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Some 3–dimensional transverse C–links
(Constructions of higher-dimensional C–links, I)

LEE RUDOLPH

By use of a variety of techniques (most based on constructions of quasipositive
knots and links, some old and others new), many smooth 3–manifolds are realized
as transverse intersections of complex surfaces in C3 with strictly pseudoconvex
5–spheres. These manifolds not only inherit interesting intrinsic structures (eg, they
have canonical Stein-fillable contact structures), they also have extrinsic structures of
a knot-theoretical nature (eq, S3 arises in infinitely many distinct ways). This survey
is not comprehensive; a number of questions are left open for future work.

32Q28, 57M25, 57M27, 57R17; 57Q45, 14B05

1 Introduction

A k –dimensional link in a smooth, oriented m–manifold M is a pair LD .L;M /

where L �M is a compact, non-empty, purely k –dimensional manifold (without
boundary) called the link-manifold of L; L is classical when k D 1, m D 3, and
M is diffeomorphic to S3 . In case L is endowed with an extra structure (such as
being smooth), L is also said to have that structure. A knot is a link with connected
link-manifold.

For n� 1, let †�CnC1 be a strictly pseudoconvex .2nC1/–sphere, ��CnC1 the
closed Stein .2nC2/–disk it bounds, and U an open Stein neighborhood of � in CnC1 .
If f 2 O.U / is a non-constant holomorphic function without repeated factors, then
V .f / WD f �1.0/ is a complex-analytic hypersurface in U ; up to multiplicities, every
complex-analytic hypersurface in U has the form V .f /. Let L.f;†/ WD V .f /\†,
S.f;�/ WD V .f /\�.

1.1 Definitions (1) Suppose that the singular set Sing.V .f // of V .f / has empty
intersection with †, so that L.f;†/ is the intersection of † with the complex n–
manifold Reg.V .f // of regular points of V .f /. If this intersection is transverse, then
L.f;†/ is a smooth compact .2n� 1/–manifold. In case either

(a) n> 0 and L.f;†/¤¿, or

(b) nD 0 (so that necessarily L.f;†/D¿) and S.f;�/¤¿,
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368 Lee Rudolph

call the smooth link L.f;†/ WD .L.f;†/;†/ a .2n � 1/–dimensional transverse
C–link.

(2) In case L.f;†/ is a compact .2n� 1/–manifold that is not smoothly embedded
in †, call L.f;†/ a .2n� 1/–dimensional wild C–link.

1.2 Remarks (1) The term “C–link” was introduced (Rudolph [80]) as a way to
include under one name two types of classical links which share the defining feature
that, up to ambient isotopy, they arise as intersections of a complex plane curve V �C2

with a 3–sphere † � C2 . One of these types is the special case in that dimension
of transverse C–links. The other type, “totally tangential C–links”, also can be
generalized to higher dimensions but will be left undefined here (and will be ignored
except in a small neighborhood of Question 1.8). There are no 1–dimensional wild
C–links.

(2) For q � 1, let fqW C ! C , z 7! zq . The empty .�1/–dimensional C–link
L.fq;S

1/D .¿;S1/DW Œq� is endowed with an extra structure — namely, the degree–
q fibration fq jS

1W S1!S1 — that makes Œq� a degenerate but very useful fibered link
as defined and discussed in Section 2.1.3. The links and notation Œq� were introduced
by Kauffman and Neumann [45] for an application to be used in Section 3.3.

In this paper I launch investigations into 3–dimensional transverse C–links (remarks
on wild C–links in odd dimensions greater than or equal to three are in preparation). I
describe in more or less detail several constructions of such links and a few of their
interesting properties; deeper investigations are deferred to a later date. Most of the new
3–dimensional constructions rely, in turn, on various constructions of 1–dimensional
transverse C–links; some of them are new, and presented with proofs or proof sketches,
and others simply restated (with references to published proofs) as needed.

One important special case of 3–dimensional transverse C–links is well known and
well understood. Let U be a neighborhood of z 2C3 , f 2 O.U /. If z is an isolated
singular point (or a regular point) of V .f /, then for all sufficiently small " > 0 the
(round) 5–sphere † D S5.z; "/ intersects Reg.V .f // transversely. The ambient
isotopy type of the transverse 3–dimensional C–link L.f;†/ is independent of ";
any representative of this ambient isotopy type is called the link of the isolated singular
point of f at z , and may be denoted Lz.f / D .L.f; z/;S

5/. Milnor [52] began
the systematic knot-theoretical study of these links (and their analogues in higher
dimensions; classical knot theory had been applied to singular points of complex
plane curves since Brauner [13]), and there is now a huge body of research on the
topology (and geometry) both of their link-manifolds and of the embeddings of those
link-manifolds in their ambient 5–spheres.
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A second special case of 3–dimensional transverse C–links (and their analogues in
other dimensions, including the classical) has also been studied, though less thor-
oughly. If f 2 O.C3/ is a complex polynomial function and V .f / is a finite set,
then for all sufficiently small " > 0 the (round) 5–sphere †D S5.0; 1="/ intersects
Reg.V .f // transversely. The ambient isotopy type of the transverse 3–dimensional
C–link L.f;†/ is independent of "; any representative of this ambient isotopy type
is called the link at infinity of f , and may be denoted L1.f / D .L.f;1/;S5/.
The link at infinity of a complex algebraic plane curve was introduced under that
name by Rudolph [66], though implicit earlier in Chisini [15; 16]; links at infinity of
complex algebraic hypersurfaces in all dimensions were introduced by Neumann and
Rudolph [59; 60]. See Rudolph [80] for further references.

Aside from those two special cases, very little is known (or has been published) about
3–dimensional transverse C–links. This contrasts considerably with the situation
for 1–dimensional transverse C–links, where — by taking Boileau and Orevkov [9]
(applying Eliashberg [19]) and Rudolph [67] together — such links are known to be
(up to ambient isotopy) precisely the quasipositive links. This characterization is not
effective, in the sense that no algorithm is presently known to determine whether
or not a given smooth, oriented classical link is quasipositive (precisely: the class
of quasipositive links is recursive, but is not known to be recursively enumerable).
However, there is an abundance of ways to construct quasipositive links with various
prescribed properties, as can be seen in the next part of this paper.

It is not clear whether or to what extent the notion of “quasipositive link” has useful
generalizations in higher dimensions, much less whether for some such generalization(s)
there exist analogues of [67] and [9] that could lead to a topological characterization of
higher-dimensional transverse C–links. Even for specifically 3–dimensional transverse
C–links, this may be a daunting task. For the purposes of the following brief and
speculative discussion, definitions of terminology not already introduced can be found
in the preliminaries; see Section 2.1.

First note that in the case of a 1–dimensional transverse C–link L.f;†/ (assuming it
to be generic, ie such that V .f /\� is non-singular) there is nothing special about
the intrinsic topology of L.f;†/ or S.f;�/: any non-empty compact oriented 1–
manifold without boundary occurs as L.f;S3/, and any compact oriented 2–manifold
without closed components appears as S.f;D4/, for some L.f;D4/. This contrasts
with the situation for 3–dimensional transverse C–links in a strictly pseudoconvex
6–disk �: if L.f;�/ is generic, then S.f;�/ is a compact Stein manifold-with-
boundary bounded by L.f;†/, and both kinds of spaces are subject to non-trivial
topological restrictions. By [9], an intrinsic topological restriction on S.f;�/ (due to
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Loi and Piergallini [50], with later proofs by Akbulut and Ozbagci [1] and Giroux [32])
can be restated thus.

1.3 Theorem A compact, oriented, smooth 4–manifold-with-boundary W is diffeo-
morphic to a compact Stein surface if and only if W is a branched covering of D4 over
the C–span S.f;D4/ of a 1–dimensional transverse C–link L.f;S3/.

As noted by Etnyre [23], it is a corollary to Loi and Piergallini’s Theorem 1.3 that the
intrinsic topology of L.f;†/ is restricted as follows.

1.4 Corollary A compact, oriented 3–manifold M is diffeomorphic to the (strictly
pseudoconvex) boundary of a compact Stein surface if and only if there exists an
open book bW M ! C which is positive in the sense that its geometric monodromy
F0.b/! F0.b/ (where F0.b/ WD b�1.Œ0;1Œ/, the “first page” of b , is a compact
oriented 2–manifold-with-boundary) can be written as a product of positive Dehn twists
on F0.b/.

Moreover, W can be reconstructed from its boundary M together with such a positive
factorization of the monodromy of an open book on M (different open books, or even
different factorizations, may give different 4–manifolds W ).

However, neither of these necessary conditions on W and M D @W is sufficient to
ensure that they actually occur as S.f;�/ or L.f;†/. In fact, although every Stein
surface embeds properly and holomorphically in C4 (Eliashberg and Gromov [22],
Schürmann [84; 85]), there are compact Stein surfaces that do not embed holomorphi-
cally in C3 (indeed, whose underlying differentiable manifolds do not embed smoothly
in R6 ; Forster [25]). Suppose, however, that W is in fact a compact Stein surface
embedded holomorphically (with strictly pseudoconvex boundary) in C3 . In this case,
it is easy (possibly after slightly perturbing the complex structure) actually to embed
W as a Stein domain on a (non-singular) complex algebraic surface in V .f /�C3 ;
but it is not immediately obvious that this can be done in such a way that W DS.f;�/

for some strictly pseudoconvex 6–disk � in C3 .

1.5 Questions (1) What are necessary and/or sufficient conditions on a compact,
oriented, smooth 4–manifold with boundary that it be diffeomorphic to a compact Stein
surface embedded holomorphically (with strictly pseudoconvex boundary) in C3 ?

(2) What are necessary and/or sufficient conditions on a compact Stein surface embed-
ded holomorphically (with strictly pseudoconvex boundary) in C3 that it be S.f;�/

for some strictly pseudoconvex 6–disk ��C3 ?
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The extreme (not to say pathological) behavior exhibited by Stein domains in C2 , as
demonstrated by Gompf [35], suggests that any full answer to these questions may be
quite alarming.

Conceivably the following question can be more easily answered.

1.6 Question What are necessary and/or sufficient conditions on a compact, oriented
3–manifold M that it support some positive open book bW M !C that is associated
to a realization of M as a link-manifold L.f;†/?

Another question, presumably easier than characterizing all 3–dimensional transverse
C–links (whether or not by generalizing quasipositive links), is the following.

1.7 Question Can some non-trivial family of 3–dimensional C–links be characterized
by a reasonable generalization of the notion of a strongly quasipositive link (see
Definitions 2.4)?

At a minimum, such a generalization would presumably involve finding properties —
including, but going further than, the topological condition in Theorem 1.3 — that a 4–
dimensional submanifold-with-boundary W of a strictly pseudoconvex 5–sphere †D
@��C3 must possess for there to be an ambient isotopy carrying some 3–dimensional
transverse C–link L.f;†/ onto .@W; †/ and .S.f;�/;�/ onto .W 0; �/, where W 0

is obtained from W by leaving @W fixed and pushing Int W into Int�.

Question 1.7 can be made more particular yet. The family of strongly quasipositive
2–component links L.f;S3/ such that S.f;D4/ is an annulus can be characterized
as those that can be obtained (via a digression into 1–dimensional totally tangential
C–links, Rudolph [73; 74; 76]) using a real-analytic Legendrian simple closed curve in
S3 (with its standard contact structure) and its canonical framing; see Theorem 2.14(1).

1.8 Question Is there a reasonable generalization of strongly quasipositive annuli?

It is easy to construct totally tangential 2–dimensional C–links in S5 — which are,
in particular, Legendrian manifolds — diffeomorphic to S2 and S1 �S1 ; and these
do give 3–dimensional transverse C–links (with link-manifolds S2 �S1 and .S1/3 ,
respectively, for the examples I have in mind). It may well be possible, if not easy, to
do the same for 2–manifolds Fg of genus g > 1; a careful reading of Haskins and
Kapouleas [39] might even provide an appropriate reader (which I am not) with the
affirmative answer.

1.9 Remark A recent theorem of Kasuya [43] implies that if L.f;†/ is a 3–
dimensional C–link then the first Chern class of its link-manifold L.f;†/ vanishes.
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2 Old and new constructions of quasipositive links

This part of the paper assembles constructions of quasipositive links used in the next
part to construct 3–dimensional C–links. For further information, particularly about
constructions not flagged as either new or incorporating new details; see [80] and
sources cited there.

