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Khovanov homology and gauge theory

EDWARD WITTEN

In these notes, I will sketch a new approach to Khovanov homology of knots and
links based on counting the solutions of certain elliptic partial differential equations in
four and five dimensions. The equations are formulated on four and five-dimensional
manifolds with boundary, with a rather subtle boundary condition that encodes the
knots and links. The construction is formally analogous to Floer and Donaldson
theory in three and four dimensions. It was discovered using quantum field theory
arguments but can be described and understood purely in terms of classical gauge
theory.

57M27; 70S15, 81T13

1 Introduction

The goal of these lecture notes is to propose how certain elliptic differential equations
in four and five dimensions can be used for a new description of the Jones polynomial
and Khovanov homology. My inspiration was a previous physics-based approach to
Khovanov homology (Gukov, Schwarz and Vafa [6]). I sought to find a gauge theory
alternative to that construction.

In the presentation here, we will achieve brevity by omitting all the “why” questions.
In other words, we will explain what construction in four- and five-dimensional gauge
theory is supposed to reproduce the Jones polynomial and Khovanov homology, but
not how this answer emerges from dualities of quantum fields and strings. For such
questions, along with much more detail and extensive references to related work, I
refer to my paper [17]. That reference also contains much more detail concerning the
“what” questions; our explanations here are rather schematic.

Without relying on quantum field theory arguments, can one directly deduce a known
construction of the Jones polynomial or Khovanov homology from the gauge theory
framework that will be described here? A strategy to do this for the Jones polynomial has
been outlined by Gaiotto and myself in [4], and some of the ideas will be summarized
at the end of these notes. There is not yet an analogous computation for Khovanov
homology.
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2 Gradient flow of complex Chern–Simons

We start by remembering the relation of the Chern–Simons function in three dimensions
to the instanton equation in four dimensions. In this talk, G is a compact simple Lie
group and A is a connection on a G –bundle E!W , where W is some manifold. We
write GC for the complexification of G , and A for a connection on a GC bundle, such
as the complexification EC of E . We write U and UC for the spaces of, respectively,
connections on E or on EC . Finally, by an elliptic equation, we mean an equation
that is elliptic modulo the action of the gauge group.

If W is a three-manifold, then a connection A on the G–bundle E ! W has a
Chern–Simons invariant

(2-1) CS.A/D
1

4�

Z
W

Tr
�

A^ dAC
2

3
A^A^A

�
:

To arrive at the instanton equations, we pick a Riemannian metric on W and then place
the obvious Riemannian metric on the space U of connections:

(2-2) ds2
D�

Z
W

Tr ıA^?ıA:

Then, viewing �CS.A/ as a Morse function on U , we write the equation of gradient
flow:

(2-3)
dA

ds
DrCS.A/:

Something nice happens; the equation of gradient flow turns out to have four-dimen-
sional symmetry. It is equivalent to the instanton equation on the four-manifold
M DW �R:

(2-4) FC D 0:

(For a two-form ! in four dimensions, we write !C and !� for its selfdual and
anti-selfdual projections.) This fact is the starting point for Floer cohomology of
three-manifolds and its relation to Donaldson theory of four-manifolds.

We want to do the same thing, roughly speaking, for the complex Lie group GC . To
begin with, a connection A on a GC bundle EC!W has a Chern–Simons function:

(2-5) CS.A/D 1
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�
:

To do Morse theory, we have to make two immediate changes. First, a Morse function
is supposed to be real, but CS.A/ is actually complex-valued. So we pick a complex
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number ei˛ of modulus 1 and define our Morse function to be (provisionally)

(2-6) h0 D�Re .ei˛CS.A//:

Second, there is not any convenient metric on the space UC of complex connections
that has the full GC gauge symmetry. So we pick a Kähler metric on UC that is
invariant only under G , not GC :

(2-7) ds2
D�

Z
W

Tr ıA^?ıA:

Now we can write a gradient flow equation

(2-8)
dA
ds
D�rh0:

However, we are really usually interested in a complex connection A up to complex-
valued gauge transformations, but here we have written an equation that is only invariant
under unitary gauge transformations. To compensate for this, we should set the moment
map to zero and consider the previous equation only in the space of zeroes of the
moment map. In other words, if we decompose A in real and imaginary parts as
ADAC i� , where A is a real connection and � 2�1.W /˝ ad.E/, then the Kähler
manifold UC has a Kähler form

(2-9) ! D

Z
W

Tr ıA^?ı�:

The moment map for the action of G –valued gauge transformations is

(2-10) �D dA ?�;

and we should really consider the previous gradient flow equations in the space of
zeroes of the moment map.

