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We consider applications to function fields of methods previously used to study
divisibility of class numbers of quadratic number fields. Let K be a quadratic
extension of Fq(x), where q is an odd prime power. We first present a function
field analog to a Diophantine method of Soundararajan for finding quadratic
imaginary function fields whose class groups have elements of a given order. We
also show that this method does not miss many such fields. We then use a method
similar to Hartung to show that there are infinitely many imaginary K whose
class numbers are indivisible by any odd prime distinct from the characteristic.

1. Introduction and statement of results

The study of the structure of class groups of imaginary quadratic number fields
dates back to Gauss, who posed the problem of finding all positive square-free d
such that the class group of Q(

√
−d), which we denote by Cl(−d), has some fixed

order h. Heegner [1952], Baker [1967] and Stark [1967] solved Gauss’s problem
in the case h = 1, showing that there are only nine imaginary quadratic fields of
class number 1. Baker [1971] and Stark [1975] later presented solutions to the
case h = 2. A famous theorem of Siegel says that for ε > 0, there exist positive
constants c1(ε) and c2(ε) such that for each square-free d we have

c1(ε)d
1
2 −ε < h(−d) < c2(ε)d

1
2 +ε .

But this bound was ineffective. Goldfeld [1976] and Gross and Zagier [1983]
showed that Gauss’s problem is effectively computable for any h.

Of interest in the study of the structure of the class groups of the imaginary
quadratic fields is the presence or absence of c-torsion for positive integers c. For
c = 2, the answer to this question follows from Gauss’s genus theory. For odd
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primes c, a conjecture of Cohen and Lenstra [1984] states that the “probability”
that Cl(−d) has an element of order c is

1 −

∏
1≤k<∞

(1 − c−k).

With a few exceptions, little is known about divisibility of class numbers of imagi-
nary quadratic number fields. A theorem of Davenport and Heilbronn [1971] shows
that for c = 3, the proportion of d for which the order of Cl(−d) is prime to 3 is
at least 1/2. Other results do not even give positive proportions. Soundararajan
[2000] used a Diophantine construction to show that the number of d < X such
that Cl(−d) has an element of even order c is

�

{
X1/2+2/c−ε, if c ≡ 0 (mod 4),

X1/2+3/(c+2)−ε, if c ≡ 2 (mod 4).
(1)

This can also be used to give a bound for c odd since if Cl(−d) has an element of
order 2c, then it also has an element of order c. On the question of indivisibility of
class numbers, Kohnen and Ono [1999] showed that for odd primes c, the number
of d < X such that Cl(−d) has no c−torsion is at least(

2(c − 2)
√

3(c − 1)
− ε

) √
X

log X
,

for any ε > 0.
In the setting of function fields, Friedman and Washington [1989] conjectured an

analog of the Cohen–Lenstra heuristics. Achter [2006] used methods of algebraic
geometry to prove this conjecture in a recent paper.

In this paper, we consider divisibility of class numbers of imaginary quadratic
function fields. We use several styles of arguments applied to imaginary quadratic
number fields prior to the work of Achter. We let q be a power of an odd prime,
and define k := Fq(x) and A := Fq [x], the rational function field and polynomial
ring over the finite field with q elements. Denote by Cl( f ) the (divisor) class group
of the function field k(

√
f ) for f square-free and let h( f ) = # Cl( f ). We look

in particular at the case when deg f is odd. This is an analog of the case of an
imaginary quadratic number field in which the prime at infinity ramifies and the
unit group has rank 0. This case also has the property that the class number of
the function field k(

√
f ) is the same as the class number of its maximal order

[Rosen 2002, Chapter 14]. Soundararajan [2000, Proposition 1] used solutions to
the Diophantine equation t2d = mc

−n2 to find d such that Cl(−d) has an element
of order c. The following is our analogous result for function fields.

Theorem 1.1. Let c ≥ 3 be a positive odd integer. Let f ∈ A be a square-free
polynomial of odd degree. If there exist nonzero m, n, t ∈ A such that mc

=n2
−t2 f



DIVISIBILITY OF CLASS NUMBERS OF IMAGINARY QUADRATIC FUNCTION FIELDS 49

with (m, n) = 1 and c deg m < p deg f , where p is the smallest prime dividing c,
then Cl( f ) has an element of order c.

Remark 1. Cardon and Ram Murty [2001] used a similar Diophantine method to
give a bound similar to Equation (1) in the function field case.

