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Broken Lefschetz fibrations and mapping class groups

R İNANÇ BAYKUR

KENTA HAYANO

The purpose of this note is to explain a combinatorial description of closed smooth
oriented 4–manifolds in terms of positive Dehn twist factorizations of surface map-
ping classes, and further explore these connections. This is obtained via monodromy
representations of simplified broken Lefschetz fibrations on 4–manifolds, for which
we provide an extension of Hurwitz moves that allows us to uniquely determine the
isomorphism class of a broken Lefschetz fibration. We furthermore discuss broken
Lefschetz fibrations whose monodromies are contained in special subgroups of the
mapping class group; namely, the hyperelliptic mapping class group and in the Torelli
group, respectively, and present various results on them which extend or contrast with
those known to hold for honest Lefschetz fibrations. Lastly, we observe that there are
infinitely many pairwise nonisomorphic broken Lefschetz fibrations with smoothly
isotopic regular fibers.

30F99, 57R45

1 Introduction

Broken Lefschetz fibrations (BLF in short) are smooth surjective maps from compact
smooth oriented 4–manifolds to orientable surfaces, the very definition of which allow
certain unstable and stable singularities to coexist: namely, their singular set consists of
indefinite fold singularities along embedded circles and Lefschetz type singularities on
a discrete set disjoint from the former. Let X and B be compact oriented manifolds
of dimension four and two, respectively, and f W X ! B be a smooth map. Given
any surjective continuous map from a closed oriented 4–manifold X to the 2–sphere,
there exists a rather special BLF on X within the same homotopy class, called a
simplified broken Lefschetz fibration, satisfying the following properties: it has only
connected fibers and no exceptional spheres contained on the fibers, has at most one
circle of indefinite fold singularities whose image in the base is embedded, and all of
its Lefschetz critical points lie on distinct fibers of the highest genera. These fibrations
were introduced by the first author in [4], and allow one to study the underlying topology
of the 4–manifold effectively. (See for instance the first author [2; 3; 4], the first author
and Kamada [8], the second author [16; 17], and the second author and Sato [18; 19].)
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The underlying topology of a genus-g simplified BLF is rather simple: It is either a
relatively minimal genus-g Lefschetz fibration over the 2–sphere, or it decomposes
as a relatively minimal genus-g Lefschetz fibration over a 2–disk, a trivial genus-
.g�1/ bundle over a 2–disk, and a fibered cobordism in between prescribed by a
single round handle [4]. Unlike general BLFs, this simplified picture presents two
great advantages: (1) it allows one to equip the 4–manifold X with a rather simple
handlebody decomposition, and in turn makes it possible to identify the total space
of the fibration via handle calculus; and (2) it leads to a description of X in terms
of curves on surfaces and factorizations of mapping class groups in terms of positive
Dehn twists. The current article will elaborate on the latter aspect, in hopes to convince
the reader that the study of smooth 4–manifolds can be effectively translated to that
of certain positive factorizations in the mapping class groups. By a slight abuse of
language, we will thus talk about BLFs which are always simplified, without further
mentioning of the extra assumptions.1

Let Map.†g/ denote the mapping class group of orientation-preserving diffeomor-
phisms of the genus g orientable surface †g and assume that g � 3. Given a
genus g (simplified) BLF f W X ! S2 , there is an associated ordered tuple of cycles
.cI c1; : : : ; cn/, where c; c1; : : : ; cn are simple closed curves on †g . Such a tuple of
cycles prescribes a genus-g BLF, if and only if

�D tcn
� � � tc1

.c/D˙c

and
� 2 Ker.ˆc W Map.†g/!Map.†g�1//;

as discussed in [4]. In this case, we call .cI c1; : : : ; cn/ the Hurwitz cycle system Wf
associated to f (notice how the ordered tuple has a distinguished first entry). The
first part of our paper aims to obtain a one-to-one correspondence between BLFs and
Hurwitz cycle systems modulo some natural equivalence relations, similar to the case
of Lefschetz fibrations.

Two BLFs fi W Xi ! Bi , i D 1; 2 are said to be isomorphic if there exist orientation
preserving diffeomorphisms ˆW X1!X2 and 'W B1!B2 such that f2 ıˆD ' ıf1 .
On the other hand, given a Hurwitz cycle system W D .cI c1; : : : ; cn/, let an elementary
transformation of W be any modification of the type

.cI c1; : : : ; ci ; ciC1; : : : ; cn/ �! .cI c1; : : : ; ciC1; tciC1
.ci/; : : : ; cn/;

and for any h 2Map.†g/ let the simultaneous action by h on W be the modification

.cI c1; : : : ; cn/ �! .h.c/I h.c1/; : : : ; h.cn//;

1An analogous generalization of fibrations on 4–manifolds are the simplified purely wrinkled fibrations
studied by Williams [30], which are also prescribed in terms of curves on a surface.
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both of which give new Hurwitz cycle systems. We call two Hurwitz cycle systems
W1 and W2 equivalent or Hurwitz equivalent if one can be obtained from the other
via a sequence of elementary transformations, simultaneous actions, and their inverses.

In Section 3, we introduce the above moves and prove our main result, which gives a
complete combinatorial description of (simplified) broken Lefschetz fibrations in terms
of Hurwitz cycle systems:

Theorem 1.1 For g � 3 there exists a bijection�
Genus-g simplified broken Lefschetz
fibrations up to isomorphism

�
 !

�
Hurwitz cycle systems up to
Hurwitz equivalence

�
:

Regarding genuine Lefschetz fibrations as BLFs with empty round locus, the above
bijection restricts to the well-known bijection between isomorphism classes of Lef-
schetz fibrations and Hurwitz cycle systems due to Kas [22] and Matsumoto [24],
independently.

