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An overview of abelian varieties in homotopy theory

TYLER LAWSON

We give an overview of the theory of formal group laws in homotopy theory, leading
to the connection with higher-dimensional abelian varieties and automorphic forms.

55P42; 55N34, 55P43

1 Introduction

The goal of this paper is to provide an overview of joint work with Behrens on
topological automorphic forms [7]. The ultimate hope is to introduce a somewhat broad
audience of topologists to this subject matter connecting modern homotopy theory,
algebraic geometry, and number theory.

Through an investigation of properties of Chern classes, Quillen discovered a connection
between stable homotopy theory and 1–dimensional formal group laws [40]. After
almost 40 years, the impacts of this connection are still being felt. The stratification of
formal group laws in finite characteristic gives rise to the chromatic filtration in stable
homotopy theory (see Ravenel [41]), and has definite calculational consequences. The
nilpotence and periodicity phenomena in stable homotopy groups of spheres arise from
a deep investigation of this connection (see Devinatz, Hopkins and Smith [13]).

Formal group laws have at least one other major manifestation: the study of abelian
varieties. The examination of this connection led to elliptic cohomology theories and
topological modular forms, or tmf (Hopkins [24]). One of the main results in this theory
is the construction of a spectrum tmf, a structured ring object in the stable homotopy
category. The homotopy groups of tmf are, up to finite kernel and cokernel, the ring of
integral modular forms (Deligne [10]) via a natural comparison map. The spectrum tmf
is often viewed as a “universal” elliptic cohomology theory corresponding to the moduli
of elliptic curves. Unfortunately, the major involved parties have not yet published a
full exposition of this theory. The near-future reader is urged to consult Behrens [5],
as well as seek out some of the unpublished literature and reading lists on topological
modular forms if more background study is desired.

Algebraic topology is explicitly tied to 1–dimensional formal group laws, and so the
formal group laws of higher-dimensional abelian varieties (and larger possible “height”
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invariants of those) are initially not connected to topology. The goal of [7] was to create
generalizations of the theory of topological modular forms, through certain moduli of
abelian varieties with extra data specifying 1–dimensional summands of their formal
group laws.

The author doubts that it is possible to cover all of this background to any degree of
detail within the confines of a paper of reasonable size, even restricting to those subjects
that are of interest from a topological point of view. In addition, there are existing (and
better) sources for this material. Therefore, our presentation of this material is informal,
and we will try to list references for those who find some subject of interest to them.
We assume a basic understanding of stable homotopy theory, and an inevitable aspect
of the theory is that we require more and more of the language of algebraic geometry
as we proceed.

A rough outline of the topics covered follows.

In Sections 2 and 3 we begin with some background on the connection between the
theory of complex bordism and formal group laws. We next discuss in Section 4 the
basic theories of Hopf algebroids and stacks, and the relation between stack cohomology
and the Adams–Novikov spectral sequence in Section 5. We then discuss the problem
of realizing formal group law data by spectra, such as is achieved by the Landweber
exact functor theorem and the Goerss–Hopkins–Miller theorem, in Section 6. Examples
of multiplicative group laws are discussed in Section 7, and the theories of elliptic
cohomology and topological modular forms in Sections 8 and 9. We then discuss the
possibility of moving forward from these known examples in Section 10, by discussing
some of the geometry of the moduli of formal groups and height invariants.

The generalization of the Goerss–Hopkins–Miller theorem due to Lurie, without which
the subject of topological automorphic forms would be pure speculation, is introduced
in Section 11. We view it as our point of entry: given this theorem, what kinds of new
structures in homotopy theory can we produce?

The answer, in the form of various moduli of higher-dimensional abelian varieties,
appears in Section 12. Though the definitions of these moduli are lifted almost directly
from the study of automorphic forms, we attempt in Sections 13, 14, and 15 to indicate
why this data is natural to require in order produce moduli satisfying the hypotheses of
Lurie’s theorem. In Section 16, we try to indicate why some initial choices are made
the way they are.

One of the applications in mind has been the construction of finite resolutions of the
K.n/–local sphere. Henn has given finite length algebraic resolutions allowing compu-
tation of the cohomology of the Morava stabilizer group in terms of the cohomology
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of finite subgroups [21]. Goerss, Henn, Mahowald and Rezk [17] and Behrens [6]
gave analogous constructions of the K.2/–local sphere at the prime 3 out of a finite
number of spectra of the form EhG

2
, where E2 is a Lubin–Tate spectrum and G is a

finite subgroup of the Morava stabilizer group. The hope is that these constructions
will generalize to other primes and higher height by considering diagrams of abelian
varieties and isogenies.

None of the (correct) material in this paper is new.

2 Generalized cohomology and formal group laws

Associated to a generalized cohomology theory E with (graded) commutative multipli-
cation, we can ask whether there is a reasonable theory of Chern classes for complex
vector bundles.

The base case is that of line bundles, which we view as being represented by homotopy
classes of maps X ! BU.1/DCP1 for X a finite CW–complex. An orientation of
E is essentially a first Chern class for line bundles. More specifically, it is an element
u 2E2.CP1/ whose restriction to E2.CP1/ŠE0 is the identity element 1 of the
ring E� . For any line bundle L on X represented by a map f W X !CP1 , we have
an E–cohomology element c1.L/D f

�.u/ 2E2.X / which is the desired first Chern
class.

Orientations do not necessarily exist; for instance, real K–theory KO does not have an
orientation. When orientations do exist, we say that the cohomology theory is complex
orientable. An orientation is not necessarily unique; given any orientation u, any power
series vD

P
biu

iC1 with bi 2E2i ; b0D 1 determines another orientation and another
Chern class. Any other orientation determines and is determined uniquely by such a
power series.

Given an orientation of E , we can derive computations of E�.BU.n// for all n� 0,
and conclude that for a vector bundle � on a finite complex X there are higher Chern
classes ci.�/ 2E2i.X / satisfying naturality, the Cartan formula, the splitting principle,
and almost all of the desirable properties of Chern classes in ordinary cohomology. See
Adams [1].

The one aspect of this theory that differs from ordinary cohomology has to do with
tensor products. For line bundles L1 and L2 , there is a tensor product line bundle
L1˝L2 formed by taking fiberwise tensor products. On classifying spaces, if Li are
classified by maps fi W X ! BU.1/, the tensor product is classified by � ı .f1 �f2/,
where �W BU.1/�BU.1/! BU.1/ comes from the multiplication map on U.1/.
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There is a universal formula for the tensor product of two line bundles in E–cohomology,
given by the formula

c1.L˝L0/D
X

ai;j c1.L/
ic1.L

0/j

for ai;j 2E2iC2j�2 . This formula is valid for all line bundles but the coefficients ai;j

depend only on the orientation. We often denote this power series in the alternate formsX
ai;j xiyj

D F.x;y/D xCF y:

This last piece of notation is justified as follows. The tensor product of line bundles is
associative, commutative, and unital up to natural isomorphism, and so by extension
the same is true for the power series xCF y :

� xCF 0D x

� xCF y D yCF x

� .xCF y/CF z D xCF .yCF z/

These can be written out in formulas in terms of the coefficients ai;j , but the third
is difficult to express in closed form. A power series with coefficients in a ring R

satisfying the above identities is called a (commutative, 1–dimensional) formal group
law over R, or just a formal group law.

The formal group law associated to E depends on the choice of orientation. However,
associated to a different orientation vD g.u/, the formal group law G.x;y/D xCG y

satisfies

g.xCF y/D g.x/CG g.y/:

We say that two formal group laws differing by such a change of coordinates for a
power series g.x/ D x C b1x2 C � � � are strictly isomorphic. (If we forget which
orientation we have chosen, we have a formal group law without a choice of coordinate
on it, or a formal group.)

The formal group detects so much intricate information about the cohomology theory
E that it is well beyond the scope of this document to explore it well (see Ravenel
[41]). For certain cohomology theories E (such as Landweber exact theories discussed
in Section 6), the formal group determines the cohomology theory completely. One can
then ask, for some spaces X , to understand the cohomology groups E�.X / in terms
of the formal group data. For example, if X D BUh6i, this turns out to be related to
cubical structures (Ando, Hopkins and Strickland [2]).
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3 Quillen’s theorem

There is a cohomology theory MU associated to complex bordism and equipped with
an orientation u. There is also a “smash product” cohomology theory MU ^MU

coming equipped with two orientations u and v , one per factor of MU , and hence
with two formal group laws with a strict isomorphism g between them.

