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Open book decompositions
versus prime factorizations

of closed, oriented 3–manifolds

PAOLO GHIGGINI

PAOLO LISCA

Let M be a closed, oriented, connected 3–manifold and .B; �/ an open book
decomposition on M with page † and monodromy ' . It is easy to see that the
first Betti number of † is bounded below by the number of S2 �S1 –factors in the
prime factorization of M . Our main result is that equality is realized if and only if
' is trivial and M is a connected sum of copies of S2 � S1 . We also give some
applications of our main result, such as a new proof of the fact that if the closure of a
braid with n strands is the unlink with n components then the braid is trivial.

57N10; 57M25

1 Introduction

An abstract open book is a pair .†; '/, where † is a connected, oriented surface with
@†¤∅ and the monodromy ' is an element of the group DiffC.†; @†/ of orientation-
preserving diffeomorphisms of † which restrict to the identity on a neighborhood of
the boundary. We say that the monodromy ' is trivial if it is isotopic to the identity of
† via diffeomorphisms which fix @† pointwise. Let N' denote the mapping torus

N' D†� Œ0; 1�=.p; 1/� .'.p/; 0/:

To the open book .†; '/ one can associate a closed, oriented, connected 3–manifold
M.†;'/ by using the natural identification of @N' D @†�S1 with the boundary of
@†�D2 :

M.†;'/ WDN' [@ @†�D2:

The link B WD @†�f0g�M.†;'/ is fibered, with fibration � W M.†;'/nB!S1 given
by the obvious extension of the natural projection

N' D†� Œ0; 1�=.p; 1/� .'.p/; 0/! S1
D Œ0; 1�=1� 0
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146 Paolo Ghiggini and Paolo Lisca

and monodromy equal to ' . In other words, the pair .B; �/ is an open book decomposi-
tion of M DM.†;'/ with binding B , pages †� WD ��1.�/, � 2 S1 , and monodromy
' . We will always identify N' with the complement of a tubular neighborhood of B

in M .

If .B; �/ is an open book decomposition of M with page †, it is easy to see that M

has a Heegaard splitting of genus b1.†/. Since M is obtained from each handlebody of
the splitting by attaching 2–disks and 3–balls, this immediately implies the inequality

(1) b1.M /� b1.†/:

We will provide a refinement of Inequality (1) in Proposition 2.2.

The following theorem is our main result. Its proof is based on well-known results
due to Reidemeister [14], Singer [15] and Haken [8] (see Section 3). Recall that each
closed, oriented, connected 3–manifold M has a prime factorization, unique up to
order of the factors, of the form

(2) M DM1 # � � � # Mh # S2
�S1# .k/

� � � #S2
�S1;

where each Mi is irreducible (see eg [10]).

Theorem 1.1 Let .B; �/ be an open book decomposition of a closed, oriented, con-
nected 3–manifold M with page † and monodromy ' . Then b1.†/ is equal to the
number of S2 �S1 –factors in the prime factorization of M if and only if ' is trivial
and M is a connected sum of copies of S2 �S1 .

Theorem 1.1 immediately implies the following corollary, which is also proved in
Ni [12, Proof of Theorem 1.3] and Grigsby and Wehrli [7, Theorem 2] using the fact
that finitely generated free groups are not isomorphic to any of their nontrivial quotients.

Corollary 1.2 Any open book decomposition of #k
S2 �S1 whose page † satisfies

b1.†/D k must have trivial monodromy.

Corollary 1.2 implies Corollary 1.3, which was obtained previously by Cochran [3]
using the fact that finitely generated free groups are not isomorphic to any of their
nontrivial quotients, and by Birman and Menasco [2] as an application of their braid
foliation techniques. Grigsby and Wehrli [7] gave another proof of Corollary 1.3 using
Khovanov homology.

