×

The Chandrasekhar theory of stellar collapse as the limit quantum mechanics. (English) Zbl 0641.35065

Summary: Starting with a “relativistic” Schrödinger Hamiltonian for neutral gravitating particles, we prove that as the particle number \(N\to \infty\) and the gravitation constant \(G\to 0\) we obtain the well known semiclassical theory for the ground state of stars. For fermions, the correct limit is to fix \(GN^{2/3}\) and the Chandrasekhar formula is obtained. For bosons the correct limit is to fix \(GN\) and a Hartree type equation is obtained. In the fermion case we also prove that the semiclassical equation has a unique solution – a fact which had not been established previously.

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
82B10 Quantum equilibrium statistical mechanics (general)
85A15 Galactic and stellar structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auchmuty, J., Beals, R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal.43, 255-271 (1971). See also Models of rotating stars. Astrophys. J.165, L79?L82 (1971) · Zbl 0225.49013 · doi:10.1007/BF00250465
[2] Chandrasekhar, S.: Phil. Mag.11, 592 (1931); Astrophys. J.74, 81 (1931); Monthly Notices Roy. Astron. Soc.91, 456 (1931); Rev. Mod. Phys.56, 137 (1984)
[3] Conlon, J.: The ground state energy of a classical gas. Commun. Math. Phys.94, 439-458 (1984) · Zbl 0946.82501 · doi:10.1007/BF01403881
[4] Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys.90, 511-520 (1983) · Zbl 0946.81521 · doi:10.1007/BF01216182
[5] Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys.90, 497-510 (1983) · Zbl 0946.81522 · doi:10.1007/BF01216181
[6] Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Math. Iberoamericana2, 119-215 (1986) · Zbl 0602.58015
[7] Fowler, R.H.: Monthly Notices Roy. Astron. Soc.87, 114 (1926)
[8] Herbst, I.: Spectral theory of the operator (p 2+m 2)1/2?ze 2/r. Commun. Math. Phys.53, 285-294 (1977); Errata ibid.55, 316 (1977) · Zbl 0375.35047 · doi:10.1007/BF01609852
[9] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See Remark 5.12, p. 307 · Zbl 0148.12601
[10] Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators withL w 1/2 (? l ) potentials. J. Math. Phys.22, 1033-1044 (1981) · Zbl 0463.47027 · doi:10.1063/1.525009
[11] Landau, L.: Phys. Z. Sowjetunion1, 285 (1932)
[12] Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Am. Math. Soc. Symp. Pure Math.36, 241-252 (1980). See also: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc.82, 751-753 (1976)
[13] Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math.57, 93-105 (1977) · Zbl 0369.35022
[14] Lieb, E.: Variational principle for many-fermions systems. Phys. Rev. Lett.46, 457-459 (1981); Errata ibid.47, 69 (1981) · doi:10.1103/PhysRevLett.46.457
[15] Lieb, E.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603-641 (1981); Errata ibid.54, 311 (1982) · Zbl 1114.81336 · doi:10.1103/RevModPhys.53.603
[16] Lieb, E.: Density functionals for Coulomb systems. Int. J. Quant. Chem.24, 243-277 (1983) · doi:10.1002/qua.560240302
[17] Lieb, E., Oxford, S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quant. Chem.19, 427-439 (1981) · doi:10.1002/qua.560190306
[18] Lieb, E., Simon, B.: Thomas Fermi theory of atoms, molecules and solids. Adv. Math.23, 22-116 (1977) · Zbl 0938.81568 · doi:10.1016/0001-8708(77)90108-6
[19] Lieb, E., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY)155, 494-512 (1984) · doi:10.1016/0003-4916(84)90010-1
[20] Lions, P.-L.: The concentration compactness principle in the calculus of variations; the locally compact case I. Ann. Inst. H. Poincaré Anal. non lineaire1, 109-145 (1984)
[21] Messer, J.: Lecture Notes in Physics, Vol. 147. Berlin, Heidelberg, New York: Springer 1981 · Zbl 0491.35073
[22] Morrey, C.B., Jr.: Multiple integrals in the calculus of variations, Theorem 5.8.6. Berlin, Heidelbereg, New York: Springer 1966 · Zbl 0142.38701
[23] Ni, W.M.: Uniqueness of solutions of nonlinear Dirichlet problems. J. Differ. Equations5, 289-304 (1983) · Zbl 0516.35033 · doi:10.1016/0022-0396(83)90079-7
[24] Straumann, S.: General relativity and relativistic astrophysics. Berlin, Heidelberg, New York: Springer 1984
[25] Thirring, W.: Bosonic black holes. Phys. Lett. B127, 27 (1983)
[26] Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal.20, 319-337 (1975) · Zbl 0317.47035 · doi:10.1016/0022-1236(75)90038-5
[27] Weinberg, S.: Gravitation and cosmology. New York: Wiley 1972 · Zbl 0256.05105
[28] Hamada, T., Salpeter, E.: Models for zero temperature stars. Astrophys. J.134, 683 (1961) · doi:10.1086/147195
[29] Shapiro, S., Teukolsky, S.: Black holes, white dwarfs and neutron stars. New York: Wiley 1983
[30] Ruffini, R., Bonazzola, S.: Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev.187, 1767-1783 (1969) · doi:10.1103/PhysRev.187.1767
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.