×

Submersions of CR submanifolds. (English) Zbl 0619.58004

A real submanifold N of a complex Banach manifold V is called a CR submanifold if \(T^ h=TN\cap J(TN)\) is a complex subbundle of the tangent bundle TV; J being the relevant complex structure. Assume V Kähler, let \(T^{\vee}N\) be the orthogonal complement of \(T^ hN\) in TN, \(T^ nN\) be the normal bundle. Assume that J interchanges \(T^{\vee}N\) and \(T^ nN\). Let \(\pi\) : \(N\to W\) be a submersion on an almost Hermitian manifold W such that \(T^{\vee}N\) is a kernel of \(\pi\) and \(\pi\) induces a complex isometry of \(T^ hN\) and TW. Under these assumptions, W is Kähler and \(H^ V=H^ W-4| B|^ 2\), where \(H^ V\) \((H^ W)\) is the holomorphic sectional curvature and B is the second fundamental form of N. As an application, the moduli space of stable holomorphic vector bundles over compact Riemann surfaces has nonnegative holomorphic sectional curvature.
Reviewer: J.Chrastina

MSC:

58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
32L05 Holomorphic bundles and generalizations
53B35 Local differential geometry of Hermitian and Kählerian structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. ATIYAH, On analytic surfaces with double points, Proc. R. Soc. Lond. Ser. A 245 (1958), 237-244. · Zbl 0135.21301 · doi:10.1098/rspa.1958.0181
[2] M. ATIYAH, Some examples of complex manifolds, Bonner Math. Schriften 6 (1958), 27 · Zbl 0080.37502
[3] M. ATIYAH, N. HITCHIN AND I. SINGER, Self-duality in four-dimensional Riemannia geometry, Proc. R. Soc. Lond. Ser A 362 (1978), 425-461. · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[4] T. AUBIN, Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Grundlehre der Math. 252, Springer-Verlag 1982. · Zbl 0512.53044
[5] A. BEAUVILLE, Application aux espaces de modules, in Geometrie des surfaces KS modules et periodes, Asterisque 126 (1985), 141-152. · Zbl 0577.14007
[6] J. P. BOURGUIGNON, Deformations des metriques dinstein, Asterisque 80 (1980), 21-31
[7] J. P. BOURGUIGNON ET AL., Premiere classe de Chern et courbure de Ricci: preuve d la conjecture de Calabi, Seminaire Palaiseau, Asterisque 58 (1958), Soc. Math. France. · Zbl 0397.35028
[8] D. BURNS AND M. RAPOPORT, On the Torelli problem for Kahlerian 3 surfaces, Ann scient. Ec. Norm. Sup. 8 (1975), 235-274. · Zbl 0324.14008
[9] S. Y. CHENG AND S. T. YAU, Inequality between Chern numbers of singular Kahle surfaces and characterization of orbit spaces of discrete group of SU(2, 1), in ”Com-plex Differential Geometry and Nonlinear Differential Equations” (edited by Y. T. Siu), Contemporary Mathematics 49 (1986), American Mathematical Society. · Zbl 0597.53052
[10] A. FUJIKI, Closedness of the Douady space of compact Kahler spaces, Publ. RIMS, Kyoto Univ. 14 (1978), 1-52. · Zbl 0409.32016 · doi:10.2977/prims/1195189279
[11] N. HITCHIN, Compact four dimensional Einstein manifolds, J. Differential Geometr 9 (1974), 435-441. · Zbl 0281.53039
[12] K. IVINSKIS, Normale Flachen und die Miyaoka-Kobayashi-Ungleichung, Diplomarbeit, Bonn 1985.
[13] R. KOBAYASHI, Einstein-Kahler F-metrics on open Satake F-surfaces with isolate quotient singularities, Math. Ann. 272 (1985), 385-398. · Zbl 0556.14019 · doi:10.1007/BF01455566
[14] K. KODAIRA, On the structure of compact analytic surfaces, I. Amer. J. Math. 8 (1964), 751-798. JSTOR: · Zbl 0137.17501 · doi:10.2307/2373157
[15] E. LOOIJENGA, A, Torelli theorem for Kahler-Einstein KS surfaces, Lecture Notes i Math. 894 (1981), 107-112. · Zbl 0473.53041
[16] E. LOOIJENGA AND C. PETERS, Torelli theorems for Kahler KS surfaces, Compositi math. 42 (1981), 145-186. · Zbl 0477.14006
[17] A. MAYER, Families of KS surfaces, Nagoya Math. J. 48 (1972), 1-7 · Zbl 0244.14012
[18] Y. MIYAOKA, The maximal number of quotient singularities on surfaces with give numerical invariants, Math. Ann. 268 (1984), 159-171. · Zbl 0521.14013 · doi:10.1007/BF01456083
[19] B. MOISEZON, Singular Kahler spaces, Manifolds and related topics in topology, Toky (edited by A. Hatton), Univ. of Tokyo Press (1973), 343-351. · Zbl 0344.32018
[20] D. MORRISON, Some remarks on the moduli of KS surfaces, in Classification of Algebrai and analytic manifolds, Progress in Math. 39, Birkhauser, 1983, 303-332. · Zbl 0526.14025
[21] D. MORRISON, On uniformization of KS surfaces,
[22] Y. NAMIKAWA, On the surjectivity of the period mapof KS surfaces, in ”Classificatio of Algebraic and Analytic Manifolds”, Progress of Math. 39, Birkhauser, 1983. · Zbl 0522.32023
[23] V. NIKULIN, On Kummer surfaces, Math. USSR Izv. 9 (1975), 261-275 · Zbl 0325.14015 · doi:10.1070/IM1975v009n02ABEH001477
[24] I. R. SHAFAREVICH AND A. SHAPIRO-PIATECKII, A Torelli theorem for algebraic surface of type KS, Math. USSR Izv. 5 (1971), 547-587. · Zbl 0253.14006 · doi:10.1070/IM1971v005n03ABEH001075
[25] Y. T. Siu, Every KS surface is Kahler, Inventiones math. 73 (1983), 139-150 · Zbl 0557.32004 · doi:10.1007/BF01393829
[26] A. TODOROV, Applications of Kahler-Einstein-Calabi-Yau metric to moduli of K surfaces, Inventiones math. 61 (1980), 251-265. · Zbl 0472.14006 · doi:10.1007/BF01390067
[27] A. TODOROV, HOW many Kahler metrics has a KS surface? Algebraic geometry an number theory: papers dedicated to I. R. Shafarevich, (1983).
[28] J. VAROUCHAS, Stabilite des varietes kahleriennes par certains morphism propres, preprint, Universite de Nancy I.
[29] E. B. VINBERG, Discrete groups generated by reflections in Lobachevskii spaces, Math USSR Sbornik 1 (1967), 429-444. · Zbl 0166.16303
[30] A. WEIL, Collected papers, vol. 2, pp. 393-395, Springer-Verlag 1979
[31] S. T. YAU, On the Ricci curvature of a compact Kahler manifold and the comple Monge-Ampere equation, I, Comm. Pure and Appl. Math. 31 (1978), 339-441. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[32] S. T. YAU, Lectures given at the Institute for Advanced Study, Princeton (1980)
[33] M. YOSHIDA, J. KANEKO AND S. TOKUNAGA, Complex crystallographic groups II, J. Math. Soc. Japan, vol. 34 (1982), 595-605. · Zbl 0488.20039 · doi:10.2969/jmsj/03440595
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.