However, it is somewhat better to introduce another field �0 as a sort of Lagrange
muliplier. �0 is a section of the real adjoint bundle ad.E/ and we write an extended
Morse function

(2-11) hD h0C

Z
W

d3x
p

g Tr�0�

whose critical points are all at �D 0. On the space of �0 fields, we place the obvious
metric

(2-12) ds2
D�

Z
W

d3x
p

g Tr ı�2
0 ;
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and now, writing ˆ for the pair .A; �0/, we write the gradient flow equations

(2-13)
dˆ
ds
D�rh.ˆ/:

Something nice happens, just like what happened in the real case. The flow equations
in this sense are elliptic partial differential equations with a full four-dimensional
symmetry. They can be written

.F �� ^�/C D t.dA�/
C

.F �� ^�/� D�t�1.dA�/
�(2-14)

dA ?� D 0;

with

(2-15) t D
1� cos˛

sin˛
:

These are elliptic differential equations modulo the action of the gauge group, for each
t 2 RP1

DR[1 (for t ! 0 or 1, multiply the second equation by t or the first by
t�1 ).

In writing the equations, we have combined the imaginary part of the connection,
� 2�1.W /˝ ad.E/, with the Lagrange multiplier �0 2 ad.E/, to a field (also called
� ) that takes values in �1.M /˝ ad.E/. We are using the fact that for M DW �R,
we have T �M D T �W ˚R, where R is a trivial real line bundle of rank 1.

The equations (2-14) can be the starting point for developing a Floer-like theory for the
complex Lie group GC . That is the case we will want for the Jones polynomial and
Khovanov homology. However, before focusing on that case, let us ask what might
one mean by Floer theory for other real forms of G .

If t D 0 or 1, the equations (2-14) admit the involution � ! �� . If we simply
ask for a solution to be invariant under this operation, we will set � to zero and
reduce to the selfdual or anti-selfdual Yang–Mills equations (depending on whether
t is 0 or 1). This will lead to ordinary Floer theory. To get something new, we
can instead pick an involution � (ether inner or outer) of the compact Lie group G .
Conjugacy classes of such involutions are in natural correspondence with real forms
of G . Imposing invariance under �!�� together with the involution � , we get a
reduced set of equations appropriate to constructing a Floer-like theory for the real
form that corresponds to � . In this way, one can hope to construct a Floer-like theory
for any real form of G .

Let us return to the full system of equations (2-14), without reducing to a real form.
These equations were actually first studied in the context of gauge theory and geometric
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Langlands by Kapustin and myself [8]. Roughly speaking, one constructs a family of
four-dimensional topological field theories that are just like Donaldson theory except
based on the equations (2-14) instead of the instanton equations. Geometric Langlands
duality is then naturally formulated as an equivalence between the theories that arise at
two different values of t . From that vantage point, geometric Langlands duality is a
consequence of S –duality of N D 4 super Yang–Mills theory in four dimensions. (I
am leaving out numerous details, one of which is that it is natural to consider complex
values of t .)

It does not seem likely that this theory gives interesting four-manifold invariants, and
there may be a technical problem in defining them, analogous to what happens in
Donaldson theory on a four-manifold of bC

2
D 1. In geometric Langlands duality,

four-manifold invariants are not the point. One is mainly interested not in invariants of
four-manifolds but in the structures that this same topological field theory attaches to
two-manifolds (categories of boundary conditions) and to three-manifolds (spaces of
physical states or “morphisms”). These are essentially not affected by the technical
difficulties that may affect the four-manifold invariants.