Recall that the monodromy of a genus-g Lefschetz fibration with monodromy repre-
sentation

tcn
� � � tc1

D 1

is said to be contained in a subgroup N <Map.†g/ if all tc1
; : : : ; tcn

, possibly after
conjugating all with the same mapping class, lie in N . We consider two special
subgroups of Map.†g/: the hyperelliptic mapping class group H.†g/ and the Torelli
group I.†g/, which are generated by the elements in Map.†g/ commuting with a
fixed hyperelliptic involution on †g , and those which act trivially on the first homology
H1.†g/, respectively. Lefschetz fibrations (possibly over higher-genera surfaces) with
monodromies contained in H.†g/ or I.†g/, shortly called as hyperelliptic Lefschetz
fibrations and Torelli Lefschetz fibrations, respectively, have been of special interest, as
we briefly discuss below. The second part of our paper will focus on generalizations of
these results to BLFs, where we again consider the images of tc1

; : : : ; tcn
.

Siebert and Tian [27] proved that hyperelliptic Lefschetz fibrations always arise as
(symplectic) branched covers of rational ruled surfaces (also see Fuller [14]), and
were able to prove that every genus-2 Lefschetz fibration with nonseparating fibers is
holomorphic building on this fact [28]. The following result, obtained by the second
author and Sato, is a natural extension of the result of Siebert–Tian and Fuller to BLFs:

Theorem 1.2 [18] Given a genus g � 3 hyperelliptic broken Lefschetz fibration
f W X ! S2 with no separating vanishing cycles, there exists an involution � on X so
that X is a double branched covering of a rational ruled surface. In the presence of
separating vanishing cycles, the same holds for a blow-up of X .
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In Section 4.1 we will discuss this result in some more detail, along with a couple other
topological implications and extensions of earlier results on hyperelliptic Lefschetz
fibrations.

As for Torelli monodromies, Smith [29] proved that there are no nontrivial relatively
minimal (ie without null-homotopic vanishing cycles ci ) genus-g (symplectic) Lef-
schetz fibrations over the 2–sphere whose monodromy are contained in I.†g/. (On
the other hand, Margalit and the first author [9] showed that this is no longer true when
the base surface is of higher genus; namely, they constructed infinitely many pairwise
inequivalent genus-g nontrivial Torelli Lefschetz fibrations over genus-h surfaces for
all g � 3 and h � 2.) In contrast, we observe that there are 4–manifolds admitting
relatively minimal (near-symplectic) nontrivial Torelli BLFs, whereas we note that such
examples are obstructed in a natural way that extends the result of Smith; bear in mind
that every nontrivial Lefschetz fibration admits an almost complex structure:

Theorem 1.3 An almost complex 4–manifold does not admit a nontrivial relatively
minimal Torelli broken Lefschetz fibration. Moreover, for all g � 2, there are infinitely
many genus-g nontrivial relatively minimal Torelli broken Lefschetz fibrations on
near-symplectic 4–manifolds.

Lastly, we turn to the question of the existence of nonisomorphic genus-g fibrations for
a fixed g on a given 4–manifold. Recently many families of nonisomorphic genus-g
Lefschetz fibrations and pencils have been produced; see Park and Yun [26], the first
author [6], and both authors [7]. Nevertheless, there are no known examples of infinite
families of Lefschetz fibrations on a symplectic 4–manifold X , and it is undetermined
whether or not the diffeomorphism class of the fiber uniquely determines a Lefschetz
fibration/pencil on X up to isomorphisms. None of the examples above provide pairs
of Lefschetz fibrations fi W X !S2 with regular fibers Fi , for i D 1; 2, such that there
is an ambient diffeomorphism of X taking F1 to F2 . In Section 4.3, we prove that, in
the case of BLFs, there are indeed examples striking all these features:

Theorem 1.4 For every g � 2, there are infinitely many pairwise nonisomorphic
relatively minimal genus-g broken Lefschetz fibrations, with isotopic regular fibers.

That is, we have a family of BLFs .X; fi/, i 2N , with regular fibers Fi , such that all
Fi as framed surfaces are smoothly isotopic in X . This demonstrates the rigidity of
BLFs as opposed to their equivalence via regular homotopies (see Remark 4.9).
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2 Preliminaries

2.1 Broken Lefschetz fibrations

Let X and B be smooth, compact, oriented, manifolds of dimension 4 and 2, re-
spectively, and f W X ! B a smooth map. The map f is said to have a Lefschetz
singularity at a point x 2 Int.X /, if around x and f .x/ one can choose orientation
preserving charts so that f conforms the complex local model

.u; v/ 7! u2
C v2:

The map f is said to have a round singularity (or indefinite fold singularity) along a
1–manifold Z �X if around every z 2Z , there are coordinates .t;x1;x2;x3/ with
t a local coordinate on Z , in terms of which f is given by

.t;x1;x2;x3/ 7! .t;x2
1 Cx2

2 �x2
3/:

A broken Lefschetz fibration is then defined as a surjective smooth map f W X ! B

which is submersion everywhere except for a finite set of points C and a finite collection
of disjoint embedded circles Z � X n C , where it has Lefschetz singularities and
round singularities, respectively. We call the 1–manifold Z the round locus and its
image f .Z/ the round image of f . These fibrations were first introduced by Auroux,
Donaldson and Katzarkov in [1].

Simplified broken Lefschetz fibrations constitute a subfamily of broken Lefschetz fibra-
tions subject to the following additional conditions [4]: The base surface is B D S2 ,
the round image is connected (and possibly empty), the round image is embedded,
the fibration is relatively minimal, and whenever Z ¤∅, all the fibers are connected
and all the Lefschetz singularities lie over the 2–disk component of S2 n f .Z/ over
which fibers have higher genera. Note that a (simplified) broken Lefschetz fibration
with Z D∅ is an honest Lefschetz fibration, thus they are natural generalizations of
Lefschetz fibrations over the 2–sphere. Importantly, in any homotopy class of a map
from X to S2 there exists a representative which is a simplified BLF [5; 30], which
demonstrates that these fibrations are found in abundance. As we have mentioned in
the Introduction, with no further notice, we will assume hereon that all the broken
Lefschetz fibrations we work with are simplified, and still call them BLFs.