In the number field case, Soundararajan showed that any d such that Cl(−d)

has an element of order c satisfies a Diophantine condition similar to that in his
construction. The following is a function field analog of his result. In the theorem,
the Diophantine condition from Theorem 1.1 corresponds to the case l = 1. Like
Soundararajan’s result, this is proven only in the case of c prime, but we expect a
similar result to hold if c is composite.

Theorem 1.2. Let c ≥ 3 be prime and let f ∈ A be a square-free polynomial of odd
degree. Denote by hc( f ) the number of elements of order c in Cl( f ). Let C+ = 2
and C− = 1. If for each choice of ε in {+, −}, Dε is the number of solutions in
polynomials l, m, n and t with l, m, n monic to

lmc
= n2l2

− t2 f, where l| f, (m, f n) = 1 and deg lm <
Cε

2
deg f, (2)

then D− ≤ hc( f ) ≤ D+.

We also consider indivisibility of class numbers of quadratic function fields.
Hartung [1974] used a famous class number relation to show that there are infinitely
many imaginary quadratic number fields whose class numbers are not divisible by
3, and his method extends to any odd prime. We prove the following analog for
function fields.

Theorem 1.3. If c =4 or c is an odd prime not dividing q , then there exist infinitely
many quadratic imaginary function fields K over k with class number not divisible
by c.

Theorem 1.1 will be proven in Section 2, and Theorem 1.2 will be proven in
Section 3. In Section 4, we prove Theorem 1.3. In Section 5, we conclude with
some numerical examples.

2. Proof of Theorem 1.1

Some additional definitions and comments will be useful in proving these theorems.
Given a quadratic extension K of the rational function field k, we can define a norm
map N : K → k taking x to the product of its Galois conjugates (or N (x) = x2

for x ∈ k). Furthermore, if B is the integral closure of A in K , then we can define
the norm of an ideal I ⊂ B as the ideal in A generated by elements of the set
{N (b) : b ∈ I}. The ring B is a Dedekind domain and thus has unique factorization
of ideals [Rosen 2002, Chapter 7]. In the special case that I ⊂ B is principal, say
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I = (b), it is clear that N (I) = (N (b)). We also note that since A is a principal
ideal domain, N (I) is principal even if I is not. We also note that if K = k(

√
f ),

then B = A[
√

f ]. This follows immediately from the formula for the roots of a
quadratic equation. In the case of quadratic number fields, we have multiple cases
depending on the parity of the discriminant, but in the function field case multiple
cases do not arise since 2 is a unit of A so that an element of the form (a+b

√
f )/2

(as would be given by the quadratic formula) can always be rewritten as a′
+b′

√
f

with a, b ∈ A.

Proof of Theorem 1.1. Let K = k(
√

f ) and consider the factorization of ideals
(m)c

= (n + t
√

f )(n − t
√

f ) in the integral closure B of A in K . We claim that
the ideals on the right side are relatively prime. If h is a common prime divisor,
then (n + t

√
f ) + (n − t

√
f ) = 2n ∈ h. However, we also have mc

∈ h, which
implies that m ∈ h since h is prime. Then h|((m, n)), but this is a contradiction
since (m, n) = 1.

Thus, the factorization of ideals shows that each of (n ± t
√

f ) is a cth power.
Since {1,

√
f } is a basis for B over A, let bc

= (n+t
√

f ). We show that b has order
exactly c in Cl( f ). Otherwise, b has order r < c. Then br

= (u + v
√

f ) for some
u, v ∈ A. We now consider the norms of each side of the equation (n + t

√
f ) = bc.

On the left side, we have

N (n + t
√

f ) = (n2
− t2 f ) = (m)c.

On the right side,

N (bc) = N (br )c/r
= (u2

− v2 f )c/r .

Comparing degrees now gives c deg m = c/r · deg(u2
− v2 f ). Since the prime at

infinity ramifies in k(
√

f ), the unit group of the integral closure of A in k(
√

f )

has rank 0, thus it follows that n+ t
√

f = [α(u+v
√

f )]c/r for some α ∈ F×
q . Since

t 6= 0, it is immediate that v 6= 0. Thus v2 f 6= 0 has odd degree, and since u2 has
even degree, deg(u2

− v2 f ) ≥ deg f . Then c deg m ≥ c/r · deg f . But c/r ≥ p,
and c deg m < p deg f by hypothesis, so it must be that b has order exactly c in
Cl( f ). �

Remark 2. Soundararajan’s Proposition 1 in [Soundararajan 2000] also holds if
c is even. Indeed, in the function field case, the proof goes through without the
explicit assumption that c is odd, but the conditions mc

= n2
− t2 f and c deg m <

p deg f are never simultaneously satisfied for c even.