Although this theory probably does not give interesting four-manifold invariants, the
literature on geometric Langlands does give a reason to believe in hindsight, and
perhaps even in foresight, that it gives interesting knot invariants. An extension of the
usual geometric Langlands duality that is known as “quantum” geometric Langlands is
related to quantum groups (Gaitsgory [5]), which in turn can be used to describe the
Jones polynomial and similar invariants of knots. Possibly this should have made us
anticipate that the topological field theory associated to geometric Langlands can be used
to compute the Jones polynomial. Another possible clue relating Khovanov homology
to geometric Langlands can be gleaned from an attempt to describe Khovanov homology
as an A–model (Seidel and Smith [13]) and more specifically from the relation of the
symplectic varieties used in that attempt to spaces of Hecke modifications (Cautis and
Kamnitzer [1]). The framework that we sketch below indeed leads to spaces of Hecke
modifications, though of a somewhat different type.

3 Relation to the Jones polynomial

To make contact with the Jones polynomial, we take the four-manifold M to be
W �RC , where W is a three-manifold and RC is a half-line y � 0. For y!1, we
require the fields to approach a chosen critical point (or more precisely a critical gauge
orbit) of the Morse function. The equations (2-14) were chosen so that a critical point
is a complex flat connection, corresponding to a homomorphism �W �1.W /!GC . (�
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must satisfy a mild condition of semistability (Corlette [2]) so that the moment map
condition dA ? � D 0 can be obeyed.) The simplest case is that W is S3 or R3 so
that there is only one possible critical point, with AD � D 0 up to a G –valued gauge
transformation.

R+

Figure 1: A knot has been placed at the boundary of the four-manifold
M DW �RC .

Meanwhile, as sketched in Figure 1, knots are placed at yD 0, that is at the endpoint of
RC . The boundary condition at y D 0 is an elliptic boundary condition that is a little
involved to explain, and we will postpone it to Section 5. But this boundary condition
depends on the choice of a knot (or link1) K , and on the choice of a representation R

of the Langlands or GNO dual group G_ of G . In this description, this is the only
way that K (or R) enters.

For the next step, we imitate Donaldson theory. Let an be the “number” of solutions
of the equations (2-14) with instanton number n. (The count of solutions is made in a
standard sort of way; for example, an isolated nondegenerate solution is weighted by
a sign, which is the sign of the fermion determinant.) Conjecturally, an vanishes for
large enough jnj, but this has not been proved. The instanton number is defined in the
usual way as a multiple of

(3-1)
Z

M

Tr F ^F;

where F D dACA^A is the curvature. Actually, to define the instanton number as a
topological invariant is subtle, because M DW �RC has “ends” at y D 0;1. The
boundary conditions at the two ends give identifications of the bundle E with fixed
bundles (namely a specified flat bundle at y D1 and an embedding of the tangent

1In the case of a link LD
S

iKi with components Ki , each component can be labeled by a different
representation Ri of G_ .
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bundle of W at y D 0; see Section 5 for the latter), and this enables one to define
the instanton number as a topological invariant once a framing of W is picked. The
dependence on the framing ultimately reproduces the framing dependence of the Jones
polynomial and its generalizations.

Then we introduce a variable q and define the counting function

(3-2) J.qIK;R/D
X

n

anqn:

For G_ D SU.2/ and R the two-dimensional representation, and with W D R3 ,
the claim is that this function is the Jones polynomial. In general, for W D R3 , we
expect to get the usual knot and link invariants associated to quantum groups and
Chern–Simons gauge theory.