2.1 Preliminaries on braids, plumbing, trees, fibered links, etc

For general material on braids and closed braids (as well as plats, used in passing
in Section 2.7.2); see Birman [6] or Birman and Brendle [7]. For details and further
references on braided surfaces, quasipositive braids, etc, see [80].

For an historical survey of open books, see Winkelnkemper [95]. For details and further
references on contact structures, fibered links, and open books in dimension 3, see
Etnyre [24] or Geiges [30].

The first four sections of Ozbagci and Popescu-Pampu [64] form an excellent historical
survey of plumbing and many of its generalizations. Starting from first principles,
Bonahon and Siebenmann [12, Chapter 12] give a careful treatment of — and calculus
for — a particular case (called strip-plumbing below in Remarks 2.3 and Definitions 2.4)
that explicitly allows non-orientable plumbands and is often suppressed in or excluded
from such discussions.

2.1.1 Braids and braided surfaces Let n � 1. The n–string braid group Bn with
identity o.n/ , standard generators �1; : : : ; �n�1 , and standard presentation*

�1; : : : ; �n�1

ˇ̌̌̌
ˇ �i�j�

�1
i ��1

j D o.n/; 1� i < j � 1� n� 1

�i�iC1�i�
�1
iC1�

�1
i ��1

iC1 D o.n/; 1� i � n� 2

+
is identified to the fundamental group of the configuration space

En WD ffw1; : : : ; wng �C W wi ¤ wj ; 1� i < j � ng

� ffw1; : : : ; wng �Cg ŠCn=Sn

with respect to an arbitrary choice of base point ! D fw1; : : : ; wng 2 En . A posi-
tive band in Bn is any member of the conjugacy class of the standard generators;
this conjugacy class is independent of the choice of !; in En it is represented by
any positively oriented meridian of the discriminant locus consisting of all multisets
fw1; : : : ; wng �C with wi D wj for some i ¤ j . For ˇ;  2 Bn , let ˇ WD ˇ�1 ;
since any two standard generators �i , �j are conjugate, every positive band has the
form �1 with  2 Bn . A braid ˇ 2 Bn is quasipositive in case it belongs to the
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submonoid Qn�Bn generated by the positive bands (equivalently, normally generated
by �1 ).

The closure (or closed braid ) of a braid ˇ is a smooth oriented link . b̌;S3/, unique
up to ambient isotopy, defined as follows. Let `ˇW .S1; 1/! .En;!/ be a smooth
based loop that represents ˇ 2 Bn . The multigraph

gr.`ˇ/D f.e
i� ; w/ 2 S1

�C W w 2 `ˇ.e
i� /g

is then a naturally oriented smooth compact 1–submanifold of the open solid torus
S1�C such that pr1 j gr.`ˇ/ is a covering map. Embed S1�C as the interior of one
solid torus of a genus–1 Heegaard splitting of S3 �C2 , say by the map

(2-1) J W S1
�C! S3

W .ei� ; w/ 7!
.ei�

p
1Cjwj2; w/p
1C 2jwj2

;

and then define b̌ as the image J.gr.`ˇ//. An oriented link .L;S3/ is quasipositive
in case it is ambient isotopic to the closure . b̌;S3/ of some quasipositive braid ˇ . A
quasipositive band representation of a (necessarily quasipositive) braid ˇ 2 Bn is a k –
tuple EbD .b.1/; : : : ; b.k// of positive bands in Bn such that ˇDbr.Eb/ WD b.1/ � � � b.k/.
The calculus of band representations and braided Seifert ribbons in D4 elaborated by
Rudolph [68], coupled with the equivalence [67; 9] between 1–dimensional transverse
C–links and quasipositive links (mentioned in Section 1), establishes a many-many
correspondence between non-singular C–spans of 1–dimensional transverse C–links
in S3 and quasipositive band representations (on all numbers of strings).

2.1.2 Annuli, strips, plumbing, and trees A Seifert surface is a compact oriented
smooth 2–submanifold-with-boundary S � S3 each component of which has non-
empty boundary; S is called a Seifert surface for (or of ) the oriented link .@S;S3/,
and .@S;S3/ is said to have the Seifert surface S .

Let L D .L;S3/ be a smooth classical link. A framing of L is a locally constant
function f W L! Z; in case L is a knot (ie L is connected), f is identified with
its only value. An annular surface A.L; f / of type .L; f / is a Seifert surface in S3

consisting of pairwise disjoint annuli, each of which contains exactly one component
K of L as its core 1–sphere, and such that the linking number in S3 of the two
boundary components of that annulus is �f .K/ (in other words, the Seifert matrix of
that component is Œf .K/�). The ambient isotopy type of A.L; f / is independent of the
orientation of L. The annular surface A.O;�1/ (where OD .O;S3/ denotes a trivial
knot) is often called a positive Hopf band (and its mirror image A.O;C1/ a negative
Hopf band ); to avoid possible (if unlikely) confusion with bands in braid groups, here
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I will call A.O;�1/ Hopf annuli instead (see Section 2.4 for some justification of the
sobriquet “Hopf”).

Given a manifold X (not necessarily oriented or orientable), let jX j denote the underly-
ing unoriented manifold; given a link L.L;M / with link-manifold L, let jL.L;M /j

denote the unoriented link .jLj;M / (so M retains its orientation).

2.1 Definition Let KD .K;S3/ be a classical knot, t 2 Z. A strip of type K with t

half-twists is an unoriented 2–submanifold-with-boundary S.K; t/� S3 defined as
follows:

(1) in case t is even, S.K; t/D jA.K;�t=2/j;

(2) in case t is odd, S.K; t/ is a smoothly embedded Möbius strip S�S3 containing
K as its core 1–sphere, such if the 1–sphere @S is oriented to be everywhere
locally parallel (rather than anti-parallel) to K , then the linking number in S3

of K and @S equals t .

Clearly up to ambient isotopies S.K; t/ determines, and is determined by, jKj and t .

Recall that an arc ˛ in a manifold with boundary X is proper in case @˛ D ˛\ @X .

2.2 Definition Let 2p � 2 be even. Call a compact, smooth 2–submanifold-with-
boundary F � S3 , not necessarily oriented or orientable, a 2p–gonal plumbing of
submanifolds-with-boundary F1;F2 � S3 along P in case there exists a smoothly
embedded 2–sphere S2 � S3 bounding 3–disks D3

1
, D3

2
such that

(1) Fi D F \D3
i (i D 1; 2),

(2) F \S2 D F1\S2 D F2\S2 is a 2–disk P such that @P consists of 2p arcs
that are, alternately, proper arcs in F1 and in F2 . F1 and F2 may be called the
plumbands of this plumbing; P is its plumbing patch.

P D1
D2

P P

(a) (b) (c)

Figure 1: (a) A 2–disk D1 � F1 � R2 � Œ0;1Œ intersects R2 � f0g in the
round 2–disk P . (b) A similar 2–disk D2�F2�R2���1; 0� . (c) D1[D2

is a 2–disk on F D F1 �P F2 �R3 .
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2.3 Remarks (1) Boundary-connected sum and 2–gonal plumbing are equivalent.

(2) By plumbing, Stallings [89] refers to a construction that, on its face, is a strict
generalization of 2p–gonal plumbing; however, as observed in [76, page 260], “it
is easy to see that (up to ambient isotopy) every Stallings plumbing is a” 2p–gonal
plumbing “of the same plumbands”.

(3) By his (now standard) coinage Murasugi sum, Gabai [27] refers exclusively to
2p–gonal plumbing of Seifert surfaces.

(4) For Bonahon and Siebenmann [11; 12], the term “plumbing” refers exclusively to
4–gonal plumbing with unoriented (possibly non-orientable) plumbands Fi .

(5) As pointed out in [12, Remark 12.3], to stay in the differentiable category when
plumbing, care “can easily (and must)” be taken to avoid creating corners (on @P ).
Such care is illustrated in Figure 1, where S2 D .R2 � f0g/[1 � R3 [1 D S3 ,
P D f.x1;x2; 0/ 2 S2 W x2

1
C x2

2
� 1g, and liberal use of “bump functions” ensures

that when the illustrated 2–disks on F1 and F2 are identified along P , @F acquires
no corners.

(6) Although in the situation of Definition 2.2 such notations as F D F1�P F2 or —
when F is being constructed by plumbing, rather than displayed as already plumbed —
F D F1 P1�P2

F2 are often useful, it is important to note that F is typically not
determined (even up to ambient isotopy) by the pairs .Fi ;P / or .Fi ;Pi/ (or their
ambient isotopy types): further (combinatorial) information (such as n–stars and a
distinction between the sides of Fi near P ), sufficient to specify an identification of
P1 and P2 up to an appropriate equivalence, is required for disambiguation (with a
few exceptions); see [12, Remark 12.1] for unoriented plumbands and Rudolph [76]
for Murasugi sums.

An especially useful case of plumbing in the sense of [12] is strip-plumbing, where
F2 is an unknotted strip S.O; t/ � S3 and the 4–gonal plumbing patch P2 � F2

is core-transverse in the sense that it is a relative regular neighborhood on F2 of
a normal arc (a proper arc that intersects the core 1–sphere O � F2 in a single
point, transversely). Iterating strip-plumbing produces several (overlapping) families
of unoriented 2–submanifolds-with-boundary of S3 .

2.4 Definitions Let F0 � S3 be a 2–disk. For j D 1; : : : ; k , let

Fj�1 Qj�Pj
S.O; tj /DW Fj

be a strip-plumbing.
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(1) If all Qi are contained in F0 and all ti are even, then Fk is orientable, and with
either orientation it is a basket as defined by Rudolph [78] and further studied by
Furihata, Hirasawa and Kobayashi [26], Kim, Kwan, and Lee [46], etc.

(2) If all jti j equal 2 (ie all strips are Hopf bands), then again Fk is orientable, and
with either orientation it is a Hopf-plumbed surface as studied by Harer [37], Melvin
and Morton [51], Rudolph [78], Goodman [36], etc.

(3) Let TD .V.T/;E.T// be a planar tree, wW V.T/! Z a weighting of T. There
seems to be no single standard notation or name for the unoriented, possibly non-
orientable 2–submanifold-with-boundary of S3 associated to .T; w/ that has been
described and constructed by various authors since (at least) Bonahon and Sieben-
mann [11]; here it will be denoted sp.T; w/ and called the iterated strip-plumbed
surface of the weighted graph (although the strip-plumbing in its construction seems
usually to be conceptualized as simultaneous rather than iterated). More precisely,
let v1; : : : ; vm be an enumeration of the vertices of T, and let Si WD S.O; w.vi//.
For each edge fvi ; vj g of T, with i < j , let Pi;j � Si ;Pj ;i � Sj be core-transverse
4–gonal plumbing patches, such that

(a) Pi;j \Pk;` D¿ unless .i; j /D .k; `/ and

(b) for each vertex i the counter-clockwise cyclic order induced on fj W fi; j g is an
edge of Tg by the hypothesized planar embedding of (the geometric realization
of) the planar tree T is the same as the cyclic order in which the various plumbing
patches Pi;j and Pj ;i intersect the core S1 of Si .

Without loss of generality, the enumeration v1; : : : ; vm is such that v1; : : : ; v` are
vertices of a subtree of T for all `D 1; : : : ;m; in this case, assumptions (a) and (b)
above suffice to construct an iterated strip-plumbed 2–manifold-with-boundary

(2-2) .� � � .S1 P1;2�P2;1
S2/ � � � /Pq;m�Pm;q

Sm � S3

that typically is not unique up to ambient isotopy (see Remark 2.3(6)). However,
its boundary is, which excuses the slight abuse of letting sp.T; w/ denote any of
the surfaces (2-2). An arborescent link is an unoriented classical link of the form
.@sp.T; w/;S3/. For T empty, let sp.T; w/DD2 , so that the unoriented trivial knot
is arborescent.