2.2 Mapping class groups

Let † be a compact, oriented and connected surface, c � † be a simple closed
curve and Vi , i D 1; : : : ; n, be a finite collection of points on †. We define a group
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274 R İnanç Baykur and Kenta Hayano

Map .†IV1; : : : ;Vn/.c/ as

Map .†IV1; : : : ;Vn/.c/D fŒT � 2 �0.DiffC .†IV1; : : : ;Vn// j T .c/D cg;

where DiffC .†IV1; : : : ;Vn/ consists of orientation-preserving diffeomorphisms of
† fixing @† pointwise and each Vi setwise. In this paper, we define a group
structure on the above group by the composition as maps, that is, for elements
T1;T2 2 DiffC.†IV1; : : : ;Vn/, we define the product T1 �T2 as

T1 �T2 D T1 ıT2:

We define a group structure on Map.†IV1; : : : ;Vn/.c/ in the same way.

3 Monodromy representations of broken Lefschetz fibrations

For any genus-g Lefschetz fibration f W X!S2 we obtain a monodromy representation
(or monodromy factorization)

tcn
� � � tc1

D 1

in Map.†g/. Such a factorization can also be encoded by an ordered tuple of curves
.c1; : : : ; cn/ on †g , called the Hurwitz system Wf for f . A classical result of Earle
and Eells states that for g � 2 the connected components of the diffeomorphism
group Diff.†g/ is contractible [11]. So, for g � 2, one can recover a genus-g
Lefschetz fibration from a factorization of the identity into positive Dehn twists in
Map.†g/. By the works of Kas and Matsumoto [22; 24], one then obtains a one-to-one
correspondence between genus g � 2 Lefschetz fibrations, up to isomorphisms, and
monodromy factorizations, up to global conjugation of all elements by mapping classes
in Map.†g/ and Hurwitz moves, as we will review below. The purpose of this section
is to extend this very useful combinatorial correspondence to BLFs.

3.1 Round cobordism and capping homomorphism

The round cobordism, containing the 1–dimensional indefinite fold, provides a fibered
cobordism between a †g –bundle and a †g�1 –bundle over S1 . This is essentially
what differentiates a BLF from a genuine Lefschetz fibration, and thus deserves a
careful study within our translation to mapping class groups. The first ingredient we
need here is the homomorphism ˆc which will relate the mapping class group of †g

with that of †g�1 .

Let c�† be a nonseparating simple closed curve. For a given element  2Map .†/.c/,
we take a representative T W †!† 2DiffC .†/ preserving a tubular neighborhood �c
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of the curve c setwise. The restriction T j†n�c W †n�c!†n�c is also a diffeomorphism.
Let †c be the surface obtained by attaching two disks to † n �c along its boundary.
The diffeomorphism T j†n�c can be extended to a diffeomorphism zT W †c!†c . We
define ẑ c.ŒT �/ 2Map .†c I fp1;p2g/ as the isotopy class of zT , where p1;p2 are the
origins of the attached disks.

Lemma 3.1 (See also [10]) The map ẑ c W Map.†/.c/! Map.†c I fp1;p2g/ is a
well-defined, surjective homomorphism, and the kernel of this map is an infinite cyclic
group generated by tc .

Proof We denote by Map.†/.cori/ a subgroup of Map.†/.c/ whose element is
represented by a map preserving an orientation of c . There is an exact sequence

1!Map.†/.cori/ ,!Map.†/.c/
"
�! Z=2Z! 1;

where "W Map.†/.c/! Z=2Z is a homomorphism defined as

".'/D

�
0 if ' is represented by a map preserving an orientation of c;

1 otherwise:

Furthermore, this sequence is split by a hyperelliptic involution � of † preserving the
curve c . In particular, we can obtain the isomorphism

‚1W Map.†/.c/!Map.†/.cori/Ì Z=2Z:

We also have the exact sequence

1!Map.†c Ip1;p2/ ,!Map.†c I fp1;p2g/
"0

�!Z=2Z! 1;

where the value "0.'/ is 0 if ' is contained in Map.†c ;p1;p2/ and 1 otherwise. We
take a small tubular neighborhood �c of c in †. This sequence is also split by �0 ,
which is an involution of †c induced by �. Thus we obtain the isomorphism

‚2W Map.†c I fp1;p2g/!Map.†c Ip1;p2/Ì Z=2Z:

Let �W Map.† n �c/!Map.†/.cori/ be a homomorphism induced by the inclusion.
This map is surjective since every element in Map.†/.cori/ is represented by a map
preserving �c pointwise. The kernel of � is an infinite cyclic group generated by tı1

�t�1
ı2

,
where ı1; ı2�†n�c are simple closed curves parallel to the boundary components (see
[13, Theorem 3.18]). We denote by CapW Map.†n�c/!Map.†c Ip1;p2/ the capping
homomorphism. This map is surjective and the kernel of it is generated by tı1

; tı2

(cf [13, Proposition 3.19]). Thus we can take a homomorphism ẑ ori
c W Map.†/.cori/!
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Map.†c Ip1;p2/ which makes the following diagram commute:

Map.† n �c/
�
//

Cap
��

Map.†/.cori/

ẑ ori
cvv

Map.†c Ip1;p2/

Moreover, it is easy to see that the kernel Ker. ẑ ori
c / is an infinite cyclic group generated

by tc .

It follows from the definitions that ẑ c D ‚�1
2
ı . ẑ ori

c � id/ ı‚1 . The map ẑ c is
surjective since the map ẑ ori

c is surjective. The kernel of ẑ c is isomorphic to that of
ẑ ori

c (via ‚1 ), which is generated by tc . This completes the proof of Lemma 3.1.