I refer to my papers [16; 17] for explanations of why J.qIK;R/ is expected to
reproduce the Jones polynomial and its generalizations. Here I will just mention the
main steps. First, one represents the function J.qIK;R/ by a path integral in N D 4

super Yang–Mills theory. This can be done in a standard way because the equations
(2-14) whose solutions we want to count are associated to one of the supersymmetry
generators of the N D 4 theory. The second step is electric-magnetic duality – the
same quantum symmetry of N D 4 super Yang–Mills theory that underlies geometric
Langlands duality. This puts the path integral in a more convenient form. The third
and most novel step is to interpret the path integral of the N D 4 theory on W �RC
as an unusual sort of three-dimensional path integral. The most familiar quantum field
theory representation of the Jones polynomial [14] is as an integral over the space U
of real-valued connections:2

(3-3)
Z
U

DA exp .ikCS.A// TrR P exp
I

K

A:

We can generalize this to an integral over a middle-dimensional cycle � in UC , the
space of complex-valued connections:

(3-4)
Z
�

DA exp .ikCS.A// TrRP exp
I

K

A:

This is a generalization of (3-3), to which it reduces if � D U . In [16; 17], it is shown
that the N D 4 path integral on W �RC (in its electric-magnetic dual version), is
equivalent to a generalized Chern–Simons path integral (3-4) with � the Lefschetz
thimble associated to the critical point that was used to define the boundary condition
at y D1. In establishing this relation, a key fact is that the equations (2-14) whose

2The object TrR P exp
H
K A is the trace of the holonomy of the connection A around the loop K ,

with the trace taken in the representation R .
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solutions we want to count are the gradient flow equations of complex Chern–Simons
theory. For a generic W , the Lefschetz thimble � is not equivalent to the real integration
cycle U of the usual Chern–Simons path integral (3-3), so the counting function (3-2)
cannot be directly compared to the invariants derived from quantum groups and Chern–
Simons theory. However, precisely for W DR3 , they are equivalent, and that is why
in this case, the counting of solutions is expected to reproduce the Jones polynomial
and its generalizations.

4 Khovanov homology

However, our goal is Khovanov homology, not the Jones polynomial, This means we
are supposed to “categorify” the situation, and associate to a knot or link a vector
space rather than a number. A suitable trace in the vector space will give back the
original numerical invariant, which in the present context is the counting function of
equation (3-2). In plain words, this means that the approach to the Jones polynomial
just described has to be derived from a picture in one more dimension. Physicists would
describe the situation as follows: viewing the extra dimension as “time,” quantization
gives a physical “Hilbert” space, which will be the Khovanov homology, and then if we
compactify the extra dimension on a circle, we get a trace leading back to the original
theory – in this case, the theory that computes the Jones polynomial.

Let us practice by “categorifying” something – in fact, we will categorify the Casson
invariant. The Casson invariant is an invariant of a three-manifold W . It is defined by
“counting” (up to gauge transformation and with suitables signs) the flat connections A

on a G –bundle E!W . A flat connection is a solution of the equation

(4-1) F D 0:

In three dimensions, this is not an elliptic equation, but is part of a nonlinear elliptic
complex. Just as for linear elliptic complexes, it is sometimes convenient to “fold” the
complex and reduce to the case of an ordinary elliptic equation, rather than a complex.
In the present example, this is done by introducing a section �0 of ad.E/ and replacing
the equation F D 0 with the Bogomolny equation

(4-2) F C?dA�0 D 0:

The count of solutions is the same, apart from rather degenerate solutions, since a
simple vanishing theorem says that any smooth solution on a compact manifold W has
�0 covariantly constant. But now the equation is elliptic. This gives a more convenient
starting point for categorification.
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“Categorification” of the Casson invariant is accomplished simply by replacing �0

by the covariant derivative with respect to a new coordinate, �0 ! D=Ds . Thus
we replace the three-manifold W by the four-manifold X D R �W , where R is
parametrized by the “time” s , and we substitute �0 ! D=Ds . This makes sense,
in that the substitution gives a differential equation on X (rather than a differential
operator), because we started with an equation in which �0 only appears inside the
commutator dA�0D ŒdA; �0�. This commutator is now replaced by ŒdA;D=Ds�, which
is a component of the four-dimensional curvature.

Generically, a procedure like this, even if it gives a differential equation, will not give
an elliptic one, let alone one with four-dimensional symmetry. In this case, however, we
actually get back the instanton equation FC D 0, in a slightly different way from the
way we got it before. What follows from this is that the Casson invariant – a numerical
invariant computed by counting solutions of the original equation F D 0 – can be
categorified to Floer cohomology.