The ring L D MU� forming the ground ring for complex bordism was calculated
by Milnor [35], and similarly for W D .MU ^MU /� . Both are infinite polynomial
algebras over Z, the former on generators xi in degree 2i , the latter on the xi and
additional generators bi (also in degree 2i ). The following theorem, however, provides
a more intrinsic description of these rings.

Theorem 3.1 (Quillen) The ring L is a classifying object for formal group laws in
the category of rings, ie associated to a ring R with formal group law F , there is a
unique ring map �W L!R such that the image of the formal group law in L is F .

The ring W ŠLŒb1; b2; : : :� is a classifying object for pairs of strictly isomorphic formal
group laws in the category of rings, ie associated to a ring R with a strict isomorphism
g between formal group laws F and G , there is a unique ring map �W W !R such
that the image of the strict isomorphism in W is the strict isomorphism in R.

(It is typical to view these rings as geometric objects Spec.L/ and Spec.W /, which
reverses the variance; in schemes, these are classifying objects for group scheme
structures on a formal affine scheme yA1 .)

The structure of the ring L was originally determined by Lazard, and it is therefore
referred to as the Lazard ring.

There are numerous consequences of Quillen’s theorem. For a general multiplicative
cohomology theory R, the theory MU ^R inherits the orientation u, and hence
a formal group law. The cohomology theory MU ^MU ^R has two orientations
arising from the orientations of each factor, and these two differ by a given strict
isomorphism. For more smash factors, this pattern repeats. Philosophically, we have a
ring MU�R with formal group law, together with a compatible action of the group of
strict isomorphisms.

Morava’s survey [37] is highly recommended.

4 Hopf algebroids and stacks

The pair .MU;MU ^MU / and the associated rings .L;W / have various structure
maps connecting them. Geometrically, we have the following maps of schemes.
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Spec.L/ // Spec.W /
pp
nn

��
Spec.W /�Spec.L/Spec.W /oo

These maps and their relationships are most concisely stated by saying that the result is
a groupoid object in schemes. We view Spec.L/ as the “object” scheme and Spec.W /

as the “morphism” scheme, and the maps between them associate:

� an identity morphism to each object

� source and target objects to each morphism

� an inverse to each morphism

� a composition to each pair of morphisms where the source of the first is the
target of the second

The standard categorical identities (unitality, associativity) become expressed as identi-
ties which the morphisms of schemes must satisfy.

A pair of rings .A; �/ with such structural morphisms is a representing object for a
covariant functor from rings to groupoids; such an object is generally referred to as a
Hopf algebroid [41, Appendix A].

Example 4.1 Associated to a map of rings R ! S , we have the Hopf algebroid
.S;S ˝R S/, sometimes called the descent Hopf algebroid associated to this map of
rings. This represents the functor on rings which takes a ring T to category whose
objects are morphisms from S! T (or T–points of Spec.S/), and where two objects
are isomorphic by a unique isomorphism if and only if they have the same restriction
to R! T .

More scheme-theoretically, given a map Y !X of schemes, we get a groupoid object
.Y;Y �X Y / in schemes with the same properties.

Example 4.2 If S is a ring with an action of a finite group G , then there is a Hopf
algebroid .S;

Q
G S/ representing a category of points of Spec.S/ and morphisms

the action of G by precomposition.

Again in terms of schemes, associated to a scheme Y with a (general) group G acting,
we get a groupoid object .Y;

`
G Y / in schemes. It is a minor but perpetual annoyance

that infinite products of rings do not correspond to infinite coproducts of schemes;
Spec.R/ is always quasi-compact.
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Example 4.3 If .A; �/ is a Hopf algebroid and A! B is a map of rings, then there
is an induced Hopf algebroid .B;B˝A �˝A B/.1 The natural map

.A; �/! .B;B˝A �˝A B/

represents a fully faithful functor between groupoids, with the map on objects being
the map from points of Spec.B/ to points of Spec.A/. This is an equivalence of
categories on T–points if and only if this map of categories is essentially surjective
(every object is isomorphic to an object in the image).

In schemes, if .X;Y / is a groupoid object in schemes and Z ! X is a morphism,
there is the associated pullback groupoid .Z;Z �X Y �X Z/ with a map to .X;Y /.

In principle, for a groupoid object .X;Y / there is an associated “quotient object,” the
coequalizer of the source and target morphisms Y ! X . This categorical coequalizer,
however, is generally a very coarse object. The theories of orbifolds and stacks are
designed to create “gentle” quotients of these objects by remembering how these points
have been identified rather than just remembering the identification.

To give a more precise definition of stacks, one needs to discuss Grothendieck topologies.
A Grothendieck topology gives a criterion for a family of maps fU˛ ! X g to be a
“cover” of X ; for convenience we will instead regard this as a criterion for a single
map

`
U˛!X to be a cover. The category of stacks in this Grothendieck topology

has the following properties:

� Stacks, like groupoids, form a 2–category (having morphisms and natural trans-
formations between morphisms)

� The category of stacks is closed under basic constructions such as 2–categorical
limits and colimits

� Associated to a groupoid object .X;Y /, there is a functorial associated stack
As.X;Y /

� If Z!X is a cover in the Grothendieck topology, then the map of groupoids
.Z;Z �X Y �X Z/! .X;Y / induces an equivalence on associated stacks

In some sense stacks are characterized by these properties (see Hollander [22]). In
particular, to construct a map from a scheme V to the associated stack As.X;Y / is
the same as to find a cover U ! V and a map from the descent object .U;U �V U /

to .X;Y /, modulo a notion of natural equivalence.

Stacks appear frequently when classifying families of objects over a base. In particular,
in the case of the Hopf algebroid of formal group laws .Spec.L/;Spec.W // classifying

1Note that the “descent” Hopf algebroid is a special case.
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formal group laws and strict isomorphisms, the associated stack MsFG is referred to
as the moduli stack of formal groups (and strict isomorphisms)2.

The theory of stacks deserves much better treatment than this, and the reader should
consult other references (see Goerss [16], Naumann [39], Hopkins [23], Vistoli [49],
Laumon [30]). What this rough outline is meant to do is perhaps provide some intuition.
Stacks form some family of categorical objects including quotients by group actions,
having good notions of gluing. A Hopf algebroid gives a presentation, or a coordinate
chart, on a stack.

When algebraic topology studies these topics, it is typically grounded in the study of
Hopf algebroids; the more geometric language of stacks is adopted more recently and
less often. There are several reasons for this.

This link to algebraic geometry historically only occurred through Hopf algebroids.
The development of structured categories of spectra has made some of these links more
clear, but there is still some foundational work to be done on coalgebras and comodules
in spectra.

Additionally, the theory and language of stacks are not part of the typical upbringing
of topologists, and have a reputation for being difficult to learn. By contrast, Hopf
algebroids and comodules admit much more compact descriptions.

Finally, there is the aspect of computation. Algebraic topologists need to compute the
cohomology of the stacks that they study, and Hopf algebroids provide very effective
libraries of methods for this. In this respect, we behave much like physicists, who
become intricately acquainted with particular methods of computation and coordinate
charts for doing so, rather than regularly taking the “global” viewpoint of algebraic
geometry. (The irony of this situation is inescapable.)

By default, when we speak about stacks in this paper our underlying Grothendieck
topology is the fpqc (faithfully flat, quasi-compact) topology. Most other Grothendieck
topologies in common usage are not geared to handle infinite polynomial algebras such
as the Lazard ring.

2As L and W are graded rings, this moduli stack inherits some graded aspect as well that can be
confusing from a geometric point of view. It is common to replace MU with a 2–periodic spectrum MP

to remove all gradings from the picture; the resulting Hopf algebroid arising from MP and MP ^MP

classifies formal group laws and non-strict isomorphisms, but has the gradings removed. The associated
stack is usually writtenMFG , and has the same cohomology.
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5 Cohomology and the Adams–Novikov spectral sequence

We fix a Hopf algebroid .A; �/, and assume � is a flat A–module (equivalently under
either the source or target morphism). We regard the source and target morphisms
A! � as right and left module structures respectively.

