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Let M be a commutative cancellative atomic monoid. We use unions of sets
of lengths in M to construct the V-Delta set of M . We first derive some basic
properties of V-Delta sets and then show how they offer a method to investigate
the asymptotic behavior of the sizes of unions of sets of lengths.

A central focus of number theory is the study of number theoretic functions
and their asymptotic behavior. This has led to similar investigations concerning
nonunique factorizations in integral domains and moniods. Suppose that M is
a commutative cancellative monoid in which each nonunit can be factored into
a product of irreducible elements (such a monoid is known as atomic). For a
nonunit x in M , let L(x) represent the maximum length of a factorization of x into
irreducibles and l(x) the minimum such length. The functions

L(x) = lim
k→∞

L(xn)

n
and l(x) = lim

k→∞

l(xn)

n

have been studied in the literature by Anderson and Pruis [1991] and Geroldinger
and Halter-Koch [1992]. Chapman and Smith [1998] defined the notion of a gen-
eralized set of lengths, and showed [Chapman and Smith 1993b] that the size of a
generalized set of lengths (denoted 8(n)) satisfies

8(R) = lim
n→∞

8(n)

n
=

D(G)2
− 4

2D(G)
, (1)

for a ring of algebraic integers R where D(G) represents Davenport’s constant of
the ideal class group G of R (the Davenport constant is defined in [Geroldinger
and Halter-Koch 2006, Section 3.4]). Since a generalized set of lengths is actually
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a union of certain length sets, we will refer to these sets with the more descriptive
term unions of sets of lengths. The value 8(R) has also been explored for various
semigroup rings over fields [Anderson et al. 1993, Theorem 3.3]. In this note,
we examine the limit 8(R) in greater detail. By generalizing the well known
notion of the Delta set of a monoid M [Geroldinger and Halter-Koch 2006, Section
1.4], we find new bounds for the value 8(M) which allows us to determine exact
calculations in several instances recently addressed in the literature (see Examples 3
and 4). We will begin with a review of the necessary definitions and notations from
the theory of nonunique factorizations. The reader is directed to the monograph
[Geroldinger and Halter-Koch 2006] for a complete survey of recent results in this
area.

Throughout our work, we assume that M is an atomic commutative cancellative
monoid with sets I(M) of irreducible elements and M• of nonunits. The set of
lengths of x ∈ M• is L(x) = {n | x = x1 · · · xn with each xi ∈ I(M)}. Also, define
L(x) = max L(x) and l(x) = min L(x). The quotient L(x)/ l(x) is called the elas-
ticity of x and the constant ρ(M) = sup

{
L(x)
l(x)

| x ∈ M•

}
is known as the elasticity

of M . A survey of the results in the literature concerning elasticity can be found in
[Anderson 1997]. If L(x) = {n1, . . . , nt } with the ni ’s listed in increasing order,
then the Delta set of x is 1(x) = {ni −ni−1 | 2 ≤ i ≤ t}. The Delta set of M is then
defined as 1(M)=∪x∈M•1(x). If d = gcd 1(M), Geroldinger [1988, Proposition
4] has shown that d ∈ 1(M). Hence, it follows that

{d, qd} ⊆ 1(M) ⊆ {d, 2d, . . . , qd}, (2)

for some positive integer q. While the concept of the Delta set of a monoid M has
been widely studied, there are few exact computations of specific Delta sets in the
literature. If B(Zn) represents the block monoid ([Geroldinger and Halter-Koch
2006] or Example 2) on the cyclic group of order n, then

1(B(Zn)) = {1, 2, . . . , n − 2}

[Geroldinger and Halter-Koch 2006, Theorem 6.7.1]. The Delta sets of several nu-
merical monoids [Bowles et al. 2006] and several congruence monoids [Baginski et
al. 2008] have been computed under restricted conditions. In particular, an example
is constructed in [Bowles et al. 2006, Proposition 4.9] where both containments in
Equation (2) are strict.

The notion of a set of lengths was generalized in [Chapman and Smith 1998] as
follows: With M as above, for each n ∈ N set W(n) = {m ∈ M | n ∈ L(m)} and

V(n) =

⋃
m∈W(n)

L(m).
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We refer to the set V(n) as a union of sets of lengths. In [Chapman and Smith
1998], the basic properties of these sets are determined. Moreover, for block
monoids B(G) where G is a finite abelian group, the authors argue that the se-
quence {V(n)}∞n=1 does not uniquely characterize G. We will often need to refer
to the maximum and minimum values in V(n). Hence for each n ∈ N we set

λn(M) = min V(n) and ρn(M) = sup V(n).

