. To prove (v), set hD„�1 , x D„.0/ and take � so large that
x 2 B�0 . Since „ is injective on B� we must have h.x/D 0, so

kh.0/k D kh.x/� h.0/k � kxk sup
kyk��0

kDh.y/k:

Now (v) follows from (iii) and Lemma 10.2.3.

From now on we assume that �; �0; � are chosen so that the conclusions of the lemma
are satisfied. Define

y� D � ı„�1
W B�0 ! C01:

Then clearly �„ ı y� D I:

Thus, .v; c/ 7! y�.v; c; 0/ is a “gluing map”, ie for small v; c it solves the problem
of gluing the monopole S.v/ over X to get a monopole over X .T / with prescribed
holonomy zj eicj along the path j for j D 1; : : : ; r0 .

Lemma 10.2.8 There is a constant C7 <1 such that for x 2 B�0 one has

kDy�.x/k; kD2y�.x/k � C7e�� :

Proof This follows from Lemma 10.2.2 and Lemma 10.2.7 and the chain rule.

The following proposition refers to the situation of Section 10.1 and uses the notation
of Theorem 10.1.1.

Proposition 10.2.1 If .K0;V 0/ is any kv-pair � .K;V / then xG � U.1/r0 can be
covered by finitely many connected open sets W in Mb�U.1/r0 such that if Tmin is
sufficiently large then for each W there exists a smooth map hW W ! H .T / whose
image consists only of regular points and which satisfies f ıhD I .
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Here we do not need any assumptions on z�j ; z�
0
j or on pj ; p

0
j .

Proof Let .!0; z/ 2 xG �U.1/r0 and consider the set-up above, with � so large that
K0 �XW� and � so small that

�.x/jK 0 2 V 0 for every x 2 B� : (10.11)

Note that taking � small may require taking � (and hence Tmin ) large; see Lemma
10.2.7. For any sufficiently small open neighbourhood W �Mb �U.1/r0 of .!0; z/

we can define a smooth map �W W ! C0
1

by the formula

�.!; a/D y�.$�1.!/;�i log.a=z/; 0/:

Here log eu D u for any complex number u with j Im uj< � , and i log.a=z/ 2Rr0

denotes the vector whose j –th component is i log.aj=zj /. Because �„ı y� D I and the
Seiberg–Witten map is the third component of �„, the image of � consists of regular
monopoles. Let hW W ! B0b be the composition of � with the projection C0! B0b .
Unravelling the definitions involved and using (10.11) one finds that h has the required
properties.

How large Tmin must be for this to work might depend on .!0; z/. But xG �U.1/r0

is compact, hence it can be covered by finitely many such open sets W . If Tmin is
sufficiently large then the above construction will work for each of these W .

10.3 Injectivity

We now continue the discussion that was interrupted by Proposition 10.2.1. Set

zS D S0;�;T ; yS D y�.0/:

Lemma 10.3.1 There is a constant C8 <1 such that for sufficiently large � one has

k yS � zSkLp;�

1
� C8e.2���/� ; k yS �S 0okL

p;�

1
� C8:

Proof Set „�1.0/D .v; c; �/ 2 B� . For sufficiently large � we have

k yS � zSkLp;�

1
� kSv;�;T �S0;�;T kL

p;�

1
Ck�c;� CQ�;T �kLp;�

1

� const � .kvjjC e��kckCk�k/

� const � e.2���/� ;

where we used Lemma 10.2.7 (v) to obtain the last inequality. Because k zS �S 0okL
p;�

1

is bounded in �;T , and we assume 6� <�, the second inequality of the lemma follows
as well.
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For positive spinors ˆ on X .T / it is convenient to extend the definition of Iˆ to
complex valued functions on X .T / :

Iˆf D .�df; f ˆ/:

(However, I�
ˆ

will always refer to the formal adjoint of Iˆ acting on imaginary valued
functions.) When ˆ is the spinor part of S 0o;

zS ; yS then the corresponding operators
Iˆ will be denoted I 0o; zI; I , respectively. (We omit the ˆ on I to simplify notation.)
As in Section 2.2 we define

E 0 D ff 2L
p
2;loc.X

.T /
IC/ W I 0of 2L

p;�
1
g:

We can take the norm to be

kf kE 0 D kI 0of kLp;�

1
C

X
x2b

jf .x/j:

Lemma 10.3.2 There is a constant C9 < 1 such that if I is any of the operators
I 0o; zI; I then for all f 2 E 0 one has

kf k1 � C9

�
kIf kLp;� C

X
x2b

jf .x/j

�
:

Proof We first prove the inequality for ID zI (the case of I 0o is similar, or easier). If
Xe is any component of X and 0� x� � � then for some constant Cx� <1 one has

kf k1 � const � kf kLp

1
� Cx�

�
kzIf kpC

X
x2b\Xe

jf .x/j

�

for all L
p
1

functions f W .Xe/Wx�!C . Here the Sobolev inequality holds because p> 4,
whereas the second inequality follows from Lemma 2.2.1. We use part (i) of that lemma
if the spinor field of S0 is not identically zero on Xe , and part (ii) otherwise. (In the
latter case b\Xe is nonempty.)

When x�; � are sufficiently large we can apply part (i) of the same lemma in a similar
fashion to the band Œt; tC1��Y 0j provided t � x� and ˛0j is irreducible, and to the band
Œt �1; tC1��Yj provided jt j � Tj �x� �1 and j̨ is irreducible. To estimate jf j over
these bands when ˛0j resp. j̨ is reducible one can use Lemma 2.2.2 (ii). This proves
the lemma for ID zI (and for ID I 0o ).
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We now turn to the case ID I . Let � denote the spinor part of yS � zS . Then

kzIf kLp;� � kIf kLp;� Ckf �kLp;�

� kIf kLp;� C const �
�
kzIf kLp;� C

X
x2b

jf .x/j

�
� k�kLp;� :

By Lemma 10.3.1 we have k�kLp;�

1
! 0 as � ! 0, so for sufficiently large � we get

kzIf kLp;� � const �
�
kIf kLp;� C

X
x2b

jf .x/j

�
:

Therefore, the lemma holds with ID I as well.

Lemma 10.3.3 There is a constant C10 < 1 such that for all f;g 2 E 0 and � 2
L

p;�
1
.X .T /ISC/ one has

(i) kfgk � C10kf k kgk,

(ii) kf �k � C10kf k k�k,

where we use the L
p;�
1

norm on spinors and the E 0 norm on elements of E 0 .

Proof By routine calculation using Lemma 10.3.2 with ID I 0o one easily proves (ii)
and the inequality

kd.fg/kLp;�

1
� const � kf kE 0kgkE 0 :

Now observe that by definition gˆ0o 2L
p;�
1

, where as before ˆ0o denotes the spinor
field of the reference configuration S 0o . Applying (ii) we then obtain

kfgˆ0okL
p;�

1
� const � kf kE 0 kgˆ0okLp;�

1
� const � kf kE 0 kgkE 0 ;

completing the proof of (i).

Recall from Section 2.4 that the Lie algebra LG0b is the space of imaginary valued
functions in E 0 that vanish on b.

Lemma 10.3.4 There is a constant C11 > 0 such that for � > C11 and all f 2 LG0b
one has

C�1
11 kI

0
of kL

p;�

1
� kIf kLp;�

1
� C11kI 0of kLp;�

1
:

Proof Let  denote the spinor part of yS �S 0o . Then

kf  kLp;�

1
� const � .kf k1k kLp;�

1
Ckdf kL2p;�k k2p/

� const � kIf kLp;�

1
k kLp;�

1
;

and similarly with I 0o instead of I . The lemma now follows from Lemma 10.3.1.
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We are going to use the inverse function theorem a second time, to show that the image
of the smooth map

…W LG0b �B�0 ! C01;

.f;x/ 7! exp.f /.y�.x//

contains a “not too small” neighbourhood of yS . The derivative of … at .0; 0/ is

D….0; 0/W LG0b˚E!L
p;�
1
;

.f;x/ 7! If CDy�.0/x:

To be concrete, let LG0b˚E have the norm k.f;x/k D kf kE 0 CkxkE .

Lemma 10.3.5 D….0; 0/ is a linear homeomorphism.

Proof By Proposition 2.3.1, I�IW LG0b!Lp;� is a Fredholm operator with the same
kernel as I . Now, I is injective on LG0b , because y� maps into C0

1
and therefore

Œ yS jK � 2 V � B�b . Since
W D I�I.LG0b/

is a closed subspace of Lp;� of finite codimension, we can choose a bounded operator

� W Lp;�
!W

such that �jW D I . Set
I#
D �I�W Lp;�

1
!W:

Then I#IW LG0b!W

is an isomorphism. Furthermore,

index.I#
CD‚0. yS//D dim M .T /

b D dim MbC r0;

where “dim” refers to expected dimension (which in the case of Mb is equal to the
actual dimension of G ), and the second equality follows from the addition formula for
the index (see Corollary C.0.1). Consequently,

index.I#
CD�„. yS//D 0:

We now compute

.I#
CD�„. yS// ıD….0; 0/D

�
I#I B

0 I

�
W LG0b˚E!W ˚E; (10.12)
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where BW E!W . The zero in the matrix above is due to the fact that

D�„. yS/If D d

dt

ˇ̌̌̌
0

�„.etf . yS//D 0;

which holds because �„1;�„2 are G0b–invariant, �„3 is G0b–equivariant, and �„. yS/D 0.

Since the right hand side of (10.12) is invertible, it follows that I# CD�„. yS/ is a
surjective Fredholm operator of index 0, hence invertible. Of course, this implies that
D….0; 0/ is also invertible.

Lemma 10.3.6 There is a constant C12 <1 such that for sufficiently large � ,

kD….0; 0/�1
k � C12e�� :

Proof In this proof all unqualified norms are L
p;�
1

norms. It follows from (10.9),
(10.10) and Lemma 10.3.1 that D�„. yS/ is bounded in �;T . Therefore there exists a
constant C <1 such that

kxkE D kD�„. yS/.If CDy�.0/x/k � CkD….0; 0/.f;x/k

for all f 2LG0b and x 2E . From Lemma 10.3.4 and Lemma 10.2.8 we get

C�1
11 kI

0
of k � kIf k
� kD….0; 0/.f;x/kCkDy�.0/xk

� kD….0; 0/.f;x/kCC7e��kxkE

� .1CC C7e�� /kD….0; 0/.f;x/k:

This yields
kf kE 0 CkxkE � const � e��kD….0; 0/.f;x/k:

Lemma 10.3.7 There is a constant C13 <1 such that for sufficiently large � one has

kD2….f;x/k � C13e��

for all f 2LG0b , x 2E such that kf k< 1 and kxk< �0 .

Proof For the purposes of this proof it is convenient to rescale the norm on E 0 so that
we can take C10 D 1 in Lemma 10.3.3.

If f;g 2 E 0 then ef g 2 E 0 , and from Lemma 10.3.3 we obtain

kef gk �

1X
nD0

1

n!
kf ngk � ekf kkgk;
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and similarly with a spinor � 2L
p;�
1

instead of g .

The first two derivatives of expW E 0! 1C E 0 are

D exp.f /g D g exp.f /; D2 exp.f /.g; h/D gh exp.f /;

so kD exp.f /k; kD2 exp.f /k � exp.kf k/:

Let y�1; y�2 be the connection and spinor parts of � , respectively, and define …1;…2

similarly. Then
….f;x/D .y�1.x/� df; ef � y�2.x//:

We regard ….f;x/ as a function of the two variables f;x . Let Dj… denote the
derivative of … with respect to the j –th variable. Similarly for the second derivatives
Dj Dk….

Applying Lemma 10.2.8 and Lemma 10.3.3 we now find that

kD2
2…1.f;x/k D kD

2y�1.x/k � const � e�� ;

kDj Dk…2.f;x/k � const � e�� ; j ; k D 1; 2

for kf k< 1 and kxk< �0 . Since Dj D1…1D 0 for j D 1; 2, the lemma is proved.

In the following, B.xI r/ will denote the open r –ball about x (both in various Banach
spaces and in C0 ).

Lemma 10.3.8 There exist constants r1; r2 > 0 such that for sufficiently large � the
image of … contains the ball of radius r2e�3�� about yS in C0 ; more precisely one has

B. yS I r2e�3�� /�….B.0I r1e�2�� //:

Proof We wish to apply the inverse function theorem Proposition B.0.2 to the map …
restricted to a ball B.0IR1/, where R1 2 .0; �

0� is to be chosen. For the time being let
M;L; � have the same meaning as in that proposition. By Lemma 10.3.7 we can take
M D C13e�� , and by Lemma 10.3.6 we have kL�1k � C12e�� . We need

0� � D kL�1
k
�1
�R1M:

This will hold if
R1 � .C12C13/

�1e�2�� :

When � is large we can take R1 to be the right hand side of this inequality. By
Proposition B.0.2, ….B.0IR1// contains the ball B. yS IR2/ where

R2 D
1

2
R1C�1

12 e��� D
1

2
C�2

12 C�1
13 e�3�� :
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Theorem 10.1.1 is a consequence of Proposition 10.2.1 and the following proposition:

Proposition 10.3.1 Under the assumptions of Theorem 10.1.1, and using the same
notation, there is a kv-pair .K0;V 0/ � .K;V / such that f is injective on q�1. xG/ for
all sufficiently large Tmin .

The proof of Proposition 10.3.1 occupies the remainder of this section.

For any natural number m which is so large that K � XWm , let V 0m be the set of
all ! 2 MBb.XWm/ such that there exist a representative S of ! , and a configuration
xS D . xA; x̂ / over X representing an element of xG , such that

dm.S; xS/ WD

Z
XWm

j xS �S jpCjr xA. xS �S/jp <
1

m
: (10.13)

Note that dm.u.S/;u. xS//D dm.S; xS/

for any gauge transformation u over XWm . In particular, V 0m is T –invariant.

Lemma 10.3.9 Let !n 2 V 0mn
for nD 1; 2; : : : , where mn!1. Then there exists

for each n a representative Sn of !n such that a subsequence of Sn converges locally
in L

p
1

over X to a smooth configuration representing an element of xG .

Proof By assumption there exist for each n a representative Sn of !n and a configu-
ration xSn over X representing an element of xG such that

dmn
.Sn; xSn/ <

1

mn
: (10.14)

After passing to a subsequence we may assume (since xG is compact) that ŒxSn� converges
in xG to some element Œ xS �, and we can choose xS smooth. Since Mb DM �

b , the local
slice theorem guarantees that for large n we can find un 2 Gb such that xSn D un.xSn/

satisfies
k xSn�

xSkLp;w

1
! 0:

Set Sn D un.Sn/, which is again a representative of !n . Let xA; xAn be the connection
parts of xS ; xSn , respectively. Then (10.14) implies that xSn �Sn! 0 and r xAn

. xSn �

Sn/! 0 locally in Lp over X , hence also Sn!
xS locally in Lp over X . Now

r xA.Sn�
xS/Dr xAn

.Sn�
xSn/Cr xA. xSn�

xS/C . xA� xAn/.Sn�
xSn/;

and each of the three terms on the right hand side converges to 0 locally in Lp over
X (the third term because of the continuous multiplication L

p
1
�Lp!Lp in R4 for

p > 4). Hence Sn!
xS locally in L

p
1

over X .

Geometry & Topology Monographs, Volume 15 (2008)



120 10 The gluing theorem

Corollary 10.3.1 For sufficiently large n one has that RK .V
0

n/� V .

Lemma 10.3.10 Let !n 2 V 0mn
for nD 1; 2; : : : , where mn!1. Suppose q.!njK /

converges in Mb to an element g as n!1. Then g 2 xG , and there exists for each n

a representative Sn of !n such that the sequence Sn converges locally in L
p
1

over X

to a smooth configuration representing g .

Proof Let Sn; xSn be as in the proof of Lemma 10.3.9. First suppose that ŒxSn� converges
in xG to some element Œ xS �, where xS is smooth. Choosing Sn; xSn as in that proof we
find again that Sn!

xS locally in L
p
1

over X , hence

g D lim
n

q.SnjK /D q. xS jK /D Œ xS �:

We now turn to the general case when ŒxSn� is not assumed to converge. Because xG is
compact, every subsequence of ŒxSn� has a convergent subsequence whose limit must
be g by the above argument. Hence ŒxSn�! g .

Suppose we are given a sequence fmngnD1;2;::: of natural numbers tending to infinity,
and for each n an r –tuple T .n/ of real numbers such that

Tmin.n/ WDmin
j

Tj .n/ >mn:

Define qn and fn as in Theorem 10.1.1, with K0 DXWmn
and V 0 D V 0mn

.

Lemma 10.3.11 For nD 1; 2; : : : suppose Sn is a smooth configuration over X .T .n//

representing an element !n 2 q�1
n . xG/, and such that

fn.!n/! .!0; z/ 2 xG �U.1/r0

as n!1. There exists a constant C14 <1 such that for sufficiently large � the
following holds for sufficiently large n. Let the map y� D y�n be defined as above and
set ySn D

y�n.0/. Then there exists a smooth gauge transformation un 2 G0b such that

kun.Sn/� ySnkLp;�

1
� C14e.3���/� :

Note: This constant C14 depends on .!0; z/ but not on the sequence Sn .

Before proving the lemma, we will use it to show that fn is injective on q�1
n . xG/ for some

n. This will prove Proposition 10.3.1. Suppose !n; !
0
n 2q�1

n . xG/ and fn.!n/D fn.!
0
n/,

nD 1; 2; : : : . After passing to a subsequence we may assume that fn.!n/ converges
to some point .!0; z/ 2 xG �U.1/r0 . Combining Lemma 10.3.8, Lemma 10.3.11 and
the assumption 6� < � we conclude that if � is sufficiently large then for sufficiently
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large n we can represent !n and !0n by configurations y�.xn/ and y�.x0n/, respectively,
where xn;x

0
n 2 B�0 . Now recall that �„ ı y� D I , and that the components �„1;�„2 are

G0b–invariant whereas �„3 is the Seiberg–Witten map. Comparing the definitions of fn

and �„ we conclude that

xn D
�„.y�.xn/D �„.y�.x0n/D x0n;

hence !n D !
0
n for large n. To complete the proof of Proposition 10.3.1 it therefore

only remains to prove Lemma 10.3.11.

Proof of Lemma 10.3.11 In this proof, constants will be independent of the sequence
Sn (as well as of � as before).