2.1.3 Contact structures, fibered links, and open books Let M be a compact,
oriented, smooth manifold of odd dimension 2nC 1� 3. A contact form on M is a
1–form ˛ on M such that the .2nC1/–form ˛^d˛^� � �^d˛ (with n factors d˛ ) is
a volume form on M . A contact structure on M is a field � of 2n–planes on M of the
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form ker.˛/ for some contact form ˛ . Every strictly pseudoconvex .2nC 1/–sphere
†�CnC1 (in particular S2nC1 D S2nC1.0; 1/) is equipped with a canonical contact
structure, namely, the field of oriented 2n–planes underlying the field of complex
n–planes tangent to †. The link-manifold of any transverse C–link (of dimension
greater than or equal to 3) has a similarly defined canonical contact structure.

An n–dimensional smooth link LD .L;M / is Legendrian for � in case the tangent
n–plane to L at each of its points lies in the contact 2n–plane of M at that point.
If .L;M / is Legendrian and M is Riemannian, then the field of n–planes on L

complementary in the field of contact 2n–planes to the tangent bundle of L is a natural
normal n–plane field on L, independent (up to isotopy) of the metric on M .

Let 2nC 1D 3. A contact structure � on M is called overtwisted in case there exists
a Legendrian knot K D .K;M / such that K D @D where D �M is a smoothly
embedded 2–disk such that the restrictions to K of � and the tangent bundle of D are
homotopic. A contact structure is called tight in case it is not overtwisted.

2.5 Theorem (Bennequin [5]) The canonical contact structure �0 on S3 is tight.

2.6 Remark It follows from a (much) more general theorem of Eliashberg and
Gromov [21] that the canonical contact structure on the link-manifold L.f;†/ of a
3–dimensional transverse C–link L.f;†/ is tight (because, up to replacing f by
f C ", the C–span S.f;�/ is non-singular and thus a Stein filling of L.f;†/; see
Gompf [34]).

2.7 Theorem (Eliashberg [20]) Overtwisted contact structures are isotopic if and
only if they are homotopic as plane fields. Every homotopy class of plane fields on S3

contains overtwisted contact structures; only the class of �0 contains a tight contact
structure.

If a classical link LD .L;S3/ is Legendrian for �0 , then L is naturally framed by
assigning to each component K of L the linking number in S3 of K with KC obtained
by pushing K a small distance along its natural normal line field. Two standard facts
are that every smooth classical link L is ambient isotopic to various Legendrian links
for �0 , and that if L D K is a knot then there is a finite upper bound — called the
maximal Thurston–Bennequin number of K, and denoted TB.K/ — for the self-linking
numbers of Legendrian knots smoothly isotopic to K.

Let M be a smooth, oriented m–manifold of dimension m � 2. An .m � 2/–
dimensional link LD .L;M / is fibered in case there is a smooth fibration 'W MXL!

S1 such that each fiber '�1.ei� /D Int F� for a smooth, compact .m�1/–dimensional
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submanifold-with-boundary F� �M with @F� DL; such an F� (for any L and ' )
is a fiber manifold in M . The mirror image Mir L WD .L;�M / of a link LD .L;M /

is fibered if and only if L is; a connected sum L1 # L2 WD .L1 # L2;M1 # M2/

of links Li D .Li ;Mi/ is fibered if and only if L1 and L2 are, and similarly for
boundary-connected sums of fiber manifolds.

An open book on M is a smooth map bW M !C such that 02C is a regular value of
b and .b=jbj/ jb�1.C X 0/W b�1.C X 0/!S1 is a fibration. A page of b is any one of
the smooth, oriented .m�1/–manifolds-with-boundary F� .b/ WD b�1.frei� W r � 0g/

for ei� 2 S1 , with non-empty boundary L.b/ WD b�1.0/. The oriented link L.b/ WD

.L.b/;M / is the binding of b . Open books on M are handy rigidifications of fibered
links in M ; indeed, L.b/ is a fibered link in M , every non-empty fibered link in M

is L.b/ for various open books on M (all equivalent in an appropriate sense), and
every fiber manifold in M with non-empty boundary is a page of some open book
on M (again, essentially unique). For odd m � 3, an open book on (or fibered link
in) M is called simple in case its page (or fiber .m� 1/–manifold) has the homotopy
type of a bouquet of .m� 1/=2–spheres; this is always so for mD 3. For mD 3 and
M D S3 , Neuwirth [62; 63] and Stallings [88] showed independently that a Seifert
surface F is a fiber surface (that is, a fiber manifold of dimension 2) if and only if the
normal push-off F ! S3 XF induces a homotopy equivalence. It follows that F is
connected (H0.F IZ/ is Alexander dual to H2.S

3XF IZ/), and thus that A.L; f / is
fibered if and only if LD O and f D˙1.

2.8 Remark As noted in the abstract of [76], there is an analogy between fiber surfaces
in S3 and quasipositive Seifert surfaces in S3 : “A Seifert surface S � S3 D @D4 is
a fiber surface if a push-off S ! S3 XS induces a homotopy equivalence; roughly,
S is quasipositive if pushing Int S into Int D4 � C2 produces a piece of complex
plane curve.” A glimpse of this analogy led me to call the first of my series of papers
[69; 70; 72; 73; 76] “Constructions of quasipositive knots and links” in homage
to Stallings’s paper “Constructions of fibered knots and links” [89]. Several of the
following constructions can be taken as evidence that this analogy is not completely
illusory.

2.2 Construction: quasipositive satellites (new)

The following construction in classical knot theory is due to Schubert [82].

2.9 Definition Let KD .K;S3
0
/ be a knot, LD .L;S3

1
/ a link, and OD .O;S3

1
/ a

trivial knot such that
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(a) L is contained in the interior Int N.O/ of a regular neighborhood N.O/ of O

in S3 , and

(b) no 2–sphere in N.O/ separates any connected component of L from @N.O/.

Let E.K/ WD S3
0
X Int N.K/ be the exterior of K , let hW @E.K/! @N.O/ be a

faithful diffeomorphism (ie it carries a standard meridian-longitude pair on @E.K/ to
a standard meridian-longitude pair on @N.O/), and let S3 be the (suitably smoothed)
identification space .E.K/[N.O//=�, where the non-trivial equivalence classes of
the equivalence relation � are the pairs fx; h.x/g with x 2 @E.K/. Let KfLg denote
L�N.O/� S3 . In this situation, the link KfLg WD .KfLg;S3/ is the satellite of K

with pattern L; K is a companion of KfLg.

Stallings gave a natural condition under which a satellite with fibered companion and
fibered pattern is itself fibered.

2.10 Theorem (Stallings [89]) If K and L are fibered links in S3
0

and S3
1

respec-
tively, and if, further, there exist an integer d ¤ 0 and open books pW S3

1
!D2 for L

and oW S3
1
! D2 for O with p jE.O/ equal to .o jE.O//d up to the identification

above, then KfLg is a fibered link in S3 .

The analogy mentioned in Remark 2.8 suggests that there should be a similarly broad
result for a satellite with quasipositive companion and quasipositive pattern, presumably
subject to some further coherence condition like that in Theorem 2.10. Lacking sufficient
space, time, and insight either to find such a broad theorem or come up with convincing
reasons none should exist, here I prove only a single narrow result to be used later.

For n � 1, denote by O.n/ WD .O.n/;S3/ the closed braid of the identity o.n/ 2 Bn ,
embedded — as in Section 2.1.1, Equation (2-1) — in J.S1 � C/ D Int N.O1/ �

S3 D S3
1

. The untwisted n–strand cable of a knot K D .K;S3
0
/ is the satellite

Kfn; 0g WD KfO.n/g.

2.11 Proposition If K is quasipositive, then for all n� 1, Kfn; 0g is quasipositive.

Proof Realize the quasipositive knot K as a transverse C–link — say KDL.f;S3/ —
with non-singular C–span S.f;D4/. For all sufficiently small "¤ 0, .V .f n� "n/\

S3;S3/ is then a transverse C–link with n components .V .f � "e2k�i=n/\S3;S3/,
each a transverse C–link in its own right, and such that its C–span Sk WD .V .f �

"e2k�=n/\D4;D4/ is non-singular. For 1� k < `� n, clearly Sk \S` D¿, so the
linking number of @Sk and @S` in S3 is 0; it follows that L.f n� "n;S3/ is, up to
ambient isotopy, Kfn; 0g.
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2.12 Remarks (1) For another proof of Proposition 2.11, let K be the closed braid

1br.Eb/

of a quasipositive band representation Eb in Bp ; fairly obvious algebraic manipulations
(motivated by geometry) generate a quasipositive band representation Ebfn; 0g in Bnp

with closure Kfn; 0g.

(2) The proof just sketched readily generalizes to show that KfLg is quasipositive
in case both the companion K and the pattern L are quasipositive and in addition L

sits inside N.O/ as a quasipositive closed braid. Certainly, this last hypothesis is a
“coherence condition like that in Theorem 2.10”, but it seems much too strong to be
optimal (and is much stronger than Stallings’s condition).

(3) In the situation of (2) above, if also the quasipositive companion K is a slice knot,
then an analytic proof that KfLg is quasipositive can be cobbled together along the
lines of the (first) proof of Proposition 2.11 by using techniques applied (in a much
more delicate context) by Baader, Kutzschebauch, and Wold [4].

2.3 Construction: strongly quasipositive links

The monoid Qn contains a distinguished finite subset

f�i;j WD
�i ����j�2�j�1 W 1� i � j � n� 1g

of positive bands called embedded bands (in Bn ) by Rudolph [68] and later, a bit
confusingly, simply “band generators” (of Bn ) by Birman, Ko, and Lee [8]. The
calculus of band representations and Seifert ribbons in D4 mentioned in Section 2.1.1
has a variant (expounded, like it, in [68], and elaborated in various later papers by
Rudolph [72; 73; 76; 78], Baader and Ishikawa [2; 3], etc) by which quasipositive
embedded band representations Eb and algebraic/combinatorial operations thereon corre-
spond to quasipositive braided Seifert surfaces S.Eb/ in S3 and geometric/topological
operations thereon. A Seifert surface is called quasipositive in case it is ambient
isotopic to a quasipositive braided Seifert surface S.Eb/.

Given a compact orientable 2–manifold-with-boundary M , call a closed subset N �

Int M full on M in case no component of M XN is contractible.

2.13 Proposition (Rudolph [72]) A Seifert surface is quasipositive if and only if it
is a full subsurface of some quasipositive fiber surface. In particular, a full subsurface
of a quasipositive Seifert surface is quasipositive.
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A link is strongly quasipositive in case it has a quasipositive Seifert surface. Many
interesting quasipositive links are strongly quasipositive, including the classes of
examples described next.

2.3.1 Strongly quasipositive annuli

2.14 Theorem (Rudolph [73; 74; 75]) (1) If the smooth classical knot K is non-
trivial, then the following are equivalent:

(a) The annular Seifert surface A.K; n/ is quasipositive.

(b) The oriented link .@A.K; n/;S3/ is strongly quasipositive.

(c) n� TB.K/.

(2) The oriented link .@A.O; n/;S3/ is strongly quasipositive if and only if n � 0;
the annular surface A.O; n/ is quasipositive if and only if n� �1D TB.O/.

2.3.2 Strongly quasipositive Murasugi sums

2.15 Theorem (Rudolph [76]) A Murasugi sum of Seifert surfaces F1 and F2 is
quasipositive if and only if the summands F1 and F2 are quasipositive.

2.16 Remarks (1) Evidently S.O; 2/D jA.O;�1/j, so Theorems 2.14(2) and 2.15
imply that if each plumband of a Hopf-plumbed Seifert surface F (as in Definition
2.4(2)) is S.O; 2/, then .@F;S3/ is strongly quasipositive.

(2) Theorem 2.15 is analogous to Gabai’s theorem [28] that a Murasugi sum of Seifert
surfaces is a fiber surface if and only if the plumbands are fiber surfaces, and may be
taken as further evidence (along different geometric lines from those followed in [27;
28] and later work by Gabai and others) for what Ozbagci and Popescu-Pampu [64]
call Gabai’s credo: “the Murasugi sum is a natural geometric operation”.

2.3.3 Positive links Given a classical oriented link diagram D , let SA.D/ denote
the Seifert surface (unique up to ambient isotopy) produced by Seifert’s algorithm
(Seifert [87]) applied to D , so L.D/ WD .@SA.D/;S3/ is the oriented link (unique
up to ambient isotopy) determined by D . A diagram is positive in case every crossing
is positive; a link is positive in case it has some positive D . Positivity (of links and
diagrams) is preserved by simultaneous reversal of all orientations; in particular, for
knots it is independent of orientation.

