
msp
Geometry & Topology Monographs 19 (2015) 157–171

On the self-linking number of transverse links

TETSUYA ITO

KEIKO KAWAMURO

We review a braid-theoretic self-linking number formula proved in our previous work
and study its applications.

57M25; 57M50

1 Review of the self-linking number

Let M be an oriented closed 3–manifold equipped with a contact structure � . Let
K � .M; �/ be an oriented transverse link, namely at every point p 2K the link K is
transverse to the contact plane �p positively.

The self-linking number is an invariant of null-homologous transverse links. Suppose
that a transverse link K � .M; �/ bounds a Seifert surface † � M . Choose a
nowhere-vanishing section s of the rank-2 vector bundle �j† ! † and push K

into the direction of s to obtain a copy of K , denoted by Ks . The self-linking
number sl.K; Œ†�/ is defined to be the algebraic intersection number of Ks and †.
In other words sl.K; Œ†�/D�he.�/; Œ†�i, the evaluation of the Euler class e.�/ over
Œ†� 2H2.M;KIZ/.

In [8], we studied a braid-theoretic formula of the self-linking number. In this paper we
will give applications and observations of the formula. In order to review the formula,
we recall the following two fundamental results.

The first one is the Giroux correspondence [6]: Given an oriented closed three man-
ifold M , there is a one to one correspondence between the set of contact structures
on M up to contact isotopy and the set of open book decompositions of M up to
positive stabilizations.

The second result is due to Bennequin [2], Mitsumatsu and Mori [12], and Pavelescu [15;
16]: Suppose that the contact manifold .M; �/ is corresponding to (in the sense of
Giroux) the open book .S; �/, where S is a compact oriented surface with nonempty
boundary and �W S ! S is a diffeomorphism fixing the boundary of S pointwise.
(In the following, we say that .M; �/ is supported by .S; �/.) There is a one to one
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correspondence between the set of transverse links in .M; �/ up to transverse isotopy
and the set of braids with respect to .S; �/ up to braid isotopy and positive stabilization.

Here by a braid with respect to .S; �/ we mean an oriented link in M DM.S;�/ that
intersects every page of .S; �/ positively and is never tangent to any pages. A close
connection between transverse links and braids was first observed by Bennequin [2] for
the case .S; �/D .D2; id/. The general case was studied by Mitsumatsu and Mori [12]
and Pavelescu [15; 16].

In order to state the self-linking number formula we fix notations here. Let S D Sg;r

be a surface of genus g and with r boundary components, .S; �/ an open book, and
yb a null-homologous n–stranded braid with respect to .S; �/. We may identify the
group of n–stranded braids with respect to .S; �/ with the fundamental group of the
configuration space of S with n punctures. We place n points near one of the boundary
components of S and choose the generators f�1; : : : ; �n�1; �1; : : : ; �2gCr�1g of the
braid group as depicted in Figure 1.

�1�r�1

�r

�rC1

�2gCr�2

�2gCr�1

�i

1

i i C 1

n

Figure 1: Generators of the braid group

Suppose that the closed braid yb is represented by a braid word

b
"1

1
b
"2

2
� � � b

"l

l
;

where bi 2 f�1; : : : ; �n�1; �1; : : : ; �2gCr�1g and "i 2 Z. Let Œ�i � 2H1.S IZ/ denote
the homology class of the loop �i and put Œ�j � WD 0 2H1.S IZ/. Define

Œb� WD "1Œb1�C � � �C "l Œbl � 2H1.S IZ/:

We note that Œb� is an element of H1.S IZ/ and different from Œyb�D 0 2H1.M IZ/.

The null-homologous assumption on yb implies the following.
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On the self-linking number of transverse links 159

Lemma 1.1 [8, Claim 3.8] There exists (not necessarily unique) a homology class
a 2H1.S; @S IZ/ such that

(1) Œb�D a���.a/ 2H1.S IZ/:

It is implicit in the proof of [8, Claim 3.8] that the homology class a2H1.S; @S IZ/ is
represented by properly embedded circles and arcs that do not intersect the n punctures
of S . Since � D id near @S we may regard a���.a/ 2H1.S IZ/.

The homology class a 2H1.S; @S IZ/ depends on choice of a Seifert surface † of yb
and is represented by S1\†, the intersection of † with the t D 1 page, S1 , of the
open book. Thus a is uniquely determined by the homology class Œ†� 2 H2.M; yb/.
Conversely, in Theorem 1.3 below we construct a Seifert surface †a from a, ie the
homology class Œ†a� 2H2.M; yb/ is uniquely determined by a.