3. Proof of Theorem 1.2

Proof of Theorem 1.2. We first prove the lower bound. Suppose that we have a
solution in l, m, n to t to Equation (2). We will show that the pair of solutions
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(l, m, n, t) and (l, m, n, −t) uniquely determines a pair of two ideals a and ā of
order c in Cl( f ) such that N (a) = N (ā) has degree less than 1

2 deg f .
Let K = k(

√
f ) and, as before, denote by B the integral closure of A in K .

Consider the factorization of ideals in B:

(l)(m)c
= (lmc) = (nl + t

√
f )(nl − t

√
f ). (3)

Since l| f , l is a product of primes in K which are ramified over k, whence (l) = l2

for some ideal l of B. Letting h = (nl + t
√

f , nl − t
√

f ), it follows from Equation
(3) that l2|h2 so l|h. Furthermore, h2 contains both lmc and (nl)2

= n2l2. Since
ln| f n and (m, f n)=1, it follows that (mc, nl)= (mc, n2l)=1. Thus (lmc, n2l)= l,
so l ∈ h2. This shows that h2 divides (l) = l2, thus h = l.

We can now write (nl + t
√

f ) = bl and (nl − t
√

f ) = b̄l where b and b̄ are
relatively prime. Since l2 = (l), we have that b̄b = (m)c, so b and b̄ must both be
cth powers, say b = βc and b̄ = β̄c where β is an ideal of norm m. Define a = βl.
Clearly a 6= ā since otherwise we would have b = b̄, from which it would follow
that t = 0.

We now show that a has order exactly c. Since

ac
= βclc = bl(l)(c−1)/2

= (nl + t
√

f )(l)(c−1)/2

is principal, a has order dividing c. Suppose a is principal and write a= (a+b
√

f )

with a, b ∈ A and b nonzero (if b is 0 it follows from ac
= (nl + t

√
f )(l)(c−1)/2

that t = 0). Then N (a) = N ((a + b
√

f )) = (a2
− b2 f ). Since a2 has even degree

and b2 f has odd degree, the degree of this must be at least deg f . However, this
implies that 1

2 deg f > deg lm = deg N (a) ≥ deg f , a contradiction. Thus a is not
principal and must have order c.

We now consider the degree of a generating element of N (a). We have

N (a)c
= (nl + t

√
f )(l)(c−1)/2

· (nl − t
√

f )(l)(c−1)/2
= (lmc)(l)c−1

= ((lm)c).

Thus N (a)c is generated by (lm)c whence N (a)= (lm) which has degree deg lm <
1
2 deg f .

We now show that different solutions to Equation (2) with Cε = 1 correspond
to distinct pairs of ideals of order c in Cl( f ). Consider two distinct solutions
(l1, m1, n1, t1) and (l2, m2, n2, t2) with deg li mi < 1

2 deg f . Let ai denote the cor-
responding ideals having order c in Cl( f ). Suppose that a1 and a2 are in the same
class in Cl( f ). Then a1ā2 is principal, so let a1ā2 = (a + b

√
f ). Then

(a2
− b2 f ) = N (a1ā2) = (l1m1l2m2).

Considering degrees in this equality, we see that

deg(a2
− b2 f ) = deg l1m1 + deg l2m2 < deg f,
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so b = 0 and a1ā2 = (a). Thus

(a)c
= ac

1ā
c
2 = (n1l1 + t1

√
f )(n2l2 − t2

√
f )(l1l2)

(c−1)/2.

Since the
√

f term on the right side must be zero, we have n1l1t2 =n2l2t1. From the
equation in Equation (2), it is clear that (ni li , ti )2

|li mc
i . Since li is square-free, this

implies that (ni li , ti )|mc
i . Since also (ni li , ti )| f ni and (mc

i , f ni ) = (mi , f ni ) = 1,
it follows that (ni li , ti ) = 1. Using the fact that li and ni are monic, we have that
t1 = t2 and n1l1 = n2l2. Substituting into the Equation (2) gives l1mc

1 = l2mc
2. Since

li divides f and mi is prime to f , it follows that m1 = m2 and l1 = l2, so the
solutions are not distinct. A similar argument shows that a1 and ā2 are in different
classes unless (l2, m2, n2, t2)= (l1, m1, n1, −t1). Thus each pair of solutions of the
form (l1, m1, n1, t1), (l1, m1, n1, −t1) yields a unique pair of elements of order c.
This completes the proof of the lower bound D− ≤ hc( f ).