A comodule over this Hopf algebroid is a left A–module M together with a map of
left A–modules

�W M ! �˝A M:

We require that the composite

M
�
!�˝A M

�˝1
�!A˝A M

is the identity, where � is the augmentation �!A, and that the two composites

.c˝ 1/�; .1˝�/�W M ! �˝A �˝A M

are equal, where c is the comultiplication �!�˝A� . (This map is typically referred
to as a coaction which is counital and coassociative.)

The structure of a comodule is equivalent to having an isomorphism of � –modules

�˝s
A M ! �˝t

A M;

tensor product along the source and target A–module structures on � respectively,
satisfying some associativity typically appearing in the study of descent data.

The category of .A; �/ comodules forms an abelian category. This category is the cat-
egory of quasicoherent sheaves on the associated stack MDAs.Spec.A/;Spec.�//.
In general, one needs to show that homological algebra in this category can reasonably
be carried out; see Franke [15] for details.

Ignoring the fine details, one can define the coherent cohomology of the stack with
coefficients in a comodule M to be

Ext�q-c=M.A;M /D Ext�.A;�/.A;M /:

This is computed by the cobar complex

0!M ! �˝A M ! �˝A �˝A M ! � � � ;

where the boundary maps are alternating sums of unit maps, comultiplications, and
the coaction on M . A better definition is that these groups are the derived functors of
the global section functor on the stack. As such, this is genuinely an invariant of the
stack itself, and this underlies many change-of-rings isomorphisms: for example, for a
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faithfully flat map A! B the associated cobar complex for the comodule B˝A M

over .B;B˝A �˝A B/ computes the same cohomology. (This is both an important
aspect of the theory of “faithfully flat descent” and a useful computational tactic.)

The importance of coherent cohomology for homotopy theory is the Adams–Novikov
spectral sequence. For a spectrum X , the MU –homology MU�X inherits the structure
of an .L;W /–comodule, and we have the following result.

Theorem 5.1 There exists a (bigraded) spectral sequence with E2 –term

Ext��.L;W /.L;MU�X /

whose abutment is ��X . If X is connective, the spectral sequence is strongly conver-
gent.

This spectral sequence arises through a purely formal construction in the stable
homotopy category, and does not rely on any stack-theoretic constructions. It is a
generalization of the Adams spectral sequence, which is often stated using cohomology
and has E2 –term Ext over the mod-p Steenrod algebra.

We can recast this in terms of stacks. Any spectrum X produces a quasicoherent sheaf
on the moduli stack of formal group laws, and there is a spectral sequence converging
from the cohomology of the stack with coefficients in this sheaf to the homotopy of X .
Because in this way we see ourselves “recovering X from the quasicoherent sheaf,”
we find ourselves in the position to state the following.

Slogan 5.2 The stable homotopy category is approximately the category of quasico-
herent sheaves on the moduli stack of formal groups MsFG .3

This approximation, however, is purely in terms of algebra and it does not genuinely
recover the stable homotopy category. (The Mahowald uncertainty principle claims
that any algebraic approximation to stable homotopy theory must be infinitely far from
correct.) However, the reader is invited to consider the following justification for the
slogan.

An object in the stable homotopy category is generally considered as being “approxi-
mated” by its homotopy groups; they provide the basic information about the spectrum,
but they are connected together by a host of k –invariants that form the deeper structure.

3Strictly speaking, one should phrase this in terms of MU –local spectra, which are the only spectra
that MU can recover full information about. The current popular techniques concentrate on MU –local
spectra, as they include most of the examples of current interest and we have very few tactics available to
handle the rest.
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The spectrum MU is a highly structured ring object, and the pair .MU;MU ^MU /

forms a “Hopf algebroid” in spectra. A general spectrum X gives rise to a comodule
MU ^X , and there is a natural map

X ! F.MU;MU ^MU /.MU;MU ^X /

from X to the function spectrum of comodule maps; if we believe in flat descent in
the category of spectra, this map should be a weak equivalence when X is “good.”
The Adams–Novikov spectral sequence would then simply be an algebraic attempt to
recover the homotopy of the right-hand side by a universal coefficient spectral sequence
(Ext on homotopy groups approximates homotopy groups of mapping spaces).

The author is hopeful that the theory of comodules in spectra will soon be fleshed out
rigorously.

We note that, in line with this slogan, Franke has proven that for 2.p� 1/ > n2C n,
the homotopy category of En –local spectra at the prime p is the derived category of
an abelian category [15], generalizing a result of Bousfield for nD 1 (see Bousfield
[9]). As is standard, this excludes the primes where significant nontrivial behavior is
present in the homotopy category.

6 Realization problems

Given our current state of knowledge, it becomes reasonable to ask questions about
our ability to construct spectra.

(1) Can we realize formal group laws by spectra?
(2) Can we realize them functorially?

More precisely.

(1) Suppose we have a graded ring R with formal group law F . When can we con-
struct an oriented ring spectrum E whose homotopy is R and whose associated
generalized cohomology theory has formal group law F ?

(2) Suppose we have a diagram of graded rings R˛ and formal group laws F˛
equipped with strict isomorphisms f W Fˇ! f �F˛ of formal group laws for
any map f W R˛ ! Rˇ in the diagram, satisfying g ı g�.f / D gf . When
can we realize this as a diagram fE˛g of ring spectra?

More refined versions of these questions can also be asked; we can ask for the realiza-
tions to come equipped with highly structured multiplication in some fashion.
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Two of the major results in this direction are the Landweber exact functor theorem and
the Goerss–Hopkins–Miller theorem.

We recall from Ravenel [41, Appendix 2] that for any prime p , there is a sequence of
elements .p; v1; v2; : : :/ of L such that, if F is the universal formal group law over
the Lazard ring L,

Œp�.x/D xCF � � � CF x � vnxpn

mod .p; v1; � � � ; vn�1/:

The elements vn are well-defined modulo lower elements, but there are multiple choices
of lifts of them to L (such as the Hazewinkel or Araki elements) that each have their
advocates. (By convention, v0 D p .)

Associated to a formal group law over a field k classified by a map �W L! k , there
are height invariants:

htp.F /D inffn j �.vn/¤ 0g:

For example, F has height 0 at p if and only if the field k does not have characteristic
p . Over an algebraically closed field of characteristic p , the height invariant htp
determines the formal group up to isomorphism (but not up to strict isomorphism).

Theorem 6.1 [28; 45] Suppose that M is a graded module over the Lazard ring L.
Then the functor sending a spectrum X to the graded abelian group

M ˝L MU�.X /

defines a generalized homology theory if and only if, for all primes p and all n, the
map vn is an injective self-map of M=.p; : : : ; vn�1/:

We refer to such an object as a Landweber exact theory. May showed that such theories
can be realized by MU–modules [32, Theorem 8], and Hovey–Strickland showed
that there is a functorial lifting from the category of Landweber exact theories to the
homotopy category of MU–modules [25]. In addition, there are results for L–algebras
rather than L–modules.

This theorem can be used to gives rise to numerous theories; complex K–theory KU is
one such by the Conner–Floyd theorem. Other examples include the Brown–Peterson
spectra BP and Johnson–Wilson spectra E.n/.

In the case of complex K–theory, we have also have a more refined multiplicative
structure and the Adams operations  r . There is a generalization of this structure due
to Goerss–Hopkins–Miller [43; 18].

Associated to a formal group law F over a perfect field k of characteristic p , there is
a complete local ring LT.k;F /, called the Lubin–Tate ring, with residue field k . The
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Lubin–Tate ring carries a formal group law zF equipped with an isomorphism of its
reduction with F . If F has htp.F /D n, then

LT.k;F /ŠW .k/ŒŒu1; � � � ;un�1��;

where W .k/ is the Witt ring of k .