Let aNF denote the normal form of a 2 H1.S; @S IZ/, that is a properly embedded
multicurve representing a. See [8, Definition 3.3]) for the precise definition of the
normal form, where we use the notation N.a/ instead of aNF . Let F be a cobordism
surface from �.aNF/ to .��.a//NF , ie a compact, oriented, properly embedded surface
in S � Œ0; 1� such that:

� F \ .S � f0g/D @F \ .S � f0g/D��.aNF/� f0g.

� F \ .S � f1g/D @F \ .S � f1g/D .��.a//
NF � f1g.

� @.�.aNF//D �.aNF/\ @S D .��.a//
NF\ @S D @..��.a//

NF/.

� @F D .��.aNF/� f0g/[ ..��.a//
NF � f1g/[ .@.�.aNF//� Œ0; 1�/.

� All the singularities of the singular foliation f.S � ftg/\F j t 2 Œ0; 1�g on F

are of hyperbolic type.

Such a surface F exists (not necessarily uniquely) and is called an OB cobordism in
[8, Definition 3.4].

Let h˙.F / denote the number of ˙ hyperbolic singularities of the above mentioned
singular foliation on F . It is proven in [8, Proposition 3.6] that the algebraic count of
the hyperbolic points hC.F /� h�.F / is uniquely determined by Œ�� and a. Hence
the following function c.Œ��; a/ is well-defined.

Definition 1.2 Let Œ�� 2MCG.S/ and a 2H1.S; @S/. Define

c.Œ��; a/ WD hC.F /� h�.F /:
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160 Tetsuya Ito and Keiko Kawamuro

Theorem 1.3 (Self linking number formula [8]) Let yb be an n–stranded closed braid
with respect to the open book .S; �/. Suppose that b D b

"1

1
b
"2

2
� � � b

"l

l
."i 2 Z/ is a

braid word of yb . Let Œb� 2H1.S IZ/ and a 2H1.S; @S IZ/ be as above. There exists
a Seifert surface †D†a of yb such that the self-linking number satisfies the formula

(2) sl.yb; Œ†�/D�nCbexp.b/���.a/ � Œb�C c.Œ��; a/:

Here ��.a/�Œb� represents the intersection pairing H1.S; @S/�H1.S/!Z and bexp.b/
is a generalized exponent sum defined by

bexp.b/D
lX

iD1

"i �

X
1�j<i�l

"i"j Œbj � � Œbi �:

As discussed in [8, Propositions 3.20 and 3.21] it turns out that c.Œ��; a/ has a decom-
position c.Œ��; a/D c0.Œ��; a/� 2k.Œ��; a/.

The first term c0.Œ��; a/ carries homological information: With a basis fŒ�0
1
�, : : :,

Œ�0
2gCr�1

�g of H1.S; @S/ that is “dual” to fŒ�1�; : : : ; Œ�2gCr�1�g of Figure 1, c0.Œ��; a/

is determined by the homology intersections of Œ�0i � and Œ��.�0i/�.

The second term k.�; a/ is more interesting. It is a crossed homomorphism, ie�
k.Œ ��; a/D k.Œ��; a/C k.Œ �; ��.a//;

k.Œ��; aC a0/D k.Œ��; a/C k.Œ��; a0/:

Moreover, k.�; a/ represents a nontrivial cohomology class in H 1.MCG.S/;H 1.S//

that appears in various contexts in mapping class group theory. In our setting, k.Œ��; a/

coincides with Morita’s version of the crossed homomorphism in [13, Section 6].

Suppose that S has connected boundary. Let H WD H 1.S IZ/ ' H1.S; @S IZ/. In
[14], Morita proves the existence of a crossed homomorphism �WMCG.S/! 1

2

V3
H

and shows that � is the unique extension of the Johnson homomorphism � W I!
V3

H

up to coboundaries for H 1.MCG.S/;
V3

H /, where I is the Torelli group for S .
Our map k is obtained by k D C ı � , that is composition of � and the contraction
C W

V3
H !H , x ^y ^ z 7! 2..x �y/zC .y � z/xC .z �x/y/.