Let Fp1;p2
W Map.†c I fp1;p2g/ ! Map.†c/ be the forgetful homomorphism. We

define a homomorphism ˆc as

ˆc WD Fp1;p2
ı ẑ c W Map.†/.c/!Map.†c/:

It is well-known that the kernel Ker.Fp1;p2
/ is generated by point pushing maps along

elements in �1.†c n fpig;pj / (i ¤ j ) and disk twists along arcs between p1 and
p2 (See [13], for example). Note that a lift of such a disk twist under ẑ c is equal to
a �–twist �c;ˇ D .tc � tˇ/

3 up to tc , where ˇ is a simple closed curve in † which
intersects c at a unique point transversely (the name of �–twist was first used in [10]).
Combining this observation with Lemma 3.1, we obtain:

Lemma 3.2 The group Ker.ˆc/ is generated by lifts of point pushing maps along
�1.†c n fpig;pj / (i ¤ j ) under ẑ c , a �–twist �c;ˇ , and the Dehn twist tc .

3.2 Monodromy representation and Hurwitz equivalence for BLFs

Let f be a Lefschetz fibration over the disk and y0 2 D2 a regular value. We put
f .Cf / D fy1; : : : ;yng. We take embedded paths ˛1; : : : ; ˛n in D2 satisfying the
following conditions:

� Each ˛i connects y0 to yi .

� If i ¤ j , then ˛i \ j̨ D fy0g.

� ˛1; : : : ; ˛n appear in this order when we travel counterclockwise around y0 .

The paths ˛1; : : : ; ˛n give vanishing cycles c1; : : : ; cn �†g of Lefschetz singularities
of f .

Geometry & Topology Monographs, Volume 19 (2015)



Broken Lefschetz fibrations and mapping class groups 277

Let f W X ! S2 be a BLF with Zf ¤∅, Xh be the higher side of f , and Xr be the
round cobordism of f . The restriction f jXh

is an LF over D2 . As explained above,
we can obtain vanishing cycles of c1; : : : ; cn by taking paths ˛1; : : : ; ˛n for f jXh

. We
further take a path ˛ � f .Xh [Xr / from y0 to a point on the image of indefinite
folds of f so that ˛ intersects each of other paths ˛1; : : : ; ˛n only at y0 , and that
˛; ˛1; : : : ; ˛n appear in this order when we go around y0 counterclockwise. We call a
system of paths ˛; ˛1; : : : ; ˛n satisfying the condition above a Hurwitz path system of
f . The path ˛ gives a cycle c �†g corresponding to the indefinite fold. We denote
by Wf a sequence of cycles .cI c1; : : : ; cn/.

Lemma 3.3 (See also [4]) Let f W X ! S2 be a genus-g broken Lefschetz fibration,
and Wf D .cI c1; : : : ; cn/ be a sequence of cycles of f obtained as above. The product
tcn
� � � tc1

is contained in the kernel Ker.ˆc/, where tci
is the right-handed Dehn twist

along ci .

To give a proof of Lemma 3.3 we need the following:

Lemma 3.4 Let Z � X be the set of indefinite folds of f . There exist diffeomor-
phisms

‰W I �B1
�B2=.1;x;y1;y2/� .0;˙x;y1;˙y2/! �.Z/;

 W I �B1=.1;X /� .0;X /! �f .Z/

such that the diagram

I �B1 �B2=�

�

��

‰
// �.Z/

f

��

I �B1=�
 

// �f .Z/

commutes, where Bi is an open ball of dimension i and � is defined by

�.t;x;y1;y2/D .t;�x2
Cy1

2
Cy2

2/:

Sketch of proof of Lemma 3.4 First take a diffeomorphism  W .I�R/=�! �f .Z/.
We denote by F the composition � ı �1 ıf , where � is the projection onto I=�.
It is easy to see that F is a locally trivial fibration. We denote the restriction f jF�1.t/

by ft . We take a coordinate neighborhood .U; '/ of p0 2Z \F�1.0/ (and retake a
diffeomorphism  if necessary) so that:

� For any t , the set '�1.f.t;x;y/ j .x;y/ 2R3g/ is in F�1.t/.

� f ı'�1.t;x;y1;y2/D .t;�x2Cy2
1
Cy2

2
/ on '�1.U /.
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278 R İnanç Baykur and Kenta Hayano

For any t 2 I , we take vector fields V �.t/;V Ci .t/ on F�1.t/\ �Z so that:

� V �.t/ and V Ci .t/ depend smoothly on t .

� fV �.t/p;V
C

1
.t/p;V

C

2
.t/pg spans Ker.d.ft /p/, where p 2Z \F�1.t/.

� ı.V �.t/p;V
�.t/p/ is negative, while ı.V Ci .t/p;V

C
i .t/p/ is positive, where

ıW Sym.Ker d.ft /p/!R
�
@
@X

�
is the intrinsic derivative of ft .

� V �.�/ and V Ci .�/ coincide with d'
�
@
@x

�
and d'

�
@
@yi

�
for sufficiently small

� , respectively.

� V �.1� �/, V C
1
.1� �/ and V C

2
.1� �/ coincide with ˙d'

�
@
@x

�
, d'

�
@
@y1

�
and

˙d'
�
@
@y1

�
for sufficiently small � .2

Making the vector fields above sufficiently small, we define a map

‰W I �B1
�B2=.1;x;y1;y2/� .0;˙x;y1;˙y2/! �.Z/;

‰.t;x;y1;y2/D C
xV �.t/Cy1V

C

1
.t/Cy2V

C

2
.t/
.1/;

where CxV �.t/Cy1V
C

1
.t/Cy2V

C

2
.t/ is an integral curve of xV �.t/Cy1V C

1
.t/Cy2V C

2
.t/

with initial point in Z \F�1.t/. It is easy to see that this map is a diffeomorphism
provided that V � and V Ci are sufficiently small. Since the product O.1/�O.2/ of
the orthogonal groups is a maximal compact subgroup of O.1; 2/, it is also a maximal
compact Lie subgroup (in the sense of [21]) of the stabilizer of the 3–dimensional
indefinite Morse function germ. Thus, using the algorithm in the proof of the Morse
Lemma and [21, Theorem 3], we can obtain the desired diffeomorphisms.