This ring is universal among such local rings, as follows. Given any local ring R

with nilpotent maximal ideal m and residue field an extension ` of k , together with a
formal group law G over R such that G and F have the same extension to `, there
exists a unique ring map LT.k;F /!R carrying zF to G . In particular, the group of
automorphisms of F acts on LT.k;F /.

Theorem 6.2 (Goerss–Hopkins–Miller) There is a functor

EW fformal groups over perfect fields, isosg ! fE1 ring spectrag

such that the homotopy groups of E.k;F / are LT.k;F /Œu˙1�, where juj D 2.

This spectrum is variously referred to as a Hopkins–Miller spectrum, Lubin–Tate
spectrum, or Morava E–theory spectrum. It is common to denote by En the spectrum
associated to the particular example of the Honda formal group law over the field Fpn ,
which has height n. Even worse, this theory is sometimes referred to as the Lubin–Tate
theory of height n. To do so brushes the abundance of different multiplicative forms of
this spectrum under the rug.

We note that this functorial behavior allows us to construct cohomology theories that are
not complex oriented. For instance, the real K–theory spectrum KO is the homotopy
fixed point spectrum of the action of the group f1;  �1g on KU , and the K.n/–
local spheres LK.n/S are fixed point objects of the full automorphism groups of the
Lubin–Tate theories [12].

The extra multiplicative structure on the Lubin–Tate spectra allows us to speak of
categories of modules and smash products over them, both powerful tools in theory
and application. The functoriality in the Goerss–Hopkins–Miller theorem allows one
to construct many new spectra via homotopy fixed-point constructions. These objects
are now indispensable in stable homotopy theory.

7 Forms of the multiplicative group

The purpose of this section is to describe real K–theory as being recovered from
families of formal group laws, and specifically cohomology theories associated to
forms of the multiplicative group.
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There is a multiplicative group scheme Gm over Z. It is described by the Hopf algebra
ZŒx˙1�, with comultiplication x 7! x˝x . For a ring R, the set of R–points of Gm

is the unit group R� . The formal completion of this at x D 1 is a formal group yGm .

However, there are various nonisomorphic forms of the multiplicative group over other
base rings that become isomorphic after a flat extension. For example, there is a Hopf
algebra

Z
�

1
2
;x;y

�
=.x2

Cy2
� 1/;

with comultiplication x 7! .x˝x�y˝y/;y 7! .x˝yCy˝x/. For a ring R, the
set of R–points is the set

fxC iy j x2
Cy2

D 1g;

with multiplication determined by i2 D�1. Although all forms of the multiplicative
group scheme become isomorphic over an algebraically closed field, there is still
number-theoretic content locked into these various forms.

We now parametrize these structures. Associated to any pair of distinct points ˛; ˇ2A1 ,
there is a unique group structure on P1 n f˛; ˇg with 1 as unit. The pair of points is
determined uniquely by being the roots of a polynomial x2CbxCc with discriminant
�D b2� 4c a unit. Explicitly, the group structure is given by

.x1;x2/ 7!
x1x2� c

x1Cx2� b
:

This has a chosen coordinate 1=x near the identity of the group structure. By taking
a power series expansion of the group law, we get a formal group law. We note that
given b and c in a ring R, we can explicitly compute the p–series as described in
Section 6, and find that the image of v1 2L=p is

.ˇ�˛/p�1
D�.p�1/=2:

Therefore, such a formal group law over a ring R is always Landweber exact when
multiplication by p is injective for all p .

An isomorphism between two such forms of P1 must be given by an automorphism of
P1 preserving 1, and hence a linear translation x 7! �xC r . Expanding in terms of
1=x , such an isomorphism gives rise to a strict isomorphism if and only if �D 1.

We therefore consider the following three Hopf algebroids parametrizing isomorphism
classes of quadratics x2C bxC c , or forms of the multiplicative group, in different
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ways.

AD Z Œb; c; .b2
� 4c/�1�

�A DA Œr �

B D Z Œ˛; ˇ; .˛�ˇ/�1�

�B D B Œr; s�=.s2
C .˛�ˇ/s/

C D Z Œ˛˙1�

�C D C Œs�=.s2
C˛s/

These determine categories such that, for any ring T , the T–points are given as follows.

.A; �A/W fquadratics x2C bxC c, translations x 7! xC rg

.B; �B/W fquadratics .x�˛/.x�ˇ/,
translations x 7! xC r plus interchanges of ˛ and ˇg

.C; �C /W fquadratics x2�˛x, transformations x 7! xC˛g

There is a natural faithfully flat map A ! B given by b 7! �.˛ C ˇ/; c 7! ˛ˇ

corresponding to a forgetful functor on quadratics. The induced descent Hopf algebroid
.B;B˝A�A˝AB/ is isomorphic to .B; �B/, and so the two Hopf algebroids represent
the same stack.

The category given by the second is naturally equivalent to a subcategory given by the
third Hopf algebroid for all T . We can choose a universal representative for this natural
equivalence given by the natural transformation �B! B of B –algebras sending r to
ˇ and s to 0, showing that these also represent the same stack.

The third Hopf algebroid, finally, is well-known as the Hopf algebroid computing the
homotopy of real K–theory KO .

In this way, we “recover” real K–theory as being associated to the moduli stack of
forms of the multiplicative group in a way compatible with the formal group structure.

We note that, by not inverting the discriminant b2 � 4c , we would recover a Hopf
algebroid computing the homotopy of the connective real K–theory spectrum ko. On
the level of moduli stacks, this allows the degenerate case of the additive formal group
scheme Ga of height 1. Geometrically, this point is dense in the moduli of forms of
Gm .

8 Elliptic curves and elliptic cohomology theories

One other main source of formal group laws in algebraic geometry is given by elliptic
curves.
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Over a ring R, any equation of the form

y2
C a1xyC a3y D x3

C a2x2
C a4xC a6

(a Weierstrass equation) determines a closed subset of projective space P2 . There is a
discriminant invariant � 2R which is a unit if and only if the group scheme is smooth.
See [47, Chapter III].

There is a commutative group law on the nonsingular points with Œ0 W 1 W 0� 2 P2 as
identity. Three distinct points p , q , and r are colinear in P2 if and only if they add to
zero in the group law.

The coordinate x=y determines a coordinate near 1 in the group scheme, and expand-
ing the group law in power series near 1 gives a formal group law over R.

Two Weierstrass curves are isomorphic over R if and only if there is a unit ƒ 2R�

and r; s; t 2R such that the isomorphism is given by x 7! �2xC r;y 7! �3yC sxC t .
The isomorphism induces a strict isomorphism of formal group laws if and only if
�D 1.

An elliptic curve over a general scheme has a formal definition, but can be formed
by patching together such Weierstrass curves locally (in the flat topology). There is a
Hopf algebroid representing the groupoid of nonsingular Weierstrass curves and strict
isomorphisms, given by

AD Z Œa1; a2; a3; a4; a6; �
�1�;

� DA Œr; s; t �:

The associated stack Mell is a moduli stack of elliptic curves (and strict isomorphisms).
The natural association taking such an elliptic curve to its formal group law gives a
map of stacks

Mell !MsFG

to the moduli stack of formal groups.

One can instead think of this moduli stack as parametrizing pairs .E; !/ of an elliptic
curve E and a nonzero invariant 1–form ! on E . The invariant 1–form determines a
coordinate near the unit of the elliptic curve up to first order, and a map of such elliptic
curves then induces a strict isomorphism if and only if it preserves the form.

An elliptic cohomology theory consists of a cohomology theory E which is weakly
even periodic4, together with an elliptic curve over Spec.E0/ and an isomorphism of

4A spectrum is weakly even periodic if the nonzero homotopy groups are concentrated in even degrees,
and the product Ep ˝E0

Eq !EpCq is always an isomorphism for p; q even.
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formal group laws between the formal group law associated to the elliptic curve and
the formal group law of the spectrum. Landweber exact theories of this form were
investigated by Landweber–Ravenel–Stong based on a Jacobi quartic [29]. In terms
of the moduli, we would like to view these as arising from schemes Spec.E0/ over
Mell with spectra realizing them.