By Lemma 10.3.10 we can find for each n an L
p
2;loc gauge transformation vn over X

with vnjb D 1 such that S 0n D vn.Sn/ converges locally in L
p
1

over X to a smooth
configuration S 0 representing !0 . A moment’s thought shows that we can choose the
vn smooth, and we can clearly arrange that S 0 D S0 . Then for any t � 0 we have

lim sup
n
kS 0n�

ySnkLp;�

1
.XWt / D lim sup

n
kS0�

ySnkLp;�

1
.XWt / � const � e.2���/� (10.15)

when � is so large that Lemma 10.3.1 applies.

For t � 0 and any smooth configurations S over XWt consider the functional

E.S; t/D

rX
jD1

�j

�
#.S jftg�Yj /C#.S jftg�.�Yj //

�
C

r 0X
jD1

�0j
�
#.S jftg�Y 0

j
/�#.˛0j /

�
;

where in this formula ftg � .˙Yj / has the boundary orientation inherited from XWt .
(Recall that the Chern–Simons–Dirac functional # changes sign when the orientation
of the 3–manifold in question is reversed.) The assumption on �j ; �

0
j and z�j ; z�

0
j in

Theorem 10.1.1 implies that E.S; t/ depends only on the gauge equivalence class of
S . Since # is a smooth function on the L2

1=2
configuration space by Lemma 3.2.1,

we obtain
E.Sn; t/DE.S 0n; t/!E.S0; t/

as n!1. By our exponential decay results (see the proof of Theorem 6.3.1),

E.S0; t/ < const � e�2�t for t � 0.

It follows that
E.Sn; t/ < const � e�2�t for n>N.t/
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for some positive function N . By assumption the perturbation parameters Ep; Ep0 are
admissible, hence there is a constant C <1 such that when Tmin.mn/>C , each of the
.r C r 0/ summands appearing in the definition of E.Sn; t/ is nonnegative. Explicitly,
this yields

0� #.Snjf�Tj .n/Ctg�Yj /�#.SnjfTj .n/�tg�Yj / < const � e�2�t ;

0� #.Snjftg�Y 0
j
/�#.˛0j / < const � e�2�t ;

where the first line holds for 0� t � Tj .n/ and j D 1; : : : ; r , the second line for t � 0

and j D 1; : : : ; r 0 , and in both cases we assume Tmin.n/ > C and n>N.t/.

In the following we will ignore the ends RC�Y 0j 0 of X , ie we will pretend that X # is
compact. If ˛0j 0 is irreducible then the argument for dealing with the end RC �Y 0j 0 is
completely analogous to the one given below for a neck Œ�Tj ;Tj ��Yj , while if ˛0j 0 is
reducible it is simpler. (Compare the proof of Proposition 6.4.1 (ii).)

For the remainder of the proof of this lemma we will focus on one particular neck
Œ�Tj .n/;Tj .n/��Yj where 1� j � r . To simplify notation we will therefore mostly
omit j from notation and write T .n/;Y; ˛ etc instead of Tj .n/;Yj ; j̨ .

For 0� t � T .n/ set
Bt D Œ�T .n/C t;T .n/� t ��Y;

regarded as a subset of X .T .n// . By the above discussion there is a constant t1 > 0

such that when n is sufficiently large, Sn will restrict to a genuine monopole over the
band Bt1C3 by Lemmas 4.1.1, 4.2.1 and 4.2.2 and will have small enough energy over
this band for Theorem 6.3.2 to apply. That theorem then provides a smooth

zvnW Bt1
! U.1/

such that S 00n D zvn.SnjBt1
/ is in temporal gauge and

kS 00n �˛kLp;�

1
.Bt / � const � e.���/t ; t � t1:

Writing S 00n �
ySn D .S

00
n �˛/C .˛�

zS/C . zS � ySn/

we get

lim sup
n!1

kS 00n �
ySnkLp;�

1
.Bt / � const �

�
e.2���/� C e.���/t

�
(10.16)

when t � t1 and � is so large that Lemma 10.3.1 applies.

To complete the proof of the lemma we interpolate between vn and zvn in the overlap
region O� DXW� \B��1 . (This requires � � t1C1.) The choice of this overlap region
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is somewhat arbitrary but simplifies the exposition. Define

wn D zvnv
�1
n W O� ! U.1/:

Then wn.S
0
n/D S 00n on O� .

Set x˙ D  .˙.T � �//, where  D j is the path introduced in the beginning of this
chapter. If ˛ is reducible then by multiplying each zvn by a constant and redefining
wn;S

00
n accordingly we can arrange that wn.x

C/D 1 for all n. These changes have
no effect on the estimates above.

Lemma 10.3.11 is a consequence of the estimates (10.15)–(10.16) together with the
following sublemma (see the proof of Proposition 6.4.1 (ii).)

Sublemma 10.3.1 There is a constant C15 <1 such that if � � C15 then

lim sup
n!1

kwn� 1kLp

2
.O� / � C15e.2���/� :

Proof of sublemma If ˛ is irreducible then the sublemma follows from inequali-
ties (10.15), (10.16) and Lemmas 6.4.2, 6.4.4. (In this case the sublemma holds with
C15e.���/� as upper bound.)

Now suppose ˛ is reducible. We will show that

lim sup
n!1

jwn.x
�/� 1j � const � e.2���/� (10.17)

for large � . Granted this, we can prove the sublemma by applying Lemma 6.4.2 and
Lemma 6.4.3 (ii) to each component of O� .

In the remainder of the proof of the sublemma we will omit n from subscripts. To
prove (10.17), define intervals

J0 D Œ�T � 1;�T C ��; J1 D Œ�T C �;T � ��; J2 D ŒT � �;T C 1�

and for k D 0; 1; 2 set  .k/ D  jJk
. Let Hol.k/ denote holonomy along  .k/ in the

same sense as (10.1), ie Hol.k/ is the result of replacing the domain of integration Ij

in that formula with Jk . Define ı.k/ 2C by

Hol.k/. yS/D Hol.k/.S 0/.1C ı.k//; k D 0; 2;

Hol.1/. yS/D Hol.1/.S 00/.1C ı.1//

where as usual we mean holonomy with respect to the connection parts of the configu-
rations. For large � the estimates (10.15) and (10.16) give

jı.k/j � const � e.2���/�
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when n is sufficiently large.

Writing hD
Q2

kD0.1C ı
.k// we have

z D Hol. yS/D
2Y

kD0

Hol.k/. yS/D h Hol.0/.S 0/Hol.1/.S 00/Hol.2/.S 0/:

Now, by the definition of holonomy,

Hol.1/.S 00/D
zv.xC/

zv.x�/
Hol.1/.S/;

and there are similar formulas for Hol.k/.S 0/. Because w.xC/D 1 we obtain

z D h Hol.S/ w.x�/�1:

Setting aD Hol.S/z�1 we get

w.x�/� 1D ah� 1D .a� 1/hC h� 1:

Since by assumption a! 1 as n!1, we have

jw.x�/� 1j � const �
�
ja� 1jC

X
k

jı.k/j

�
� const � e.2���/�

for large n, proving the sublemma and hence also Lemma 10.3.11.

This completes the proof of Proposition 10.3.1 and thus also the proof of Theorem 10.1.1.

10.4 Existence of maps q

Let G �Mb be as in Section 10.1. In this section we will show that there is always a
map q as in (10.3) provided T acts freely on xG and K is sufficiently large. It clearly
suffices to prove the same with B�b .K/ in place of MB�b .K/.

Let B;M denote the configuration and moduli spaces over X with the same asymptotic
limits as Bb;Mb , but using the full group of gauge transformations G rather than Gb .

Because Gb acts freely on C , an element in Bb has trivial stabilizer in T if and only if
its image in B is irreducible, ie when its spinor field does not vanish identically on any
component of X .

Throughout this section, K will be a compact codimension 0 submanifold of X which
contains b and intersects every component of X .
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Proposition 10.4.1 If T acts freely on xG then for sufficiently large K there exist a
T –invariant open neighbourhood V �B�b .K/ of RK . xG/ and a T –equivariant smooth
map qW V !Mb such that q.!jK /D ! for all ! 2G .

We first prove three lemmas. Let H �M � be the image of G . Because T is compact,
the projection Bb! B is a closed map and therefore maps xG to xH . Let H0 �M �

be any precompact open subset which contains xH and whose closure consists only of
regular points.

Lemma 10.4.1 If K is sufficiently large then RK W M
� ! B�.K/ restricts to an

immersion on an open neighbourhood of xH0 .

By “immersion” we mean the same as in Lang [32]. Since a finite-dimensional subspace
of a Banach space is always complemented, the condition in our case is simply that the
derivative of the map be injective at every point.

Proof Fix ! D ŒS � 2 xH0 . We will show that RK is an immersion at ! (hence in a
neighbourhood of ! ) when K is large enough. Since xH0 is compact, this will prove
the lemma.

Let W � L
p;w
1

be a linear subspace such that the derivative at S of the projection
SCW !B� is a linear isomorphism onto the tangent space of M at ! . Let ı denote
that derivative. For t � 0 so large that b � XWt let ıt be the derivative at S of the
natural map S CW ! B�.XWt /. We claim that ıt is injective for t � 0. For suppose
fwng is a sequence in W such that kwnkLp;w

1
D 1 and ıtn

.wn/D 0 for each n, where
tn!1. Set Kn DXWtn

. Then

wnjKn
D Iˆfn

for some fn2LG.Kn/, where ˆ is the spinor field of S . After passing to a subsequence
we may assume that wn converges in L

p;w
1

to some w 2 W (since W is finite-
dimensional). By Lemma 2.2.1 there exists for each n a constant Cn <1 such that
for all h 2LG.Kn/ one has

khkLp

2
� CnkIˆhkLp

1
:

It follows that fn converges in L
p
2

over compact subsets of X to some function f .
We obviously have Iˆf D w , hence f 2LG and ı.w/D 0. But this is impossible,
since w has norm 1. This proves the lemma.

Lemma 10.4.2 If K is sufficiently large then the restriction map H0! B�.K/ is a
smooth embedding.
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Proof Because of Lemma 10.4.1 it suffices to show that RK is injective on xH0 when
K is large.

Suppose !n; !
0
n 2
xH0 restrict to the same element in B.XWtn

/ for nD 1; 2; : : : , where
tn ! 1. Since xH0 is compact we may assume, after passing to a subsequence,
that !n; !

0
n converge in xH0 to !;!0 respectively. By the local slice theorem we

can find representatives Sn D .An; ˆn/, S 0n D .A0n; ˆ
0
n/ for !n , !0n respectively,

such that the sequence fSng converges in C to some configuration S , and similarly
S 0n! S 0 . By assumption, S 0n D un.Sn/ over XWtn

for some un 2 L
p
2

. In particular,
dun D un � .An�A0n/, so the sequence fung is locally bounded in L

p
2

. After passing
to a subsequence we may assume that fung converges weakly in L

p
2

over compact
subsets of X to some gauge transformation u. Then u.S/ D S 0 . By Proposition
2.4.1 (iii) we have u 2 G , hence ! D !0 . When n is large then xH0! B.XWtn

/ will be
injective in a neighbourhood of ! by Lemma 10.4.1, hence !nD !

0
n for n sufficiently

large.

For the present purposes, we will call a Banach space E admissible, if x 7! kxkr

is a smooth function on E for some r > 0. (The examples we have in mind are L
p

k

Sobolev spaces where p is an even integer.)

Lemma 10.4.3 Let B be any second countable (smooth) Banach manifold modelled
on an admissible Banach space. Then any submanifold Z of B possesses a tubular
neighbourhood (in the sense of [32]).

Proof According to [32, p 96], if a Banach manifold admits partitions of unity then
any closed submanifold possesses a tubular neighborhood. Now observe that Z is
by definition locally closed, hence C D xZ n Z is closed in B . But then Z is a
closed submanifold of B nC . In general, any second countable, regular T1 –space is
metrizable, hence paracompact (see Kelley [29]). Because B nC is modelled on an
admissible Banach space, the argument in [32] carries over to show that B nC admits
partitions of unity. Therefore, Z possesses a tubular neighbourhood in B nC , which
also serves as a tubular neighbourhood of Z in B .

Proof of Proposition 10.4.1 Choose K so large that H0! B�.K/ is an embedding,
with image Z , say. Let G0 denote the preimage of H0 in Mb .

Let B��b .K/ be the open subset of Bb.K/ consisting of those elements whose spinor
does not vanish identically on any component of K . Then the projection � W B��b .K/!

B�.K/ is a principal T –bundle, and restriction to K defines a diffeomorphism

�W G0! ��1Z:
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By Lemma 10.4.3 there is an open neighbourhood U of H0 in B�.K/ and a smooth
map

�W U � Œ0; 1�! B�.K/
such that �.x; 1/ 2Z for all x , and �.x; t/D x if x 2Z or t D 0. (In other words,
� is a strong deformation retraction of U to Z .) After choosing a connection in the
T –bundle B��b .K/ we can then construct a T –invariant smooth retraction

z�W ��1.U /! ��1.Z/

by means of holonomy along the paths t 7! �.t;x/. Now set

q D ��1
ı z�W ��1U !G0:
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CHAPTER 11

Applications

11.1 A model application

In this section we will show in a model case how the gluing theorem may be applied
in combination with the compactness results of Part I. Here we only consider gluing
along irreducible critical points. Examples of gluing along reducible critical points
will be given in Part III and in [23]. The main result of this section, Theorem 11.1.1,
encompasses both the simplest gluing formulae for Seiberg–Witten invariants (in
situations where reducibles are not encountered) and, as we will see in the next section,
the formula d ı d D 0 for the standard Floer differential.

Recall that the Seiberg–Witten invariant of a closed spinc 4–manifold (with bC > 1)
can be defined as the number of points (counted with sign) in the zero-set of a generic
section of a certain vector bundle over the moduli space. To obtain a gluing formula,
this vector bundle and its section should be expressed as the pullback of a vector bundle
E! MB�.K/ with section s , where K � X . In the proof of Theorem 11.1.1 below
we will see how the section s gives rise in a natural way to a map q as in Theorem
10.1.1. Thus, the section s is being incorporated into the equations that the gluing map
is required to solve. (We owe this idea to [14, p 99].)

We will now describe the set-up for our model application. Let X be as in Section 1.4
with r D 1 and r 0 � 0, and set Y D Y1 . In other words, we will be gluing one single
pair of ends RC � .˙Y / of X , but X may have other ends RC �Y 0j not involved in
the gluing. We assume X # is connected, which means that X has one or two connected
components. For j D 1; : : : ; r 0 fix a critical point ˛0j 2 zRY 0

j
. Let � be a 2–form and

p a perturbation parameter for Y , and let �0j ; p
0
j be similar data for Y 0j . Let each p; p0j

129
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have small C 1 norm. To simplify notation we write, for ˛; ˇ 2 zRY ,

M˛;ˇ DM.X I˛; ˇ; Ę0/; M .T /
DM.X .T /

I Ę
0/:

We make the following assumptions:

� (Compactness) At least one of the conditions (B1), (B2) of Section 1.4 holds
for some �j ; �

0
j > 0,

� (Regularity) All moduli spaces over R�Y , R�Y 0j and X contain only regular
points, and

� (No reducibles) Given ˛1; ˛2 2
zRY and ˛0j 2 zRY 0

j
, if there exist a broken

gradient line over R�Y from ˛1 to ˛2 and for each j a broken gradient line
over R� Y 0j from ˛0j to ˇ0j then M.X I˛1; ˛2; Ę

0/ contains no reducible. (It
then follows by compactness that M .T / contains no reducible when T is large.)

The regularity condition is stronger than necessary, because there are energy constraints
on the moduli spaces that one may encounter in the situation to be considered, but we
will not elaborate on this here.

Note that we have so far only developed a full transversality theory in the case when
Y and each Y 0j are rational homology spheres; in the remaining cases the discussion
here is therefore somewhat theoretical at this time.

Let K�X be a compact codimension 0 submanifold which intersects every component
of X . When T � 0 then K may also be regarded as a submanifold of X .T / , and we
have restriction maps

R˛;ˇW M
�
˛;ˇ!

MB�.K/; R0W M .T /
! MB�.K/:

These take values in MB�.K/ rather than just in MB.K/ because of the unique continuation
property of harmonic spinors.

Suppose E! MB�.K/ is an oriented smooth real vector bundle whose rank d is equal
to the (expected) dimension of M .T / . Choose a smooth section s of E such that the
pullback section s˛;ˇ DR�

˛;ˇ
s is transverse to the zero-section of the pullback bundle

E˛;ˇ DR�
˛;ˇ

E over M �
˛;ˇ

for each pair ˛; ˇ . (Here the Sobolev exponent p > 4

should be an even integer to ensure the existence of smooth partitions of unity.) Set
s0 D .R0/�s , which is a section of E0 D .R0/�E . We write M˛ DM˛;˛ DM �

˛;˛ and
s˛ D s˛;˛ etc. Let �M ˛ , �M .T / denote the zero-sets of s˛ , s0 respectively. By index
theory we have

0D dim �M .T /
D dim �M ˛C n˛;

where n˛ D 0 if ˛ is irreducible and n˛ D 1 otherwise. Thus, �M ˛ is empty if ˛ is
reducible.
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Lemma 11.1.1 If !n 2
�M .T .n// for nD 1; 2; : : : , where T .n/!1, then a subse-

quence of !n chain-converges to an element of �M ˛ for some ˛ 2 zR�
Y

. Moreover,
if !n D ŒSn� chain-converges to ŒS � 2 �M ˛ then there exists for each n a smooth
unW X

.T .n// ! U.1/ whose restriction to each end RC � Y 0j is null-homotopic and
such that the sequence un.Sn/ c-converges over X to S .

Proof The statement of the first sentence follows from Theorem 1.4.1 by dimension
counting. Such maps un exist in general for chain-convergent sequences when the !n

all have the same asymptotic limits over the ends RC �Y 0j .

Let J �H 1.Y IZ/ be the subgroup consisting of elements of the form zjY where z

is an element of H 1.X #IZ/ satisfying zjY 0
j
D 0 for j D 1; : : : ; r 0 . This group J acts

on the disjoint union �M u
D

[
˛2 zR�

Y

�M ˛;

permuting the sets in the union.

Lemma 11.1.2 The quotient �M D �M u=J is a finite set.