Let us spell this out in detail. To define Floer cohomology, one introduces a chain
complex that has a basis corresponding to the flat connections on W . The differential in
the chain complex is determined by counting suitable instanton solutions on X DR�W .
However, we can compute the Euler characteristic of the Floer cohomology without
having to know the differential: we simply sum over the basis vectors of the chain
complex, weighted by appropriate signs. This sum gives back the Casson invariant. So
the Casson invariant is the Euler characteristic of the Floer cohomology. The fancy
way to say this is that Floer cohomology is a categorification of the Casson invariant.

So far there is no novelty here; this construction is essentially due to Floer. Now we
want to similarly categorify the Jones polynomial, which from the point of view of the
present lecture is the invariant associated to counting solutions of the equations (2-14)
with certain boundary conditions. On a generic four-manifold M , we would have no
way to proceed as there is no candidate for a field �0 that will be replaced by D=Ds .

However, if M DW �RC , which is the case if we are studying the Jones polynomial
in the way suggested here, then T �M D T �W ˚R, where the part of � associated
to the second summand is the field �0 that we originally introduced as a Lagrange
multiplier. We categorify by introducing a new dimension and replacing �0!D=Ds ,
as before.

In this way, we get a partial differential equation on the five-manifold X DR�W �RC .
Moreover, this turns out to be an elliptic equation. (See [17] for details. The same
equation was also introduced by Haydys in [7].) And if we set t D 1, we get a full
four-dimensional symmetry; that is, the five-dimensional equation can be naturally
formulated on X DM � �RC for any oriented four-manifold M � .
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R+

M∗

Σ

Figure 2: A two-manifold † embedded in the boundary of X DM � �RC .

The boundary condition at y D 0 (described in Section 5) that can be used to get the
Jones polynomial can be “lifted” to five dimensions, roughly by �0!D=Ds . The
boundary is now a four-manifold M � rather than a three-manifold W . Instead of
modifying the boundary condition along a knot K �W , we now modify it along a
two-manifold †�M � , as in Figure 2.

To get the candidate for Khovanov homology, we specialize to the time-independent
case M � DR�W , †DR�K . Then, following Floer (and following, for example,
Kronheimer and Mrowka [11], where a similar strategy is used to categorify the
Alexander polynomial), we define a chain complex which has a basis given by the
time-independent solutions, that is the solutions of the four-dimensional equations

.F �� ^�/C D t.dA�/
C

.F �� ^�/� D�t�1.dA�/
�(4-3)

dA ?� D 0:

The differential in the chain complex is constructed in a standard fashion by counting
certain time-dependent solutions. (Here we use the fact that the five-dimensional
equations can themselves be interpreted in terms of gradient flow.) The cohomology of
this differential is the candidate for Khovanov homology.

The candidate Khovanov homology is Z�Z–graded, like the real thing, where one
grading is the cohomological grading, and the second grading, sometimes called the
q–grading, is associated to the instanton number, integrated over W �RC . (Because
W �RC is not compact and has a boundary, the definition of the instanton number has
subtleties that turn out to match the framing anomalies of Chern–Simons theory. See
Section 5.) One can define an equivariant Euler characteristic of the candidate Khovanov
homology. In passing to the Euler characteristic, one loses the cohomological grading,
but one keeps the grading by instanton number. So the equivariant Euler characteristic
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is a function of a single variable q . Because the complex that computes the candidate
Khovanov homology has a basis given by the same time-independent solutions that
have to be counted to compute the function J.qIK;R/ defined in equation (3-2),
the equivariant Euler characteristic is equal to this function. This corresponds to the
usual relation between Khovanov homology and the Jones polynomial. The reasoning
involved is exactly parallel to the relation between Floer cohomology and the Casson
invariant.

We are not limited to the case that the five-manifold X and the Riemann surface † are
time-independent. Preserving the time-independence of X but allowing a more general
†, as in Figure 3, we get candidates for the “link cobordisms” of Khovanov homology.
Explicitly, to such a picture, we associate a linear transformation from the Khovanov
homology of the initial link to that of the final link. It is computed by counting five-
dimensional solutions with time-dependent boundary conditions (determined by †),
asymptotic in the past and future to specified time-independent solutions that represent
initial and final states.