Similarly, by allowing the possibility of elliptic curves with nodal singularities (so that
the resulting curve is isomorphic to P1 with two points identified, with multiplication
on the smooth locus a form of Gm ), we get a compactification Mell of the moduli of
elliptic curves. The object Mell is a smooth Deligne–Mumford stack over Spec.Z/
[11]. This stack is more difficult to express in terms of Hopf algebroids.

Based on our investigation of forms of the multiplicative formal group, it is natural
to ask whether there is a “universal” elliptic cohomology theory associated to Mell

and a universal elliptic cohomology theory with nodal singularities associated to Mell .
Here we could interpret universality as being either a lift of the universal elliptic curve
over this stack, or being somehow universal among elliptic cohomology theories.

If 6 is invertible in R, each Weierstrass curve is isomorphic (via a unique strict
isomorphism) to a uniquely determined elliptic curve of the form y2 D x3C c4xC c6 .
This universal elliptic curve over the (graded) ring ZŒ1

6
; c4; c6; �

�1� has a Landweber
exact formal group law, and hence is realized by a cohomology theory generally denoted
by El l [3].

We would be remiss if we did not mention the inspiring connection to multiplicative
genera and string theory [2].

9 Topological modular forms

The theories TMFŒ��1�, TMF, and tmf of topological modular forms are extensions
of the construction of the universal elliptic theory El l . This extension occurs in several
directions.

� These theories are all realized by E1 ring spectra, with the corresponding
increase in structure on categories of modules and algebras.

� These theories are universal objects, in that they can be constructed as a limit of
elliptic cohomology theories. TMFŒ��1� and TMF are associated to the moduli
stacks Mell and Mell respectively. These are not elliptic cohomology theories
themselves, just as KO is not a complex oriented theory due to the existence of
forms of Gm with automorphisms.
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� Unlike El l , these theories carry information at the primes 2 and 3. In particular,
they detect a good portion of interesting 2- and 3–primary information about
stable homotopy groups of spheres.

The construction of these theories (due to Hopkins et al.) has yet to fully appear in the
literature, but has nevertheless been highly influential in the subject for several years.

An interpretation in terms of sheaves is as follows. On the moduli Mell and Mell

of elliptic curves, any étale map (roughly, a map which is locally an isomorphism,
such as a covering map) from Spec.R/ can be realized by a highly structured elliptic
cohomology theory in a functorial way. Stated another way, we have a lift of the
structure sheaf O of the stack in the étale topology to a sheaf Oder of commutative
ring spectra.

(We should mention that associated to modular curves, which are certain coverings of
Mell , these structure sheaves give rise to versions of TMF with level structures. This
construction, however, may require certain primes to be inverted.)

The homotopy of TMFŒ��1� is computable via the Adams–Novikov spectral sequence
[4; 44], whose E2 –term is the cohomology of the Weierstrass curve Hopf algebroid of
Section 8. Similarly, the Adams–Novikov spectral sequence for the homotopy of TMF
has E2 –term given in terms of the cohomology of the compactified moduli Mell . The
zero-line of each of these spectral sequences can be identified with a ring of modular
forms over Z.

The spectrum tmf also has homotopy computed by the Weierstrass algebroid, but
without the discriminant inverted. It corresponds to a moduli of possibly singular
elliptic curves where we allow the possibility of curves with additive reduction, or cusp
singularities. As a spectrum, however, tmf is generally constructed as a connective
cover of TMF and does not fit well into the theory of “derived algebraic geometry”
due to Lurie et al.

10 The moduli stack of formal groups

We have discussed several cohomology theories here with relationships to the moduli
stack of formal groups MsFG . It is time to elaborate on the geometry of this moduli
stack.

From this point forward, we fix a prime p and focus our attention there. In particular,
all rings and spectra are assumed to be p–local, or p–localized if not.
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We recall that a formal group law over an algebraically closed field of characteristic
p is classified uniquely up to isomorphism by its height invariant. In terms of the
Lazard ring L, we have a sequence of elements p; v1; v2; � � � , with each prime ideal
.p; v1; : : : ; vn�1/ cutting out an irreducible closed substack M�n

sFG
of the moduli stack.

It turns out that these prime ideals (and their union) are the only invariant prime ideals
of the moduli. The intersection of all these closed substacks is the height-1 locus.

As a result, we have a stratification of the moduli stack into layers according to height.
There is a corresponding filtration in homotopy theory called the chromatic filtration,
and it has proved to be a powerful organizing principle for understanding large-scale
phenomena in homotopy theory (see Ravenel [41] and Devinatz, Hopkins and Smith
[13]). We note that the Landweber exact functor theorem might be interpreted as a
condition for a map Spec.R/!MsFG to be flat.

Having said this, we would like to indicate how the various cohomology theories we
have discussed fit into this filtration.

Rational cohomology, represented by the Eilenberg–Maclane spectrum HQ, has the
prime p D v0 inverted. It hence lives over the height 0 open substack of MsFG .

Mod-p cohomology, represented by the Eilenberg–Maclane spectrum HFp , has the
additive formal group law xCF y D xCy , and hence is concentrated over the height
1 closed substack.

We saw in Section 7 that forms of the multiplicative formal group law have the quantity
v1 invertible. These theories, exemplified by complex K–theory KU and real K–
theory KO , therefore are concentrated over the open substack of heights less than or
equal to 1. (The connective versions ko and ku of these spectra are concentrated over
heights 0, 1, and 1.) The work of Morava on forms of K–theory also falls into this
region [36].

It is a standard part of the theory of elliptic curves in characteristic p that there are
two distinct classes: the ordinary curves, whose formal groups have height 1, and the
supersingular curves, whose formal groups have height 2. The theories TMFŒ��1�

and TMF, and indeed all elliptic cohomology theories, are therefore concentrated on
the open substack of heights less than or equal to 2. (The connective spectrum tmf is
concentrated over heights 0, 1, 2, and 1.)

As these theories only detect “low” chromatic phenomena, they are limited in their
ability to detect phenomena in stable homotopy theory. It is natural to ask for us to
find cohomology theories that elaborate on the chromatic layers in homotopy theory at
all heights.
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It is worth remarking that an understanding of chromatic level one led to proofs of the
Hopf invariant one problem, and hence to the final solution of the classical problem
about vector fields on spheres. Referring to chromatic level two as “low” is incredibly
misleading. The computations involved in stable homotopy theory at chromatic level
two are quite detailed (see Shimomura and Wang [46] and Goerss, Henn, Mahowald
and Rezk [17]), and the Kervaire invariant problem is concentrated at this level. Very
little is computationally known beyond this point.

Several examples of spectra with higher height are given by the Morava theories
mentioned in Section 6. The Morava E–theory spectrum E.k;F / associated to a
formal group law of height n<1 over a perfect field k is concentrated over the height
� n open substack of MsFG . In some sense, however, these theories are controlled
by their behavior at height exactly n, and do not have much “interpolating” behavior.
They are also more properly viewed as “pro-objects” (inverse systems) in the stable
homotopy category, and have homotopy groups that are not finitely generated as abelian
groups. Finally, these theories are derived strictly from the formal group point of view
in homotopy theory, and they can be difficult to connect to geometric content.

More examples are given by the Johnson–Wilson theories E.n/, which are not known
to have much structured multiplication for n> 1.

More “global” examples are given by spectra denoted eon , where eo2 is tmf. These
spectra take as starting point the Artin–Schreier curve

yp�1
D xp

�x:

In characteristic p , this curve has a large symmetry group that also acts on the Jacobian
variety. The Jacobian has a higher-dimensional formal group, but the group action
produces a 1–dimensional split summand of this formal group with height p � 1.
Hopkins and Gorbunov–Mahowald5 initiated an investigation of a Hopf algebroid
associated to deformations of this curve of the form

yp�1
D xp

�xC
X

uix
i ;

whose realization would be a spectrum denoted by eop�1 (see Gorbounov and Ma-
howald [19]). Ravenel generalized this to the Artin–Schreier curve

ypf�1
D xp

�x;

whose formal group law has a 1–dimensional summand of height .p � 1/f and an
interesting symmetry group [42]. However, the existence of spectrum realizations is (at
the time of this writing) still not known.