Proof of Lemma 3.3 Let ‰W I �B1�B2=�! �.Z/ and  W I �B1=�! �f .Z/

be diffeomorphisms which satisfy the condition in Lemma 3.4. Assume that the path
˛ in a Hurwitz path system giving the cycles c coincides with  .f0g � Œ0; 1�/ is the
image of  . We take a horizontal distribution H of the restriction f jX nCrit.f / so that it
is equal to d‰.H0/ on the image ‰.I �B1

1=2�B2
1=2=�/, where H0 is the orthogonal

complement of Ker.d�/ with respect to the Euclidean metric and Bi
1=2 is an open

ball with radius 1
2

. Since tcn
� � � tc1

is the global monodromy of the higher side of
f , this product is represented by the parallel transport of H along  .I � f"g=�/ for
small " > 0, in particular it is contained in Map.†g/.c/. Furthermore, it is easy to
see that the image ˆc.tcn

� � � tc1
/ is represented by the parallel transport of H along

 .I � f�"g= �/, which is the identity since the preimage f �1. .I � f�"g= �//

bounds the lower side.

2The signs here are positive if a line subbundle of Ker.dF /jZ consisting of subspaces on which ı is
negative definite is orientable and negative otherwise.
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Definition 3.5 A system .cI c1; : : : ; cn/ of simple closed curves is called a Hurwitz
cycle system if it satisfies the condition tcn

� � � tc1
2Ker.ˆc/. By Lemma 3.3, the system

Wf derived from a BLF f , together with a Hurwitz path system of it, is a Hurwitz
cycle system. We call this system a Hurwitz cycle system of f .

There are two types of modifications of Hurwitz cycle systems. The first one, which
we will refer to as an elementary transformation, is

.cI c1; : : : ; ci ; ciC1; : : : ; cn/ �! .cI c1; : : : ; ciC1; tciC1
.ci/; : : : ; cn/:

It is easy to see that this modification can be realized by replacing a Hurwitz path system
as described in the left side of Figure 1(a). The second modification, simultaneous
action by h 2Map.†g/, is

.cI c1; : : : ; cn/ �! .h.c/I h.c1/; : : : ; h.cn//:

This modification corresponds to substitution of an identification of the reference fiber
with †g .

iC1 i

 0i

 0iC1

(a)



1n

 0

 0n 0
n�1

(b)

Figure 1: Modifications of Hurwitz path systems

Definition 3.6 Two Hurwitz cycle systems are said to be equivalent if one can be
obtained from the other by successive application of elementary transformations, si-
multaneous actions, and their inverse.

Remark 3.7 There is another modification of a Hurwitz cycle system described as

.cI c1; : : : ; cn/ �! .tc1
.c/I c2; : : : ; cn; c1/:

It is easy to verify that this modification is induced by the modification of a Hurwitz
path system described in the right side of Figure 1(b). Furthermore, this modification
can be realized by simultaneous action by tc1

, followed by successive application of
inverse of elementary transformations. This modification will play a key role in the
proof of the theorem below.

3.3 Uniqueness of BLFs up to Hurwitz equivalence

The following equivalence relation for BLFs naturally extends the notion of isomor-
phisms of Lefschetz fibrations:
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Definition 3.8 Two fibrations f1W X1 ! B1 and f2W X2 ! B2 are said to be iso-
morphic if there exist diffeomorphisms ˆW X1!X2 and 'W B1! B2 satisfying the
condition f2 ıˆD ' ıf1 .

Theorem 3.9 Let fi W Xi! S2 be a BLF with genus g � 3 (i D 1; 2). The fibrations
f1 and f2 are isomorphic if and only if the corresponding Hurwitz cycle systems Wf1

and Wf2
are equivalent.

Remark 3.10 The statement o the theorem does not hold if the g � 3 assumption
is dropped. There exist infinitely many genus-1 BLFs wit the same Hurwitz cycle
systems but with pairwise homotopy inequivalent total spaces [8; 16].

We can now prove our first main theorem:

Proof of Theorem 3.9 We first prove the “only if” part. Suppose that f1 and f2 are
isomorphic, and we fix diffeomorphisms ˆW X1! X2 and 'W S2! S2 satisfying
the condition in the definition. We take a Hurwitz path system ; 1; : : : ; n of the
fibration f1 . We denote by Wf1

the corresponding Hurwitz cycle system of f1

derived from this system, together with an identification �W f �1
1
.y0/ ! †g . The

system '. /; '.1/; : : : ; '.n/ is a Hurwitz path system of f2 , and the map � ı

ˆ�1W f �1
2
.'.y0// ! †g gives an identification. We can obtain a Hurwitz cycle

system Wf2
of the fibration f2 from them. It is easy to verify that Wf1

is equal to Wf2
.

Thus, all we need to prove is a Hurwitz cycle system of f1 derived from a different
Hurwitz path system  0;  0

1
; : : : ;  0n is equivalent to Wf1

. By a similar argument in
[15] (the solution of Exercise 8.2.7(c)), we see that the system  0;  0

1
; : : : ;  0n can be

changed into the system ; 1; : : : ; n up to isotopy by successive application of the
two moves in Figure 1. This completes the proof of the “only if” part.

We next prove the “if” part. By the assumption, we can take Hurwitz path systems
of f1 and f2 , and identifications of reference fibers with the surface †g so that the
corresponding Hurwitz cycle systems Wf1

and Wf2
coincide. We decompose Xi into

the three parts X .h/
i , X .r/

i and X .l/
i , that is, the higher side, the round cobordism and the

lower side of fi . The restriction fi jX .h/

i
is a Lefschetz fibration. By [24, Theorem 2.4],

the fibrations f1jX
.h/

1
and f2jX

.h/

2
are isomorphic. In particular, we can take a fiber-

preserving diffeomorphism ˆhW X
.h/
1
!X .h/

2
. Since there are no singularities on the

boundary of the higher side, we can take a diffeomorphism ‚1W @X
.h/
1
! T .'/, where

'W †g ! †g is a diffeomorphism and T .'/ is the mapping torus I �†g=.1;x/ �

.0; '.x//. We denote the composition ‚1 ıˆh ı‚
�1
1

by ‚2 .

