×

Energy flow: wave motion and geometrical optics. (English) Zbl 0212.44102


MSC:

35L05 Wave equation
78A05 Geometric optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216. · Zbl 0099.29504
[2] Walter A. Strauss, Decay and asymptotics for \?\?\?=\?(\?), J. Functional Analysis 2 (1968), 409 – 457. · Zbl 0182.13602
[3] Peter D. Lax and Ralph S. Phillips, The wave equation in exterior domains, Bull. Amer. Math. Soc. 68 (1962), 47 – 49. · Zbl 0103.06401
[4] Norman A. Shenk II, Eigenfunction expansions and scattering theory for the wave equation in an exterior region, Arch. Rational Mech. Anal. 21 (1966), 120 – 150. · Zbl 0135.15602 · doi:10.1007/BF00266571
[5] D. M. Èĭdus, On the principle of limiting absorption, Mat. Sb. (N.S.) 57 (99) (1962), 13 – 44 (Russian).
[6] James V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807 – 823. · Zbl 0209.40402 · doi:10.1002/cpa.3160220605
[7] C. Wilcox, The initial-boundary value problem for the wave equation in an exterior domain with spherical boundary, Notices Amer. Math. Soc. 6 (1959), 869-870. Abstract #564-240.
[8] P. D. Lax, C. S. Morawetz, and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math. 16 (1963), 477 – 486. · Zbl 0161.08001 · doi:10.1002/cpa.3160160407
[9] Cathleen S. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math. 15 (1962), 349 – 361. · Zbl 0196.41202 · doi:10.1002/cpa.3160150303
[10] J. B. Keller, R. M. Lewis, and B. D. Seckler, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math. 9 (1956), 207 – 265. · Zbl 0073.44105 · doi:10.1002/cpa.3160090205
[11] C. S. Morawetz and D. Ludwig, An inequality for the reduced wave operator and the justification of geometrical optics, Comm. Pure Appl. Math. 21 (1968), 187 – 203. · Zbl 0157.18701 · doi:10.1002/cpa.3160210206
[12] C. S. Morawetz and D. Ludwig, The generalized Huyghens’ principle for reflecting bodies, Comm. Pure Appl. Math. 22 (1969), 189 – 205. , https://doi.org/10.1002/cpa.3160220204 R. S. Phillips, A remark on the preceding paper of C. S. Morawetz and D. Ludwig, Comm. Pure Appl. Math. 22 (1969), 207 – 211. · Zbl 0167.10103 · doi:10.1002/cpa.3160220205
[13] C. S. Morawetz and D. Ludwig, The generalized Huyghens’ principle for reflecting bodies, Comm. Pure Appl. Math. 22 (1969), 189 – 205. , https://doi.org/10.1002/cpa.3160220204 R. S. Phillips, A remark on the preceding paper of C. S. Morawetz and D. Ludwig, Comm. Pure Appl. Math. 22 (1969), 207 – 211. · Zbl 0167.10103 · doi:10.1002/cpa.3160220205
[14] Peter Werner, Randwertprobleme der mathematischen Akustik, Arch. Rational Mech. Anal. 10 (1962), 29 – 66 (German). · Zbl 0105.07405 · doi:10.1007/BF00281177
[15] Donald Ludwig, Uniform asymptotic expansion of the field scattered by a convex object at high frequencies, Comm. Pure Appl. Math. 20 (1967), 103 – 138. · Zbl 0154.12802 · doi:10.1002/cpa.3160200103
[16] V. S. Buslaev, Short-wave asymptotic behaviour in the problem of diffraction by smooth convex contours, Trudy Mat. Inst. Steklov. 73 (1964), 14 – 117 (Russian).
[17] Roger Grimshaw, High-frequency scattering by finite convex regions, Comm. Pure Appl. Math. 19 (1966), 167 – 198. · Zbl 0137.07602 · doi:10.1002/cpa.3160190205
[18] F. Ursell, On the short-wave asymptotic theory of the wave equation (∇²+\?²)\?=0, Proc. Cambridge Philos. Soc. 53 (1957), 115 – 133. · Zbl 0079.12101
[19] Joseph B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962), 116 – 130. · doi:10.1364/JOSA.52.000116
[20] C. O. Bloom, On the validity of the geometrical theory of diffraction by star shaped cylinders, Notices Amer. Math. Soc. 16 (1969), 512. Abstract #664-39.
[21] F. G. Friedlander, On the radiation field of pulse solutions of the wave equation. II, Proc. Roy. Soc. Ser. A 279 (1964), 386 – 394. · Zbl 0117.43904
[22] Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. · Zbl 0186.16301
[23] C. S. Morawetz, Energy identities for the wave equation, New York University. Inst. Math. Mech. 346, January 1966.
[24] Cathleen S. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. 19 (1966), 439 – 444. · Zbl 0161.08002 · doi:10.1002/cpa.3160190407
[25] E. Noether, Invariante Variationsprobleme, Nachr. Ges. Göttingen Math.-Phys. Kl. 1918, 235-257. · JFM 46.0770.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.