5The author’s talk at the conference misattributed this, and multiple attendees corrected him; he would
like to issue an apology.
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11 p–divisible groups and Lurie’s theorem

In 2005, Lurie announced a result that gave sufficient conditions to functorially realize
a family of 1–dimensional formal group laws by spectra given certain properties and
certain extra data. The extra data comes in the form of a p–divisible group (or Barsotti–
Tate group), and the necessary property is that locally the structure of the p–divisible
group determines the geometry. In this section we introduce some basics on these
objects. The interested reader should consult Tate [48] or Messing [33].

A p–divisible group G over a an algebraically closed field k consists of a (possibly
multi-dimensional) formal group F of finite height h and a discrete group isomorphic
to .Q=Z/r , together in an exact sequence

0! F !G! .Q=Z/r ! 0:

The integer nD hC r is the height of G , and the dimension of the formal component
F is the dimension of G .

However, we require a more precise description in general. Over a base scheme X , a
p–divisible group actually consists of a sequence of finite, flat group schemes GŒpk �

(the pk –torsion) over X with GŒp0�D 0 and inclusions GŒpk ��GŒpkC1� such that
the multiplication-by-p map factors as

GŒpkC1�� GŒpk ��GŒpkC1�:

The height and dimension of the p–divisible group are locally constant functions on
X , equivalent to the rank of GŒp� and the dimension of its tangent space. At any
geometric point x 2X , the restriction of the p–divisible group to x lives in the natural
short exact sequence

0!Gfor
!Gx!Gét

! 0;

with the subobject (the connected component of the unit) the formal component and the
quotient the étale component. The formal component Gfor is a formal group on X .
The height of the formal component is an upper semicontinuous function on X , and
gives rise to a stratification of X which is the pullback of the stratification determined
by the regular sequence .p; v1; : : :/.

In fact, a deeper investigation into the isomorphism classes of p–divisible groups over
a field gives rise to a so-called “Newton polygon” associated to a p–divisible group
and a Newton polygon stratification. However, for p–divisible groups of dimension 1

this is equivalent to the formal-height stratification.
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Similar to formal group laws, there is a deformation theory of p–divisible groups.
Each p–divisible group G of height n over a perfect field k of characteristic p has a
universal deformation zG over a ring analogous to the Lubin–Tate ring.

For any n <1, there is a formal moduli Mp.n/ of p–divisible groups of height n

and dimension 1 and their isomorphisms. The author is not aware of any amenable
presentations of a moduli stack analogous to the presentation of the moduli of formal
group laws, and whether a well-behaved Hopf algebroid exists modeling this stack
seems to still be open. From a formal point of view, the category of maps from a
scheme X to Mp.n/ should be the category of p–divisible groups of height n on
X , and the association G 7!Gfor gives a natural transformation from Mp.n/ to the
moduli of formal groups MFG .

We state a version of Lurie’s theorem here.

Theorem 11.1 (Lurie) Let M be an algebraic stack over Zp
6 equipped with a

morphism
M!Mp.n/

classifying a p–divisible group G . Suppose that at any point x 2M, the complete
local ring of M at x is isomorphic to the universal deformation ring of the p–divisible
group at x . Then the composite realization problem

M!Mp.n/!MFG

has a canonical solution; that is, there is a sheaf of E1 even weakly periodic E on the
etale site of M with E0 locally isomorphic to the structure sheaf and the associated
formal group G isomorphic to the formal group Gfor . The space of all solutions is
connected and has a preferred basepoint.

The proof of Lurie’s theorem requires the Hopkins–Miller theorem to provide objects for
local comparison, and so generalizations without the “universal deformation” condition
are not expected without some new direction of proof. We also note that the theorem
does not apply as stated to the compactified moduli Mell , and so only gives a proof of
the existence of TMFŒ��1� rather than TMF.

Our perspective, however, is to view this theorem as a black box. It tells us that if we
can find a moduli M such that

� M has a canonically associated 1–dimensional p–divisible group G of height
n, and

6The stackM must actually be formal, with p topologically nilpotent.
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� the local geometry of M corresponds exactly to local deformations of G ,

then we can find a canonical sheaf of spectra on M. Having this in hand, our goal is
to seek examples of such moduli.

Unfortunately, several examples mentioned in previous sections do not immediately
seem to have attached p–divisible groups. The deformations of Artin–Schreier curves
in the previous section, or Johnson–Wilson theories, do not a priori have attached
p–divisible groups.7

At the other extreme, one could ask to realize the moduli stack Mp.n/ itself by a
spectrum. This stack has geometry very close to the moduli of formal groups. In
particular, it still breaks down according to height, but is truncated at height n and
has extra structure at heights below n. The resulting object should give an interesting
perspective on chromatic homotopy theory.

The main obstruction to this program, however, seems to be the difficulty in find-
ing a presentation of this stack or any reasonable information about the category of
quasicoherent sheaves.

12 PEL Shimura varieties and TAF

Based on Lurie’s theorem, it becomes natural to seek moduli problems with associated 1–
dimensional p–divisible groups of height n in order to produce new spectra. Following
the approaches of Gorbunov–Mahowald and Ravenel, we approach this through abelian
varieties. However, rather than considering families of plane curves and their Jacobians,
we consider families of abelian varieties equipped with extra structure. The stunning
fact is that the precise assumptions needed to produce reasonable families of p–divisible
groups occur already in families of PEL abelian varieties of a type studied classically
by Shimura, and of the specific kind featured in Harris and Taylor’s proof of the local
Langlands correspondence [20]. The reader interested in these varieties should refer to
Milne [34] and then Kottwitz [27].

One of the main places that p–divisible groups occur in algebraic geometry is from
group schemes. For any (connected) commutative group scheme G , we have maps
representing multiplication by pk :

Œpk �W G!G:

7In the Artin–Schreier case, the question becomes one of deforming the 1–dimensional split summand
of the Jacobian at the Artin–Schreier curve to a 1–dimensional p–divisible group at all points. The author
is not aware of a solution to this problem at this stage.
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The identity element e 2G has a scheme-theoretic inverse image GŒpk ��G . Associ-
ated to a group scheme G over a given base X , the system GŒpk � forms a p–divisible
group G.p/ under sufficient assumptions on G , such as if G is an abelian variety.

For example, consider the multiplicative group scheme over Spec.R/, given by GmD

Spec.RŒt˙1�/. The multiplication-by-pk map is given on the ring level by the map
t 7! tpk

, and the scheme-theoretic preimage of the identity is the subscheme of solutions
of tpk

D 1, or
Spec.RŒt˙1�=.tpk

� 1//:

If R has characteristic zero, then this scheme has pk distinct points over each geometric
point of Spec.R/. If R has characteristic p , then this scheme is isomorphic to

Spec.RŒt˙1�=.t � 1/p
k

/:

Each geometric point has only one preimage in this case, and so the p–divisible group
Gm.p/ is totally formal.

The basic problem is as follows.

� The only 1–dimensional group schemes over an algebraically closed field are
the additive group Ga , the multiplicative group Gm , and elliptic curves.

� The p–divisible group of an n-dimensional abelian variety A has height 2n

and dimension n.

As a result, if we decide that we will consider moduli of higher-dimensional abelian
varieties, we need some way to cut down the dimension of the p–divisible group to 1.
As in the Mahowald–Gorbunov–Ravenel approach, we can carry this out by assuming
that we have endomorphisms of the abelian variety splitting off a 1–dimensional
summand G canonically.

However, we also must satisfy a condition on the local geometry. What this translates
to in practice is the following: given an infinitesimal extension of the p–divisible group
G , we must be able to complete this to a unique deformation of the element in the
moduli.

Our main weapon in this task is the following. See Katz [26] for a proof, due to
Drinfel’d.

Theorem 12.1 (Serre–Tate) Suppose we have a base scheme X in which p is locally
nilpotent, together with an abelian scheme8 A=X . Any deformation of the p–divisible
group A.p/ determines a unique deformation of A.

8An abelian scheme is a family of abelian varieties over the base.
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Some of the language here is deliberately vague. However, this is more easily stated
in terms of fields. Suppose that k is a field of characteristic p , and R is a local ring
with nilpotent maximal ideal m and residue field k . Then the category of abelian
schemes over R is naturally equivalent (via a forgetful functor) to the category of
abelian varieties A over k equipped with extensions of their p–divisible group A.p/

to R.

