×

Equivariant KK-theory and the Novikov conjecture. (English) Zbl 0647.46053

This fundamental paper is the definitive version with complete proofs of a “conspectus” containing a sketch of the proofs circulated since 1981. The author constructs a G-equivariant bivariant K-theory KK G(A,B) where the arguments are C *-algebras with a continuous G-action and G is a locally compact (not necessarily compactö) group. This theory is then applied to the Novikov conjecture. The author proves a result which contains and considerably strengthens all previously known results on this conjecture.
As in ordinary Kasparov theory the main technical tool is the intersection product KK G(A,B)\(\times KK\) G(B,C)\(\to KK\) G(A,C) and so called Dirac- and dual Dirac elements where the first one comes from a Dirac operator and the second one is (in good cases) a right inverse.
The author’s approach actually proves stronger versions of the Novikov conjecture (which imply the ordinary conjecture) for a large class of fundamental groups \(\pi\), for instance the following conjecture \(SNC_{\beta}:\) The natural homomorphism \(\beta\) from the representable K-homology of the classifying space \(B\pi\) to the K-theory of the group-C *-algebra C *(\(\pi)\) is split injective.
Here is then a sample result: Theorem 6.7. Suppose that \(\pi\) is a discrete group such that the universal covering space \(X=E\pi\) of the classifying space \(B\pi\) is a special \(\pi\)-manifold (i.e. admits a “dual Dirac” element). Then \(SNC_{\beta}\) is true for \(\pi\). In particular, \(SNC_{\beta}\) is true for all groups \(\pi\) for which \(B\pi\) can be taken as a complete Riemannian manifold of non-positive sectional curvature, and also for all closed, discrete, torsionless subgroups of finite component Lie groups.
Independently of its applications to the Novikov conjecture, the equivariant KK G-theory developed in this paper is a powerful tool and an important achievement by itself. It allows, for instance, to mention only one thing, to define a “topological representation ring” \(R(G)=KK\) G(\({\mathbb{C}},{\mathbb{C}})\) for a locally compact group G and also is the right setting to study the K-theory of so called crossed product C *-algebras. It is impossible, in a short review, to give an adequate idea of the wealth of ideas contained in this article.
Reviewer: J.Cuntz

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
46L55 Noncommutative dynamical systems
57R20 Characteristic classes and numbers in differential topology
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [Ab] Abels, H.:Parallelizability of proper actions, globalK-slices and maximal compact subgroups. Math. Ann.212, 1-19 (1974) · Zbl 0287.57018 · doi:10.1007/BF01343976
[2] [AS1] Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math.87, 484-530 (1968) · Zbl 0164.24001 · doi:10.2307/1970715
[3] [AS2] Atiyah, M.F., Singer, I.M.: The index of elliptic operators. III. Ann. Math.87, 546-604 (1968) · Zbl 0164.24301 · doi:10.2307/1970717
[4] [BJ] Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans lesC *-modules hilbertiens. C.R. Acad. Sci. Paris296, 875-878 (1983) · Zbl 0551.46041
[5] [B1] Blackadar, B.:K-theory for operator algebras. The University of Nevada (Preprint 1985)
[6] [Bo 1] Bourbaki, N.: Topologie générale, ch. III?IV. Paris: Hermann 1960
[7] [Bo 2] Bourbaki, N.: Intégration, ch. VII?VIII. Paris: Hermann 1963