2.17 Theorem (Nakamura [54; 55], Rudolph [77]) If D is positive, then SA.D/ is
a quasipositive Seifert surface. In particular, a positive link is strongly quasipositive.
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2.3.4 Strongly quasipositive satellites (new) Two results stated for quasipositive
knots and links in Section 2.2 remain true in the strongly quasipositive case. In the
first, a variation on Proposition 2.11, the proofs differ a bit.

2.18 Proposition If K is strongly quasipositive, then for all n� 1, Kfn; 0g is strongly
quasipositive.

Proof Let S be a quasipositive Seifert surface with KD .@S;S3/. Let cW S�Œ1; n�!

S3 be an embedding onto a one-sided collar of S D c.S�f1g/; then c.S�f1; : : : ; ng/

is a quasipositive Seifert surface, and its boundary is clearly Kfn; 0g.

The second is a variation on Remarks 2.12(2); in this case, the sketched proof of the
original applies equally well to the variation.

2.19 Proposition If both the companion K and the pattern L are strongly quasipos-
itive, and if in addition L sits inside N.O/ as a strongly quasipositive closed braid,
then the satellite KfLg is strongly quasipositive.

2.4 Construction: partially reoriented Hopf links (new details)

The partially reoriented positive Hopf links HC.p; q/ and their mirror images the
partially reoriented negative Hopf links H�.p; q/ WD Mir HC.p; q/ are defined using
the positive Hopf fibration hCW S

3 ! CP1 W .z0; z1/ 7! .z0 W z1/ and its mirror
image the negative Hopf fibration h� W .z0; z1/ 7! .z0 W z1/. The usual orientations
of S3 � C2 and CP1 naturally orient the fibers of h˙ . For 0¤ p � q � 0, denote
by H˙.p; q/ the union of (any) pC q fibers of h˙ , p with the natural orientation
and q with its opposite; let H˙.p; q/ WD .H˙.p; q/;S

3/. Note that HC.1; 0/ and
H�.1; 0/ are ambient isotopic (they are trivial knots), as are H˙.2; 0/ and H�.1; 1/;
with those exceptions, H˙.p; q/ is determined up to ambient isotopy by .˙;p; q/.
Let rn WD ..�1�2 � � � �n�1/.�1�2 � � � �n�2/ � � � .�1�2/�1/

2 DW � 2 Bn . It is standard
that the closure of rn is H˙.n; 0/. For 1� i < j � n, inject Bj�iC1 into Bn by �i;j
with �i;j .�k/D �kCi�1 , k D 1; : : : ; j � i ; let ri;j WD �i;j .rj�iC1/. Figure 2(a)–(b)
shows that

rpCq Dr1; prpC1; pCq.�p�pC1 � � � �pCq�1/.�p�1�p � � � �pCq�2/ � � � .�1�2 � � � �q/

� .�q�qC1 � � � �qCp�1/.�q�1�q � � � �qCp�2/ � � � .�1�2 � � � �p/

Dr1; p�qrp�qC1; pCq.�p�q�p�qC1 � � � �p�1/.�p�q�1�p�q � � � �p�2/

� � � .�1�2 � � � �p�q/.�p�q�p�qC1 � � � �pCq�1/

� .�p�q�1�q�pCq�2/ � � � .�1�2 � � � �2q/
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r1;p rpC1;pCq r1;p rpC1;pC1 r�1
1;1

r�1
2;2p�2

r�1
1;1

r�1
2;2p�2

(a) (b) (c) (d)

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

Figure 2: (a), (b), (c) Braid diagrams with closure HC.pC q; 0/ , HC.p; q/ ,
H�.2p � 1; 0/ respectively. (d) A partially reoriented braid diagram with
closure H�.p;p � 1/; the shading indicates p � 1 linked and twisted an-
nuli that are components of a ribbon-immersed surface in S3 bounded by
H�.p;p� 1/ (the remaining component is a disk, not indicated).

and thus both have closure HC.pC q; 0/.

(Since �1; r .Br / and �rC1; pCq.BpCq�r / commute with each other for any r D

1; : : : ;p C q , the detailed placement of crossings inside the boxes at the bottoms
of the diagrams is irrelevant; a similar observation applies to the tops of the diagrams.)
The braid diagram in Figure 2(c) is derived from that in Figure 2(a) by simultaneously
reversing the orientations of the rightmost q strings and turning those strings, so
grouped, by (approximately) a half-turn around the horizontal axis; its closure is
evidently HC.p; q/. Although Figure 2(d) — derived from Figure 2(b) by reversing
the orientation of alternate ones of the last 2q strings — is not a braid diagram for
q > 0, it has an obvious “closure” that is, again evidently, HC.p; q/. (The shading in
Figure 2(d) is for future reference.)

2.20 Lemma Let p � q � 0.

(1) HC.p; q/ is quasipositive if and only if p � 1 and q D 0.

(2) H�.p; q/ is quasipositive if and only if either q D p > 0 or q D p� 1.

In particular, a Seifert surface diffeomorphic to D2 is a fiber surface bounded by the
trivial fibered knot ODH˙.1; 0/; and a Seifert surface A.K; n/ diffeomorphic to an
annulus (see Section 2.3.1 for the notation) is a fiber surface if and only if it is a ˙–ive
Hopf band A.O;�1/ bounded by the fibered ˙–ive Hopf link H˙.2; 0/DH�.1; 1/.
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2.5 Construction: quasipositive fibered links (new details)

2.21 Lemma For p > 1, H˙.p; q/ is a fibered link if and only if p > q .

Proof Calculations in the style of Rudolph [71] show that if p > q then the real-
polynomial mapping

Fp;qW C
2
!C; .z0; z1/ 7! .z

p
0
C z

p
1
/.z0

q
C 2z1

q
/

has an isolated critical point at .0; 0/, and in fact that Fp;q jS
3 is an open book with

binding HC.p; q/; the result for H�.p; q/ follows by taking mirror images. On the
other hand, if p> 1 then H˙.p;p/ is not fibered (it has a disconnected Seifert surface,
so S3XH˙.p;p/ has non-trivial second homology and cannot be homotopy equivalent
to a bouquet of 1–spheres). Alternatively, note that a partially reoriented Hopf link is
solvable in the sense of Eisenbud and Neumann [18] and then apply the characterization
of fibered solvable links derived in [18] using the calculus of splice diagrams.

In combination with Lemma 2.20, Lemma 2.21 yields the following.

2.22 Corollary Hp.q;) is both quasipositive and fibered if and only if it is the trivial
knot, the positive Hopf link, HC.p; 0/, or H�.p;p� 1/.

Let L be a simple fibered link in S2nC1 , p an open book with L D Lp . The
Milnor number �.L/ is now usually defined as the middle Betti number of the fiber
2n–manifold of L, making the following properties evident.

2.23 Proposition (1) �.L/� 0.

(2) �.Mir L/D �.L/.

(3) �.L/D 0 if and only if the fiber 2n–manifold is contractible; in particular, for
nD 1, �.L/D 0 if and only if LD O is a trivial knot.

(4) If L1 and L2 are fibered links, then �.L1 # L2/D �.L1/C�.L2/.

Originally, however, � was defined by Milnor [52] (in his context of links Lz.f / of
isolated singular points of complex hypersurfaces V .f / � CnC1 , n � 1, where
p D f jS2nC1.z; "/) as the degree of a map S2nC1 ! S2nC1 naturally associ-
ated to p , while the Betti number characterization was a theorem to be proven and
Proposition 2.23(1)–(3) were its corollaries (in Milnor’s context, Proposition 2.23(4)
arises only trivially).

For nD 1, Rudolph [71] adapted Milnor’s original approach to � to define for every
fibered classical link L — in terms of any open book p with L D Lp — a pair
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.LL;RL/ of maps S3! S2 naturally associated to p . In [71], the pair .�.L/; �.L//
of Hopf invariants of .LL;RL/ was called the enhanced Milnor number of L, and
shown to have the following properties.

2.24 Proposition (1) �.L/C �.L/D �.L/.

(2) �.L/D �.Mir L/.

(3) �.Lz.f //D 0 if f W C2!C is a holomorphic function with an isolated critical
point (or regular point) at z 2C2 .

(4) � is additive over connected sum: �.L1 # L2/D �.L1/C�.L2/.

Neumann and Rudolph [59; 60; 61] named �.L/ (and its analogue for fibered links
of higher odd dimension, an element of Z=2Z rather than Z) the enhancement of L.
They introduced a notion of an open book b (or its fibered link Lb ) unfolding into open
books bi (or their fibered links Lbi

), denoted by bD‡i bi (or Lb D‡i Lbi
); with

their definition, �.Lb1‡ b2
/D �.Lb1

/C�.Lb2
/ is tautologous. They also show that

unfolding includes Murasugi sum in the sense that for any open books b1;b2 on S3 ,
pages Fi of bi , and Murasugi sum FDF1� F2 , there exists an unfolding bDb1‡ b2

with F as a page. The generalization of Proposition 2.24(4) from connected sum to
Murasugi sum follows immediately.

In [61] Neumann and Rudolph applied the calculus of splice diagrams [18] to calcula-
tions of the enhancement for various classes of fibered links. In particular, Proposi-
tion 9.3 of [61] (stated for a pair of coaxial torus knots but true for a pair of coaxial
torus links in general) includes the following calculation, which can also be derived by
a pleasant exercise using the techniques of [71].

2.25 Proposition For p > q � 0, �.H�.p; q//D 2q� q2 .

At an Oberwolfach Research-in-Pairs-Workshop on 3–manifolds and singularities
convened (for a large value of “pair”) by N A’Campo in 2000, several participants
noticed simultaneously that when the map LLp W S

3! S2 is taken to be a field of
oriented tangent 2–planes on S3 (as in [71]), it is clearly isotopic to (and arbitrarily
close to) a contact structure �b on S3 for which �b and b are compatible in the sense
of Thurston and Winkelnkemper [91] (alternatively, �b is supported by b in the sense
of Giroux [32]) and the Hopf invariant of �b (as a plane field) equals �.Lb/.

2.26 Theorem (Giroux [32]; see also Giroux and Goodman [33]) Every contact
structure on S3 is ambient isotopic to a contact structure �b compatible with some
open book b on S3 ; �b0

and �b1
are homotopic if and only if the fiber surfaces of Lb0

and Lb1
are stably equivalent under the operation F 7! F �P A.O;�1/ of positive

Hopf plumbing.
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2.27 Theorem ([80]; see also Hedden [40]) A fibered link L D L.b/ in S3 is
strongly quasipositive if and only if up to ambient isotopy b is compatible with the
standard, contact structure �0 on S3 .

In light of Theorem 2.27, the following may be somewhat surprising.

2.28 Proposition Every contact structure on S3 is homotopic to a contact structure
�b compatible with an open book b with non-strongly quasipositive binding.

(a) (c)(b)

Figure 3: (a) H�.3; 2/D L1.z0.z0z1� 1// . (b) C–span of L1.z0.z0z1�

1// in D4.0; 1="/ , represented as a ribbon-immersed surface in S3 .
(Figure 2(d) suggests the analogous surface for any H�.p;p�1/ with p�3 .)
(c) The fiber surface of L1.z0.z0z1� 1// .