This does the heavy lifting for us. If we can specify a moduli of abelian varieties with a 1–
dimensional summand G of the p–divisible group that controls the entire p–divisible
group in some way, we will be done. This is accomplished via the aforementioned
moduli of PEL Shimura varieties. For simplicity, we consider the case of simple
complex multiplication, rather than an action by a division algebra, leaving generality
to other references.

To define these Shimura varieties requires the compilation of a substantial dossier. We
simply present this now, and make it our goal in the following sections to justify why
all these pieces of data are important for us to include.

We first must state some necessary facts from the theory of abelian schemes without
proof.

� If A is an abelian scheme, the dual abelian scheme A_ is the identity component
Pic0.A/ of the group of line bundles on A. Duals exist over a general base
scheme, dualization is a contravariant functor, and the double-dual is canonically
isomorphic to A.

� There is a compatible dualization functor on p–divisible groups with a canon-
ical isomorphism A_.p/ Š .A.p//_ . Dualization preserves height, but not
dimension. However, we have that dim.G/C dim.G_/ is the height of G/.

� An isogeny A! B between abelian schemes is a surjection with finite kernel;
it expresses B as isomorphic to A=H for H a finite subgroup scheme of A.
An isogeny is prime-to-p if the kernel has rank prime to p (as a group scheme).

� The endomorphism ring End.A.p// is p -complete, and hence a Zp -algebra.

Fix an integer n and continue to fix a prime p . Let F be a quadratic imaginary
extension field of Q, and OF the ring of integers of F . We require that F be chosen
so that p splits in F , ie OF ˝ Zp Š Zp � Zp . In particular, we can choose an
idempotent e 2OF ˝Zp such that e ¤ 0; 1. Complex conjugation is forced to take e

to 1� e .

In addition, we need to fix one further piece of data required to specify a level structure,
which will be discussed in Section 15.
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We consider the functor that associates to a scheme X over Zp the category of tuples
.A; �; �; �/ of the following type.

� A is an abelian scheme of dimension n over X .

� �W A!A_ is a prime-to-p polarization. (This is an isogeny such that �_ D �,
together with a positivity condition; we will discuss it further in Section 14.)

� �W OF ! End.A/ is a ring homomorphism from OF to the endomorphism ring
of A such that ��.˛/D �.x̨/_� for all ˛ 2OF . We require that the summand
e �A.p/�A.p/ is 1–dimensional. (See Section 13.)

� � is a level structure on A. (See Section 15.)

Morphisms in the category are isomorphisms f W A!B that commute with the action
�, that preserve the level structure, and such that f _�Bf D n�A for some positive
integer n.

We take as given that this moduli is well-behaved. In particular, it is represented by a
smooth Deligne–Mumford stack of relative dimension .n� 1/ over Zp . We abusively
denote it by Sh without decorating it with any of the necessary input data. It has an
associated sheaf of spectra, and the “universal” object (a limit, or global section object)
is denoted TAF. The Adams–Novikov spectral sequence takes the form

H s.Sh; !˝t /) �t�sTAF;

where ! is the line bundle of invariant 1-forms on the 1–dimensional formal component.
The zero line

H 0.Sh; !˝t /

consists of (integral) automorphic forms on the Shimura stack.

The height n stratum of the Shimura stack is nonempty, and consists of a finite set
of points whose automorphism groups can be identified with finite subgroups of the
so-called Morava stabilizer group Sn . There is a corresponding description of the K.n/-
localization of the spectrum TAF as a finite product of fixed-point spectra of Morava
E -theories by finite subgroups. These points can be classified via the Tate–Honda
classification of abelian varieties over finite fields.

In the following sections, we will explain how the specified list of data produces a 1–
dimensional p–divisible group of the type precisely necessary for Lurie’s theorem. For
reasons of clarity in exposition, we will discuss endomorphisms before polarizations.
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13 E is for endomorphism

The most immediately relevant portion of the data of a Shimura variety is the endomor-
phism structure. The goal of this endomorphism is to provide us with a 1–dimensional
split summand of the p–divisible group of A.

Recall that the endomorphism structure � is a ring map OF ! End.A/, where OF

was a ring of integers whose p -completion OF ˝Zp contains a chosen idempotent e

making it isomorphic to Zp �Zp .

The composite ring homomorphism

OF ! End.A/! End.A.p//

lands in a Zp -algebra, and so we have a factorization

OF ˝Zp! End.A.p//:

The image of the idempotent e gives a splitting of p–divisible groups

A.p/Š e �A.p/˚ .1� e/ �A.p/:

By assumption the p–divisible group e �A.p/ is 1–dimensional.

Therefore, the elements of this moduli have canonically associated 1–dimensional
p–divisible groups. We do not yet know that these have height n.

There is a similar decomposition of the p–divisible group of the dual abelian variety.

A_.p/Š e_ �A.p/_˚ .1� e_/ �A.p/_:

14 P is for polarization

The next piece of necessary data is the prime-to-p polarization �W A!A_ . Although
polarizations are typically used in algebraic geometry to guarantee representability of
various moduli problems (and this is a side effect necessary for us, as well), in our case
the polarization also gives control over the complementary summand of the p–divisible
group.

The condition that this map is a prime-to-p isogeny implies that the induced map of
p–divisible groups �W A.p/!A_.p/ is an isomorphism.

The condition that � conjugate-commutes with the action of OF in particular implies

�e D .1� e_/�:
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As a result, the isomorphism
A.p/ ��!A_.p/

decomposes into the pair of isomorphisms.

e �A.p/ ��! .1� e_/ �A_.p/D ..1� e/ �A.p//_

.1� e/ �A.p/ ��! e_ �A_.p/D .e �A.p//_

As a result, the polarization provides us with a canonical identification of .1�e/ �A.p/,
the .n� 1/-dimensional complementary summand of the p–divisible group, with the
object .e �A.p//_ , the dual of the 1–dimensional summand of interest to us. As the
summands corresponding to e and .1� e/ must then have the same height, the height
of each individual factor is n.

This allows us to check that the conditions of Lurie’s theorem hold. As stated in Section
11, we must check that an infinitesimal extension of the 1–dimensional p–divisible
group e �A.p/ determines a unique extension of A, with endomorphisms, and with
polarization.

In brief, we sketch the necessary reasoning.

� An extension of e �A.p/ determines a dual extension of

.e �A.p//_ Š .1� e/ �A.p/:

� Therefore, we have an extension of the whole p–divisible group A.p/.

� Declaring that e and .1� e/ are idempotents corresponding to this splitting
determines an extension of the action of OF .

� The isomorphisms given by the polarization give a unique extension of

�WA.p/!A.p/

which conjugate-commutes with the action of OF .

� The Serre–Tate theorem discussed in Section 12 then implies that the extension
of A.p/, with the given extensions of � and �, determine a unique extension of
A with extensions of � and �.

A polarization also includes a positivity condition. For a complex torus Cg=ƒ over C ,
this amounts to a positive definite Hermitian form on Cg whose imaginary part takes
integer values on ƒ. The existence of such a form serves to eliminate the possibility that
the torus does not have enough nonconstant meromorphic functions on it to determine
a projective embedding; in higher dimensions, complex torii generically cannot be
made algebraic.
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Polarizations also serve to eliminate pathology in families of abelian varieties. The
set of automorphisms of a polarized abelian variety is a finite group, and the moduli
of polarized abelian varieties is itself a Deligne–Mumford stack [14; 38]. Knowing
this serves as a first step in our ability to find a Deligne–Mumford stack for the PEL
moduli we are interested in.

15 L is for level structure

There is one remaining ingredient in the data of a PEL Shimura variety, which is the
data of a level structure.

Those familiar with the more classical theory of elliptic curves will be familiar with
level structures such as the choice of a finite subgroup of the curve, or a basis for the
n–torsion. This kind of data can be included in the level structure, but it is not (for the
purposes of this document) the main point.

