×

On instability of Yang-Mills connections. (English) Zbl 0634.53022

In this article, extending previous results on the standard sphere \(S^ n\) (n\(\geq 5)\) by Jim Simons, the authors exhibit examples of manifolds over which any nonflat Yang-Mills field is unstable. Their examples cover the Cayley plane, \(E_ 6/F_ 4\) and some isoparametric minimal hypersurfaces of spheres.
On the way they compute very thoroughly the second variation of the Yang- Mills functional for manifolds isometrically immersed in Euclidean spaces, in particular minimal submanifolds of spheres. Out of their technical tools is the maximum eigenvalue of the curvature operator which they tabulate for all irreducible compact symmetric spaces.
Reviewer: J.P.Bourguignon

MSC:

53C05 Connections (general theory)
58E99 Variational problems in infinite-dimensional spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Abresch, U.: Isoparametric hypersurfaces with four or six distinct principal curvatures?necessary conditions on multiplicities. Math. Ann.264, 283-302 (1983) · Zbl 0514.53050 · doi:10.1007/BF01459125
[2] Bourguignon, J-P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys.79, 189-230 (1981) · Zbl 0475.53060 · doi:10.1007/BF01942061
[3] Cartan, E.: Familles des surfaces isoparam?triques des espaces ? courbure constante. Annali di Mat.17, 177-191 (1938) · Zbl 0020.06505 · doi:10.1007/BF02410700
[4] Cartan, E.: Sur des familles remarquables d’hypersurfaces dans les espaces sph?riques. Math. Z.45, 335-367 (1939) · JFM 65.0792.01 · doi:10.1007/BF01580289
[5] Ferus, D., Karcher, H., M?nzner, H.F.: Cliffordalgebren und neue isoparametrische Hyperfl?chen. Math. Z.177, 479-502 (1981) · Zbl 0452.53032 · doi:10.1007/BF01219082
[6] Hsiang, W.Y., Lawson, H.B.: Minimal submanifolds of low cohomogeneity. J. Differ. Geom.5, 1-38 (1971) · Zbl 0219.53045
[7] Kobayashi, S., Nomizu, K.: Foundations of differential Geometry, vol. 1 (1963), vol. 2 (1969). New York: John Wiley & Sons · Zbl 0119.37502
[8] Laquer, H.T. Stability properties of the Yang-Mills functional near the canonical connection. Mich. Math. J.31, 139-159 (1984) · Zbl 0647.53022 · doi:10.1307/mmj/1029003019
[9] Lawson, H.B., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math.98, 427-450 (1973) · Zbl 0283.53049 · doi:10.2307/1970913
[10] Leung, P.F.: On the stability of harmonic maps. Lecture Notes in Math.949, 122-129. Berlin-Heidelberg-New York: Springer 1982
[11] M?nzner, H.F.: Isoparametrische Hyperfl?chen in Sph?ren, I. Math. Ann.251, 57-71 (1980); II. ibid Math. Ann.256, 215-232 (1981) · Zbl 0432.53033 · doi:10.1007/BF01420281
[12] Nagano, T.: On the minimum eigenvalues of the Laplacians in Riemannian manifolds. Sci. Pap. Coll. Gen. Educ., Univ. Tokyo11, 177-182 (1961) · Zbl 0134.31005
[13] Nagano, T.: Stability of harmonic maps between symmetric spaces. Lecture Notes Math.949, 130-139. Berlin Heidelberg New York: Springer 1982 · Zbl 0507.58019
[14] Ohnita, Y.: The first standard minimal immersions of compact irreducible symmetric spaces. In: Proc. Kyoto Symp. ?Differential Geometry of Submanifolds? 1984. Lecture Notes Math.1090, 37-49. Berlin Heidelberg New York: Springer 1984 · Zbl 0546.53037
[15] Ohnita, Y.: Stability of harmonic maps and standard minimal immersions. Tohoku Math. J.38, 259-267 (1986) · Zbl 0585.58012 · doi:10.2748/tmj/1178228492
[16] Ohnita, Y.: Stable minimal submanifolds in compact rank one symmetric spaces. Tohoku Math. J.38, 199-217 (1986) · Zbl 0594.53037 · doi:10.2748/tmj/1178228488
[17] Ozeki, H., Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres I. Tohoku Math. J.27, 515-559 (1975); II. ibid Tohoku Math. J.28, 7-55 (1976) · Zbl 0359.53011 · doi:10.2748/tmj/1178240941
[18] Sacks, J., Uhlenbeck, K.: Minimal immersions of 2-spheres. Ann. Math.113, 1-24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
[19] Shen Chun-li: Weakly stability of Yang-Mills fields over the submanifold of the sphere. Arch. Math.39, 78-84 (1982) · Zbl 0511.53056 · doi:10.1007/BF01899247
[20] Simons, J.: Minimal varieties in riemannian manifolds. Ann. Math.88, 62-105 (1968) · Zbl 0181.49702 · doi:10.2307/1970556
[21] Smith, R.T.: The second variation formula for harmonic mappings. Proc. Math. Soc.47, 229-236 (1975) · Zbl 0303.58008 · doi:10.1090/S0002-9939-1975-0375386-2
[22] Takagi, R., Takahashi, T.: On the principal curvatures of homogeneous hypersurfaces of a unit sphere, pp. 469-481. Diff. Geometry in honor of K. Yano, Kinokuniya, Tokyo 1972 · Zbl 0244.53042
[23] Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan18, 380-385 (1966) · Zbl 0145.18601 · doi:10.2969/jmsj/01840380
[24] Takeuchi, M.: Stability of certain minimal submanifolds of compact Hermitian symmetric spaces. Tohoku Math. J.36, 293-314 (1984) · Zbl 0539.53043 · doi:10.2748/tmj/1178228853
[25] Takeuchi, M.: On the fundamental group and the group of isometries of a symmetric space. J. Fac. Sci. Univ. Tokyo10, 88-123 (1964) · Zbl 0196.54605
[26] Takeuchi, M., Kobayashi, S.: Minimal imbeddings ofR-spaces. J. Diff. Geometry2, 203-215 (1968) · Zbl 0165.24901
[27] Wallach, N.: Minimal immersions of symmetric spaces into spheres. In: Boothby, W.B., Weiss, G.L. (eds.), Symmetric spaces, pp. 1-40. Marcel Dekker, New York 1972 · Zbl 0232.53027
[28] Wei, S.W.: On topological vanishing theorems and the stability of Yang-Mills fields. Indiana Univ. Math. J.33, 511-529 (1984) · Zbl 0559.53027 · doi:10.1512/iumj.1984.33.33027
[29] Xin, Y.L.: Some remarks on stable harmonic maps. Duke Math. J.47, 609-613 (1980) · Zbl 0513.58019 · doi:10.1215/S0012-7094-80-04736-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.