Let c � †g be the indefinite fold cycle in Wf1
(note that c is also in Wf2

). By
Lemma 3.3 the isotopy class of ' is contained in Map.†g/.c/. In particular we can
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assume that ' preserves a regular neighborhood �.c/. We denote the set of indefinite
folds of fi by Zi �Xi . For each i D 1; 2 we take a diffeomorphism

 i W fi.X
.r/
i /! I �D1=.1; t/� .0; t/

so that the composition fi ı‚
�1
i W T .'/! .I � f1g/=� becomes the projection, and

that the image  i.Zi/ is the circle I � f0g= �. In the same way as in the proof of
Lemma 3.4 we can take a diffeomorphism

‰i W �.Zi/! I �D1
" �D2

" =.1;x;y1;y2/� .0;˙x;y1;˙y2/

which makes the diagram

�.Zi/

fi
��

‰i
// I �D1

" �D2
" =�

�

��

fi.X
.r/
i /

 i
// I �D1=�

commute, where Di
" is the i –dimensional disk with radius " sufficiently small and �

is the map in Lemma 3.4. For a positive number s � 2, we define a path t;sW Œ0; s�!

I �D1=� as t;s.x/D .t; 1�x/. A connected component of the set Sub.S1; †g/ of
circles in †g is simply connected if g�2 (see [20, Theorem 2.7.H] for example). Thus,
we can take a horizontal distribution Hi of fi jXinZi

so that it satisfies the following
conditions:

(1) Hi is equal to the orthogonal complement of Ker.d�/ with respect to the Eu-
clidean metric in ‰�1

i .I �D1
2"=3
�D2

2"=3
=�/.

(2) The composition ˆ1 ıPT H1


t;1�"2=4
ı‚�1

1
jftg��c sends ftg � �.c/ to the set

��1
�
t;
"2

4

�
\

n
.t;x;y1;y2/ 2 I �D1

2"=3 �D2
2"=3=�

ˇ̌
jxj �

"

2

o
;

where PT Hi


t;1�"2=4
is the parallel transport of Hi along t;1�"2=4 .

(3) ˆ1 ıPT
H1


t;1�"2=4
ı‚�1

1
jftg��c is equal to ˆ2 ıPT

H2


t;1�"2=4
ı‚�1

2
jftg��c .

We can define a diffeomorphismb̂
r W f

�1
1  �1

1 .I � .�"=3; 1�/! f �1
2  �1

2 .I � .�"=3; 1�/

asb̂
r .w/D‰

�1
2 .t;x;y1;y2/ for wD‰�1

1 .t;x;y1;y2/2�.Z1/\I�D1
2"=3�D2

2"=3=�;b̂
r .w/D PT H2

t;s
‚�1

2 .z/ for w D PT H1
t;s
‚�1

1 .z/ 2X
.r/
1

.
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282 R İnanç Baykur and Kenta Hayano

It is easy to see that this map is well-defined and preserves fibers. Furthermore, we can
extend b̂

r to a fiber-preserving diffeomorphism from X .r/
1

to X .r/
2

. We denote the
resulting diffeomorphism by ˆr .

The restriction ˆr W @X
.l/
1
! @X .l/

2
is a fiber-preserving diffeomorphism. Since the

connected component of the group DiffC.†g�1/ is contractible if g�3, this restriction
can be extended to a fiber-preserving diffeomorphism ˆl W X

.1/
l
! X .2/

l
. Combing

the three diffeomorphisms ˆh; ˆr and ˆl , we can obtain the desired map ˆ. This
completes the proof of Theorem 3.9.

4 Broken Lefschetz fibrations with special monodromies

The monodromy .cI c1; : : : ; cn/ of a BLF is said to be contained in the subgroup
N < Map.†g/, if we can have all the Dehn twists tci

lie in N after conjugating
with the same element in Map.†g/. Here we study two subfamilies of BLFs, whose
monodromies are contained in the hyperelliptic mapping class group H.†g/ and the
Torelli group I.†g/, respectively. We will then turn back to isomorphisms of BLFs,
and for all g � 2, we will produce an infinite family of examples of nonisomorphic
genus-g BLFs with the same regular fiber in the ambient 4–manifold.

4.1 Hyperelliptic broken Lefschetz fibrations

As demonstrated by the work of the second author with Sato in [16; 17], main topological
results for hyperelliptic Lefschetz fibrations can be extended to BLFs. Let f W X ! S2

be a genus-g BLF with Hurwitz cycle system Wf D .cI c1; : : : ; cn/. We say that f is
a hyperelliptic broken Lefschetz fibration if, possibly after conjugating the curves of
Wf by a mapping class in Map.†g/, the monodromy is contained in H.†g/ and c is
fixed by the hyperelliptic involution.3

Here is the full version of Theorem 1.2 we quoted in Section 1:

Theorem 4.1 [18, Theorem 1.1] Let f W X ! S2 be a hyperelliptic BLF with genus
g � 3. Assume that f has n Lefschetz singularities with separating vanishing cycles.
We denote the manifold obtained by blowing up X n times by zX .

(1) There exists an involution � of zX such that � is the covering transformation
of a double branched covering over the manifold S ] 2nCP2 , where S is an
S2 –bundle over S2 .

(2) The homology class of a regular fiber of f is nontrivial in H2.X IQ/.

3Since tc commutes with the hyperelliptic involution if and only if c is a symmetric curve with respect
to the involution, in this case, one can simply ask all c; c1; : : : ; cn to be fixed by a hyperelliptic involution
on †g ).
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Analogous to the case of honest Lefschetz fibrations, the branched locus consists of
exceptional spheres contained among higher side fibers and a multisection with simple
branch points and folds where it meets the Lefschetz or round locus of the fibration.

Unlike Lefschetz fibrations, the fixed point set of a hyperelliptic BLF often has nonori-
entable surface components; in fact, in a neighborhood of indefinite folds the fixed
point set is the Möbius band if the corresponding round handle is twisted and is an
annulus otherwise, and further, the fixed point set still may be nonorientable even if
the round handle is untwisted [18].