Proof By Theorem 1.3.1 any sequence !n 2
�M ˛n

, n D 1; 2; : : : has a chain-
convergent subsequence, and for dimensional reasons the limit (well-defined up to
gauge equivalence) must lie in some moduli space �M ˇ . Furthermore, if !n chain-
converges to an element in �M ˇ then �M ˛n

is contained in the orbit J � �M ˇ for n� 0.
Therefore, each �M ˛ is a finite set, and only finitely many orbits J � �M ˛ are nonempty.
This is equivalent to the statement of the lemma.

Note that J is the largest subgroup of H 1.Y IZ/ which acts on �M u in a natural way.
On the other hand, if �M u is nonempty then, since H 1.Y IZ/ acts freely on zRY , only
subgroups J 0 � J of finite index have the property that �M u=J 0 is finite.

Lemma 11.1.3 There is a compact codimension 0 submanifold K0 � X such that
the restriction map �M ! B.K0/ is injective.

Proof Let ŒSj � 2 �M
ǰ

, j D 1; 2, where each Sj is in temporal gauge over the ends
of X (and therefore decays exponentially). Suppose there exists a sequence of smooth
gauge transformations unW XWtn

! U.1/ where tn!1, such that un.S1/D S2 over
XWtn

. By passing to a subsequence we can arrange that un c-converges over X to
some gauge transformation u with u.S1/D S2 . If t� 0 then ujftg�.˙Y / will both be
homotopic to a smooth vW Y ! U.1/ with v.˛1/D ˛2 . Hence �M ˛1

; �M ˛2
lie in the

same J –orbit, and S1;S2 represent the same element of �M by Proposition 2.4.1 (iii).

Thus we can take K0 DXWt for t � 0.
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Now fix K0 as in Lemma 11.1.3 and with K �K0 . Let fb1; : : : ; bmg be the image
of the restriction map RK0

W �M ! MB.K0/. Choose disjoint open neighbourhoods
Wj �

MB.K0/ of the points bj . If T � 0 then

RK0
. �M .T //�

S
j Wj

by Lemma 11.1.1. For such T we get a natural map

gW �M .T /
! �M :

It is clear that if g0 is the map corresponding to a different choice of K0 and neigh-
bourhoods Wj then g D g0 for T sufficiently large.

Theorem 11.1.1 For sufficiently large T the following hold:

(i) Every element of �M .T / is a regular point in M .T / and a regular zero of s0 .

(ii) g is a bijection.

Proof If �M is empty then, by Lemma 11.1.1, �M .T / is empty as well for T � 0,
and there is nothing left to prove.

We now fix bj and for the remainder of the proof omit j from notation. (Thus b D bj ,
W DWj etc.) We will show that for T � 0 the set

yB.T / D f! 2 �M .T /
W !jK0

2W g

consists of precisely one element, and that this element is regular in the sense of (i).
This will prove the theorem.

By definition, b is the restriction of some !0 2
�M ˛ . Choose an open neighbourhood

V � MB�.K/ of bjK and a smooth map

� W EjV !Rd

which restricts to a linear isomorphism on every fibre. Choose an open neighbourhood
V0 �W of b such that RK .V0/ � V . Let GC �M˛ be a precompact open neigh-
bourhood of !0 such that RK0

. xGC/� V0 . The assumption that !0 be a regular zero
of s˛ means that the composite map

GC
RK
! V

�ıs
��!Rd

is a local diffeomorphism at !0 . We can then find an injective smooth map

pW Rd
!M˛
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such that pı�ısıRK D Id in some open neighbourhood G�GC of !0 . In particular,
p�1.!0/D f0g and p is a local diffeomorphism at 0. Set

q D p ı� ı sW V !M˛:

By Theorem 10.1.1 there is a kv-pair .K0;V 0/ � .K0;V0/ such that if T � 0 then
q�1G consists only of regular monopoles and

fD q ıRK W q�1G!G

is a diffeomorphism. By Lemma 11.1.1 one has

yB.T / D q�1G \ .s0/�1.0/D f�1.!0/

for T � 0. For such T the set yB.T / consists of precisely one point, and this point is
regular in the sense of (i).

11.2 The Floer differential

Consider the situation of Section 1.2. Suppose a perturbation parameter p of small C 1

norm has been chosen for which all moduli spaces M.˛1; ˛2/ over R�Y are regular.
(This is possible at least when Y is a rational homology sphere, by Proposition 8.2.3.)
Fix ˛1; ˛2 2

zR�
Y

with
dim M.˛1; ˛2/D 2:

We will show that the disjoint union

LM WD
[

ˇ2 zR�
Y
nf˛1;˛2g

LM .˛1; ˇ/� LM .ˇ; ˛2/

is the boundary of a compact 1–manifold. (In other words, the standard Floer differential
d satisfies d ıd D 0 at least with Z=2 coefficients.) To this end we will apply Theorem
11.1.1 to the case when X consists of two copies of R�Y , say

X DR�Y � f1; 2g;

and we glue RC � Y � f1g with R� � Y � f2g. Thus r D 1; r 0 D 2. We take
K DK1 [K2 , where Kj D Œ0; 1�� Y � fj g. In this case, MB�.K/ is the quotient of
C�.K/ by the null-homotopic gauge transformations. The bundle E over MB�.K/ will
be the product bundle with fibre R2 . To define the section s of E , choose ı1; ı2 > 0

such that # has no critical value in the set

.#.˛2/; #.˛2/C ı2�[ Œ#.˛1/� ı1; #.˛1//:
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This is possible because we assume Condition (O1) of Section 1.2. For any configuration
S over Œ0; 1��Y set

sj .S/D

Z 1

0

#.St / dt �#. j̨ /� .�1/jıj :

Note sj .S/ does not change if we apply a null-homotopic gauge transformation to S .

A configuration over K consists of a pair .S1;S2/ of configurations over Œ0; 1��Y .
Define a smooth function sW MB�.K/!R2 (ie a section of E ) by

s.ŒS1�; ŒS2�/D .s1.S1/; s2.S2//:

If ŒS � belongs to some moduli space M.ˇ1; ˇ2/ over R� Y with ˇ1 ¤ ˇ2 in zRY

then d
dt
#.St / < 0 for all t by choice of p. Since J D 0, the natural map �M ! LM is

therefore a bijection.

Let s0j be the pullback of sj to M .T / . Here M .T / is defined using Equation (3.7)
with qD 0, and so can be identified with M.˛1; ˛2/. By Theorem 1.3.1 the set

Z.T /
D f! 2M .T /

W s01.!/D 0; s02.!/� 0g

is compact for all T > 0. If T � 0 then, by Theorem 11.1.1, Z.T / is a smooth
submanifold of M .T / , and the composition of the two bijections

@Z.T /
D �M .T / g

! �M ! LM

yields the desired identification of LM with the boundary of a compact 1–manifold.
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CHAPTER 12

Orientations

In this chapter we discuss orientations of moduli spaces and explain the sense in which
the ungluing map of Theorem 10.1.1 is orientation preserving (after reordering the
factors in the target space).

We will adopt the approach to orientations of Fredholm operators (and families of such)
introduced by Benevieri–Furi [8], which was brought to our attention by Shuguang
Wang [51]. This approach is more economical than the traditional one using determinant
line bundles in the sense that it produces the orientation double cover directly. It also
fits well in with gluing theory.

After reviewing Benevieri–Furi orientations in Section 12.1 we study orientations
of unframed and (multi)framed moduli spaces and the relationship between these
in Section 12.2. The framings require some extra care because of reducibles. The
orientation cover �! B D B.X I Ę/ is defined by the family of Fredholm operators
I�

S
CD‚S parametrized by S 2 C (cf [14, p 130]). Any section of � (which is always

trivial; see Proposition 12.4.1 below) defines an orientation of the regular part of the
moduli space M �

b for any finite, oriented subset b� X . If all limits j̨ are reducible
then any homology orientation of X determines a section of �; see Proposition 12.2.1
below. To relate ungluing maps to orientations we show that, in the notation of Section
10.2, any section of �! B determines a section of the orientation cover �0 ! B0 .
(Here B;B0 are configuration spaces over X;X .T / , respectively.) This is explained in
Section 12.4 after some preparation in Section 12.3 concerning framings. With this
background material in place, the result on ungluing maps, Theorem 12.4.1, is an easy
consequence of earlier estimates. Section 12.5 addresses the question of whether gluing
of orientations in the above sense is compatible with gluing of homology orientations
in the case when all limits j̨ ; ˛

0
j are reducible.
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136 12 Orientations

12.1 Benevieri–Furi orientations

We first review Benevieri–Furi’s concept of orientability of a Fredholm operator
LW E! F of index 0 between real Banach spaces. A corrector of L is a bounded
operator AW E!F with finite dimensional image such that LCA is an isomorphism.
We introduce the following equivalence relation in the set C.L/ of correctors of L.
Given A;B 2 C.L/ set

P DLCA; QDLCB:

Let F0 be any finite dimensional subspace of F containing the image of A � B .
Then QP�1 is an automorphism of F which maps F0 into itself. We call A and B

equivalent if the map F0! F0 induced by QP�1 is orientation preserving (which
holds by convention if F0 D 0). This condition is independent of F0 . The set C.L/ is
now partitioned into two equivalence classes (unless E D F D 0), and we define an
orientation of L to be a choice of an equivalence class, the elements of which are then
called positive correctors. A corrector which is not positive is called negative. Given
� D˙1, a corrector is called an �–corrector if it is positive or negative according to
the sign of � .

Benevieri–Furi consider Q�1P instead of QP�1 , but it is easy to see that this yields
the same equivalence relation.

Note that the equivalence classes are open and closed subsets of C.L/ with respect
to the operator norm. To see this, observe that C.L/ is open among the bounded
operators E! F of finite rank. Therefore, if B is a corrector sufficiently close to
a given corrector A, then At D .1� t/AC tB is a corrector for 0 � t � 1. Since
im.At �A/� im.A/C im.B/, it follows by continuity that the At are all equivalent.
In particular, A and B are equivalent.

If LW E ! F is a Fredholm operator of arbitrary index then for any nonnegative
integers m; n we can form the operator

Lm;nW E˚Rm
! F ˚Rn; .x; 0/ 7! .Lx; 0/: (12.1)

If L has index 0 then for any m there is a canonical correspondence between orienta-
tions of L and orientations of Lm;m such that if A is a positive corrector of L then
A˚ IRm is a positive corrector of Lm;m . If L has index k ¤ 0 then we define an
orientation of L to be an orientation (in the above sense) of L0;k (if k > 0) or L�k;0

(if k < 0).

Note that if A is a corrector of Lm;n where n�mD index.L/, and C an automorphism
of Rm then A is equivalent to A ı .IE ˚C / if and only if det.C / > 0, and similarly
for automorphisms of Rn .
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12.1 Benevieri–Furi orientations 137

A complex linear Fredholm operator carries a canonical orientation (in this case we
replace R by C in (12.1) and the orientation is then given by any complex linear
corrector).

We will now associate to any pair of oriented Fredholm operators Lj W Ej ! Fj ,
j D 1; 2 an orientation of their direct sum

L1˚L2W E1˚E2! F1˚F2:

Let the orientation of Lj be given by a corrector Aj of .Lj /mj ;nj , where nj �mj D

index.Lj /. Then we decree that

E1˚E2˚Rm1 ˚Rm2 ! F1˚F2˚Rn1 ˚Rn2 ;

.x1;x2;y1;y2/ 7!A1.x1;y1/CA2.x2;y2/

is a .�1/m1�ind.L2/ corrector of .L1˚L2/m1Cm2;n1Cn2
. The sign is chosen so that

the induced orientation of L1 ˚ L2 is independent of the choice of mj ; nj . It is
easily verified that under the natural identification of the operators L1 ˚ L2 and
L2˚L1 their orientations differ by the sign .�1/ind.L1/ind.L2/ . If L3 is a third oriented
Fredholm operator then the natural identification of the operators .L1˚L2/˚L3 and
L1˚ .L2˚L3/ respects orientations.

We now consider families of Fredholm operators. Let E;F be Banach vector bundles
over a topological space T , with fibres Et ;Ft over t 2 T . (We require that these
satisfy the analogues of the vector bundle axioms VB 1–3 in Lang [32, pp 41-2] in the
topological category.) Let L.E;F/ denote the Banach vector bundle over T whose
fibre over t is the Banach space of bounded operators Et ! Ft . Suppose h is a
(continuous) section of L.E;F/ such that h.t/W Et ! Ft is a Fredholm operator of
index 0 for every t 2 T . If Et ¤ 0 for every t then there is a natural double cover
zh! T , the orientation cover of h, whose fibre over t consists of the two orientations
of h.t/. If U � T is an open subset and a a section of L.E;F/ such that a.t/ has
finite rank for all t 2 U then a defines a trivialization of zh over the open set of those
t 2 U for which h.t/C a.t/ is an isomorphism. An orientation of h is by definition a
section of zh. If instead each h.t/ has index k ¤ 0 then we define the orientation cover
zh and orientations of h by first turning h into a family of index 0 operators as above
and then applying the definitions just given for such families.

If h1.t/; h2.t/ are two families of Fredholm operators parametrized by t 2 T , and
h.t/D h1.t/˚ h2.t/, then the above direct sum construction of orientations yields an
isomorphism of Z=2–bundles over T ,

zh1˝
zh2
�
! zh; (12.2)
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138 12 Orientations

where ˝ refers to the operation on Z=2–bundles which corresponds to tensor product
of the associated real line bundles.

Wang [51] established a 1–1 correspondence between orientations of any family of
index 0 Fredholm operators (between fixed Banach spaces) and orientations of its
determinant line bundle. While we will make no use of determinant line bundles in this
book, we need to fix our convention for passing between orientations of a Fredholm
operator LW E! F of arbitrary index and orientations of its determinant line,

det.L/Dƒmax ker.L/˝ƒmax coker.L/�:

(This will only be used to decide how a homology orientation of a 4–manifold induces
orientations of its moduli spaces.) Set nD dim ker.L/ and mD dim coker.L/. Choose
bounded operators A1W E!Rn and A2W R

m! F which induce isomorphisms

zA1W ker.L/!Rn; zA2W R
m
! coker.L/:

Then AD

�
0 A2

A1 0

�
is a corrector of Lm;n which also defines an isomorphism JAW det.L/!R. Moreover,
two such correctors A;B are equivalent if and only if JAJ�1

B
preserves orientation. (To

see this, note that after altering Aj ;Bj by automorphisms of Rm or Rn as appropriate
one can assume that zAj D

zBj , in which case .1� t/AC tB is a corrector of Lm;n

for every t 2R.) This provides a 1–1 correspondence between orientations of L and
orientations of det.L/.

12.2 Orientations of moduli spaces

In the situation of Section 3.4 set

S DL
p;w
1

.X I iƒ1
˚SC/; F1 DLp;w.X I iR/; F2 DLp;w.X I iƒC˚S�/

(12.3)
and consider the family of Fredholm operators

ıS D I�ˆCD‚S W S! F WD F1˚F2

parametrized by S D .A; ˆ/ 2 C.X I Ę/. This family is gauge equivariant in the sense
that

ıu.S/.us/D uıS .s/

for any s 2 L
p;w
1

, u 2 G , where as usual u acts trivially on differential forms and
by complex multiplication on spinors. Thus, if C is a corrector of .ıS /`;m , where
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12.2 Orientations of moduli spaces 139

m� `D ind.ıS /, then uCu�1 is a corrector of .ıu.S//`;m . This defines a continuous
action of G on the orientation cover zı such that the projection zı ! C.X I Ę/ is G–
equivariant. The local slice theorem and Lemma 12.2.1 below then show that zı descends
to a double cover �! B.X I Ę/.

(Note that in the situation of Section 2.4, the local slice theorem for the group G at a
reducible point .A; 0/ 2 C is easily deduced from the version of Proposition 2.4.2 with
b consisting of one point from each component of X where ˆ vanishes a.e.)

Lemma 12.2.1 Let the topological group G act continuously on the spaces Z; zZ ,
and let � W zZ ! Z be a G–equivariant covering map. Suppose any point in Z has
arbitrarily small open neighbourhoods U such that for any z 2 U the set

fg 2G W gz 2 U g

is connected. Then the natural map z� W zZ=G!Z=G is a covering whose pullback to
Z is canonically isomorphic to � . Pull-back defines a 1–1 correspondence between
(continuous) sections of z� and G–equivariant sections of � . If in addition G is
connected then any section of � is G –equivariant.

Proof Let pW Z ! Z=G and qW zZ ! zZ=G . If U is as in the lemma and s is a
section of � over U then for all z 2 U , g 2G with gz 2 U one has

s.gz/D gs.z/:

Hence s descends to a section of z� over p.U /. If in addition ��1U is the disjoint
union of open sets Vj each of which is mapped homeomorphically onto U by � then
q.Vj /\ q.Vk/D∅ when j ¤ k . Moreover,

S
j q.Vj /D z�

�1p.U /.

The following proposition extends a well-known result in the case when X is closed
(see Morgan [38] and Salamon [45]). A related result was proved in Nicolaescu [41,
Proposition 4.4.18].

Proposition 12.2.1 If each Yj is a rational homology sphere and each j̨ is reducible
then any homology orientation of X canonically determines a section of �! B.X I Ę/.

Proof We may assume Ep D 0, since rescaling Ep yields a homotopy of families ı .
For any .A; 0/ 2 C.X I Ę/ the operator ı.A;0/ is the connected sum of the operators
�d�C dC and DA . While the homology orientation of X determines an orientation
of �d�C dC (whose cokernel we identify with H 0˚HC rather than HC˚H 0 ,
where HC now denotes the space of self-dual closed L2 2–forms on X ), the family
of complex linear operators DA carries a natural orientation which is preserved by the
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action of G . This yields a section of � over the reducible part Bred � B D B.X I Ę/.
Since the map .ŒA; ˆ�; t/ 7! ŒA; tˆ�, 0 � t � 1 is a deformation retraction of B to
Bred , we also obtain a section of � over B .

Returning to the situation discussed before Lemma 12.2.1, a section of � determines an
orientation of the regular part of the moduli space M �.X I Ę/. As we will now explain,
it also determines an orientation of the regular part of M �

b .X I Ę/ for any finite oriented
subset b�X . (By an orientation of b we mean an equivalence class of orderings, two
orderings being equivalent if they differ by an even permutation.)