Proof Let q � 0. By Corollary 2.22 and Proposition 2.25, H�.q C 1; q/ is a
quasipositive fibered link with enhancement �.H�.q C 1; q// D 2q � q2 . In par-
ticular, �.H�.2; 1// D 1 and �.H�.q C 1; q//& �1 as q %1. It follows from
Proposition 2.24(4) that � achieves every integer value on an appropriate connected
sum

Lq;m DH�.qC 1; q/ #

m times‚ …„ ƒ
H�.2; 1/ # � � � # H�.2; 1/ :

Connected sum preserves both quasipositivity and fiberedness, so by Theorem 2.26
and the paragraph that precedes it the proof is complete except for the homotopy
class of �0 . That case is covered by observing that H�.3; 2/, though quasipositive,
is not strongly quasipositive — for instance (as illustrated in Figure 3) because it is
realized as a 1–dimensional transverse C–link by the link at infinity of z0.z0z1� 1/:
since the Euler characteristic �1 of its fiber surface (a pair of pants) is strictly smaller
than that of its C–span (the disjoint union of an annulus and a disk), the truth of the
Thom conjecture (Kronheimer and Mrowka [47]) implies that the fiber surface is not
quasipositive.
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2.6 Construction: quasipositive links with distinct C–spans (new)

Consider the quasipositive band representations

E�0 WD.
��2

3
�2�1; �2;

�1�
3
3 �2;

�1�
5
3
��1

2 �1; �3; �3/;

E�1 WD.�2;
�1�3�2;

�1�3�2;
.�1�3/

2

�2;
.�1�3/

2

�2;
.�1�3/

3

�2/

in B4 and their associated quasipositive braided surfaces realized (as in Section 2.1.1)
by C–spans of 1–dimensional transverse C–links L.gi ;S

3/ in S3 . Auroux, Kulikov,
and Shevchishin [48] show that, although the braids br. E�0/ and br. E�1/ are equal,
and S.g0;D

4/ is diffeomorphic to S.g1;D
4/ (both are twice-punctured tori), D4 X

S.g0;D
4/ is not homeomorphic to D4 X S.g1;D

4/ (their fundamental groups are
different). In particular, although L.g0;S

3/ and L.g1;S
3/ are ambient isotopic as

smooth links in S3 , their C–spans are not ambient isotopic as smooth 2–submanifolds-
with-boundary in D4 . By appending �3

1 �2 to �0 and �1 , Geng [31] showed that
even smoothly isotopic quasipositive knots can have (non-singular, diffeomorphic)
C–spans that are not ambient isotopic in D4 (again, the fundamental groups of their
complements are not isomorphic).

(a) (b) (c)

Figure 4: (a) A connected quasipositive Seifert surface S (gray) and an annu-
lar subsurface F � S (black). (b) The cut-open Seifert surface S X Int F is
again quasipositive, by Proposition 2.13. (c) The Seifert surface S[FC , com-
prising S and the push-off of F , is quasipositive (again, by Proposition 2.13)
and .@.S[FC/;S3/ is ambient isotopic to .@.SXInt F /;S3/ (by an isotopy
that begins by rotating each component of FC around a core S1 so as to
interchange its two boundary components).

2.29 Remark Another, easier construction produces arbitrarily large finite sets of
mutually ambient isotopic 1–dimensional transverse C–links in S3 (in fact, strongly
quasipositive links) with pairwise non-diffeomorphic C–spans (all of the same Euler
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characteristic); the simplest example, shown in Figure 4, suffices to illustrate the general
method, which necessarily produces link-manifolds of at least 3 components.

2.7 Construction: quasipositive orientations of unoriented links (new)

Given an oriented manifold L with n� 1 components, the unoriented manifold jLj
supports 2n orientations and thus 2n�1 projective orientations, each determined by an
orientation and its componentwise opposite (Sakuma [81] uses the term semi-orientation
for this concept). Write o for a projective orientation.

Let LD .L;S3/ be an oriented classical link (with, as is usual, the orientation of L

not included explicitly in the notation). As noted in Section 2.3.3, L is positive if
and only if its opposite �L WD .�L;S3/ is positive, the proof being consideration of
any link diagram of L. Similarly, L is quasipositive if and only if �L is; here the
proof is to note that reversing the orientation of a braid diagram with closure L, then
rotating it by � in its plane, makes it into a braid diagram with closure �L, and that
this operation preserves diagrammatic quasipositivity. One might expect that at most
one projective orientation of an unoriented classical link makes it quasipositive, and
that is the case with a few exceptions (eg, a trivial knot; split links of two or more
positive knots; jH˙.2; 0/j D jH˙.1; 1/j).

This section collects several useful examples of families of unoriented classical links
in which each member supports a projective orientation (typically but not invariably
unique) that makes it quasipositive — briefly, a quasipositive orientation.

2.7.1 Quasipositive orientations of unknotted strip boundaries Let K be a clas-
sical knot, t an integer, and S.K; t/ the strip of type K with t half-twists as defined in
Definition 2.1. The unoriented link .@S.K; t/;S3/ has 1 or 2 components according
as t is odd or even. In both cases, let o be the “braidlike” projective orientation,
so that .@S.K; t/o;S3/ DW Kf2; tg is the 2–strand cable on K with t half-twists.
(Both the notation Kfm; ng, already introduced for nD 0, and its iterated extension
Kfm1; n1Im2; n2I : : : Imq; nqg WD Kfm1; n1gfm2; n2g � � � fmq; nqg, are adapted from
Litherland [49]; this is reasonably consistent with the notation for satellites.) In case t

is even, let o0 be the “non-braidlike” projective orientation. (See Figure 5(a) and (c).)

2.30 Proposition (1) .@S.O; t/o;S3/D Of2; tg is (strongly) quasipositive if and
only if t � 0.

(2) .@S.O; t/o
0

;S3/ is (strongly) quasipositive if and only if t D 2s � 0; then it is
.@A.O; s/;S3/.

2.31 Remark Similar results for K¤ O are true but more complicated to state.
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(a) (b) (c) (d)

Figure 5: (a) The unoriented unknotted strip S.O; 3/ with 3 half-twists, and
its unoriented boundary. (b) For t > 0 , @S.O; t/o bounds the quasipositive
braided Seifert surface S.�1; : : : ; �t / with all bi D �1 2 B2 . (c) For s <

0 , @S.O; 2s/o
0

bounds the quasipositive annular Seifert surface A.O; s/ .
(d) A.O;�2/ as the quasipositive braided Seifert surface S.�1�2; �2; �1/ .

2.7.2 Quasipositive rational links The torus link Of2; kg in Section 2.7.1 is well
known to be a fibered link for k ¤ 0; its fiber surface is the braided Seifert surface
S D S.�

sgn.k/
1

; : : : ; �
sgn.k/
t / (with jkj bands), illustrated for k D 3 in Figure 5(b). In

fact, Of2; kg is both a Hopf-plumbed link as defined in Definition 2.4(2) and — with
its orientation forgotten — an arborescent link as defined in Definition 2.4(3). More
precisely, in this last guise jOf2; kgj is an unoriented rational link

R.

k�1‚ …„ ƒ
�2;�2; : : : ;�2 / WD .R.

k�1‚ …„ ƒ
�2;�2; : : : ;�2 /;S3/;

where, for r1; : : : ; rn2ZXf0g, R.r1; r2; : : : ; rn/ denotes the boundary of a 2–manifold-
with-boundary sp.stick.r1; r2; : : : ; rn// strip-plumbed as in Figure 6(a) according to a
stick — that is, a tree (a finite connected acyclic 1–dimensional simplicial complex)
with no nodes (vertices of valence 3 or greater) equipped with a weighting of its
vertices by integers; Figure 6(b) is a standard depiction of a stick.

Clearly sp.stick.r1; r2; : : : ; rn// is orientable if and only if all ri are even, and then
R.r1; : : : ; rn/ has a preferred projective orientation o . If also ri < 0 for all i , then
(by Theorem 2.14 and Theorem 2.15) sp.stick.r1; : : : ; rn// is a quasipositive Seifert
surface, and R.r1; : : : ; rn/

o is strongly quasipositive. But these sufficient conditions
for R.r1; : : : ; rn/ to have a (strongly) quasipositive orientation are far from necessary.
The following is true by inspection.

2.32 Proposition The rational link-manifold R.r1; : : : ; rn/ has a projective orienta-
tion o which, applied to the 4–plat diagram in Figure 6(c), makes it a positive diagram
if and only if the braid �r1

2
�

r2

3
�

r3

3
� � � �

rn

`
2 B4 (with ` equal to 3 or 2 according as n

is even or odd) is generated by the labeled digraph in Figure 7.
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(a)

r1

r2

rn

(b) (d)(c)

n even n odd

r2

rn

r1

r2

rn

r1

r1

r2

rn

P1

P2

throughout

r > 0

r < 0

r

-r

=

=

}
}

Figure 6: (a) The stick stick.r1; r2; : : : ; rn/ . (b) The strip-plumbed surface
sp.stick.r1; r2; : : : ; rn// � S3 . (c) Rational link-manifold R.r1; r2; : : : ; rn/

presented as the 4–plat of � r1

2
�

r2

3
� � � �

rn

3
(n even) or � r1

2
�

r2

3
� � � �

rn

2
(n odd),

read top to bottom, with plat closure as indicated. (d) Sign conventions for
the 2–string tangles in (b), (c), and elsewhere.

�Ca
2

��e
3

��e
2 ��o

3

�Ca
2 ��o

3

��e
3

��e
2

��o
2 ��o

3

��e
2
�Ce

3

�
�

o
2

�
C

a
3

�
�

o
2

�
�

e
3

Figure 7: This machine generates all positive oriented rational links as 4–plats

Here, ˇ 2 B4 is generated by the labeled digraph in case there is a directed path from
one of the (source) boxes at the top of the digraph to one of the (sink) boxes at the
bottom of the digraph such that ˇ is produced by first concatenating the labels on the
labeled edges of the path and then replacing each instance of the letter “a” (respectively
“e” or “o”) by an arbitrary (respectively even or odd) strictly positive integer.
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2.33 Questions Proposition 2.32 gives expansive, but imperspicuous, sufficient con-
ditions for R.r1; r2; : : : ; rn/ to have a (strongly) quasipositive orientation.

(1) What is a closed-form description (presumably one exists) of the set of rational
numbers

r1C
1

�r2C
1

� � � C
1

.�1/n�1rn

such that �r1

1
�

r2

2
� � � �

rn

.3˙1/=2
is generated as in Proposition 2.32?

(2) Are the necessary and sufficient conditions for positivity given in Proposition 2.32
also necessary for strong quasipositivity? For quasipositivity? My tentative
answers are “probably yes” and “almost certainly no”.

2.34 Remark The term “stick” is due to Bonahon and Siebenmann [12] (but there a
stick may lack one or both terminal vertices yet retain its terminal edge or edges).

2.7.3 Quasipositive pretzel links Another guise in which jOf2; kgj (k > 0) appears
is as the unoriented pretzel link

P.

k times‚ …„ ƒ
�1; : : : ;�1 / WD .P .

k times‚ …„ ƒ
�1; : : : ;�1 /;S3/

where, for t1; t2; : : : ; tp 2Z, P .t1; t2; : : : ; tp/ is the unoriented boundary of two unori-
ented 2–submanifolds-with-boundary of S3 , depicted in Figure 8(b) and (c).

(c)(b)(a)

... tp

t1

t2

0 ...

...

...

...

...
...

...
...

t1 t2
t2

tp
tp1t

Figure 8: (a) star.0I t1; t2; : : : ; tp/ . (b) Star surface sp.star.0I t1; t2; : : : ; tp// .
(c) Pretzel surface P.t1; : : : ; tp/ .

2.35 Definitions (1) The star surface sp.star.0I t1; : : : ; tp// is strip-plumbed ac-
cording to the star star.0I t1; : : : ; tp/, where in general star.cI t1; : : : ; tp/ has a
central node of weight c and p� 3 twigs (terminal vertices) weighted t1; : : : ; tp
in the cyclic order determined by some planar embedding of a geometric realiza-
tion, as depicted in Figure 8(b)).
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(2) The pretzel surface P.t1; : : : ; tp/ is defined by its ordered handle decomposition
into two 0–handles lying on S2�S3 and p� 3 1–handles with core arcs lying
on S2 , each of them joining the two 0–handles, and such that the i th 1–handle
has twisting number tk 2Z (normalized so that, eg, P.�1;�1;�1/DjOf2; 3gj).

2.36 Remarks (1) By Proposition 2.13, Theorem 2.14, and the non-orientability of
S.O; t/ for odd t , a star surface is orientable and has a quasipositive orientation
if and only if all weights are even and strictly negative. In particular, the central
plumband S.O; 0/ of sp.star.0I t1; : : : ; tp// keeps it from having a quasipositive
orientation.

(2) For c ¤ 0, sp.star.cI t1; : : : ; tp// and sp.star.cI t1; : : : ; tp; tpC1; : : : ; tpCjcj//,
where tpCj D� sgn c for j D 1; : : : ; jcj, have ambient isotopic boundaries.

The first claim in the following proposition is obvious; the necessity of the second
claim follows from Proposition 2.13, and its sufficiency was proved by Rudolph [79].

2.37 Proposition (1) P.t1; : : : ; tp/ is orientable (with unique projective orienta-
tion o) if and only if all ti have the same parity.