Corollary 1.3 Let b 2 Bn be a braid on n strands such that its closure yb is the trivial
link Un with n components. Then b is the identity.
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Open book decompositions versus prime factorizations 147

Proof Put yb in braid form with respect to the binding of the trivial open book decom-
position of S3 and consider the two-fold branched cover †.yb/ along yb . Then

†.yb/D†.Un/D
n�1

# S2
�S1:

Pulling back the trivial open book of S3 to †.yb/ we obtain an open book decomposition
of #n�1

S2�S1 , whose page is a surface † with b1.†/D n�1, which we view as a
2–fold branched cover of the disk with n branch points. Under the identification of Bn

with the subgroup of the mapping class group of † given by the elements commuting
with the covering involution [1], the monodromy of the open book is equal to b . By
Corollary 1.2, the braid b must be the identity in Bn .

Let † and †0 be two orientable surfaces. By performing a boundary connected sum
between them we obtain a surface † \ †0 . If ' is a diffeomorphism of †,  is a
diffeomorphism of †0 and both ' and  are the identity on a neighborhood of the
boundary, we can form a diffeomorphism ' \ of †\†0 . This geometric operation
yields a homomorphism

�† ��†0 ! �†\†0 ;

which we will call boundary connected sum homomorphism. A combination of Inequal-
ity (1) with Corollary 1.2 yields the following Corollary 1.4, which can also be proved
by applying [13, Corollary 4.2 (iii)].

Corollary 1.4 Let �† be the mapping class group of the orientable surface †. Then
the boundary connected sum homomorphism

�† ��†0 ! �†\†0

is injective.

Proof Under the map .†; '/!M.†;'/ described above, boundary connected sum
of abstract open books corresponds to connected sum of 3–manifolds:

M.†\†0;'\ / DM.†;'/ # M.†0; /:

Observe that b1.†\†
0/D b1.†/Cb1.†

0/. Therefore, if '\ is isotopic to the identity
relative to the boundary then M.†\†0;'\ / is diffeomorphic to #b1.†/Cb1.†

0/
S2�S1 .

The uniqueness of the prime factorization for 3–manifolds [10] implies that

M.†;'/ D

k

#S2
�S1 and M.†0; / D

l

#S2
�S1
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for some nonnegative integers k; l such that kCl D b1.†/Cb1.†
0/. By Inequality (1)

we have k � b1.†/ and l � b1.†
0/, which forces k D b1.†/ and l D b1.†

0/ as the
only possibility. Corollary 1.2 implies that ' and  are isotopic to the identity.

The rest of the paper is organized as follows. In Section 2 we recall two well-known
results independent of Theorem 1.1, ie Propositions 2.1 and 2.2. Proposition 2.1 shows
that any embedded 2–sphere disjoint from the binding of an open book decomposition
bounds an embedded ball. Proposition 2.2 is a refinement of Inequality (1) and can be
viewed as saying that the homology of a closed, oriented, connected 3–manifold M

puts homological constrains on the monodromy of any open book decomposition of
M . In Section 3 we prove Theorem 1.1.
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comments. The present work is part of the authors’ activities within CAST, a Research
Network Program of the European Science Foundation. The first author was partially
supported by the ERC grant “Geodycon”. The second author was partially supported
by the PRIN–MIUR research project 2010–2011 “Varietà reali e complesse: geometria,
topologia e analisi armonica”.

2 Nonseparating 2–spheres and refinement of Inequality (1)

Given a closed, oriented, connected 3–manifold M endowed with an open book
decomposition .B; �/ and having a prime factorization as in (2), one of the first
questions one could ask is how a nonseparating 2–sphere S in M can be positioned
with respect to the binding B . Since B is homologically trivial in M , the following
proposition implies that, possibly after a small isotopy, each such S must intersect B

transversally at least twice.

Proposition 2.1 Let .B; �/ be an open book decomposition with page † and mon-
odromy ' of a closed, oriented, connected 3–manifold M . Then each embedded
2–sphere S � M n B bounds an embedded ball in M n B and, in particular, is
homologically trivial in M .