Let W be the space of spinors that may occur in elements of B�b .X I Ę/; more precisely,
W is the open subset of ˆoCL

p;w
1

consisting of those elements ˆ such that b[

supp.ˆ/ intersects every component of X . For any such ˆ the operator

�ˆ WD I�ˆIˆ D�Cjˆj
2
W LG! F1 (12.4)

is injective on LGb , hence
Vˆ WD F1=�ˆ.LGb/

has dimension b WD jbj by Proposition 2.3.1 (i). Since ˆ 7!�ˆ is a smooth map from
ˆo CL

p;w
1

into the space of bounded operators LG ! F1 , the spaces Vˆ form a
smooth vector bundle V over W . Because W is simply connected, V is orientable.
To specify an orientation it suffices to consider those ˆ that do not vanish identically
on any component of X . Given such a ˆ, the operator (12.4) is an isomorphism, and
we decree that a b–tuple g1; : : : ;gb 2F1 spanning a linear complement of �ˆ.LGb/

is positive if the determinant of the matrix�
� i��1

ˆ .gj /.xk/
�
j ;kD1;:::;b

is positive, where .x1; : : : ;xb/ is any positive ordering of b.

It is natural to ask what it means for fgj g to be a positive basis for Vˆ when ˆD 0.
Section 12.7 answers this question in the case b D 1.

For the purpose of understanding ungluing maps it is convenient to introduce local
slices for the action of Gb that are defined by compactly supported functions on
X . Given S D .A; ˆ/ 2 C�b .X I Ę/, choose compactly supported smooth functions
gj ; hj W X ! iR, j D 1; : : : ; b , such thatZ

X

gj hk D ıjk ; (12.5)

where ıjk is the Kronecker symbol, and such that .g1; : : : ;gb/ represents a positive
basis for Vˆ . (Note that there is a preferred choice of hk , which lies in the linear span
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of the gj ’s.) We define the operator �W F1! F1 by

�f D f �

bX
jD1

gj

Z
X

f hj : (12.6)

Clearly, this is a projection operator whose kernel is spanned by g1; : : : ;gb . Further-
more, � restricts to an isomorphism

�ˆ.LGb/! im.�/: (12.7)

Set I#
ˆ
D � ı I�

ˆ
and

ı�;S WD I#
ˆCD‚S W S! im.�/˚F2: (12.8)

After composing with the inverse of (12.7), I#
ˆ

becomes an operator of the same kind as
considered in Section 3.4. Therefore, the local slice theorem Proposition 2.4.2 applies,
and if S represents a regular point of M �

b .X I Ę/ then an orientation of ı�;S defines
an orientation of the tangent space TŒS �M

�
b .X I Ę/.

We will now relate orientations of ıS to orientations of ı�;S . For any imaginary valued
function f on X let �0f 2 Rb have coordinates

R
X f hj , j D 1; : : : ; b . Choose

nonnegative integers `;m with m� `D index.ıS / and set

� W F1˚F2˚Rm �
! im.�/˚F2˚Rb

˚Rm;

.x1;x2;y/ 7! .�x1;x2; �
0x1;y/:

To any corrector C of .ıS /`;m we associate a corrector Cb of .ı�;S /`;bCm given by

.ı�;S /`;bCmCCb D � ı ..ıS /`;mCC/:

For gauge transformations u one has

.uCu�1/b D uCbu�1;

where u acts by multiplication on spinors and trivially on the other components.
Moreover, the map C 7! Cb clearly respects the equivalence relation for correctors. We
define a 1–1 correspondence between orientations of ıS and orientations of ı�;S as
follows: If C is a positive corrector of .ıS /`;m then Cb is a .�1/b�ind.ıS /–corrector of
.ı�;S /`;bCm . (The sign is chosen so as to make Diagram (12.13) below commutative.)

If ŒS � is a regular point of M �
b .X I Ę/ then the above defined correspondence between

orientations of ıS and orientations of M �
b .X I Ę/ at ŒS � does not depend on the choice

of the 2b–tuple g1; : : : ;gb; h1; : : : ; hb , because the space of such 2b–tuples supported
in a given compact subset of X is path-connected in the C1–topology.
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The relationship between the orientations of M � DM �.X I Ę/ and M �
b DM �

b .X I Ę/

can be described explicitly as follows (assuming M � is regular). Let M ��
b be the

part of M �
b that lies above M � . Then � W M ��

b !M � is a principal U.1/b –bundle
whose fibres inherit orientations from U.1/b . If .v1; : : : ; vd�b/ is a .d � b/–tuple of
elements of the tangent space T!M ��

b which maps to a positive basis for T�.!/M
� ,

and .vd�bC1; : : : ; vd / a positive basis for the vertical tangent space of M ��
b at ! ,

then .v1; : : : ; vd / is a positive basis for T!M ��
b .

12.3 Gluing and the Laplacian

We continue the discussion of the previous section, but we now consider the situation
of Section 10.1, so that the ends of X are labelled as in Section 1.4 and b�X is the
set of start-points of the paths ˙j , j D 1; : : : ; r0 .

We define the function spaces S 0 and F 0DF 0
1
˚F 0

2
over X .T / just as the corresponding

spaces S;F etc over X , replacing the weight function w by � . We also define the
space W 0 of spinors over X .T / and the oriented vector bundle V 0!W 0 in the same
way as V!W , using the same set b.

Let S D .A; ˆ/2C be a configuration over X such that S�So is compactly supported,
where So is the reference configuration over X . For large Tmin consider the glued
configuration S 0 D .A0; ˆ0/ over X .T / ; this is the smooth configuration over X .T /

which agrees with S over int.XWT /. (This notation will also be used in later sections.
For the time being we are only interested in the spinors.) Let g D .g1; : : : ;gb/ be as
in the previous section.

Lemma 12.3.1 If g represents a positive basis for Vˆ then g also represents a positive
basis for V 0

ˆ0
when Tmin is sufficiently large.

(In this lemma it is not essential that X be a 4–manifold or that SC be a spinor bundle,
one could just as well use the more general set-up in Section 2.1, at least if p> dim X .)

Proof There is one case where the lemma is obvious, namely when ˆ does not vanish
on any component of X and gj D�ˆfj , where fj is compactly supported. We will
prove the general case by deforming a given set of data ˆ;g to one of this special
form. We begin by establishing a version of the lemma where “positive basis” is
replaced by “basis” and one considers compact families of such data ˆ;g . To make
this precise, choose � > 0 such that supp.gj / � XW� for each j , and let Tmin > � .
Let � 0 �L

p
1
.X ISC/ and � 00 � C1.X I .iR/b/ be the subspaces consisting of those

elements that vanish outside XW� . Let � (resp. �T ) be the set of pairs .�;g/2� 0�� 00
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such that ˆoC� 2W (whence ˆ0oC� 2W 0 ) and such that g represents a basis for
VˆoC� (resp. V 0

ˆ0oC�
).

Sublemma 12.3.1 If K is any compact subset of � then K � �T for Tmin� 0.

Assuming the sublemma for the moment, choose � 2 � 0 such that on each component
of X exactly one of ˆ; � is zero. Choose smooth functions fj W X! iR, j D 1; : : : ; b ,
which are supported in XW� and satisfy fj .xk/D iıjk , where .x1; : : : ;xb/ is a positive
ordering of b. Choose a small � > 0 and set zgj D�ˆC��fj . Choose a path ..t/; g.t//,
0� t � 1 in � from .ˆ;g/ to .ˆC ��; zg/ such that g.t/D g for 0� t � � and

ˆ.t/D

(
ˆC t�; 0� t � �;

ˆC ��; � � t � 1:

Let ˆ0.t/ be the glued spinor over X .T / obtained from ˆ.t/. By the sublemma, if
Tmin� 0 then for 0� t � 1 one has .ˆ0.t/; g.t// 2 �T . Since zg represents a positive
basis for V 0

ˆ0C��
, it follows by continuity that g must represent a positive basis for

V 0
ˆ0

. This proves the lemma assuming the sublemma.

Proof of Sublemma 12.3.1 Suppose to the contrary that for nD 1; 2; : : : there are
.�.n/;g.n// 2 K n �T .n/ , where Tmin.n/! 1. We may assume .�.n/;g.n//!
.�;g/ in K . Let V be the linear span of g1; : : : ;gb and Vn the linear span of
g1.n/; : : : ;gb.n/. Set

ˆ0n Dˆ
0
oC�.n/:

By assumption there exists a nonzero fn 2 LG0b with �ˆ0nfn 2 Vn . Choose real
numbers �; � with � < � < � . Since �ˆ0ofn D 0 outside XW� , unique continuation
implies that fn cannot vanish identically on XW� , so we may assume that

kfnkLp

2
.XW� /

D 1:

We digress briefly to consider an injective bounded operator J W E ! F between
normed vector spaces and for fixed m a sequence of linear maps PnW Rm!E which
converges in the operator norm to an injective linear map P . Then there is a constant
C <1 such that kek < CkJek for all e in a neighbourhood U of P .Sm�1/. For
large n one must have Pn.S

m�1/� U , hence

kPnxk � CkJPnxk

for all x 2Rm .
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We apply this result with m D b , E D L
p
1
.X /, F D Lp.X /, J the inclusion map,

PnxD
P

j xj gj .n/, and PxD
P

j xj gj . We conclude that there is a constant C <1

such that for sufficiently large n one has

kvkLp

1
� CkvkLp

for all v 2 Vn . For such n,

kfnkLp

3
.XW� /

� const �
�
k�fnkLp

1
CkfnkLp

2

�
� const �

�
k�ˆ0nfnkLp

1
Ckjˆ0nj

2fnkLp

1
C 1

�
� const �

�
k�ˆ0nfnkLp Ckˆ0nk

2
L

p

1

kfnkLp

1
C 1

�
� const �

�
k�fnkLp C 1

�
� const;

where except in the first term all norms are taken over XW� .

Let  j ;  
0
j be the spinor parts of j̨ ; ˛

0
j , respectively. Fix n for the moment and write

x�D Tj .n/� � . Define x� similarly. Over Œ�x�; x���Yj we then have

.�@2
1C� j /fn D 0;

where @1 D
@
@t

and � j D�Yj Cj j j
2 . If h is any continuous real function on

Œ�x�; x���Yj satisfying .�@2
1
C� j /hD 0 on .�x�; x�/�Yj then for any nonnegative

integer k and t 2 Œ�x� C 1; x� � 1� one has

khkC k.Œt�1;tC1��Yj /
� const �

�
khkL2.f�x�g�Yj /

CkhkL2.fx�g�Yj /

�
;

where the constant is independent of n; t . (To see this, expand h in terms of eigenvectors
of � j and note that each coefficient function c satisfies an equation c00 D �2c ,
� 2R, which yields .c2/00D 2.c0/2C2.�c/2 � 0. Combine this with the usual elliptic
estimates.) Similarly, if h is any bounded continuous function on Œ�;1/�Y 0j satisfying
.�@2

1
C� 0

j
/hD 0 on .�;1/�Y 0j then for any nonnegative integer k and t � � one

has
khkC k.Œt;tC1��Y 0

j
/ � const � khkL2.f�g�Y 0

j
/;

for some constant independent of t .

After passing to a subsequence, we may therefore assume that fn converges in L
p
2

over compact subsets of X to some function f , whose restriction to each end of X

must be the sum of a constant function and an exponentially decaying one, the constant
function being zero if the limiting spinor over that end ( j or  0j ) is nonzero. In
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particular, f 2LGb . Furthermore,

�ˆoC�f 2 V; kf kLp

2
.XW� /

D 1:

Since �ˆoC� is injective on LGb this contradicts the assumption that V is a linear
complement of �ˆoC�.LGb/ in F1 .

This completes the proof of Sublemma 12.3.1 and thus the proof of Lemma 12.3.1.

12.4 Orientations and gluing

Let S;S 0 be as in the beginning of Section 12.3. For the time being we will consider
a map � defined by fixed but arbitrary b–tuples fgj g, fhj g of imaginary valued,
compactly supported, smooth functions on X satisfying the duality relation (12.5),
where b is any nonnegative integer. We will show that an orientation of ı�;S canonically
determines an orientation of ı�;S 0 for large Tmin . Set

F� D im.�/˚F2; F 0� D im.�/˚F 02:

Choose � > 1 so large that the functions gj ; hj are all supported in XW� , and define

SW� DL
p
1
.XW� I iƒ

1
˚SC/:

Let S W� be the subspace of S consisting of those elements that are supported in XW� ,
and define F W�� � F� similarly. Set

CW� D SoCS W.��1/:

In other words, CW� is the set of all L
p
1;loc configurations S over X such that S �So

is supported in XW.��1/ . (The � � 1 is chosen here because of the nonlocal nature of
our perturbations.) Suppose we are given a bounded operator

CW SW� ˚R`! F W�� ˚Rm (12.9)

with finite dimensional image, where m� `D index.ı�;S /. Clearly, C induces linear
maps

S˚R`! F�˚Rm; S 0˚R`! F 0�˚Rm

(the latter when Tmin � � ); these will also be denoted by C. Fix an r0 –tuple of paths
 D .1; : : : ; r0

/ as in Section 10.1, and for any imaginary valued 1–form a on X .T /

let H .a/ 2Rr0 have coordinates

Hj .a/ WD

Z
j

ia; j D 1; : : : ; r0:
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Lemma 12.4.1 There exists a constant C <1 with the property that if C is any map
as above and S any element of CW� such that

D WD ı�;S CCW S˚R`! F�˚Rm

is invertible, then

E WD ı�;S 0 CH CCW S 0˚R`! F 0�˚Rr0 ˚Rm (12.10)

is invertible when Tmin > C.kD�1kC 1/.

Proof Let Pj be a bounded right inverse of the operator (10.6). As in Appendix C, if
Tmin > const � .kD�1kC

P
j kPjk/ then we can splice D�1;P1; : : : ;Pr to obtain a

right inverse R of
ı�;S 0 CCW S 0˚R`! F 0�˚Rm:

(The present situation is slightly different from that in the appendix, but the construction
there carries over.) Furthermore,

kRk � const � .kD�1
kC

X
j

kPjk/:

Let fW R! R be a smooth function such that f.t/D 0 for t � 1=2 and f.t/D 1 for
t � 1. Set

qj .t/D f.Tj � � C t/f.Tj � � � t/:

Thus, qj approximates the characteristic function of the interval Œ�TjC�;Tj ���. For
c D .c1; : : : ; cr0

/ 2Rr0 let �.c/ be the imaginary valued 1–form on X .T / given by

�.c/D

(
0 outside

Sr0

jD1
Œ�Tj ;Tj ��Yj ,

�.2Tj /
�1cj qj i dt on Œ�Tj ;Tj ��Yj ; j D 1; : : : ; r0.

For the present purposes it is convenient to rearrange summands and regard E as
mapping into .F 0�˚Rm/˚Rr0 . Set

LDRC �W .F 0�˚Rm/˚Rr0 ! S 0˚R`:

Then EL takes the matrix form �
I 0

ˇ I

�
C o; (12.11)

where for large Tmin one has kˇk � const � kRk and kok � const �T �1
min , the constants

being independent of S;T . As in the proof of Lemma 10.2.4 we conclude that EL is
invertible when Tmin > const � .kˇkC 1/, which holds if Tmin > const � .kD�1kC 1/.
Since E has index 0, it is invertible whenever EL is surjective.
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Lemma 12.4.2 Suppose C; zC are two maps as in (12.9) which define correctors
of .ı�;S /`;m , and let ; z be two r0 –tuples of paths as in Section 10.1. Then for
sufficiently large Tmin the following holds: C and zC define equivalent correctors
of .ı�;S /`;m if and only if H C C and Hz C zC define equivalent correctors of
.ı�;S 0/`;r0Cm .

Proof We will use the same notation as in Lemma 12.4.1 and its proof. Let zD; zE be
defined as D;E , replacing C;  by zC; z . Observe that the image of D� zD is contained
in N ˚Rm for some finite dimensional subspace N � F W�� , and the image of E � zE

is then contained in .N ˚Rm/˚Rr0 (again rearranging summands). Moreover,

zEE�1
D zEL.EL/�1;

and zEL has the form �
zD0R 0

ˇ1 I

�
C o1; (12.12)

where kˇ1k is bounded and ko1k! 0 as Tmin!1, and zD0 D ı�;S 0 C zC. From the
description (12.11) of EL we see that zEE�1 also has the shape (12.12).

If s 2 F W�� and � denotes restriction to XW� , then

k� zD0Rs� � zDD�1skLp;w � const � k zDk � k�Rs� �D�1skLp;w

� const � kT �1
mink � k

zDk �
�
kD�1

kC

X
kPjk

�
� ksk:

It follows that as Tmin!1, the determinant of the endomorphism of .N ˚Rm/˚Rr0

induced by zEE�1 approaches the determinant of the endomorphism of N ˚ Rm

induced by zDD�1 .

Consider again the situation before Lemma 12.4.1. Given an orientation of ı�;S we
define a glued orientation of ı�;S 0 for Tmin�0 as follows. Let C be a positive corrector
.ı�;S /`;m of the kind (12.9). Then we decree that H CC is a positive corrector of
.ı�;S 0/`;r0Cm , where the summands are ordered as in (12.10). By continuity we can
extend this to an orientation of ı�;S 0 for Tmin > 2� . Now fix T with Tmin > 2� , and
let ��;S (resp. ��;S 0 ) denote the set consisting of the two orientations of ı�;S (resp.
ı�;S 0 ). From Lemma 12.4.1 and Lemma 12.4.2 we obtain a natural map

��;S ! ��;S 0 :

There are two cases that we are interested in: One is when b D 0 (so that ��;S D �S ).
The other is when bDjbj and .g1; : : : ;gb/ defines a positive basis for Vˆ . Now letting
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� refer to the second case, the preceeding discussion yields the following commutative
diagram of bijections:

�S �! �S 0

# #

��;S �! ��;S 0 :

(12.13)

Turning to the global picture, and taking b D 0, let C0Œ�� denote the set of all L
p
1;loc

configurations zS over X .T / such that zS �S 0o is supported in XW� . Then the gluing
operation S 7! S 0 defines a homeomorphism uW CW� ! C0Œ�� , and Lemma 12.4.1 and
Lemma 12.4.2 establish an isomorphism between the orientation cover of CW� and the
pullback by u of the orientation cover of C0Œ�� . Combining this with Proposition 12.4.1
below we see that any section of �! B determines a section of the orientation cover
�0! B0 . (Here B;B0 mean the same as in the beginning of Section 10.2 with bD∅).

Proposition 12.4.1 If X; Ę are as in Section 3.4 then the orientation cover � !
B.X I Ę/ is trivial.