(2) If P.t1; : : : ; tp/ is orientable, then P.t1; : : : ; tp/
o is quasipositive if and only if

ti C tj < 0 for 1� i < j � p .

Proposition 2.37 is not the whole story on pretzel links with (strongly) quasipositive
orientations. What was overlooked in [79] was that there are many .t1; : : : ; tp/ failing
the parity condition Proposition 2.37(1), the negative-sum condition Proposition 2.37(2),
or both, for which there nonetheless exists o making P.t1; t2; : : : ; tp/

o quasipositive.
This can happen in (at least) two ways.

(a) P .t1; : : : ; tp/
o may bound a quasipositive non-embedded ribbon-immersed

surface in S3 , but not bound any quasipositive Seifert surface, thus making
P.t1; : : : ; tp/

o quasipositive but not strongly quasipositive; the simplest knot of
this type is P.�3; 3;�2/o , depicted in Figure 9(a).

(b) P .t1; : : : ; tp/
o may be a positive link, and thus, by Theorem 2.17, strongly

quasipositive; this case is addressed by the following proposition.

2.38 Proposition The following are equivalent.

(A) P .t1; : : : ; tp/ has a projective orientation o such that the oriented link diagram of
P.t1; : : : ; tp/

o implicit in Figure 8(c) is positive.

(B) The positive projective orientations of the p 2–string tangles indicated by the
boxes labeled t1; : : : ; tp in Figure 8(c) are consistent.
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(C) Either

(a) all ti are odd and negative, or

(b) no odd ti is negative, and an even number of ti are strictly positive.

Proof It is clear that (A) and (B) are equivalent. The equivalence of (B) and (C) follows
by considering how the schematic templates for positive oriented 2–tangles shown in
Figure 9(b) can fit together maintaining projectively consistent orientations with each
other and with the trivial 2–tangle comprising the top and bottom of the diagram.

~= … … …

?

?

a> 0 e< 0 o< 0 0

(a) (b)

Figure 9: (a) Isotopic ribbon-immersed surfaces bounded by P .3;�3;�2/o

and the closure of the quasipositive braid �2�
3
1
�2�

�3
1
2 B3 . (b) Templates

for positive pretzels.

2.39 Questions (1) The example depicted in Figure 9(a) can be generalized
somewhat (eg, to P .2nC 1;�.2nC 1/;�2m/ for all m; n > 0), but it is not
immediately clear just how far. Are there useful criteria for a pretzel link to have
a quasipositive orientation that is not strongly quasipositive? What about pretzel
knots?

(2) Excepting the case (covered by Proposition 2.37) in which ti C tj is even and
strictly negative for 1� i < j �p , and one ti is non-negative, can P.t1; : : : ; tp/

have a strongly quasipositive orientation o that does not make P.t1; : : : ; tp/
o

actually a positive link as in Proposition 2.38?

2.7.4 Strongly quasipositive arborescent links Three general methods produce
large families of arborescent links supporting strongly quasipositive orientations; I do
not know whether all such links are produced in one of these ways. To that extent (if
not further; cf Questions 2.39(1)) this subsection is work in progress.
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2.40 Definitions Let .T; w/ be a weighted tree.

(1) Call .T; w/ strongly quasipositive in case there exists a projective orientation o

of @ sp.T; w/ such that .@ sp.T; w/o;S3/ is a strongly quasipositive link.

(2) Call .T; w/ positive in case there exists a projective orientation o of @ sp.T; w/
such that the canonical unoriented link diagram of .@ sp.T; w/o;S3/ (Gabai’s
T–projection [29, Figure 1.4]; see also Bonahon and Siebenmann [12, Figure
12.12]), when endowed with o , becomes a positive oriented link diagram.

(3) Call .T; w/ very strongly quasipositive in case there exists a projective orienta-
tion o of sp.T; w/ such that sp.T; w/o is a quasipositive Seifert surface.

(2) and (3) each imply (1); (1), (2), and (3) have no other non-trivial implications.

To explore these properties, a few more definitions are useful. Let T be a planar tree
with vertex set V.T/, wW T! Z a weighting. Writing d.v; v0/ for the number of
edges in the simple edge-path in T joining v; v0 2 V.T/, call v and v0 adjacent in case
d.v; v0/D 1 and distant in case d.v; w/ � 3. A vertex adjacent to at least three is a
node of T, and a vertex adjacent to at most one vertex is a twig of T, as previously
defined.

2.41 Definitions Let u be a non-node and v a node of T.

(1) Denote by sk.u;T/ the subtree of T such that u0 2 V.sk.u;T// if and only if
no vertex of the simple edge-path in T joining u to u0 is a node. The weighted
tree .sk.u;T/; w jsk.u;T// is the stick of u in .T; w/; it is isomorphic to
stick.w.u0

1
/; : : : ; w.u0n//, where u0

1
and u0n are the twigs of sk.u;T/ (so v0

1
Dv0n

if and only if sk.u;T/ has 0 edges) and d.v0
1
; v0q/D q� 1 for q D 1; : : : ; n.

(2) Denote by sr.v;T/ the subtree of T such that v0 2 V.sr.v;T// if and only
if d.v; v0/ � 1. The weighted tree .sr.v;T/; w jsr.v;T// is the star of v in
.T; w/; it is isomorphic to star.w.v/Iw.v0

1
/; : : : ; w.v0p//, where v0

1
; : : : ; v0p are

the twigs of sr.v;T/ enumerated consistently with the planar embedding of T.

2.42 Lemma (1) stick.r1; : : : ; rn/ is positive if and only if �r1

2
�

r2

3
�

r3

3
� � � �

rn

`
is

generated by the machine in Figure 7.

(2) stick.r1; : : : ; rn/ is very strongly quasipositive if and only if ri is even and
strictly negative for i D 1; : : : ; n if and only if �r1

2
�

r2

3
�

r3

3
� � � �

rn

`
is generated by

the submachine obtained by deleting all but the five rightmost arrows in Figure 7.

(3) If tiCtj is even and strictly negative for 1< i � j <p , then star.0I t1; : : : ; tp/ is
strongly quasipositive; if also ti < 0 for all i , then star.0I t1; : : : ; tp/ is positive.
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(4) If no odd ti is negative, and an even number of ti are strictly positive, then
star.0I t1; : : : ; tp/ is positive.

(5) If c > 0, all ti are odd and negative, and cCp is even, then star.cI t1; : : : ; tp/

is positive.

(6) If c and all ti are even and strictly negative, then star.cI t1; : : : ; tp/ is very
strongly quasipositive.

2.43 Theorem If .T; w/ is such that

(1) if u is a non-node then w.u/¤ 0, and

(2) if v; v0 are adjacent nodes, then w.v/ or w.v0/ is non-zero,

then .T; w/ is positive if and only if the stick of every non-node in .T; w/ and the star
of every node in .T; w/ is positive.

Proof Unless n D 0, exactly one projective orientation of the canonical 2–string
tangle depicted in Figure 6(d) makes all jnj crossings positive. (1) and (2) ensure that
the positive sticks and stars fit together consistently at the appropriate twigs of each.

2.44 Remark (1) can be weakened but not dispensed with entirely; see Figure 10.

0 0 0 0 0 02

2

2

2

2

2

�2

�2

�2

�2

�2

�2

(a) (b) (c) (d)

Figure 10: The weighted tree .T; w/ in (a) has no sticks and two stars,
shown in (b) and (c). Both stars are positive; but the canonical arborescent
link diagram of .@ sp.T; w/;S3/ , shown in (d), has no projective orientation
making it a positive diagram.

2.45 Theorem The following are equivalent.

(A) .T; w/ is very strongly quasipositive.

(B) The stick of every non-node in .T; w/ and the star of every node in .T; w/ is
very strongly positive.

(C) For every v 2 V.T/, w.v/ is even and strictly negative.
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Proof Immediate from Lemma 2.42(2), Lemma 2.42(6), and Theorem 2.15.

Theorem 2.43 and, especially, Theorem 2.45, give an adequate account of strongly
quasipositive arborescent links that are constructed from either positive weighted trees
or very strongly quasipositive weighted trees. The situation is less satisfactory for
strongly quasipositive arborescent links that are of neither of those types: the sufficient
conditions to be described shortly are by no means clearly necessary.

Let S0 , S 0
0

, and S1 be compact 2–submanifolds-with-boundary of S3 with S0 unori-
ented and @S0 D @S 0

0
as unoriented 1–manifolds; either or both of S 0

0
and S1 may

be oriented (if orientable). Let P0 � S0 and P1 � S1 be 2p–gonal plumbing patches.

2.46 Definition P0 can be transplanted to a 2p–gonal plumbing patch P 0
0
� S 0

0
in

case there is an ambient isotopy between the 2–complexes @S0[P0 and @S 0
0
[P 0

0

respecting the components of @S0 and @S 0
0

and some (equivalently, every) projective
orientation of @S D @S 0 .

2.47 Lemma If P0 � S0 can be transplanted to P 0
0
� S 0

0
, then to any plumbing

S0 P0�P1
S1 corresponds a plumbing S 0

0 P0�P1
S1 such that @.S0 P0�P1

S1/ and
@.S 0

0 P0�P1
S1/ are ambient isotopic by an isotopy respecting any pre-assigned orienta-

tions of @.S0/D @.S
0
0
/ and @.S1/ consistent with (say) the plumbing @.S0 P0�P1

S1/.

P0

P0
P0

P0 P0

P 0
0

P 0
0

P 0
0

P 0
0

P 0
0

(a) (b) (c) (d) (e)

Figure 11: Transplanting a core-transverse plumbing patch from an unori-
ented strip-plumbed surface: the donor, which is sp.stick.r1; : : : ; rn// in (a)–
(c) and sp.star.0I t1; : : : ; tp// in (d) and (e), may not be globally orientable
(although the pictured part of it is); the recipient is a Seifert surface for the
donor’s boundary with the indicated orientation in (a)–(d), and the pretzel
surface P.t1; : : : ; tp/ in (e), where nothing is oriented.

In all instances of transplanting used here, p D 2; Figure 11 shows them as follows.
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(1) The upper portion of each sub-figure depicts part of one strip of an unoriented
iterated strip-plumbed 2–manifold-with-boundary S0 .

(i) In (a), S0 D sp.stick.r1; : : : ; rn// and the strip is S.O; r1/� S0 .
(ii) In (b) and (c), S0 D sp.stick.r1; : : : ; rn// and the strip is S.O; rn/� S0 .

(iii) In (d) and (e), S0D sp.star.cI t1; : : : ; tp// and the strip is any S.O; ti/�S0 .

(2) In each sub-figure P0 is a core-transverse plumbing patch on that strip, and @S0

is equipped with a projective orientation o making the visible crossing positive.

(3) The lower portion of each sub-figure depicts part of the Seifert surface S 0
0

with
@S 0

0
D @S0 that is produced by applying Seifert’s algorithm to a diagram of

@So
0

extending the partial diagram in the sub-figure.

(4) In each sub-figure, P 0
0

is P0 transplanted from S0 to S 0
0

(the required isotopy
can be taken to be constant).

Figure 12 illustrates Lemma 2.47 using the surfaces in Figure 11(c) and (d).

Note that in the cases illustrated in Figure 11(a)–(d), the unique projective orientation
of @P0 is consistent with the given projective orientation of @S0 . Contrariwise, in the
remaining cases of first and last strips on sp.stick.r1; : : : ; rn// and any strip S.O; ti/ on
sp.star.0I t1; : : : ; tp//, with boundaries oriented to make the visible crossing positive,
these projective orientations are inconsistent, and thus a core-transverse plumbing patch
P0 on that strip cannot be transplanted to a plumbing patch on S 0

0
(by any isotopy

whatever); see Figure 13.

2.48 Proposition Let r1; : : : ; rn , t1; : : : ; tp , and c be integers.

(A) Let S0 D sp.stick.r1; : : : ; rn//. If @S0 has a projective orientation o for which
..@S0/

o;S3/ is a positive link, S 0
0

is the quasipositive Seifert surface with
@S 0

0
D .@S0/

o produced by Seifert’s algorithm (see Theorem 2.17), and i D 1

or i D n, then a core-transverse 4–patch P0�S.O; ri/�S0 can be transplanted
to S 0

0
if and only if ri < 0.