Given just the requirements of a polarization and endomorphism data (a PE moduli
problem), we would still have a moduli satisfying the requirements of Lurie’s theorem,
and could produce spectra. However, such a moduli problem would usually suffer from
a slight defect, in the form of an infinite number of connected components.

There are various pieces of data, however, that are invariants of the connected com-
ponent; we can use this to classify various connected components into ones of more
manageable size for our sanity.

We require a definition. Suppose A is an abelian variety over an algebraically closed
field k . For any prime ` ¤ p , we have the groups AŒ`k � of `–torsion points of A,
which are abstractly isomorphic to .Z=`k/2n . These fit into an inverse system

� � � !A Œ`3�!A Œ`2�!A Œ`�! 0

where the maps are multiplication by `. The inverse limit is called the `–adic Tate
module T`.A/ of A, and is a free Z`–module of rank 2n.

The data of a polarization A!A_ gives rise to a pairing on the `–adic Tate module.
Specifically, it gives rise to an alternating bilinear pairing to the Tate module of the
multiplicative group scheme T`.Gm/Š Z` . This pairing is referred to as the �-Weil
pairing.

If .A; �; �/ is a polarized abelian variety over k with conjugate-commuting action
of OF , we find that T`.A/ is a free Z`–module of rank 2n equipped with a pairing
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h�;�i on T`.A/. This form is alternating, bilinear, and OF -Hermitian in the sense
that

h˛x;yi D hx; x̨yi

for all ˛ 2OF .

The isomorphism class of this pairing up to multiplication by a scalar is an invariant of
the connected component of .A; �; �/ in the PE moduli problem.

Therefore, part of the input data required to define our PEL moduli problem is, for each
`¤p , a specified isomorphism class of free Z`–module M` of rank 2n with alternating
Hermitian bilinear pairing (up to scale). We can also specify an open subgroup K of
the group of automorphisms of

Q
M` (such as automorphisms preserving specified

subgroups or torsion points) as part of the data. The K–orbit of an isomorphismQ
M`!

Q
T`.A/ is a level K structure.

In the PEL moduli problem of tuples .A; �; �; �/, the level structure � is a (locally
constant) choice of level K structure on T`.Ax/ for each geometric point x of the base
scheme X . This is equivalent to specifying one such choice per connected component
which is invariant under the action of the étale fundamental group of X .

Given such a level structure, one can prove that the moduli Sh over Zp consists of a
finite number of connected components. These details do not occur in the elliptic case
because there are few isomorphism classes of alternating bilinear pairings on a lattice
of rank two.

It is common in the more advanced theory of automorphic forms to simply drop the
abelian varieties entirely, and simply think in terms of a reductive algebraic group
with a chosen open compact subgroup K . When pressed, for many expressions of a
Shimura variety one can find a reduction to a certain kind of moduli of abelian varieties
by a process of reduction. However, this is by no means a straightforward process.

16 Questions

This section is an attempt to give a series of straw-man arguments as to why we might
choose this particular conglomeration of initial data, rather than making some slight
alteration. It also attempts to answer some other questions that appear frequently.

Question 16.1 Why do we act by OF for a quadratic extension of Q? Why don’t we
choose endomorphisms by some other ring? Why is F specified as part of the data?
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In short, we must act by a ring whose p–completion contains an idempotent, but
does not contain an idempotent itself (which would force the 1–dimensional summand
to come from an elliptic curve, and hence cap the height of the p–divisible group
at 2). In order to uniquely give extensions of endomorphisms as in Section 14, the
p–completion of the ring must essentially be Zp �Zp , and since End.A/ is a finitely
generated free abelian group for A over a field k , we might as well assume that our
ring to be free of rank 2 over Z.

Such a ring O has rationalization a quadratic extension of Q, but might not be integrally
closed. We could indeed choose such subrings of OF , and these would give more
general theories with interesting content, but OF is a legitimate starting point.

If we did not specify F or O as part of the data, they would be invariants of connected
components.

Question 16.2 Why do we require an action on the abelian variety itself? Why don’t
we simply require an abelian variety with a specified 1–dimensional summand of its
p–divisible group?

The short answer is that it is based on our desire for the Shimura stack Sh to actually
have some content at height n.

Essentially, any height n point of such a moduli will automatically have an action of a
ring OF for some F , or possibly a subring O as specified in the previous question.
More, simply specifying that we have a 1–dimensional summand of the p–divisible
group will give a tremendous abundance of path components of the moduli as in Section
15. Those path components that cannot be rectified to have O–actions for some O will
not have any height n points.

Question 16.3 Why don’t we simply pick a connected component of the moduli,
rather than specifying a level structure and possibly ending up with several connected
components?

One problem is that it is hard to know how much data is required to reduce down to a
particular connected component, and even when it is known it is hard to state it. This
kind of data is often a question about class groups.

Even then, the resulting moduli is no longer defined over Zp , but instead usually
defined over some algebraic extension.

Question 16.4 Which choices of quadratic imaginary field and level structure data
determine interesting Shimura varieties? How does the structure of the spectrum TAF
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vary depending on these inputs? What does the global geometry of these moduli look
like (in characteristic 0 or characteristic p ) at interesting chromatic heights? How does
one go about computing these rings of integral, or even rational, automorphic forms
and higher cohomology?

Some progress has been made at understanding chromatic level 2 and the connection
between TAF and TMF. A brief description of this is to follow in Section 17. The
structure definitely varies from input to input. However, this is a place where more
computation is needed, and to create more computation one needs to use more techniques
for computing with these algebraic stacks that are not simply presented by Hopf
algebroids.

17 Example: CM curves and abelian surfaces

We list here two basic examples of these moduli of abelian varieties at chromatic levels
1 and 2.

At chromatic level 1, the objects we are classifying are elliptic curves with complex
multiplication (the polarization data turns out to be redundant). Associated to a quadratic
imaginary extension F of Q, the moduli roughly takes the forma

Cl.F /

Œ�==O�F �:

Here Cl.F / is the class group of F , and Œ�==G� denotes a point with automorphism
group G . This is, strictly speaking, only a description of the geometric points of the
stack.

At chromatic level 2, the objects under study are abelian surfaces with polarization
and action of OF , together with a level structure. Ignoring the level structure, one
can construct various path components of the moduli as follows. (This describes
forthcoming work [8].)

Given an elliptic curve E , we can form a new abelian surface E ˝OF Š E �E ,
with OF –action through the second factor. The Hermitian pairing on OF , together
with a “canonical” polarization on the elliptic curve E , gives rise to a polarization of
E˝OF that conjugate-commutes with the OF –action. This construction is natural in
the elliptic curve, and produces a map of moduli

Mell ! Sh:

The image turns out to be a path component of Sh. This is an isomorphism onto
the path component unless F is formed by adjoining a 4th or 6th root of unity. In
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these cases it is a degree 2 or degree 3 cover respectively, and we recover spectra with
homotopy

Zp Œc4; c
2
6 ; �

�1�� ��TMFŒ��1�

for primes p � 1 mod 4, and

Zp Œc
3
4 ; c6; �

�1�� ��TMFŒ��1�:

for primes p � 1 mod 3.

There are generalizations and modifications of this construction to recover path compo-
nents for other choices of level structure. In particular, by using alternate constructions
we obtain objects which are homotopy fixed points of the action of an Atkin–Lehner
involution on spectra TMF0.N /Œ��1�.

Two such examples are as follows. These rings of modular forms are subrings of those
described by Behrens [6] and by Mahowald and Rezk [31] respectively.

If p > 3 is congruent to 1 or 3 mod 8, there is a spectrum associated to a moduli of
abelian varieties with ZŒ

p
�2�–multiplication whose homotopy is a subring

Zp Œq2;D
˙1�=� TMF0.2/Œ�

�1��

of the p–completed ring of modular forms of level 2, where jq2j D 4 and jDj D 8.

If p is congruent to 1 mod 3, there is a spectrum associated to a moduli of abelian
varieties with ZŒ.1C

p
�3/=2�–multiplication whose homotopy is a subring

Zp Œa
6
1;D

˙1�=� TMF0.3/Œ�
�1��

of the p–completed ring of modular forms of level 3, where ja6
1
j D jDj D 12.
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