[8] [Ca] Cappell, S.E.: On homotopy invariance of higher signatures. Invent. Math.33, 171-179 (1976) · Zbl 0335.57007 · doi:10.1007/BF01402341
[9] [CMW] Curto, R.E., Muhly, P.S., Williams, D.P.: Cross products of strongly Morita equivalentC *-algebras. Proc. Am. Math. Soc.90, 528-530 (1984) · Zbl 0508.22012
[10] [CS] Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. Kyoto Univ.20, 1139-1183 (1984) · Zbl 0575.58030 · doi:10.2977/prims/1195180375
[11] [Fa] Fack, T.: Sur la conjecture de Novikov. Publ. Math. Univ. Pierre et Marie Curie vol. 77 (1985)
[12] [FH] Farrell, F.T., Hsiang, W.C.: On Novikov’s conjecture for non-positively curved manifolds. I. Ann. Math.113, 199-209 (1981) · Zbl 0461.57016 · doi:10.2307/1971138
[13] [G1] Glushkov, V.M.: The structure of locally bicompact groups and the fifth Hilbert problem. Usp. Matem. Nauk12, No 2, 3-41 (1957)
[14] [Gr 1] Green, P.:C *-algebras of transformation groups with smooth orbit space. Pacif. J. Math.72, 71-97 (1977) · Zbl 0374.46047
[15] [Gr 2] Green, P.: The structure of imprimitivity algebras. J. Funct. Anal.36, 88-104 (1980) · Zbl 0422.46048 · doi:10.1016/0022-1236(80)90108-1
[16] [He] Helgason, S.: Differential geometry and symmetric spaces. New York London: Academic Press 1962 · Zbl 0111.18101
[17] [Ho] Hochschild, G.: The structure of Lie groups. San Francisco: Holden-Day 1965 · Zbl 0131.02702
[18] [HR] Hsiang, W.C., Rees, H.D.: Miscenko’s work on Novikov’s conjecture. Contemp. Math.10, 77-98 (1982) · Zbl 0512.57007
[19] [Hu] Husemoller, D.: Fibre bundles. New York St. Louis San Francisco Toronto London Sydney: McGraw-Hill Book Company 1966 · Zbl 0144.44804
[20] [Ju] Julg, P.:K-théorie équivariante et produits croisés. C.R. Acad. Sci. Paris292, 629-632 (1981) · Zbl 0461.46044
[21] [JV] Julg, P., Valette, A.:K-theoretic amenability for SL2(Q p ), and the action on the associated tree. J. Funct. Anal.58, 194-215 (1984) · Zbl 0559.46030 · doi:10.1016/0022-1236(84)90039-9
[22] [Ka 1] Kasparov, G.G.: Generalized index of elliptic operators. Funkc. Anal. i Pril.7, No 3, 82-83 (1973) · Zbl 0312.55001 · doi:10.1007/BF01075662
[23] [Ka 2] Kasparov, G.G.: Topological invariants of elliptic operators. I.K-homology. Izv. Akad. Nauk SSSR, Ser. Mat.39, 796-838 (1975)
[24] [Ka 3] Kasparov, G.G.: HilbertC *-modules: theorems of Stinespring and Voiculescu. J. Oper. Theory4, 133-150 (1980) · Zbl 0456.46059
[25] [Ka 4] Kasparov, G.G.: The operatorK-functor and extensions ofC *-algebras. Izv. Akad. Nauk SSSR, Ser. Mat.44, 571-636 (1980)
[26] [Ka 5] Kasparov, G.G.:K-theory, groupC *-algebras, and higher signatures (conspectus). Parts 1, 2. The Institute of Chemical Physics (Preprint 1981)
[27] [Ka 6] Kasparov, G.G.: Lorentz groups:K-theory of unitary representations and crossed products. Dokl. Akad. Nauk SSSR275, 541-545 (1984) · Zbl 0584.22004
[28] [Ka 7] Kasparov, G.G.: OperatorK-theory and its applications: elliptic operators, group representations, higher signatures,C *-extensions. In: Proceedings ICM, Aug. 16-24, 1983 Warszawa, pp. 987-1000. Warsaw-Amsterdam: PWN-Elsevier Publishers 1984
[29] [Ka 8] Kasparov, G.G.: OperatorK-theory and its applications. In: Itogi Nauki i Tekhn., Ser. Sovrem. Probl. Mat. vol. 27, pp. 3-31. Moscow: VINITI 1985
[30] [KM] Kaminker, J., Miller, J.G.: Homotopy invariance of the analytic index of signature operators overC *-algebras. J. Oper. Theory14, 113-127 (1985) · Zbl 0614.46062