(B) Let S0 WD sp.star.cI t1; : : : ; tp//. If @S0 has a projective orientation o for which
..@S0/

o;S3/ is a positive link, S 0
0

is the quasipositive Seifert surface with
@S 0

0
D .@S0/

o produced by Seifert’s algorithm, and 1 � i � p , then a core-
transverse 4–patch P0 � S.O; ti/� S0 can be transplanted to S 0

0
if and only if

ti < 0.

(C) If cD 0, all ti have the same parity, tiC tj < 0 for 1� i < j �p , and 1� i �p ,
then a core-transverse 4–patch P0 � S.O; ti/� S0 can be transplanted to S 0

0
.
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Proof (A) follows from Proposition 2.32 applied to Figure 11(a)–(c), (B) from
Proposition 2.38 applied to Figure 11(d), and (C) from Proposition 2.37(2) applied to
Figure 11(e).

=

=P1

P0

P1 P

P 00
P1 P

P0�P1

P 0
0
�P1

Figure 12: Plumbing along transplanted plumbing patches

P0

P0
P0

P0

(a) (b) (c) (d)

Figure 13: The indicated core-transverse plumbing patches on strip-plumbed
surfaces cannot be transplanted to the indicated Seifert surfaces bounded by
the same links.

a> 0 a> 0

a> 0 a> 0

e� 0 e� 0

a> 0 o< 0 a> 0

(a) (b)

::: !
::: Š !

Figure 14: The illustrated strip-plumbing preserves diagrammatic positivity
and therefore strong quasipositivity, but cannot be performed by plumbing
quasipositive Seifert surfaces.
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2.49 Remark As suggested by Figure 14, many arborescent links have positive (and
thus strongly quasipositive) orientations but are not plumbed from strongly quasipos-
itive sticks and stars as in Theorem 2.43. It would be interesting to have necessary
and sufficient conditions for an arborescent link to have a (strongly) quasipositive
orientation.

3 Constructions of 3–dimensional transverse C–links

This part collects constructions of 3–dimensional transverse C–links; many of the
constructions use quasipositive links constructed in Section 2.

3.1 Notation Let �� U �C2 , †D @�, and f 2 O.U / be as in Section 1.

(1) For r >maxfjf .z/j W z2�g, the product ��D2.0; r/�U �C�C3 is a closed
Stein 6–disk. Its boundary @.��D2.0; r//D†�D2.0; r/[��S1.0; r/, a
piecewise real-analytic 5–sphere, is pseudoconvex but not strictly so; however,
��D2.0; r/ can be arbitrarily well approximated by closed Stein 6–disks in
U �C with strictly pseudoconvex real-analytic boundaries. Write �˝ for such
an approximation that is sufficiently close for whatever purpose is required, and
†˝ for @�˝ .

(2) For an integer q > 0, define f ˝ Œq� by .f ˝ Œq�/.z0; z1; z2/ D f .z0; z1/C

z
q
2

; define f ˝ Œ0� by .f ˝ Œ0�/.z0; z1; z2/ D f .z0; z1/. For a 1–dimensional
transverse C–link L.f;†/, write L.f;†/˝ Œq� WD .V .f ˝ Œq�/; †˝/; for q>0,
this is an instance of what Kauffman and Neumann [45] call the q–fold cyclic
suspension L˝ Œq� of a smooth, oriented link L.

3.1 3–dimensional links of isolated singular points

This heading is included for completeness only, since the theory of these 3–dimensional
transverse C–links has been thoroughly developed ([52; 58; 18] etc).

3.2 Adding a dummy variable

3.2 Proposition If L.f;†/ is a 1–dimensional transverse C–link with non-singular
C–span S.f;†/, then:

(1) L.f;†/˝ Œ0�D L.f ˝ Œ0�; †˝/ is a transverse 3–dimensional C–link.

(2) S.f ˝ Œ0�; �˝/ is non-singular, and diffeomorphic to a disjoint union of bound-
ary-connected sums of copies of S1 �D3 .

(3) L.f ˝ Œ0�; †˝/ is diffeomorphic to a disjoint union of connected sums of copies
of S1 �S2 .
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Proof Both (1) and (3) follow from (2). To see (2), note that the 2–manifold-with-
boundary S.f;�/ has a handle decomposition into 2–dimensional 0–handles and
1–handles attached orientably to the 0–handles; therefore the product S.f;�/�D2

(with corners smoothed) has a handle decomposition into 4–dimensional 0–handles
and 1–handles attached orientably to the 0–handles, and so must be as described.

Proposition 3.2 yields particularly interesting examples in case S.f;�/ is a 2–disk,
so that L.f;†/ is a slice knot (in fact a ribbon knot; cf [67]).

3.3 Proposition If L.f;S3/ is a quasipositive slice knot, then the 3–dimensional
transverse C–link L.f ˝ Œ0�;S3˝/ is a slice knot in the 5–sphere S3˝ .

3.4 Questions There are infinitely many pairwise non-isotopic quasipositive slice
knots in S3 (indeed, there are infinitely many of braid index 3).

(1) Are there infinitely many pairwise non-isotopic slice 3–dimensional transverse
C–links in S5 ?

(2) Specifically, if L.f0;S
3/ and L.f1;S

3/ are non-isotopic quasipositive slice
knots in S3 , are the 3–dimensional transverse C–links L.f ˝ Œ0�;S3˝/ non-
isotopic?

3.3 General cyclic branched covers of S 3 over quasipositive links

The q–fold cyclic suspension L˝ Œq� of a link LD .L;Sm/, introduced by Neumann
[57] and Kauffman and Neumann [45], was defined in Notation 3.1(2) in the special
case that LD L.f;S3/ is a 1–dimensional transverse C–link. Cyclic suspensions of
arbitrary links are themselves special cases of what Kauffman [44] and Kauffman and
Neumann [45] call the knot product K˝L of links K and L. In a general knot product
K˝L, KD .K;Sk/ is any smooth, oriented .k � 2/–dimensional link, LD .L;S`/

is a fibered smooth, oriented .`�2/–dimensional link, and K˝L is a smooth, oriented
.kC `� 1/–dimensional link .K˝L;SkC`C1/.

3.5 Theorem (Kauffman and Neumann [45]) (1) The link-manifold of the q–fold
cyclic suspension of L˝ Œq� of a link LD .L;Sm/ is the q–fold cyclic branched
cover of Sm branched along L.

(2) If both K and L are fibered, then so is K˝L; in particular, the q–fold cyclic
suspension of a fibered link is fibered.

Whatever is not obvious in the next proposition follows directly from Theorem 3.5.
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3.6 Proposition Let q � 1.

(A) If L.f;S3/ is a 1–dimensional transverse C–link, then:

(1) Its q–fold cyclic suspension L.f;S3/˝ Œq� D L.f ˝ Œq�;S3˝/ is a 3–
dimensional transverse C–link.

(2) The link-manifold L.f ˝ Œq�;S3˝/ is the q–fold cyclic branched cover of
S3 branched along L.f;S3/.

(3) The C–span S.f ˝ Œq�;D4˝/ is the q–fold cyclic branched cover of D4

branched along S.f;D4/.

(B) If in addition L.f;S3/ is

(1) fibered,

(2) the link of an isolated singular point, or

(3) the link at infinity of a polynomial,

then L.f ˝ Œq�;S3˝/ is of the same type.

3.7 Remark Let M be the q–fold cyclic branched cover of S3 branched along a
quasipositive link. Harvey, Kawamuro, and Plamenevskaya [38] have used contact
topology to find a Stein-fillable contact structure � on M . Proposition 3.6(A)(2),
together with the fact about Stein fillings noted just after Theorem 2.5, gives the
(apparently) stronger conclusion that � can be required to have a Stein filling by a Stein
domain on a complex algebraic surface in C3 .

3.4 Double branched covers of S 3 over quasipositive links

It is traditional to call 2–fold branched covers double branched covers. Double branched
covers have two useful properties that distinguish them among all cyclic branched
covers of classical links.

3.8 Theorem If LD .L;S3/ is an oriented classical link, then the double cover of
S3 branched over L is invariant under both changes of orientation of L and mutation
of L.

Here a mutation is the composition of finitely many elementary mutations as depicted
and described (for unoriented links, their appropriate setting in this context) in Figure 15.

Proof Invariance under changes of orientation is trivial (and vacuously so in case L

is a knot); invariance under mutation was proved by Montesinos [53] and Viro [92].
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? ?
? ?A B

C D

A B

C D

A B

C D

B A

D C

A B

C D

C D

A B

A B

C D

D C

B A

Figure 15: Part of a diagram for an unoriented classical link-manifold L is
shown schematically at the left; the question mark stands for an arbitrary
tangle with four endpoints A; : : : ;D (its two strings may be knotted, and it
may have simple closed curve components). By leaving alone what is not
shown while replacing the shown piece with one of its three transforms (at the
right), the original diagram is transformed into a diagram of an elementary
mutation of L .

3.9 Remark The operation of mutation was introduced explicitly for link diagrams
by Conway [17] and explicitly for links themselves by Montesinos and Viro, but none
of [17; 92; 53] contains the term “mutation”; I do not know when (and by whom) that
word was first used, and would welcome information on the topic.

3.4.1 Doubles of knot exteriors For any manifold-with-boundary M , the double of
M is the (suitably smoothed) identification space M �f0; 1g=�, where the non-trivial
equivalence classes of the equivalence relation � are precisely the pairs f.x; 0/; .x; 1/g
with x 2 @M .

3.10 Lemma If K is a classical knot, then the double cover of S3 branched over
jKf2; 0gj D jA.K; 0/j is diffeomorphic to the double of the exterior E.K/ of K.

3.11 Proposition If either

(a) K is quasipositive or

(b) the maximal Thurston–Bennequin invariant TB.K/ of K is non-negative,

then the double of E.K/ occurs as the link-manifold of a 3–dimensional transverse
C–link L.f;†5/.

Proof In case (a) the conclusion follows from Proposition 2.11 (with n D 2) and
Proposition 3.6 (with q D 2); in case (b) the conclusion follows from Theorem 2.14
and Proposition 3.6 (with q D 2).
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3.12 Remarks (1) If the quasipositive knot K is a transverse C–link with non-
singular C–span S , then by the proof of Proposition 2.11 the C–span of Kf2; 0g

can be taken to be two parallel copies of S . In this case, Proposition 3.6(3)
implies that the C–span of the 3–dimensional transverse C–link L.f;†5/ in
Proposition 3.11 has Euler characteristic 2��.S/.

(2) If the annulus A.K; 0/ is a quasipositive Seifert surface, and the C–span of
the strongly quasipositive link .@A.K; 0/;S3/ is non-singular (which may be
assumed), then that C–span is also an annulus; in this case, the C–span of
the 3–dimensional transverse C–link L.f;†5/ in Proposition 3.11 has Euler
characteristic 2.

(3) Consequently, if K ¤ O is strongly quasipositive, then the double of E.K/

occurs as the link-manifold of two transverse C–links in S5 with non-singular
C–spans that are not diffeomorphic to each other. In general the two links should
not be expected to be ambient isotopic to each other.

3.4.2 Seifert manifolds with base S 2 It is standard (see, eg, Bonahon and Sieben-
mann [12]) that a 3–manifold M is Seifert-fibered over S2 with at least 3 exceptional
fibers if and only if M is the double branched cover of S3 branched over a pretzel
link-manifold P .t1; : : : ; tp/ (the restriction on the number of exceptional fibers is an
artifact of the definitional restriction on pretzel links that p be at least 3), and then
(in the language of [12, page 323]) .0I 1=t1; : : : ; 1=tp/ is the raw data vector of the
Seifert manifold M .

3.13 Lemma The pretzel link P.t�.1/; : : : ; t�.p// is a mutation of P.t1; : : : ; tp/ for
any permutation � of f1; : : : ;pg.

By Theorem 3.8 and Lemma 3.13, in the description of M as the double branched
cover of S3 over P .t1; : : : ; tp/ no generality is lost by requiring

(3-1) pD qCrCs; t1; : : : ; tq > 1; tqC1; : : : ; tqCr <�1; jtqCrC1j; : : : ; jtpjD 1:

On assumption (3-1), the Seifert data vector of M (again following [12]) is

.0I �r I 1=t1; : : : ; 1=tq; 1C 1=tqC1; : : : ; 1C 1=tqCr /

and M has the representation

(3-2) M.O; oI 0I �r I .t1; 1/; : : : ; .tq; 1/; .�tqC1;�1�tqC1/; : : : ; .�tqCr ;�1�tqCr //

in (essentially) the original notation of Seifert [86].