Remark 4.2 We shall note that the assumption on the genus of a fibration cannot be
dropped from Theorem 4.1, as one can have twisted gluings of the trivial genus 0 or 1

bundle on the lower side to the rest of the fibration. Indeed, there exists a hyperelliptic
genus-1 BLF on S4 ([1, Example 1]), and neither one of the conclusions of the theorem
can hold in this case.

Remark 4.3 The second conclusion of Theorem 4.1 implies that X is near-symplectic
(so bC.X />0), by the Thurston–Gompf type construction of [1]. Another consequence
is the nonexistence of a genus g � 3 hyperelliptic BLF on a definite 4–manifold, such
as connected sums of CP2 s.

As in the case of Lefschetz fibrations, one can easily read off several algebraic topolog-
ical invariants of the total space of a BLF using the simple handlebody decomposition
associated to it [4]. The signature calculation, which in principle is determined by the
monodromy factorization, in general is a lot harder than that of say the fundamental
group or the Euler characteristic. Nevertheless, extending Endo’s work in [12], which
greatly simplifies this calculation for hyperelliptic Lefschetz fibrations, in [19] the
authors showed that there is an easy algorithm for calculating the signature of the total
space of a hyperelliptic BLF from a give monodromy factorization [19].

4.2 Torelli broken Lefschetz fibrations

Let f W X ! S2 be a genus-g BLF with Hurwitz cycle system Wf D .cI c1; : : : ; cn/.
We say that f is a Torelli broken Lefschetz fibration if the monodromy is contained
in I.†g/. Unlike in the definition of hyperelliptic BLFs, here we make no further
assumptions on c , as it will be seen shortly that for any Torelli BLF the round cobordism
will “act on the homology trivially”; see Remark 4.6.4

4In analogy to the hyperelliptic case, we could of course ask tc to be contained in I.†g/ , which
would amount to c being a separating curve, and require allowing simplified BLFs to have separating
folds. This however makes almost no difference to the results we present herein; monodromies of such
simplified BLFs are also well understood [4], we could easily replace the examples in Proposition 4.4 with
those having separating round 2–handles, and Theorem 4.5 would be proved in an identical way.
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We begin with noting that, in great contrast to genuine Lefschetz fibrations, there exist
Torelli BLFs:

Proposition 4.4 There are infinitely many genus-g nontrivial relatively minimal
Torelli broken Lefschetz fibrations for every g � 2.

Proof The Figure 2 describes a genus-g broken Lefschetz fibration fnW Xn! S2

with isotopic vanishing cycles c1; : : : ; cn (iterated along the dotted lines in the figure)
bounding a genus one subsurface. (See [4] for handle diagrams of BLFs.) Here, the
round 2–handle is made of the 0–framed 2–handle on the fiber and a 3–handle, both
given in red. Under the capping homomorphism, the image of the global monodromy
of the higher side becomes trivial on the lower side, yielding a true BLF over the
2–sphere. Observe that the monodromy is supported away from a self-intersection
0–sphere section.

The claims of the proposition are now easy to verify: All ci are separating, so each fn

is Torelli. As n increases by one, so does the Euler characteristic of Xn , thus fn are
all distinct.

0

�1

0

0

[

3�h
3�h�2g�2
4�h

Figure 2: Handle diagram of a genus-g Torelli BLF

It is easy to prove by Kirby calculus that the total space of the fibration in Figure 2 is
S1 �S3 ]S2 �†g�1 ] nCP2 . (Hint: slide all Lefschetz 2–handle over the 0–handle
of the round 2–handle, and then blow-down the resulting �1–spheres to arrive at the
step fibration [4].)

However, the next theorem shows that the Torelli fibrations find room to exist due to
lack of almost complex structures on their total spaces:

Theorem 4.5 An almost complex 4–manifold does not admit a nontrivial relatively
minimal Torelli broken Lefschetz fibration.
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Proof Let X be the total space of a genus-g Torelli BLF. From the corresponding
handle decomposition, we calculate the Euler characteristic of X as

e.X /D 6� 4gC n:

On the other hand, the signature of X is calculated as

�.X /D�nC �;

where � 2 f�1; 0; 1g. This is because on the higher side, every vanishing cycle is
separating and contributes a �1 to the signature calculation [25]. On the lower side
we have a trivial bundle, whose signature is 0. As shown in [19, Lemma 4.4] the
round cobordism contributes either �1; 0, or C1 to the total signature, and hence our
calculation up to determining the exact value of � .

Combining the above we calculate

�h.X /D
1
4
.e.X /C �.X //D 1

4
.6� 4gC n� nC �/D 1�gC 1

4
.2C �/;

which can never be an integer. However, �h , which would serve as the holomorphic
Euler characteristic on an almost-complex 4–manifold, is not an integer in this case,
proving our claim.

The above theorem, along with Proposition 4.4 completes the proof of Theorem 1.3.

Remark 4.6 Although we did not need to determine the exact value of � , the signature
of a round cobordism, in the proof, it is possible to see that it is 0 for any round
cobordism as above, following [19] (to which the reader can refer to for the notations
we adopt here).

Since the global monodromy ' of the higher side of a genus-g Torelli BLF is in the
Torelli group, using the Mayer–Vietoris exact sequence we can obtain an isomorphism
 W H1.V

0
z'
IQ/!H1.S

1 �†g;2IQ/ which makes the diagram

H1.@V
0
z'
IQ/

id�
��

i�
// H1.V

0
z'
IQ/

 
��

H1.S
1 � @†g;2IQ/

i�
// H1.S

1 �†g;2IQ/;

commute, where z' 2Map.†g;2/ is a lift of ' . Chasing this commutative diagram, we
conclude that s.'/D Sign.m.'//D Sign.m.id�//D 0.
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Remark 4.7 When a given BLF on a 4–manifold X does not have a special mon-
odromy (say hyperelliptic or Torelli), it is plausible that X admits another BLF which
carries the desired property. In fact, it is easy to see that the “flip-and-slip” stabiliza-
tion [2] of a hyperelliptic (resp. Torelli) BLF can result in a homotopic BLF which no
longer is hyperelliptic (resp. never is Torelli). One can then regard these as 4–manifold
properties instead, and ask how diverse of a picture we get for the special fibrations
studied here.