Proof Recall that M DN' [V , where V is a tubular neighborhood of the binding.
Up to an isotopy of S , we can assume S � N' . The universal cover of N' is
homeomorphic to R3 and from this the triviality of ŒS � in H2.M nB/, and therefore
in H2.M /, follows immediately.

In order to prove that S bounds a ball in M nB we need to use some basic results
in three-dimensional topology. In fact R3 is irreducible [9, Theorem 1.1] and this
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Open book decompositions versus prime factorizations 149

implies [9, Proposition 1.6] that N' is also irreducible, therefore S bounds an embedded
ball in N' .

We now establish a result which refines Inequality (1). Proposition 2.2 below can
be viewed as saying that the homology of a closed, oriented, connected 3–manifold
M puts homological constraints on the monodromy of any open book decomposition
of M .

For the rest of this section all homology groups will be taken with coefficients in the
field Q of rational numbers unless specified otherwise. Let H1.†; @†/

' denote the
subspace of H1.†; @†/ consisting of the elements fixed by the map

'�WH1.†; @†/!H1.†; @†/

induced by the monodromy 'W †!†.

Proposition 2.2 Let .B; �/ be an open book decomposition with page † and mon-
odromy ' of a closed, oriented, connected 3–manifold M . Then

b1.M /D dimQ H1.†; @†/
' :

More precisely, there is an isomorphism H2.M / Š H1.†; @†/
' induced by a well-

defined map H2.M IZ/!H1.†; @†IZ/
' given by ˛ 7! ŒF \†�, where F �M is

any closed, oriented and properly embedded surface which represents ˛ and intersects
the page †� f0g transversally.

Proof We can view N' as the union of †� Œ0; 1
2
� and †� Œ1

2
; 1� with .x; 1/ identified

to .'.x/; 0/. Using the fact that † times an interval is homotopically equivalent to †,
the (relative) Mayer–Vietoris sequence for this splitting gives the exact sequence

H2.†; @†/
2 f1
�!H2.N' ; @N'/

f2
�!H1.†; @†/

2 f3
�!H1.†; @†/

2:

The map f3 is given by the matrix�
Id Id
'� Id

�
2M2.End.H1.†; @†///:

This immediately implies that the image of f2 is isomorphic to H1.†; @†/
' .

Recall the decomposition M D N' [V , where V is a tubular neighborhood of the
binding. Since H2.V /Df0g, the homology exact sequence for the pair .M;V / implies
that the map gW H2.M /!H2.M;V / induced by the inclusion map is injective. On
the other hand, by excision the inclusion N' �M induces an isomorphism

 W H2.N' ; @N'/
Š
�!H2.M;V /:

Geometry & Topology Monographs, Volume 19 (2015)



150 Paolo Ghiggini and Paolo Lisca

Moreover, it is easy to see that the image of the map  ıf1 maps injectively to H1.V /

under the next map ıW H2.M;V /!H1.V / in the exact sequence of the pair, while the
image of g maps trivially. This shows that the images of f1 and of  �1ıg have trivial
intersection. Therefore the composition f2 ı 

�1 ıg sends H2.M / injectively into
the image of the map f2 , which, as we have just shown, is isomorphic to H2.†; @†/

' .

We claim that f2 ı 
�1 ıg sends H2.M / also surjectively onto the image of f2 . In

order to verify this, we argue by induction. Assume first that @† is connected. In this
situation the map ı ı ıf1 is clearly surjective. Therefore, if x 2H2.N' ; @N'/ with
f2.x/ ¤ 0, there exists y 2 H2.†; @†/

2 with ı ı ı f1.y/ D ı ı .x/. It follows
that setting x0 D x�f1.y/ we have f2.x

0/D f2.x/ and ı ı .x0/D 0; therefore x0

is in the image of  �1 ıg , and the claim is proved when @† is connected.