1.1 The disk open book

If .S; �/ D .D2; id/ then the compatible contact structure is the standard contact
3–sphere and the braid group is generated by the transpositions f�1; : : : ; �n�1g. In [2],
Bennequin proves that for an n–braid b D �

"1

i1
�
"2

i2
� � � �

"l

il
("i D 1 or �1),

(3) sl.yb; Œ†�/D�nC exp.b/;
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where exp.b/D
Pl

iD1 "i is the usual exponent sum of the braid word (note Œ�i �D 0

so exp.b/Dbexp.b/) and † is the so called Bennequin surface of b . The Bennequin
surface consists of n parallel stacked disks positively pierced by the binding (the braid
axis) and joined by twisted bands. More precisely, each positive (resp. negative) braid
word �i (resp. ��1 ) corresponds to a positively (resp. negatively) twisted band joining
the i th and the .i C 1/st disks.

Remark Since H2.S
3IZ/D 0 the self-linking number does not depend on choice

of a Seifert surface of yb and it makes sense to denote it simply by sl.yb/. We denote
sl.yb; Œ†�/ in (3), instead of sl.yb/, in order to remember that our particular construction
of †D†a in Theorem 1.3 is a generalization of the Bennequin surface.

1.2 Annulus open books

Let .S; �/ D .A;T k/ be the annulus open book with the k th power of the positive
Dehn twist T about a core circle of an annulus A. In [11], it is proven that

sl.yb; Œ†�/D�nC exp.b/���.a/ � Œb�

for some Seifert surface † that is a generalization of the Bennequin surface.

Remark When k ¤ 0 we remark that the self-linking number does not depend on
choice of a Seifert surface because the second homology of the manifold vanishes.

1.3 Planar open books

When S is a planar surface it is shown in [10] that

sl.yb; Œ†�/D�nC exp.b/���.a/ � Œb�C c0.Œ��; a/:

2 Applications

2.1 Positive braids and Bennequin–Eliashberg inequality

One of the celebrated results in contact topology is the Bennequin–Eliashberg inequality.

Theorem 2.1 (The Bennequin–Eliashberg inequality [4]) If a contact 3–manifold
.M; �/ is tight then for any null-homologous transverse link L and its Seifert surface
† we have

sl.L; Œ†�/� ��.†/:
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It is interesting to ask when the Bennequin–Eliashberg (BE) inequality is sharp.

We say that a closed braid yb with respect to the open book .D2; id/ is strongly
quasipositive if yb is represented by a braid word �i1;j1

� � � �il ;jl
, where

�i;j D .�i � � � �j�2/�j�1.�i � � � �j�2/
�1

and i < j . Clearly a positive braid is strongly quasipositive. A strongly quasipositive
braid bounds a particular Seifert surface which consists of n disks pierced by the
binding and the i th and the j th disks are joined by a positively twisted band for each
�i;j in the braid word �i1;j1

� � � �il ;jl
. It is easy to verify that the BE inequality is sharp

on a strongly quasipositive braid with the above mentioned Seifert surface.

However, in general, this is not the case if .S; �/¤ .D2; id/:

Consider the simplest nontrivial open book .A;T k/, the annulus open book with the
k th .k � 0/ power of the positive Dehn twist T . The contact structure �.A;T k/ is tight.
If a closed braid yb with respect to .A;T k/ is null-homologous then by Lemma 1.1
we have Œb�D skŒ�� 2H1.S;Z/ for some s 2 Z. Suppose that yb is a positive braid,
that is, yb is represented by a positive braid word b D b1 � � � bl in f�1; : : : ; �n�1; �g.
Positivity of yb implies s� 0. Let † be a Seifert surface of yb constructed in the manner
discussed in [8, Section 3.2].

Proposition 2.2 The Bennequin–Eliashberg inequality is sharp on .yb; †/ if and only
if s D 0 or s D k D 1.

In the case of s D 0 the positive word b1 � � � bl does not contain � . Hence the braid
lies near a small tubular neighborhood of one of the binding components and † is
nothing but the Bennequin surface explained in Section 1.1.

In the case of s D k D 1 the open book is a positive stabilization of .D2; id/ and the
braid b is a positive stabilization of some positive braid in .D2; id/.

Therefore Proposition 2.2 implies that, except for the two trivial cases mentioned above,
the BE–inequality is not sharp on positive braids.

In the following proof we use techniques of open book foliations studied in [8].