L0

†

L

Figure 3: The surface † represents a “link cobordism” from an initial link L

(in this case, an unknot) to a final link L0 (in this case, two disjoint unknots).
We embed † in the boundary of X DM � �RC , as in Figure 2.

5 The boundary condition

In this section, we will describe the boundary condition that is needed for this con-
struction, initially in the absence of knots. It is essentially enough to describe the
boundary condition in four dimensions rather than five (once one understands it, the
lift to five dimensions is fairly obvious), and as the boundary condition is local, we
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assume initially that the boundary of the four-manifold is just R3 . So we work on
M DR3 �RC . (This special case is anyway the right case for the Jones polynomial,
which concerns knots in R3 or equivalently S3 .)

We will have to make use of one of the important equations in gauge theory, which is
Nahm’s equation. Nahm’s equation is a system of ordinary differential equations for a
triple X1;X2;X3 valued in g3 , where g is the Lie algebra of G . The equations read

(5-1)
dX1

dy
C ŒX2;X3�D 0

and cyclic permutations. On a half-line y � 0, Nahm’s equations have the special
solution

Xi D
ti

y
;

where the ti are elements of g that obey the su.2/ commutation relations Œt1; t2�D t3 ,
etc. We are mainly interested in the case that the ti define a “principal su2 subalgebra”
of g, in the sense of Kostant.

This sort of singular solution of Nahm’s equations was important in the work of Nahm
on monopoles, and in later work of Kronheimer and others. We will use it to define
an elliptic boundary condition for our equations. In fact, Nahm’s equations can be
embedded in our four-dimensional equations on R3 �RC . If we look for a solution
that is (i) invariant under translations of R3 , (ii) has the connection AD 0, (iii) has
�D

P3
iD1 �i dxiC0 �dy (where x1;x2;x3 are coordinates on R3 and y is the normal

coordinate), then our four-dimensional equations (2-14) reduce to Nahm’s equations

(5-2)
d�1

dy
C Œ�2; �3�D 0;

and cyclic permutations. So the “Nahm pole” gives a special solution of our equations

(5-3) �i D
ti

y
:

We define an elliptic boundary condition by declaring that we will allow only solutions
that are asymptotic to this one for y! 0.

This is the boundary condition that we want at y D 0, in the absence of knots, and for
W DR3 . For the most obvious boundary condition for getting Khovanov homology,
we require that A; �! 0 for y!1. It is plausible (but unproved) that with these
conditions, the special solution with the Nahm pole is the only one. (This would
correspond to Khovanov homology of the empty knot being of rank 1.)

Something interesting happens when we generalize this boundary condition from
W D R3 to an arbitrary oriented Riemannian three-manifold W . We describe the
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situation first for G D SO.3/. To make sense for general W of the formula �i D ti=y

or � D
P

i ti dxi=y (where the xi are local coordinates on W ), we have to interpret
the objects ti as supplying an isomorphism between the bundle ad.E/ and the tangent
bundle of W . A study of the equations (2-14) shows further that this isomorphism
must be covariantly constant, so the gauge field A, when restricted to W D @M , can
be identified with the Riemannian connection of W . It follows from this together
with some elementary arguments that to define the instanton number, integrated over
W �RC , as a topological invariant, one needs a framing of W (a trivialization of its
tangent bundle).3 For G D SU.2/, the tangent bundle of W has to be lifted to an
SU.2/ bundle, so a choice of spin structure on W is part of the boundary condition.
The analog of this for any compact G is that, when restricted to W , the connection
A is obtained from the Riemannian connection on W via a principal embedding
�W su.2/! g. A choice of spin structure is part of the boundary condition precisely
if the subgroup of G associated to such a principal embedding is SU.2/ rather than
SO.3/.