It remains to show the upper bound. Define s = hc( f )/2 for simplicity of nota-
tion. We note that s is an integer since if C ∈ Cl( f ) has order c, then so does C−1

(note also that since c > 2 these elements must be distinct). Let C1, C̄1, . . . , Cs, C̄s

be the classes of order c in Cl( f ). By Theorem 4.4 in [Hayes 1999], we can choose
integral ideals ai ∈ Ci and āi ∈ C̄i of minimal degree less than (deg f − 1)/2.
Furthermore, it is clear that ideals ai and āi chosen to be minimal in this way are
not divisible by any principal ideals.

Starting with a minimal pair of ideals ai and āi we construct a solution to Equa-
tion (2) with Cε = 2. Write ai = bi li where li is either the unit ideal or has order 2
in Cl( f ) and bi is not divisible by any ideals of order 2. Similarly, write āi = b̄i l̄i
(in fact, li = l̄i ). Then denote the unique monic generator of N (li ) by li . Note that
each prime dividing li also divides f since any prime dividing li is ramified over
k. Since li is not divisible by any principal ideal, li is not divisible by the square
of any prime, so in particular li | f . Define mi to be the monic generator for N (bi ).
Then

deg li mi = 2 deg bi li = 2 deg ai ≤ deg f − 1 <
C+

2
deg f.

Since ai has order c, we can write ac
i = (ai + bi

√
f ) for some polynomials ai

and bi , and we can assume that ai is monic. Then (li )
(c−1)/2

= lc−1
i divides ac

i , so
l(c−1)/2
i divides both ai and bi , so we may write ai = wi l

(c−1)/2
i and bi = ti l

(c−1)/2
i .

Since also āc
i = (ai − bi

√
f ), we have that (li mi )

c
= lc−1

i w2
i − lc−1

i t2
i f , and so

li mc
i = w2

i − t2
i f . From the assumption that li | f it follows that li |w

2
i , and since li

is square-free this implies that li |wi . Write wi = ni li . Since ai = wi l
(c−1)/2
i and li

are both monic, ni is also monic. Thus, we have a solution to li mc
i = n2

i l2
i − t2

i f
with li | f and deg li mi <

C+

2 deg f . Since ti is not restricted to being monic, we
note that substituting −t for t gives another solution.
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We now show that for the solutions constructed, (mi , ni f ) = 1. Since b and b̄

are not divisible by any ideals of order 2, it follows that mi , the monic generator
for N (bi ), is coprime to f . Since (mi , ni )

2 divides mc
i and n2

i it also divides t2
i f ,

but since ni is coprime to f , it follows that (mi , ni )
2
|t2

i , so (mi , ni )|ti . Since ni |ai ,
it follows that (mi , ni )|(ai +bi

√
f ) = ac

i . In particular, this means that each prime
of A dividing (mi , ni ) also divides ai . However A is a principal ideal domain, but
ai was taken not to be divisible by any principal ideal, so (mi , ni ) = 1 and since
also (mi , f ) = 1, we have (mi , ni f ) = 1 as desired.

Finally, we must show that different pairs of ideals ai , āi and a j , ā j give rise to
distinct pairs of solutions as constructed above. If not, then it would follow that
ai = a j and bi = ±b j . Then ac

i = ac
j , so ai = a j . Thus, we have shown that a

pair of inverse elements of Cl( f ) having order c gives a unique pair of solutions
to Equation (2), concluding the proof of the upper bound hc( f ) ≤ D+. �

4. Proof of Theorem 1.3

4.1. Background. We will use a class number relation over function fields proven
by Yu. Before stating the proposition, we introduce some additional notation. If
m ∈ A is of odd degree but is not necessarily square-free, we define h(m) to be the
class number of the order A[

√
m]. This notation is consistent with our previous

definition of h(n) for n square-free because the class number of the maximal order
A[

√
m] is equal to the class number of the field k(

√
m) when m has odd degree and

is square-free [Rosen 2002, Chapter 14]. We define w(m) := #A[
√

m]
×/(q − 1)

and h′(m) := h(m)/w(m). This allows us define the Hurwitz class number

H(m) :=

∑
n2|m

h′(m/n2).