Proof In terms of e˙; h˙ 2 Z, the numbers of ˙ elliptic/hyperbolic singularities of
the open book foliation Fob.†/, the BE–inequality is restated as

�.eC� e�/C .hC� h�/� �.eCC e�/C .hCC h�/;

that is, e� � h� .
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By our specific construction of † introduced in the proof of [8, Theorem 3.10] the
normal form aNF of the homology class a is parallel essential s arcs in the annulus A

connecting the two boundary components. The endpoints of each arc become elliptic
points with distinct signs of the open book foliation Fob.†/. Therefore, we have s

negative elliptic points, that is,

e� D s:

Also the proof of [8, Theorem 3.10] shows that the term ��.a/ � Œb� in the self-linking
number formula (2) is exactly the number of negative hyperbolic points of the open
book foliation Fob.†/ provided yb is a positive braid. We have

h� D ��.a/ � Œb�D .sŒ�
0�/ � .skŒ��/D s2k;

where �0 is an essential arc connecting the two boundary components of A.

The inequality s � s2k holds if and only if s D 0 or s D k D 1.

The next is an example of a nonpositive braid on which the BE–inequality is sharp.

Example 2.3 Let .Sg;1; �/ be a general open book with connected binding. We do not
assume the contact structure �.S;�/ is tight. Fix n� 1. Let yb be an n–braid represented
by the braid word,

b D �1 � � � �n�1Œ�1; �2� � � � Œ�2g�1; �2g�

where Œa; b�Daba�1b�1 , so b is not a positive word. The braid yb is a positive push-off
of the binding and the algebraic intersection number of yb and a page surface S is n.
Since Œb�D 0 2H1.S;Z/ we can choose aD 0 2H1.S; @S IZ/. Then (2) implies that

sl.yb; Œ†�/D�nCbexp.b/D�nC .n� 1C 2g/D��.S/;

ie the BE–inequality is sharp on yb .

More general results by Hedden [7] (for the standard tight 3–sphere) and Etnyre
and van Horn-Morris [5] (for general tight contact manifolds) have been known: Let
.M; �/ be a tight contact structure. Assume that a manifold M admits an open book
decomposition .S; �/. Let K be the binding and † a page of the open book. Then
sl.K; Œ†�/D ��.†/ if and only if � is supported by .S; �/ or obtained from �.S;�/
by adding Giroux torsion.

Geometry & Topology Monographs, Volume 19 (2015)



164 Tetsuya Ito and Keiko Kawamuro

2.2 Permutation of a braid word

Let yb and yb0 be closed braids with respect to .S; �/ represented by the braid words�
b D b1 � � � bk ;

b0 D b�.1/ � � � b�.k/;

where bi 2 f�
˙
1
; : : : ; �˙

n�1
; �˙

1
; : : : ; �˙

r�1
g and � 2Sk is a permutation of k letters.

Assume that yb is null-homologous. Let a 2H1.S; @S/ be a homology class satisfying
(1) ie Œb�D Œb0�D a� ��.a/. Thus we have Seifert surfaces † and †0 of yb and yb0 ,
respectively, defined by the same homology class a.

Proposition 2.4 Assume that .S; �/ is a planar open book. Then the self-linking
numbers of the two closed braids yb and yb0 are equal:

sl.yb; Œ†�/D sl.yb0; Œ†0�/:

Proof We have
bexp.b/D exp.b/D exp.b0/Dbexp.b0/;

where the first and the third equalities follow from the planar condition of S and the
second equality holds because the braid words b and b0 are related to each other by a
permutation. Since Œb�D Œb0� 2H1.S IZ/ we may take the same a 2H1.S; @S/ for b

and b0 . By Theorem 1.3 we get sl.yb; Œ†�/D sl.yb0; Œ†0�/ for some Seifert surfaces †
and †0 .

The assumption that S is planar is necessary: Let .Sg;1; id/ be a nonplanar open
book (g > 0). Consider the braid b D Œ�1; �2� D �1�2�

�1
1
��1

2
and its permutation

b0 D �1�
�1
1
�2�
�1
2

. Since Œb�D Œb0�D 0 we may take aD 0. Clearly bb0 is the unknot
and sl.bb0 ; Œ†0�/D�1, whereas sl.yb; Œ†�/DC1 as discussed in Example 2.3 .

2.3 Contact surgery preserving the self-linking number

For a Legendrian knot L in a contact manifold .M; �/ one performs .˙1/–surgery
along L with respect to the contact framing [3]. Namely, the contact structure � on the
complement of L extends to a contact structure �L˙1 on the surgered manifold ML˙1 .