Now assume @† is disconnected and denote by j@†j the number of its connected
components. By the inductive hypothesis we assume that the claim holds for open
books with j@†j � 1 binding components. Let .y†; y'/ be another abstract open book,
constructed as follows. The connected, oriented surface y† is obtained by attaching
a 2–dimensional 1–handle h to @† so that j@y†j D j@†j � 1, while y' is defined
by first extending ' as the identity over h, and then composing with a (positive or
negative) Dehn twist along a simple closed curve in y† which intersects the cocore c of
h transversely once. It is a well-known fact that the open book decomposition . yB; y�/
associated to .y†; y'/ is obtained from the open book decomposition .B; �/ associated
to .†; '/ by plumbing with a Hopf band, and that M.y†;y'/ is diffeomorphic to M

(see [6]). We can choose a basis Œc1�; : : : ; Œcb1.†/� of H1.†; @†/ such that each ci �†

is a properly embedded arc disjoint from 
 \†, and so that, viewing the classes Œci � in
H1.y†; @y†/, when we add Œc� we obtain a basis of H1.y†; @y†/. Using this basis one
can easily check that the natural inclusion map H1.†; @†/!H1.y†; @y†/ restricts to
an isomorphism

H1.†; @†/
'
ŠH1.y†; @y†/

y' :

Since j@y†j D j@†j � 1, by the inductive assumption we have

b1.M /D dimQ H1.y†; @y†/
y' :

This proves the claim in full generality. Finally, observe that the maps f2 and
f2 ı 

�1 ıg are well-defined over the integers. If we represent homology classes in
H2.N' ; @N' IZ/ and H2.M IZ/ by oriented, properly embedded surfaces intersecting
the page †�f0g transversally and we follow the construction of the connecting homo-
morphism, we see that the maps f2 and f2 ı 

�1 ıg are both realized geometrically
by intersecting with †� f0g. This concludes the proof.

Geometry & Topology Monographs, Volume 19 (2015)



Open book decompositions versus prime factorizations 151

3 The proof of Theorem 1.1

We start by recalling a basic result of Reidemeister and Singer about collections of
compressing disks in a handlebody. We refer to [11] for a modern presentation of this
material. Let Hg be a 3–dimensional handlebody of genus g . A properly embedded
disk D �Hg is essential if @D does not bound a disk in @Hg .

Definition 3.1 A collection fD1; : : : ;Dgg �Hg of g properly embedded, pairwise
disjoint essential disks is a minimal system of disks for Hg if the complement of a
regular neighborhood of

S
i Di in Hg is homeomorphic to a 3–dimensional ball.

Let D1;D2 �H be properly embedded, essential disks in the handlebody Hg . Let
a � @H be an embedded arc with one endpoint on @D1 and the other endpoint on
@D2 . Let N be the closure of a regular neighborhood of D1 [D2 [ a in H . Then
N is homeomorphic to a closed 3–ball, and it intersects @Hg in a subset of @N
homeomorphic to a three-punctured 2–sphere. The complement @N n @Hg of this
subset consists of the disjoint union of three disks, two of which are isotopic to D1

and D2 respectively, and the third one is denoted by D1 �a D2 . See Figure 1.

D1 D2

D1�aD2

a

Figure 1: A disk slide

Let D D fD1; : : : ;Dgg be a minimal system of disks for a handlebody Hg , a� @Hg

an embedded arc with one endpoint on @Di , the other endpoint on @Dj , with i ¤ j ,
and the interior of a disjoint from

S
i @Di . Then, removing either Di or Dj from D

and adding Di �a Dj yields a new minimal system of disks D0 for Hg , well-defined
up to isotopy [11, Corollary 2.11]. In this situation we say that D0 is obtained from D

by a disk slide.

Definition 3.2 Two minimal systems of disks for Hg are slide equivalent if they are
connected by a finite sequence D1; : : : ;Dm such that DiC1 is obtained from Di by
a disk slide for each i .
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To prove Theorem 1.1 we need the following result (see [11, Theorem 2.13] for a
modern exposition).

Theorem 3.3 [14; 15] Any two minimal systems of disks for a handlebody are slide
equivalent.