We now have defined all of the notation that we will need for the following class
number relation, Proposition 7 of Yu [1995].

Proposition 4.1. If m ∈ A is monic, then

∑
t∈A

µ∈F×
q /F×2

q

H(t2
−µm) =

∑
d|m

max(|d|, |m/d|)−
∑
d|m

deg d=1/2 deg m

|m|
−1/2 |m| − |m − d2

|

q − 1
, (4)

where the sums on the right are over monic divisors and the sum on the left is over
pairs (t, µ) such that t2

− µm is an imaginary discriminant. This is equivalent
to the condition that either t2

− µm has odd degree or t2
− µm has a leading

coefficient that is not a square in Fq [Rosen 2002, Chapter14].
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We need one additional lemma regarding class numbers. Define the Kronecker
symbol χ f on the monic irreducible elements of A by

χ f (P) =


1 if P splits in k(

√
f ),

0 if P ramifies in k(
√

f ),

−1 otherwise,

and extend χ f to all monic polynomials in A by χ f
(∏

Pei
i

)
=

∏
χ f (Pi )

ei . The
following is Lemma 3 in [Yu 1995].

Lemma 1. For any square-free f ∈ A and any b ∈ A,

h′( f b2)

h′( f )
= | f |

∏
P| f

(
1 −

χ f (P)

|P|

)
.

Corollary 1. Under the hypotheses of the lemma, h′( f b2)|h′( f ).

We also prove a general proposition about polynomials.

Proposition 4.2. Let f1, . . . , fn ∈ A be monic polynomials of odd degree. There
exists a monic irreducible polynomial m ∈ A of odd degree such that each fi for
1 ≤ i ≤ n is a quadratic nonresidue modulo m.

Proof. Let p1, . . . , pr be the monic irreducible polynomials of odd degree dividing
any of the fi , and let l1, . . . , ls be the monic irreducibles of even degree dividing
any of the fi . By the multiplicativity of the Legendre symbol, it suffices to find a
monic polynomial m such that (pu/m) = − 1 for each u and (lv/m) = 1 for each
v.

For each u with 1 ≤ u ≤ r , let πu be an irreducible polynomial such that
(πu/pu)= (−1)(q+1)/2. For 1≤v ≤ s, choose νv to be a monic irreducible such that
(νv/ lv) = 1. Such πu and νv exist by Dirichlet’s theorem on primes in arithmetic
progressions. Applying this theorem again, choose m to be a monic irreducible of
odd degree such that m ≡ πu (mod pu) and m ≡ νv (mod lv) for each choice of
u and v.

We show that m satisfies the conclusion of the proposition. Applying quadratic
reciprocity for function fields [Rosen 2002, Chapter 3], for each pu we have( pu

m

)
= (−1)

q−1
2 ·deg m·deg pu ·

(
m
pu

)
= (−1)

q−1
2 ·

(
πu

pu

)
= (−1)

q−1
2 ·(−1)

q+1
2 = −1.

Similarly, for the lv, we have(
lv
m

)
= (−1)

q−1
2 ·deg m·deg lv ·

(
m
lv

)
= 1 ·

(
νv

lv

)
= 1.



DIVISIBILITY OF CLASS NUMBERS OF IMAGINARY QUADRATIC FUNCTION FIELDS 55

Thus, m satisfies the conditions stated at the beginning of the proof and thus also
the conclusion of the proposition. �

4.2. Proof of Theorem 1.3. Suppose that S is any finite set (possibly empty) of
monic polynomials f ∈ A of odd degree such that c - h( f ). By Proposition 4.2,
take m to be an irreducible monic polynomial of odd degree such that each f ∈ S
is a quadratic nonresidue modulo m (if S = ∅, take m to be any monic irreducible
of odd degree). The class number relation Equation (4) gives us∑

t∈A
µ∈F×

q /F×2
q

H(t2
− µm) =

∑
d|m

max(|d|, |m/d|) = 2qdeg m .

Since c - 2qdeg m , at least one of the terms on the left side of the equation is not
divisible by c, we can take µ and t so that H(t2

−µm) is not divisible by c. From
the definition of the Hurwitz class number,

H(t2
− µm) =

∑
n2|m

h′

(
t2

− µm
n2

)
.