The next step is to modify the boundary condition to incorporate the presence of
a knot K . The local model is that the boundary is R3 , and K is a copy of R �
R3 . The boundary condition is described by giving a singular model solution on
R3 �RC that along the boundary has the now-familiar Nahm pole away from K ,
but has some other behavior along K . There should be one model solution for every
irreducible representation R of the dual group G_ . The model solution is invariant
under translations along K , so it can be obtained by solving some reduced equations
on R2 �RC . Before explaining a little more about this, we will first explain another
reason that it is important to study the reduced equations in three dimensions.

6 Categories

To compute the Jones polynomial, we need to count certain solutions in four dimensions;
knowledge of these solutions is also the first step in constructing the candidate for
Khovanov homology. How are we supposed to describe four-dimensional solutions? A
standard strategy, often used in Floer theory and its cousins, involves “stretching” the
knot in one direction (Figure 4), in the hope of reducing to a piecewise description by
solutions in one dimension less. To carry out such a strategy, we need to be able to
understand the reduced equations in three dimensions.

Another way to make the point is as follows. Most mathematical definitions of Khovanov
homology proceed, directly or implicitly, by defining a category of objects associated

3One also needs a condition at y D 1 , that is at the infinite end of RC . This is provided by the
requirement that the connection approaches a specified critical point for y!1 .
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x1

RC

Figure 4: Stretching a knot in one dimension, to reduce to a description in
one dimension less. One of the directions in R3 – here labeled as x1 – plays
the role of “time.” After stretching of the knot, one hopes that a solution
of the equations becomes almost everywhere nearly independent of x1 . If
so, a knowledge of the solutions that are actually independent of x1 can be
a starting point for understanding four-dimensional solutions. This type of
analysis will fail at the critical points of the function x1 along a knot or link;
a correction has to be made at those points.

z1

z4

z2
z3

Figure 5: To construct Khovanov homology, one wishes to attach a suitable
category to R2 or S2 with marked points labeled by representations of G_ . In
the framework described here, to construct this category one has to consider
the reduced equations on R2 �RC (or S2 �RC , as sketched here), with
marked points on the boundary.

to a two-sphere (or in some versions, a copy of C D R2 ) with marked points that
are suitably labeled. In the present approach, this category should be the A–model
category of the moduli space of solutions of the reduced three-dimensional equations
in the appropriate geometry, as sketched in Figure 5. (The A–model in question is
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really an A–model with a superpotential; it is described in [4] as a Landau–Ginzburg
A–model.)

The equations when reduced to three dimensions have a pleasantly simple structure.
After getting a simplification via a small vanishing theorem for some of the fields, the
equations can be schematically described as follows. There are three operators Di

(constructed from A and � ) that commute,

(6-1) ŒDi ;Dj �D 0; i; j D 1; 2; 3:

And they obey a “moment map” constraint

(6-2)
3X

iD1

ŒDi ;Di
|�D 0:

The construction of the Di in terms of A and � depends on t . At t D 1, the equations
just described coincide with the “extended Bogomoly equations” [8], which describe
geometric Hecke transformations in the context of the geometric Langlands correspon-
dence. For this value of t , the requisite model solutions, with singularities labeled by
representations of the dual group, can be described in closed form (Mikhaylov and
myself [12; 17]). The appearance of geometric Hecke transformations is not a complete
surprise, since one of the known descriptions of Khovanov homology [1] is based
on a B –model category of moduli spaces of geometric Hecke transformations. (This
approach has not yet been derived from quantum field theory, though some of the steps
are clear.)

For generic t , a more transparent structure actually emerges [4], even though, in this
case, closed form solutions are not known. After a change of variables that is only
valid for t 6D ˙1, the equations ŒDi ;Dj �D 0D

P
i ŒDi ;D|

i � are actually more familiar.
They describe a flat GC bundle E!R2 �RC endowed with a hermitian metric that
obeys a moment map condition. For a special value of t , the moment map condition is
the one studied long ago in [2]. As far as is known, the t –dependence of the moment
map is not important for any qualitative results.