When the monoid M is understood, we will merely use the notation λn and ρn .
The sequence {ρn}

∞

n=1 has been an object of study in its own right [Geroldinger
and Halter-Koch 2006, Section 1.4] and [Geroldinger and Hassler ≥ 2008] and it
is shown in [Geroldinger and Halter-Koch 2006, Proposition 1.4.2] that

ρ(M) = lim
n→∞

ρn(M)

n
.

Finally, for each n ∈ N, set 8(n)=|V(n)|. Some basic properties of the 8-function
are explored in [Chapman and Smith 1990, Section 2] and several additional com-
putations of the limit

8(M) = lim
n→∞

8(n)

n
can be found in the literature [Chapman and Smith 1993a, Theorem 2.7 and The-
orem 2.10].

For our purposes, we extend the notion of the Delta set to unions of sets of
lengths as follows: For a fixed monoid M , suppose for each n ∈ N that

V(n) = {v1,n, . . . , vt,n},

where vi,n < vi+1,n for 1 ≤ i < t . Define the V(n)-Delta set of M to be

1V(n) = {vi,n − vi−1,n | 2 ≤ i ≤ t}

and the V-Delta set of M to be

1V(M) =

⋃
n∈N

1
(
V(n)

)
.

In addition, set V∗(M) = sup 1V(M) and V∗(M) = min 1V(M). Clearly,

1V(1) = ∅.

Example 1. Let N0 represent the nonnegative integers. Consider the additive sub-
monoid M = {(x1, x2, x3) | x1 + 3x2 = 4x3 with each xi ∈ N0} of N3

0. Such a
monoid is known as a Diophantine monoid [Chapman et al. 2002]. A character-
ization of Diophantine monoids can be found in [Geroldinger and Halter-Koch
2006, Theorem 2.7.14]. It follows from [Chapman et al. 2000, Proposition 4.8],
that 1(M) = {2}. Using elementary number theory, it follows that the irreducible
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λn ρn

n ≡ 0 (mod 4) 2b
n
4c 2n

n ≡ 1 (mod 4) 2b
n−1

4 c +1 2n-1

n ≡ 2 (mod 4) 2b
n
4c + 2 2n

n ≡ 3 (mod 4) 2b
n−1

4 c + 3 2n-1

Table 1. Example 1: values for λn and ρn for n = 0, 1, 2, 3.

elements of M are v1 = (4, 0, 1), v2 = (0, 4, 3) and v3 = (1, 1, 1). The following
two facts will be key in determining 1V(M):

• using the relation v1 + v2 = 4v3, it is clear that an irreducible factorization in
M which contains both v1 and v2 can be increased in length by 2;

• by [Chapman and Smith 1993a, Lemma 2.8], if a and b are in V(n), then
a ≡ b (mod 2).

By observing that λn is obtained by factoring nv3 and ρn by factoring 2nv3, if n is
even or (2n − 1)v3, if n is odd, we obtain the values given in Table 1. We list the
first few values of V(n) below:

V(1) = {1}, V(5) = {3, 5, 7, 9},

V(2) = {2, 4}, V(6) = {4, 6, 8, 10, 12},

V(3) = {3, 5}, V(7) = {5, 7, 9, 11, 13},

V(4) = {2, 4, 6, 8}, V(8) = {4, 6, 8, 10, 12, 14, 16}.

We have that 1
(
V(n)

)
= {2} for all n and hence 1V(M) = {2}. Notice here that

1V(M) = 1(M). �

Example 2. Let G be an abelian group and F(G) represent the free abelian monoid
on G. Set

B(G) =

 ∏
gi ∈G

gni
i |

∑
gi ∈G

ni gi = 0

 .

B(G) is a submonoid of F(G) known as the block monoid on G. Its irreducible
elements are known as minimal zero-sequences. Using the results of [Chapman
and Smith 1998], we can write out the unions of sets of lengths, and in turn the
V(n)-Delta sets of block monoids on relatively simple groups. For instance, if
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G = Z5, then [Chapman and Smith 1998, Example 5.4] yields:

ρn = b
5n
2

c for n ≥ 2,

λ1 = 1, λk = 2 for k = 2, 3, 4, 5,

λk = λ(k−5) + 2 for k ≥ 6,

for all n ≥ 1, V(n) = [λn, ρn] ∩ Z Hence, 1V(n) = {1} for each n > 1 in N and
thus 1V(B(Z5)) = {1}. Notice that our previous remark yields that 1(B(Z5)) =

{1, 2, 3}. �

We consider some basic properties of the V-Delta set of M in the following lemma.