We can now start the formal proof of Theorem 1.1. The first step is to normalize the
position of certain nonseparating 2–spheres with respect to a Heegaard splitting. This
will be done in the following lemma.

Lemma 3.4 Let M D H [H 0 be a Heegaard splitting of a 3–manifold M which
admits a prime factorization

(3) M DM1 # � � � # Mh # S2
�S1# .k/� � � #S2

�S1

with b1.M /D k . Then there are pairwise disjoint, embedded 2–spheres S1; : : : ;Sk

in M such that each Si intersects the Heegaard surface @H in a single circle Ci .
Moreover, after choosing an orientation of each Si , the corresponding 2–homology
classes ŒSi � generate H2.M IQ/.

Proof Suppose that M 0 DM1 # � � � # Mh , where each Mi is irreducible. By defini-
tion any embedded 2–sphere S �Mi bounds a 3–ball. Therefore, if we denote by
S 0

1
; : : : ;S 0

h�1
�M 0 the separating spheres along which the connected sums are per-

formed and S 0
h
�M 0 is any smoothly embedded 2–sphere disjoint from S 0

1
; : : : ;S 0

h�1
,

then the closure of some component of M 0 n
Sh

iD1 S 0i is a punctured 3–ball.

In the terminology of Haken [8], a collection of pairwise disjoint, embedded 2–spheres
with such a property is called a complete system of spheres. Thus, the collection
S 0

1
; : : : ;S 0

h�1
is a complete system of spheres for M 0 . If we view each sphere S 0i

as contained in M and denote by S 0
h�1Ci

� M , for i D 1; : : : ; k , the embedded
2–sphere corresponding to S2�f1g in the i th S2�S1 –factor of the factorization (3),
the whole collection S 0

1
; : : : ;S 0

h�1
;S 0

h
; : : : ;S 0

h�1Ck
is a complete system of spheres

for M .

Observe that, since b1.M /D k , b1.M
0/D 0. Then, after choosing orientations, the

homology classes ŒS 0
h�1Ci

� 2H2.M IQ/ generate H2.M IQ/ as a Q–vector space,
and a fortiori the same is true for the classes ŒS 0

1
�; : : : ; ŒS 0

h�1Ck
�.

Now, according to the lemma on page 84 of [8], the system of spheres S 0
1
; : : : ;S 0

h�1Ck

may be transformed by a finite sequence of isotopies and “�–operations” (see [8] for the
definition) into a collection of pairwise disjoint, incompressible 2–spheres S1; : : : ;St ,
t � h � 1C k , such that each Si intersects the Heegaard surface @H in a single
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circle Ci D Si \ @H , and moreover the classes ŒSi � still generate H2.M IQ/. Since
dimQ H2.M IQ/D k , up to renaming the spheres we may assume that ŒS1�; : : : ; ŒSk �

are generators of H2.M IQ/. This finishes the proof of the lemma.

Proof of Theorem 1.1 Let .B; �/ be an open book decomposition of a closed, ori-
ented, connected 3–manifold M with page † and monodromy ' . If ' is trivial then
it is easy to check that M is homeomorphic to the connected sum of b1.†/ copies of
S2 �S1 . This proves one direction of the statement. For the other direction, suppose
that M factorizes as in (2). In view of Proposition 2.2 or Inequality (1) we have

b1.†/� b1.M /� k:

If b1.†/D k , the above inequality implies b1.M /D k and therefore if we set

M 0
WDM1 # � � � # Mh

we have b1.M
0/D 0.

Denote by Hb1.†/ � M the handlebody of genus b1.†/ consisting of a regular
neighborhood of † in M . Since † is the fiber of a fibration, the closure of the
complement M nHb1.†/ is a handlebody as well, which we denote by H 0b1.†/

. It
follows that M admits the Heegaard splitting

(4) M DHb1.†/[H 0b1.†/
:

By Lemma 3.4 there are pairwise disjoint embedded spheres S1; : : : ;Sk �M which
generate H2.M IQ/ and such that each Si intersects the Heegaard surface @Hb1.†/

in a single circle Ci .