Proposition 2.5 Let L be a Legendrian knot and K a null-homologous transverse
knot with a Seifert surface † in .M; �/. If the algebraic intersection number of †
and L is zero, then in .ML˙1 ; �L˙1/ there exists a Seifert surface †L˙1 for the
corresponding transverse knot KL˙1 such that

sl.K; Œ†�/D sl.KL˙1 ; Œ†L˙1 �/:
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Proof Take an open book decomposition .S; �/ compatible with .M; �/ such that
the Legendrian knot L sits on the page S1.D StD1/ and the contact framing of L and
the surface framing of L induced by S1 agree [1; 17]. The open book .S; � ıT

�1
L
/

supports .ML˙1 ; �L˙1/, where TL denotes the right-handed Dehn twist along L. In
particular, if a closed braid yb with respect to .S; �/ represents the transverse knot K

then the same braid yb with respect to .S; � ıT
�1

L
/ represents KL˙1 .

Let a WD Œ† \ S1� 2 H1.S; @S/. Since ��.a/ D Œ† \ S0� and @† D yb we have
Œb�D a���.a/. Since L�S1 we have a � ŒL�D Œ†� � ŒL�D 0. Thus, T

�1
L �.a/D a and

(4) ��.a/D ��.T
�1

L �
.a//D .� ıT

�1
L
/�.a/:

We have

(5) c.Œ� ıT
�1

L
�; a/D c.ŒT

�1
L
�; a/C c.Œ��;T

�1
L �

.a//D c.Œ��;T
�1

L �
.a//D c.Œ��; a/

where the first (resp. the second) equality holds by item (2) (resp. (4)) of [8, Proposi-
tion 3.12].

Finally, Theorem 1.3 together with (4) and (5) implies that there exists a Seifert surface,
†L˙1 , such that sl.K; Œ†�/D sl.KL˙1 ; Œ†L˙1 �/.

2.4 Twisting by elements in the Johnson kernel

Let S D Sg;1 be a surface with genus g � 3 and connected boundary, and yb a closed
braid with respect to the open book .S; �/. For an element of the Torelli group  2 Ig ,
let yb be the closed braid with respect to the open book .S;  �/ such that yb and yb 
are represented by the same braid word b in f�˙

1
; : : : ; �˙

n�1
; �˙

1
; : : : ; �˙

2g
g.

Assume that yb is null-homologous. By Lemma 1.1 there exists a 2H1.S; @S/ with
��.a/� aD Œb�. Since the Torelli group acts on H1.S; @S/ trivially, a satisfies

. ��/�.a/� aD ��.a/� aD Œb�:

In particular, the proof of [8, Claim 3.8] implies that yb is also null-homologous. Recall
the Johnson kernel Kg , the kernel of the Johnson homomorphism � W Ig !

V3
H

where H DH1.S IZ/.

Proposition 2.6 Let † and † be Seifert surfaces constructed by using the above
a 2H1.S; @S/ and the method as in the proof of [8, Theorem 3.10]. If  2 Kg , then

sl.yb; Œ†�/D sl.yb ; Œ† �/:
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Proof This essentially follows from the formula c.�; a/ D c0.�; a/� 2k.�; a/ and
the fact that k is a contraction of the Johnson homomorphism, but here we give a more
direct proof that does not use this explicit formula.

The Johnson kernel Kg is generated by Dehn twists about separating simple closed
curves when g � 3; see [9]. We may assume that  D TCl

ı � � � ı TC1
for some

separating simple closed curves C1; : : : ;Cl . Since S has connected boundary the
separating property implies that x � ŒCi � D 0 for any x 2 H1.S; @S/. Moreover,
by [8, Proposition 3.12(4)] we have c.ŒTCi

�;x/ D 0. Repeatedly using the crossed
homomorphism property of the function c , proven in [8, Proposition 3.12(2)], we have

c.Œ �; ��.a//D c.ŒTC1
�; a/C c.ŒTCl

ı � � � ıTC2
�;TC1�

.a//D � � � D 0;

and
c.Œ ��; a/D c.Œ��; a/C c.Œ �; ��.a//D c.Œ��; a/:

Therefore, by Theorem 1.3 we have sl.yb; Œ†�/D sl.yb ; Œ† �/.

As the definition of c.Œ��; a/ shows, Proposition 2.6 does not hold if we simply assume
 2 Ig .

2.5 Twisting along a binding component

Let yb be a null-homologous n–braid in the open book .S; �/ where S ¤ D2 . Let
† be a Seifert surface of yb admitting an open book foliation Fob.†/. By braid isotopy,
we may assume that:
� The n points yb\S1 are all very close to a binding component C .
� Each of the n points is joined with C by an a–arc in the foliation Fob.†/.