Lemma 1. Let M be an atomic monoid with min 1(M) = d and max 1(M) = qd
for q ≥ 1.

(1) V∗(M) = d.

(2) V∗(M) ≤ qd.

(3) {d} ⊆ 1V(M) ⊆ {d, 2d, . . . , qd}.

Proof. Choose n ∈ N and let vi+1,n, vi,n be in V(n). We may choose x1 and x2 in
M• such that {n, vi+1,n} ⊆ L(x1) and {n, vi,n} ⊆ L(x2). By Equation (2), L(x1) is
a subset of n + dZ which contains n and whose consecutive elements are at most
qd apart. The same statement holds for L(x2), therefore the union, L(x1)∪L(x2),
also possesses all these properties. Note that the union is a subset of V(n), so
since vi+1,n and vi,n are consecutive elements of V(n), they in particular must be
consecutive elements of L(x1) ∪ L(x2). Therefore vi+1,n − vi,n = td for some
1 ≤ t ≤ q. This shows that 1V(n) ⊆ {d, 2d, . . . , qd}, which in turn implies (2)

and (3). It also determines that V∗(M) ≥ d, so we are left with just showing
d ∈ 1V(M).

Since d ∈ 1(M), there is an x ∈ M and l1, l2 ∈ L(x) with l2 − l1 = d . Consider
V(l1), to which both l1 and l2 belong. They must be consecutive elements of V(l1)

since we have just shown that consecutive elements are at least d apart. Hence
d ∈ 1(V(l1)) ⊂ 1V(M). �

Note that Example 2 indicates that the inequality in Lemma 1 regarding V∗(M)

may be strict. The next corollary will later be useful and follows immediately from
Lemma 1.

Corollary 1. If 1(M) = {d}, then 1V(M) = {d}.

We apply the V-Delta set to limits of the form Equation (1). Unlike the L(x)

and l(x) functions, there is no known argument that 8(M) exists for a general
atomic monoid M . Hence, our analysis of Equation (1) will involve the use of
lim inf and lim sup. Moreover, we must assume that 8(n) is finite for all n, since
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this is necessary for lim supn→∞ to be finite. Indeed, if 8(n) were infinite for
some n, then so would be 8(kn) for all k: if x has a factorization of length n and
of length m, then xk has factorizations of lengths kn and km. In [Chapman and
Smith 1990], an atomic monoid which statisfies 8(n) < ∞ for all nonnegative n
is called 8-finite.

Our main theorem will use the stronger hypothesis that M has finite elasticity.
The following proposition shows this is a necessary condition for

lim sup
n→∞

8(n)

n

to be finite, and the main theorem shows that it is sufficient as well.

Proposition 1. Let M be an atomic 8-finite monoid. If ρ(M) = ∞, then

lim sup
n→∞

8(n)

n
= ∞.

Proof.
Since ρ(M) = ∞, there are xt such that at = L(xt) and bt = l(xt) satisfying

lim
t→∞

at

bt
= ∞.

But all the V(n) are finite and at ∈ V(bt), implying that for every M > 0 there
is an N > 0 such that for all t > N , bt > M . Therefore we may assume that the
sequence is chosen such that the bt are strictly increasing.

Since 8(n) is finite for each n, V∗(bt) exists and V∗(bt) ≥ at . Pruning the
sequence if necessary, we may assume that the bt are chosen such that

lim
t→∞

V∗(bt)

bt
= ∞.

We may estimate

8(bt) ≥
V∗(bt) − V∗(bt) + 1

qd
.

Since V∗(bt) ≤ bt , we find that

8(bt)

bt
≥

V∗(bt)

btqd
−

1
qd

+
1

btqd
.

Taking lim inf of both sides, we see that

lim inf
t→∞

8(bt)

bt
≥ ∞,

since the bt are strictly increasing. Therefore

lim sup
n→∞

8(n)

n
= ∞. �
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Now our main theorem:

Theorem 1. Let M be an atomic monoid with ρ(M) < ∞. Then M is 8-finite and
moreover

ρ(M)2
− 1

ρ(M)V∗(M)
≤ lim inf

n→∞

8(n)

n
≤ lim sup

n→∞

8(n)

n
≤

ρ(M)2
− 1

ρ(M)V∗(M)
. (3)

Proof. Let n ∈ N and suppose that m ∈ V(n). It follows that

1
ρ(M)

≤
m
n

≤ ρ(M)

and hence
n

ρ(M)
≤ m ≤ nρ(M),

which shows that M is 8-finite. We further obtain that(
ρ(M) −

1
ρ(M)

)
n + 1

V∗(M)
≤ 8(n) ≤

(
ρ(M) −

1
ρ(M)

)
n + 1

V∗(M)
.