Proof We may assume X is connected. Let b � X consist of a single point. Let
� W Bb! B be the projection, where B D B.X I Ę/ etc. Since B is the quotient of Bb

by the natural U.1/ action, the local slice theorem and Lemma 12.2.1 imply that any
section of ��� descends to a section of �. It therefore suffices to show that ��� is
trivial, or equivalently, that for any loop ` in B that lifts to Bb the pullback `�� is
trivial. Since C! Bb is a (principal) fibre bundle, such a loop is the image of a path
zW Œ0; 1�! C such that z.1/D u.z.0// for some u 2 Gb . After altering the loop ` by
a homotopy one can arrange that uD 1 and z.t/D So (for all t ) outside a compact
subset of X .

(Here is one way to construct such a homotopy. For 0� s � 1 let �s D �s � z�s be the
composite of the two paths (both defined for 0� t � 1)

�s.t/D .1� s/z.t/C sSo;

z�s.t/D .1� t/�s.1/C tvs.�s.0//;

where vs is a path in G such that v0 D u, and v1 D 1 outside a compact subset of X .
Clearly, �0 D �0 is homotopic to z relative to f0; 1g. Moreover, vs.�s.0// D �s.1/,
and �1.t/D So where v1 D 1.)

Now let �X be the Riemannian manifold X with the opposite orientation and corre-
sponding spinc structure. Starting with X [ .�X / we form, for any T > 0, a compact
manifold W .T / by gluing the j –th end of X with the j –th end of �X to obtain a
neck Œ�Tj ;Tj ��Yj . Let S be any configuration over �X which agrees with ˛j over
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the j –th end, and z1.t/ the configuration over W .T / obtained by gluing S and z.t/.
Then z1 maps to a loop `1 in B.W .T //. By Proposition 12.4.1 the orientation cover
�1!B.W .T // is trivial. Now Lemma 12.4.1 and Lemma 12.4.2 yield an isomorphism
of Z=2–bundles `��! `�

1
�1 when Tmin is large, hence `�� is trivial.

We now consider the situation of Theorem 10.1.1. Let b D jbj. Choose an orientation
of �! B , and let �0! B0 have the glued orientation. Given an orientation of b, this
orients the regular parts of Mb and M .T /

b .

Theorem 12.4.1 In the situation of Theorem 10.1.1, if Tmin is sufficiently large then
the diffeomorphism

FW q�1G! U.1/r0 �G; ! 7! .Hol.!/;q.!//

is orientation preserving.

Proof In view of Proposition 10.2.1 it suffices to show that, for any given point
.z; !/ 2 U.1/r0 �G , the inverse F�1 is orientation preserving at .z; !/ when Tmin is
sufficiently large.

Consider the set-up in Section 10.2, with $ W Rd !Mb orientation preserving. Let
� W C.K/! MB.K/ be the projection. Then f WD$�1 ı q ı� maps a small neighbour-
hood of S0jK in C.K/ to Rd . Let

CW L
p
1
.KI iƒ1

˚SC/!Rd

be the derivative of f at S0 . Let � be as in (12.6), with ˆ the spinor part of S0 . For
0� t � 1 set

S.t/D .1� t/S0C tS0;��2; ı.t/D ı�;S.t/;

yS.t/D .1� t/ yS C tS0;��2;T ; ı0.t/D ı
�; yS.t/

:

(Thus, the � in the proof of Theorem 10.1.1 corresponds to the present � � 2.) In
the following, constants will be independent of �;T . Because q.!0jK /D !

0 for all
!0 2G , we see that C defines a positive corrector of

ı.t/0;d W S! F�˚Rd

for t D 0. Hence, if � > const (for a suitable constant) then C will define a positive
corrector of ı.t/0;d for 0� t � 1. We want to show that if � > const then

Et WD ı
0.t/CH CCW S 0! F 0�˚Rr0 ˚Rd
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is an isomorphism for 0 � t � 1 when Tmin � 0. This is a Fredholm operator of
index 0, so it suffices to show that it is surjective. As in the proof of Lemma 12.4.1 we
can, for � > const and Tmin > � C const, construct a right inverse R of

ı0.1/CCW S 0! F 0�˚Rd

such that kRk is bounded independently of �;T . Set LDRC � as in the said proof.
For notational convenience we will here regard EtL as acting on

.F 0�˚Rd /˚Rr0 :

Then there is the matrix representation

EtLD

�
.ı0.t//CC/R ı0.t/�

HR H�

�
:

By Lemma 10.3.1 one has, for � > const,

k.ı0.t/CC/R� Ik D k.ı0.t/� ı0.1//Rk

� const � k yS.t/� yS.1/kLp;�

1
� const � e.2���/� :

Furthermore, for � > const,

kı0.t/�k � const � e��T �1
min ;

kHRk � const;

kH�� Ik � .� � const/ �T �1
min :

Recalling the assumption 0� 6� < �, we see that if � > const then EtL (and hence
Et ) will be invertible for 0 � t � 1 when Tmin � 0. Since H C C is a positive
corrector of ı0.1/0;r0Cd , it must also be a positive corrector of ı0.0/0;r0Cd , which in
turn is equivalent to F being orientation preserving at F�1.z; !/.

12.5 Homology orientations and gluing

In this section we will describe the “gluing of orientations” of Section 12.4 in terms of
homology orientations in the simplest cases. This result will be needed in Part III.

Let X be as in Section 1.4 with r D 1, ie only one pair of ends RC � .˙Y / is being
glued. Suppose Y and each Y 0j are rational homology spheres. We assume the glued
manifold X # is connected, so that X has at most two components. As in Section 10.1
let  be a path in X .T / running once through the neck Œ�T;T ��Y , with starting-point
x0 and endpoint x1 . If X is connected then we assume x0 D x1 .

Geometry & Topology Monographs, Volume 15 (2008)



12.5 Homology orientations and gluing 151

As before in this chapter, we will denote by HC.X / the space of self-dual closed L2

2–forms on X . It is useful to observe here that orientations of HC.X / can be specified
solely in terms of the intersection form on X . (We made implicit use of this already in
the definition of homology orientation in Section 1.1.) To see this, let V be any real
vector space with a nondegenerate symmetric bilinear form BW V �V !R of signature
.m; n/, where m> 0 (the case mD 0 being trivial). Let VC denote the space of all
linearly independent m–tuples .v1; : : : ; vm/ of elements of V such that B is positive
definite on the linear span of v1; : : : ; vm . Then VC has exactly two path-components,
and two such m–tuples .v1; : : : ; vm/ and .w1; : : : ; wm/ lie in the same component
if and only if the matrix .B.vj ; wk//j ;kD1;:::;m has positive determinant. In the case
when B is the intersection form of X , a choice of a component of VC determines
orientations of both HC.X / and HC.X .T // (since the intersection forms of X and
X .T / are canonically isomorphic).

Given the ordering of the ends RC� .˙Y / of X there is a natural 1–1 correspondence
between homology orientations of X and of X # . In general one can specify a homology
orientation by choosing ordered bases for H 0 , H 1 and HC , or equivalently, for the
dual groups. (If the 4–manifold in question is connected then we will usually take
.1/ as basis for H 0 .) If X has two components then the correspondence is given by
replacing the basis .x0/ for H0.X

#/ with the ordered basis .x0;x1/ for H0.X /. If
X is connected then we replace a given ordered basis .e1; : : : ; e`/ for H1.X / (where
` D b1.X /) with the ordered basis .�Œ �; e1; : : : ; e`/ for H1.X

#/, and we call this
the glued homology orientation of X # . (The sign in front of Œ � is related to a sign
appearing in the formula for Holj in (10.1).)

Now fix homology orientations of X;X # which are compatible in the above sense.
Let B;B0 be the configuration spaces over X;X .T / with reducible limits. According
to Proposition 12.2.1 the chosen homology orientations determine an orientation o

of �! B and an orientation o0 of �0! B0 . On the other hand, �0 inherits a glued
orientation zo from .�; o/ as specified in Section 12.4.

Proposition 12.5.1 (i) If X is connected then o0 D zo.

(ii) If X has two components, then o0 D zo if and only if b1.X /C bC.X / is odd.

The sign in (ii) will be dealt with in Section 12.6 by introducing appropriate sign
conventions.

Proof Let So D .Ao; 0/ be a reference configuration over X as in Section 10.1 with
reducible limit over each end. To simplify notation we will now write S;A instead
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of So;Ao . Let S 0 D .A0; 0/ be the glued reference configuration over X .T / . Set
LA D dC˚DA , so that

ıS D�d�CLAW S! F

Set b1 D b1.X /, bC D bC.X /, mD dim ker.ıS / and `D dim coker.LA/.

Choose smooth loops `1; : : : ; `b1 in XW0 representing a positive basis for H1.X IR/
and define

B1W L
p
1
.XW0; iƒ

1/!Rb1 ; a 7!

�
�

Z
j̀

ia

�
jD1;:::;b1

:

Choose a bounded complex-linear map

B2W L
p
1
.XW0;S

C/!Cm2

whose composition with the restriction to XW0 defines an isomorphism ker.DA/!Cm2 .
Set

BD B1CB2W SW0!Rb1 ˚Cm2 DRm:

Choose smooth imaginary-valued closed 2–forms !1; : : : ; !bC on X which are sup-
ported in XW0 and such that the cohomology classes Œ�i!1�; : : : ; Œ�i!bC � form a
positive basis of a positive subspace for the intersection form of X . Then the self-dual
parts !C

1
; : : : ; !C

bC
map to a basis for coker.dC/ on both X and X .T / , which in both

cases is compatible with the chosen orientation of HCD coker.dC/� . Choose smooth
sections !bCC1; : : : ; !` of S�

X
which are supported in XW0 and map to a positive basis

for the real vector space coker.DA/ (with its complex orientation).

The remainder of the proof deals separately with the two cases.

Case (i) X is connected.

Let gW X ! iR be a smooth function supported in XW0 and with
R

g D i . Then for
large T the orientations o0; zo of ıS 0 are both represented by the following corrector of
.ıS 0/`C1;mC1 :

S 0˚R˚R`! F 0˚R˚Rm;

.�; t; z/ 7! .tgC
X̀
jD1

zj!j ;H �;B�/;

where H � means H applied to the 1–form part of � .

Case (ii) X has two components X0;X1 , where xj 2Xj .
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Thus, RC �Y �X0 and RC � .�Y /�X1 . For j D 0; 1 choose a smooth function
gj W Xj ! iR supported in .Xj /W0 and with

R
gj D i . Set

C0W S 0˚R˚R`˚R! F 0˚Rm
˚R;

.�; t; z; t 0/ 7! .tg0C

X̀
jD1

zj!j ;B�; t
0/;

C W S 0˚R˚R˚R`! F 0˚R˚Rm;

.�; t; t 0; z/ 7! .tg0C t 0g1C

X̀
jD1

zj!j ;H �;B�/:

When T is large, C0 and C are both correctors of .ıS 0/`C2;mC1 which represent
the orientations o0; zo of ıS 0 , respectively. Let C be the corrector of .ıS 0/`C2;mC1

which has the same domain and target spaces as C , and which is obtained from C0 by
interchanging summands as follows. If

.x;y; z/ 2 .S 0˚R/˚R`˚R;

C0.x;y; z/D .u; v; w/ 2 F 0˚Rm
˚R

then C.x; z;y/ D .u; w; v/. As explained in Section 12.1, the correctors C;C0 are
equivalent if and only if `Cm is even. Set

E D ıS 0 CC; E D ıS 0 CC :

We have .C �C/.�; t; t 0; z/D .t 0g1;H � � t 0; 0/;

so the image N of C �C has dimension 2. We need to compute the determinant of
the automorphism of N induced by EE�1 . Let s; s0 2R and set

.�; t; t 0; z/DE�1.sg1; s
0; 0/:

Write � D .a; �/ 2 �.iƒ1˚SC/. Then

�d�aC tg0 D sg1; t 0 D s0: (12.14)

Integrating the first equation gives t D s . The equation

EE�1
D .C �C/E�1

C I

now yields
EE�1.sg1; s

0; 0/D ..sC s0/g1;H �; 0/:
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Note that � depends on s alone, so we can write aD a.s/. Set �DH .a.1//. Then
EE�1jN is represented by the matrix�

1 1

� 0

�
;

so C;C are equivalent correctors if and only if � < 0. We will show that � > 0 when
T is large. This implies that C0;C are equivalent correctors if and only if `Cm is
odd. Since DA is complex linear, this will prove part (ii) of the proposition.

Let fTng be a sequence tending to 1 and, working over X .Tn/ , set

.�n; sn; 0; zn/DE�1.sng1; 0; 0/;

or more explicitly,

ıS 0.�n/C
X

j

zn;j!j D sn.g1�g0/; B�n D 0;

where sn > 0 is chosen such that

k�nkL2.XW2/
D 1:

(Because the supports of g0 and g1 are disjoint, Equation (12.14) shows that a¤ 0

over XW0 when s ¤ 0.) Write �n D .an; �n/. Equation (12.14) yields

snkg1k
2
2 D�

Z
han; dg1i � kdg1k2;

hence the sequence sn is bounded. An analogous argument applied to the equation

LA.�n/C
X

j

zn;j!j D 0

shows that the sequence zn is bounded as well. Thus, ıS 0.�n/ is supported in XW0 , and
for each k � 0 the C k –norm of ıS 0.�n/ is bounded independently of n. Now recall
from Section 3.4 that over the neck Œ�Tn;Tn��Y the operator ıS 0 can be expressed
in the form @

@t
CP , where

P D

0@ 0 �d� 0

�d �d 0

0 0 �@B

1A
for some spinc connection B over Y . Because of our nondegeneracy assumption on
the critical points, the kernel of P consists of the constant functions in i�0.Y /. There
is also a similar description of ıS 0 over the ends RC�Y 0j . In general, if . @

@t
CP /�D 0

over a band Œ0; � ��Y and � involves only eigenvectors of P corresponding to positive
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eigenvalues then for any nonnegative integer k and 1 � t � � � 2, say, there is an
estimate

k�kC k.Œt;tC1��Y / � const � e��t
k�kL2.f0g�Y /;

where � is the smallest positive eigenvalue of P . This result immediately applies to
�n over the ends RC �Y 0j . Over the neck Œ�Tn;Tn�� Y one can write �n D const �
i dtC�Cn C�

�
n where �˙n involves only eigenvectors corresponding to positive/negative

eigenvalues of P . One then obtains C k –estimates on �˙n in terms of its L2 –norm
over f�Tng�Y . It follows that after passing to a subsequence we may assume that
�n c-converges over X to some pair � D .a; �/ satisfying k�kL2.XW2/

D 1. Of course,
we may also assume that the sequences sn; zn converge, with limits s; z , say. Then

ıS�C
X

j

zj!j D s.g1�g0/; B� D 0:

Moreover,
� D˙ci dt C �˙ on RC � .˙Y /,

where �˙ decays exponentially and

c D� lim
n!1

H .an/

2Tn
:

On the other hand, Stokes’ theorem yieldsZ
f�Tng�Y

�an D�

Z
.X0/W0

d�an D�

Z
.X0/W0

sng0 D�sni;

Hence ci �Vol.Y /D
Z
f0g�Y

�aD lim
n

Z
f�Tng�Y

�an D�si:

Thus, c �Vol.Y /D�s � 0. If c D 0 then � ¤ 0 would decay exponentially on all ends
of X and satisfy ıS� D 0, contradicting B� D 0. Therefore, c < 0, and H .an/ > 0

for large n.

This shows that � > 0 when T is large.

12.6 Components

Let again X; Ę be as in Section 3.4 and suppose X is the disjoint union of open subsets
X1; : : : ;Xq . If S is a configuration over X and Sj its restriction to Xj then ıS is
the direct sum of the operators ıSj . Moreover,

B D B1 � � � � �Bq;
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where Bj D B.Xj I Ę.j // for a suitable vector Ę.j / of critical points. If we denote by
x�j the pullback to B D B.X I Ę/ of the orientation cover �j ! Bj then by (12.2) we
have an isomorphism of Z=2–bundles

x�1˝ � � �˝
x�q
�
! �; (12.15)

where �! B is the orientation cover. If now X and its asymptotic limits are as in
Section 10.1 and oj an orientation of �j then (12.15) defines a direct sum orientation
of �, which in turn yields a glued orientation zo of �0! B.X .T /I Ę0/. Suppose now
that q D 2 and that for each pair of ends RC� .˙Yj / being glued (j D 1; : : : ; r ), one
of these ends lies in X1 and the other one in X2 . In this case we define

o1#o2 WD .�1/r0.i1C1/
zo; (12.16)

where i1 D index.ıS1
/. The sign is chosen so that (among other things) the operation

# is associative in the following sense: Suppose q D 3 and that for each pair of ends
being glued, one is contained in X2 and the other one is contained in either X1 or X3 .
Then it makes sense to glue first X1 and X2 and then add X3 , or one can start with
X2 and X3 . It is now easy to check that

.o1#o2/#o3 D o1#.o2#o3/ (12.17)

as orientations of �.

Returning to the situation of (12.16), suppose X1 , X2 are the connected components of
X and that all ends of X are modelled on rational homology spheres. Let a homology
orientation of Xj be given by an ordered basis Uj for H 1.Xj / and a maximal linearly
independent subset Vj of H 2.Xj / on which the intersection form is positive. Then we
define the glued homology orientation of X # to be .�1/b

C.X1/.b1.X2/CbC.X2// times
the one given by the concatenated ordered basis U1U2 of H 1.X #/ and the ordered
subset V1V2 of H 2.X #/. Let oj and o0 be the orientations of �j and �0 given by the
homology orientations of Xj and X # , respectively. If all asymptotic limits over X are
reducible then one easily checks, using Proposition 12.5.1, that

o1#o2 D o0:

If one thinks of homology orientations as orientations of the operator D D�d�C dC

(acting on Sobolev spaces with small positive weights) then the above defined gluing
of homology orientations corresponds to the #–operation on orientations of D , hence
it is associative in the sense of (12.17).

Geometry & Topology Monographs, Volume 15 (2008)



12.7 Orientation of V0 157

12.7 Orientation of V0

In Section 12.2 the question arose what it means for fgj g to be a positive basis for Vˆ
when ˆD 0. The following proposition answers this question when bD 1. This result
is not needed elsewhere in Part II, but will be used in Part III.