Observe that each circle Ci bounds the disk Di D Si \Hb1.†/ inside Hb1.†/ and the
disk Si \H 0b1.†/

inside H 0b1.†/
. Since the map

H2.M IQ/!H1.@Hb1.†/IQ/

appearing in the Mayer–Vietoris sequence associated with the decomposition (4) is
injective, after choosing orientations we see that the induced homology classes ŒCi �

generate a half-dimensional subspace of H1.@Hb1.†/IQ/ which is Lagrangian for the
intersection form on H1.@Hb1.†/IQ/ because the Ci are pairwise disjoint.

We now claim that the Di are a minimal system of compressing disks for Hb1.†/ .
To see this we can argue by induction on b1.†/. If b1.†/ D 0 there is nothing to
prove, so we may assume b1.†/ > 0. Let N be an open regular neighborhood of D1 .
Since ŒC1�¤ 0, Hb1.†/ nN is connected and therefore by [11, Proposition 5.18] it
is a handlebody. Moreover, the remaining homology classes ŒCi �, i � 2, generate a
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Lagrangian subspace in the first homology group of the boundary of Hb1.†/ nN . By
the inductive assumption the disks Di for i � 2 are a minimal system of compressing
disks for Hb1.†/ nN , which proves the claim.

Recall that, by construction, the curves Ci D @Di bound compressing disks in H 0b1.†/
.

Arguing as for Hb1.†/ shows that such disks constitute a minimal system for H 0b1.†/
.

Thus, surgering M along the spheres S1; : : : ;Sk yields a 3–manifold having a genus-0
Heegaard splitting, ie S3 . This implies that M is a connected sum of k copies of
S2 �S1 , and we are left to show that the monodromy ' is trivial.

Now we choose a system of arcs for †, ie a collection of properly embedded, pairwise
disjoint oriented arcs a1; : : : ; ab1.†/ �† whose associated homology classes Œai � 2

H1.†; @†IQ/ generate the Q–vector space H1.†; @†IQ/. Then, after fixing an
identification Hb1.†/D†�I , the disks ai �I �†�I yield another minimal system
of disks fD0ig

g
iD1

for Hb1.†/ . Thus, according to Theorem 3.3, the system fDig
g
iD1

is
slide equivalent to the system fD0ig

g
iD1

. But recall that, by construction, each curve
Ci D @Di bounds a compressing disk in H 0b1.†/

, and a moment’s reflection shows that
any disk slide among the Di gives rise to a disk Di �a Dj whose boundary also bounds
a compressing disk in H 0b1.†/

. By induction we conclude that any minimal system of
disks f zDig

g
iD1

obtained from fDig
g
iD1

by a finite sequence of isotopies and disk slides
still has the property that each curve @ zDi bounds a compressing disk in H 0b1.†/

.

In particular, this conclusion applies to the system fD0ig
g
iD1

, showing that each of
the circles @D0i bounds a compressing disk in H 0b1.†/

. Since the splitting (4) is
induced by the open book decomposition .B; �/, we can choose an identification
H 0b1.†/

D†� Œ0; 1� such that each @D0i is of the form

ai � f0g
[
'.ai/� f1g;

where ' is the monodromy of .B; �/. The fact that @D0i bounds a disk in H 0b1.†/
says

that there is a family of arcs in †� I interpolating between ai � f0g and '.ai/� f1g.
Mapping such family to † via the projection † � I ! † shows that each ai is
homotopic to '.ai/ (with fixed endpoints), and therefore by [4] each ai is isotopic to
'.ai/ via an isotopy which keeps the endpoints fixed. Since faig is a system of arcs
for †, a standard argument based on the Alexander lemma [5, Lemma 2.1] implies
that ' is isotopic to the identity of † via diffeomorphisms which fix @† pointwise.
This concludes the proof of Theorem 1.1.