Thus,(
ρ(M)2

− 1
ρ(M)V∗(M)

)
n +

1
V∗(M)

≤ 8(n) ≤

(
ρ(M)2

− 1
ρ(M)V∗(M)

)
n +

1
V∗(M)

.

After dividing by n and taking the respective lim inf and lim sup, we get that

ρ(M)2
− 1

ρ(M)V∗(M)
≤ lim inf

n→∞

8(n)

n
≤ lim sup

n→∞

8(n)

n
≤

ρ(M)2
− 1

ρ(M)V∗(M)
. �

If 1(M) = {d}, then Corollary 1 implies that V∗(M) = V∗(M) = d and Theorem 1
reduces to the following.

Corollary 2. Let M be an atomic monoid with ρ(M) < ∞. If 1(M) = {d}, then

8(M) =
ρ(M)2

− 1
ρ(M)d

. (4)

Corollary 2 immediately has some nice applications.

Example 3. A numerical monoid is an additive submonoid of the nonnegative
integers. Every numerical monoid S has a unique minimal set of generators, and
we will use the notation S = 〈a1, a2, . . . , at 〉 to represent the minimal generating
set (which we assume is written in linear order). S is primitive if

1 = gcd{s | s ∈ S}.

Every numerical monoid S is isomorphic to a unique primitive numerical monoid,
so when working with numerical monoids, we can always assume that S is a
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primitive numerical monoid. By [Bowles et al. 2006], there exists a method for
calculating max 1(S) in finite time and

min 1(S) = gcd {ai − ai−1 | i ∈ {2, 3, . . . , t}} = d.

By [Chapman et al. 2006, Theorem 2.1], ρ(S) = at/a1. Hence for a numerical
monoid, Equation (3) reduces to

a2
t − a2

1

V∗a1at
≤ lim

n→∞
inf

8(n)

n
≤ lim

n→∞
sup

8(n)

n
≤

a2
t − a2

1

V∗a1at
.

If we know further that the generators of S form an arithmetic sequence (that is,
S =〈a, a+d, a+2d, . . . , a+kd〉 for some positive integers d and k), then [Bowles
et al. 2006, Theorem 3.9] indicates that 1(S)={d}. In this case we obtain an exact
calculation of 8(S) as

8(S) =
k(2a + kd)

a(a + kd)
= k

(
1
a

+
1

a + kd

)
. �

Example 4. Let a and b be positive integers with a ≤ b and a2
≡ a (mod b). The

set of numbers M(a, b) = {x | x ∈ N and x ≡ a (mod b)} ∪ {1} forms a mul-
tiplicative monoid known as an arithmetical congruence monoid (ACM). ACMs
have been the focus of three recent papers in the literature [Banister et al. 2007a,
2007b, Baginski et al. 2008]. An ACM is called local if gcd(a, b) = pα for some
prime number p and positive integer α. It follows from elementary number theory
that a local ACM M(a, b) has a minimal index, which we denote by β, for which
pβ

∈ M(a, b). There are two relevant known results for a local ACM M(a, b):

• ρ(M(a, b)) =
α+β−1

α
[Banister et al. 2007b, Theorem 2.4]

• if α = β > 1, then 1(M(a, b)) = {1} [Baginski et al. 2008, Theorem 3.1].

Hence, for an ACM as above where α = β > 1 (for instance, M(4, 12)), Equation
(4) reduces to

8(M(a, b)) =
(2α − 1)2

− α2

α(2α − 1)
. �

We close with a few comments:

• The proof in [Chapman and Smith 1993b] of Equation (1) relies on a different
technique than that used above. The proof relies on knowing the exact struc-
ture of the sets in an infinite subsequence of the sequence V(1), V(2), . . . .

• By a recent result of [Freeze and Geroldinger ≥ 2008],

V∗(B(G)) = V∗(B(G)) = 1

for all abelian groups G. Combined with Theorem 1, this yields a simpler
proof of Equation (1) than the original proof in [Chapman and Smith 1993b].
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• Connected to the last remark is a question posed in [Chapman and Smith 1998,
Section 5]: for B(Zn), does ρ3 = max V(3) = n + 1? This question has been
answered in the affirmative by [Gao and Geroldinger ≥ 2008].
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