Fix a number k 2Z. Let �C be the braid word that corresponds to the n points winding
around C together (like the usual full twist of n–braids in braid theory). Let yb0 be the
braid closure of the braid word,

b0 D b � .�C /
k .read from the right to left/;

living in the open book .S;TC
k
ı�/, where TC is the right-handed Dehn twist along

C . We may consider that yb0 is a natural extension of the original braid yb under adding
Dehn twist TC

k to the monodromy � of the original open book.

Let aC be the number of positive elliptic points in the open book foliation Fob.†/

that are sitting on C as the end points of a–arcs. Let b˙ be the number of ˙ elliptic
points of Fob.†/\C that are the end points of b–arcs. These numbers satisfy

† �C D aCCbC�b�:
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Proposition 2.7 Let yb (resp. yb0 ) be the above closed braid with respect to the open
book .S; �/ (resp. .S;TC

k
ı�/). Assume that

aC D† �C D n:

Then there exists a Seifert surface †0 of yb0 that is a natural extension of † and satisfies

sl.yb0; Œ†0�/D sl.yb; Œ†�/:

Proof Fix a small " > 0. We may assume that for 0� t � " the multicurve †\St is
constant. We will define a Seifert surface †0 of yb0 by modifying †.

For "� t � 1 we define †0 by

†0\St D†\St :

When t D 0 we define †0 by

†0\S0 D TC
k.†\S0/D .TC

k
ı�/.†0\S1/:

That is, in a small collar neighborhood C � I of C in the page S0 , all the arcs ending
at C are winding around C k times. See the movie presentation depicted in Figure 2.

For 0< t < "=3 by isotopy we unwind all the a–arcs in the multicurve †0\S0 ending
at C . See the first row of Figure 2. In the page S"=3 all the a–arcs in C � I are very
close to C � f0g. The rest of the a–arcs and b–arcs (including the ones ending at C )
stay fixed. Since aC D n this construction corresponds to the added term .�C /

k in the
word b0 D b � .�C /

k .

The condition aC D † � C implies bC D b� . Put m D bC D b� . In the page
S"=3 the region C � I contains 2m b–arcs connecting points Pi D fpig � f0g and
Qi D fpig � f1g, where i D 1; : : : ; 2m and Pi is an elliptic point, and winding k

times. See Figure 3.

For "=3� t < 2"=3 pair up nearby b–arcs of opposite orientations and join them by
describing arcs (the thick dashed lines in Figures 2 and 3) then change the configurations.
More precisely, suppose that the consecutive elliptic points Pi and PiC1 have opposite
signs. Join the b–arcs ending at Pi and PiC1 by a describing arc that does not intersect
other b–arcs and a–arcs. After configuration change Pi and PiC1 are joined by a b–arc.
Also Qi and QiC1 are joined by an arc, which possibly becomes subarc of a c–circle,
but this does not cause any problem for the rest of the argument.

We repeat the above operation for the remaining b–arcs ending at P1; : : : ;Pi�1 ,
PiC2; : : : ;P2m . Because bC D b� all the elliptic points P1; : : : ;P2m can be paired
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C � f1g C � f0g

a–arc

t D 0 t D "=3

t D 2"=3

t D "

b–arc

b–arc

Figure 2: Construction of †0 for 0� t � " in the region C �I , where k D 1

and m D 1 . The hyperbolic point at t D "=3 is negative and at t D 2"=3

is positive.

up. Near C �f0g (resp. C �f1g) we get m nested, boundary parallel, mutually disjoint
b–arcs (resp. arcs). This construction introduces m hyperbolic points.
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C � f0g

C � f1g

t D "=3

t D 2"=3

t D "

Pi PiC1

Qi QiC1

P1 P2m

Q1 Q2m

Figure 3: The b–arcs in C � I where k D 1 and m D 4 . The a–arcs are
omitted for simplicity.

For 2"=3� t < " join the same pairs by describing arcs and change the configurations.
This gives another set of m hyperbolic points. As a result we obtain †0\S"D†\S" .

We note that for each pair of b–arcs two hyperbolic points of opposite signs are
introduced. Therefore the number h˙ (resp. h0

˙
) of ˙ hyperbolic points of † (resp.
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†0 ), satisfy
h0C� hC D h0�� h�:

On the other hand, we do not introduce any new elliptic points during the above
construction of †0 . Hence the numbers of ˙ elliptic points for † and †0 are the same.
Using the formula sl.yb; Œ†�/D�.eC� e�/C .hC�h�/ the self-linking number does
not change under this construction.
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