Proposition 12.7.1 Let X be as in Section 1.3. Suppose X is connected, b D 1,
and consider the bundle V!W DL

p;w
1

.X ISC/ with all weights �j positive. Then
g 2 C1c .X I iR/, represents a positive basis for V0 if and only if

R
X g= i > 0.

Proof It suffices to prove that g D ih represents a positive basis when
R
X h> 0. Let

bD fxg. By Proposition 2.3.2 we may assume h � 0, h.x/ > 0 and supp.h/� XW0 .
The proposition is then a consequence of the following lemma.

Lemma 12.7.1 Let X; h be as above and v a smooth positive function on X whose
restriction to each end RC �Yj is the pullback of a function vj on RC . Suppose f is
a real function on X satisfying

.�C v/f D h; df 2L
p;w
1

:

Then f � 0, and f > 0 where h> 0.

The proof will make use of the following elementary result, whose proof is left to the
reader.

Sublemma 12.7.1 Suppose a;u are smooth real functions on Œ0;1/ such that u00 D

au, a> 0, u.0/ > 0 and u is bounded. Then u> 0 and u0 < 0.

Proof of Lemma 12.7.1 We first study the behaviour of f on an end RC �Yj . We
omit j from notation and write Y D Yj etc. Set f D f jRC�Y . By Proposition 2.2.1
the assumption df 2L

p;w
1

implies that f.t; �/ converges uniformly towards a constant
function c as t !1. Let fe�g be a maximal orthonormal set of eigenvectors of �Y

with corresponding eigenvalues �2
� . Write

f.t;y/D
X
�

u�.t/e�.y/:

Then u00� D .�
2
� C v/u� :

By the sublemma, either u� D 0 or u�u
0
� < 0. Consequently,Z

Y

f2.t;y/ dy D
X
�

u2
�.t/
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is a decreasing function of t , and

max
y2Y
jf.t;y/j � c

for all t � 0. In particular, if c < 0 then there exists a .t;y/ 2RC�Y with f.t;y/� c .
Hence, if inff < 0 then the infimum is attained.

Now, at any local minimum of f one has

vf D h��f � h;

so f � 0 everywhere. But then every zero of f is an absolute minimum, so f > 0

where h> 0. This proves the lemma and thereby also Proposition 12.7.1.
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CHAPTER 13

Parametrized moduli spaces

Parametrized moduli spaces appear in many different situations in gauge theory, eg in
the construction of 4–manifold invariants [15; 45] and Floer homology [14], and in
connection with gluing obstructions (see Part III). A natural setting here would involve
certain fibre bundles whose fibres are 4–manifolds. We feel, however, that gauge theory
for such bundles in general deserves a separate treatment, and will therefore limit
ourselves, at this time, to the case of a product bundle over a vector space. However,
we take care to set up the theory in such a way that it would easily carry over to more
general situations.

The main goal of this chapter is to extend the gluing theorem and the discussion of
orientations to the parametrized case.

13.1 Moduli spaces

As in Section 1.3 let X be a spinc 4–manifold with Riemannian metric xg and tubular
ends xRC �Yj , j D 1; : : : ; r . Let W be a finite-dimensional Euclidean vector space
and gD fgwgw2W a smooth family of Riemannian metrics on X all of which agree
with xg outside XW0 . We then have a principal SO.4/–bundle PSO.g/!X �W whose
fibre over .x;w/ consists of all positive gw –orthonormal frames in TxX .

In the notation of Section 3.1 let PGLc ! PGLC be the spinc structure on X . Denote
by PSpinc .g/ the pullback of PSO.g/ under the projection PGLc �W! PGLC �W .
Then PSpinc .g/ is a principal Spinc.4/–bundle over X �W .

For j D 1; : : : ; r let j̨ 2 C.Yj / be a nondegenerate smooth monopole. Let C.gw/

denote the L
p;w
1

configuration space over X for the metric gw and limits j̨ , where

159



160 13 Parametrized moduli spaces

p; w are as in Section 3.4. We will provide the disjoint union

C.g/D
[

w2W

C.gw/� fwg

with a natural structure of a (trivial) smooth fibre bundle over W . Let

vW PSpinc .g/! PSpinc .g0/�W (13.1)

be any isomorphism of Spinc.4/–bundles which covers the identity on X �W and
which outside XW1 �W is given by the identification PSpinc .gw/D PSpinc .g0/. There
is then an induced isomorphism of SO.4/–bundles

PSO.g/! PSO.g0/�W;

since these are quotients of the corresponding Spinc.4/–bundles by the U.1/–action.
Such an isomorphism v can be constructed by means of the holonomy along rays of the
form fxg � xRCw where .x;w/ 2X �W , with respect to any connection in PSpinc .g/
which outside XW1 �W is the pullback of a connection in PSpinc .g0/. Then v induces
a G D G.X I Ę/–equivariant diffeomorphism

C.gw/! C.g0/ (13.2)

for each w , where the map on the spin connections is obtained by identifying these with
connections in the respective determinant line bundles and applying the isomorphism
between these bundles induced by v . Putting together the maps (13.2) for all w yields
a bijection

v�W C.g/! C.g0/�W:

If zv is another isomorphism as in (13.1) then v�.zv�/
�1 is smooth, hence we have

obtained the desired structure on C.g/. Furthermore, because of the gauge equivariance
of v� we also get a similar smooth fibre bundle structure on

B�b .g/D
[

w2W

B�b .gw/� fwg (13.3)

for any finite subset b � X . The image of .S;w/ 2 C.g/ in B.g/ will be denoted
ŒS;w�.

We consider the natural smooth action of T on B�b .g/ where an element of T maps
each fibre Bb.gw/ into itself in the standard way. (There is another version of the
gluing theorem where T acts nontrivially on W ; see below.)

The principal bundle PSpinc .g/ also gives rise to Banach vector bundles S.g/, F.g/,
F2.g/ over W whose fibres over w 2W are the spaces S.gw/;F.gw/;F2.gw/ resp.
defined as in (12.3) using the metric gw on X .
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13.1 Moduli spaces 161

Let P‚W C.g/! F2.g/ be the fibre-preserving monopole map whose effect on the fibre
over w 2W is the left hand side of Equation (3.10), interpreted in terms of the metric
gw . If we conjugate P‚ by the appropriate diffeomorphisms induced by v then we
obtain the smooth G–equivariant map

P‚vW C.g0/�W! F2.g0/;

.A; ˆ;w/ 7!

�
.vw. yFACm.A; ˆ///C�Q.ˆ/ ;

X
j

vw.ej / � r
ACaw
ej

.ˆ/

�

where the perturbation m is smooth, hence P‚ is smooth. Here vw denotes the isomor-
phism that v induces from the Clifford bundle of .X;gw/ to the Clifford bundle of
.X;g0/, and fej g is a local gw –orthonormal frame on X . Finally, if we temporarily
let r.w/ denote the gw –Riemannian connection in the tangent bundle of X then

aw D vw.r
.w//�r.0/:

Note that aw is supported in XW1 .

In situations involving parametrized moduli spaces there will often be an additional
perturbation which affects the equations only over some compact part of X . For the
gluing theory one can consider quite generally perturbations given by an isomorphism
v and a smooth G–equivariant map

oW C.XWt;g0/�W! .F2/
Wt.g0/

for some t� 0, using notation introduced in Section 12.4. We require that the derivative
of o at any point be a compact operator. Let

‚W C.g/! F2.g/ (13.4)

be the map corresponding to ‚v WD
P‚v C o. We define the parametrized moduli

space Mb.g/ to be the image of ‚�1.0/ in Bb.g/. By construction, v� induces a
homeomorphism

Mb.g/
�
!‚�1

v .0/=Gb :

A point in Mb.g/ is called regular if the corresponding zeros of ‚v are regular (a regular
zero being one where the derivative of ‚v is surjective). This notion is independent of v .
By the local slice theorem, the set of regular points in M �

b .g/ is a smooth submanifold
of B�b .g/.
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162 13 Parametrized moduli spaces

13.2 Orientations

Fix orientations of the vector space W and of the set b. For any S 2 C.gw/ let

ıS;wW S.gw/! F.gw/

be the Fredholm operator ıS defined in terms of the metric gw , now using the perturbed
monopole map (13.4). The orientation cover of this family descends to a double cover
�.g/! B.g/. (Note that the perturbation o can be scaled down, so that an orientation
of �.g/ for oD 0 determines an orientation for any other o.) Clearly, any section of
�.g/ over B.g0/ extends uniquely to all of B.g/. On the other hand, a section of �.g/
determines an orientation of the regular part of M �

b .g/, as we will now explain.

Let T vC.g/ � T C.g/ be the subbundle of vertical tangent vectors. We can identify
T v
.S;w/

C.g/D S.gw/. A choice of an isomorphism v1 as in (13.1) determines a bundle
homomorphism

P1W T C.g/! T vC.g/

which is the identity on vertical tangent vectors. This yields a splitting

T.S;w/C.g/D S.gw/˚W

into vertical and horizontal vectors (the latter making up the kernel of P1 and being
identified with W through the projection).

In general, a connection in a vector bundle E!W determines for every element u

of a fibre Ew a linear map TuE!Ew , namely the projection onto the vertical part
of the tangent space. Moreover, if u D 0 then this projection is independent of the
connection. Together these projections form a smooth map TE!E . Let

P2W TF2.g/! F2.g/

be such a map for E D F2.g/ determined by some isomorphism v2 .

Now let I�W T vC.g/! F1.g/

be the map which sends s 2 T v
.S;w/

C.g/ to .I�
S
.s/;w/, where the � refers to the metric

gw . Set
ı WD I� ıP1CP2 ıD‚W T C.g/! F.g/;

where D‚ is the derivative of the map (13.4). By restriction of ı we obtain bounded
operators

ıS;wW T.S;w/C.g/! F.gw/:
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Since the restriction of ıS;w to the vertical tangent space S.gw/ is equal to the Fredholm
operator ıS;w , we conclude that ıS;w is also Fredholm, and

ind.ıS;w/D ind.ıS;w/C d;

where dD dim W .

Choose nonnegative integers `;m with ind.ıS;w/Dm�` and an orientation preserving
linear isomorphism hW W!Rd . If C is any corrector of .ıS;w/`;m then

ıS;wC hCCW S.gw/˚W˚R`! F.gw/˚Rd
˚Rm

is an injective Fredholm operator of index 0, hence an isomorphism. The map C 7!

hCC respects the equivalence relation for correctors. We can therefore define a 1–1
correspondence between orientations of ıS;w and orientations of ıS;w by saying that
if C is a positive corrector of .ıS;w/`;m then hCC is a .�1/d�ind.ıS;w/–corrector of
.ıS;w/`;dCm .

Fix S 2 C�b .gw/, choose a map � as in (12.6), and let

ı�;S;w WD S.gw/˚W! F�.gw/

be the operator obtained from ıS;w by replacing I�
S

by � ı I�
S

(cf (12.8)). Just
as in the unparametrized case we define a 1–1 correspondence between orientations
of ıS;w and orientations of ı�;S;w by decreeing that if C is a positive corrector of
.ıS;w/`�d;m (where we now assume `� d) then Cb is a .�1/b�ind.ıS;w/–corrector of
.ı�;S;w/`�b;dCm .

Now suppose ŒS;w� 2M �
b .g/. Working in the trivialization v1 and using the local

slice theorem for the metric gw one finds that ŒS;w� is a regular point of M �
b .g/ if and

only if ı�;S;w is surjective, and in that case the projection C�b .g/! B�b .g/ induces an
isomorphism

ker.ı�;S;w/
�
! TŒS;w�M

�
b .g/:

This establishes a 1–1 correspondence between orientations of ıS;w and orientations
of TŒS;w�M

�
b .g/. This correspondence is obviously independent of P2 , and it is

independent of P1 because the set of such operators form an affine space. It is also
independent of � for reasons explained earlier.

This associates to any orientation of �.g/ an orientation of the regular part of M �
b .g/.
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13.3 The gluing theorem

We continue the discussion of the previous section, but we now specialize to the case
when the ends of X are RC� .˙Yj /, j D 1; : : : ; r and RC�Y 0j , j D 1; : : : ; r 0 , with
nondegenerate limits j̨ over RC � .˙Yj / and ˛0j over RC �Y 0j , as in Section 10.1.
Let the paths ˙j ; j and b�X be as in that section. The family of metrics g on X

defines, in a natural way, a smooth family of metrics fg.T;w/gw2W on X .T / for any T .
We retain our previous notation for configuration and moduli spaces over X , whereas
those over X .T / will be denoted C0.g/;B0b.g/;M

.T /
b .g/ etc. Fix an isomorphism v as

in (13.1).

We first discuss gluing of orientations. The isomorphism v defines a corresponding
isomorphism over X .T / and operators P1;P2 over both X and X .T / . We then get
families of Fredholm operators ı; ı0 parametrized by C.g/; C0.g/ resp. The procedure
in Section 12.4 for gluing orientations carries over to this situation and yields a 1–1
correspondence between orientations of ı and orientations of ı0 . Given S 2 CW0.gw/,
if �S;w and �S;w denote the set of orientations of ıS;w and ıS;w resp., and similarly
for the glued configuration S 0 2 C0.gw/, then we have a commutative diagram of
bijections:

�S;w �! �S 0;w

# #

�S;w �! �S 0;w

The analogue of Diagram (12.13) in the parametrized situation also commutes.

Now fix an orientation of �.g/! Bb.g/ and let �0.g/! B0b.g/ have the glued orienta-
tion. These orientations determine orientations of the regular parts of the moduli spaces
Mb.g/ and M .T /

b .g/, respectively, as specified in the previous section.

As before, a choice of reference configuration in C.g0/ gives rise to a glued reference
configuration in C0.g0/ and a holonomy map

B0b.g0/! U.1/r0 :

Composing this with the map M .T /
b .g/! B0b.g0/ defined by the chosen isomorphism

v yields a holonomy map

HolW M .T /
b .g/! U.1/r0 :

Fix an open T –invariant subset G �Mb.g/ whose closure is compact and contains
only regular points.
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By a kv-pair we mean as before a pair .K;V /, where K �X is a compact codimen-
sion 0 submanifold which contains b and intersects every component of X , and V is
an open T –invariant neighbourhood of RK . xG/ in

MBb.K; g/D
[

w2W

MBb.K;gw/� fwg:

Now fix a kv-pair .K;V / satisfying similar additional assumptions as before: firstly,
that V � MB�b .K; g/; secondly, that if Xe is any component of X which contains a
point from b then Xe \K is connected.

Suppose qW V !Mb.g/

is a smooth T –equivariant map such that q.!jK /D! for all ! 2G . (We do not require
that q commute with the projections to W .) Choose �j ; �

0
j > 0. Let “admissibility of

Ę0” be defined in terms of the parametrized moduli spaces M .T /
b .g/ (see Definition

7.1.3).

Theorem 13.3.1 Theorem 10.1.1 holds in the present situation if one replaces Mb and
M .T /

b by Mb.g/ and M .T /
b .g/, respectively. Moreover, the diffeomorphism F defined

as in Theorem 12.4.1 is orientation preserving.

Proof The proofs carry over without any substantial changes.

There is another version of the theorem (which will be used in Part III) where the
family of metrics g is constant (ie gw D g0 for every w) and T acts smoothly on the
manifold W . One then has a product action of T on

Mb.g/DMb �W;

and the theorem holds in this setting as well. In fact, the action of T affects the proof
in only one way, namely the requirement that zK be T –invariant. To obtain this, let
dist be a T –invariant metric on the set W compatible with the given topology (arising
for instance from a T –invariant Riemannian metric) and replace the definition of dm

in (10.13) by

dm..S;w/; . xS ; xw//D

Z
XWm

j xS �S jpCjr xA. xS �S/jpC dist.w; xw/:

Then V 0m will be T –invariant.
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13.4 Compactness

In contrast to gluing theory, compactness requires more specific knowledge of the
perturbation o, so we will here take o D 0. We observe that the notion of chain-
convergence has a natural generalization to the parametrized situation, and that the
compactness theorem Theorem 1.4.1 carries over to sequences

ŒAn; ˆn;wn� 2Mb.X
.T .n//;g.T .n/;wn/I Ę

0
n/

provided the sequence wn is bounded (and similarly for Theorem 1.3.1). The only new
ingredient in the proof is the following simple fact: Suppose B is a Banach space, E;F

vector bundles over a compact manifold, L;L0W �.E/! �.F / differential operators
of order d and KW �.E/! B a linear operator. If L satisfies an inequality

kf kLp

k
� C

�
kLf kLp

k�d
CkKf kB

�
and L;L0 are sufficiently close in the sense that

k.L�L0/f kLp

k�d
� �kf kLp

k

for some constant � > 0 with �C < 1, then L0 obeys the inequality

kf kLp

k
� .1� �C /�1C

�
kL0f kLp

k�d
CkKf kB

�
:

Geometry & Topology Monographs, Volume 15 (2008)



Part III

An application

We will now use the analytical results that we have obtained to prove a gluing formula
for Seiberg–Witten invariants of certain 4–manifolds containing a negative definite
piece. The formula describes in particular the behaviour of the Seiberg–Witten invariant
under blow-up and under the rational blow-down procedure introduced by Fintushel–
Stern [18]. The formula was first proved by Fintushel–Stern for blow-up in [17] and
for rational blow-down in [18]. Their results were extended to generalized rational
blow-down by Park [42]. Detailed proofs of various versions of the formula have been
given by Nicolaescu [41], Bauer [6] (using refined Seiberg–Witten invariants) and
Kronheimer–Mrowka [31] (using Floer homology).