Since R2 �RC is simply-connected, how can we get anything interesting from a flat
connection? The answer is that there is additional structure in the behavior at y D 0

(and 1). A flat bundle over R2 �RC is, of course, the pullback of a flat bundle on
R2 , which we will think of as C . The boundary conditions at y D 0 gives the flat
bundle E!C the structure of an “oper,” in the language of geometric Langlands. At
the points corresponding to the knots, the oper has singularities, but the flat bundle has
no monodromy around these singularities. Such oper singularities are classified again
by representations of the dual group, as reviewed by Frenkel in [3]. This gives a way
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to understand for generic t the existence of model solutions with singularities labeled
by a representation of the dual group. (For generic t , these solutions are not known in
closed form, but they can be found numerically for G_ D SU.2/.) As also explained
in [3], opers with singularities of this type are related to integrable models such as the
Gaudin spin chain.

Integrable spin systems are part of the context in which the Jones polynomial was
originally discovered. So the relation of the reduced three-dimensional equations to
an integrable spin chain offers some encouragement that we may be able to directly
understand how the counting of the solutions of the four-dimensional equations (2-14)
leads to the Jones polynomial. Actually carrying this out [4] requires one more key
idea, which we describe next.

7 Knot projections

Figure 6: Projection of a knot to two dimensions.

In standard approaches to the Jones polynomial and Khovanov homology, one often
begins by considering a projection of a knot to two dimensions, as in Figure 6. One
makes some definition based on this projection, and then one endeavors to prove that
this definition is actually independent of the choice of a projection.

In the context of the four- and five-dimensional equations considered here, there is a
very natural way to incorporate a knot projection by modifying the boundary condition
for y!1. For brevity, we will describe this only for four-dimensional gauge theory
on M D R3 �RC . Instead of requiring that A; � ! 0 for y !1, we keep that
condition on A, but we change the condition on � . We pick a triple c1; c2; c3 of
commuting elements of t, the Lie algebra of a maximal torus T �G , and we ask for

(7-1) �!
X

i

ci � dxi

for y!1. Here x1;x2;x3 are Euclidean coordinates on R3 . We use the fact that
the equations have an exact solution for AD 0 and � of the form just indicated. There
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is a nice theory of Nahm’s equations with this sort of condition at infinity (Kronheimer
[10]).

The counting of solutions of an elliptic equation is constant under continuous variations
(provided certain conditions are obeyed) so one expects that the Jones polynomial can
be computed with this more general asymptotic condition, for an arbitrary choice of
Ec D .c1; c2; c3/.

If G D SU.2/, then t is one-dimensional. So if Ec is non-zero, it has the form Ec D c � Ea

where c is a fixed (nonzero) element of t and Ea is a vector in three-space. So picking Ec
essentially means picking a vector Ea pointing in some direction in R3 . The choice of Ea
determines a projection of R3 to a plane, so this is now built into the construction. For
G of higher rank, one could do something more general, but it seems sufficient to take
Ec D c � Ea with c a regular element of t. The advantage to this method of introducing a
knot projection is that we know a priori that what we compute will be independent of
the choice of the projection.

Taking Ec 6D 0 is described by physicists as “gauge symmetry breaking” or “moving
on the Coulomb branch.” A closely parallel construction is important in the theory
of superconductivity, in Taubes’s proof that “SWD GW,” and in the theory of weak
interactions and Higgs particles. (For a review of these matters, emphasizing their
common features, see [15].) Taking Ec sufficiently generic gives a drastic simplification
because the equations become quasi-abelian in a certain sense. On a length scale large
than 1=jEcj, the solutions can be almost everywhere approximated by solutions of an
abelian version of the same equations. There is an important locus where this fails, but
it can be understood.

By reasoning along these lines, it is possible [4] to give a fairly direct map from the
counting function J.qIK;R/, defined in equation (3-2), to a known construction of
the Jones polynomial (and its analogs for other representations and gauge groups).
The known construction that has been obtained this way is the vertex model (which
is presented, for example, by Kauffman in [9]). One of the main tools in the analysis
was the relationship of the reduced three-dimensional equations to integrable models,
as indicated in Section 6. The analysis gave a way of relating the counting function
J.qIK;R/ to the Jones polynomial, without relying on arguments of quantum field
theory.
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