×

Twisting commutative algebraic groups. (English) Zbl 1128.14034

The authors study in detail the properties of the following basic construction:
Let \(k\) be a field, \(V/k\) a commutative algebraic group admitting the commutative ring \({\mathcal O}\) as a ring of endomorphisms and \({\mathcal I}\) a finite free \({\mathcal O}\)-module with a continuous action of the absolute Galois group \(G_k\) of \(k\). Then there is a commutative algebraic group \({\mathcal I}\otimes_{\mathcal O} V\) over \(k\), uniquely determined by the following property (Theorem 1.4):
If \(k\subseteq L\) is a finite Galois-extension such that the \(G_k\)-action on \({\mathcal I}\) factors through Gal\((L/k)\) then there is an isomorphism of abelian groups, functorial in the \(k\)-algebra \(A\): \[ ({\mathcal I}\otimes_{\mathcal O} V)(A)\simeq ({\mathcal I}\otimes_{\mathcal O} V(A\otimes_k L))^{\text{ Gal}(L/k)}. \] Among the properties of the construction \[ (V,{\mathcal O},{\mathcal I})\mapsto {\mathcal I}\otimes_{\mathcal O} V \] discussed here one finds: Functoriality (Section 1), compatibility with torsion-points/Tate-modules (Theorem 2.2), decomposition up to isogeny (Section 2), relation with A. Weil’s restriction of scalars (Sections 3 and 4), the special cases when the \(G_k\)-action factors through an abelian group (respectively a semi-direct product) (Section 5 resp. Section 6), actions of symmetric groups (Section 7) and numerous examples.

MSC:

14L30 Group actions on varieties or schemes (quotients)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Brown, K., Cohomology of Groups, Graduate Texts in Mathematics, vol. 87 (1982), Springer: Springer New York
[2] Conrad, B., Gross-Zagier revisited, (Heegner Points and Rankin \(L\)-Series. Heegner Points and Rankin \(L\)-Series, Math. Sci. Res. Inst. Pub., vol. 49 (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 67-163 · Zbl 1072.11040
[3] de Bruijn, N. G., On the factorization of cyclic groups, Nederl. Akad. Wetensch. Proc. Ser. A, 56, 370-377 (1953), (=Indag. Math. (N.S.) 15) · Zbl 0051.25803
[4] Diem, C.; Naumann, N., On the structure of Weil restrictions of abelian varieties, J. Ramanujan Math. Soc., 18, 153-174 (2003) · Zbl 1080.14536
[5] Eisenbud, D.; Harris, J., The Geometry of Schemes, Graduate Texts in Mathematics, vol. 197 (2000), Springer: Springer New York · Zbl 0960.14002
[6] Frey, G., Applications of arithmetical geometry to cryptographic constructions, (Finite Fields and Applications. Finite Fields and Applications, Augsburg, 1999 (2001), Springer: Springer Berlin), 128-161 · Zbl 1015.94545
[7] Grothendieck, A.; Verdier, J.-L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, exposé IV, (Artin, M.; Grothendieck, A.; Verdier, J.-L., Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Lecture Notes in Math., vol. 269 (1972), Springer: Springer Berlin, New York) · Zbl 0234.00007
[8] Howe, E., Isogeny classes of abelian varieties with no principal polarizations, (Moduli of Abelian Varieties. Moduli of Abelian Varieties, Texel Island, 1999. Moduli of Abelian Varieties. Moduli of Abelian Varieties, Texel Island, 1999, Progress in Math., vol. 195 (2001), Birkhäuser: Birkhäuser Basel), 203-216 · Zbl 1079.14531
[9] B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, http://arxiv.org/abs/math/0512085; B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, http://arxiv.org/abs/math/0512085 · Zbl 1219.11084
[10] Milne, J. S., On the arithmetic of abelian varieties, Invent. Math., 17, 177-190 (1972) · Zbl 0249.14012
[11] Rédei, L., Über das Kreisteilungspolynom, Acta Math. Acad. Sci. Hungar., 5, 27-28 (1954) · Zbl 0055.01305
[12] Rubin, K.; Silverberg, A., Supersingular abelian varieties in cryptology, (Advances in Cryptology — CRYPTO 2002. Advances in Cryptology — CRYPTO 2002, Lecture Notes in Comput. Sci., vol. 2442 (2002), Springer: Springer Berlin), 336-353 · Zbl 1026.94540
[13] Rubin, K.; Silverberg, A., Algebraic tori in cryptography, (High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams. High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41 (2004), AMS: AMS Providence, RI), 317-326 · Zbl 1073.94014
[14] Rubin, K.; Silverberg, A., Using primitive subgroups to do more with fewer bits, (Proceedings of Algorithmic Number Theory. Proceedings of Algorithmic Number Theory, 6th International Symposium, ANTS-VI. Proceedings of Algorithmic Number Theory. Proceedings of Algorithmic Number Theory, 6th International Symposium, ANTS-VI, Lecture Notes in Comput. Sci., vol. 3076 (2004), Springer: Springer Berlin), 18-41 · Zbl 1125.94328
[15] Serre, J.-P., Complex multiplication, (Cassels, J. W.S.; Fröhlich, A., Algebraic Number Theory (1967), Thompson Book Co.: Thompson Book Co. Washington, DC), 292-296 · Zbl 1492.11104
[16] Serre, J.-P., Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42 (1977), Springer: Springer New York
[17] Serre, J.-P., Cohomologie galoisienne, cinquième édition, révisée et complétée, Lecture Notes in Math., vol. 5 (1994), Springer: Springer Berlin
[18] Stein, W. A., Shafarevich-Tate groups of nonsquare order, (Modular Curves and Abelian Varieties. Modular Curves and Abelian Varieties, Progr. Math., vol. 224 (2004), Birkhäuser: Birkhäuser Basel), 277-289 · Zbl 1080.11047
[19] Voskresenskiĭ, V. E., Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, vol. 179 (1998), AMS: AMS Providence, RI · Zbl 0974.14034
[20] Weil, A., Adeles and Algebraic Groups, Progress in Math., vol. 23 (1982), Birkhäuser: Birkhäuser Boston · Zbl 0493.14028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.