Apart from providing a detailed and elementary proof of a version sufficient for many
applications, this part will show how the parametrized version of our gluing theorem
can be used to handle at least the simplest cases of obstructed gluing, thereby providing
a unified approach to a wide range of gluing problems.
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CHAPTER 14

A generalized blow-up formula

14.1 Statement of result

We first explain how the Seiberg–Witten invariant, usually defined for closed 4–
manifolds, can easily be generalized to compact, connected spinc 4–manifolds Z

whose boundary Y 0 D @Z satisfies b1.Y
0/ D 0 and admits a metric g of positive

scalar curvature. As usual we assume that bC.Z/ > 1. Let fY 0j g be the components of
Y 0 , which are rational homology spheres. Let yZ be the manifold with tubular ends
obtained from Z by adding a half-infinite tube RC�Y 0 . Choose a Riemannian metric
on yZ which agrees with 1 � g on the ends. We consider the monopole equations
on yZ perturbed solely by means of a smooth 2–form � on yZ supported in Z as in
Equation (3.3). Let M DM. yZ/ denote the moduli space of monopoles over yZ that
are asymptotic over RC�Y 0j to the unique (reducible) monopole over Y 0j . For generic
� the moduli space M will be free of reducibles and a smooth compact manifold of
dimension

dim M D 2h.Y 0/C
1

4
.c1.LZ /

2
� �.Z//� 1C b1.Z/� bC.Z/;

(see Chapter 9). Choose a base-point x 2 yZ and let Mx be the framed moduli space
defined just as M except that we now only divide out by those gauge transformations
u for which u.x/D 1. Let L!M be the complex line bundle whose sections are
given by maps sW Mx!C satisfying

s.u.!//D u.x/ � s.!/ (14.1)

for all ! 2Mx and gauge transformations u. A choice of homology orientation of Z

determines an orientation of M , and we can then define the Seiberg–Witten invariant
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170 14 A generalized blow-up formula

of Z just as for closed 4–manifolds:

SW.Z/D

(
hc1.L/

k ; ŒM �i if dim M D 2k � 0;

0 if dim M is negative or odd:

The use of L rather than L�1 prevents a sign in Theorem 14.1.1 below. (Another
justification is that, although Mx ! M is a principal bundle with respect to the
canonical U.1/–action, it seems more natural to regard that action as a left action.)
This invariant SW.Z/ depends only on the homology oriented spinc –manifold Z , not
on the choice of positive scalar curvature metric g on Y 0 ; the proof of this is a special
case of the proof of the generalized blow-up formula, which we are now ready to state.

Theorem 14.1.1 Let Z be a compact, connected, homology oriented spinc 4–man-
ifold whose boundary Y 0 satisfies b1.Y

0/D 0 and admits a metric of positive scalar
curvature. Let bC.Z/ > 1, and suppose Z is separated by an embedded rational
homology sphere Y admitting a metric of positive scalar curvature,

Z DZ0[Y Z1;

where b1.Z0/D bC.Z0/D 0. Let Z1 have the orientation, homology orientation and
spinc structure inherited from Z . Then

SW.Z/D SW.Z1/ if dim M. yZ/� 0:

We will show in Section 14.2 that dim M. yZ0/ � �1. (A particular case of this was
proved by different methods in [18, Lemma 8.3].) The addition formula for the index
then yields

dim M. yZ/D dim M. yZ0/C 1C dim M. yZ1/� dim M. yZ1/:

The following corollary describes the effect on the Seiberg–Witten invariant of both
ordinary blow-up and rational blow-down:

Corollary 14.1.1 Let Z0;Z
0
0
;Z1 be compact, connected, homology oriented spinc

4–manifolds with �@Z1 D @Z0 D @Z
0
0
D Y as spinc manifolds, where Y is a spinc

rational homology sphere admitting a metric of positive scalar curvature. Suppose
bC.Z1/ > 1, b1.Z0/D b1.Z

0
0
/D 0 and b2.Z0/D bC.Z0

0
/D 0. Let

Z DZ0[Y Z1; Z0 DZ00[Y Z1

have the orientation, homology orientation and spinc structure induced from Z0 , Z0
0

,
Z1 . Then

SW.Z/D SW.Z0/ if dim M.Z0/� 0:
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14.2 Preliminaries 171

Proof Set n˙ D dim M.˙ yZ0/ and W DZ0[Y .�Z0/. Then

�1D dim M.W /D nCC 1C n�;

hence n˙ D�1. Thus

dim M.Z/D dim M. yZ1/� dim M.Z0/� 0:

The theorem now yields

SW.Z/D SW.Z1/D SW.Z0/:

14.2 Preliminaries

Let X be a connected spinc Riemannian 4–manifold with tubular ends RC � Yj ,
j D 1; : : : ; r , as in Section 1.3. Suppose each Yj is a rational homology sphere
and b1.X / D 0 D bC.X /. We consider the monopole equations on X perturbed
only by means of a 2–form � as in Equation (3.3), where now � is supported in a
given nonempty, compact, codimension 0 submanifold K �X . Let j̨ 2RYj be the
reducible monopole over Yj and M�DM.X I ĘI�I 0/ the moduli space of monopoles
over X with asymptotic limits Ę D .˛1; : : : ; ˛r /. This moduli space contains a unique
reducible point !.�/D ŒA.�/; 0�. Let �C

X ;K
denote the space of (smooth) self-dual

2–forms on X supported in K , with the C1 topology. Let p and w be the exponent
and weight function used in the definition of the moduli space M� , as in Section 3.4.

Lemma 14.2.1 Let R be the set of all � 2�C
X ;K

such that the operator

DA.�/W L
p;w
1

.SC
X
/!Lp;w.S�X / (14.2)

is either injective or surjective. Then R is open and dense in �C
X ;K

.

Of course, whether the operator is injective or surjective for a given �2R is determined
by its index, which is independent of �.

Proof By Proposition 2.3.1 (ii) and the proof of Proposition 5.1.2, the operator

dCW ker.d�/\L
p;w
1
!Lp;w

is an isomorphism. Therefore, if Ao is a reference connection over X with limits j̨

as in Section 3.4 then there is a unique (smooth) aD a.�/ 2L
p;w
1

with

d�aD 0; dCaD� yFC.Ao/� i�:
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172 14 A generalized blow-up formula

Hence we can take A.�/DAoC a.�/. Since the operator (14.2) has closed image, it
follows by continuity of the map � 7!A.�/ that R is open in �C

X ;K
.

To see that R is dense, fix � 2�C
X ;K

and write ADA.�/. Let W be a Banach space
of smooth 1–forms on X supported in K as provided by Lemma 8.2.1. Using the
unique continuation property of the Dirac operator it is easy to see that 0 is a regular
value of the smooth map

hW W � .L
p;w
1

.SC
X
/ n f0g/!Lp;w.S�X /;

.�;ˆ/ 7!DACi�ˆ:

In general, if f1W E! F1 and f2W E! F2 are surjective homomorphisms between
vector spaces then f1jkerf2

and f2jkerf1
have identical kernels and isomorphic coker-

nels. In particular, the projection � W h�1.0/!W is a Fredholm map whose index at
every point agrees with the index m of DA . By the Sard-Smale theorem the regular
values of � form a residual (hence dense) subset of W . If � 2W is a regular value
then we see that DACi� is injective when m � 0 and surjective when m > 0. Since
the topology on W is stronger than the C1 topology it follows that R contains points
of the form �C dC� arbitrarily close to �.

Lemma 14.2.2 Suppose the metric on each Yj has positive scalar curvature. Let R0

be the set of all � 2�C
X ;K

such that the irreducible part M �
� is empty and the operator

DA.�/ in (14.2) is injective. Then R0 is open and dense in �C
X ;K

.

Proof Recall that M �
� has expected dimension 2m� 1, where mD indCDA.�/ .

Suppose m> 0. We will show that this leads to a contradiction. Let R00 be the set of all
� 2�C

X ;K
for which M� is regular. (Note that the reducible point is regular precisely

when DA.�/ is surjective.) From Lemma 14.2.1 and Proposition 8.2.1 one finds that
R00 is dense in �C

X ;K
. (Starting with a given �, first perturb it a little to make the

reducible point regular, then a little more to make also the irreducible part regular.)
But for any � 2R00 the moduli space M� would be compact with one reducible point,
which yields a contradiction as in [21]. Therefore, m� 0.

We now see, exactly as for R00 , that R0 is dense in �C
X ;K

. To prove that R0 is open we
use a compactness argument together with the following fact: For any given �0 2R0

there is a neighbourhood U of !.�0/ in B.X I Ę/ such that

M �
� \U D∅

for any � 2�C
X ;K

with k���0kp sufficiently small. To prove this we work in a slice
at .A.�0/; 0/, ie we represent !.�/ (uniquely) by .A; 0/ where d�.A�A.�0//D 0,
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14.3 The extended monopole equations 173

and we consider a point in M �
� represented by .AC a; �/ where d�a D 0. Note

that since b1.X /D 0, the latter representative is unique up to multiplication of � by
unimodular constants.

Observe that there is a constant C1 <1 such that if k���0kp is sufficiently small
then

k kLp;w

1
� C1kDA kLp;w

for all  2L
p;w
1

. Hence if LD .d�C dC;DA/ then for such � one has

kskLp;w

1
� C2kLskLp;w

for all s2L
p;w
1

. Denoting by SW� the Seiberg–Witten map over X for the perturbation
form � we have

0D SW�.AC a; �/�SW�.A; 0/D .d
Ca�Q.�/;DA�C a�/;

where Q is as in (3.3). Taking s D .a; �/ we obtain

kskLp;w

1
� C2kLskLp;w � C3ksk

2
L2p;w � C4ksk

2
L

p;w

1
:

Since s ¤ 0 we conclude that

kskLp;w

1
� C�1

4 :

Choose ı 2 .0;C�1
4
/ and define

U D fŒA.�0/C b;  � W k.b;  /kLp;w

1
< ı; d�b D 0g:

If k���0kp is so small that kA�A.�0/kLp;w

1
� C�1

4
� ı then

k.AC a�A.�0/; �/kLp;w

1
� kskLp;w

1
�kA�A.�0/kLp;w

1
� ı;

hence ŒAC a; �� 62 U .

14.3 The extended monopole equations

We now return to the situation in Theorem 14.1.1. Set Xj D
yZj for j D 0; 1. Choose

metrics of positive scalar curvature on Y and Y 0 and a metric on the disjoint union
X DX0[X1 which agrees with the corresponding product metrics on the ends. Let
Y be oriented as the boundary of Z0 , so that X0 has an end RC �Y and X1 an end
RC� .�Y /. Gluing these two ends of X we obtain as in Section 1.4 a manifold X .T /

for each T > 0.

Choose smooth monopoles ˛ over Y and ˛0j over Y 0j (these are reducible and unique
up to gauge equivalence). Let So D .Ao; ˆo/ be a reference configuration over X
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174 14 A generalized blow-up formula

with these limits over the ends, and S 0o the associated reference configuration over
X .T / . Adopting the notation introduced in the beginning of Section 10.2, let C be
the corresponding L

p;w
1

configuration space over X and C0 the corresponding L
p;�
1

configuration space over X .T / . For any finite subset b� XW0 DZ0 [Z1 let Gb;G0b
be the corresponding groups of gauge transformations that restrict to 1 on b.

As in Section 14.2 we first consider the monopole equations over X and X .T / perturbed
only by means of a self-dual 2–form � D �0C�1 , where �j is supported in Zj .
The corresponding moduli spaces will be denoted M.X / and M .T / DM.X .T //. Of
course, M.X / is a product of moduli spaces over X0 and X1 :

M.X /DM.X0/�M.X1/:

By Lemma 14.2.2 we can choose �0 such that M.X0/ consists only of the reducible
point (which we denote by !red D ŒAred; 0�), and such that the operator

DAred W L
p;w
1

.SC
X0
/!Lp;w.S�X0

/ (14.3)

is injective. By Proposition 8.2.1 and unique continuation for self-dual closed 2–forms
we can then choose �1 such that

� M.X1/ is regular and contains no reducibles,

� the irreducible part of M .T / is regular for all natural numbers T .

Set k D�indC.DAred/� 0:

If k > 0 then !red is not a regular point of M.X0/ and we cannot appeal to the gluing
theorem, Theorem 10.1.1, for describing M .T / when T is large. We will therefore
introduce an extra parameter z 2Ck into the Dirac equation on Z0 , to obtain what we
will call the “extended monopole equations”, such that !red becomes a regular point
of the resulting parametrized moduli space over X0 . This will allow us to apply the
gluing theorem for parametrized moduli spaces, Theorem 13.3.1.

We are going to add to the Dirac equation an extra term ˇ.A; ˆ; z/ which will be a
product of three factors:

(i) a holonomy term hA (to achieve gauge equivariance),

(ii) a cutoff function g.A; ˆ/ (to retain an apriori pointwise bound on ˆ),

(iii) a linear combination
P

zj j of certain negative spinors (to make !red regular).

We will now describe these terms more precisely.
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14.3 The extended monopole equations 175

(i) Choose an embedding f W R4! int.Z0/, and set x0 D f .0/ and U0 D f .R
4/.

For each x 2 U0 let x W Œ0; 1�! U0 be the path from x0 to x given by

x.t/D f .tf
�1.x//:

For any spinc connection A over U0 define the function hAW U0! U.1/ by

hA.x/D exp
�
�

Z
Œ0;1�

 �x .A�Ared/

�
;

cf Equation (10.1). Note that hA depends on the choice of Ared , which is only
determined up to modification by elements of G .

(ii) Set K0 D f .D
4/, where D4 � R4 is the closed unit disk. Choose a smooth

function gW B�.K0/ ! Œ0; 1� such that g.A; ˆ/ D 0 when kˆkL1.K0/ � 2 and
g.A; ˆ/ D 1 when kˆkL1.K0/ � 1. Extend g to B.K0/ by setting g.A; 0/ D 1

for all A.

(iii) By unique continuation for the formal adjoint D�
Ared

there are smooth sections
 1; : : : ;  k of S�

X0
supported in K0 and spanning a linear complement of the image

of the operator DAred in (14.3).

For any configuration .A; ˆ/ over X and z D .z1; : : : ; zk/ 2Ck define

ˇ.A; ˆ; z/D g.A; ˆ/ hA

kX
jD1

zj j :

Note that for gauge transformations u over X one has

u.x0/ hu.A/ D u hA:

Since g is gauge invariant, this yields

ˇ.u.A/;uˆ;u.x0/z/D u �ˇ.A; ˆ; z/:

The following lemma is useful for estimating the holonomy term hA :

Lemma 14.3.1 Let a D
P

aj dxj be a 1–form on the closed unit disk Dn in Rn ,
n> 1. For each x 2Dn let J.x/ denote the integral of a along the line segment from
0 to x , ie

J.x/D

nX
jD1

xj

Z 1

0

aj .tx/ dt:
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Then for any q � 1 and r > qn and nonnegative integer k there is a constant C <1

independent of a such that

kJkLq

k
.Dn/ � CkakLr

k
.Dn/:

Proof If b is a function on Dn and � the characteristic function of the interval Œ0; 1�
then Z

Dn

Z 1

0

b.tx/ dt dx D

Z
Dn

b.x/

Z 1

0

t�n�.t�1
jxj/ dt dx

D
1

n� 1

Z
Dn

.jxj1�n
� 1/ b.x/ dx:

From this basic calculation the lemma is easily deduced.

It follows from the lemma that a 7! hAredCa defines a smooth map L
p
1
.K0I iƒ

1/!

L
q
1
.K0/ provided p > 4q > 16. Hence, if p > 16 (which we henceforth assume) then

C.K0/�Ck
!Lp.K0IS

�/; ..A; ˆ/; z/ 7! ˇ.A; ˆ; z/

is a smooth map whose derivative at every point is a compact operator. Here C.K0/ is
the L

p
1

configuration space over K0 .

The extended monopole equations for ..A; ˆ/; z/ 2 C �Ck are

yFC
A
C i��Q.ˆ/D 0;

DAˆCˇ.A; ˆ; z/D 0:
(14.4)

(Compare the holonomy perturbations of the instanton equations constructed by Don-
aldson [13, 2 (b)].) Define actions of G and G0 on C�Ck and C0�Ck respectively by

u.S; z/D .u.S/;u.x0/z/:

Then the left hand side of (14.4) describes a G–equivariant smooth map C�Ck!Lp;w .

For � > 0 let B2k
� �Ck denote the open ball of radius � about the origin, and D2k

�

the corresponding closed ball. For 0< � � 1 set

�Mb.X /D fsolutions ..A; ˆ/; z/ 2 C �B2k
� to (14.4)g

.
Gb;

This moduli space is clearly a product of moduli spaces over X0 and X1 :

�Mb.X /D �Mb0
.X0/�Mb1

.X1/;

where bj D b\Xj .
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Noting that the equations (14.4) also make sense over X .T / we define

�M
.T /
b D fsolutions ..A; ˆ/; z/ 2 C0 �B2k

� to (14.4)g
.
G0b :

We define �Mb.X / and �M .T /
b in a similar way as �Mb.X / and �M

.T /
b , but with

D2k
� in place of B2k

� .

Choose a base-point x1 2Z1 . We will only consider the cases when b is a subset of
fx0;x1g, and we indicate b by listing its elements (writing �Mx0;x1

and �M etc).

Lemma 14.3.2 Any element of 1M.X0/ or 1M .T / has a smooth representative.

Proof Given Lemma 14.3.1 this is proved in the usual way.

Lemma 14.3.3 There is a C <1 independent of T such that kˆk1 < C for all
elements ŒA; ˆ; z� of 1M.X / or 1M .T / .

Proof Suppose jˆj achieves a local maximum � 2 at some point x . If x 62K0 then
one obtains a bound on jˆ.x/j using the maximum principle as in [30, Lemma 2]. If
x 2K0 then the same works because then g.A; ˆ/D 0.

Lemma 14.3.4 1M.X / and 1M .T / are compact for all T > 0.

Proof Given Lemma 14.3.1 and Lemma 14.3.3, the second approach to compactness
carries over.

We identify Mb0
.X0/ with the set of elements of 1Mb0

.X0/ with zD 0, and similarly
for moduli spaces over X;X .T / . It is clear from the definition of ˇ.A; ˆ; z/ that !red

is a regular point of 1M.X0/. Since 1Mx0
.X0/ has expected dimension 0, it follows

that !red is an isolated point of 1Mx0
.X0/. Because 1Mx0

.X0/ is compact, there is an
� such that �Mx0

.X0/ consists only of the point !red . Fix such an � for the remainder
of the chapter.

Lemma 14.3.5 If !n 2 �M
.Tn/ with Tn !1 then a subsequence of f!ng chain-

converges to .!red; !/ for some ! 2M.X1/.

Proof Again, this is proved using the second approach to compactness.

Corollary 14.3.1 If T � 0 then �M
.T / contains no element which is reducible

over Z1 .
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14.4 Applying the gluing theorem

Let HolD Hol1 be defined as in Equation (10.1) in terms of a path in X .T / from x0

to x1 running once through the neck.