References
[1] J S Birman, H M Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann.

of Math. 97 (1973) 424–439 MR0325959

Geometry & Topology Monographs, Volume 19 (2015)

http://dx.doi.org/10.2307/1970830
http://www.ams.org/mathscinet-getitem?mr=0325959


Open book decompositions versus prime factorizations 155

[2] J S Birman, W W Menasco, Studying links via closed braids, V: The unlink, Trans.
Amer. Math. Soc. 329 (1992) 585–606 MR1030509

[3] T D Cochran, Non-trivial links and plats with trivial Gassner matrices, Math. Proc.
Cambridge Philos. Soc. 119 (1996) 43–53 MR1356156

[4] D B A Epstein, Curves on 2–manifolds and isotopies, Acta Math. 115 (1966) 83–107
MR0214087

[5] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series
49, Princeton Univ. Press (2012) MR2850125

[6] E Giroux, N Goodman, On the stable equivalence of open books in three-manifolds,
Geom. Topol. 10 (2006) 97–114 MR2207791

[7] J E Grigsby, S M Wehrli, An elementary fact about unlinked braid closures arXiv:
1309.0759

[8] W Haken, Some results on surfaces in 3–manifolds, from: “Studies in Modern Topol-
ogy”, Math. Assoc. Amer., Washington, DC (1968) 39–98 MR0224071

[9] A Hatcher, Notes on basic 3–manifold topology (2007) Available at http://
www.math.cornell.edu/~hatcher/3M/3Mfds.pdf

[10] J Hempel, 3–manifolds, Ann. Math. Studies 86, Princeton Univ. Press (1976)

[11] J Johnson, Notes on Heegaard splittings (2006) preprint Available at http://
users.math.yale.edu/~jj327/notes.pdf

[12] Y Ni, Homological actions on sutured Floer homology, Math. Res. Lett. 21 (2014)
1177–1197 MR3294567

[13] L Paris, D Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew.
Math. 521 (2000) 47–83 MR1752295

[14] K Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg
9 (1933) 189–194 MR3069596

[15] J Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer.
Math. Soc. 35 (1933) 88–111 MR1501673

Laboratoire de Mathématiques Jean Leray, Université de Nantes & CNRS
BP 92208, 2 rue de la Houssinière, F-44322 Nantes 03, France

Dipartimento di Matematica, Università di Pisa
Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy

paolo.ghiggini@univ-nantes.fr, lisca@dm.unipi.it

Received: 18 November 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2307/2153953
http://www.ams.org/mathscinet-getitem?mr=1030509
http://dx.doi.org/10.1017/S0305004100073953
http://www.ams.org/mathscinet-getitem?mr=1356156
http://dx.doi.org/10.1007/BF02392203
http://www.ams.org/mathscinet-getitem?mr=0214087
http://www.ams.org/mathscinet-getitem?mr=2850125
http://dx.doi.org/10.2140/gt.2006.10.97
http://www.ams.org/mathscinet-getitem?mr=2207791
http://arxiv.org/abs/1309.0759
http://arxiv.org/abs/1309.0759
http://www.ams.org/mathscinet-getitem?mr=0224071
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://users.math.yale.edu/~jj327/notes.pdf
http://users.math.yale.edu/~jj327/notes.pdf
http://dx.doi.org/10.4310/MRL.2014.v21.n5.a12
http://www.ams.org/mathscinet-getitem?mr=3294567
http://dx.doi.org/10.1515/crll.2000.030
http://www.ams.org/mathscinet-getitem?mr=1752295
http://dx.doi.org/10.1007/BF02940644
http://www.ams.org/mathscinet-getitem?mr=3069596
http://dx.doi.org/10.2307/1989314
http://www.ams.org/mathscinet-getitem?mr=1501673
mailto:paolo.ghiggini@univ-nantes.fr
mailto:lisca@dm.unipi.it
http://msp.org
http://msp.org



	1. Introduction
	2. Nonseparating 2–spheres and refinement of Inequality ebonineq
	3. The proof of Theorem 1.1
	References