Since the left side of the equation is indivisible by c, we can choose n such that
h′

(
t2

−µm
n2

)
is indivisible by c. We now write

t2
− µm
n2 = f b2,

where f is square-free. From Corollary 1, we have that h′( f )|h′( f b2). In par-
ticular, c - h′( f ). Furthermore, we have h′( f ) = h( f )/w( f ). Since the prime at
infinity is totally ramified in k(

√
f ), the group of units of A[

√
f ] has rank 0 and

thus is just F×
q . This means that

w( f ) =
#A[

√
f ]

×

q − 1
= 1.

So h( f ) = w( f )h′( f ) = h′( f ), whence c - h( f ). This gives us an element f ∈ A
such that h( f ) is indivisible by c.

We show that f 6∈ S. We have that f ·(bn)2
= t2

−µm. Reducing modulo m, we
have f ≡ (t/bn)2 (mod m), so f is a quadratic residue modulo m. In particular,
f 6∈ S. Thus, there are infinitely many quadratic imaginary discriminants f of odd
degree such that c does not divide the class number of K = k(

√
f ).

5. Examples

We consider first an example constructed by Theorem 1.1. Let q = 3 and c = 17,
so that we aim to construct a quadratic imaginary discriminant f ∈ F3[x] such that
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h( f ) is divisible by 17. Take

f = 2x5
+ 2x4

+ 1,

n = x7
+ 2x6

+ x5
+ 2x4

+ x3
+ 2,

t = x6
+ x5

+ 2x3
+ 1,

m = x .

Our choice of f is square-free (and, in fact, irreducible). The condition c deg m <

p deg f is clearly satisfied (note that since c is prime, we have c = p). We also have
(m, n) = 1 and m17

= n2
− t2 f , so Theorem 1.1 says that Cl( f ) has an element

of order 17. Indeed, h( f ) = 17. In fact, computation of a finite number of class
numbers shows that there is no choice of f of smaller degree such that 17|h( f ).

We now provide an example of the method of the proof of Theorem 1.3. Let
q = 3, and define k = Fq(x). Begin with the polynomials

f1 = x + 2 and f2 = x3
+ x2

+ 2x = x(x2
+ x + 2).

It can be computed that h( f1) = 1 and h( f2) = 6. We will use the method of
the proof of Theorem 1.3 to find a third quadratic imaginary discriminant f3 such
that h( f3) is relatively prime to c = 5. Using the same notation as the proof of
Proposition 4.2, we have p1 = x and l1 = x2

+ x +2. The method of the proof now
calls for us to find irreducible polynomials π1 and ν1 such that(

π1

p1

)
= (−1)

q+1
2 = 1 and

(
ν1

l1

)
= 1.

It will thus suffice to take π1 ≡ 1 (mod p1), and ν1 ≡ 1 (mod l1). Because the
next step in the proof is to apply the Chinese Remainder Theorem, it is unneces-
sary (although a trivial exercise) to actually compute irreducible polynomials π1

and ν1. In the proof we use the existence of irreducible polynomials to apply qua-
dratic reciprocity, but for the purpose of construction we need only find appropriate
residue classes to apply the Chinese Remainder Theorem. We now need a monic
irreducible polynomial m of odd degree such that

m ≡

{
1 (mod p1),

1 (mod l1).

One such polynomial is m = p1 · l1 + 1 = x3
+ x2

+ 2x + 1. By the class number
relation Equation (4), we have∑

t∈A
µ∈F×

q /F×2
q

H(t2
− µm) =

∑
d|m

max(|d|, |m/d|) = 54,
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where the sum on the left is over all (µ, t) such that µ is either 1 or 2 and t has
degree 0 or 1. Expanding the sum, we have

H(−m) + H(−2m) + 2H(1 − m) + 2H(1 − 2m) + 2H(x2
− m)

+ 2H(x2
− 2m) + 2H((x + 1)2

− m) + 2H((x + 1)2
− 2m)

+ 2H((x + 2)2
− m) + 2H((x + 2)2

− 2m) = 54.

Since 5 - 54, at least one of the Hurwitz class numbers on the left side of this
equation is indivisible by 5. Although the first term, H(−m) is 5, we find that the
second term, H(−2m) = H(m) is 3. Furthermore, since m is irreducible, we have
by the definition of the Hurwitz class number that

H(−2m) = H(m) =

∑
n2|m

h′(m/n2) = h′(m).

As discussed in the proof of Theorem 1.3, we have that h(m)= h′(m), so h(m)= 3.
Thus choosing f3 = m = x3

+x2
+2x +1 gives a third polynomial f3 with 5 - h( f3).
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