[31] [Mil] Milnor, J.: Morse theory. Princeton: Princeton University Press 1963
[32] [Mis 1] Mishchenko, A.S.: Infinite dimensional representations of discrete groups and higher signatures. Izv. Akad. SSSR, Ser. Mat.38, 81-106 (1974)
[33] [Mis 2] Mishchenko, A.S.:C *-algebras andK-theory. (Lect. Notes Math., vol. 763, pp. 262-274) Berlin Heidelberg New York: Springer 1979
[34] [ML] MacLane, S.: Homology. Berlin Göttingen Heidelberg. Springer 1963
[35] [MP] Mingo, J.A., Phillips, W.J.: Equivariant triviality theorems for HilbertC *-modules. Proc. Am. Math. Soc.91, 225-230 (1984) · Zbl 0546.46049
[36] [MS] Mishchenko, A.S., Solov’jev, Yu.P.: Representations of Banach algebras and Hirzebruch type formulae. Mat. Sbornic111, 209-226 (1980)
[37] [MZ] Montgomery, D., Zippin, L.: Topological transformation groups. New York: Interscience 1955 · Zbl 0068.01904
[38] [Pe] Pedersen, G.K.:C *-algebras and their automorphism groups. London New York San Francisco: Academic Press 1979 · Zbl 0416.46043
[39] [Pi] Pimsner, M.V.:KK-groups of crossed products by groups acting on trees. Invent. Math.86, 603-634 (1986) · Zbl 0638.46049 · doi:10.1007/BF01389271
[40] [PV 1] Pimsner, M., Voiculescu, D.: Exact sequences forK-groups and Ext-groups of certain cross-productC *-algebras. J. Oper. Theory4, 93-118 (1980) · Zbl 0474.46059
[41] [PV 2] Pimsner, M., Voiculescu, D.:K-groups of reduced crossed products by free groups. J. Oper. Theory8, 131-156 (1982) · Zbl 0533.46045
[42] [Ra] Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin Heidelberg New York: Springer 1972 · Zbl 0254.22005
[43] [Re] Rees, H.D.: Special manifolds and Novikov’s conjecture. Topology22, 365-378 (1983) · Zbl 0521.57021 · doi:10.1016/0040-9383(83)90022-8
[44] [Ri 1] Rieffel, M.A.: Induced representations ofC *-algebras. Adv. Math.13, 176-257 (1974) · Zbl 0284.46040 · doi:10.1016/0001-8708(74)90068-1
[45] [Ri 2] Rieffel, M.A.: Applications of strong Morita equivalence to transformation groupC *-algebras. In: Proc. Symp. Pure Math., vol. 38, Part 1, pp. 299-310. Providence R.I.: Am. Math. Soc. 1982
[46] [Ro] Rosenberg, J.:C *-algebras, positive scalar curvature, and the Novikov conjecture. Publ. Math. Inst. Hautes Etud. Sci.58, 197-212 (1983) · Zbl 0526.53044 · doi:10.1007/BF02953775
[47] [RS] Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov’s generalizedK-functor. Duke Math. J.55, 431-474 (1987) · Zbl 0644.46051 · doi:10.1215/S0012-7094-87-05524-4
[48] [Sa] Sakai, S.:C *-algebras andW *-algebras. New York Heidelberg Berlin: Springer 1971
[49] [Sc] Schochet, C.: Topological methods forC *-algebras. I. Spectral sequences. Pacif. J. Math.96, 193-211 (1981) · Zbl 0426.46057
[50] [Se] Segal, G.: Fredholm complexes. Q. J. Math.21, 385-402 (1970) · Zbl 0213.25403 · doi:10.1093/qmath/21.4.385
[51] [Sk 1] Skandalis, G.: Some remarks on Kasparov theory. J. Funct. Anal.56, 337-347 (1984) · Zbl 0561.46035 · doi:10.1016/0022-1236(84)90081-8
[52] [Sk 2] Skandalis, G.: Exact sequences for the Kasparov groups of graded algebras. Can. J. Math.37, 193-216 (1985) · Zbl 0603.46064 · doi:10.4153/CJM-1985-013-x
[53] [SSL] Séminaire ?Sophus Lie? 1954/55. Théorie des algébres de Lie. Topologie des groupes de Lie. Paris: Ec. Norm. Supér. 1955
[54] [Wo] Wolf, J.A.: Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J.22, 611-640 (1973) · Zbl 0263.58013 · doi:10.1512/iumj.1973.22.22051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.