Geometry & Topology Monographs, Volume 19 (2015)



404 Lee Rudolph

Note that M does not depend on s , so that the double cover of S3 branched over

P .t1; : : : ; tqCr ;

sC times‚ …„ ƒ
1; : : : ; 1;

s� times‚ …„ ƒ
�1; : : : ;�1 /

is independent of sC and s� , although (with trivial exceptions) the links corresponding
to given values of sC and s� are ambient isotopic (and mutations of each other) if and
only if they have the same value sC� s� .

3.14 Proposition If .t1; : : : ; tp/ is a p–tuple of integers satisfying (3-1), then the
Seifert manifold (3-2) is the link-manifold of a 3–dimensional transverse C–link in
each of the following cases.

(A) All ti are odd and negative.

(B) No ti is odd and negative, and an even number of ti are positive.

(C) All ti are even, and ti C tj < 0 for 1� i < j � p .

(D) .t1; : : : ; tp/D .2nC 1;�.2nC 1/;�2m/ for m; n> 0.

Proof (A) and (B) follow from Proposition 2.38, (C) from Proposition 2.37(1), and (D)
from Questions 2.39(1), all upon passing to double covers of S3 branched over the
relevant quasipositive links.

Gompf [34] shows that if M is a Seifert manifold then M , at least one of M , Mir M

has a Stein filling. Proposition 3.14 allows one to find such fillings that lie on algebraic
surfaces in C3 , and to calculate knot-theoretical properties of transverse C–links with
M and/or Mir M as link-manifold.

3.15 Example (Boileau and Rudolph [10]) For positive `;m; n> 0, let †.`;m; n/
denote the 3–dimensional Brieskorn manifold L.0;0;0/.z

`
0
C zm

1
C zn

2
/. A calculation

following Neumann [56] shows that †.`;m; n/ is the Seifert manifold fibered over S2

with three exceptional fibers with M.O; oI 0I �r I .`; 1/; .m; 1/; .n; 1// as its Seifert
notation. Suppose that `mC `n �mn D " 2 f�1; 1g and ` � 1C " .mod 2/; for
instance, .`;m; n/ could be .2t � 1; 2t C 1; 2t2 � 1/ or .2t; 2t C 1; 2t.2t C 1/C 1/.
In this situation, Proposition 3.14 implies that both †.`;m; n/ and Mir†.`;m; n/ are
link-manifolds of 3–dimensional transverse C–links. (This example is due to Michel
Boileau.)
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3.4.3 Lens spaces It is standard (Schubert [83]; see Burde and Zieschang [14]) that
a 3–manifold is a lens space (including S1 � S2 ) if and only if M is the double
branched cover of S3 branched over a rational link-manifold R.r1; r2; : : : ; rn/, and
then M DL.P;Q/ where

P

Q
WD r1C

1

�r2C
1

� � � C
1

.�1/n�1rn

and P > 0 is relatively prime to Q. By Proposition 2.32 and Proposition 3.6, we have
the following.

3.16 Proposition With P , Q as above, if �r1

2
�

r2

3
�

r3

3
� � � �

rn

`
2 B4 (with ` equal to

3 or 2 according as n is even or odd) is generated by the labeled digraph in Figure 7,
then L.P;Q/ is the link-manifold of a 3–dimensional transverse C–link.

3.17 Example [10] If p; q > 1 are odd integers, then the lens spaces L.pqC 1;p/

and Mir L.pq C 1;p/ both appear as link-manifolds of 3–dimensional transverse
C–links. (This example is due to Michel Boileau.)

3.4.4 Tree-manifolds Let .T; w/ be a weighted planar tree. The double cover
M 3.T; w/ of S3 branched over the arborescent link .@T;w/ is called a tree-manifold ;
it is independent of the planar embedding of T.

3.18 Remark Tree-manifolds are a special case of graph-manifolds. Graph-manifolds
can be defined in various (not obviously equivalent) ways; they were named and first
investigated in full generality by Waldhausen [93; 94]. Waldhausen’s work built on
studies of tree-manifolds by Hirzebruch [41] and von Randow [65]. For them, the tree-
manifold M 3.T; w/ arises as the boundary of a 4–manifold W 4.T; w/ constructed by
4–dimensional plumbing of disk bundles. Hirzebruch, Neumann, and Koh [42] give a
further exposition of tree-manifolds from this viewpoint. Neumann [58] gives a calculus
for plumbing trees that is simultaneously applicable to strip-plumbings sp.T; w/ of
unoriented 2–submanifolds-with-boundary of S3 , disk-bundle plumbings W 4.T; w/,
and tree-manifolds M 3.T; w/ WD @W 4.T; w/.

3.19 Proposition If .T; w/ is strongly quasipositive, then M 3.T; w/ is the link-
manifold of a 3–dimensional transverse C–link; if .T; w/ is very strongly quasipositive,
then W 4.T; w/ is the C–span of a 3–dimensional transverse C–link.
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This is a considerable strengthening of the following result, stated without proof (and
using slightly different language) by Boileau and Rudolph [10] in 1995.

3.20 Corollary Let the weighted tree .T; w/ satisfy the following conditions.

(1) If v 2 V.T/ is neither a node nor adjacent to a node, then w.v/ is even and less
than 0.

(2) If v 2 V.T/ is a node, then w.v/ is even and not greater than 0.

(3) Let v 2 V.T/ be a node with adjacent vertices v0i , 1� i � r .

(a) If w.v/ < 0, then w.vi/ is even and less than 0, 1� i � r .
(b) If w.v/D 0, then v is distant from every other node, and w.vi/Cw.vj / is

even and less than 0, 1� i < j � r .

Then there is a projective orientation of the arborescent link .@ sp.T; w/;S3/ that
makes it a quasipositive link.

3.5 3–dimensional links at infinity of complex surfaces

Using algebraic topology, Sullivan [90] proved that the link-manifold M of an isolated
singular point of a complex algebraic surface in C3 (actually, and more generally,
the link — in the older sense of combinatorial topology, not that of knot-theory —
of an isolated singular point of a complex algebraic surface in any Cn ) cannot be
diffeomorphic to the 3–torus .S1/3 . On the other hand, if f .z0; z1; z2/D z0z1z2� 1,
then L1.f / has link-manifold diffeomorphic to .S1/3 and C–span diffeomorphic to
.S1/2 �D2 ; the proof consists in observing that, for sufficiently small r > 0, .S1/2

acts freely on

f.z0; z1; z2/ 2C3
W f .z0; z1; z2/D 0; z2

0 C z2
1 C z2

2 � 1=r2
g

by .ei� ; ei'/ � .z0; z1; z2/D .ei�z0; ei'z1; e�i.�C'/z2/, and the slice

f.x0;x1;x2/ 2R3
C W f .x0;x1;x2/D 0; x2

0 Cx2
1 Cx2

2 � 1=r2
g

of this action is diffeomorphic to D2 .

In fact, all the products S1 �Fg (where Fg is the closed orientable 2–manifold of
genus g ) arise as link-manifolds of links at infinity: for sufficiently small " > 0,
f.z0; z1; z2/ 2C3 W z0z1.z

g
2
� 1/D 1; jz0j

2Cjz1j
2Cjz2xi j2 D 1="g is diffeomorphic

to S1 �Fg (Boileau and Rudolph [10]).

Geometry & Topology Monographs, Volume 19 (2015)



Some 3–dimensional transverse C–links 407

Acknowledgments
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Sem. Leningrad. Otdel. Mat. Inst. Steklov. .LOMI/ 66 (1976) 133–147 MR0451252

Geometry & Topology Monographs, Volume 19 (2015)

http://dx.doi.org/10.1007/BF01245177
http://dx.doi.org/10.1007/BF01245177
http://www.ams.org/mathscinet-getitem?mr=1309974
http://dx.doi.org/10.1090/S0002-9939-98-04407-4
http://dx.doi.org/10.1090/S0002-9939-98-04407-4
http://www.ams.org/mathscinet-getitem?mr=1452826
http://dx.doi.org/10.2140/gtm.1999.2.555
http://www.ams.org/mathscinet-getitem?mr=1734423
http://dx.doi.org/10.1016/S0166-8641(00)90091-9
http://dx.doi.org/10.1016/S0166-8641(00)90091-9
http://www.ams.org/mathscinet-getitem?mr=1857666
http://dx.doi.org/10.1016/S0166-8641(00)00051-1
http://www.ams.org/mathscinet-getitem?mr=1840734
http://dx.doi.org/10.1016/B978-044451452-3/50009-5
http://www.ams.org/mathscinet-getitem?mr=2179266
http://projecteuclid.org/euclid.ojm/1200785640
http://www.ams.org/mathscinet-getitem?mr=1315011
http://dx.doi.org/10.1007/BF02392437
http://www.ams.org/mathscinet-getitem?mr=0072482
http://dx.doi.org/10.1007/BF01473875
http://www.ams.org/mathscinet-getitem?mr=0082104
http://dx.doi.org/10.1007/s002080050040
http://www.ams.org/mathscinet-getitem?mr=1437045
http://dx.doi.org/10.1007/BF02398271
http://www.ams.org/mathscinet-getitem?mr=1555366
http://dx.doi.org/10.1007/BF01448044
http://www.ams.org/mathscinet-getitem?mr=1512955
http://www.ams.org/mathscinet-getitem?mr=0158375
http://www.ams.org/mathscinet-getitem?mr=520522
http://dx.doi.org/10.1016/0040-9383(75)90009-9
http://www.ams.org/mathscinet-getitem?mr=0383415
http://dx.doi.org/10.2307/2040160
http://www.ams.org/mathscinet-getitem?mr=0375366
http://www.ams.org/mathscinet-getitem?mr=0451252


Some 3–dimensional transverse C–links 413

[93] F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten, I, Invent. Math.
3 (1967) 308–333 MR0235576

[94] F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten, II, Invent. Math.
4 (1967) 87–117 MR0235576

[95] E Winkelnkemper, The history and applications of open books, Springer, New York
(1998) MR1713074 Appendix to “High-dimensional knot theory: Algebraic surgery
in codimension 2”

Mathematics and Computer Science, Clark University
Worcester, MA 01610-1477, USA

lrudolph@meganet.net

Received: 19 August 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01402956
http://www.ams.org/mathscinet-getitem?mr=0235576
http://dx.doi.org/10.1007/BF01402956
http://www.ams.org/mathscinet-getitem?mr=0235576
http://dx.doi.org/10.1007/978-3-662-12011-8
http://www.ams.org/mathscinet-getitem?mr=1713074
mailto:lrudolph@meganet.net
http://msp.org
http://msp.org



	1. Introduction
	2. Old and new constructions of quasipositive links
	2.1. Preliminaries on braids, plumbing, trees, fibered links, etc
	2.1.1. Braids and braided surfaces
	2.1.2. Annuli, strips, plumbing, and trees
	2.1.3. Contact structures, fibered links, and open books

	2.2. Construction: quasipositive satellites (new)
	2.3. Construction: strongly quasipositive links
	2.3.1. Strongly quasipositive annuli
	2.3.2. Strongly quasipositive Murasugi sums
	2.3.3. Positive links
	2.3.4. Strongly quasipositive satellites (new)

	2.4. Construction: partially reoriented Hopf links (new details)
	2.5. Construction: quasipositive fibered links (new details)
	2.6. Construction: quasipositive links with distinct C–spans (new)
	2.7. Construction: quasipositive orientations of unoriented links (new) 
	2.7.1. Quasipositive orientations of unknotted strip boundaries
	2.7.2. Quasipositive rational links
	2.7.3. Quasipositive pretzel links
	2.7.4. Strongly quasipositive arborescent links 


	3. Constructions of 3–dimensional transverse C–links
	3.1. 3–dimensional links of isolated singular points
	3.2. Adding a dummy variable
	3.3. General cyclic branched covers of S3 over quasipositive links
	3.4. Double branched covers of S3 over quasipositive links
	3.4.1. Doubles of knot exteriors
	3.4.2. Seifert manifolds with base S2
	3.4.3. Lens spaces
	3.4.4. Tree-manifolds

	3.5. 3–dimensional links at infinity of complex surfaces
	Acknowledgments

	References