By Proposition 10.4.1, if K1 D .X1/Wt with t� 0 then there is a U.1/–invariant open
subset V1�B�x1

.K1/DBx1
.K1/ containing RK1

.Mx1
.X1//, and a U.1/–equivariant

smooth map
q1W V1!Mx1

.X1/

such that q1.!jK1
/D ! for all ! 2Mx1

.X1/. Here RK1
denotes restriction to K1 .

It follows from Lemma 14.3.5 that if T is sufficiently large then !jK1
2 V1 for all

! 2 �M
.T /
x1

.

Proposition 14.4.1 For all sufficiently large T the moduli space �M
.T /
x1

is regular
and the map

�M
.T /
x1
!Mx1

.X1/; ! 7! q1.!jK1
/ (14.5)

is an orientation preserving U.1/–equivariant diffeomorphism.

Proof We will apply the version of Theorem 13.3.1 with (in the notation of that
chapter) T acting nontrivially on W . Set

G D �Mx0;x1
.X /D f!redg �Mx1

.X1/;

K DK0[K1;

V D Bx0
.K0/�V1 �B2k

� :

Note that G is compact and MGb.K/D Gb.K/. Define

qW V !G; .!0; !1; z/ 7! .!red; q1.!1//:

In general, an element .u0;u1/ 2 U.1/2 acts on appropriate configuration and moduli
spaces like any gauge transformation u with u.xj /D uj , j D 0; 1, and it acts on B2k

�

by multiplication with u0 . Then clearly, q is U.1/2 –equivariant, so by the gluing
theorem there is a compact, codimension 0 submanifold K0 �X containing K and
a U.1/2 –equivariant open subset V 0 � B�x0;x1

.K0/ �B2k
� containing RK 0.G/ and

satisfying RK .V
0/� V and such that for all sufficiently large T the space

H .T /
D f.!; z/ 2 �M

.T /
x0;x1

W .!jK 0 ; z/ 2 V 0g

consists only of regular points, and the map

H .T /
! U.1/� �Mx0;x1

.X /; .!; z/ 7! .Hol.!/; .!red; q1.!jK1
/// (14.6)
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is a U.1/2 –equivariant diffeomorphism. But it follows from Lemma 14.3.5 that H .T /D

�M
.T /
x0;x1

for T � 0, and dividing out by the action of U.1/�f1g in (14.6) we see that
(14.5) is a U.1/–equivariant diffeomorphism.

We now discuss orientations. Let X have the direct sum homology orientation inherited
from X0 and X1 (corresponding to the direct sum orientation of the operators �d�C

dC ; see Section 12.6). Then the map (14.6) is orientation preserving by Theorem 13.3.1.
Using Proposition 12.7.1 it is a simple exercise to show that �Mx0;x1

.X /!Mx1
.X1/

preserves orientations if and only if b1.X1/C bC.X1/ is even. On the other hand,
.u0; 1/ 2 U.1/�f1g acts on U.1/ in (14.6) by multiplication with u�1

0
. Recalling our

convention for orienting framed moduli spaces (see the last paragraph of Section 12.2)
we find that the signs cancel and the map (14.5) does preserve orientations.

Proof of Theorem 14.1.1 For large T let L! �M
.T / be the complex line bundle

associated to the base-point x1 as in Section 14.1. For j D 1; : : : ; k the map

sj W �M
.T /
x1
!C; ŒA; ˆ; z� 7! Hol.A/ � zj

is U.1/–equivariant in the sense of (14.1) and therefore defines a smooth section of L.
The sections sj together form a section s of the bundle ED

Lk L whose zero set is
the unparametrized moduli space M .T / . It is easy to see that s is a regular section
precisely when M .T / is a regular moduli space, which by Corollary 14.3.1 and the
choice of �1 holds at least when T is a sufficiently large natural number. In that case
s�1.0/DM .T / as oriented manifolds. Set

`D
1

2
dim M .T /

� 0;

so that dim M.X1/D 2.kC `/. If ` is not integral then SW.Z1/D 0D SW.Z/ and
we are done. Now suppose ` is integral and let T be a large natural number. Choose a
smooth section s0 of E0D

L` L such that � D s0jM .T / is a regular section of E0jM .T / ,
or equivalently, such that s˚ s0 is a regular section of E˚E0 D

LkC`L. Then

SW.Z1/D #.s˚ s0/�1.0/D #��1.0/D SW.Z/;

where the first equality follows from Proposition 14.4.1, and # as usual means a signed
count.
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APPENDIX A

Patching together gauge transformations

In the proof of Lemma 4.1.1 we encounter sequences Sn of configurations such that
for any point x in the base-manifold there is a sequence vn of gauge transformations
defined in a neighbourhood of x such that vn.Sn/ converges (in some Sobolev norm)
in a (perhaps smaller) neighbourhood of x . The problem then is to find a sequence un

of global gauge transformations such that un.Sn/ converges globally. If vn; wn are
two such sequences of local gauge transformations then vnw

�1
n will be bounded in the

appropriate Sobolev norm, so the problem reduces to the lemma below.

This issue was discussed by Uhlenbeck in [50, Section 3]. Our approach has the
advantage that it does not involve any “limiting bundles”.

Lemma A.0.1 Let X be a Riemannian manifold and P !X a principal G –bundle,
where G is a compact subgroup of some matrix algebra Mr .R/. Let Mr .R/ be
equipped with an AdG –invariant inner product, and fix a connection in the Euclidean
vector bundle E D P �AdG

Mr .R/ (which we use to define Sobolev norms of au-
tomorphisms of E ). Let fUig

1
iD1

, fVig
1
iD1

be open covers of X such that Ui b Vi

for each i . We also assume that each Vi is the interior of a compact codimension 0

submanifold of X , and that @Vi and @Vj intersect transversally for all i ¤ j . For each
i and nD 1; 2; : : : let vi;n be a continuous automorphism of P jVi

. Suppose vi;nv
�1
j ;n

converges uniformly over Vi \Vj for each i; j (as maps into E ). Then there exist

� a sequence of positive integers n1 � n2 � � � � ,

� for each positive integer k an open subset Wk �X with

k[
iD1

Ui b Wk �

k[
iD1

Vi ;
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182 A Patching together gauge transformations

� for each k and n� nk a continuous automorphism wk;n of P jWk
,

such that the following hold:

(i) If 1� j � k and n� nk then wj ;n D wk;n on
Sj

iD1
Ui .

(ii) For each i; k the sequence wk;nv
�1
i;n converges uniformly over Wk \Vi .

(iii) If 1 � p <1, and m > n=p is an integer such that vi;n 2 L
p
m;loc for all i; n

then wk;n 2L
p
m;loc for all k and n� nk . If in addition

sup
n
kvi;nv

�1
j ;nkLp

m.Vi\Vj /
<1 for all i; j

then sup
n�nk

kwk;nv
�1
i;n kLp

m.Wk\Vi /
<1 for all k; i :

The transversality condition ensures that the Sobolev embedding theorem holds for
Vi \Vj (see Adams [1]). Note that this condition can always be achieved by shrinking
the Vi ’s a little.

Proof Let N 0 � LG be a small AdG invariant open neighbourhood of 0. Then
expW LG!G maps N 0 diffeomorphically onto an open neighbourhood N of 1. Let
f W N !N 0 denote the inverse map. Let Aut.P / the bundle of fibre automorphisms
of P and gP the corresponding bundle of Lie algebras. Set ND P �AdG

N � gP and
let exp�1W N! Aut.P / be the map defined by f .

Set w1;nDv1;n and W1DV1 . Now suppose wk;n , Wk have been chosen for 1�k<`,
where `� 2, such that (i)–(iii) hold for these values of k . Set znDw`�1;n.v`;n/

�1 on
W`�1\V` . According to the induction hypothesis the sequence zn converges uniformly
over W`�1 \V` , hence there exists an integer n` � n`�1 such that yn D .zn`/

�1zn

takes values in N for n� n` .

Choose an open subset W � X which is the interior of a compact codimension 0

submanifold of X , and which satisfies

`�1[
iD1

Ui bW b W`�1:

We also require that @W intersect @Vi\@Vj transversally for all i; j . (For instance, one
can take W D ˛�1.Œ0; ��/ for suitable � , where ˛W X ! Œ0; 1� is any smooth function
with ˛ D 0 on

S`�1
iD1 Ui and ˛ D 1 on W`�1 .) Choose also a smooth, compactly
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supported function �W W`�1!R with �jW D 1. Set W` DW [V` and for n� n`
define an automorphism w`;n of P jW` by

w`;n D

8̂<̂
:
w`�1;n on W ,

zn` exp.� exp�1 yn/v`;n on W`�1\V`,

zn`v`;n on V` n supp.�/.

Then (i)–(iii) hold for k D ` as well. To see that (iii) holds, note that our transversality
assumptions guarantee that the Sobolev embedding theorem holds for W`�1\V` and
for all Vi \ Vj . Since mp > n, L

p
m is therefore a Banach algebra for these spaces

(see [1]). Recalling the proof of this fact, and the behaviour of L
p
m under composition

with smooth maps on the left (see McDuff–Salamon [37, p 184]), one obtains (iii).
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APPENDIX B

A quantitative inverse function theorem

In this appendix E;E0 will be Banach spaces. We denote by B.E;E0/ the Ba-
nach space of bounded operators from E to E0 . If T 2 B.E;E0/ then kT k D
supkxk�1 kT xk. If U �E is open and f W U !E0 smooth then Df .x/ 2 B.E;E0/
is the derivative of f at x 2 U . The second derivative D.Df /.x/ 2 B.E;B.E;E0//
is usually written D2f .x/ and can be identified with the symmetric bilinear map
E �E!E0 given by

D2f .x/.y; z/D
@2

@s@t

ˇ̌̌̌
ˇ
.0;0/

f .xC syC tz/:

The norm of the second derivative is

kD2f .x/k D sup
kyk;kzk�1

kD2f .x/.y; z/k:

For r > 0 let Br D fx 2E W kxk< rg:

Lemma B.0.2 Let �;M > 0 be positive real numbers such that �M < 1, and suppose
f W B�!E is a smooth map satisfying

f .0/D 0I Df .0/D I I kD2f .x/k �M for x 2 B� :

Then f restricts to a diffeomorphism f �1B�=2
�
! B�=2 .

The conclusion of the lemma holds even when �M D 1; see Proposition B.0.2 below.

Proof The estimate on D2f gives

kDf .x/� Ik D kDf .x/�Df .0/k �M kxk: (B.1)

185



186 B A quantitative inverse function theorem

Therefore the map

h.x/D f .x/�x D

Z 1

0

.Df .tx/� I/x dt

satisfies

kh.x/k �
M

2
kxk2;

kh.x2/� h.x1/k � �M kx2�x1k

for all x;x1;x2 2B� . Hence for every y 2B�=2 the assignment x 7! y�h.x/ defines
a map B� ! B� which has a unique fix-point. In other words, f maps f �1B�=2
bijectively onto B�=2 . Moreover, Df .x/ is an isomorphism for every x 2 B� , by
(B.1). Applying the contraction mapping argument above to f around an arbitrary
point in B� then shows that f is an open map. It is then a simple exercise to prove
that the inverse gW B�=2! f �1B�=2 is differentiable and Dg.y/ D .Df .g.y///�1

(see Dieudonné [10, 8.2.3]). Repeated application of the chain rule then shows that g

is smooth.

For r > 0 let Br �E be as above, and define B0r �E0 similarly.

Proposition B.0.2 Let �;M be positive real numbers and f W B�!E0 a smooth map
such that f .0/D 0, LDDf .0/ is invertible and

kD2f .x/k �M for all x 2 B� .

Set � D kL�1k�1� �M and �0 D �kL�1k�1 . Then the following hold:

(i) If � � 0 then f is a diffeomorphism onto an open subset of E0 containing
B0
�0=2

.

(ii) If � > 0 and gW B0
�0=2
!B� is the smooth map satisfying f ıgD I then for all

x 2 B� and y 2 B0
�0=2

one has

kDf .x/�1
k; kDg.y/k< ��1; kD2g.y/k<M��3:

The reader may wish to look at some simple example (such as a quadratic polynomial)
to understand the various ways in which these results are optimal.

Proof (i) For every x 2 B� we have

kDf .x/L�1
� Ik � kDf .x/�Lk � kL�1

k< �M kL�1
k � 1;
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hence Df .x/ is invertible. Thus f is a local diffeomorphism by Lemma B.0.2. Set
h.x/D f .x/�Lx . If x1;x2 2 B� and x1 ¤ x2 then

kf .x2/�f .x1/k � kL.x2�x1/k�kh.x2/� h.x1/k> �kx2�x1k;

hence f is injective. By choice of �0 the map

zf D f ıL�1
W B0�0=2!E0

is well defined, and for every y 2 B0
�0=2

one has

kD2 zf .y/k �M kL�1
k

2:

Because �0M kL�1
k

2
D �M kL�1

k � 1;

Lemma B.0.2 says that the image of zf contains every ball B0
ı=2

with 0< ı < �0 , hence
also B0

�0=2
.

(ii) Set c D I �Df .x/L�1 . Then

Df .x/�1
DL�1

1X
nD0

cn;

hence kDf .x/�1
k �
kL�1k

1�kck
<

kL�1k

1� �M kL�1k
D ��1:

This also gives the desired bound on Dg.y/DDf .g.y//�1 .

To estimate D2g , let Iso.E;E0/�B.E;E0/ be the open subset of invertible operators,
and let �W Iso.E;E0/!B.E0;E/ be the inversion map: �.a/D a�1 . Then � is smooth,
and its derivative is given by

D�.a/b D�a�1ba�1

(see Dieudonné [10]). The chain rule says that

Dg D � ıDf ıg;

D.Dg/.y/DD�.Df .g.y/// ıD.Df /.g.y// ıDg.y/:

This gives

kD.Dg/.y/k � kDf .g.y//�1
k

2
� kD.Df /.g.y//k � kDg.y/k

< ��2
�M � ��1:

Geometry & Topology Monographs, Volume 15 (2008)





APPENDIX C

Splicing left or right inverses

Let X be a Riemannian manifold with tubular ends as in Section 1.4 but of arbitrary
dimension. Let E! X be a vector bundle which over each end RC � .˙Yj / (resp.
RC�Y 0j ) is isomorphic (by a fixed isomorphism) to the pullback of a bundle Ej ! Yj

(resp. E0j ! Y 0j ). Let F !X be another bundle of the same kind. Let DW �.E/!

�.F / be a differential operator of order d � 1 which is translationary invariant over
each end and such that for each j the restrictions of D to RC �Yj and RC � .�Yj /

agree in the obvious sense. The operator D gives rise to a glued differential operator
D0W �.E0/!�.F 0/ over X .T / , where E0;F 0 are the bundles over X .T / formed from
E;F resp. Let k; `;m be nonnegative integers and 1 � p <1. Let L

p

k
.X IF /W0

denote the subspace of L
p

k
.X IF / consisting of those elements that vanish a.e. outside

XW0 . We can clearly also identify L
p

k
.X IF /W0 with a subspace of L

p

k
.X .T /IF 0/. Let

V W L
p

kCd
.XW0IE/˚R`!L

p

k
.X IF /W0˚Rm

be a bounded operator and set

P DDCV W L
p

kCd
.X IE/˚R`!L

p

k
.X IF /˚Rm;

.s;x/ 7! .Ds; 0/CV .sjXW0 ;x/:

Define the operator P 0 DD0CV over X .T / similarly.

Proposition C.0.3 If P has a bounded left (resp. right) inverse Q then for Tmin >

C1kQk the operator P 0 has a bounded left (resp. right) inverse Q0 with kQ0k<C2kQk.
Here the constants C1;C2 <1 depend on the restriction of D to the ends RC�.˙Yj /

but are otherwise independent of P .
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190 C Splicing left or right inverses

For left inverses this was proved in a special case in Lemma 5.4.1, and the general case
is not very different. However, we would like to have the explicit expression for the
right inverse on record, since this is used both in Section 10.2 and in Section 12.4.

Proof Choose smooth functions f1; f2W R!R such that .f1.t//
2C.f2.1� t//2D 1

for all t , and fk.t/D 1 for t � 1=3, k D 1; 2. Define ˇW X !R by

ˇ D

8̂<̂
:
f1.t=.2Tj // on each end RC �Yj ,

f2.t=.2Tj // on each end RC � .�Yj /,

1 elsewhere,

where t is the first coordinate on RC � .˙Yj /. If s0 is a section of F 0 let the section
x̌.s0/ of F be the result of pulling s0 back to X fT g by means of �fT g , multiplying
by ˇ , and then extending trivially to all of X . (The notation �fT g was introduced in
Section 1.4.) If x 2Rm set x̌.s0;x/D . x̌.s0/;x/. For any section s of E we define a
section ˇ.s/ of E0 as follows when Tmin � 3=2. Outside Œ�TjC1;Tj �1��Yj we set
ˇ.s/D s . Over Œ�Tj ;Tj ��Yj let ˇ.s/ be the sum of the restrictions of the product ˇs

to Œ0; 2Tj ��Yj and Œ0; 2Tj �� .�Yj /, identifying both these bands with Œ�Tj ;Tj ��Yj

by means of the projection �fT gW X fT g! X .T / . If x 2 R` set ˇ.s;x/D .ˇ.s/;x/.
Note that

ˇ x̌ D I:

Now suppose Q is a left or right inverse of P . Define

R0 D ˇQ x̌ WL
p

k
.X .T /

IF 0/˚Rm
!L

p

kCd
.X .T /

IE0/˚R`:

If QP D I then a simple calculation yields

kR0P 0� Ik � C T �1
minkQk:

Therefore, if Tmin > CkQk then R0P 0 is invertible and Q0 D .R0P 0/�1R0 is a left
inverse of P 0 . Similarly, if PQD I then

kP 0R0� Ik � C T �1
minkQk;

hence Q0DR0.P 0R0/�1 is a right inverse of P 0 when Tmin>CkQk. In both cases the
constant C depends on the restriction of D to the ends RC � .˙Yj / but is otherwise
independent of P . As for the bound on kQ0k; see the proof of Lemma 10.2.4.

From the proposition one easily deduces the following version of the addition formula
for the index, which was proved for first order operators in [14].

Geometry & Topology Monographs, Volume 15 (2008)



C Splicing left or right inverses 191

Corollary C.0.1 If
DW L

p

kCd
.X IE/!L

p

k
.X IF /

is Fredholm, then for sufficiently large Tmin ,

D0W L
p

kCd
.X .T /

IE0/!L
p

k
.X .T /

IF 0/

is Fredholm with ind.D0/D ind.D/.
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