By Remark 4.3 and Theorem 4.5, it is clear that there are many 4–manifolds which
admit neither hyperelliptic nor Torelli BLFs, such as any odd number of connected sums
of CP2 . Torelli BLF examples of Proposition 4.4 can easily be seen to be hyperelliptic
as well. In the same construction, one can take nonisotopic vanishing cycles c1; : : : ; cn

so that they all bound different genus-1 subsurfaces containing c , and thus we would
still have a Torelli BLF. With this freedom of choice in mind, it looks plausible (though
we do not attempt to digress more about here) one can choose these ci in a way that
there is no hyperelliptic involution on the fiber for which c; c1; : : : ; cn are all symmetric,
so as to produce Torelli BLFs which are not hyperelliptic. Lastly, there are many almost
complex 4–manifolds, such as S4 , S1 �S3 or the minimal rational ruled surfaces
which admit genus-1 BLFs. So they all admit hyperelliptic BLFs, but no Torelli ones.

4.3 An infinite family of nonisomorphic broken Lefschetz fibrations

In this section we will construct the examples in Theorem 1.4. Let † be a closed
oriented surface of genus g� 2 and c�† be a nonseparating simple closed curve. We
denote by †c the genus g� 1 surface obtained by surgery along c . The surface †c

has two marked points p1;p2 at the centers of the disks attached in the surgery. We
denote by Sc the set of isotopy classes of separating curves in † which bounds a torus
with one boundary component containing c , and by Pc the set of isotopy classes of
simple paths in †c between p1 and p2 (where isotopies fix the points p1 and p2 ). We
define a map …W Sc!Pc as follows: For d 2 Sc , we take a simple closed curve ˛.d/
in the torus bounded by d so that ˛.d/ intersects c in one point transversely. Then
….d/ is defined to be the isotopy class of a path corresponding ˛.d/. For d1; d2 2 Sc ,
we denote by I.d1; d2/ the geometric intersection number i.….d1/;….d2// between
….d1/ and ….d2/, that is,

I.d1; d2/Dminf].1\ 2/ j i 2….di/; 1 t 2g:

We will need the following lemma for our construction:

Lemma 4.8 Let fi W X ! S2 (i D 1; 2) be a genus-g BLF and Wi D .cI d
.i/
1
; d .i/

2
/

a Hurwitz cycle system of fi . Suppose that each d .i/j is contained in Sc . If f1 and f2
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are isomorphic, then
I.d .1/1 ; d .1/2 /D I.d .2/1 ; d .2/2 /:

Proof of Lemma 4.8 Since f1 and f2 are isomorphic, W1 and W2 are Hurwitz
equivalent by Theorem 3.9. (Note that the “only if” part of Theorem 3.9 still holds with-
out the assumption on genera of fibrations.) Furthermore, it is obvious that I.d1; d2/ is
invariant under simultaneous conjugations. Thus, it is sufficient to prove that I.d1; d2/

is equal to I.d2; td2
.d1//.

Let ˇ.d2/ be the boundary of a regular neighborhood of ….d2/, which is a simple
closed curve in †c . This curve corresponds with d2 �† via surgery along c . Since
the curve td2

.˛.d1// is contained in the torus bounded by td2
.d1/ and intersects c

in one point transversely, The path ….td2
.d1// is isotopic to tˇ.d2/.….d1//. Thus

I.d2; td2
.d1// is calculated as

I.d2; td1
.d2//D i

�
….d2/;….td2

.d1//
�

D i
�
tˇ.d2/.….d2//; tˇ.d2/.….d1//

�
D i

�
….d2/;….d1/

�
D I.d1; d2/:

Proof of Theorem 1.4 We take curves d; d1; d
0
2
2Sc as shown in Figure 3 and denote

tn
d
.d0

2
/ by dn

2
.

c

d1 p1

p2 ….d1/

(a)

c
d

d0
2 p1

p2

….dn
2
/

(b)

Figure 3: Separating curves and corresponding paths

The product tdn
2
td1

is contained in ker.ˆc/. Thus there exists a genus-g BLF fnW Xn!

S2 whose Hurwitz cycle system is .cI d1; d
n
2
/. Using the bigon criterion for paths [13,
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Section 1.2.7], we can prove that I.d1; d
n
2
/D 4nC 2 for any n� 0. In particular fn

is not isomorphic to fm for distinct n;m� 0.

Since both of the curves d1 and dn
2

are disjoint from c , we can change fn by a
homotopy preserving tubular neighborhoods of regular fibers (in both higher and lower
sides) so that the two Lefschetz singularities are in the lower side of fn . The Lefschetz
vanishing cycles of the resulting fibration yfn are null-homotopic since both d1 and
dn

2
bound tori containing c . Thus yfn and yfm are isomorphic, in particular there is a

diffeomorphism ˆn;mW Xn!Xm for any n;m� 0. Furthermore ˆn;m sends tubular
neighborhood of a regular fiber of fn (preserved by the homotopy above) to that of fm .
Hence fhn WD fn ıˆ0;ngn�0 is an infinite family of nonisomorphic BLFs on X DX0

such that each fibration in the family has the same surfaces as regular fibers.

Remark 4.9 It is well-known that the cohomotopy set �2.X /D ŒX;S2� is isomorphic
to F2.X /, the set of framed surfaces in X (eg [23]). Our theorem thus shows that
there is an infinite family of BLFs .X; hn/, n 2 N , within the same cohomotopy
class, demonstrating the rigidity of BLF isomorphisms versus homotopy equivalence
of indefinite generic maps.
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[5] R İ Baykur, Broken Lefschetz fibrations and smooth structures on 4–manifolds, from:
“Proceedings of the Freedman Fest”, (R Kirby, V Krushkal, Z Wang, editors), Geom.
Topol. Monogr. 18 (2012) 9–34 MR3084230
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